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Abstract

We present a deep Graph Convolutional Kernel Machine
(GCKM) for semi-supervised node classification in graphs.
The method is built of two main types of blocks: (i) We in-
troduce unsupervised kernel machine layers propagating the
node features in a one-hop neighborhood, using implicit node
feature mappings. (ii) We specify a semi-supervised classifi-
cation kernel machine through the lens of the Fenchel-Young
inequality. We derive an effective initialization scheme and
efficient end-to-end training algorithm in the dual variables
for the full architecture. The main idea underlying GCKM is
that, because of the unsupervised core, the final model can
achieve higher performance in semi-supervised node classi-
fication when few labels are available for training. Experi-
mental results demonstrate the effectiveness of the proposed
framework.

Introduction
Semi-supervised node classification has been an important
research area for several years. In many real-life applica-
tions, one has structured data for which the entire graph
can be observed (e.g., a social network where users are rep-
resented as nodes and the relationships between users as
edges). However, the node labels can only be observed for
a small subset of nodes. The learning task is then to predict
the label of unsupervised nodes, given the node attributes of
all nodes and the network structure of the graph. In many
cases, exploiting the information in a local neighborhood
can boost performance (e.g., friends in the social network
are likely to share the same preferences). In recent years,
graph neural networks (GNNs) have rapidly transformed the
field of learning on graphs. Their performance follows from
their ability to effectively propagate the node information
through the network iteratively and from end-to-end train-
ing (Hamilton 2020; Bacciu et al. 2020; Wu et al. 2021).

More traditionally, kernel-based methods such as support
vector machines were the standard in graph learning tasks
because of the possibility to use a kernel function that rep-
resents pairwise similarities between two graphs as the dot
product of their embeddings, without the need to explicitly
know these potentially high-dimensional embeddings (i.e.,
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the ”kernel-trick”) (Ghosh et al. 2018; Kriege, Johansson,
and Morris 2020). An additional advantage of kernel ma-
chines is that they have strong foundations in learning theory
and have clear and interpretable optimization (Vapnik 1998;
Schölkopf and Smola 2002; Suykens et al. 2002). A draw-
back however, is that they do not benefit from hierarchical
representation learning as deep learning methods do.

In recent years, a new branch of research emerged that re-
lates the training of infinitely wide neural networks to kernel
methods (Nikolentzos et al. 2018; Belkin, Ma, and Mandal
2018), gaining understanding in the generalization capabil-
ities of highly parameterized neural networks. While exten-
sions exist for graph learning (Du et al. 2019), these are stud-
ied for graph level tasks (e.g. graph classification), and the
effectiveness on using kernels in a message passing scheme
for node level tasks remains an open question. This work
therefore uses multiple kernel functions (i.e., one for each
layer) where the node representations are aggregated and
implicitly transformed into an infinite-dimensional feature
space, and aims to study the effectiveness of this approach
for semi-supervised node classification.

While GNNs typically employ a regression-based core
model, we utilize an unsupervised core model. Specifically,
our model incorporates unsupervised message-passing lev-
els based on Kernel Principal Component Analysis (kernel
PCA), and a semi-supervised layer based on a weighted ver-
sion of kernel PCA, i.e. Kernel Spectral Clustering (KSC).
This approach is motivated to address real-world problems
where few labels are available, leading to improved perfor-
mance compared to existing methods. Kernel methods are
used in their dual form, where they directly learn node rep-
resentations. In fact, unlike typical parametric GNNs that
learn parameters, our method directly learns H , the matrix
of node embeddings. This allows greater modelling flexibil-
ity, where node representations can be used for a variety of
tasks, including classification with varying levels of super-
vision and clustering. This adaptability makes our method a
versatile tool for node tasks in applications.

Contributions We introduce a deep Graph Convolutional
Kernel Machine (GCKM) for node classification made of
multiple shallow layers with non-parametric aggregation
functions. Our main contributions are the following.

• We propose an architecture consisting of multiple unsu-



pervised kernel machine layers for one-hop node aggre-
gation and a final semi-supervised kernel machine layer.
The main idea underlying our method is to combine mul-
tiple unsupervised kernel machines s.t. the final model
can achieve higher performance in semi-supervised node
classification where most nodes in the graph are unla-
beled.

• We show how to train the proposed deep kernel machine
in its dual form by directly learning the hidden node rep-
resentations. Because of the appropriate regularization
mechanisms, the neighborhood aggregation of each layer
is implicitly embedded in the final representation, which
is a key difference with GNNs.

• We propose a two-step optimization algorithm with an
initialization and fine-tuning phase. Because the model
is built on unsupervised core models, augmented with a
supervised loss term, we illustrate the possibility to use
an unsupervised validation metric.

• In experiments, we show that our model outperforms the
state-of-the-art in a transductive node classification set-
ting when few labels are available, which is of particular
interest in many real-world applications where labels are
difficult or expensive to collect.

The reported results can be reproduced using our code on
GitHub1 and the Appendix is available below.

Preliminaries and related work
An undirected and unweighted graph G(V, E) is defined by a
set of nodes or vertices V and a set of edges E between these
nodes. The node degree is simply the number of adjacent
nodes: dv = |Nv|, where Nv is the one-hop neighborhood
of node v. As the task of the proposed method will be node
classification, we will consider attributed graphs G(V, E ,X)
where each node v has a d-dimensional node features vector
xv and a class label yv . By concatenating the feature vectors,
we obtain the node feature matrix X ∈ R|V|×d.

We will use lowercase symbols (e.g., x) for scalars, low-
ercase bold (e.g., x) for vectors and uppercase bold (e.g., X)
for matrices. A single entry of a matrix is represented byXij

where i and j indicate the row and column respectively. Su-
perscripts in brackets indicate the layer in deep architectures
whereas subscripts indicate datapoints (e.g., h(l)

v ). Subscript
c indicates a centering, as will be explained. We represent
sets with curly brackets {·} and use double curly brackets
{{·}} for multisets (i.e., sets that allow multiple instances of
a same element). At any point, the reader can consult the list
of symbols in Appendix for clarification.

Graph neural networks Many convolutional GNN layers
can be decomposed into a nonparametric aggregation step
ψ(·, ·), followed by a nonlinear transformation ϕ(·). In this
case, the hidden representation of node v in layer l is of the
form:

h(l)
v = ϕ

(
ψ
(
h(l−1)

v ,
{{

h(l−1)
u |u ∈ Nv

}}))
. (1)

Well-known examples are GCN (Kipf and Welling 2017)
and GIN (Xu et al. 2019), which is maximally powerful in
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the class of message passing neural networks and as ex-
pressive as the one-dimensional Weisfeiler-Lehman graph
isomorphism test (Weisfeiler and Lehman 1968). Xu et al.
(2019) have demonstrated that GIN’s expressiveness follows
from the sum aggregator and the injectiveness of the trans-
formation function, for which they proposed a multilayer
perceptron with at least one hidden layer, motivated by the
universal approximator theorem (Hornik, Stinchcombe, and
White 1989; Hornik 1991).

Restricted kernel machines In deep kernel learning, the
recently proposed restricted kernel machine (RKM) frame-
work (Suykens 2017) connects least squares support vector
machines (LS-SVMs) and kernel PCA with restricted Boltz-
mann machines (Suykens and Vandewalle 1999; Suykens
et al. 2003; Salakhutdinov 2015). They possess primal and
dual model representations based on the concept of conju-
gate feature duality, which introduces dual variables as hid-
den features based on an inequality of quadratic forms. The
feature map can be defined explicitly (e.g., with a deep neu-
ral network) or implicitly by means of a kernel function
when using the dual representation. The RKM interpretation
of kernel PCA leads to an eigendecomposition of the ker-
nel matrix. Asides kernel PCA, Suykens (2017) also formu-
lated different types of kernel machines in the RKM frame-
work. Deep RKMs are then obtained by combining multiple
RKM layers, where the dual variables are the input for the
next layer. RKMs have been successfully applied to unsu-
pervised problems, including generative modelling (Pandey
et al. 2022), disentangled deep feature learning (Tonin, Pa-
trinos, and Suykens 2021), and multi-view clustering (Tao
et al. 2022).

Kernels in GNNs Recent works have established explicit
connections between GNNs and kernel machines. Nikolent-
zos et al. (2018) and Feng et al. (2022) used graph kernels
as convolutional filters in a GNN setting. Therefore, they
are in essence not kernel machines. In Lei et al. (2017), a
deep neural network is modularly built with recurrent ker-
nel modules. On this modular scale, the kernels are used as
convolutional filters, rather than in a kernel machine setting.
On the model scale, they show that the feature mappings of
the graph neural networks lie in the same Hilbert spaces as
some common graph kernels. Their proposed model has no
dual representation, typical for kernel machines.

GNN inspired shallow kernel learning Conversely, Du
et al. (2019) designed the graph neural tangent kernel, based
on infinitely wide GNN architectures that are trained by gra-
dient descent. Chen, Jacob, and Mairal (2020) use path and
walk kernels to embed the local graph topology in an itera-
tively constructed feature map. Although one can refer to the
feature maps of these methods as deep feature maps, their
method remains a shallow kernel machine; whereas in this
paper, we consider several feature maps over multiple layers,
where each layer is associated with a kernel based objective
function and dual variables. Also, Du et al. (2019) and Chen,
Jacob, and Mairal (2020) designed and implemented their
model for a graph learning setting, whereas the focus of our
work is node representation learning.



Method
This section introduces the deep Graph Convolutional Ker-
nel Machine (GCKM): a semi-supervised kernel machine
propagating information through the network for node clas-
sification in graphs. First, the GCKM layer (GCKMℓ)
for single-hop propagation is proposed. Also, the semi-
supervised kernel machine (Semi-SupRKM) is described.
We then explain how to combine these shallow kernel ma-
chines in a deep model to increase the receptive field of the
model to multiple hops and to perform semi-supervised node
classification, after which we conclude with some key prop-
erties of the model. All proofs and derivations for both the
GCKMℓ as the Semi-SupRKM can be found in Appendix.

The graph convolutional and semi-supervised
kernel machine layers as building blocks
Graph convolutional kernel machine layer The deriva-
tion of GCKMℓ starts from the primal minimization prob-
lem:

min
W ,ev

J =
η

2
Tr(W TW )− 1

2

n∑
i=1

eT
v Λ

−1ev

s.t.
{

ev = W Tϕc(av), i = 1, . . . , n
av = ψ(xv, {{xu|u ∈ Nv}})

, (2)

where W ∈ Rdf×s is an unknown interconnection matrix,
ev ∈ Rs the error variables, n = |Vtr| the number of training
nodes, and symmetric hyperparameter matrix Λ ≻ 0. Given
a feature map ϕ(·), the centered feature map is defined as
ϕc(·) ≜ ϕ(·)−Σiϕ(xi)/n. Because of the minus sign in the
objective function, one can interpret this minimization prob-
lem conceptually as maximizing the variance of the error
variables ei around zero target, while keeping the weights
W small (Suykens et al. 2003). Note that the formulation of
the error variables has the same form as GNN layers such as
GCN and GIN (1). In this regard, the GCKM layer relates
in the same way to a WL-iteration (i.e., an iteration of the
Weisfeiler-Lehman graph isomorphism test) as these GNN
layers.

We now introduce dual variables hi using a case of
Fenchel-Young inequality (Rockafellar 1974):

1

2
eTΛ−1e+

1

2
hTΛh ≥ eTh, ∀e,h ∈ Rs, ∀Λ ∈ Rs×s

≻0 .

When substituting the above in (2) and eliminating the error
variables, one obtains a primal-dual minimization problem
as an upper bound on the primal objective function:

min
W ,hv

J̄ ≜ −
n∑

v=1

ϕc(av)
TWhv

+
1

2

n∑
v=1

hT
v Λhv +

η

2
Tr(W TW ). (3)

Note that problem (3) is generally nonconvex. Whether or
not it has a solution depends on hyperparameters Λ. In the
next lemma we show how to determine Λ automatically by
the optimization. We next define the Gram matrix K with
Kuv = ϕ(au)

Tϕ(av), which depends on the aggregated
node features; Kc = McKMc with Mc = (I − 1

n1n1
T
n )

the centering matrix; and H = [h1, . . . ,hn]
T . We now ar-

rive at formulating the minimization problem w.r.t. the dual
variables:
Lemma 1. The solution to the dual minimization problem:

min
H
− 1

2η
Tr(HTKc(X, E)H) s.t. HTH = Is, (4)

satisfies the same first order conditions for optimality w.r.t.
H as (3) when the hyperparameters Λ in (3) are chosen to
equal the symmetric part of the Lagrange multipliers Z of
the equality constraints in (4); i.e., Λ = (Z +ZT )/2 .

Now, (4) is bounded and is guaranteed to have a mini-
mizer. Indeed, it is a minimization of a concave objective
over a compact set. Note that (4) can be solved by a gradient-
based algorithm. The solution satisfies the following prop-
erty:

Proposition 2. Given a symmetric matrix Kc with eigen-
values λ1 ≥ · · · ≥ λs > λs+1 ≥ · · · ≥ λn ≥ 0, and η > 0
a hyperparameter; and let g1, . . . , gs be the columns of H;
then H is a minimizer of (4) if and only if HTH = Is and
span(g1, . . . , gs) = span(v1, . . . ,vs), where v1, . . . ,vs are
the eigenvectors of Kc corresponding to the s largest eigen-
values.
Remark 3. One can obtain a solution of (4) by solving the
eigendecomposition problem:

1

η
Kc(X, E)H = HΛ, (5)

and selecting the eigenvectors corresponding to the s largest
eigenvalues as the columns of H .

Notice that (5) is the kernel PCA formulation, a nonlinear
generalization of PCA (Schölkopf and Smola 2002; Suykens
et al. 2003), with the aggregated node features as the input,
and where the first s components represent the data. The so-
lution of (4) generally yields any orthonormal basis for the
same subspace as spanned by the first s components, and
therefore embeds the same information in the dual repre-
sentations. Further, instead of explicitly defining a feature
map, one can apply the kernel trick using Mercer’s theorem,
stating that for any positive definite kernel k(·, ·) there ex-
ists a, possibly infinite dimensional, feature map ϕ(·) such
that ϕ(au)

Tϕ(av) = k(au,av) (Mercer 1909). In this case,
the transformation function W Tϕ(·) is only implicitly de-
fined. As the kernel function, one could choose for example
a linear kernel, a polynomial kernel, a radial basis function
(RBF), or a kernel that is particularly suited for the inherent
characteristics of the data (e.g., for categorical node features
(Couto 2005)). We can now define the GCKM layer:

Definition 4 (Graph Convolutional Kernel Machine layer).
GCKMℓ is a kernel machine for unsupervised node rep-
resentation learning that propagates information through
the network in a one-hop neighborhood in a convolutional
flavour. More formally, it can be interpreted as a principal
component analysis on the aggregated node features in a ker-
nel induced feature space, where the latent representations
are obtained by solving either (4) or (5), and are used as the
input for the subsequent layer in a deep GCKM.



Figure 1: A deep GCKM architecture for semi-supervised node classification, consisting of two GCKM layers (GCKMℓ1,
GCKMℓ2) and a Semi-SupRKM layer. In each GCKMℓ, the node features are aggregated and then (implicitly) transformed to obtain the error
variables. The dual variables are coupled with these error variables by means of conjugate feature duality and serve as input for the next layer.
In the final Semi-SupRKM layer, the dual variables directly represent the class labels of the unsupervised nodes.

The key difference between a GNN layer and GCKMℓ is
thus that the former learns a parametric mapping for the fea-
ture transformation, whereas GCKMℓ learns the node repre-
sentations themselves (the transformation is only implicitly
defined by a kernel induced feature map). For the aggrega-
tion step, we can choose any function that can handle multi-
sets of different sizes and that is invariant to permutations on
this multiset. In our experiments, we use GCN aggregation
or sum aggregation:

ψGCN(xv, {{xu|u ∈ Nv}}) =
∑

u∈Nv∪{v}

xu√
d̃ud̃v

,

ψsum(xv, {{xu|u ∈ Nv}}) = xv +
∑

u∈Nv

xu,

where d̃v is the node degree of node v after self-loops were
added to the graph.

We proceed with some properties of GCKMℓ. The model-
based approach gives us the possibility to use one set of
nodes for training Vtr and use an out-of-sample extension for
another (super)set of nodes V , possibly from another graph.
The following result follows from the stationarity conditions
of (3):
Lemma 5. Let n = |Vtr|, m = |V|, and KV1,V2 ∈
R|V1|×|V2| a kernel matrix containing kernel evaluations
of all elements of set V1 w.r.t. all elements of set V2 (i.e.,
KV1,V2

uv = k(au,av) ∀u ∈ V1,∀v ∈ V2). The dual repre-
sentations can then be obtained using:

ĤV =
1

η
KV,VtrHVtrΛ

−1 − 1m1T
nK

Vtr,VtrHVtr

nη
Λ−1, (6)

Equation (6) is useful for large-scale problems, when sub-
sets are used for training, and for inductive tasks. It also sat-
isfies the permutation equivariance condition.
Proposition 6. Given an attributed graph G = (V, E ,X),
the aggregated node features {av : v ∈ Vtr} and latent rep-
resentations HVtr of the training nodes Vtr, and a local ag-
gregation function ψ(xv, {{xu|u ∈ Nv}}) that is permuta-
tion invariant; the mapping f from G to G′ = (V, E , ÊV)
using (6) is equivariant w.r.t. any permutation π(G), i.e.,
G′ = f(G) ⇐⇒ π(G′) = f(π(G)).

A theoretical analysis of the expressiveness of GCKMℓ
can be put in context of the theoretical results by Xu et al.
(2019). Any associated feature map of the RBF-kernel is
injective (Christmann and Steinwart 2008). Furthermore, it
has been established that SVMs using the RBF-kernel are
universal approximators (Burges 1998; Hammer and Gers-
mann 2003).

Lemma 7. A GCKMℓ that uses sum aggregation and a
RBF-kernel is as expressive as an iteration of the Weisfeiler-
Lehman graph isomorphism test (Weisfeiler and Lehman
1968).

Semi-supervised restricted kernel machine layer Next,
we introduce a multi-class semi-supervised kernel machine
for classification (Semi-SupRKM). Like Mehrkanoon et al.
(2015), we start from kernel spectral clustering as an unsu-
pervised core model, and augment it with a supervised loss
term. Here however, to be able to use it in a deep kernel ma-
chine, we introduce duality with conjugated features, rather
than by means of Lagrange multipliers.

The primal minimization problem is given by:

min
W ,ei,b

J =
η

2
Tr(W TW )− 1

2λ1

n∑
i=1

vie
T
i ei

+
1

2λ2

n∑
i=1

li(ei − ci)
T (ei − ci) (7)

s.t. ei = W Tϕ(xi) + b, i = 1, . . . , n, (8)

with hyperparameters η, λ1, and λ2, where li ∈ {0, 1} in-
dicates whether the label of datapoint i is used in training,
ci ∈ {−1, 1}p encodes its class label (e.g., in a one-vs-all
encoding), and vi is a weighting scalar obtained as the in-
verse degree of the datapoint in the similarity graph defined
by K = ϕ(xi)

Tϕ(xj) = k(xi,xj), i.e., vi = 1/ΣjKij .
By introducing Fenchel-Young inequalities:

1

2
hT

i hi − eT
i hi ≥ −

1

2
eT
i ei,

−1

2
hT

i hi + (ei − ci)
Thi ≤

1

2
(ei − ci)

T (ei − ci),



and defining ri = vi
λ1

− li
λ2

, one obtains the primal-dual min-
imization problem, which corresponds to minimizing the up-
per bound on the negative variance while minimizing the
lower bound on the supervision error:

min
W ,hi,b

J̃ ≜
η

2
Tr(W TW ) +

1

2

n∑
i=1

rih
T
i hi

−
n∑

i=1

ri(W
Tϕ(xi) + b)Thi −

n∑
i=1

li
λ2

cTi hi. (9)

We next define matrices R = diag(r1, . . . , rn); L =

diag(l1, . . . , ln); S = In − 1n1
T
nR

1T
nR1n

; H = [h1, . . . ,hn]
T ;

and C = [c1, . . . , cn]
T .

Lemma 8. The solution to the dual minimization problem:

min
H
− 1

2η
Tr(HTRK(X)RH) +

1

2
Tr(HTRH)

− 1

λ2
Tr(HTLC) s.t. HTR1n = 0p (10)

satisfies the same first order conditions for optimality w.r.t.
H as (9) where the Lagrange multipliers equal the bias b.
Remark 9. Alternatively, one can find the dual variables by
solving a linear system in the dual variables:

(In −
1

η
RSK(X))RH =

1

λ2
STLC. (11)

From the stationarity conditions of (9), one obtains ei =
hi − lici

riλ2
, which simplifies to ei = hi for the unsupervised

training points. One can thus directly infer the class label
ŷi from the learned representation by comparing the class
codes and select the one with closest Hamming distance to
the error variable ei. For one-vs-all encoding, this is simply
the index with highest value: ŷi = argmaxj(hi)j . When us-
ing a subsample for training, one can use the out-of-sample
extension described in Appendix.

Deep graph convolutional kernel machine
Next, we construct a deep graph convolutional kernel ma-
chine for semi-supervised node classification by combin-
ing multiple GCKMℓ’s with a Semi-SupRKM read-out layer
(Figure 1). Similar to GNNs, the dual variables of the
GCKMℓ’s (H(1) and H(2)) serve as input for the subse-
quent layer and can thus be viewed as hidden representa-
tions. The dual variables of the Semi-SupRKM layer (H(3)),
can directly be used to infer the class label of the unlabeled
nodes. The optimization problem for end-to-end learning is
given by combining the dual minimization problems of the
different layers (i.e., (4) and (10), with K(l) the kernel ma-
trix of layer l). For two GCKM layers and a Semi-SupRKM
layer, this yields:

min
H(1),H(2),H(3)

JGCKM ≜ − 1

2η(1)
Tr(H(1)T K(1)

c H(1))

− 1

2η(2)
Tr(H(2)T K(2)

c H(2))− 1

2η(3)
Tr(H(3)T RK(3)RH(3))

+
1

2
Tr(H(3)T RH(3)) +

1

λ
(3)
2

Tr(H(3)T LC)

s.t. H(1,2)T H(1,2) = Is1,2 , H
(3)T R1n = 0p. (12)

Algorithm 1 Optimization algorithm of GCKM.

1: Initialize {H(1)
0 ,H

(2)
0 ,H

(3)
0 }

2: for k ← 0, 1, . . . , T do
3: Compute K

(1)
c from aggregated X

4: Compute K
(2)
c from aggregated H

(1)
k

5: Update {H(1)
k+1,H

(2)
k+1} ← CayleyAdam(JGCKM)

6: Compute K(3) from H
(2)
k+1

7: Update {H(3)
k+1} ← Solve (11) with K(3)

8: end for

Like in GNNs, the number of GCKMℓ’s used in the deep
GCKM determines the receptive field of the model (i.e., the
number of hops that the information propagates through the
network). However, the key difference is that in GCKM,
this message passing is implicitly embedded in the final rep-
resentation. In our experiments, we will also train a mul-
tiview variant, called GCKM-MV, which is the same as
GCKM but with the kernel of the last layer defined as
k(3)({xu,hu}, {xv,hv}) = k1(hu,hv)k2(xu,xv), where
k1 and k2 are positive definite kernel functions that use the
representations of the last GCKMℓ and the initial node rep-
resentations respectively. By construction, k(3) is also posi-
tive definite.

Training deep graph convolutional kernel machines
Similar to stacked auto-encoders (Bengio 2009), the dual
variables H(1),H(2) and H(3) are initialized by sequen-
tially solving the layers as individual kernel machines before
finetuning end-to-end. Then, the constrained optimization
problem (12) is addressed with an alternating minimization
scheme, as shown in Algorithm 1. First, note that the con-
straint set for the two GCKM layers is the Stiefel manifold
St(sj , n) = {H(j) ∈ Rn×sj |H(j)TH(j) = Isj}, j =
1, 2. We therefore employ the Cayley Adam optimizer (Li,
Li, and Todorovic 2019) to update H(1),H(2) with H(3)

fixed. Then, H(3) is updated by solving the linear system
(11) associated with the semi-supervised layer.

As a validation metric, one can use the accuracy of the
validation set or a different supervised metric. Alternatively,
because the core model of the Semi-SupRKM is based on
kernel spectral clustering, one can use an unsupervised met-
ric that quantifies the quality of obtained clustering (Lan-
gone, Mall, and Suykens 2013). For node v, the centered co-
sine distance w.r.t. class s is dcosv,s = 1 − (cs−µ)T (ev−µ)

||cs−µ|| ||ev−µ|| ,
where cs is the coding of class s and µ is the center of
all codings. The unsupervised performance metric for nodes
Vunsup is then obtained by assigning each node to its closest
class encoding and averaging the cosine distances: Lunsup =

1/|Vunsup|
∑|Vunsup|

v=1 mins d
cos
v,s .

Experiments
Datasets and main setting As datasets, we use four ho-
mophilious graphs: Cora, CiteSeer, PubMed (Sen et al.
2008; Yang, Cohen, and Salakhudinov 2016), and OGB-
Arxiv (Hu et al. 2020), which are citation graphs, as



METHOD
NODE GRAPH DIRECTED WEIGHTED PROPAGATION
ATTR. STRUCTURE GRAPHS GRAPHS RULE

SVM-RBF YES NO NO NO NONE
SVM-DIFF NO YES YES YES LAPLACIAN
SVM-WWL YES YES YES NO 1-HOP/ITERATION
GCKN YES YES YES YES PATH/WALK KERNELS

MLP YES NO NO NO NONE
GCN YES YES NO YES 1-HOP/LAYER
APPNP YES YES NO YES PAGERANK
GPR-GNN YES YES NO YES PAGERANK
BERNNET YES YES NO YES POLYNOMIAL FILTERS
CHEBNETII YES YES NO YES POLYNOMIAL FILTERS

GCKM (OURS) YES YES YES YES 1-HOP/LAYER

Table 1: Qualitative comparison.

well as two heterophilious graphs: Chameleon and Squir-
rel (Wikipedia graphs (Rozemberczki, Allen, and Sarkar
2021)). All graphs are undirected and unweighted and a
summary Table is provided in Appendix. We trained a deep
GCKM with two GCKM layers and a Semi-SupRKM read-
out layer, as depicted in Figure 1, which we will simply re-
fer to as GCKM. We used GCN aggregation for the citation
networks and sum aggregation for the heterophilious graphs.
We also trained GCKM-MV, where the second view is ob-
tained by a RBF-kernel operating on the input node features.
We compare our method to a multilayer perceptron (MLP)
and to GCN (Kipf and Welling 2017) as it is the most com-
parable GNN counterpart to our method. Furthermore, we
add APPNP (Klicpera, Bojchevski, and Günnemann 2019),
BernNet (He et al. 2021), GPR-GNN (Chien et al. 2021),
and ChebNetII (He, Wei, and Wen 2022) to the compari-
son because all these methods achieve state-of-the-art per-
formance on at least one of the datasets. For these GNN
baselines, we used the code of Lim et al. (2021) and He,
Wei, and Wen (2022). For the SVM-based models, we com-
pare with a standard RBF-kernel (SVM-RBF), with a diffu-
sion kernel (SVM-DIFF (Smola and Kondor 2003)), and to
Wasserstein Weisfeiler-Lehman kernel (SVM-WWL (Togn-
inalli et al. 2019)). A qualitative comparison between the
different models is given in Table 1, showing whether the
models exploit the node attributes and/or graph structure,
whether they are applicable for directed and/or weighted
graphs, and giving an indication of the complexity of the
propagation rules. The reader can consult Appendix for
more details about the hyperparameter search.

Semi-supervised node classification with few labels In
the first experiment, we assess the models in a true semi-
supervised setting where only few labels are given. For
Cora, CiteSeer, and PubMed, there are 4 training labels
per class, 100 labels for validation, and 1000 labels for
testing. For Chameleon and Squirrel, a 0.5%/0.5%/99%
train/validation/test-split is used. For the aforementioned
datasets, we merge the training and validation labels into
one set and use the following training and validation strate-
gies: (i) for GCKM, all labels are used for training and the

model is selected based on the cosine similarity metric after
a random search; and (ii) for the baseline models, we use a
5-fold crossvalidation scheme and take the best model based
on the average validation accuracy over the 5 folds from
a grid search.2 For OGB-Arxiv, we use a 2.5%/2.5%/95%
random split and select the model that had highest combined
score: Lcomb = (|Vval|Lval+|Vtest|Lunsup)/(|Vval|+|Vtest|) for
GCKM, or highest validation accuracy for the baselines. All
results are reported in Table 2. We observe that GCKM out-
performs the GNN baselines in 5 out of 6 cases. However,
the usage of a multiview kernel in GCKM-MV further im-
proves the model, especially for the heterophilious datasets,
such that it additionally outperforms the basic kernel meth-
ods for all datasets.

Sparsity property In our experiments, we observe that the
linear system (11), is very sparse (∼ 98%). This can be ex-
plained by the fact that the ri values are small and appear
quadratically in the equation. However, to be able to fully
exploit this sparsity and scale up the method to very large
graphs, we have to find a good implementation of a sparse
solver as proposed by Benzi, Golub, and Liesen (2005) or
similar.

Semi-supervised node classification with standard split
and few validation labels In this experiment, we use the
standard fixed splits for Cora, CiteSeer and PubMed, with
20 training labels per class and 1000 test labels, but the ex-
periment is repeated for different validation sets. We per-
form a random search for the hyperparameters and report
in each run the unsupervised metric Lunsup on the test set,
as well as the validation accuracies Lval for each valida-
tion set. For each validation set, we selected the model that
had the highest combined score: Lcomb = (|Vval|Lval +
|Vtest|Lunsup)/(|Vval| + |Vtest|). Table 3 shows the resulting
performances of the experiment. When few validation labels
are given, we see that GCKM achieves best performance on
all but two cases. Even with no validation labels, when only
the unsupervised metric is used, GCKM is able to obtain a

2We use 5-fold crossvalidation because the validation sets
might be too small in a 10-fold.



METHOD CHAM. SQUI. CORA CITE. PUBM. OGB-ARXIV

SVM-RBF 29.37 29.09 38.84 33.94 62.23 36.41
SVM-DIFF 27.95 19.89 75.50 47.96 39.19 43.17
SVM-WWL 27.73 28.37 44.34 39.12 71.87 42.23

MLP 22.20±1.22 23.50±2.33 40.95±1.47 50.05±1.38 68.65±0.59 31.17±5.67

GCN 25.09±3.05 23.22±2.37 76.70±3.41 64.29±0.96 76.68±0.36 38.06±4.22

APPNP 25.07±2.50 22.59±2.29 80.06±0.45 66.46±0.92 77.18±0.46 37.80±4.14

GPR-GNN 29.58±3.06 24.93±3.57 80.16±0.66 64.58±1.27 76.95±2.96 36.28±6.60

BERNNET 29.17±3.07 24.59±2.59 80.68±0.62 64.88±1.03 77.51±0.33 40.49±0.24

CHEBNETII 30.07±0.83 24.58±2.50 78.86±0.55 67.26±0.68 74.84±0.76 54.98±0.09

GCKM (OURS) 30.17 25.38 80.74 67.53 75.99 58.03
GCKM-MV(OURS) 38.15 29.11 81.05 68.44 75.32 57.63

Table 2: Mean test accuracy (%) and 95% confidence interval (%) for semi-supervised node classification with fixed splits
where fewer labels are given. The best model is highlighted in bold for each dataset. Since GCKM and the SVM baselines have
a deterministic training procedure, no confidence intervals are reported.

METHOD
VALIDATION LABELS PER CLASS

0 1 5 10

C
O

R
A GCN - 81.18±0.66 79.50±0.56 80.51±0.25

CHEBNETII - 60.15±2.13 77.67±1.03 79.79±1.07

GCKM 82.40 82.40 82.40 81.90

C
IT

E
. GCN - 63.91±0.95 67.71±1.30 69.22±1.07

CHEBNETII - 51.52±4.40 67.72±1.06 68.13±1.14

GCKM 68.10 68.10 68.10 68.10

P
U

B
M

. GCN - 75.43±0.41 76.42±0.79 74.52±0.53

CHEBNETII - 63.31±2.30 76.79±0.95 71.65±0.70

GCKM 76.80 76.60 76.60 76.80

Table 3: Test accuracy (%) and 95% confidence interval (%)
for semi-supervised node classification on Cora, CiteSeer
and PubMed with fixed split for smaller validation set sizes.
The best performing model is highlighted in bold.

decent performing model, whereas it is not possible to do
early stopping or even select a model with the other meth-
ods. We conclude that GCKM is less sensitive to a decrease
in validation set size than these baseline methods. A Table
containing the performances on all datasets using the stan-
dard splits with full validation set is given in Appendix.

Ablation studies We empirically assess the effect of the
number of GCKM layers in our model, and compare it to a
GCN with the same amount of message passing layers. Re-
sults for the Cora dataset are given in Table 4. We observe
that the performance decrease for GCKM is less than GCN
and that GCKM scales linearly with model depth. Next, we
perform an ablation study to evaluate the unsupervised set-
ting separately and compare to DMoN (Tsitsulin et al. 2023).
We use deep GCKM with only two unsupervised layers,
with RBF bandwidth σ2

RBF = mσ2 with m the input dimen-
sion and σ2 the variance of the inputs, and clustering ob-
tained by k-means on H(2). Table 5 shows that our method
is also effective for the node clustering task. In Appendix,
we also compare our model with two simplified versions to

study the effect of the aggregation step and GCKM-layers,
and discuss the computational complexity.

LAYERS 1 2 4 8 10

GCN 63.60 76.70 74.86 70.37 72.69
GCKM 72.09 80.74 80.27 80.31 79.84

TIME (S) 9.1 12.9 19.8 22.6 27.3

Table 4: Test accuracy (%) and computation time for dif-
ferent numbers of layers on Cora in semi-supervised setting
with few labels.

Method Cora Cite. Pubm. Cham. Squi.

DMoN 48.8 33.7 29.8 14.0 3.7
GCKM 49.0 37.5 25.2 14.9 5.4

Table 5: NMI performance in the unsupervised setting.

Discussion
We now recapitulate some key properties of our model and
contrast this with related methods: (i) Since the depth of our
model is obtained by combining multiple kernel machines,
we are able to use simple kernel functions such as the RBF-
kernel. (ii) We directly train the dual variables, which are
the node representations themselves. Inversely, Chen, Ja-
cob, and Mairal (2020) uses graph kernels and approximates
them using the Nyström-method to work in a primal repre-
sentation. Nevertheless, our modular framework easily al-
lows to augment or replace the kernel function by a graph
kernel, at any layer. (iii) The layerwise structure of our deep
kernel machine yields an effective initialization scheme and
levelwise objective function during finetuning, which can
yield good conditioning of the training process. Other meth-
ods construct a deep feature map but train it in a shallow
kernel machine setting (Du et al. 2019; Chen, Jacob, and



Mairal 2020). (iv) Our method uses a 1-hop message pass-
ing scheme to learn the graph topology, whereas most state-
of-the-art convolutional GNNs use higher order polynomial
filters (He et al. 2021; He, Wei, and Wen 2022). (v) Our
framework, is highly modular. One can for example easily
extend it to directed graphs or categorical data by choosing
appropriate aggregation functions and kernel functions (e.g.,
(Couto 2005)) respectively. We refer the reader to Table 1 for
a qualitative comparison with some different models.

On one hand, the end-to-end objective (12) maximizes the
variance in each hidden node representation. On the other
hand, the last three terms yield a spectral clustering of a
learned similarity graph, where each cluster is pushed to-
wards the few labeled nodes. Because of this regularization
on the hidden representations, and the fact that the read-
out layer is based on an unsupervised core model (aug-
mented with a supervised term for the few labels), our model
achieves good generalization capabilities. Furthermore, we
include an unsupervised validation metric in our model se-
lection task. We believe that these characteristics of our
model explain the performances in Table 2, Table 3, and Ta-
ble 5. Further, Table 2 shows a significant performance gain
of GCKM-MV over GCKM for the heterophilious graphs.
This can be explained by the fact that the second view in the
last layer is constructed of the initial node attributes, which
yields a similar effect as skip connections in a conventional
GNN.

Conclusion
We introduce GCKM, a new approach for message passing
in graphs based on a deep kernel machine with convolutional
aggregation functions. In GCKM, intermediate node repre-
sentations are embedded in an infinite-dimensional feature
space through the use of duality. We derive optimization
problems for the unsupervised and semi-supervised build-
ing blocks and we show optimization algorithms for end-
to-end training for the semi-supervised node classification
task. Experiments on several benchmark datasets verify the
effectiveness of the proposed method in its elementary form.
Thanks to the unsupervised core, our model outperforms
current state-of-the-art GNNs and kernel methods when few
labels are available for training, which can be a consider-
able advantage in real-world applications. Furthermore, it
does so consistently for both heterophilious and homophil-
ious graphs. Many directions for future work exist, such as
extending the method to inductive tasks or attentional mes-
sage passing and investigating methods for scaling up the
kernel machines to very large graphs.
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List of symbols
We provide a list of symbols with short descriptions in Table
6.

Proofs and derivation of the Graph
Convolutional Kernel Machine layer

Proof 1
The minimization problem in primal and dual variables is
given by:

min
W ,hv

J̄ ≜ −
n∑

v=1

ϕc(av)
TWhv +

1

2

n∑
v=1

hT
v Λhv

+
η

2
Tr(W TW ). (13)

Lemma. The solution to the dual minimization problem:

min
H
− 1

2η
Tr(HTKc(X, E)H) s.t. HTH = Is, (14)

satisfies the same first order conditions for optimality w.r.t.
H as (13) when the hyperparameters Λ in (13) are chosen
to equal the symmetric part of the Lagrange multipliers Z
of the equality constraints in (14); i.e., Λ = (Z +ZT )/2 .

Proof. The stationarity conditions of (13) are:
∂J̄
∂W

= 0⇐⇒ W = 1
η

∑n
v=1 ϕc(av)h

T
v

∂J̄
∂hv

= 0⇐⇒ hvΛ = W Tϕc(av),

or equivalently, W = 1
η
ΦT

c H

hvΛ = W Tϕc(av)⇐⇒HΛ = ΦcW ,

(15)

where Φc = [ϕc(a1), . . . , ϕc(an)]
T . Given that Kc =

ΦcΦ
T
c , and by substituting the first condition into the sec-

ond, one can eliminate the primal variable W :

1

η
KcH = HΛ. (16)

Next, the Lagrangian of (14) is:

L(H,Z) = − 1

2η
Tr(HTKcH) +

1

2
Tr(ZT (HTH − Is)),

and the Karush-Kuhn-Tucker conditions are:
∂L
∂H

= − 1
η
KcH +H(Z +ZT )/2 = 0

∂L
∂Z

= HTH − Is = 0s.

(17)

By choosing Λ = Z̃ = (Z + ZT )/2 we obtain (16) from
the first condition, which proves the Lemma.

Proof 2
Proposition. Given a symmetric matrix Kc with eigenval-
ues λ1 ≥ · · · ≥ λs > λs+1 ≥ · · · ≥ λn ≥ 0, and η > 0
a hyperparameter; and let g1, . . . , gs be the columns of H;
then H is a minimizer of (14) if and only if HTH = Is and
span(g1, . . . , gs) = span(v1, . . . ,vs), where v1, . . . ,vs are
the eigenvectors of Kc corresponding to the s largest eigen-
values.

Proof. Let us define the columns of H as gi =
[(h1)i, . . . , (hn)i]

T , and G = [g1, . . . , gs] = H . We can
then rewrite (17) in vector notation:

∂L
∂gi

= − 1
η
Kcgi +

∑s
j=1 Z̃ijgj = 0n ∀i = 1 . . . s

∂L
∂Z̃ij

= gT
i gj − δij = 0 ∀ij = 1 . . . s

(18)

where δij is the Kronecker delta, and derive the second or-
der derivatives for the optimization parameters:

∇2
gigj
L = −δij

η
Kc + Z̃ijIn. (19)

By defining D = [d1, . . . ,ds], the second order necessary
conditions can be formulated as:

s∑
i=1

s∑
j=1

dT
i (−

δij
η

Kc + Z̃ijIn)dj = −1

η

s∑
i=1

dT
i Kcdi

+

s∑
i=1

s∑
j=1

Z̃ijd
T
i dj ≥ 0 ∀D ∈ C(G∗), (20)

where C(G∗) = {D ∈ Rn×s |DTG∗ = 0s} is the critical
cone at G∗. For the critical cone, it can be deduced that the
following properties hold:

dT
i g

∗
j + dT

j g
∗
i = 0 ∀ij = 1, . . . , s

dT
i g

∗
i = 0 ∀i = 1, . . . , s

dT
i dj = 0 ∀ij = 1, . . . , s i ̸= j.

Without loss of generality, we further assume ∥di∥ = 1.
From (18), one can derive Z̃ij = 1

ηg
∗T
j Kcg

∗
i . By substitut-

ing this and dT
i dj = 0 in (20), the second order necessary

condition becomes:
s∑

i=1

1

η
g∗T
i Kcg

∗
i ≥

s∑
i=1

1

η
dT
i Kcdi,

or after reworking this algebraically:

Tr(G∗TV ΛV TG∗) ≥ Tr(DTV ΛV TD), (21)

with V = [v1, . . . ,vn] the eigenvectors of Kc with corre-
sponding eigenvalues Λ = diag(λ1, . . . , λn). For the case
where span(g∗

1 , . . . , g
∗
s ) = span(v1, . . . ,vs), the left hand

side is maximal:
s∑

i=1

λi = Tr(G∗TV ΛV TG∗) ≥ Tr(DTV ΛV TD).

The right hand side becomes maximal when
span(d1, . . . ,dn) = span(v1, . . . ,vn). In this case,



Symbol Space Description

0n {0}n n-dimensional vector of all zeros
1n {1}n n-dimensional vector of all ones
δij {0, 1} Kronecker delta
η R+ hyperparameter
λ R+ hyperparameter
Λ Rs×s

≻0 symmetric positive definite hyperparameter matrix
ϕ(·) Rd → Rdf feature map, transforming an input from a d-dimensional

space to a df -dimensional space
ϕc(·) Rd → Rdf centered feature map ϕc(·)ϕ(·)− Σiϕ(xi)/n
Φ Rn×df matrix containing all feature maps as row vectors
Φc Rn×df matrix containing all centered feature maps as row vectors
ψ(·, ·) Rs × {{Rs}} → Rs aggregation function
av Rd vector containing the aggregated node features
b Rp bias vector
ci {−1, 1}p the class encoding of point i
C {−1, 1}n×p matrix containing all class encodings as row vectors
dv N node degree
ei Rs or Rp error variable
hi Rs or Rp dual variable/hidden representation (GCKMℓ) or

dual variable (Semi-SupRKM)
H Rn×s or Rn×p matrix containing all dual vectors as row vectors
In {0, 1}n×n n by n identity matrix
k(·, ·) Rd × Rd → R a positive definite kernel function
K Rn×n kernel matrix Kij = k(xi,xj), or Gram matrix Kij = ϕ(xi)

Tϕ(xj)
li {0, 1} indicator that is equal to one when the label of i is used for training
L {0, 1}n×n diagonal matrix containing all label indicators on the diagonal
p R dimensionality of the final representation

(equals the number of classes in one-vs-all encoding)
ri R a weighted combination of vi and li
R Rn×n diagonal matrix containing all r variables on the diagonal
s R dimensionality of a hidden representation
S Rn×n see Section of SemiSupRKM
vi R weighting scalar for the datapoints in Semi-SupRKM

(equals the inverse degree of the kernel matrix)
W Rdf×s linear transformation matrix
xi Rd the feature vector of datapoint i
yi N class label of datapoint i
Z Rs×s a matrix containing Lagrange multipliers

Table 6: List of symbols

there exists an orthonormal transformation matrix O such
that G∗ = DO:

s∑
i=1

λi = Tr(G∗TV ΛV TG∗)

= Tr(OTDTV ΛV TDO) = Tr(DTV ΛV TD).

We verified that the second order necessary condi-
tions are satisfied for in the case span(g∗

1 , . . . , g
∗
s ) =

span(v1, . . . ,vs). Let us now proceed by assuming that
span(g∗

1 , . . . , g
∗
s ) ̸= span(v1, . . . ,vs). In this case there ex-

ists a matrix D such that (21) becomes:

Tr(G∗TV ΛV TG∗) < Tr(DTV ΛV TD) ≤
s∑

i=1

λi.

We thus established that the second order necessary con-
ditions are satisfied if and only if span(g∗

1 , . . . , g
∗
s ) =

span(v1, . . . ,vs). Generally, the second order condition
is not sufficient. However, as the feasible set {H ∈
RN×s | HTH − Is = 0s} is compact, and the objective
function − 1

2ηTr(HTKcH) is concave, (14) is guaranteed
to have a global minimizer (Boyd and Vandenberghe 2004).
Therefore, any H∗ such that range(H∗) = span(v1 . . .vs)
is a global minimizer.

Proof 3
Lemma. Let n = |Vtr|, m = |V|, and KV1,V2 ∈ R|V1|×|V2|

a kernel matrix containing kernel evaluations of all ele-
ments of set V1 w.r.t. all elements of set V2 (i.e., KV1,V2

uv =
k(au,av) ∀u ∈ V1,∀v ∈ V2). The dual representations can
then be obtained using:

ĤV =
1

η
KV,VtrHVtrΛ

−1 − 1m1T
nK

Vtr,VtrHVtr

nη
Λ−1, (22)



Proof. We start from the vector formulation of the station-
arity conditions (15). From the second condition, we get
êv = ĥvΛ = W Tϕc(âv). By substituting the first con-
dition into this, we obtain:

êv = ĥvΛ =
1

η

∑
u∈Vtr

huϕc(au)
Tϕc(âv),

where Vtr is the set of nodes that is used for training. By
doing this for every node in set V , and writing it in matrix
notation, we obtain:

ÊV = ĤVΛ =
1

η
KV,Vtr

c HVtr .

Or in terms of the uncentered kernel matrix:

ÊV = ĤVΛ =
1

η
KV,VtrHVtr −

1m1T
nK

Vtr,VtrHVtr

nη
,

and thus:

ĤV =
1

η
KV,VtrHVtrΛ

−1 − 1m1T
nK

Vtr,VtrHVtr

nη
Λ−1.

Proof 4
Proposition. Given an attributed graph G = (V, E ,X), the
aggregated node features {av : v ∈ Vtr} and latent repre-
sentations HVtr of the training nodes Vtr, and a local ag-
gregation function ψ(xv, {{xu|u ∈ Nv}}) that is permuta-
tion invariant; the mapping f from G to G′ = (V, E , ÊV)
using (22) is equivariant w.r.t. any permutation π(G), i.e.,
G′ = f(G) ⇐⇒ π(G′) = f(π(G)).

Proof. Since the aggregation function is permutation invari-
ant, the kernel evaluations k(au,av) are as well. Now, let
the permutation π(·) be defined by a permutation matrix P .
When G gets permuted, the rows of the corresponding ker-
nel matrix KV,Vtr get permuted accordingly by construction.
The first term in (22) thus becomes 1

ηPKV,VtrHVtr . The sec-
ond term is a matrix with constant rows, and is therefore per-
mutation invariant: 1m1T

nKVtr,VtrHVtr
nη = P

1m1T
nKVtr,VtrHVtr

nη .

We thus get 1
ηPKV,VtrHVtr − P

1m1T
nKVtr,VtrHVtr

nη = PÊV ,
which proves the permutation equivariance of the map-
ping.

Proof 5
Lemma. A GCKMℓ that uses sum aggregation and a RBF-
kernel is as expressive as an iteration of the Weisfeiler-
Lehman graph isomorphism test (Weisfeiler and Lehman
1968).

Proof. The theoretical results of Xu et al. (2019) showed
that a message passing iteration of the form:

h(l)
v = f (l)

(
(1 + ϵ(l)) · h(l−1)

v +
∑

u∈Nv

h(l−1)
u

)
,

where ϵ(l) can be a fixed or a learnable parameter, is
maximally powerful in the class of message passing neu-
ral networks and as expressive as the one dimensional

Weisfeiler-Lehman graph isomorphism test (Weisfeiler and
Lehman 1968); and that this follows from the sum aggre-
gator and the injectiveness of the transformation function
f (l). Therefore, when GCKMℓ uses the sum aggregator (i.e.,
ψsum(xv, {{xu|u ∈ Nv}}) = xv +

∑
u∈Nv

xu), it satisfies
the first condition. When the feature map is chosen to be an
RBF-kernel, the second condition is also satisfied because
any feature map of the RBF-kernel is injective (we refer to
Proposition 4.54, Lemma 4.55, and Corollary 4.58 in Christ-
mann and Steinwart (2008)).

Remark 10. from an empirical perspective, Xu et al. (2019)
proposed a multilayer perceptron with at least one hidden
layer for the function f (l), motivated by the universal ap-
proximator theorem (Hornik, Stinchcombe, and White 1989;
Hornik 1991). Anagolously, it has been established that
SVMs using the RBF-kernel are universal approximators
(Burges 1998; Hammer and Gersmann 2003).

Proofs and derivation of the Semi-Supervised
Restricted Kernel Machine

Proof 1
The minimization problem in primal and dual variables is
given by:

min
W ,hi,b

J̄ ≜
η

2
Tr(W TW ) +

1

2

n∑
i=1

rih
T
i hi

−
n∑

i=1

ri(W
Tϕ(xi) + b)Thi −

n∑
i=1

li
λ2

cTi hi. (23)

Lemma. The solution to the dual minimization problem:

min
H
− 1

2η
Tr(HTRK(X)RH) +

1

2
Tr(HTRH)

− 1

λ2
Tr(HTLC) s.t. HTR1n = 0p (24)

satisfies the same first order conditions for optimality w.r.t.
H as (23) where the Lagrange multipliers equal the bias b.

Proof. The stationarity conditions of (23) are:

∂J̄
∂W

= 0⇐⇒ W = 1
η

∑
i riϕ(xi)h

T
i

∂J̄
∂hi

= 0⇐⇒ hi = (W Tϕ(xi) + b) + r−1
i

lici
λ2

∂J̄
∂b

= 0⇐⇒
∑

i rihi = 0,

or equivalently,
W = 1

η
ΦTRH

H = ΦW + 1nb
T + R−1LC

λ2

HTR1n = 0p,

(25)

where Φ = [ϕ(x1), . . . , ϕ(xn)]
T . Given that K = ΦΦT ,

and by substituting the first condition into the second, one
can eliminate the primal variable W : H = 1

η
KRH + 1nb

T + R−1LC
λ2

HTR1n = 0p.

(26)



Next, the Lagrangian of (24) is:

L(H,z) = − 1

2η
Tr(HTRKRH) +

1

2
Tr(HTRH)

− 1

λ2
Tr(HTLC)− zTHTR1n,

and the KKT conditions are:
∂L
∂H

= − 1
η
RKRH +RH − LC

λ2
−R1nz

T = 0n×s

∂L
∂z

= HTR1n = 0p.

By left multiplying the first condition with R−1, and mov-
ing all negative terms to the right, one obtains (26) with
z = b.

Derivations of Semi-SupRKM
We next proceed with some derivations of which some re-
sults are given in the main text.

Eliminating W from the stationarity conditions (25)
yields the following linear system:[ 1

η
K −R−1 1n

1T
n 0

] [
RH

bT

]
=

[
− 1

λ2
R−1LC

0T
p

]
.

Alternatively, using all stationarity conditions, the expres-
sion for the bias term becomes:

bT = − 1

1T
nR1n

(
1

η
1T
nRKRH +

1

λ2
1T
nLC), (27)

and eliminating both W and b from the stationarity condi-
tions then yields:

(In −
1

η
RSK)RH =

1

λ2
STLC.

From the first stationarity condition, we can derive an ex-
pression that can be used for out-of-sample extensions:

ê = W Tϕ(x) + b =
1

η

∑
i

rihiϕ(xi)
Tϕ(x) + b

=
1

η

∑
i

rihik(xi,x) + b (28)

Note that the second condition gives ei = hi − lici

riλ2
,

which simplifies to ei = hi for the unsupervised training
points. One can thus directly infer the class label ŷv from the
learned representation by comparing the class codes and se-
lect the one with closest Hamming distance to the error vari-
able ei. For one-vs-all encoding, this simply corresponds to
selecting the index with the highest value.

For η = 1, these results are the same as those of
Mehrkanoon et al. (2015), where their dual variables α(l)

correspond to the columns of RH .

Hyperparameter Search
Regarding hyperparameter selection, we tune the hyperpa-
rameters of GCKM by random search. The σ2 of RBF ker-
nels is tuned between e−3 and e5, the employed degree of
the polynomial kernel is p ∈ {1, 2}, and the t parameter is
chosen between e−5 and e5. Note that for p = 1, this is in

fact the linear kernel. The number of components is tuned
in s ∈ {16, 32, 64}. For OGB-Arxiv, this was extended to
s ∈ {16, 32, 64, 128, 256}. The λ(l), η(l) are tuned between
e−4 and e4. Regarding the GNN baselines, we tune the hy-
perparameters of each tested method by grid search in the
ranges suggested by the authors in their papers. Finally, for
the SVM baselines, we tuned the models with a gridsearch
where c and γ are between 10−5 and 105 with unit steps on
a log-scale, and with h ranging from 0 to 5 for the WWL
kernel.

Dataset statistics Table 7 summarizes the dataset statis-
tics for chameleon (Rozemberczki, Allen, and Sarkar 2021),
cora (Sen et al. 2008; Yang, Cohen, and Salakhudinov 2016),
citeseer (Sen et al. 2008; Yang, Cohen, and Salakhudi-
nov 2016), pubmed (Sen et al. 2008; Yang, Cohen, and
Salakhudinov 2016), and ogb-arxiv (Hu et al. 2020), in
which the class insensitive edge homophily ratio H(G) (Lim
et al. 2021) is a measure for the level of homophily in the
graph.

DATASET NODES EDGES FEATURES

CHAMELEON 2,277 31,371 2,325
SQUIRREL 5,201 198,353 2,089
CORA 2,708 5,278 1,433
CITESEER 3,327 4,552 3,703
PUBMED 19,717 44,324 500
OGB-ARXIV 169,343 1,157,799 128

DATASET CLASSES H(G)
CHAMELEON 5 0.041
SQUIRREL 5 0.031
CORA 7 0.766
CITESEER 6 0.627
PUBMED 3 0.664
OGB-ARXIV 40 0.421

Table 7: Dataset statistics.

Experimental results for semi-supervised node
classification with standard fixed splits

The next experiment uses the standard fixed splits: for
Chameleon and Squirrel, this means a 2.5%/2.5%/95%
train/validation/test-split; For Cora, Citeseer and PubMed,
there are 20 training labels per class, 500 validation labels
and 1000 test labels; and for OGB-Arxiv, the standard split is
a 53.7%/17.6%/28.7% train/validation/test-split, where the
splits are temporal, based on publication date. For each
dataset, we performed a random search to determine the hy-
perparameters and selected the model with highest valida-
tion accuracy. For the baseline models, we use the mean test
accuracies and 95% confidence intervals as reported in He,
Wei, and Wen (2022). Table 8 summarizes the results.

Comparing to GCN, we observe that for Squirrel and
CiteSeer the performance of GCKM is similar, whereas for
all other datasets, GCKM outperforms its GNN counterpart.
Comparing our model to the models with more advanced



2 4 6 8 10 12 14 16 18 20

iteration

70

75

80

85

90

95

100
p

er
fo

rm
a
n

ce
(%

)
test accuracy

validation accuracy

training accuracy

cosine similarity

Figure 2: Train, validation and test accuracies, and cosine
similarity score during training on CiteSeer dataset.

aggregation techniques, we see that GCKM achieves second
best performance on Chameleon and Squirrel.

Ablation studies

Analysis of initialization significance and validation met-
rics Figure 2 and 3 show the training progress on CiteSeer
and Chameleon respectively of models where the dual vari-
ables were initialized by sequentially solving the shallow
kernel machines. For Figure 2, the same hyperparameters
were used as in Figure 4. By comparing Figure 2 with Fig-
ure 4, we observe that the test performance of the model after
initialization is already better than that of the model without
initialization after training. Further, we see that for CiteSeer,
the finetuning increases the validation and test accuracy, as
well as the cosine similarity score for a few iterations, af-
ter which these metrics decrease again. For Chameleon, we
see a similar trend, though the performance increase is more
clear. Generally, the finetuning phase after the sequential ini-
tialization only takes few iterations as observed. Next we
see that the cosine similarity is also a good indicator for
the early stopping of the finetuning phase. For CiteSeer, a
homophilious dataset, the trend is indeed well aligned with
that of the test accuracy, and although this is less the case
for Chameleon, a heterophilious dataset, the general trend is
aligned as well. We conclude that the initialization phase is
crucial to obtain a good performance, and that the finetuning
indeed helps further improving the model at a low cost. We
also conclude that both validation accuracy as well as cosine
similarity, which is unsupervised, are good indicators for the
test performance.
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Figure 3: Train, validation and test accuracies, and cosine
similarity score during training on Chameleon dataset.

Analysis of training progress and initialization
Analysis of training objective under random initializa-
tion Figure 4 shows the training progress on CiteSeer of
a model where the dual variables were initialized randomly.
Several observations can be made. First, It should be noted
that the Cayley Adam algorithm (Li, Li, and Todorovic
2019) does not guarantee the exact feasibility of the orthogo-
nality constraints. We thus observe a burn-in phase for a few
iterations untill the orthogonality loss

∑2
l=1 ||H(l)TH(l) −

I||F is small. After this burn-in, we see an almost monotoni-
cally decreasing training objective. Second, there is a fast in-
crease in the training accuracy to 100%, whereas the valida-
tion and training performance keep increasing more gently,
until they reach a certain level and start decreasing again. A
third observation is that the cosine similarity increases only
slightly for a few iterations until it keeps decreasing. Finally,
we observe a sudden change in behavior around iteration
150, caused by another jump in the orthogonality loss. Over-
all we conclude that minimizing the objective under the con-
straints indeed yields improving generalization, up to some
point, similarly as in training deep neural networks.

Computational complexity The proposed algorithm con-
sists of two main computational parts: eigendecomposition
for initialization of the unsupervised blocks and solving a
linear system for the semi-supervised block. Initialization
of H(1),H(2) requires computing the first s eigenvectors
of the kernel matrices K

(1)
c ,K

(2)
c , respectively, with time

complexity O(sn2). This computation needs to be run only
once and we exploit the symmetric structure of the ker-
nel matrices by using the method of Lehoucq, Sorensen,
and Yang (1998). Finding H(3) in the employed alternating
minimization algorithm requires solving the linear system
(27) with worst-case complexity O(n3). When using out-of-



METHOD CHAM. SQUI. CORA CITE. PUBM. OGB-ARXIV

MLP 21.91±2.11 23.42±0.94 58.88±0.62 56.97±0.54 73.15±0.28 47.27±0.64

GCN 39.14±0.60 30.06±0.75 81.32±0.18 71.77±0.21 79.15±0.18 71.74±0.29

APPNP 30.06±0.96 25.18±0.35 83.52±0.24 72.09±0.25 80.23±0.15 65.47±0.34

GPR-GNN 30.56±0.94 25.11±0.51 83.95±0.22 70.92±0.57 78.97±0.27 71.78±0.18

BERNNET 26.35±1.04 24.57±0.72 83.15±0.32 72.24±0.25 79.65±0.25 71.96±0.27

CHEBNETII 46.45±0.53 36.18±0.46 83.67±0.33 72.75±0.16 80.48±0.23 72.32±0.23

GCKM (OURS) 41.16 30.10 84.20 71.80 80.10 70.95

Table 8: Mean test accuracy (%) and 95% confidence interval (%) for semi-supervised node classification with standard fixed
splits. The best model is highlighted in bold and the second best is underlined for each dataset. Since GCKM has a deterministic
training procedure, no confidence intervals are reported.

sample extensions, one could use a subset of size m ≪ n,
such that the complexity scales w.r.t. m instead of n. First
however, a thorough analysis is needed to study the effect of
the out-of-sample extension on the hyperparameter choices
as well as on the overall performance. Also, since the lin-
ear system is sparse, an efficient implementation of a sparse
solver like proposed by (Benzi, Golub, and Liesen 2005)
is expected to speed up computations significantly. Exper-
iments are implemented in Python on a PC with a 3.7GHz
Intel i7-8700K processor and 64GB RAM, and on a PC with
512GB RAM for ogbn-arxiv experiments.

Ablation studies We compare the performance of GCKM
with that of two simplified alternatives. The first base model
is also a GCKM with the same architecture, but the aggre-
gation function is ψ(xv, {{xu|u ∈ Nv}}) = xv for both
GCKMℓ’s. This means that actually no aggregation hap-
pens and we will refer to this model as GCKM-NoAggr. The
second base model is a shallow Semi-SupRKM, where we com-
bine the information of the node features with that of the net-
work structure in the kernel matrix, using a trade-off parameter α:
Kuv = α k(xu,xv)+(1−α) eu,v , where eu,v is a binary variable
that indicates whether or not an edge is present between nodes u
and v. By comparing GCKM with deepRKM and Semi-SupRKM
in Table 9, we see the significance of the aggregation function and
iterative message passing. We further refer the interested reader
to Appendix for an empirical analysis of the initialization signifi-
cance, validation metrics, training progress, and number of layers.

SEMI-SUPRKM GCKM-NOAGGR GCKM

CHAM. 29.37 33.67 41.16
SQUI. 29.09 24.09 30.10
CORA 59.90 46.10 84.20
CITE. 67.60 58.50 71.80
PUBM. 75.00 67.80 80.10

Table 9: Test accuracy (%) of base models for semi-
supervised setting with standard splits
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Figure 4: Top: train, validation and test accuracies, and cosine similarity score; middle: training loss; and bottom: orthogonality
loss, during training on CiteSeer dataset after random initialization.


