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Abstract

This paper presents an impartial and extensive benchmark for text classification involving five
different text classification tasks, 20 datasets, 11 different model architectures, and 42,800 al-
gorithm runs. The five text classification tasks are fake news classification, topic detection,
emotion detection, polarity detection, and sarcasm detection. While in practice, especially in
Natural Language Processing (NLP), research tends to focus on the most sophisticated models,
we hypothesize that this is not always necessary. Therefore, our main objective is to investi-
gate whether the largest state-of-the-art (SOTA) models are always preferred, or in what cases
simple methods can compete with complex models, i.e. for which dataset specifications and
classification tasks. We assess the performance of different methods with varying complexity,
ranging from simple statistical and machine learning methods to pretrained transformers like
robustly optimized BERT (Bidirectional Encoder Representations from Transformers) pretrain-
ing approach (RoBERTa). This comprehensive benchmark is lacking in existing literature, with
research mainly comparing similar types of methods. Furthermore, with increasing awareness
of the ecological impacts of extensive computational resource usage, this comparison is both
critical and timely. We find that overall, bidirectional long short-term memory (LSTM) net-
works are ranked as the best-performing method albeit not statistically significantly better than
logistic regression and RoBERTa. Overall, we cannot conclude that simple methods perform
worse although this depends mainly on the classification task. Concretely, we find that for
fake news classification and topic detection, simple techniques are the best-ranked models and
consequently, it is not necessary to train complicated neural network architectures for these
classification tasks. Moreover, we also find a negative correlation between F1 performance and
complexity for the smallest datasets (with dataset size less than 10,000). Finally, the different
models’ results are analyzed in depth to explain the model decisions, which is an increasing
requirement in the field of text classification.

Keywords: Benchmark, Text Classification, RoBERTa, Bidirectional LSTM, Natural
Language Processing, Machine Learning

1. Introduction

Over the past several years, the field of text classification has seen significant advancements
that were largely driven by deep learning techniques (Kim, 2014; Wang et al., 2023; Galke et al.,
2023; Aldunate et al., 2022). Moreover, the rise of transformer-based models has drastically
transformed the Natural Language Processing (NLP) landscape. Methods like Bidirectional
Encoder Representations Transformers (BERT) are now widely utilized as fine-tuned models
for a range of applications and languages, providing state-of-the-art results for various text
classification tasks (Devlin et al., 2018; Liu et al., 2019). However, such methods require
substantially more computational resources compared to simpler 1 methods. Additionally, with
growing concerns regarding the excessive use of computational resources (Ulmer et al., 2022;
Hershcovich et al., 2022; Bannour et al., 2021) and their ecological footprint, it is imperative
to consider computationally efficient methods, especially when they are not necessary for the
task.

1We define simpler methods as methods that include fewer parameters and do not require as much compu-
tation power as is necessary for deep learning models such as training BERT-based models. Moreover, these
simpler models have more difficulties with understanding the text in their context.
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Despite notable progress in text classification, there is a shortage of comprehensive and
objective overviews that evaluate models of varying sophistication over multiple applications
in text classification and offer a critical view of performance. Generally, new methods are com-
pared to existing models (Liu et al., 2021; Agrawal et al., 2022; Kaliyar et al., 2021; Hasan
et al., 2021; Jin et al., 2020; Majeed et al., 2022) or the analysis is limited to a single applica-
tion in text classification (Arslan et al., 2021; Agrawal et al., 2022; Kaliyar et al., 2021; Mandal
et al., 2021; Parida et al., 2021; Rahman, 2020; Zhang and Zhang, 2020). This results in non-
generalizable findings across different applications and methods. Recently, some studies were
published that critically reflect upon recent progress in text classification (Wahba et al., 2023;
Galke et al., 2023). However, these analyses focus on applying several models without explicit
consideration of different classification tasks. We aim to bridge this gap by investigating for
which classification tasks, if any, simpler models suffice and when more complex methods are
required. Furthermore, often studies do not provide details regarding the chosen hyperparam-
eters, do not publish the code used, and use proprietary datasets without publishing them,
hindering validation and reproducibility (Mieskes et al., 2019). Finally, the analyses of the
results usually do not explore similarities in errors made by models. Additionally, they often
fail to conduct (robust) statistical tests to generalize the findings.

Therefore, this paper aims to address the aforementioned gaps in the literature through a
comprehensive, impartial benchmark evaluation of various methods across multiple single-label
text classification tasks and datasets. This allows us to determine for which dataset specifi-
cations and classification tasks, if any, the simpler methods can compete with more complex
methods. This is valuable for the field, as the need for transparency (and interpretability) of
the model decisions is an increasing requirement in the field of text classification. To facilitate
the latter, our code is made publicly available on GitHub2 to support researchers in reproducing
and extending our results. Concretely, our contributions are summarized as follows:

• We offer an impartial and extensive benchmark for text classification including a broad
range of methods of varying complexity and a variety of datasets, spanning different
applications of text classification.

• We look specifically into the dataset and task specifications and extensively analyze the
results for every task separately.

• We evaluate the performance-complexity trade-off and look into the changes in perfor-
mance when opting for simpler models.

• We evaluate the performance-variance trade-off for the different experiments conducted.

• We provide solid statistical testing to arrive at valid general conclusions. Moreover, we
compare the similarities in the errors made by the different models by breaking down
misclassifications for the different text classification tasks.

In this paper, we start by giving an overview of related work. Next, we discuss the method-
ology used including the datasets, methods, hyperparameter tuning strategy, and performance
measures. Subsequently, we discuss the obtained results both in terms of performance measures
and statistical tests and analyze the hyperparameters of the best models. Finally, we conclude
the paper with a general conclusion and discuss directions for further research.

2https://github.com/manon-reusens/text-classification-benchmark
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2. Related Work

Text classification is a fundamental task in NLP that involves assigning labels to text doc-
uments that contain written text, including one-to-many sentences and/or words, to categorize
them into predefined classes (Chen et al., 2021; Otter et al., 2020; Minaee et al., 2021). In this
paper, we investigate the key categories in text classification, i.e. topic classification, emotion
detection, polarity detection, sarcasm detection, and fake news classification. These categories
are determined based on the most important topics present in the recent literature, as de-
scribed in section 3.1. Using the reference search query (’text classification’ AND ’benchmark’)
and keywords (’text classification’ OR ’Benchmarking’) for all papers from 2020 until 2022 in
Scopus, we summarized relevant literature that was published in qualitative journals and/ or
conferences, in table 1.

To assess reproducibility, we conducted a qualitative assessment of the reproducibility of
the results per paper, resulting in a reproducibility score based on three key indicators: code
availability, complete dataset accessibility, and transparency in hyperparameter selection for
the trained models. Papers were categorized into three groups based on their reproducibility
scores: low (zero or one indicator present), medium (two indicators present), and high (all three
indicators present). Additionally, the table includes a column titled ’new method(s) introduced’,
which indicates whether the paper solely applied previously established techniques, or whether
they also introduced a new technique. For systematic literature reviews of text classification
studies, we refer the reader to da Costa et al. (2023),Minaee et al. (2021),Riduan et al. (2021),
and Thangaraj and Sivakami (2018).

2.1. Fake news classification
With increasing amounts of misleading and fake information, fake news detection has be-

come more important over the last few years. Fake news detection is the automatic detection of
false news. It can also be further restricted to the identification of intentionally falsely published
news, however, in this study, we retain the broader definition. Fake news and misinformation
pose significant challenges to contemporary society, with social media platforms accelerating
the spreading of misinformation (Zhou and Zafarani, 2020). Consequently, it is crucial for these
platforms to label fake news correctly helping the mitigation of the spread of misinformation.
However, that requires the initial detection of fake news. Different methods are used for this
classification problem, ranging from machine learning and statistical methods to deep learning.
Regarding the former, logistic regression (LR) and support vector machines (SVMs) are often
used as simple methods (Mehta et al., 2021; Capuano et al., 2023) and random forest (RF) and
extreme gradient boosting (XGB) techniques are often used as ensemble techniques (Capuano
et al., 2023). Furthermore, Capuano et al. (2023) find that the overall most robust results
for fake news detection are given, inter alia, by extreme gradient boosting. When comparing
the performance of deep learning techniques and machine learning methods, different conclu-
sions are found across studies. Wang (2017) finds that convolutional neural networks (CNNs)
perform significantly better than simple machine learning models, while Mehta et al. (2021)
report similar results between both. Moreover, Sharma and Garg (2021), Wang (2017), and
Mehta et al. (2021) show that (bidirectional) LSTMs perform worse than the machine learning
techniques. Among deep learning techniques, pretrained transformer models perform best (Ca-
puano et al., 2023) and in some studies, they provide the best overall performance (Mehta
et al., 2021; Khan et al., 2021; Kaliyar et al., 2021). There also exists a specialized BERT
for Fake news detection (Kaliyar et al., 2021) that outperforms CNNs and LSTMs, according
to their study. For a full and comprehensive overview of fake news detection literature, we
refer to Capuano et al. (2023). However, as shown in table 1, we find that studies focusing on
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(Arslan et al., 2021) ✕ ✓ ✕ ✕ ✕ 4 ✕ ✕ ✕ ✓ ✕ ✓ ✕ low
(Mandal et al., 2021) ✕ ✓ ✕ ✕ ✕ 1 ✕ ✕ ✕ ✓ ✕ ✓ ✕ low
(Parida et al., 2021) ✕ ✓ ✕ ✕ ✕ 1 ✓ ✕ ✕ ✕ ✕ ✓ ✕ medium

(Zhang and Zhang, 2020) ✕ ✓ ✓ ✕ ✕ 5 ✕ ✕ ✓ ✓ ✕ ✓ ✓ medium
(Wang and Fan, 2020) ✕ ✓ ✓ ✕ ✕ 6 ✕ ✕ ✓ ✕ ✕ ✓ ✓ medium

(Kim et al., 2020b) ✕ ✓ ✓ ✕ ✕ 7 ✕ ✕ ✓ ✕ ✓ ✓ ✓ high
(Li et al., 2020b) ✕ ✓ ✓ ✕ ✕ 4 ✕ ✕ ✓ ✕ ✕ ✓ ✓ medium
(Rahman, 2020) ✕ ✓ ✕ ✕ ✕ 1 ✓ ✓ ✓ ✕ ✕ ✓ ✕ low
(Liu et al., 2021) ✕ ✓ ✓ ✕ ✕ 3 ✕ ✕ ✓ ✓ ✕ 1 ✓ ✓ medium

(Majeed et al., 2022) ✕ ✕ ✕ ✓ ✕ 1 ✓ ✓ ✓ ✕ ✕ ✓ ✓ low
(Hasan et al., 2021) ✕ ✕ ✕ ✓ ✕ 1 ✕ ✕ ✓ ✓ ✕ ✓ ✓ medium

(Jin et al., 2020) ✕ ✕ ✕ ✓ ✕ 1 ✓ ✕ ✓ ✕ ✕ 1 ✓ ✓ low
(Mohammed and Kora, 2022) ✓ ✕ ✓ ✕ ✓ 6 ✓ ✓ ✓ ✕ ✕ ✓ ✕ medium

(Yousef et al., 2020) ✕ ✕ ✓ ✕ ✕ 1 ✓ ✕ ✓ ✕ ✕ ✕ ✓ low
(Palomino and Ochoa-Luna, 2020) ✕ ✕ ✓ ✕ ✕ 2 ✕ ✕ ✓ ✕ ✓ ✓ ✓ high

(Liu et al., 2020a) ✕ ✓ ✓ ✕ ✕ 4 ✓ ✕ ✕ ✕ ✕ ✓ ✕ medium
(Yue et al., 2020) ✕ ✕ ✓ ✕ ✕ 5 ✕ ✕ ✓ ✕ ✕ ✕ 2 ✓ low

(Kim et al., 2020a) ✕ ✕ ✓ ✕ ✕ 3 ✓ ✓ ✓ ✕ ✕ ✕ ✕ low
(Lê et al., 2020) ✕ ✕ ✓ ✕ ✕ 2 ✕ ✕ ✕ ✓ ✕ ✓ ✓ medium

(Sutoyo et al., 2022) ✕ ✕ ✓ ✕ ✕ 1 ✓ ✓ ✕ ✕ ✕ ✕ ✕ low 3

(Qureshi et al., 2022) ✕ ✕ ✓ ✕ ✕ 1 ✓ ✕ ✓ ✕ ✕ ✕ ✕ low
(He et al., 2020) ✕ ✕ ✕ ✕ ✓ 4 ✕ ✕ ✓ ✕ ✓ ✓ ✓ medium

(Choudhary et al., 2021) ✓ ✕ ✕ ✕ ✕ 4 ✕ ✕ ✓ ✕ ✕ ✓ ✓ medium
(Jindal et al., 2020) ✓ ✕ ✕ ✕ ✕ 2 ✕ ✕ ✓ ✓ ✕ ✓ ✓ medium
(Mehta et al., 2021) ✓ ✕ ✕ ✕ ✕ 2 ✕ ✕ ✕ ✓ ✕ ✓ ✓ medium

(Sharma and Garg, 2021) ✓ ✕ ✕ ✕ ✕ 3 ✓ ✓ ✓ ✕ ✕ ✓ ✕ medium
(Wang, 2017) ✓ ✕ ✕ ✕ ✕ 1 ✓ ✕ ✓ ✕ ✕ ✓ ✕ medium

(Kaliyar et al., 2021) ✓ ✕ ✕ ✕ ✕ 1 ✕ ✕ ✓ ✓ ✕ ✓ ✓ medium
(Worsham and Kalita, 2018) ✕ ✓ ✕ ✕ ✕ 1 ✓ ✓ ✓ ✕ ✓ ✓ ✕ high

(Escalante et al., 2016) ✕ ✓ ✕ ✕ ✕ 4 ✓ ✕ ✕ ✕ ✕ ✕ ✕ low
(Kim, 2014) ✕ ✕ ✓ ✕ ✕ 7 ✕ ✕ ✓ ✕ ✕ ✓ ✕ medium

(Pang et al., 2002) ✕ ✕ ✓ ✕ ✕ 1 ✓ ✕ ✕ ✕ ✕ ✕ ✕ low
(Kang et al., 2018) ✕ ✕ ✓ ✕ ✕ 4 ✓ ✕ ✓ ✕ ✕ ✕ ✓ low
(Liu et al., 2019) ✕ ✕ ✓ ✕ ✕ 9 ✕ ✕ ✕ ✓ ✓ ✓ ✓ high

(Wang et al., 2023) ✕ ✓ ✓ ✕ ✕ 5 ✕ ✕ ✓ ✓ ✓ ✓ ✓ high
(Sun et al., 2023) ✕ ✓ ✓ ✕ ✕ 5 ✕ ✕ ✓ ✓ ✓ ✓ ✓ high

(Wahba et al., 2023) ✕ ✓ ✕ ✕ ✕ 3 ✓ ✕ ✕ ✓ ✕ ✕ ✕ low
(Galke et al., 2023) ✕ ✓ ✓ ✕ ✕ 5 4 ✓ ✕ ✓ ✓ ✓ ✓ ✕ high

Our study ✓ ✓ ✓ ✓ ✓ 20 ✓ ✓ ✓ ✓ ✓ ✓ ✕ high
1Github is offline.
2Not that clear about for example what dropout values were tuned.
3Link to dataset not available anymore.
4Also 7 multilabel datasets were used.

Table 1: Relevant literature on text classification.
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this text classification category, tend to only focus on this category without including others.
Moreover, limited analysis across different models of different complexity is given. As shown
in the table, code is often not available in these papers, resulting in a medium reproducibility
score.

2.2. Topic classification
Topic classification is defined as automatically categorizing a text document into a pre-

defined topic. We include classifying both texts from news articles and other texts into topics.
This classification task helps people locate content that aligns with their interests more easily.
For instance, in news categorization, the automatic detection of topics of news articles enables
people with a preference in sports articles to find the articles of their preference more easily
(Minaee et al., 2021). Machine learning methods that are often used for this classification
task are LR, SVMs, RFs, XGB, and naive Bayes (NB) (Rahman, 2020; Parida et al., 2021;
Worsham and Kalita, 2018). However, NB only performs at par or slightly worse compared
to other machine learning models such as SVMs and LR across different applications in text
classification including topic detection (Rahman, 2020). This method, however, is shown to
perform well in early text classification (Escalante et al., 2016), that is when the category of
a text document has to be known when only partial information about the text is provided.
Moreover, Worsham and Kalita (2018) conclude that boosting mechanisms outperformed deep
learning models such as CNNs and LSTMs. In addition to these two models, also bidirectional
LSTMs and pretrained language models such as BERT, robustly optimized BERT pretraining
approach (RoBERTa), and XLNet are used for this classification task (Minaee et al., 2021; Kim
et al., 2020b; Li et al., 2020b; Wang and Fan, 2020; Worsham and Kalita, 2018). In several
studies, it is shown that RoBERTa outperforms other large pretrained language models such as
BERT and XLNet (Arslan et al., 2021; Mandal et al., 2021) and Sun et al. (2023) also include
generative models for text classification in their analysis. Wahba et al. (2023) argue that for
certain text classification tasks, linear models can provide similar results to the large, expensive
transformer models with the additional benefit of being cheaper, comparable, interpretable, and
reproducible. This is an interesting finding, however as the study was too limited (only three
datasets and one text classification category are included), this finding should be tested on
more datasets to come to generalizable conclusions over different text categories, a gap which
we address in this work. The limited combination of different text classification categories is
also shown in table 1. If different categories are combined, this is mostly limited to the combi-
nation of topic detection and polarity detection. Moreover also regarding method comparisons,
studies often do not compare methods of many complexities. Galke et al. (2023) has compared
several, however, they only focus on text classification and polarity detection and provide a
limited number of datasets, which makes generalizing the findings harder.

2.3. Sentiment analysis
Sentiment analysis is an application of text classification where people’s sentiment is au-

tomatically detected from written text. This research area comprises multiple applications
such as emotion, polarity, and sarcasm detection. While these tasks are often grouped under
sentiment analysis, we consider them as separate classification tasks due to their distinct and
intrinsic characteristics. Emotion detection involves identifying emotion from written text,
making it a multi-class task. Automatic emotion detection from text is beneficial for several
areas including business, psychology, and human-robot interactions. Social media platforms
provide the perfect medium for people to express their emotions in written text. Analyzing
such data can result in psychological and business insights. Additionally, this analysis can
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contribute to improving interactions between humans and robots, making them more empa-
thetic and effective (Alswaidan and Menai, 2020). On the other hand, polarity detection,
closely related to emotion detection, is a binary classification task where text is categorized in
a positive or negative sentiment. Similar to the emotion detection task, also for polarity de-
tection, businesses can gain valuable insights by automatically analyzing customer satisfaction
and brand perception (Soleymani et al., 2017). Additionally, this analysis can also be used to
obtain official statistics regarding the overall sentiment of a population (Boom and Reusens,
2023). Finally, sarcasm detection aims to identify sarcastic documents from non-sarcastic
ones. This task holds significant value in sentiment analysis, as sarcastic texts have a negative
underlying sentiment behind an ostensibly positive facade (Joshi et al., 2017). For businesses
analyzing their product reviews, this distinction between sarcastic and non-sarcastic is crucial
in preventing the misinterpretation of feedback from customers.

For these classification tasks, many simple machine learning methods such as SVMs, NB, en-
semble methods such as RF and extreme gradient boosting are used for sentiment analysis (Su-
toyo et al., 2022; Pang et al., 2002), similar to the methods used for fake news classification
and topic classification. While hidden Markov models were historically also used for sentiment
analysis (Kang et al., 2018), they are less prevalent in recent systematic literature reviews such
as (Riduan et al., 2021; Thangaraj and Sivakami, 2018). Similarly to topic classification, NB
shows similar or slightly worse performance than other machine learning models such as SVMs
and logistic regression across different applications in sentiment analysis such as polarity pre-
diction (Qureshi et al., 2022; Sutoyo et al., 2022; Mohammed and Kora, 2022), and emotion
detection (Jin et al., 2020). Moreover, regarding deep learning architectures, Mohammed and
Kora (2022); Jin et al. (2020) show that a bidirectional LSTM outperforms a CNN. Note that in
some cases, these models are surpassed by machine learning models (Qureshi et al., 2022). In
several studies, it was shown that RoBERTa often outperforms other large pretrained language
models such as BERT and XLNet (Liu et al., 2019). Also for these categories, studies use
limited amounts of datasets, which makes the generalization of results difficult. Furthermore,
studies also often focus only on one or at most two text classification categories at the same
time. Recently, we see that the reproducibility of the different studies has improved, however,
still, not all studies are publishing their code and/or datasets and being transparent about the
hyperparameters.

To summarize, most studies do not include different classification tasks and methods of
varying complexity. Furthermore, they entail only a limited amount of datasets and provide
limited reproducibility by not making their datasets and/or code publicly available and often
not being transparent about the chosen hyperparameters. We address all these gaps in this
work.

2.4. Other classification tasks
In our study, we concentrated on the most popular categories prevalent in the literature,

outlined in Table 2. However, it is noteworthy to mention that other text classification tasks
have also gained importance because of the rise of internet platforms. One example is hate
speech detection. Given the rise of hate speech, correlated with the growth of these platforms,
where people can express their opinions freely and sometimes also anonymously, the automatic
detection of such text is another important research area. While our study does not elaborate
further on this task, we refer to (Fortuna and Nunes, 2018) for a comprehensive overview of
this interesting research field.

In addition, including multiple modalities is an important direction to further improve the
detection of misinformation in the field of fake news detection (Comito et al., 2023). Moreover,
also in sentiment analysis tasks, including facial and vocal displays, can provide deeper insights
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into an individual’s sentiment(Soleymani et al., 2017). Similarly, hate speech detection can ben-
efit from using multimodal approaches, considering that often hate speech goes beyond textual
content, also including visual elements, e.g. memes, and videos (Chhabra and Vishwakarma,
2023).

3. Methodology

3.1. Data
We gathered the most prominent topics in text classification for our benchmark study using

the search query (’text classification’ AND ’benchmark’) and keywords (’text classification’
OR Benchmarking’) for all papers between 2020 and 2022 in Scopus. From these articles, we
selected the ones that fit within the scope of our paper and were published in reputed journals
or conferences. Next, we indicated the five most occurring categories. A list of the different
topics that were identified together, including references, is shown in Table 2. Note that we
discarded the papers where multilabel classification was considered and that we thus solely
focus on single-label predictions.

Text classification task References
NLU (Naseem et al., 2022)
Topic classification (Arslan et al., 2021; Mandal et al., 2021; Parida et al., 2021; Zhang

and Zhang, 2020; Wang and Fan, 2020; Kim et al., 2020b; Li et al.,
2020b; Rahman, 2020; Liu et al., 2021, 2020a)

Emotion detection (Majeed et al., 2022; Hasan et al., 2021; Jin et al., 2020)
Polarity detection (Mohammed and Kora, 2022; Wang and Fan, 2020; Yousef et al.,

2020; Palomino and Ochoa-Luna, 2020; Liu et al., 2020a; Kim et al.,
2020b; Yue et al., 2020; Kim et al., 2020a; Lê et al., 2020; Li et al.,
2020b; Liu et al., 2021; Sutoyo et al., 2022; Qureshi et al., 2022)

Sarcasm detection (Mohammed and Kora, 2022; He et al., 2020)
Fake news classification (Choudhary et al., 2021; Mohammed and Kora, 2022; Jindal et al.,

2020)
Spam detection (Liu et al., 2020b)
Adverse drug reaction (Yousef et al., 2020; Li et al., 2020c)
Subjectivity detection (Yue et al., 2020)
Implied pornography (He et al., 2020)

Table 2: Overview categories of text classification in literature.

For each of these classification tasks, we conducted an empirical analysis to find the four
English datasets that are most often downloaded and cited in the existing literature. Deriving
conclusions from only one dataset cannot be generalized, whereas, for two datasets, conclusions
cannot be made from contradictory results. Furthermore, as Table 1 shows an average of 3.2
datasets per study, we opted to include four datasets per category in our study. Moreover,
we focus on English datasets, as for different languages different models might be preferential.
Table 3 offers an overview of the selected datasets per classification task. These datasets are
also often occurring in the studies listed in Table 2. In Appendix 6.1, a description for each of
the different datasets is included.

For the Gossipcop dataset of the FakeNewsNet Repository, we found many missing values.
Therefore, we did our analysis solely using the titles which are present in the dataset. For
the CoAID dataset, we decided to solely focus on news articles, and therefore, discarded the
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Classification Task Dataset Classes Size dataset Source

FakeNewsNet Repository: Gossipcop 2 22,140 (Shu et al., 2018)

CoAID 2 2,162 (Cui and Lee, 2020)Fake News Classification

LIAR 6 12,836 (Wang, 2017)

McIntire 2 4,594 McIntire 1

20News 20 18,846 20News 2

AGNews 4 127,600 (Zhang et al., 2015)Topic Classification

Web of Science Dataset (WOS) 7 11,967 (Kowsari et al., 2017)

BBC 5 2,225 (Greene and Cunningham, 2006)

TweetEval Emotion Detection 4 5,052 (Barbieri et al., 2020)

CARER Emotion 6 20,000 (Saravia et al., 2018)Emotion Detection

DailyDialog Act Corpus- Silicone 7 102,979 (Chapuis et al., 2020)

MELD 7 13,708 (Poria et al., 2018)

IMDb 2 50,000 (Maas et al., 2011)

The Stanford Sentiment Treebank (SST2) 2 68,221 (Socher et al., 2013)Polarity Detection

Movie Review 2 10,662 (Pang and Lee, 2005)

Customer Reviews (CR) 2 3,770 (Ding et al., 2008)

iSarcasm - English 2 4,868 (Abu Farha et al., 2022)

SemEval task 3 2 4,601 (Armendariz et al., 2020)

Se
nt

im
en

t
A

na
ly

si
s

Sarcasm Detection

Sarcasm News Headlines (SNH) 2 55,328 (Misra and Arora, 2019; Misra and Grover, 2021)

Sarcasm v2: General (GENsarc) 2 6,520 (Oraby et al., 2016)
1https://github.com/GeorgeMcIntire/fake_real_news_dataset
2http://qwone.com/~jason/20Newsgroups/

Table 3: Overview of dataset specifications.

claims data since we opt for a consistent approach including only news articles. For the sarcasm
detection datasets, we aim for a consistent experimental setup. Therefore, we only considered
the binary classification task of the SemEval dataset and left the quaternary classification task
out of the analysis.

3.2. Preprocessing
Given the lack of a widely accepted standard for text preprocessing, we adopt the tech-

niques employed by Kratzwald et al. (2018): tokenization, removal of Unicode, punctuation,
repeated letters, digits, and stop word removal. Additionally, for datasets containing tweets,
we also removed emojis and URLs. Finally, we applied lemmatization – instead of stemming
in (Kratzwald et al., 2018). Both preprocessing methods reduce the words to a root word.
Lemmatization, however, also makes sure that the resulting word is an existing word (Reusens
et al., 2022). Therefore, to preserve existing words when utilizing pretrained embeddings, we
applied lemmatization as was done in (Alaparthi and Mishra, 2021).

Because of the ability of deep learning methods to handle raw text as input (Kraus et al.,
2020; LeCun et al., 2015), we refrain from applying any preprocessing for these approaches.
While we acknowledge that different preprocessing can influence the results obtained with
different models, we conjecture that applying the same preprocessing for deep learning and
machine learning methods may hinder the full potential of the more advanced deep learning
methods. On the contrary, this would most likely be to their disadvantage. To ensure a fair
comparison, we deliberately chose different preprocessing for the deep learning approaches to
fully leverage their potential.

3.3. Vector Representations
The vector representations of the input text for the traditional machine learning models are

gathered using TF-IDF and FastText.

9

https://github.com/GeorgeMcIntire/fake_real_news_dataset
http://qwone.com/~jason/20Newsgroups/


TF-IDF stands for Term Frequency Inverse Document Frequency. This counting method is
more sophisticated than Bag of Words (BoW). Unlike BoW, it does not only take into account
the different term frequencies, but also the inverse document frequencies. We implemented this
technique using (Pedregosa et al., 2011).

FastText (FT) offers pretrained word embeddings and is introduced by Mikolov et al. (2018).
Pretrained word embeddings are vector representations of words that also include syntactic
and semantic word relationships (Mikolov et al., 2013b). This method can handle unseen and
rare words, contrary to other pretrained word embeddings such as word2Vec (Mikolov et al.,
2013b,a) and GloVe (Pennington et al., 2014).

3.4. Methods
The methods considered range from the more simple machine learning methods to the

current state-of-the-art. In several studies, different machine learning methods show similar
performance (Qureshi et al., 2022; Sutoyo et al., 2022; Mohammed and Kora, 2022), hence we
decided to leave out NB and a simple decision tree. Moreover, we leave stacked methods as a
topic to explore in future research.

Logistic regression (LR) is a binary classification algorithm that estimates the relationship
between the dependent and one or more independent variables with the use of a maximum
likelihood function. The method predicts the log-odds of an instance belonging to a class and
consequently converts this into a probability via the logistic function. In the multi-class sce-
nario, the one versus rest-scheme is used, implemented by (Pedregosa et al., 2011).

Support vector machine (SVM) is a machine learning algorithm used for classification and
regression. It estimates a hyperplane in the feature space using a large margin idea to separate
the data into different classes. In the multi-class case, these models are trained using the one
versus rest-scheme. We implemented the SVM using (Pedregosa et al., 2011).

Random forest (RF) is an ensemble technique of decision trees and is often used for both
classification and regression. The method averages the predicted outcomes of the individual
decision trees, each generated from a bootstrapped training dataset. The implementation was
done using (Pedregosa et al., 2011)

Extreme gradient boosting (XGB) is a machine learning algorithm used for classification
and regression. It is an ensemble learning method that combines multiple decision trees sequen-
tially by which each newly added classifier corrects the mistakes of previously trained classifiers.
We implemented the algorithm using (Chen and Guestrin, 2016).

Bidirectional long short-term memory network (BiLSTM) is a type of Recurrent Neural
Network (RNN) that is designed to avoid long-term dependency problems with BackPropaga-
tion Through Time (BPTT) to overcome the vanishing or exploding gradient problem (Hochre-
iter and Schmidhuber, 1997). It contains two separate LSTM layers, where one LSTM layer
reads the text in the forward direction and the other in the backward direction. This allows the
network to gather dependencies in the data in both directions. This method was implemented
using (Abadi et al., 2015). Moreover, we used FastText for the embedding layer of the model,
as shown by Kim (2014) to improve the performance.
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Convolutional neural network (CNN) is a deep feed-forward artificial neural network con-
sisting of a series of convolutional and pooling layers followed by fully connected layers and
a softmax output. The convolutional layer learns a number of filters or kernels by preserving
spacial topology. The following pooling layer reduces the spatial size of the data and helps to
control overfitting. This architecture is often used for image analysis, audio recognition, and
natural language processing. The implementation of the CNN using (Abadi et al., 2015) is
based on the implementation by Kim (2014) and includes an embedding layer based on pre-
trained FastText embeddings, as shown by Kim (2014) to improve the performance.

Robustly optimized BERT pretraining approach (RoBERTa) is a state-of-the-art
transformer-based language model introduced by Liu et al. (2019) and is an improved ver-
sion of the Bidirectional Encoder Representations from Transformers (BERT) model (Devlin
et al., 2018). In literature, RoBERTa often outperforms other pretrained language models (Ar-
slan et al., 2021; Liu et al., 2019; Mandal et al., 2021). RoBERTa is pretrained on a large corpus
of text using dynamic masking to learn contextual relationships between words in sentences.
The model can be finetuned for several different tasks such as text classification. We finetuned
RoBERTa using (Wolf et al., 2020).

3.5. Hyperparameter Tuning
This section offers an overview of the hyperparameter tuning strategy. We start by explain-

ing the implemented search strategy followed by the hyperparameters that are tuned. We used
Weights and Biases (Biewald, 2020) to retain an organized overview of the different experiments,
including hyperparameter tuning.

3.5.1. Search Strategy
In the literature, various search strategies for hyperparameter tuning have been explored.

Bergstra and Bengio (2012) highlight the advantages of random search over a full grid search,
while Shahriari et al. (2015) note that random search allows for the exploitation of the full di-
mensionality without knowing which dimensions are most important. Alternatively, Bayesian
search is also often used (Snoek et al., 2012). This search strategy chooses new hyperparameter
settings for the next iteration based on the performance of the previous hyperparameter setting
and shows great potential as it optimizes the hyperparameter setting efficiently (Snoek et al.,
2012). Although random search can effectively exploit the full dimensionality of a hyperpa-
rameter search, it faces challenges in handling high dimensionality (Shahriari et al., 2015). To
overcome this limitation, we propose the following strategy for hyperparameter tuning.

We follow a coarse-finetuning strategy similar to Li et al. (2021); Huang et al. (2021) com-
bined with Bayesian hyperparameter tuning for the neural networks. We start with common
hyperparameter settings. Around these settings, we generate an interval and search for the best
hyperparameter setting per dataset and per classifier. Through this strategy, we can reduce the
dimensionality. Furthermore, to lower the probability of encountering local maxima, we run
each Bayesian search for 10 different random seeds. As the machine learning methods suffer
less from the high dimensionality problem, we also applied Bayesian hyperparameter tuning
for these methods. Additionally, we combine Bayesian search with hyperband for the neural
networks, as it is shown by Falkner et al. (2017) to perform best. This bandit-based strat-
egy evaluates whether training should be stopped at predefined iteration counts or brackets.
Around five brackets should be selected per run, with a minimum of three brackets. Therefore,
we set the minimum number of iterations at one (Li et al., 2017). The hyperparameter tuning
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of RoBERTa was done using the suggested hyperparameter settings of the original paper, com-
bined with Bayesian search. For each random seed, we ran i iterations, with i the minimum of
the number of combinations of the different hyperparameter settings and 30 (Yogatama et al.,
2015).

3.5.2. Hyperparameters
The hyperparameter settings per model are shown in Table 4. As previously explained, the

hyperparameters for the neural networks were chosen based on a coarse-finetuning approach.
Therefore, in Table 4 we refer to Appendix 6.2 for an overview of commonly used hyperparame-
ter settings. Note that the hyperparameter C for LR and SVM stands for the L2 regularization
parameter, which is inversely proportional to the regularization strength. Moreover, for bidi-
rectional LSTMs and convolutional neural networks, exponential decay was set to the learning
rate with patience 20 until 0.00000001 (Sachan et al., 2019).

Method Hyperparameter Value Reference
LR Class weights balanced (Ghosh, 2022)

C {0.001, 0.01, 0.1, 1, 10, 100, 1000} (Galli et al., 2022)
SVM Class weights balanced (Moreo et al., 2021)

Kernel linear (Moreo et al., 2021)
C {0.001, 0.01, 0.1, 1, 10, 100, 1000} (Moreo et al., 2021)

RF Number of Estimators [1,200] (Wu et al., 2019b)
Maximum of Features [1, 20] (Wu et al., 2019b)

XGB Learning Rate {0.0001, 0.001, 0.01, 0.1} (Lai et al., 2019)
Maximum Depth [3,7] (Lai et al., 2019)
Gamma [1,10] (Lai et al., 2019)
Number of Estimators {10, 100, 1000, 10000} (Lai et al., 2019)
Colsample by Tree [0.1, 1] (Lai et al., 2019)

BiLSTM Optimizer Adam Appendix 6.2
Learning Rate {0.0001, 0.001, 0.01} Appendix 6.2
Hidden Layer Size {128, 256, 512 } Appendix 6.2
Batch Size {64, 128, 256, 512, 1024, 2048} Appendix 6.2
Epochs 100 Appendix 6.2
Hidden Layers 1 Appendix 6.2
Drop-out 0.5 Appendix 6.2

CNN Optimizer Adam Appendix 6.2
Learning Rate {0.0001, 0.001, 0.01} Appendix 6.2
Filters {128, 256, 512 } Appendix 6.2
Batch Size {64, 128, 256, 512, 1024, 2048} Appendix 6.2
Epochs 100 Appendix 6.2
Drop-out 0.5 Appendix 6.2

RoBERTa Batch size {16, 32} (Liu et al., 2019)
Learning Rate {0.00001, 0.00002, 0.00003} (Liu et al., 2019)
Epochs 10 (Liu et al., 2019)

Table 4: Hyperparameter table.

3.6. Evaluation Methods
3.6.1. Performance Metrics

To ensure that the obtained results are robust, reliable and generalizable, we only report
results that are averaged over ten different experimental runs and initialized with a different
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seed. This additional measure on top of the extensive hyperparameter search and optimization is
necessary to eliminate random effects. To evaluate the performance of the different techniques,
we calculate the accuracy, macro F1-measure, macro precision, and macro recall for all the best-
performing models per sweep. For the binary classification tasks, we also calculate the area
under the ROC-curve (AUC) score and the area under the precision-recall curve (AUCPR)
score. We then average the performance metrics over the ten runs per classifier and dataset
to obtain one average per method-dataset combination. For all of these experiments, we also
provide the standard deviation over the different random seeds.

3.6.2. Statistical testing
To account for sampling noise in comparing the performance of the various methods across

the experiments and to arrive at statistically valid conclusions, we rigorously apply statistical
tests using Autorank (Herbold, 2020). First, we perform pairwise tests across the different clas-
sifiers using the Wilcoxon signed-rank test with both a 90% and 95% confidence level (Chen
et al., 2021; Pattanayak et al., 2021). This statistical test is non-parametric and therefore a
valid alternative to the paired t-test, as it makes fewer assumptions and is stronger than the
sign test (Demšar, 2006).
To mitigate the risk of incorrectly rejecting null hypotheses during multiple pair-wise tests,
we adopt a statistical testing procedure as proposed by Demšar (2006) to compare multiple
classifiers. In the initial step, we employ the Friedman test, the non-parametric equivalence
of the ANOVA test, to check whether there is a statistically significant difference across the
classifiers. If a significant difference is detected, we proceed with the post-hoc Nemenyi test to
evaluate the significance of the difference between the best-performing method and the other
methods (Nemenyi, 1963; Pattanayak et al., 2021). This two-step approach ensures a robust
and reliable assessment of the performance of the classifiers.

4. Results

In this section, we first give an overview of the results of the different methods per dataset.
Next, we continue with the statistical tests. This subsection is threefold: we perform statistical
tests over all datasets and per performance measure, statistical tests per text classification
application, and statistical tests on the results classified in dataset specifications. Finally, we
analyze the hyperparameters of the best models.

4.1. Experiments
Table 5 displays the average performance and standard deviation in terms of the F1-measure

for all datasets and methods calculated over the ten different random seed initializations. The
other performance metrics are shown in Appendix 6.3. Overall, we see a wide variation in the
difficulty of the different predictive tasks, with the results on the LIAR, Silicone, and MELD
datasets being the worst. Furthermore, the best-performing model differs across the different
datasets. However, some patterns can be detected. In the next paragraphs, we discuss the
performance of the different datasets per classification task. In addition, when comparing our
results to existing leaderboards for similar datasets, we find similar results.

First, TF-IDF seems to work well for fake news classification, although the results reveal
variability in the best-performing method per dataset. Notably, LR TF-IDF scores best on
recall for two out of four best datasets, and RF TF-IDF scores best for the AUC and AUCPR
scores for two out of four datasets. For the Gossipcop dataset, LR TF-IDF performs best,
however, many non-significant differences with other methods are observed with a confidence
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level of 95%. Concerning CoAID, SVM TF-IDF performs significantly better than all other
methods, except for LR TF-IDF, RF FT, and RF TF-IDF with a confidence level of 95%.
Regarding LIAR, no significant differences across the performance of the different models are
found, except for LR TF-IDF with a confidence level of 90%. Finally, the best-performing
method for the McIntire dataset is RoBERTa, significantly outperforming all other models
except RF TF-IDF with a confidence of 95%.

Similarly to fake news classification, we find different best-performing methods per dataset
for topic detection, except for the datasets WOS and BBC where RoBERTa is the best-
performing method. LR TF-IDF and BiLSTM are the best-performing methods for 20News and
AGNews, respectively. With a confidence level of 90%, we conclude that these best-performing
methods significantly outperform all other models trained on the same dataset.

For emotion detection, RoBERTa performs well on the TweetEval and CARER datasets, sig-
nificantly outperforming all other methods with a confidence level of 90% except RF TF-IDF on
the CARER dataset. Moreover, RoBERTa is, also on the MELD dataset, the best-performing
method, significantly outperforming all other methods except XGB FT and XGB TF-IDF. For
silicone, however, the biggest dataset in the emotion detection category, RoBERTa performs
worst out of all methods in terms of F1-measure, precision, and recall, despite obtaining a
decent accuracy score. Upon closer inspection, it is found that all 10 trained RoBERTa models
predict the same label for over 90% of the cases. As the dataset is imbalanced, this results in
a good accuracy score but bad other performance metrics. Moreover, RF TF-IDF significantly
outperforms RoBERTa and XGB FT with a confidence level of 90%.

For polarity detection, RoBERTa outperforms all other methods for three out of four
datasets in terms of all performance metrics except for AUC and AUCPR where the BiL-
STM outperforms RoBERTa. Moreover, the null hypothesis that the performance of BiLSTM
and RoBERTa are similar could not be rejected at a 95% confidence level for these three polar-
ity detection tasks. Additionally, the null hypothesis could also not be rejected for CNN, XGB
TF-IDF, SVM TF-IDF, and LR TF-IDF on the IMDb dataset, while all other methods perform
significantly worse than RoBERTa at a 95% confidence level. For the SST2 and Movie Review
datasets, all methods except BiLSTM show significantly lower performance than RoBERTa,
with a confidence level of 95%. For the CR dataset, however, RoBERTa offers bad results in
terms of all performance metrics except accuracy, because of the dataset imbalance.
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Finally, for sarcasm detection, it is noteworthy that the performance of RoBERTa is signifi-
cantly worse than the best-performing method for all datasets, except GENsarc, where it is the
best-performing model. When analyzing the predictions made by RoBERTa for the iSarcasm
and SemEvalA datasets, it is observed that all trained models almost always predict the major-
ity class. For the iSarcasm dataset, we conclude that XGB TF-IDF significantly outperforms
all other methods except LR TF-IDF and that LR TF-IDF performs significantly better than
all other methods on the SemEvalA dataset with a confidence level of 95%. Finally, RF TF-IDF
significantly outperforms all methods with a confidence level of 95%.

4.2. Statistical Tests
4.2.1. General Rankings

Table 6 shows the main ranking and a ranking per performance metric of the different meth-
ods across all datasets based on the post-hoc Nemenyi test after rejecting the null hypothesis
of the non-parametric Friedman test. Two general rankings are given: one where all perfor-
mance metrics were combined (General) and one were all performance metrics except AUC
and AUCPR are included (General v2). As the AUC and AUCPR performance metrics are
only provided for the binary classification tasks, the results are disproportionally influenced by
these metrics for the general ranking. We underlined the best ranking and put them in bold
face. Moreover, we indicated the rankings that do not significantly differ from this best-ranked
method in bold, that is where the difference between the mean rank is not greater than the
critical distance of the Nemenyi test. These tests are all conducted with a confidence level of
95%.

General General v2 ACC F1 Precision Recall AUC AUCPR

LR FT 6.55 6.56 7.6 6.4 7.2 5.05 6.82 3.73
TF-IDF 4.65 4.83 5.7 4.2 5.75 3.65 4.27 6.18

SVM FT 6.42 6.44 7.35 6 6.95 5.45 6.55 6.18
TF-IDF 5.74 5.59 6.2 4.9 6.5 4.75 6.18 6.36

RF FT 8.25 8.29 8.2 8.6 7.4 8.95 8.27 7.91
TF-IDF 6.08 6.23 6.05 6.55 5.1 7.2 5.55 5.55

XGB FT 6.55 6.9 6.45 7.15 6.3 7.7 5.55 5
TF-IDF 7.45 7.4 7 7.95 6.45 8.2 7.73 7.55

BiLSTM 3.31 3.56 3.2 3.2 3.6 4.25 2.45 2.36
CNN 5.96 6.08 5.4 6.3 6.25 6.35 5.73 5.36

RoBERTa 5.05 4.14 2.85 4.75 4.5 4.45 6.91 9.82
Critical Distance 1.5 1.69 3.38 3.38 3.38 3.38 4.56 4.56

Table 6: Overview rankings across different performance metrics. The best ranking is underlined and put in
bold face. The bold results do not differ from the best result with a 95% confidence interval.

As shown in Table 6, when taking into account all performance metrics including the AUC
and AUCPR, BiLSTM significantly outperforms all other methods except LR TF-IDF over all
different experiments. The next in ranking are RoBERTa, SVM TF-IDF, CNN, and RF TF-
IDF. Note that for these traditional machine learning methods, the FT preprocessing performs
worse than the TF-IDF, and in case of the LR and RF this is a significant difference. Moreover,
we can conclude that both XGB methods perform significantly worse than LR TF-IDF and
BiLSTM. However, as indicated previously, some datasets are overrepresented in this ranking
as AUC and AUCPR are only present for 11 out of 20 datasets. Hence, we also look into the
general ranking without these two performance measures. The best-ranked method is again
the BiLSTM, however, there is no significant difference between this method, RoBERTa, and
LR TF-IDF. These three methods perform thus, overall best. It is a surprising finding that
LR TF-IDF shows overall similar performance to sophisticated methods such as RoBERTa and
BiLSTM, meaning that simple techniques can still compete with these advanced methods. In
conclusion, we see that, in general, when looking at all different classification tasks, the context
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of the text seems to matter. The only exception to this finding is the LR TF-IDF which shows
a non-significant difference in performance compared to BiLSTM.

4.2.2. Rankings per Category

Fake News Topic Emotion Polarity Sarcasm

LR FT 8 5.69 7 4.58 7.46
TF-IDF 3.55 2.75 6.06 6.08 4.54

SVM FT 7.18 6.69 6.5 5 6.92
TF-IDF 4.14 3 6.38 8.21 6.13

RF FT 7.86 9.75 7.88 9 7.08
TF-IDF 3.64 6.88 5.63 8.5 5.67

XGB FT 7.5 9.88 6.19 6.04 5.79
TF-IDF 6.19 6.5 6.81 8.75 7.13

BiLSTM 4.55 4.69 3.38 1.54 3
CNN 7.86 6.44 6.75 4 5.33

RoBERTa 5.95 3.69 3.44 4.29 6.96
Critical Distance 3.22 3.77 3.77 3.08 3.08

Table 7: Overview rankings across different categories. The best ranking is underlined and put in bold face.
The bold results do not differ from the best result with a 95% confidence interval.

When looking further into the ranking per classification task shown in Table 7, we see that
for all categories, BiLSTM is the best-ranked method, except for fake news detection and topic
detection, where LR TF-IDF respectively is ranked best. However, we should note that as there
were fewer observations, the critical distance grows and thus fewer conclusions can be made
based on these tests, and further research is required. In the following, we present conclusions
per classification task, backed by theoretical explanations and existing literature.

Fake News Detection
Regarding the fake news detection category, we can conclude that there is a significant difference
between LR TF-IDF on the one hand and all FT machine learning methods and CNN on the
other hand. Moreover, for all machine learning methods, we find that TF-IDF is preferred over
FT for this classification task. This means that in combination with easy methods, the presence
of certain words benefits the prediction of fake news more than the semantic meaning of the
words. This might be due to the datasets, where certain words might be more related to fake
news than to real news. Contrarily to this finding, (Gravanis et al., 2019) proposes that the
semantic meaning of words is, in fact, important, and Gravanis et al. (2019) and Capuano et al.
(2023) suggest that boosting methods combined with pretrained embeddings performs well for
fake news detection. Nevertheless, as the difference in ranking is non-significant according to our
tests, except for LR and RF, further research is required to come to a generalizable conclusion.
When comparing our findings to other existing benchmarks in fake news detection, we see
that Khan et al. (2021) finds that RoBERTa performs best out of all classification methods.
However, note that different hyperparameters were set in their experiments. The conclusions
on the performance of deep learning methods compared with machine learning methods differ
widely across studies with some concluding that CNN performs significantly better (Wang,
2017) or (Bi)LSTMs that perform worse than these simple techniques (Sharma and Garg,
2021; Wang, 2017). This last conclusion shows the necessity of a good hyperparameter tuning
approach for these methods.

Topic detection
Concerning topic detection, we find that LR TF-IDF is the best-performing method, followed
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by SVM TF-IDF and only then we find RoBERTa and BiLSTM. This suggests that for this
classification task, reading sentences in a way to capture words in their context might not be
necessary. Simple methods like LR or SVM also perform well. Furthermore, note that for all
these traditional machine learning methods, both simple and ensemble methods, the perfor-
mance of FT lags behind that of TF-IDF. Moreover, a statistical difference is found between
the ranking of LR TF-IDF and SVM FT, RF FT, and XGB FT with a confidence level of 95%.
This is intuitive, as for detecting a topic, it is not necessary to understand the full semantic
meaning of the sentence as long as the essential related words are retained. Also in existing
literature, TF-IDF is found to perform well for topic detection (Rahman, 2020). However, in
their study, the model with word2Vec embeddings performs slightly better. Figure 1 shows the
breakdown of the misclassifications of the different machine learning methods between FT and
TF-IDF. We included all the different mistakes per method and dataset over the ten random
seeds and display the overlapping mistakes between the FT and TF-IDF models per dataset
in blue and the non-overlapping mistakes in grey. When looking at the breakdown of mis-
classifications, we see that the SVM and LR act similarly with similar amounts of overlapping
misclassifications and the classifiers with FT make slightly more non-overlapping mistakes than
TF-IDF except for the AGNews and BBC datasets. For the ensemble methods, however, we see
on the one hand for the RF models a high amount of overlapping misclassifications and similar
amounts of non-overlapping mistakes among the FT and TF-IDF models. On the other hand,
we find that XGB TF-IDF makes fewer different mistakes than XGB FT on the WOS, 20News,
and BBC datasets, while for AGNews, XGB TF-IDF makes four times more different mistakes
compared to XGB FT. This is also shown in Table 5, as the variation in performance over the
ten random seeds was three times higher than for XGB FT. For WOS, however, we see that
the high number of different misclassifications is not due to the variation in the performance of
the different models as the standard deviation is relatively low, but because of the worse overall
performance of XGB FT. Finally, our results also show that BiLSTM outperforms CNN, how-
ever it is a non-significant difference. Nevertheless, similar conclusions are found in (Rahman,
2020; Zhang and Zhang, 2020; Gutiérrez-Batista et al., 2019).

Emotion detection
Next, the BiLSTM method shows the best ranking for emotion detection. However, no signifi-
cant differences can be found between this method and the other methods at a 95% confidence
level except RF FT. RoBERTa is ranked second best and only then, RF TF-IDF and LR
TF-IDF can be found. This suggests that context is important to correctly predict emotion
expressed in text. In the existing literature, it is shown that deep learning methods outperform
simpler methods (Jin et al., 2020; Majeed et al., 2022). Furthermore, BERT-based models
often outperform BiLSTM (Hasan et al., 2021). However, this is not reflected in the ranking.
When we look back at the different results in Table 5, this is explained by RoBERTa’s bad
performance on the silicone dataset. As stated before, RoBERTa mostly predicts the majority
class. Therefore, it is outperformed by all other methods on all performance metrics except
accuracy and this makes the method perform worse in the overall ranking for this text classi-
fication category. Nevertheless, the ranking is still close to the ranking of BiLSTM, suggesting
its good performance on this classification task.

Polarity detection
For polarity detection, the BiLSTM again ranks best. No significant difference can be found
between this method and CNN, RoBERTa, and LR FT. Note that here, the semantic meaning
of words is shown to be more important, as for all machine learning methods except RF,
the method using FT outperforms the one using TF-IDF. Moreover, all three deep learning
methods, including CNN, show a good performance. This suggests that context is important
on top of the semantic meaning of individual words. Furthermore, as shown, CNN performs

18



 WOS FT WOS TF-IDF AGNews FT
AGNews TF-

IDF
20News FT

20News TF-

IDF
BBC FT BBC TF-IDF

non-overlapping 912 398 295 348 853 686 16 28

overlapping 1035 1035 670 670 2462 2462 36 36
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670 670

2462 2462

36 36
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overlapping non-overlapping

(a) Breakdown misclassifications LR

 WOS FT WOS TF-IDF AGNews FT
AGNews TF-

IDF
20News FT

20News TF-

IDF
BBC FT BBC TF-IDF

non-overlapping 1019 355 164 453 1007 620 44 17

overlapping 1058 1058 739 739 2994 2994 36 36

1058 1058
739 739

2994 2994

36 36

1019
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1007
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44 17
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(b) Breakdown misclassifications SVM

 WOS FT WOS TF-IDF AGNews FT
AGNews TF-

IDF
20News FT

20News TF-

IDF
BBC FT BBC TF-IDF

non-overlapping 767 624 325 329 796 924 34 69

overlapping 1686 1686 880 880 3477 3477 65 65

1686 1686

880 880

3477 3477

65 65

767 624

325 329

796 924

34 69

overlapping non-overlapping

(c) Breakdown misclassifications RF

 WOS FT WOS TF-IDF AGNews FT
AGNews TF-

IDF
20News FT

20News TF-

IDF
BBC FT BBC TF-IDF

non-overlapping 1660 524 491 2116 1197 780 54 52

overlapping 666 666 1515 1515 3163 3163 56 56

666 666

1515 1515

3163 3163

56 56

1660

524

491

2116

1197
780

54 52

overlapping non-overlapping

(d) Breakdown misclassifications XGB

Figure 1: Breakdown misclassifications machine learning models FT vs TF-IDF for the three topic detection
datasets.

second-best on this classification task, which is the best ranking for all classification tasks. A
possible explanation for this high ranking is that three out of the four polarity datasets contain
more than 10,000 sentences and deep learning outperforms machine learning methods when the
dataset size grows as we show in Section 4.2.3. In literature, we also see that both methods
perform similarly for polarity classification tasks, sometimes with CNN performing best (Yan
et al., 2022; Lei et al., 2018), and sometimes BiLSTM (Wu et al., 2019a; Yu et al., 2017).

Sarcasm detection
For the sarcasm datasets, BiLSTM performs best and significantly better than all methods ex-
cept LR TF-IDF, RF TF-IDF, XGB FT, and CNN. Note that only on this classification task,
RoBERTa is significantly outperformed by the best-performing method with a confidence level
of 95%. At first sight, this looks counterintuitive as understanding the full context of a text as
is done using RoBERTa is necessary. Moreover, as RoBERTa is a pretrained language model,
this would provide the model already with a basic understanding of words. When looking
more closely at the results, for both iSarcasm and SemEValA, we find that RoBERTa predicts
non-sarcastic most of the time. This is explained by an imbalanced dataset such as iSarcasm.
However, as SemEvalA is not imbalanced, but a small dataset, it suggests that the fact that
RoBERTa is pretrained on large amounts of mostly non-sarcastic texts is disadvantageous for
the models’ performance, especially when finetuning the model using a small dataset. Further-
more, we see that also for SNH RoBERTa is not among the best-performing methods. However,
the good performance on the GENsarc dataset, shows that RoBERTa can possibly perform very
well on sarcasm detection tasks. As also in literature it is found that transformer-based models
perform well (Kayalvizhi et al., 2019), we suggest to further research this and include more
datasets. Similar to our findings, existing literature does find that among the machine learning
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methods RF (Charalampakis et al., 2016) and LR (Khatri and Pranav, 2020; Razali et al.,
2021) perform well. Moreover, note that TF-IDF is ranked better than FT for all methods.

In conclusion, it is noteworthy that, across all tasks except polarity detection, TF-IDF con-
sistently performs better than FT. Although the deep learning models were also trained using
an embedding layer based on FT, this embedding layer was further optimized together with
the other layers of the models, which might explain the additional advantage that was absent
in the machine learning models by fine-tuning it on the particular dataset. Moreover, note that
these models also comprise context. The FT models also generate sentence embeddings, so it
is also context-aware, but to a smaller extent than the deep learning models.

4.2.3. Rankings per Dataset Specifications
We conduct statistical tests to find patterns in the best-performing methods regarding the

dataset specifications, more specifically the size of the dataset and the number of target labels.
The lower the value for a dataset-classifier combination, the better the average ranking across
this combination. These rankings are shown in Table 8. Firstly, we evaluate models trained
on a similar number of target labels and rank them accordingly. For both the binary and
multi-class datasets, we see that BiLSTM performs best. However, no significant difference
is observed between this method and LR TF-IDF for both groups. For binary datasets, no
significant difference is found between BiLSTM and CNN, while for the multi-class datasets,
SVM TF-IDF, RF TF-IDF, and RoBERTa could also not be distinguished as significantly
different from BiLSTM. However, we want to emphasize that this split is also closely related to
the classification task, as emotion detection and topic detection are always multi-class datasets.

Secondly, we split the datasets based on the dataset size. As the critical distance grows, we
find fewer significant differences. However, it is interesting that for the group with the smallest
dataset size, RoBERTa is the best-ranked method followed by the LR TF-IDF. As RoBERTa
is a pretrained model, it does not need as much training to perform well as other deep learning
methods such as CNN and BiLSTM require. Moreover, for these small datasets, the probability
of overfitting grows, as the number of features might be larger than the number of topics, LR
is better suited for such problems than for example SVM (Thangaraj and Sivakami, 2018). For
the two other dataset sizes, we see that BiLSTM outperforms the other methods. Moreover,
for the middle-sized datasets, we find a significant difference between BiLSTM on the one hand
and CNN, RF FT, and XGB FT on the other hand. Furthermore, our finding that the higher
the size of the dataset, the worse the performance of the traditional machine learning models,
is also concluded in (Zhang et al., 2015). Additionally, note that TF-IDF would come at a
higher computational cost as the dataset size grows (Aka Uymaz and Kumova Metin, 2022)

4.3. Overall Performance Trade-offs
In addition to evaluating the models on their performance rankings, it is essential to also

consider other aspects, such as the trade-off between performance and variance as well as
the trade-off between performance and complexity. These are discussed in detail in the next
paragraphs and are depicted in Figure 2.
Performance-Variance trade-off. This trade-off is illustrated by plotting the average F1
performance against the standard deviation of the performance across the different methods.
We find similar variability in F1 results for all methods, except for BiLSTM and SVM TF-IDF
showing on average a higher variance, and both XGB methods displaying the most significant
variability overall. Consequently, when requiring stable results, these last two models are less
appropriate.
Performance-Complexity trade-off. To map the complexity of the different models, we
rank them based on the performance-complexity trade-off as outlined in Arrieta et al. (2020).

20



Binary Multiclass < 10k < 50k ≥ 50k

LR FT 6.73 6.22 6.16 5.75 7.92
TF-IDF 4.58 4.78 4.34 5.54 4.75

SVM FT 6.44 6.39 5.75 6.25 7.54
TF-IDF 6.23 4.83 5.13 5.71 6.08

RF FT 8.08 8.56 7.97 8.96 8.04
TF-IDF 6.06 6.11 7.22 6.25 4.92

XGB FT 5.85 7.83 6.06 7.17 7.75
TF-IDF 8.05 6.36 8.31 5.96 7.63

BiLSTM 3.03 3.83 4.19 3.17 2.79
CNN 5.5 6.81 6.59 7.21 4.25

RoBERTa 5.47 4.28 4.03 4.04 4.38
Critical Distance 1.86 2.52 2.67 3.08 3.08

Table 8: Overview rankings across different dataset specifications. The best ranking is underlined and put in
bold face. The bold results do not differ from the best result with a 95% confidence interval.
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Figure 2: Overview overall trade-offs

This ranking considers factors such as the models’ trainable parameters, the complexity, and
the computational time and resources required for training. Considering the significant differ-
ences in computational demands and trainable parameters across the methods we employed,
we preferred this ranking rather than attempting to quantify the exact number of trainable
parameters per method. This decision is especially justified for tree-based methods like ran-
dom forests, where the number of trainable parameters is also influenced by the depth of the
individual trees.

Moreover, since various models require different computing resources -CPU vs GPU- com-
paring their training times is not straightforward. LR and SVM are shown to have the lowest
complexity with their number of trainable parameters depending on the number of input fea-
tures. RF and XGB are more complex due to their methodology of training multiple decision
trees for data classification. This makes them less intuitive, with the number of trainable pa-
rameters depending on both the number of trees estimated and the depth of each tree. Next,
deep learning approaches are found to be more complex than the previous aproaches.Table 9
shows a clear difference in complexity for an attention layer, convolutional layer, and recurrent
layer. Given this table, BiLSTM is assessed to have lower complexity than CNNs. However,
CNNs benefit from easier parallelization, which will significantly reduce the computational
time required. Given that self-attention is an important component of RoBERTa, which scales
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Layer type Complexity
Recurrent O(nd2)
Convolutional O(knd2)
Self-attenion O(n2d)

Table 9: Different complexities per layer type, n is the sequence length, d is the representation dimension, k
equals the kernel size. (Vaswani et al., 2017)

quadratically with the input size, this method is considered the most complex within our com-
pared models. Furthermore, given that FT also stems from a deep learning approach, we rank
FT embeddings as more complex than TF-IDF. Nevertheless, since this is only adopted in the
preprocessing phase, we still assume that this does not impact the complexity ranking of other
ML tasks.

Figure 2b shows this trade-off and illustrates an upward trend in F1 performance with
higher complexity. This shows that overall, using these complex methods thus results in higher
performance. However, it should be noted that our simplest method, LR TF-IDF, also shows
a relatively high performance, despite being the least complex method. This finding is in line
with our previous findings and shows that depending on the application, sometimes less complex
methods can be beneficial.

4.4. Performance Trade-offs per Classification task
Next, we look into the different trade-offs per classification task: fake news classification,

topic modeling, emotion detection, polarity detection, and sarcasm detection. These trade-offs
are discussed in the following paragraphs.
Performance-Variance trade-off. Given the benefit of stable performance of a model trained
for a text classification task, Figure 3 visualizes the trade-off between performance and variance
in the different results. This figure shows the relation between averaged F1 performances and
the standard deviations per classification task for every method. Consistent with our findings in
Table 7, Figure 3a also indicates LR TF-IDF as the preferred method for fake news classification.
It maintains an average standard deviation comparable to RoBERTa and RF FT, however with
a higher F1 measure. Nevertheless, when the lowest variance is favored, BiLSTM can be a
potential alternative, despite its lower performance.

The trade-off for topic modeling is shown in Figure 3b. LR FT presents the lowest aver-
age standard deviation, however, it also shows a mediocre performance, relative to the other
models. LR TF-IDF, on the other hand, continues to show a well-balanced trade-off between
performance and variance for this classification task. It is noteworthy that XGB shows high
variability in its performance. This combined with its low performance, makes the method a
less desirable choice for this classification task.

For emotion detection, we find a distinct cluster on the left of Figure 3c, with the best-
performing model, RoBERTa, also showing a low average standard deviation for this task.
This underscores the high potential of this method. Moreover, also LR TF-IDF shows a fa-
vorable balance between performance and variance. However, the trained XGB models display
again a high variability in the performance across different models, similar to BiLSTM for this
classification task. Contrary to this finding, for polarity detection, BiLSTM demonstrates low
variance and is the best-performing model. RoBERTa while being ranked second in terms of
average F1 performance, displays a higher variance than most of the other models. Finally, in
Figure 3e, RoBERTa is noted for its relatively low variance but also exhibits a low performance.
However, BiLSTM shows better performance while maintaining a medium variance compared
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to the other methods. In this case, BiLSTM is distinctly preferred over LR TF-IDF among
others, offering a higher performance combined with a lower variance.
Performance-Complexity trade-off. In Figure 4, the trade-off between complexity and F1
performance is illustrated: it shows average F1 scores per model ranked according to complexity.
For fake news detection and topic modeling, we find a downward trend in the performance of
the models with increasing complexity. Although this might seem counterintuitive, we have
previously explained this phenomenon, noting that for these datasets, the identification of
certain words seems to suffice to correctly classify the sentences. For the remaining three
tasks, however, we do find a positive correlation between model complexity and performance.
Especially for emotion and polarity detection, this trend is very pronounced, due to the necessity
of a deeper understanding of the sentences within these tasks. For the sarcasm detection task,
however, this increase is less pronounced, likely due to the low performance of RoBERTa on
the imbalanced datasets.

4.5. Performance Trade-offs per Dataset Specifications
Similarly to the performance analysis, we continue the analysis focusing on the different

dataset specifications: binary, multi-class, <10k, <50k, ≥50k. We provide the figures in Ap-
pendices 6.4 and 6.5. The main findings are described in the following paragraphs.
Performance-Variance trade-off. We find that for the binary datasets, BiLSTM shows low
variance, while being the best-performing model. However, its variance increases for the multi-
class datasets, where RoBERTa shows a lower variance and also high performance. Across all
different dataset specifications, XGB displays a high variance in performance. Furthermore, for
both the datasets with less than 10,000 and more than or equal to 50,000 examples, we find
that BiLSTM again shows a relatively low variance, while obtaining high performance. In the
category of fewer than 50,000 examples, we see this phenomenon occurring for RoBERTa and
LR TF-IDF.
Performance-Complexity trade-off. Across almost all different dataset specifications, we
observe an increasing trend, indicating that an increase in model complexity correlates with
enhanced performance. However, an exception is shown for the category including the datasets
with a dataset size lower than 10,000, which shows a downward trend. In this case, LR TF-IDF
is preferred, likely due to the need for more examples to effectively train the more complex
methods.

4.6. Summary of the findings
In Table 10 an overview of our general findings is provided. This table shows the overall

best-performing method and the best-performing method per text classification task and dataset
specification. Moreover, we also provide the best-performing machine learning model per task.
Note that often the best-performing model does not significantly differ from the other models.
We refer the reader to previous sections for the details.

As shown, BiLSTM is most often the best-performing method, except for the topic classifi-
cation and fake news detection datasets where LR TF-IDF is the best-performing model and the
smallest datasets where RoBERTa is the best-performing model. In terms of best-performing
machine learning models, we see that LR is always the best method except for emotion detec-
tion where RF TF-IDF is preferred. Moreover, LR FT is only preferred for a dataset size of
10,000 to 50,000 data points and polarity detection classification tasks. On top of the overview
of the best-performing models, we have also added for the different classification tasks and
different dataset specifications, the model with the lowest variance, as well as whether there
is a positive or negative correlation between performance and complexity. The combination
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Figure 3: Overview Performance-Variance trade-off per classification task.
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Figure 4: Overview Performance-Complexity trade-off per classification task.
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Task Best method Best machine
learning method

Lowest
variance

Correlation
Performance -
Complexity

Overall BiLSTM LR TF-IDF LR FT Positive

Text Classifi-
cation Task

Fake news LR TF-IDF LR TF-IDF BiLSTM Negative
Topic LR TF-IDF LR TF-IDF LR FT Negative
Emotion BiLSTM RF TF-IDF LR FT Positive
Polarity BiLSTM LR FT SVM FT Positive
Sarcasm BiLSTM LR TF-IDF RoBERTa Positive

Dataset
Specifications

Binary BiLSTM LR TF-IDF SVM FT Positive
Multi-class BiLSTM LR TF-IDF LR FT Positive
<10k RoBERTa LR TF-IDF RoBERTa Negative
< 50k BiLSTM LR TF-IDF LR TF-IDF Positive
≥ 50k BiLSTM LR TF-IDF LR FT Positive

Table 10: Summary findings.

of these different factors can help in the decision-making when choosing the most appropriate
method to use for the specific application. More details are provided in the previous sections.

5. Conclusion

In this paper, we conduct an extensive, impartial benchmark on five different text classifica-
tion tasks: fake news detection, topic classification, emotion detection, polarity detection, and
sarcasm detection. After extensive hyperparameter tuning, we train models of varying complex-
ity using twenty frequently used datasets over these five text classification tasks. Furthermore,
we thoroughly analyze the results of these different models and compare them using statistical
testing techniques. We used both theoretical explanations and existing literature to solid-
ify our findings. Finally, we highlight the critical trade-offs between performance-variance and
performance-complexity which are key factors in selecting the most suitable method. Given the
growing concern regarding the ecological footprint of using extensive computational resources,
this benchmark study offers valuable insights by giving guidance on when less computationally
expensive methods are more appropriate than more complex methods.

We find that BiLSTM is the overall best-ranked method, and it significantly outperforms
all other methods except LR TF-IDF, and RoBERTa with a confidence level of 95%. As no
significant difference between these models is detected, overall, this indicates that the com-
putational effort put into training deep learning models is not justified for text classification
tasks. When looking into the overall F1 performance-complexity trade-off, we do see however
a positive correlation. In terms of the performance-variance trade-off, we see similar variance
for both LR TF-IDF and RoBERTa. Both models also show a lower variance than BiLSTM.
However, the best-performing technique does depend on the text classification task at hand.
For the fake news detection and topic detection tasks, LR TF-IDF is the best-ranked method,
suggesting that identifying certain words is enough for these classification tasks. This finding is
further backed by the decreasing trend in the performance-complexity trade-off for these clas-
sification tasks. In terms of the variance, we see that all models perform similarly for these two
tasks, except SVM and XGB for fake news classification and the latter model for topic mod-
eling. BiLSTM and RoBERTa are both performing very well for emotion detection datasets.
RoBERTa is ranked second-best, because of its bad performance on one of the four datasets.
The three deep learning methods are best suited for polarity detection datasets. Moreover, for
this classification task, the semantic meaning of words is important as FT outperforms TF-IDF.
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For sarcasm detection, we again find that BiLSTM works best, followed by LR TF-IDF and
CNN. RoBERTa, however, does not work well for sarcasm detection. Nevertheless, all three
classification tasks do show a positive correlation between performance and complexity. XGB
shows again high variance compared to the other methods for emotion detection and sarcasm
detection. For the latter classification task, we again see a high variance for SVM TF-IDF.
Nevertheless, also the more complex methods show high variance in performance, e.g. BiLSTM
for emotion detection and RoBERTa for polarity detection.

When looking into the dataset specifications, we find that BiLSTM and LR TF-IDF perform
well for binary classifications, while multi-class classification problems are best solved using
BiLSTM, RoBERTa, or LR TF-IDF. In terms of the dataset size, we see that RoBERTa is the
best-performing method for the smallest datasets closely followed by LR TF-IDF. The larger
the dataset, however, the worse the performance of the machine learning methods compared to
the deep learning methods. For the middle-sized datasets, Bidirectional LSTMs and RoBERTa
perform best and for the largest datasets, in addition to these two methods, CNNs also perform
well. These findings also correspond to the ones in the performance-complexity trade-off, where
all dataset specifications showed an increasing trend except for the datasets with less than
10,000 examples, where the less complex methods are more beneficial. Furthermore, for the
different dataset specifications, we find that often the XGB methods and SVM TF-IDF show
high variance compared to the other methods.

This paper emphasizes that the most sophisticated methods may not always be the optimal
choice, especially when taking into account complexity or explainability. It also underscores
the significance of tailoring the model selection based on the dataset specifications and the text
classification task at hand. Our research lays the foundation of a useful tool to help decide
what method is best suited for a specific text classification problem and dataset specification.
This helps future research in choosing the right method for the task that needs to be solved.
Further extending this study is necessary, however, to distinguish when the best-performing
model depends on the dataset specification and when it depends on the classification task.
Moreover, we did not look into feature selection methods in our research, which would prove to
be interesting to include, especially for the larger datasets. Some applied methods are compu-
tationally expensive, especially BiLSTM which is the overall best-performing method. It would
be interesting to focus on the effects of feature selection techniques on the performance of this
method and compare them to other implemented methods. In practice, this would also provide
helpful solutions for a lack of computing power. Next, more dimensions could be added to the
performance evaluation, such as robustness, which is also an important criterion to take into
account when evaluating the models’ performance. These additional measures further provide
interesting inputs for deciding upon the best-suited method for the classification problem, de-
pending on the requirements of the task. Finally, we think it might be valuable to further
look into the coverage of mistakes made by different models and see whether stacking different
models might be interesting to further boost the performance.
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VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO)
and the Flemish Government.

Funding: This research was funded by the Statistics Flanders research cooperation agree-
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6. Appendix

6.1. Extra information datasets
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6.2. Hyperparameter settings BiLSTM, CNN
In Table 12 and Table 13, an overview is provided of several studies using CNNs and BiLSTM

including their hyperparameter tuning settings. When a certain value is not clearly reported
in a study, we indicate this with a ’?’.
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6.3. Results different performance measures performance
In Tables 14, 15, 16, 17 and 18, the average performance scores of the trained models are

reported per dataset in terms of the accuracy, macro precision, macro recall, AUC, and AUCPR
metrics, respectively.
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6.4. F1-standard deviation trade-off Dataset Specifications
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(a) Performance-Variance trade-off binary datasets

BiLSTM

CNN

LR FT

LR TF-IDF

RF FT

RF TF-IDF

RoBERTa

SVM FT

SVM TF_IDF

XGB FT

XGB TF-IDF

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Mul class
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to 50,000

Figure 5: Overview Performance-Variance trade-off per dataset specification.
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6.5. Performance-Complexity trade-off Dataset Specifications
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Figure 6: Overview Performance-Complexity trade-off per dataset specification.
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