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� Accurate infant age predictions can be made using 20 min resting state EEG from a single channel.
� The deep learning age prediction model generalises to two independent datasets from two different clinical sites.
� The magnitude of the brain age gap differs between infant groups with different Bayley Scale outcomes.
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Objective: Electroencephalography (EEG) can be used to estimate neonates’ biological brain age.
Discrepancies between postmenstrual age and brain age, termed the brain age gap, can potentially quan-
tify maturational deviation. Existing brain age EEG models are not well suited to clinical cot-side use for
estimating neonates’ brain age gap due to their dependency on relatively large data and pre-processing
requirements.
Methods: We trained a deep learning model on resting state EEG data from preterm neonates with nor-
mal neurodevelopmental Bayley Scale of Infant and Toddler Development (BSID) outcomes, using sub-
stantially reduced data requirements. We subsequently tested this model in two independent datasets
from two clinical sites.
Results: In both test datasets, using only 20 min of resting-state EEG activity from a single channel, the
model generated accurate age predictions: mean absolute error = 1.03 weeks (p-value = 0.0001) and
0.98 weeks (p-value = 0.0001). In one test dataset, where 9-month follow-up BSID outcomes were avail-
able, the average neonatal brain age gap in the severe abnormal outcome group was significantly larger
than that of the normal outcome group: difference in mean brain age gap = 0.50 weeks (p-value = 0.04).
Conclusions: These findings demonstrate that the deep learning model generalises to independent data-
sets from two clinical sites, and that the model’s brain age gap magnitudes differ between neonates with
normal and severe abnormal follow-up neurodevelopmental outcomes.
Significance: The magnitude of neonates’ brain age gap, estimated using only 20 min of resting state EEG
data from a single channel, can encode information of clinical neurodevelopmental value.
� 2024 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The newborn infant’s brain is undergoing rapid developmental
change, influenced by both genetic and environmental factors
(Colonnese et al., 2010; Milh et al., 2007; Wess et al., 2017).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.clinph.2024.05.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.clinph.2024.05.002
http://creativecommons.org/licenses/by/4.0/
mailto:luke.baxter@paediatrics.ox.ac.uk
https://doi.org/10.1016/j.clinph.2024.05.002
http://www.sciencedirect.com/science/journal/13882457
http://www.elsevier.com/locate/clinph


A. Ansari, K. Pillay, E. Arasteh et al. Clinical Neurophysiology 163 (2024) 226–235
Relative to their term-born counterparts, infants born prematurely
are at increased risk of poorer long-term neurodevelopmental out-
comes (Blencowe et al., 2013; Wallois et al., 2020). This risk of
impairment increases with the degree of prematurity at birth
and the presence of gross morphological lesions but can also be
brought about by subtler environmental stressors (Scher, 2008),
excessive exposure to painful stimuli (Grunau, 2013; Moultrie
et al., 2017), and pharmacological interventions (Duerden et al.,
2016; Malk et al., 2014).

The early identification of abnormal neurodevelopment is
essential to identify infants at greatest risk who might benefit most
from developmental care interventions (Burke, 2018). To date,
neurological assessment of the newborn has remained predomi-
nantly subjective (Dempsey et al., 2018). For example, trained
neonatologists and clinical neurophysiologists visually inspect
infants’ brain activity using electroencephalography (EEG) to
determine whether brain function is developmentally age-
appropriate or dysmature (Scher, 1997) based on developmentally
changing EEG features characteristic of maturational status (André
et al., 2010). While these trained individuals can estimate age with
an error of two weeks for preterm babies and one week for term
babies, these estimates can be highly variable across reviewers
(Stevenson et al., 2020b). Subjectivity, inter-rater variability, and
the requirement of specialist EEG interpretation are central issues
that severely limit the reliability and generalisability of many cur-
rent neurological assessment methods. There is an urgent need for
objective and automated neuromonitoring that can be used cot-
side to identify infants at increased risk of abnormal neurodevelop-
mental outcomes.

To this end, a variety of metrics have been developed to capture
key maturational characteristics from preterm EEG (De Wel et al.,
2017; Dereymaeker et al., 2016; Lavanga et al., 2017; Pillay et al.,
2018; Tolonen et al., 2007), and these measures have been com-
bined using machine learning algorithms to successfully predict
infants’ brain age (O’Toole et al., 2016; Stevenson et al., 2017).
An infant’s brain age is the biological age of their brain, which is
influenced by a wide array of genetic and environmental exposures
(Salih et al., 2023). An infant’s postmenstrual, gestational, or
chronological age (Engle et al., 2004) are not always a perfect mea-
sure of biological age, as they do not account for individual differ-
ences in rates of maturation due to differences in genetic and
environmental influences (Salih et al., 2023). Models that use
brain-based features (structural or functional) as predictors and
postmenstrual age (PMA) as the output can be used to derive
infants’ brain age. The difference between a person’s chronological
(or postmenstrual) age and brain age, termed the brain age gap, has
been demonstrated to be more than random noise prediction error
but is of biological and clinical value in both adults (Salih et al.,
2023; Smith et al., 2019; Vidal-Pineiro et al., 2021) and infants
(Pillay et al., 2020; Stevenson et al., 2020a).

In infants, the magnitude of the brain age gap has been demon-
strated to correlate with neurodevelopmental outcomes (Pillay
et al., 2020; Stevenson et al., 2020a). These studies established
the proof-of-concept in infant populations that the inter-
individual variability in automatically and objectively generated
brain age gaps could be used to risk-stratify infants in the first
few weeks of postnatal life according to neurodevelopmental out-
comes. However, a limitation to these studies is that the models
needed multiple EEG channels and at least one hour of EEG record-
ing duration. These data-heavy requirements limit the ease with
which these methods can be incorporated into the busy clinical
environment.

Here, we directly address these barriers to clinical ease of use.
Moreover, we adopt a deep learning approach that does not require
the pre-specification of features. In the current study, we imple-
ment a convolutional neural network (CNN)-based architecture
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to generate infant brain age predictions using reduced EEG data
requirements compared to previous proof-of-concept studies. We
first compare the performance of the model with varying electrode
montages and recording durations in a training set and establish
the fully trained model. We next validated this trained model in
two independent samples, one of which was collected at a different
site by an independent research team with a different recording
set-up. Finally, we compared the brain age gaps for infants who
had normal and abnormal neurodevelopmental outcomes assessed
using the Bayley Scale of Infant and Toddler Development Second
Edition (BSID-II) at 9 months of age.
2. Methods

2.1. Participants

2.1.1. Study design
Data were analysed in three independent samples. The first

sample, referred to as dataset 1, was used to train the model. The
second and third samples, referred to as datasets 2 and 3, were
used to test the trained model’s age prediction accuracy. Due to
the existence of 9-month BSID-II follow-up outcomes for dataset
2, this dataset was also used to assess the model’s prediction error
magnitude as a brain age gap estimate by comparing mean predic-
tion errors among the three BSID-II outcome groups.
2.1.2. Recruitment
EEG data for datasets 1 and 2 were recorded from the Neonatal

Intensive Care Unit at UZ Leuven Hospitals, Leuven, Belgium.
Infants were recruited, and data were recorded with informed con-
sent from the parents and in accordance with the guidelines
approved by the ethics committee of the University Hospitals, Leu-
ven. All infants had a gestational age at birth less than 32 weeks,
and between one and five recordings were obtained during their
stay in the Neonatal Intensive Care Unit. Infants in dataset 3 were
selected from a database of previously recorded data collected at
the Newborn Care Unit and Maternity wards of the John Radcliffe
Hospital, Oxford University Hospitals NHS Foundation Trust,
Oxford, United Kingdom. Ethical approval was obtained from the
UK National Research Ethics Service (reference: 12/SC/0447), and
parental written informed consent was obtained before each par-
ticipant was studied. All participant recruitment was conducted
in accordance with the standards set by the Declaration of Helsinki
and Good Clinical Practice guidelines.
2.1.3. Datasets
A summary of the participant demographics and clinical infor-

mation is presented in Table 1, grouped according to dataset. For
datasets 1 and 2, which included BSID-II follow-up outcomes,
infants were categorized into three groups based on their BSID-II
outcomes: normal (i.e., no neurodevelopmental impairment), mild
abnormal (mild neurodevelopmental impairment), and severe
abnormal outcomes (mild-to-severe neurodevelopmental impair-
ment). Normal outcomes were defined as infants with a BSID-II
Mental Development Index and Psychomotor Development Index
both �85 (Stevenson et al., 2017), absence of any severe brain
lesions (from cerebral ultrasound recordings), no periventricular
leukomalacia, and no use of any sedative or anti-epileptic medica-
tion during EEG recording. Mild abnormal outcomes were defined
as a minimum Mental Development Index or Psychomotor Devel-
opment >70 and <85. Severe abnormal outcomes had a minimum
Mental Development Index or Psychomotor Development �70 or
presence of cerebral palsy. Patients who died (i.e. passed away
before 9 months follow up) were also included in this group.



Table 1
Participant demographics. Data are presented as count (percent) or mean (standard deviation). Abbreviations: BSID-II = Bayley scale of infant and toddler development, second
edition; GA = gestational age; PMA = postmenstrual age.

Dataset 1 Dataset 2 Dataset 3

Purpose Model training Model testing (PMA prediction; brain age
gap vs BSID-II outcome relationship)

Model testing (PMA prediction)

Site Leuven (Belgium) Leuven (Belgium) Oxford (UK)
Number of subjects 40 43 57
Number of recordings 111 148 73
Number of recordings per subject 2.8 (1.6) 3.4 (1.4) 1.3 (0.7)
Recording duration (hours) 8.1 (5.9) 7.1 (5.7) 0.8 (0.3)
GA at birth (weeks) 31.1 (4.9) 27.8 (4.5) 32.7 (4.7)
PMA at study (weeks) 34.6 (3.2) 32.5 (2.0) 35.2 (3.0)
Sex
Males 13 (32.5%) 33 (76.7%) 31 (54%)
Females 27 (67.5%) 10 (23.3%) 26 (46%)

BSID-II categorisation Unavailable
Normal 40 22 n/a
Mild abnormal 0 11 n/a
Severe abnormal 0 10 n/a

Patent ductus arteriosus 8 (20%) 7 (16.3%) 8 (14%)
Necrotizing enterocolitis 2 (5%) 1 (2.3%) 5 (9%)
Previous infection (with antibiotic treatment) 15 (37.5%) 22 (51.2%) 30 (53%)
Mean duration on mechanical ventilation (days) 16.2 (19.4) 17.6 (20.6) 2.1 (8.4)
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Dataset 1 consisted of n = 40 infants (111 recordings) with a
PMA range at the time of recording of 27.3–43.1 weeks, with a
mean recording duration of 8 h 07 m (standard deviation: 5 h
55 m) and a mean number of recordings per infant of 2.8 (standard
deviation: 1.6). All infants in dataset 1 were selected for normal
neurodevelopmental outcome at 24-month follow-up age based
on behavioural assessment using BSID-II.

Dataset 2 consisted of n = 43 infants (148 recordings) with a
PMA range at the time of recording of 27.3–42.0 weeks, a mean
recording duration of 7 h 05 m (standard deviation: 5 h 43 m),
and a mean number of recordings per infant of 3.4 (standard devi-
ation: 1.4). This dataset includes infants with a range of both nor-
mal and abnormal 9-month follow-up BSID-II outcomes. N = 22
infants (73 recordings) had normal outcomes; n = 11 infants (37
recordings) had mild abnormal outcomes; and n = 10 infants (38
recordings) had moderate-to-severe abnormal outcomes (Pascal
et al., 2020).

Dataset 3 consisted of n = 57 infants (73 recordings) with a PMA
range at the time of recording of 28–42.6 weeks, with a mean
recording duration of 50 min (standard deviation: 18 min) and a
mean number of recordings per infant of 1.3 (standard deviation:
0.7). Infants were included in this dataset for the current study if
they had at least 20 min of EEG data recorded and if the EEG was
assessed as normal for age by a trained clinical neurophysiologist
(author GSM).

2.2. EEG data

2.2.1. Setup
For datasets 1 and 2, data were recorded using a sampling fre-

quency of 250 Hz using Brain RT OSG Equipment (Mechelen, Bel-
gium). In a few cases, the EEG was sampled at 256 Hz due to
some setup variations on the Brain RT device used. All recordings
were performed with nine electrodes in a referential montage:
Fp1, Fp2, C3, C4, T3, T4, O1, O2, and Cz reference.

For dataset 3, EEG recordings were acquired from DC to 800 Hz
using a SynAmps RT 64-channel headbox and amplifiers (Com-
pumedics Neuroscan). Activity was recorded using the CURRY
scan7 neuroimaging suite (Compumedics Neuroscan), with a sam-
pling rate of 2000 Hz. Between 8 and 25 electrodes were used for
recording, positioned according to the modified international 10–
20 system, including C3 and C4 (those used in the analysis here),
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with reference at Fz and ground at Fpz. The scalp was cleaned with
preparation gel (Nuprep gel, D.O. Weaver and Co.), and disposable
Ag/AgCl cup electrodes (Ambu Neuroline) were placed with con-
ductive paste (Elefix EEG paste, Nihon Kohden).

For all datasets, EEG recordings were conducted in the infant’s
cot or incubator on the neonatal units. Measurements were taken
at different times of the day, but in all cases, monitoring occurred
during periods when the neonates were relaxed and typically
asleep, to not unnecessarily stress the baby.

2.2.2. Preprocessing
For dataset 1, each recording was downsampled to 64 Hz, which

included an anti-aliasing filter. Recordings were then split into 30-
second segments, and the amplitudes were standardized such that
the mean and standard deviation of the amplitudes were zero and
one, respectively. The mean and standard deviation were obtained
by standardizing the data across all channels. Finally, any segments
where the absolute differences (compared to the mean) at any
point exceeded 600 lV were rejected as artefacts. For datasets 2
and 3, pre-processing was matched to dataset 1. For the standard-
ization of datasets 2 and 3, the mean and standard deviation of
dataset 1 were used.

2.3. Training the age prediction model in dataset 1

2.3.1. Model architecture
Fig. 1 shows the block diagram of the deep neural network for

brain age prediction. As input, the network processes a 30 s multi-
channel EEG segment. Each input segment has dimensions
C x 1920, where C is the number of EEG channels and 1920 is
the total number of timepoints in the 30 s segment (30 s
duration � 64 Hz sampling frequency). Each segment has a single
output label that is a continuous PMA value.

The model includes a series of convolutional layers with expo-
nential linear unit activations, maximum and average pooling lay-
ers to downsample the data, normalization layers for faster
training convergence, and a dense layer with linear activation to
perform the final regression and produce a brain age estimate. As
each convolutional layer is designed to extract specific characteris-
tics from the EEG, these are analogous to a (trainable, data-driven)
feature extraction layer. More generally, the proposed architecture
can be grouped into a more traditional, sequential CNN block that



Fig. 1. Block diagram of the deep learning model architecture. The neural network architecture is separated into three blocks: Feature Extraction I, Feature Extraction II,
and Regression. During Feature Extraction 1, a recognised CNN structure is used, consisting of multiple Conv layers to extract features from the EEG, as well as normalization
layers for stable training and Maxpool layers to aggregate these features and provide some local temporal invariance of the features. This block effectively extracts and
separates out the main characteristics of the EEG signal. In Feature Extraction II, a similar structure is used but replacing the single Conv layer with the Sinc block as a layer. As
shown, a single Sinc layer consists of a set of Conv layers that effectively extract features from the EEG at varying scales and combines them in an efficient way via parameter
sharing. With this Feature Extraction II block, the now-separated features from Feature Extraction I are further processed across different temporal scales to generate more
fine-tuned features from the original EEG. The final regression block provides a Linear layer that regresses the generated feature to a PMA estimate. The Flatten and Dropout
layers here restructure the feature output to facilitate this and assists in improving model training. Abbreviations: Avgpool = average pooling layer; CNN = convolutional
neural network; Conv = convolutional layer; EEG = electroencephalography; Maxpool = maximum pooling layer; PMA = postmenstrual age; Sinc = shared inception block.
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can be described as an initial feature extraction stage, followed by
the two successive Sinc (i.e., shared inception) blocks that form a
second feature extraction stage (Ansari et al., 2021).

2.3.2. Model training
Dataset 1 was divided by recording into training and test sets of

size 64 and 47 recordings, respectively. These were age-stratified
by first dividing PMA into two-week intervals (27–28, 29–30, . . .,
42–43 weeks PMA). Each recording within an interval was then
randomly assigned to either the training or test set with 50% prob-
ability, ensuring a good representation in both sets across PMA. A
recording-wise test-train split was chosen because it allowed a
better stratification by age than splitting by infant. While a
recording-wise split does not guarantee full statistical indepen-
dence between the training and test sets of dataset 1 due to record-
ings from a single infant possibly featuring in both sets, final model
performance assessment is only considered for datasets 2 and 3,
which have no information leakage from the training set (dataset
1).

To prevent over-fitting during model training, early stopping
was used by assessing the change in model performance based
on a validation set. The validation set was formed by removing
the last 25% of each recording in the training set. This ensured that
the validation set was stratified in the same way as the training set
such that model updates during training were always based upon a
good age representation in the data.

Two sources of Gaussian noise were added to the deep learning
networks to improve robustness. First, Gaussian noise (standard
deviation = 0.001) was added to the standardized input EEG. This
can help the network overcome noisy EEG and is a common
approach used to prevent overfitting in deep learning models to
noise in the data and has shown success across many other deep
learning applications (Audhkhasi et al., 2013; Bishop, 1995;
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Ghose et al., 2020; Koistinen and Holmstrom, 1991; Vincent
et al., 2010; Yin et al., 2015). Injecting small random noise to the
input signal helps the network learn to ignore such noisy patterns
and therefore better generalise to new, unseen datasets. Addition-
ally, Gaussian noise (standard deviation = 1 day) was added to the
PMA target labels. As the PMAs of the recordings are sparsely scat-
tered (and repeated for each segment in a recording), this helped
the network tolerate small prediction errors and further improved
the generalization performance. The added Gaussian noise, with a
deviation of 1 day, is small relative to the inherent uncertainty of
an infant’s PMA determined clinically, which, according to the
American Academy of Paediatrics, can vary by as much as two
weeks (Engle et al., 2004).

The EEG recording was fully segmented into contiguous 30 s
segments (e.g., a 1 hr recording was segmented into 120 seg-
ments). As the durations of the recordings are not consistent, con-
ventional segmentation into 30 s segments using a sliding window
ensures that longer duration recordings are more emphasised dur-
ing training, resulting in a bias. To solve this, a fixed number of seg-
ments (n = 1000) is picked at random from every recording with
replacement (bootstrapping) for each batch during training. This
results in a total of 6.5 M bootstrapped segments per training
epoch.

The model produces a brain age prediction for each 30 s record-
ing segment, and the set of estimates per recording is aggregated
into a single predicted brain age value. To partially correct for
the training bias resulting from the non-uniform distribution of
the data with PMA, a training weight is assigned to each segment
depending on the frequency of their corresponding PMA. To calcu-
late these training weights (or class weights), an approach used in
classification tasks was employed by grouping the PMAs into
ranges and calculating each weight according to the following for-
mula: {weight for class i} = {number of samples}/({number of



Fig. 2. Training the age prediction model in dataset 1. (a) Reducing channel
number. EEG montages used during analysis, with the reference electrode Cz
shaded in grey. Arrows represent the specific channels used during analysis. During
model training in dataset 1, both the 8-channel referential montage and 1-channel
bipolar montage were used. For both datasets 2 and 3, only the 1-channel bipolar
montage was used. (b) Reducing recording duration. Assessment of age prediction
error (MAE on y-axis) in dataset 1 as EEG recording duration is varied from 0.5-
120 min (x-axis), benchmarked using the full recording duration. The full recording
duration MAE (0.78 weeks) is displayed as the horizontal dotted line. The MAEs for
reduced recording durations are displayed as the mean (solid blue line) ± standard
deviation error bars (shaded blue). Performance using the reduced recording
durations is matched to the full recording duration when recordings of 20 min or
longer are used; using a recording duration of less than 20 min exhibits a gradual
drop in prediction performance (larger MAE values). Note, the performance of the
reduced recording durations of 45–120 mins appear to outperform the full
recording duration; however, this difference in MAE is relatively minor and is not
consistent beyond 120mins suggesting a trivial noise or bias effect, that will be
limited to this training dataset. (c) Synthetic EEG data generated using the deep
learning model. These simulated EEG data highlight changes in discontinuity
characteristics with PMA, reminiscent of maturational trends seen in real EEG data.
The results are generated using the input-loss minimization technique for three
target PMAs (30, 35, and 40 weeks) spanning the early preterm to term age range
using the model trained on the 8-channel full recording duration EEG dataset 1. The
degree of continuity in activity can be seen to increase with PMA. Abbreviations:
EEG = electroencephalography; MAE = mean absolute error; PMA = postmenstrual
age; Sinc = shared inception block. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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classes} * {number of samples in class i}) (King and Zeng, 2001).
Consequently, segments from recordings with more common
PMAs have less impact on each network update during training.

Finally, as neural network training is a non-convex problem and
requires a stochastic initialisation of the parameters, each trained
network is not unique. Consequently, the final performance of
these trained networks varies. To achieve a robust solution, a deep
ensemble approach was used by repeatedly training the model ten
times using different random initialisations i.e., a 10-learner
ensemble method (Fort et al., 2020).

2.3.3. Model assessment
The ultimate goal of the prediction model is to generate a single

brain age prediction estimate per EEG recording. The model gener-
ates ten brain age prediction estimates per 30 s segment of an EEG
recording (as a 10-learner ensemble method was used). During
testing, all contiguous 30 s segments across each recording are
used with the number of 30 s segments therefore dependent on
the overall EEG recording duration. To aggregate a deep learning
model’s predictions to a single value per recording, the median
across the ten ensemble predictions per 30 s segment is deter-
mined, and then a further median across all 30 s segments in the
recording is taken, resulting in the final prediction estimate. Across
all recordings in the test set in dataset 1, there were a total of 30 K
segments used. The final prediction estimate for a recording is used
to generate the prediction error (or absolute prediction error) for
that recording.

Deep neural networks are notorious for being black-box machi-
nes, limiting interpretability when compared to machine learning
approaches and traditional visual assessment approaches. To help
understand the model’s functioning, we used a method that we
refer to as input-loss minimisation in this paper. When a neural
network model is trained, the weights are adapted by backpropa-
gating the loss derivatives through the network as labelled data
is added to the model in batches during training via versions of
stochastic gradient descent. In input-loss minimization, however,
we now freeze the trained model (i.e. the weights are now fixed)
and specify a ‘target’ PMA as the output. Input ‘EEG’ is provided
as Gaussian noise and the backwards and forwards propagation
(still using stochastic gradient descent) is allowed to commence
but this time with the derivatives of the loss with respect to the
input and target PMA allowed to change instead of the (now fixed
and trained) weights. The result is that the input begins to be mod-
ified to reflect synthetic EEG that the model assumes represents
the target. Inspired by the activation maximization visualization
method (Erhan et al., 2009), changes to the input in this way as
optimized by the neural network may reveal potentially important
physiological patterns that the network has identified to estimate
the target PMA. Using this method, we generated synthetic EEG
data for three target postmenstrual weeks: PMA = 30, 35, and
40 weeks. These synthetic EEG outputs are qualitatively assessed
based on known EEG maturational features over this age range
(André et al., 2010) to facilitate interpretation of the Sinc model’s
functioning.

2.3.4. Reducing EEG channels
The deep learning model was initially trained using an 8-

channel referential montage setup and the full recording duration.
Subsequently, the model was re-trained, and performance was
assessed by changing the EEG montage to a 1-channel bipolar
(C3-C4) montage (Fig. 2a). The 1-channel bipolar montage was
selected for its similarity to setups used in clinical amplitude-
integrated EEG monitors. EEG pre-processing was independently
repeated, with the amplitude standardisation step recalculated
on the reduced channel configuration. It is worth noting that the
1-channel bipolar montage used for our analyses was achieved
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by ignoring the additional channels unnecessary for this montage.
This approach is distinct from a true clinical scenario when only a
1-channel bipolar montage would be used during recording. Our
assumption, which we believe to be reasonable, is that both
approaches to the 1-channel bipolar montage setup are closely
matched for this specific use case. However, this assumption
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should be tested in future external validations of the deep learning
model using clinical grade bipolar montage data.

2.3.5. Reducing EEG recording duration
Having demonstrated the reasonable performance of the model

using the full-length EEG recording duration with a 1-channel
bipolar setup, we next assessed the model performance using the
1-channel bipolar setup as the EEG recording duration was system-
atically varied over a range of recording lengths from 0.5–120 min.
To obtain a reduced recording from a single full recording, we ran-
domly sampled each reduced duration segment from the full
recording, generating an absolute error value per reduced duration
segment. Due to the arbitrary nature of selecting a reduced record-
ing segment from a full recording, we repeated the procedure using
1000 bootstrapped samples from which a mean absolute error was
derived per recording per reduced recording duration. A minimum
reduced recording duration was identified as the duration at which
the prediction performance, measured using the mean absolute
error, noticeably drops below that of the full duration model.

2.4. Predicting age in independent datasets 2 and 3

The model was trained using only dataset 1 with the 1-channel
bipolar setup and was not adapted or re-trained when applied to
the independent datasets 2 and 3. When applying the model, both
datasets 2 and 3 used the 1-channel bipolar montage (C3-C4)
(Fig. 2a). For dataset 2, the 20 min recording duration was ran-
domly sampled from the full duration EEG recording; for dataset
3, due to the much shorter recording durations, the first 20 min
of each recording were used.

For both datasets 2 and 3, the model performance was assessed
by calculating the mean absolute error (MAE), with 95% confidence
intervals (CIs) estimated using bootstrapping: bias corrected and
accelerated percentile (BCA) method with 10,000 bootstrap sam-
ples (MATLAB R2023a). One-tailed significance testing, with a 5%
significance level, was performed using permutation testing via
FSL’s PALM: Freedman-Lane method with 10,000 permutations
(Winkler et al., 2014). Due to multiple recordings per infant exist-
ing in both datasets, permutations were limited to appropriate
exchangeability blocks, and the hierarchical data structure is visu-
alised in the supplementary information using tree diagrams as per
the original methods paper (Winkler et al., 2015). Last, in addition
to the MAE (an absolute measure of performance in original units
of weeks), we report the coefficient of determination (R2) as a com-
plementary relative measure of performance, computed using the
sum-of-squares formulation, which indicates the proportion of
variance explained (Poldrack et al., 2019).

Due to the presence of a small number of extreme values, we
performed sensitivity tests using robust measures of performance,
median absolute error and robust R2, as these alternative versions
of the performance metrics are insensitive to outliers (Kvalseth,
1985; Poldrack et al., 2019).

2.5. Assessing the potential value of the prediction error magnitude in
dataset 2

Using dataset 2, the association between infants’ brain age pre-
diction error and their 9-month BSID-II follow-up outcomes was
assessed to test the potential value of the model’s prediction error
magnitude as an estimate of a meaningful biological brain age gap.
A brain age gap was determined per recording using a multistep
procedure: the signed difference between PMA and predicted
PMAwas derived, and then PMAwas regressed on these signed dif-
ferences to generate signed difference residuals that no longer had
a PMA linear association (Le et al., 2018; Smith et al., 2019). The
absolute value of these residualised errors was then used as the
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estimate of brain age gap magnitude per recording. Finally, to
obtain a single brain age gap magnitude per subject, the mean
brain age gap magnitude was taken across all recordings per sub-
ject. Due to the presence of a small number of extreme values,
we also performed a sensitivity test by taking the median brain
age gap across an infant’s recordings.

Subjects were grouped according to their 9-month BSID-II: nor-
mal, mild abnormal, and severe abnormal. The brain age gap mag-
nitudes are displayed for visualisation using Cumming estimation
plots, implemented using the dabestr (Data Analysis using
Bootstrap-Coupled ESTimation) package in R, with which 95% CIs
are generated using the BCA method with 5000 samples (Ho
et al., 2019).

To test significant differences in the mean MAE among the three
groups, all three pairwise two-sided t-tests were performed. All
tests were adjusted for the number of recordings per subject to
account for potentially different signal-to-noise ratios due to dif-
fering numbers of averaged recordings among subjects. The 5%
familywise error rate was controlled to account for multiple com-
parisons using the non-parametric permutation-based Westfall–
Young method, as implemented in PALM (Alberton et al., 2020).
3. Results

3.1. Training the age prediction model using reduced EEG requirements

Using dataset 1, the model was initially trained using all eight
channels and full recording durations, resulting in an MAE = 0.73
weeks. We next reduced the number of EEG channels from the 8-
channel referential montage to a 1-channel bipolar montage
(Fig. 2a) and retrained the model using full recording durations.
This model resulted in an MAE = 0.78 weeks. Finally, we used the
1-channel bipolar montage to retrain the model on progressively
shorter recording durations, ranging from 0.5 to 120 mins. Using
only 20 min of EEG recording, the model prediction error was
approximately equivalent to using the full recording duration
(Fig. 2b). The final model was trained on dataset 1 using the 1-
channel bipolar montage and 20 min recording duration (MAE =
0.79 weeks).

To shed light on the EEG features that might be driving the age
predictions, we generated synthetic EEG data from the trained
model using input-loss minimisation. This was performed using
the 8-channel, full recording duration data to achieve a reasonable
signal-to-noise ratio. Visually inspecting the synthetic data for 30,
35, and 40 weeks PMA, the signal continuity and duration of bursts
increased with increasing PMA (Fig. 2c). The 30-week synthetic
data reflect aspects of high discontinuity with short, high ampli-
tude bursts and long-duration inter-burst intervals. With increas-
ing PMA, the inter-burst interval durations decreased and burst
periods widened, and by term age, the signal was almost fully con-
tinuous with no clear burst or inter-burst interval patterns. These
observations may suggest that the 1-channel 20 min recording
duration model may also use similar EEG characteristics, such as
signal continuity and bursting, to predict infant age.
3.2. Age is accurately predicted in two independent datasets

We applied the trained model to two independent datasets.
First, the model was applied to a cohort of infant data (dataset 2)
collected at the same site as the training data. Using 1-channel
bipolar EEG data of 20 min recording duration, the model was able
to accurately predict infant age (Fig. 3a): n = 43 subjects (148
recordings), R2 = 0.82, MAE = 1.03 weeks, 95% CI = [0.87, 1.28],
p = 0.0001. The exchangeability block structure used in the permu-



Fig. 3. Model performance assessed in two independent datasets from two clinical sites. (a) and (b) display the age prediction accuracy results, with PMA on the x-axis
and predicted PMA on the y-axis for each recording per dataset, where each dot represents one recording. The black y = x line is the line of perfect prediction. The grey line is
the least squares fit line. In (a), infants are grouped according to their 9-month BSID-II follow-up outcomes: normal is blue, mild abnormal is orange, and severe abnormal is
green. In (b), no follow-up outcomes were available. (c) The brain age gap results are displayed using a Cumming estimation plot. Top: In the swarm plots, each dot represents
one subject, and subjects are grouped according to their BSID-II follow-up outcomes (same colour coding as (a)). The y-axis is the brain age gap magnitude: absolute value of
prediction error with PMA association bias removed (residualised). Next to each swarm plot is a vertical line which is the ± standard deviation error bar. Bottom: The normal
outcome group is used as a common control for the mild and severe abnormal groups. The solid circles represent the group mean minus the mean of the shared control, and
the vertical black bars are the 95% confidence interval, determined using bootstrap resampling. The resampled distribution is also displayed. The severe outcome group had a
significantly larger mean brain age gap (p-value = 0.04), assessed using two-sided t-tests, controlled for number of recordings per subject, and p-values adjusted for multiple
comparisons. Abbreviations: PMA = postmenstrual age. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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tation test to account for multiple recordings per infant is depicted
in Fig. S1a.

Next, the model was tested on data collected at an independent
site by a separate research group (dataset 3). In this second inde-
pendent dataset, the model was also able to accurately predict
infant age (Fig. 3b): n = 57 subjects (73 recordings), R2 = 0.81,
MAE = 0.98 weeks, 95% CI = [0.80, 1.19], p = 0.0001. The exchange-
ability block structure for this dataset is depicted in Fig. S1b.

The sensitivity tests, which used median absolute error and
robust R2, produced results in line with our primary analysis, indi-
cating the robustness of our results to the influence of extreme val-
ues (Supplementary information S2.1).
3.3. The infant brain age gap contains clinically valuable prognostic
information

We stratified the infants in dataset 2 based on their 9-month
BSID-II outcomes: normal, mild abnormal, and severe abnormal.
After correcting the prediction errors for PMA-association bias,
the infants with normal BSID-II outcomes had a mean brain age
gap = 0.83 weeks (n = 22 infants), those with mild abnormal out-
comes had a mean brain age gap = 0.84 weeks (n = 11 infants),
and those with severe abnormal outcomes had a mean brain age
gap = 1.36 weeks (n = 10 infants). These three groups are displayed
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using a Cumming estimation plot with the normal group as the
shared control (Fig. 3c).

We performed pairwise comparisons of the mean brain age
gaps among the three groups, adjusting for the number of record-
ings per subject and correcting p-values for multiple comparisons
using a permutation testing approach. Among the three groups
(n = 43 subjects), the severe abnormal BSID-II outcome group
had a significantly larger mean brain age gap than the normal
BSID-II outcome group: difference in mean brain age gap = 0.50 w
eeks, t-statistic = 2.52, p = 0.04, Cohen’s D = 1.08. The other com-
parisons were non-significant. Severe vs mild BSID-II outcome
group: difference in mean brain age gap = 0.49 weeks, t-
statistic = 2.17, p = 0.09, Cohen’s D = 1.05. Mild vs normal BSID-II
outcome group: difference in mean brain age gap = 0.01 weeks,
t-statistic = 0.04, p = 1, Cohen’s D = 0.02. The sensitivity tests,
which used the median age gap across recordings per subject, pro-
duced results in line with our primary analysis, indicating the
robustness of our results to the influence of extreme values (Sup-
plementary information S2.2).
4. Discussion

This study presents a deep learning model that predicts infants’
age from resting-state EEG activity. The model was trained using
20-minute EEG recordings from a 1-channel bipolar montage,
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without the need to pre-specify predictive features. The trained
model was subsequently applied to two independent datasets from
two clinical sites (Belgium and UK). In both test sets, the model
accurately predicted infants’ age, accounting for over 80% of the
age variance, which is generally considered a very large effect size
(Cohen, 1992). In absolute terms, in both datasets, the prediction
error (MAE) is approximately one week, which is on par with
trained human assessors (Stevenson et al., 2020b) and similar
accuracy to a random forest model with larger EEG data require-
ments (Pillay et al., 2020). Additionally, in one of the test sets that
had 9-month follow-up BSID-II outcomes, the infants were strati-
fied into normal, mild abnormal, and severe abnormal outcome
groups based on their BSID-II outcomes. The model-generated
brain age gaps differed among these three groups, with signifi-
cantly larger brain age gaps observed in the severe outcome group
than in the normal outcome group. Again, the effect size was large
(Cohen’s D > 1) (Cohen, 1992). These results indicate that the age
prediction model also encodes clinically relevant prognostic infor-
mation in the magnitude of the brain age gaps, which could allow
early identification of high-risk infants during the neonatal period.

Using the trained model to generate synthetic EEG data, our
results suggest that the model’s predictive performance may rely
on identifying signal characteristics related to changes in the EEG
discontinuity (bursts and inter-burst intervals) with age. The pro-
gression of burst/inter-burst activity to continuous activity is the
expected characteristic developmental trajectory from preterm to
term age (André et al., 2010). Interestingly, these discontinuity pat-
terns are also key for human experts when performing visual age
prediction (Dereymaeker et al., 2017; Husain, 2005). Observing this
link between the synthetic EEG and expected maturational trends
suggests that the model may rely on biophysiologically sensible
signal features.

The model’s performance did not drop substantially from eight
channels to one. This might suggest that the feature extraction
stages of the architecture may be more tuned to global channel-
independent characteristics, such as bursting and continuity, as
opposed to spatially-dependent characteristics, such as inter-
channel synchrony. Furthermore, if the model relies on identifying
changes in burst/inter-burst cycling and encodes this in a highly
multi-scale manner, this may indicate that information on an
infant’s burst/inter-burst cycling may be sufficiently discernible
from a 20-minute EEG recording, with additional data providing
diminished returns in discriminatory power.

The ultimate interest in studying brain age gap magnitude is
that neurological dysfunction can manifest in infants’ EEG as both
accelerated or slowedmaturation relative to a normative trajectory
(Scher, 1997; Watanabe et al., 1999), and these functional matura-
tional deviations have prognostic value (Iyer et al., 2015; Tokariev
et al., 2019). In work published by an independent group
(Stevenson et al., 2020a), brain age gaps exhibited the greatest sep-
aration between infants with normal and severely abnormal BSID-
II follow-up outcomes – an observation that is consistent with the
current study’s findings, further supporting the results of our
model.

The present study focused on the prognostic value of preterm
and term age resting-state brain function as a basis for risk strat-
ification using 9-month BSID-II follow-up as the relevant out-
come. As with any scale, there are limitations to BSID-II
predictive validity (Hack et al., 2005). Clinical decision making
regarding the provision of developmental care interventions
(Burke, 2018) using deep learning-based predictions of infant
brain age would benefit from advancing the prognostic validity
of the brain age gap metric. For example, demonstrating associa-
tions between the metric and additional follow-up outcome met-
rics, such as executive function (Dai et al., 2021), would improve
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validity. Additionally, understanding the association between the
metric and contemporaneous structural (e.g., body weight, brain
structural MRI) and functional (e.g., sensory-evoked neural and
behavioural responses, brain functional MRI) indices of develop-
ment would be beneficial. For example, we recently showed that
brain age predicted from sensory-evoked responses relates to
electromyographic reflexes during preterm development
(Zandvoort et al., 2024). Further investigations into these inter-
relationships will be key to understanding the potential clinical
value of brain age prediction models.

It is important to note that the focus of this manuscript was to
provide an efficient approach for identifying abnormal brain mat-
uration and to establish an association between brain age gap mag-
nitude and longer-term neurodevelopmental outcomes. However,
the causal role of brain age gaps in determining outcomes, as well
as the potential environmental or genetic foundations for the brain
age gap magnitudes, were not addressed in this study. There is
increasing evidence that large brain age gaps may be a symptom
of pre-existing conditions from birth (such as genetic factors or
low birth weight), which has a lasting impact on the infant’s devel-
opment presented through alterations in brain age trajectories
(Vidal-Pineiro et al., 2021). While the underlying causal chains
are only beginning to be explored in the literature, it is clear that
the magnitudes of these brain age gaps are of biological and clinical
interest. The ability to track and estimate brain age gaps with mod-
els such as the one presented here provides an easily imple-
mentable means to identify effects as soon as they manifest,
potentially allowing for rapid clinical interventions.

It must be noted that the sample size used to train our age pre-
diction model was very modest (111 recordings from 40 infants),
while emerging best practice recommendations for prediction
model development state that a minimum of several hundred
observations are needed to be able to estimate meaningful predic-
tion accuracies using cross-validation (Poldrack et al., 2019). In
this study, we did not employ cross-validation to determine pre-
diction accuracy in the training set (dataset 1), and in reporting
our results for this training dataset, we do not wish to highlight
estimates of prediction accuracy, other than to note that there
was a minimal drop in accuracy observed between a model
trained using 8-channel full duration EEG and our final model
trained using 1-channel 20-minute EEG recordings. Instead, we
entirely focus our assessment of model performance on two inde-
pendent datasets from two clinical sites. The consistency between
the prediction accuracies in these two independent datasets is
noteworthy: MAE = 1.03 weeks for dataset 2 and MAE = 0.98 we
eks for dataset 3. Furthermore, despite the modest sample sizes in
both these test sets (148 recordings from 43 subjects and 73
recordings from 57 subjects), the accuracy of these estimates is
reasonable and highly consistent: 95% CI in dataset 2 = [0.87,
1.28], and 95% CI in dataset 3 = [0.80, 1.19]. Undoubtedly, larger
training and test sets would improve our model’s performance.
However, it is clear that our limited sample size had little negative
impact on model performance. This should be highly reassuring
for researchers studying neonates in which data access limitations
can be substantial.

In summary, in this study, we outline a deep learning approach
for infant age prediction and follow-up BSID-II outcome risk strat-
ification with reduced EEG data requirements relative to previous
studies. In two independent held-out datasets, our model accu-
rately predicts infant age and significantly distinguishes infants
with normal outcomes from those with severely abnormal out-
comes using a 1-channel bipolar montage setup and 20-minute
recording duration. This objective and automated deep learning
approach thus displays potential clinical utility for cot-side moni-
toring and use in neurological function assessment.
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