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ABSTRACT The utilization of recycled aggregates (RA) for concrete production has the potential to offer substantial
environmental and economic advantages. However, RA concrete is plagued with considerable durability concerns,
particularly carbonation. To advance the application of RA concrete, the establishment of a reliable model for predicting
the carbonation is needed. On the one hand, concrete carbonation is a long and slow process and thus consumes a lot of
time and energy to monitor. On the other hand, carbonation is influenced by many factors and is hard to predict.
Regarding this, this paper proposes the use of machine learning techniques to establish accurate prediction models for the
carbonation depth (CD) of RA concrete. Three types of regression techniques and meta-heuristic algorithms were
employed to provide more alternative predictive tools. It was found that the best prediction performance was obtained
from extreme gradient boosting-multi-universe optimizer (XGB-MVO) with R* value of 0.9949 and 0.9398 for training
and testing sets, respectively. XGB-MVO was used for evaluating physical laws of carbonation and it was found that the
developed XGB-MVO model could provide reasonable predictions when new data were investigated. It also showed
better generalization capabilities when compared with different models in the literature. Overall, this paper emphasizes
the need for sustainable solutions in the construction industry to reduce its environmental impact and contribute to
sustainable and low-carbon economies.

KEYWORDS recycled aggregate concrete, carbonation depth, nature-inspired optimization algorithms, extreme gradient
boosting technique, parametric analysis

1 Introduction significant emphasis on improving its energy efficiency

and economic and environmental performance [6,7].

Currently, countries around the world are actively
working toward developing sustainable and low-carbon
economies, recognizing the need to address climate
change and reduce their environmental impact [1-5]. As a
major contributor to energy consumption and carbon
emissions, the construction industry has placed a
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One of the key areas of focus has been the use of
concrete, which is the most widely used material in the
construction industry. However, the production of
concrete requires large amounts of natural sand and
gravel, leading to significant depletion of natural
resources. It is estimated that over 400 million tons of
natural aggregates (NA) are consumed each year, and this
number is projected to increase to an astonishing 800
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million tons in the next 20 years [8]. The excessive
exploitation of NA can have a severe and lasting impact
on the ecological environment. Another significant chal-
lenge facing the construction industry is the staggering
amount of waste generated by urban renewal and expan-
sion. According to 2014 statistics, the United States, the
European Union, and China, which are three of the
world’s largest economies, generate more than 530
million, 850 million, and 1.13 billion tonnes of
demolition waste respectively [9,10]. This not only puts a
strain on the environment but also on the economies.

One solution to this problem is recycling waste
concrete from construction and demolition waste to
produce recycled aggregate (RA). The RA can then be
used as a replacement for NAs in the production of RA
concrete.

Studies have shown that the incorporation of RA can
lead to a diminution of the mechanical properties of
concrete [11,12]. In addition, researchers have found that
the addition of RA can have an impact on the durability
of concrete, particularly with respect to carbonation
[13—16]. Concrete carbonation refers to the chemical
reaction between carbon dioxide in the air and the
calcium compounds within the concrete. This reaction
decreases the pH wvalue of the concrete, which can
increase the corrosion of reinforcement and ultimately
lead to the deterioration of reinforced concrete structures
[5]. In addition, carbonation products (mainly CaCO;)
may cause microcracks within the concrete [13]. Xiao
et al. [13] concluded that RA content (RAC) has a direct
impact on the carbonation depth (CD) of RA concrete.
They found that when the threshold value of the
substitution rate of NA by RA is lower than 70% the CD
of RA concrete increases with the increase of RAC. When
the substitution rate exceeds 70%, further substitution
leads to a reduction in the CD. Silva et al. [15] found that
adding more RAC causes an increase in the CD. They
also found that using all coarse grains of RA may lead to
CDs that are up to twice those occurring in normal
concrete. Additionally, they observed that the age and
curing conditions of the concrete had little effect on the
CD. Balayssac et al. [16] and Atis [17] observed that the
longer the curing time, the lower the degree of
carbonation. Leemann and Loser [18] conducted a study
and discovered that the high water absorption properties
of RA had a significant impact on the compressive
strength of RA concrete. However, a comparison between
concrete made from dry aggregates and pre-saturated
aggregates revealed minimal disparities in their
carbonation resistance. Additionally, when the proportion
of RA was increased from 25% to 50% by mass, there
was no discernible enhancement in the concrete’s
carbonation factor [18]. A similar finding, that the
appropriate addition of RA had little effect on the CD,
can be found in Ref. [19]. The depth of carbonation of

RA concrete was also related to the type of
superplasticizer (SP) [20]. Zega and di Maio [21]
examined the effect of exposing RA concrete samples
containing 20% and 30% fine RA to air over periods of
310 and 620 d. Despite the extended exposures, there was
little difference in the CDs.

From the literature review, it can be seen that the
carbonation resistance of RA concrete is affected by
various factors. And it can be indicated that the
carbonation behaviors of RA concrete vary significantly
among previous studies. Furthermore, most of the studies
on RA concrete carbonation property were conducted
through experimental trial-and-error methods, which are
highly variable for different laboratories and different
environments. The research is also time-consuming and
expensive. Therefore, it is vital to establish accurate
prediction models. Several mathematical theoretical
models have been proposed to predict the carbonation
resistance of RA concrete (see below). However, these
models have limited ability to specifically discuss the
effects of different factors on the carbonation results.

It has become increasingly common to use machine
learning algorithms to predict various aspects of concrete
performance, on the grounds that these techniques
possess superior predictive capabilities compared to
traditional mathematical models [22-26]. Nunez and
Nehdi [22] proposed a gradient boosting regression tree
(GBRT) model to predict the CD of RA concrete
containing different mineral additives. Through a compre-
hensive analysis of the results, they found that the GBRT
model achieved a high level of accuracy, as demonstrated
by its low Root Mean Squared Error (RMSE) of 1.5139,
Mean Absolute Error (MAE) of 0.948, and high
coefficient of determination (Rz) of 0.9707. These results
indicate that the GBRT model performed significantly
better than traditional mathematical equations for
predicting CDs. Furthermore, Liu etal. developed an
Artificial Neural Network (ANN) model using 593 RA
concrete CD data sets [23]. The ANN model was shown
to have high accuracy and robustness in its predictions.
However, it should be noted that ANN models are known
to be “black boxes”, meaning they lack interpretability in
terms of understanding the relationships between the
input and output variables. Despite the promising results
of previous studies, the use of machine learning to predict
CD of RA concrete is still relatively limited.

In this study, three representative regression techniques
were employed, i.e., support vector regression (SVR),
kernel extreme learning machine (KELM), and extreme
gradient boosting (XGB). The role of SVR was mainly to
find the best separation hyperplane in the feature space.
KELM is mainly based on the theory of neural network
and XGB is mainly inspired by the regression tree.
Meanwhile, three types of nature-inspired meta-heuristic
algorithms were adopted to optimize the hyper-
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parameters in these regression techniques, i.e., genetic
algorithm (GA), multi-universe optimizer (MVO) and
sparrow search algorithm (SSA). GA is inspired by
evolutionary theory, MVO is from physics and SSA
simulates swarming behaviors. 682 CD data sets from
published literature were collected and used to develop
machine learning models for carbonation prediction for
RA concrete. It should be noted that new input parameter
combinations, i.e., RA water absorption, water-to-binder
ratio (WBR), fine aggregate content (FAC), gravel content
(GC), RAC, SP, carbon concentration (CC), and exposure
time (7) were considered as potential influencing factors
in the model. A total of nine prediction models are
provided in this work, so as to provide a comprehensive
comparison of different regression techniques and
optimization algorithms as well as a better understanding
of the relationships between different variables and the
CD. The established prediction models were evaluated by
eight mathematical indicators and Taylor Diagram.
Finally, the most competitive prediction model was
validated by parametric analysis from the perspective of
physics.

2 Data description

As outlined in the introduction, a plethora of factors can
impact the carbonation properties of recycled concrete.
This study specifically examined eight key parameters
that are commonly considered by researchers in this field.
The authors compiled and extracted a database from by
Moghaddas etal. [27]. This data set consists of 682
experimental samples gathered from 21 different papers
and 11 different countries, as shown in Fig. 1. The study
of carbonation performance of RA concrete has been
conducted by a diverse range of countries worldwide,
with a significant proportion of data coming from
Portugal, China, and the UK. The data set includes
variables such as RA water absorption (RAWA), WBR,

Table 1 Data distribution and statistics of the whole data set
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FAC, GC, RAC, SP, CC, T, and CD. Table 1 and Fig. 2
present a statistical analysis and distribution of all
variables. In the violin plot, the width of “violin”
represents the density of data. It can be seen that the T
ranges from 177 to 3650 d which indicates a broad
database. Notably, T in the data reaches up to ten years,
making it possible to consider the effect of long-term
exposure on RA concrete carbonization, an aspect that
has been previously understudied in models [28].
Potential relationships between different variables were
also examined. Pearson correlation coefficient (R) was
used to quantify the correlation between pairs of
variables, with values ranging from —1 to 1 [29]. A value
of 0 indicates no correlation, positive values indicate a
positive correlation, and negative values indicate a
negative correlation. The greater the absolute number, the
stronger the correlation. As seen in Fig. 3, WBR and RAC
show a higher positive correlation with CD, suggesting
that these factors should be given particular attention. 7,
CC, FAC, and RAWA present a slight correlation with
CD. GC and SP show a negative correlation. However,
according to the review report from Silva et al. [15], 7,
CC, FAC, RAWA, and SP showed a significant effect on
CD of RA concrete. It is important to note that R is

Spain
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' France
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Fig.1 Data set distribution from different countries.

parameter mean* max* min* std* 25%* 50%* 75%*
RAWA (%) 5.8 16.6 0.2 24 4.7 5.3 6.3
WBR (kg/m’) 0.5 1.0 0.3 0.1 0.4 0.5 0.5
FAC (kg/m’) 645.6 998.0 357.7 171.0 550.0 625.0 787.0
GC (kg/m’) 448.5 1311.0 0.0 436.0 0.0 454.9 846.5
RAC (kg/m’) 586.7 1280.0 0.0 407.0 198.2 635.0 953.0
SP (kg/m’) 0.9 7.3 0.0 1.8 0.0 0.0 0.7
CC (%) 5.3 50.0 0.1 6.5 3.0 3.5 5.0
T(d) 177 3650 7 539 28 56 91
CD (mm) 10.19 50.05 0.10 7.90 4.80 8.34 13.30

*Note: “mean”, “max”, “min”, “std”, “25%”, “50%”, and “75%” represent the average, maximum, minimum, standard deviation, percentile of 25%,

percentile of 50% and percentile of 75% values of each variable, respectively.
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Fig. 2 Data distribution of influencing factors and CD by violin plot.
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Fig.3 Pearson correlation analysis.

restricted to measuring only linear relationships between
two variables, is sensitive to outliers, assumes normality,
does not account for causality, and is limited to bivariate
analysis. Considering these limitations and the intricate
relationship between these factors and CD of RA
concrete, alternative correlation approaches were also
employed, for comparison.

Mutual information (MI) correlation is a measure of the

statistical dependence between two variables [30]. It
quantifies the amount of information that is shared by two
variables. From the analysis of MI shown in Fig. 4, it can
be found that WBR has the lowest interactivity with CD
and FAC has the highest MI with CD. Other factors have
some MI with CD. These findings are different from the
analysis of Pearson correlation between potential factors
and CD. Therefore, the implementation of machine
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learning techniques seems to be a desirable approach to
integrating these factors and CD.

3 Methodology

In this study, three kinds of machine learning techniques
were employed, i.e., SVR, KELM and XGB. The main
role of SVR is to optimize the hyper-plane with the
largest interval defined in the feature space. The KELM is
modified based on classical extreme learning machine
(ELM), while the main advantage of KELM over ELM is
better generalization performance [31]. KELM achieves
this by introducing a regularization term in the objective
function (OF), which helps to prevent overfitting to the
training data. XGB is a powerful tree-based ensemble
machine learning algorithm that has gained popularity in
recent years [32,33]. Compared to traditional tree-based
models, XGB has higher generalization and prediction
accuracy. Therefore, aforementioned representative
machine learning techniques were used to implement
regression tasks in this study. Meanwhile, three types of
optimization algorithms were utilized to optimize the
hyper-parameters in SVR, KELM and XGB. In some
previous studies, only one kind of regression technique
was optimized by optimization algorithms [32,34-37].
However, no obvious predictive performance difference
could be observed between different optimization
algorithms. In addition, most studies only focused on the
same type optimization algorithm which hardly presented
the superiority and inferiority of different regression
techniques [38,39]. Regarding this, this study proposed to
use three kind of different mechanism regression
techniques combined with three different mechanism
optimization algorithms to predict CD of RA concrete
and their prediction abilities were evaluated by various
evaluation indicators so as to conclude a competitive CD
prediction model. Finally, the superior CD prediction
model was used for reflecting the impact of influencing
factors on CD.

3.1 Optimization algorithms

3.1.1 Genetic algorithm

The GA mimics the natural selection process and the
genetic mechanism of biological evolution [40,41]. The
algorithm begins by randomly generating an initial
population of chromosomes, each of which comprises
multiple genes that represent specific characteristics of
data. These chromosomes are considered potential
solutions to a given problem. The population is then
updated through a series of iterations, utilizing three
primary operators-selection, crossover, and mutation-to
preserve the optimal chromosomes for the next
generation. The crossover operator involves the exchange
of segments of genetic code between two chosen
individuals, leading to the creation of new individuals
with a combination of their genes. The mutation operator,
on the other hand, randomly alters the value of specific
genes in an individual, maintaining genetic diversity
within the population. The GA continually evaluates the
generated solutions, comparing them to a fitness function,
until a predetermined number of iterations or a predefined
threshold is reached, resulting in the identification of the
optimal solution. Figure 5 presents the flowchart of the
GA.

3.1.2 Multi-universe optimizer algorithm

Mirjalili et al. [42] proposed the MVO algorithm, which
is inspired by the interaction between universes through
black holes, white holes, and wormholes. The algorithm
is based on the multiverse theory, which posits that
objects from parallel universes can be moved from one
universe to another through white and black holes, and
objects in each universe can travel through wormholes
within it. In the MVO algorithm, each set of variables is
considered a universe, and each variable within the
universe is an object. The corresponding inflation rates,
or fitness function values, are then calculated. The

Mutual information with 5 nearest neighbors

RAWA
WBR SRV
FAC gl
GC| 6.772

9.025

7.467
8.777
7.719

7718
8.82

7.238 8.846

e
7.859 9.1

Bd 8654 7902 8163

o8] scs4 781 8276 8226 8.941
7| 5945 [EPEEENEPRIT 2.117

O 02469 007937 05413 02428  0.3527

RAWA WBR

FAC

GC

7.909 6.772 6.115 8.654
5.928 7.902
7.238 6.056 8.163

8.654 5.945 0.2469

7.81 2458 | 0.07937
8.276 2689 | 0.5413

7859 8226 BEROM 02428
ol 217

8.941 7:23
9.179 8.187
8.187 9.0

0.2714

0.1634
0.2714
0.3994

N W A LN 0 O

.23
0.1634

—

0.3994

RAC SP cc T CcD

Fig.4 MI with 5 nearest neighbors method.



Bin XI et al. Intelligent prediction of RAC carbonation depth 35

127/

Computer the fitness function -

Generate the initial Chromosomes

ﬁ

—)

Establish the parameters
and criteria for ending

Yes
End - Best solution? —

Have the stop criteria been satisfied?

R
Roulette wheel
selection method

Crossover

_ Mutation l
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universe’s inflation rate is a defining characteristic, and
its higher values reflect a greater capability for expansion.
A white hole with a high inflation rate tends to send its
objects to a black hole with a low inflation rate. This
sudden change in universes raises the average population
expansion rate and ensures the MVO’s exploration
capacity. By utilizing this approach, poor solutions and
their mean objective values can be upgraded.

3.1.3 Sparrow search algorithm

In 2020, Xue and Shen [43] introduced the SSA as a
novel optimization method that employs swarm intelli-
gence. The algorithm is inspired by the feeding behavior
of sparrows and their ability to avoid natural predators.
The sparrow population is first divided into producers and
scroungers during the foraging phase. The producer is
responsible for locating food and directing the entire
sparrow population; the scrounger uses an efficient
optimization approach for designing machine learning
models based on the knowledge provided by the producer
to acquire food. Additionally, SSA incorporates a producer-
scrounger model to detect early warning systems that
represent sparrow anti-predation behavior.

3.2 ML methodology
3.2.1

Support vector regression

Cortes and Vapnik [44] advanced the field of machine
learning by introducing SVMs for dichotomous techniques.

The SVM model was predicated on the concept of a
hyperplane that separates the data set into distinct classes.
A variation of this model, SVR, was later developed
specifically for regression tasks. It aims to identify an
optimal hyperplane that minimizes the overall deviation
of all data points from the hyperplane, and endeavors to
fit the data as closely as possible while still preserving a
desirable margin, as opposed to a hyperplane that simply
splits two or more categories of data points.

3.2.2 Kernel extreme learning machine

KELM is a variation of the traditional ELM algorithm,
with the key difference being that it utilizes kernel
functions to transform the input data into a higher
dimensional feature space, allowing for nonlinear deci-
sion boundaries [31]. The approach involves randomly
initializing the weights of the hidden layer and utilizing
the kernel trick to map the input data into a higher
dimensional feature space, followed by determination of
the weights of the output layer through the least squares
method. KELM is computationally efficient as the
training process only requires determination of the
weights of the output layers, unlike traditional ELM.
Additionally, it can handle nonlinear decision similar to
SVMs through the use of the kernel trick. The output
function of ELM is described in Eq. (1):

L= B =h(p. M

where S =[B,,05,....,0.] represents the output weights
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vector between the hidden layer of L nodes and the output
node. h(x)=1[h,(x),...,h. (x)] defines the hidden layer
output matrix. A(x) is a mapping feature because it maps
data from the d-dimensional input space to the L-
dimensional hidden layer feature space H.

3.2.3 Extreme gradient boosting

The XGB model is an implementation of gradient
boosting to reduce the training loss function [33]. The
XGB consists of a set of decision trees. The model
expression can be represented as follows:

=y f),

where ¥; represents the predicted value for input x;, f; (x;)
is the kth tree.
Finally, the expression for OF is as follows:

()

n K

OF =) LG+, QU 3)
where OF includes the regularization item Q and the loss
function L which denotes the gap between the predicted
result y; and the actual result y;.

The basic structure of XGB is shown in Fig. 6 and Ref.
[33] provides a more comprehensive description and
characterization of XGB.

4 Development of models

Figure 7 depicts the general framework of CD of RA
concrete prediction model development. The precision of
machine learning algorithms heavily depends on their
intrinsic hyper-parameters.

Determining the appropriate combination of hyper-
parameters for a given situation can be challenging, so
optimization algorithms play a vital role in finding the
best hyperparameters. Regarding this, GA, MVO, and
SSA were used to identify the optimal hyper-parameters

[T |

I | |
IITreel {x,.}] ITreeZ {x;} ” ITree 3 {x;} ] ITreek {x} I
| / [teration
LA | [0 ] [s@ ] [A®] [ 4 ]
I I I |
YEEI ) I

Fig. 6 The basic structure of the XGB algorithm.

of KELM, SVM, and XGB models to construct accurate
prediction models and determine the CD of RA concrete.
To save computation time, the inputs (8 factors) and
output (CD) are normalized to [0,1] by the equation
below:
xX—p

z= .
ag

“4)

where z is transformed value; u is the mean; o is the
standard deviation; x is the output value.

To create and evaluate models effectively, 80% of the
data (550 data sets) was randomly selected as a training
set and 20% (132 data sets) as a testing set. Figure 8
illustrates the distribution of data between the training
and test sets. The results evince their comparability,
attesting to the homogeneity of the training and test sets.
10-fold cross validation was then adopted in this study to
increase the robustness of proposed prediction models
where the training set was divided into ten equal sub-sets,
with nine sub-sets being used as sub-training sets and the
other being used as a validation set. Some initial model
parameters were given to these sub-training sets and then
a sub-model could be established and the prediction
performance of a sub-model could be tested by a
validation set. This process was repeated ten times and
the average MSE of the ten validation sets was used as
fitness value. By optimization from proposed meta-
heuristic algorithms, the fitness value was updated until
the iteration finished. Table2 provides a detailed
explanation of the hyper-parameters to be optimized and
their search ranges for each model.

5 Evaluation indicators

To measure the overall performance of developed CD
prediction models, a total of eight evaluation indicators
were used in this study. These indicators include seven
classical mathematical indicators, i.e., R’, Variance
Accounted For (VAF), MAE, Mean bias error (MBE),
RMSE, Mean Absolute Percentage Error (MAPE) and R
as well as a pre-defined indicator, 410. They can be
calculated as follows:

RoioZa 0oy 5)

2 V-9
VAF = [1 - %]x 100%, 6)
MAE = %Ztl y =yl, (7
MBE =5 3" /-, ®)
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where y represents the measured CD, )’ and y represent
the predicted and average value of measured CD,
respectively. NN denotes the total number of samples,
while i is the number in the present sample. The proposed
comprehensive ranking system by Zorlu et al. [45] is used
to give the overall performance of the model by
considering all indicators. In this system, higher
performing indicators receive higher ranking scores and

the model’s overall score is calculated by summing up
each score. The model with the highest overall score is
considered the most robust prediction model of CD of RA
concrete.

6 Result and discussion

6.1 Development of hybrid carbonation depth of recycled
aggregate concrete prediction models

For meta-heuristic algorithms, there are two parameters
that influence the optimization performance, i.e., swarm
size and iteration number where a swarm size and
iteration that are too large increase the calculation cost
while those that are too small induce under-fitting. After
testing and comparison, the swarm size was equal to 30
and the iteration number was set to be 60 which was
sufficient to complete the optimization process and these
two significant values would be constant in each CD
prediction model. The optimized parameters optimization
algorithms are listed in Table 3. In the initialization stage,
30 combinations of hyper-parameters were generated and
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Table 2 Hyper-parameters need to be optimized and corresponding searching ranges

regression hyper-parameter searching explanations
technique range
XGB learning rate [0,2] A larger learning rate tends to induce a faster convergence speed. But it may not converge to the real
‘best’. A smaller learning rate tend to mean to be more likely to find a more accurate optimal value, but
the convergence speed will be slow.
n_estimators [400,800] “n_estimators” represents the number of weak learners in the decision tree which is related to the

complexity of the XGB model. Too small n_estimators is easy to be under-fitted while too large
n_estimators will increase the complexity of XGB model.

This involves a trade-off between training model error and training speed.

“Kernel width” denotes the influence of an individual training sample to training model and the

complexity of the data distribution mapped to a new feature space.

KELM  regularization_coefficient [1,500]
kernel width [0.01,1]
SVR penalty ¢
gamma

[0.01,500] “Penalty C” signifies the tolerance for training error where too small C would cause under-fitting and too
large C would decrease the generalization ability.

[0.01,500] “Gamma” represents the number of support vector where larger Gamma means fewer support vectors and

it influences the training speed.

each combination of hyper-parameters generated a
corresponding fitness value. By sorting, the best fitness
values and corresponding hyper-parameters can be
obtained. In the next step, the iteration progress was
initially based on the best combination of hyper-
parameters according to different optimization algori-
thms, until the iteration ends. The change of fitness
values (MSE) by different optimization algorithms are
shown in Fig. 9. It can be seen that XGB-based CD
prediction models have lower initial and final fitness

values compared with KELM-based and SVR-based CD
prediction models. SSA-XGB has the lowest initial and
final fitness values among all CD prediction models. For
KELM-based prediction models, it can be found that
SSA-KELM has the lowest fitness value when the
optimization process ends. The same phenomenon can be
observed from the SVR-based CD prediction models.
Aforementioned facts suggest that the SSA optimization
has stronger optimization abilities than GA and MVO.
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Table 3 Parameters in optimization algorithms and optimized hyper-parameters in regression techniques

optimization algorithm parameter

optimized hyper-parameter values

GA pc=0.7; cross probability
pm=0.3; mutation probability

MVO WEP_Max=1; maximum of wormhole existence probability

WEP_Min=0.2; minimum of wormhole existence probability

SSA ST = 0.6; alert value
PD = 0.7; proportion of producer sparrows
JD = 0.3; proportion of scrounger sparrows

XGB. learning rate: 0.3984
n_estimators: 482.9788
KELM. regularization_coefficient: 361.1806
kernel_width: 0.1602
SVR. penalty c: 46.7810
gamma: 9.8945
XGB. learning rate: 0.5446
n_estimators: 744.5773
KELM. regularization_coefficient: 321.1179
kernel width: 0.1487
SVR. penalty c: 190.2026
gamma: 3.8183
XGB. learning rate: 0.3215
n_estimators:389.7850

SD = 0.2; proportion of alerter sparrows

KELM. regularization_coefficient: 500.0000
kernel width:0.1554

SVR. penalty c: 119.8406
gamma: 3.4824

—— SVR-GA
--- KELM-GA
XGB-GA

—— SVR-MVO
KELM-MVO
---- XGB-MVO

—— SVR-SSA
KELM-SSA
---- XGB-SSA

0.0055

0.0050 ‘\

0.0045
0.0040
0.0035

0.0030 | prmme .

T

Fitness value (MSE)

0.0025
0.0020 =

0.0015 -

Iteration number

Fig. 9 The optimization process of different optimization
algorithms.

6.2 Discussion and results

As mentioned above, the SSA produced smaller fitness
value than GA and MVO for three regression techniques.
However, it can hardly be concluded that SSA-based CD
prediction models would bring the best overall prediction
performance, because the model parameters obtained
from 10-fold cross validation must still be checked by the
original training set and testing set. Regarding this, the
optimized model parameters were used to predict CD in
the training set and testing set. The predicted results for
training set and testing set, with prediction errors, are
demonstrated in Figs. 10 and 11, respectively. In each
figure, five fitting lines are depicted to illustrate the
general distribution of measured CD and predicted CD.
Meanwhile, the predicted error for each sample is also
shown in Figs. 10 and 11. The performance of the
training set is here discussed first in Fig. 10. For SVR-

based CD prediction models, when the measured CD is
lower than 30mm, most predicted errors are lower,
between —5 and +5 mm, where one sample has more than
10mm error for MVO-SVR. For GA-SVR and SSA-SVR,
the predicted errors for all measured samples, that are
lower than 30 mm, are in the range of —8 to 5 mm. With
the increase of CD, a few predicted errors are larger than
10mm but smaller than 15 mm for all SVR-based CD
prediction models. For KELM-based approaches, it can
be seen that when the measured CD is lower than
30 mm, all predicted errors are in the range of —10 to
5 mm. When the measured CD is larger than 30 mm, GA-
KELM and MVO-KELM bring an error larger than
10 mm but for SSA-KELM approach, all errors are in the
range of —10 and 5 mm. For XGB-based prediction
scenarios, it can be seen that only one sample has error
than 5 mm. Most samples presented minor prediction
errors. Therefore, it can be concluded that XGB-based
and SSA-based models seem to have stronger fitting
abilities for the training data. In the next step, the
performance from the testing set is discussed.

Unlike the performance of the training set, larger
prediction errors are produced by the proposed nine
prediction models as shown in Fig. 11. For SVR-based
models, the prediction errors are lower than 10 mm when
the measured CD is lower than 35 mm; however, when
the measured CD is bigger than 35 mm, the prediction
errors are much larger and even equal to 20 mm. For
KELM-based models, a similar phenomenon occurs. In
other words, the predictive ability for SVR-based and
KELM-based models is limited when the measured CD is
larger than 35 mm. For XGB-based approaches, better
predictive performance can be obtained, as seen in
Fig. 11. For GA-XGB, all prediction errors are in the
range of —6 to 10 mm. And for MVO-XGB and SSA-
XGB, there is one sample that has more than 10mm error.
However, compared with GA-XGB, the range of errors
from MVO-XGB and SSA-XGB are more centralized.
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Fig. 10 Comparison between predictive CD and measured CD for the training data set for: (a) SVR-GA; (b) SVR-MVO; (c) SVR-SSA;
(d) KELM-GA,; (e) KELM-MVO; (f) KELM-SSA; (g) XGB-GA; (h) XGB-MVO; (i) XGB-SSA.

For quantifying the prediction performance, -eight
mathematical indictors as mentioned before are used to
provide an overall prediction evaluation as shown in
Tables 4 and 5. To intuitively compare these evaluation
indicators, the ranking scores of each indicator and model
are reflected by bar charts in Figs. 12 and 13.

For the ranking scores of the training set, it can be
found that for SVR-based methods, GA-SVR has the
highest-ranking score. For KELM-based models, SSA-
KELM has the highest-ranking score as shown in Fig. 12.
For XGB-based scenarios, XGB-MVO has the highest-
ranking score. For the performance of testing set, GA-
SVR is still the best among three SVR models. Similarly,
SSA-KELM has better performance than the two other
KELM-based models. For XGB-based approaches, GA-
XGB brings the best prediction performance for the
testing set. It is interesting that the optimization abilities
for a certain optimization algorithm are not always the
best for different regression techniques. However, XGB-

based models present more robust CD prediction
performance than the two other regression techniques.
The final ranking scores of different models can be seen
in Fig. 14. The ranking scores from high to low are:
XGB-MVO, XGB-GA, XGB-SSA, SVR-GA, KELM-
SSA, SVR-MVO(KELM-GA), KELM-MVO and SVR-
SSA. The best overall prediction performance from XGB-
MVO is R* of (0.9949 and 0.9398), R of (0.9949 and
0.9423), RMSE of (0.5764 and 1.7565), VAF of (99.4877
and 94.0487), MAPE of (0.0300 and 0.1863), MAE of
(0.2241 and 1.0688), MBE of (0.0000 and —0.1915) and
A10 of (0.9873 and 0.8258), for training and testing
stages.

To further reflect the overall performance of proposed
CD prediction models, a Taylor diagram is employed in
this section, as shown in Fig. 15. The Taylor diagram
employs three statistical indicators, namely RMSE, R, and
standard deviation, to present a comprehensive
evaluation. A smaller distance between the predicted
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Fig. 11 Comparison between predictive CD and measured CD for the testing data set for: (a) SVR-GA; (b) SVR-MVO; (c) SVR-SSA;
(d) KELM-GA; (e) KELM-MVO; (f) KELM-SSA; (g) XGB-GA; (h) XGB-MVO; (i) XGB-SSA.

point and the reference point (black dot) indicates better
predictive performance. The analysis also shows that
hybrid XGB models outperformed hybrid SVR and
KELM models. Overall, the results suggest that SSA-
XGB should be the recommended model for predicting
CD due to its excellent performance on both the training
and testing sets.

6.3 Model validation by parametric analysis

To verify the feasibility of the proposed CD of RA
concrete predictive models, the most competitive
prediction model is selected, i.e., XGB-MVO, to conduct
parametric analysis. One influencing factor is selected to
be variable and the other influencing factors is set to be
constant. Moreover, the constant influencing factors were
set at their average values, and the variable influencing
factor changed from its lowest to highest value, with a

defined interval where the former is determined by the
original data distribution as shown in Table 1. The results
presented in Fig. 16 provide important insights into the
effect of various factors on the depth of carbonation in
RA concrete by using XGB-MVO model. The following
observations can be made from the data presented.

a) The RAWA of RA had a significant impact on the CD
in RA concrete. When the RAWA exceeded 6%, the CD
increased rapidly due to the increased porosity of the RA,
which created more voids in the concrete matrix and
reduced its compactness [46].

b) The WBR in concrete is another important factor
affecting the CD. A higher WBR leads to a more porous
concrete matrix, allowing carbon dioxide to penetrate
more easily and increasing the CD [47].

¢) The CD initially increased with increase of FAC, but
after a certain point (around 600700 kg/m®), it started to
decrease.
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Table 4 Training set performance for different optimized CD prediction models

model training set performance

R R RMSE VAF MAPE MAE MBE A10 Score
SVR-GA 0.9613 0.9629 1.5840 96.1313 0.1422 0.8853 —0.0091 0.8545

6 © © (6) 6 6 3 © 45
SVR-MVO 0.9581 0.9590 1.6480 95.8127 0.1477 0.9326 0.0148 0.8473

(O] (C) @ “ ©)) (5 @ (©) 33
SVR-SSA 0.9540 0.9551 1.7267 95.4033 0.1597 0.9747 0.0149 0.8382

()] (O] (O] (O] “ @ O] @ 17
KELM-GA 0.9556 0.9567 1.6965 95.5621 0.1696 1.0821 —-0.0019 0.7873

3 3 3 3) @ 2 6] @ 23
KELM-MVO 0.9555 0.9566 1.6997 95.5455 0.1700 1.0834 —-0.0021 0.7855

(@) @ @ @ (6] (O] “ (O] 15
KELM-SSA 0.9601 0.9608 1.6091 96.0076 0.1617 1.0290 —-0.0013 0.8091

() (©) (O] (5 ©)] 3 (O] 3 35
XGB-GA 0.9948 0.9948 0.5791 99.4828 0.0319 0.2324 0.0000 0.9855

® ® ® (®) ® (®) ® ® 65
XGB-MVO 0.9949 0.9949 0.5764 99.4877 0.0300 0.2241 0.0000 0.9873

()] () )] (©)] ® ()] ® )] 72
XGB-SSA 0.9948 0.9948 0.5797 99.4819 0.0351 0.2351 0.0000 0.9836

® ® ) ()] (7 () © ) 60
Table 5 Testing set performance for different optimized CD prediction models
model testing set performance

R R RMSE VAF MAPE MAE MBE A10 Score
SVR-GA 0.8517 0.8620 2.7558 85.5424 0.3869 1.5154 -0.4342 0.6970

(6) Q] Q] (6) (6 (5) (6 (@) 43
SVR-MVO 0.8255 0.8333 2.9898 82.9741 0.4002 1.5874 -0.4661 0.7045

(@) (@) (@) (@) 3 Q)] @ ©) 19
SVR-SSA 0.8181 0.8287 3.0521 82.2718 0.3953 1.5846 -0.4840 0.6894

Q)] (O] Q) ()] “ @) )] Q)] 12
KELM-GA 0.8391 0.8503 2.8707 84.3211 0.4006 1.5700 -0.4577 0.6970

(C)] (C)] “ (C)) @ (C)) “ 3 29
KELM-MVO 0.8390 0.8503 2.8714 84.3138 0.4032 1.5710 -0.4582 0.6970

3 3 3 3 ) (3) 3 @ 23
KELM-SSA 0.8498 0.8607 2.7742 85.3779 0.3932 1.4901 -0.4540 0.7197

() () () (5 &) (6) ©) 6 42
XGB-GA 0.9401 0.9472 1.7516 94.2327 0.2186 1.0464 -0.3373 0.7955

© © © © (7 (®) Q) ® 66
XGB-MVO 0.9398 0.9423 1.7565 94.0487 0.1863 1.0688 -0.1915 0.8258

® (O] ® ® ©)] @) ® )] 65
XGB-SSA 0.9373 0.9435 1.7916 93.8649 0.2152 1.0277 -0.2594 0.7727

(O] ® )] ) ®) © ® ) 61
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Fig. 12 Comparisons of different evaluation indicators for the training set for: (a) R% (b) R; (¢) RMSE; (d) VAF; (¢) MAPE; (f) MAE;,
(g) MBE; (h) AA.
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Fig. 14 Cumulative ranking scores of different CD prediction models: (a) training set; (b) testing set; (c) the rank of total cumulative

scores.

d) Increasing the GC in RA concrete had a slight effect
on the CD at lower content levels (0—1200 kg/m®), but the
increase of CD was not significant. However, when GC
was greater than 1200 kg/m’, the CD increased
significantly.

Training set
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12 22 03

Standard deviation

e) The increase of RAC significantly increased the CD
due to its higher porosity and roughness. The CD
increased rapidly from 10 to 14 mm when RAC was
between 0 and 1100 kg/m?, and then further increased to
18 mm after RAC reached 1250 kg/m”.
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Fig. 15 Demonstration of different hybrid CD prediction models by Taylor diagram: (a) training set; (b) testing set.
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Fig. 16 Parametric analysis and evaluation based on the most competitive CD prediction model (XGB-MVO) of predicted CD vs:
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f) The addition of SP to RA concrete significantly
decreased the CD, especially when the increase was
greater than 1 kg/rn3. This is because the higher content
of SP improved the flowability and denseness of the RA
concrete matrix, reducing its permeability [48].

g) The CC had a significant impact on the CD of RA
concrete. The CD increased significantly with the
increase in CC up to 12%, after which further increases
had little effect on the CD. This can be attributed to the
formation of a dense carbonation layer on the surface of
the concrete, which increased its resistance to carbonation
[49].

h) The CD of RA concrete increased rapidly in the
early stages, but after one year of exposure, the change in
CD was not significant. The increased 7' causes the

carbonation layer and the layer decreases the adsorption
rate on the concrete surface [50].

6.4 Comparison of the developed optimal model with
literature models

In this section, the optimized model developed in this
study is compared with other models from literature for
predicting RA concrete CD [22,23,27,28]. Figure 17(a)
shows a comparison of the RMSE and MAE values
obtained by each model. It was observed that the RILEM
130-CSL model had the highest RMSE (11.95) and MAE
(11.07), which probably can be attributed to the limited
data size of 72, as shown in Fig. 17(b). The optimal
model XGB-MVO predicted in this study had an RMSE

GBRT model [22]
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30-CSLmodel 12 NGBMYO
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Fig. 17 Models’ comparison: (a) RMSE and MAE; (b) data number in different models.
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of 1.76 and MAE of 1.07, which was the second-best after
the GBRT model, with an RMSE of 1.51 and MAE of
0.91. However, it is important to note that the GBRT
model only used 217 data points (Fig. 17(b)), which may
limit its generalizability. The prediction ability for CD of
RA concrete by XGB-MVO has been validated by more
data (682 data).

7 Conclusions

The monitoring of carbonation of concrete has always
been a tough task because it is influenced by various
factors. In this study, in order to further develop a model
to accurately predict the CD of recycled concrete, a data
set of the CD of RA concrete was obtained, based on the
literature, and the effect of new combinations of
influential factors on CD was simulated: RAWA, WBR,
FAC, GC, RAC, SP, CC, and T. CD was the output.
Meanwhile, three types of regression techniques and three
types of meta-heuristic algorithms were combined and a
total of nine CD prediction models were developed. It
was found that the best competitive predictive perfor-
mance was produced by XGB-MVO with R* of (0.9949
and 0.9398), R of (0.9949 and 0.9423), RMSE of (0.5764
and 1.7565), VAF of (99.4877 and 94.0487), MAPE of
(0.0300 and 0.1863), MAE of (0.2241 and 1.0688), MBE
of (0.0000 and —0.1915) and 470 of (0.9873 and 0.8258)
for training and testing set, respectively. The results
demonstrate that the proposed predictive model effec-
tively forecasts the CD of RA concrete. The predicted
outcomes of the model align with previous research,
attesting to its robustness. In addition, XGB-MVO also
shows optimal predictive and generalization capabilities
when compared with different models in the literature.
The model’s ability to estimate CD for unknown RA
concrete samples highlights its potential in advancing the
development and application of RA s in concrete, and
furthering sustainable economic growth.
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