
Towards a more efficient Selection Monad

Johannes Hartmann1, Tom Schrijvers2, and Jeremy Gibbons1

1 University of Oxford, Department of Computer Science, UK
firstname.lastname@cs.ox.ac.uk

2 KU Leuven, Department of Computer Science, Belgium,
tom.schrijvers@kuleuven.be

Abstract. This paper explores a novel approach to selection functions
through the introduction of a generalised selection monad. The founda-
tion is laid with the conventional selection monad J , defined as (A →
R) → A, together with various combinators for computing new selection
functions from old. However, inefficiencies in these combinators are iden-
tified. To address these issues, a specialised type K is introduced, and its
isomorphism to J is demonstrated. The paper further generalises the K
type to G, where performance improvements and enhanced intuitive us-
ability are observed. The embeddings between J and G are established,
offering a more efficient and expressive alternative to the well established
J type for selection functions. The findings emphasise the advantages of
the generalised selection monad and its applicability in diverse scenarios,
paving the way for further exploration and optimisation.

Keywords: Selection monad · Functional programming · Algorithm de-
sign · Performance Optimisation · Monads.

1 Introduction

The selection monad, initially introduced by Paulo Oliva and Martin Escardo [1],
serves as a valuable tool for modeling selection-based algorithms in functional
programming. Widely explored in the context of sequential games [2], it has been
applied to compute solutions for games with perfect information and has found
applications in logic and proof theory through the Double-Negation Theorem
and the Tychonoff Theorem [2]. Additionally, it has been effectively employed
in modeling greedy algorithms [3]. These diverse applications of the selection
monad heavily rely on its monadic behavior, particularly emphasising the use of
the sequence function for monads.

However, within the context of the selection monad, it becomes apparent
that the monadic behavior of the selection monad J is needlessly inefficient.
This inefficiency is scrutinised in greater detail through the examination of the
sequence function, which redundantly duplicates previously calculated work. To
address this, the paper introduces two alternative types, namelyK and G, for the
selection monad. It establishes that the new K type is isomorphic to the existing
J type, conveniently resolving the inefficiency associated with the monadic se-
quence function. Subsequently, the K type undergoes further generalisation into



2 J. Hartmann, T. Schrijvers, J. Gibbons

the G type. The proposition presented in this paper advocates for the adoption
of the G type over the traditional J type, citing its efficiency advantages. Addi-
tionally, the G type is argued to be more intuitive for programming and, given
its broader type, provides enhanced versatility for a wide array of applications
involving the selection monad.

The upcoming section delves into the selection monad, with a particular
focus on the type: JR,A : (A → R) → A representing selection functions [1]. The
exploration of the pair function highlights its ability to compute a new selection
function based on criteria from two existing functions. Supported by a practical
example involving decision-making scenarios and individuals navigating paths,
this section underscores the functionality of selection functions. An analysis of
the inefficiencies in the original pair function identifies redundant computational
work. The paper’s primary contribution is outlined: an illustration and proposal
for an efficient solution to enhance the performance of the pair function. This
introductory overview sets the stage for a detailed exploration of the selection
monad and subsequent discussions on optimisations.

All examples in this paper are modeled using Haskell.

2 Selection Functions

Consider the type for selection functions introduced by Paulo Oliva and Martin
Escardo [1] :

type J r a = (a -> r) -> a

Now have a look at the following example. Two individuals are walking towards
each other on the pavement. A collision is imminent. At this juncture, each
individual must decide their next move. This decision-making process can be
modeled using selection functions. The decision they need to make is either
going towards the street or the wall:

data Decision = Street | Wall deriving (Eq, Show)

The respective selection functions, given a property function that tells them
what decision is acceptable, select the correct one. If there are multiple optimal
solutions, they select an arbitrary one. And if there is no correct one, they default
to walking towards the wall.

s :: J Bool Decision

s p = if p Street then Street else Wall

When given two selection functions, a pair function can be defined to compute a
new selection function. This resultant function selects a pair based on the criteria
established by the two given selection functions:



Towards a more efficient Selection Monad 3

pair :: J r a -> J r b -> J r (a,b)

pair f g p = (a,b)

where

a = f (\x -> p (x, g (\y -> p (x,y))))

b = g (\y -> p (a,y))

To apply the pair function, a property function pred is needed that will judge
two decisions and return True if a crash is avoided and False otherwise.

pred :: (Decision, Decision) -> Bool

pred (d1, d2) = d1 /= d2

The pair function, merges the two selection functions into a new one that cal-
culates an overall optimal decision.

ghci> pair s s pred

(Street,Wall)

Examining how the pair function is defined reveals that the first element a of the
pair is determined by applying the initial selection function f to a newly con-
structed property function. Intuitively, selection functions can be conceptualised
as entities containing a collection of objects, waiting for a property function to
assess their underlying elements. Once equipped with a property function, they
can apply it to their elements and select an optimal one.

Considering the types assigned to selection functions, it is evident that an
initial selection function f remains in anticipation of a property function of type
(A → R) to determine an optimal A. The pair function is endowed with a
property function p of type ((A,B) → R). By using this property function, a
property function for f can be derived by using the second selection function
g to select a corresponding B and subsequently applying p to assess (A,B)
pairs as follows: (λx → p(x, g(λy → p(x, y)))). Upon the determination of an
optimal A, a corresponding B can then be computed as g(λy → p(a, y)). In
this case, the pair function can be conceptualised as a function that constructs
all possible combinations of elements within the provided selection function and
subsequently identifies the overall optimal one. It might feel intuitive to consider
the following modified pair function that seems to be more symmetric.

pair ' :: J r a -> J r b -> J r (a,b)

pair ' f g p = (a,b)

where

a = f (\x -> p (x, g (\y -> p (x,y))))

b = g (\y -> p (f (\x -> p (x,y)), y))

However, applying this modified pair′ to our previous example this results in a
overall non optimal solution.

ghci> pair ' p1 p2 pred

(Wall,Wall)

This illustrates how the original pair function keeps track of its first decision
when determining its second element. It is noteworthy that, in the example,
achieving a satisfying outcome for both pedestrians is only possible when they



4 J. Hartmann, T. Schrijvers, J. Gibbons

consider the direction the other one is heading. The specific destination does
not matter, as long as they are moving in different directions. Consequently, the
original pair function can be conceived as a function that selects the optimal
solution while retaining awareness of previous solutions, whereas our modified
pair′ does not.

An issue with the original pair function might have been identified by the
attentive reader. There is redundant computational work involved. Initially, all
possible pairs are constructed to determine an optimal first element A, but the
corresponding B that renders it an overall optimal solution is overlooked, result-
ing in only A being returned. Subsequently, the optimal B is recalculated based
on the already determined optimal A when selecting the second element of the
pair. The primary contribution of this paper will be to illustrate and propose a
solution to this inefficiency.

2.1 Sequence

The generalisation of the pair function to accommodate a sequence of selection
functions is the initial focus of exploration. In the context of selection functions,
a sequence operation is introduced, capable of combining a list of selection func-
tions into a singular selection function that, in turn, selects a list of objects
[2]:

sequence :: [J r a] -> J r [a]

sequence [] p = []

sequence (e:es) p = a : as

where

a = e (\x -> p (x : sequence es (p . (x:))))

as = sequence es (p . (a:))

Here, similar to the pair function, the sequence function extracts elements for the
resulting list through the corresponding selection functions. This extraction is
achieved by applying each function to a newly constructed property function that
possesses the capability to foresee the future, thereby constructing an optimal
future based on the currently examined element.

However, a notable inefficiency persists, exacerbating the issue observed in
the pair function. During the determination of the first element, the sequence
function calculates an optimal remainder of the list, only to overlook it and
redundantly perform the same calculation for subsequent elements. This ineffi-
ciency in sequence warrants further investigation for potential optimisation in
subsequent sections of this paper.

2.2 Selection monad J

The formation of a monad within the selection functions unfolds as follows [1]:

(>>=) :: J r a -> (a -> J r b) -> J r b

(>>=) e f p = f (e (p . flip f p)) p



Towards a more efficient Selection Monad 5

return :: a -> J r a

return x p = x

These definitions illustrate the monadic structure inherent in selection functions.
The Haskell standard library already incorporates a built-in function for monads,
here referred to as sequence′, defined as:

sequence ' :: [J r a] -> J r [a]

sequence ' [] = return []

sequence ' (ma:mas) = ma >>=

\x -> sequence ' mas >>=

\xs -> return (x:xs)

Notably, in the case of the selection monad, this built-in sequence′ function
aligns with the earlier provided sequence implementation specific to the J type.

2.3 Illustration of Sequence in the Context of Selection Functions

To illustrate the application of the sequence function within the domain of se-
lection functions, consider a practical scenario [3]: the task of cracking a secret
password. In this hypothetical situation, a black box property function p is pro-
vided that returns whether the correct password is entered. Additionally, knowl-
edge is assumed that the password is six characters long. Consider the following
example:

p :: String -> Bool

p "secret" = True

p _ = False

Suppose access is available to a maxWith function that given a list of A values,
returns the A value that produces a maximum R value through a given property
function p of type A → R. It is defined as:

maxWith :: Ord r => [a] -> J r a

maxWith xs p = snd (maximumBy (compare `on` fst)

(map (\x -> (p x , x)) xs))

With these resources, a selection function denoted as selectChar can be con-
structed, which, given a property function that evaluates each character, selects
a single character satisfying the specified property function:

selectChar :: J Bool Char

selectChar = maxWith ['a'..'z']

It’s worth noting that the use of maxWith is facilitated by the ordered nature
of booleans in Haskell, where True is considered greater than False. Leveraging
this selection function, the sequence function can be employed on a list compris-
ing six identical copies of selectChar to successfully crack the secret password.
Each instance of the selection function focuses on a specific character of the
secret password:

ghci> sequence (replicate 6 selectChar) p

"secret"



6 J. Hartmann, T. Schrijvers, J. Gibbons

This illustrative example is showcasing the application of the sequence function
on a real-world problem like cracking a password. Notably, there is no need to
explicitly specify a property function for judging individual characters; rather,
this property function is constructed within the monads bind definition, and
its utilisation is facilitated through the application of the sequence function.
Additionally, attention should be drawn to the fact that this example involves
redundant calculations. After determining the first character of the secret pass-
word, the system overlooks the prior computation of the entire password and
initiates the calculation anew for subsequent characters.

2.4 Efficiency Issues

Lets examine this inefficiency in more detail. When the sequence function is
used by the selection monad, an exhaustive search of all possible combinations
of the values underlying the selection functions is executed. For the analisys of
this inefficiency it is assumed that the maxWith function precisely applies the
property function p once to each of its elements. The efficiency of the sequence
function is scrutinised to determine how often the property function p is invoked
during the calculation of a solution.

Given that sequence operates as an exhaustive search resembling a tree
search with a branching factor of K, the number of times the property function
p is called for a tree of depth n can be expressed as T (n) = F (n) + T (n − 1),
where F (n) = K ∗ T (n − 1). Substituting F (n) into T (n) yields T (n) = K ∗
T (n − 1) + T (n − 1). This simplifies to T (n) = (K + 1)n. While an exhaustive
search on a tree can be performed with Kn calls of p, the sequence function
duplicates some of the work by forgetting previously computed results.

To address this specific inefficiency within the selection monad, concerning
the pair and sequence functions, two new variations of the selection monad will
be introduced. Initially, an examination of a new special K type will reveal
its isomorphism to the selection monad J . Subsequently, an exploration of the
generalisation of this K type to the G type will be presented with a view to
enhancing its intuitive usability. Remarkably, it will be demonstrated that the
J monad can be embedded into this general G type.

3 Special K

The following type K is to be considered:

type K r a = forall b. (a -> (r,b)) -> b

Selection functions of type J are in anticipation of a property function capable
of judging their underlying elements, and a similar operation is performed by
the new K type. The property function of the K type also assesses its elements
by transforming them into R values. Additionally, it converts the A into any B
and returns that B along with its judgment R.



Towards a more efficient Selection Monad 7

pairK :: K r a -> K r b -> K r (a,b)

pairK f g p = f (\x ->

g (\y -> let (r, z) = p (x,y)

in (r, (r,z))))

The previously mentioned inefficiency is now addressed by the definition of
pairK. This is achieved by examining every element x in the selection func-
tion f . For each element, a corresponding result is extracted from the second
selection function g. Utilising the additional flexibility provided by the new K
type, the property function for g is now constructed differently. Instead of merely
returning the result z along with the corresponding R value, a duplicate of the
entire result pair calculated by p is generated and returned. As this duplicate
already represents the complete solution, the entire result for an optimal x can
now be straightforwardly yielded by f , eliminating the need for additional com-
putations.

The sequenceK for this special K type can be defined as follows:

sequenceK :: [K r a] -> K r [a]

sequenceK [] p = (snd . p) []

sequenceK (e:es) p = e (\x -> sequenceK es

(\xs -> let (r,y) = p (x:xs)

in (r,(r,y))))

This sequenceK implementation employs the same strategy as the earlier pairK
function. It essentially generates duplicates of the entire solution pair, returning
these in place of the result value. The selection function one layer above then un-
packs the result pair, allowing the entire solution to be propagated. The efficiency
issues previously outlined are addressed by these novel pairK and sequenceK
functions. It will be further demonstrated that this K type is isomorphic to the
preceding J type. This essentially empowers the transformation of every problem
previously solved with the J type into the world of the K type. Subsequently,
the solutions can be computed more efficiently before being transformed back to
express them in terms of J .

3.1 Special K is isomorphic to J

To demonstrate the isomorphism between the new Special K type and the J
type, two operators are introduced for transforming from one type to the other:

j2k :: J r a -> K r a

j2k f p = snd (p (f (fst . p)))

When provided with a selection function f : JR,A, the j2k operator constructs
an entity of type KR,A. For a given f of type (A → R) → A and p of type
∀B.(A → (R,B)), the objective is to return an entity of type B. This is achieved
by initially extracting an A from f using the constructed property function
(fst ◦ p). Subsequently, p is applied to A, yielding an (R,B) pair, from which
the B is obtained by applying snd to the pair.
The transformation of a selection function of type K into a selection function of
type J is accomplished as follows:



8 J. Hartmann, T. Schrijvers, J. Gibbons

k2j :: K r a -> J r a

k2j f p = f (\x -> (p x, x))

Given a selection function f of type ∀B.(A → (R,B)) → B and a p of type
(A → R) → A, an A can be directly extracted from f by constructing a property
function that utilises p to obtain an R value while leaving the corresponding x
of type A untouched. To validate that these two operators indeed establish an
isomorphism between JR,A and KR,A,the following equations must be proven:
(k2j ◦ j2k)f = f and (j2k ◦ k2j)g = g.

Proof (J to K Embedding).

(k2j ◦ j2k)f
= { Apply definitions }

(λg p2 → g(λx → (p2 x, x)))(λp1 → snd(p1(f(fst ◦ p1))))
= { Simplify }

f

The proof utilises the direct application of lambda expressions and the definitions
of fst and snd for simplification. The proof for the second isomorphism involves
the initial requires the use of the free for the special K type [5]:

Theorem 1 (Free Theorem for K). Given the following functions with their
corresponding types:

g : KR,A

h : B1 → B2

p : A → (R,B1)
∗∗∗ : (A → A′) → (B → B′) → (A,B) → (A′, B′)

It follows:
h(g p) = g((id ∗∗∗ h) ◦ p)

where ∗∗∗ is the obvious operator.

The free theorem essentially asserts that a function h of type B1 → B2, when
applied to the result of a selection function, can also be incorporated into the
property function and applied to each individual element. This follows from the
generalised type of K, where the only means of generating B1 values is through
the application of p. Therefore, it becomes inconsequential whether h is applied
to the final result or to each individual intermediate result. Note that ∗∗∗ is the
operator that given two functions f : A → A′ and g : B → B′ returns a function
of type (A,B) → (A′, B′), where f is applied to the first element of the tuple
and g is applied to the second element of the tuple.

With the free theorem for K, the remaining portion of the isomorphism can
now be demonstrated as follows:



Towards a more efficient Selection Monad 9

Proof (K to J Embedding). The equality (j2k ◦k2j)g = g is established through
the following steps:

(j2k ◦ k2j)g
= { Apply definitions and simplify }

λp → snd(p(g(λx → ((fst ◦ p)x, x))))
= { Free Theorem for K }

λp → g(λx → ((fst ◦ p)x, (snd ◦ p)x))
= { Simplify }

g

The monad definitions and sequence definition for the new K type can be de-
rived from this isomorphism. While the definition of K achieves the desired per-
formance improvements, it necessitates significant copying of data structures,
which are subsequently deconstructed and discarded at a higher layer. This ne-
cessity significantly complicates the associated definitions for sequence and pair,
making them challenging to handle and less intuitive.

For these reasons, we will now introduce another type G, which returns the
entire tuple rather than merely the result value, appears more intuitive. This
shift is elaborated upon in the following section, where G is observed to facilitate
similar performance improvements while simplifying the definitions. This method
also removes the need for unnecessary data copying. Nevertheless, it is disclosed
that G is not isomorphic to J and K but rather these can be embedded into
G. In contrast, an investigation into a specific precondition allowing for G to be
embedded into J or K is presented.

4 General G

Consider the more general type G, derived from the previous special K type:

type G r a = forall b. (a -> (r,b)) -> (r,b)

Unlike its predecessor, G returns the entire pair produced by the property func-
tion, rather than just the result value. The implementation of pairG for the new
G type no longer necessitates the creation of a copy of the data structure. It suf-
fices to return the result of the property function’s application to the complete
pair:

pairG :: G r a -> G r b -> G r (a,b)

pairG f g p = f (\x -> g (\y -> p (x,y)))

In terms of readability, the definition of pairG is significantly more concise, with
the essence of the pair function being conveyed without unnecessary boilerplate
code. Every element x of type A within f is inspected and evaluated by the
given property function p for all y of type B within g. The optimal pair of
(A,B) values is returned by the resulting pair selection function according to
the provided property function. Furthermore, sequenceG is defined as follows:



10 J. Hartmann, T. Schrijvers, J. Gibbons

sequenceG :: [G r a] -> G r [a]

sequenceG [] p = p []

sequenceG (e:es) p = e (\x -> sequenceG es

(\xs -> p (x:xs)))

Following a similar pattern, this sequenceG function builds all possible futures
for each element within e. Once an optimal list of elements is found, this list is
simply returned along with the corresponding R value.

4.1 Relationship between General G and Special K

With the following operators, selection functions of type K can be embedded
into G.

g2k :: G r a -> K r a

g2k f = snd . f

k2g :: K r a -> G r a

k2g f p = f (\x -> let (r,y) = p x in (r, (r,y)))

Similar to the free theorem for the K type, it is equally possible to derive the
free theorem [5] for the new G type:

Theorem 2 (Free Theorem for G). Given the following functions with their
corresponding types:

g : GR,A

f : B1 → B2

p : A → (R,B1)
∗∗∗ : (A → A′) → (B → B′) → (A,B) → (A′, B′)

It follows:

((id ∗∗∗ f) ◦ g)p = g((id ∗∗∗ f) ◦ p)

where ∗∗∗ is the obvious operator.

This theorem communicates a concept similar to the free theorem for K. It
suggests that the outcome remains unchanged whether a function f is applied
directly to the final result of a selection function or within the selection function’s
property function. This idea is now adapted to include the behavior of the G
type, which also returns the R value.

By using the free theorem for G, it becomes clear that selection functions
designed for the K type can be directly embedded into the G structure:

Theorem 3 (K to G Embedding). Given:
f : KR,A

The following embedding of f into G follows:

(k2g ◦ g2k)f = f



Towards a more efficient Selection Monad 11

The proof for this embedding is straight forward utilising the free theorem for
G:

Proof (K to G Embedding). Assuming that for:

f : KR,A

It can be reasoned:

(g2k ◦ k2g)f
= { Definitions and rewrite }

λp → (snd ◦ f)(λx → let (r, y) = p x in (r, (r, y)))

= { Free theorem of G }
λp → f(λx → let (r, y) = p x in (r, snd(r, y)))

= { Simplify }
f

Further, to establish that selection functions of type G can be embedded into
the K type a specific precondition is introduced, under which this embedding is
possible:

Theorem 4 (G to K Embedding). Assuming that for:

g : GR,A

∀p : ∀B.A → (R,B),∃x : A such that: g p = p x

It follows:

(k2g ◦ g2k)g = g

The essential condition is that the selection function g should not modify the
R value after p has been applied to its elements. Given this precondition, the
embedding can be proven as follows:

Proof (G to K Embedding). It can be reasoned:

(k2g ◦ g2k)g
= { Definitions and rewrite }

λp → snd(g(λx → let (r, y) = p x in (r, (r, y))))

= { Assumption }
λp → snd(∃x. let (r, y) = p x in (r, (r, y)))

= { Exists commutes }
λp → ∃x. let (r, y) = p x in snd(r, (r, y))

= { Assumption }
λp → g(λx → let (r, y) = p x in snd(r, (r, y)))

= { Simplify }
g



12 J. Hartmann, T. Schrijvers, J. Gibbons

5 G forms a monad

The formation of the monad for G follows a straightforward definition:

bindG :: G r a -> (a -> G r b) -> G r b

bindG e f p = e (\x -> f x p)

Each element x of type A underlying e is assesed by using f . This process yields
a pair consisting of the R value, which serves as the basis for judgment, and the
result value of type C. As the pair is already of the correct type, a straightforward
return suffices. The return for the G type is defined as follows:

returnG :: a -> G r a

returnG x p = p x

The proofs substantiating the monad laws may be found in the appendix. Explor-
ing the alignment of these monad definitions with those of J or K, respectively,
is our next objective. The aim is to ensure that the behavior of the G monad
aligns with that of the J and K monads. Therefore, consider the following two
operators that transform between G selection functions and J selection func-
tions:

j2g :: J r a -> G r a

j2g f p = p (f (fst . p))

g2j :: G r a -> J r a

g2j f p = snd (f (\x -> (p x, x)))

Utilising these operators, it can be shown that the G monad definition aligns
with the J monad definition in the case that the G selection functions fulfill
the previously introduced precondition for the embedding. This is achieved by
proving the following theorem:

Theorem 5 (G Monad Embedding). Given:
f : GR,A

g : a → GR,B

∀p : ∀B.A → (R,B),∃x : A such that: g p = p x
It follows:

j2g(g2j f >>= g2j ◦ g) = bindGfg

To derive the monad definitions from the embedding operators, it is convenient
to introduce the following two lemmas:



Towards a more efficient Selection Monad 13

Lemma 1. Given:
f : (R,B1) → (R,B2)
g : GR,A

p : A → (R,B1)
It follows:

fst ◦ f ◦ p = fst ◦ p =⇒ (f ◦ g)p = g(f ◦ p)

This lemma asserts that given a function f acting upon the result of a selection
function of type GR,A, it is possible to apply f to each element of GR,A within
the property function, provided f solely transforms the B value without affecting
the R value.

Proof (Lemma 1). Assuming that for:
(1) f : (R,B1) → (R,B2), g : GR,A, p : A → (R,B1)
(2) ∀p : ∀B.A → (R,B),∃x : A such that g p = p x
(3) fst ◦ f ◦ p = fst ◦ p

It can be reasoned:

f(g p)
= { Assumption (2) }

∃x.f(p x)
= { Rewrite as tuple }

∃x.((fst ◦ f ◦ p)x, (snd ◦ f ◦ p)x)
= { Assumption (3) }

∃x.((fst ◦ p)x, (snd ◦ f ◦ p)x)
= { Rewrite as lambda }

∃x.(λ(r, y) → (r, (snd ◦ f)(r, y)))p x
= { Assumption (2) }

(λ(r, y) → (r, (snd ◦ f)(r, y)))g p
= { Free Theorem for G }

g((λ(r, y) → (r, (snd ◦ f)(r, y))) ◦ p)
= { Rewrite }

g(λx → ((fst ◦ p)x, (snd ◦ f ◦ p)x))
= { Assumption (3) }

g(λx → ((fst ◦ f ◦ p)x, (snd ◦ f ◦ p)x))
= { Simplify }

g(f ◦ p)

To further simplify the calculation the following lemma is introduced:



14 J. Hartmann, T. Schrijvers, J. Gibbons

Lemma 2. Let q be a function that applies p to obtain the R value while preserv-
ing the original value. If this original value is subsequently utilised to compute
the (R,Z) values using p, then g can be invoked directly with p.
Given:

p :: A → (R,B)
g :: KR,A

It follows:

(p ◦ snd)(g q) = g p where q = λx → ((fst ◦ p)x, x)

To prove Lemma 2, Lemma 1 is utilised:

Proof (Lemma 2).

(p ◦ snd)(g q)
= { Definition of q }

(p ◦ snd)(g (λx → ((fst ◦ p)x, x)))
= { Lemma 1 }

g(λx → (p ◦ snd)((fst ◦ p)x, x))
= { Simplify }

g p
To apply Lemma 1, the following condition from Lemma 1 must be fulfilled:

(fst ◦ p ◦ snd)(λx → ((fst ◦ p)x, x))
= { Simplify }

λy → (fst(p(snd((λx → ((fst ◦ p)x, x))y))))
= { Simplify }

λy → (fst(p(snd((fst ◦ p)y, y))))
= { Simplify }

λx → (fst ◦ p)x
= { Simplify }

fst ◦ (λx → ((fst ◦ p)x, x))

Now it is possible calculate the bindG implementation for G with the j2g and
g2j operators and the previously introduced theorems:

Proof (G Monad behaves similar to J).

j2g(g2j f >>= g2j ◦ g)
= { Definition of J>>= }

j2g((λf g p → g(f(p ◦ flip g p))p)(g2j f)(g2j ◦ g))
= { simplify }

j2g(λp → g2j(g(g2j f(p ◦ (λx → g2j(g x)p))))p)
= { Definition of j2k and rewrite }

λp → p(g2j(g(g2jf(λx → fst((p ◦ snd)((g x)(λx → ((fst ◦ p)x, x)))))))
(fst ◦ p))



Towards a more efficient Selection Monad 15

= { Lemma 1 }
λp → p(g2j(g(g2jf(λx → fst(((g x)(λx → (p ◦ snd)((fst ◦ p)x, x)))))))
(fst ◦ p))

= { Definition of j2g and rewrite }
λp → p(snd(g(snd(f(λx → (fst(g x p), x))))(λx → ((fst ◦ p)x, x))))

= { Lemma 2 }
λp → g(snd(f(λx → (fst(g x p), x))))p

= { Rewrite }
λp → (λy → g(snd y)p)(f(λx → (fst(g x p), x)))

= { Lemma 1 }
λp → f((λy → g(snd y)p) ◦ (λx → (fst(g x p), x)))

= { Simplify }
λp → f(λx → g x p)

This shows that all G selection functions fulfilling the precondition behave the
same when transformed to K or J selection functions.

6 Performance Analysis

In this section, the performance of the J , K, and G monads will be compared.
All three are designed to perform an exhaustive search, exploring the complete
problem space to select the best possible solution. The comparison will focus on
the number of calls to the property function p, as well as the time taken for each
of the monads to calculate a solution.

Given the following maxWith functions for each of the monad types:

maxWithJ :: Ord r => [a] -> J r a

maxWithJ xs f = snd (maximumBy (compare `on ` fst)

(map (\x -> (f x , x)) xs))

maxWithK :: Ord r => [a] -> K r a

maxWithK xs f = snd (maximumBy (compare `on ` fst) (map f xs))

maxWithG :: Ord r => [a] -> G r a

maxWithG xs f = maximumBy (compare `on ` fst) (map f xs)

6.1 Runtime Analysis

Initially, the runtime, while exploring a particular search space for each type,
will be compared. For this purpose, the following basic property functions will be
utilised. These functions simply sum up the elements of a given list of integers.

pJ :: [Int] -> Int

pJ = sum

pK :: [Int] -> (Int, [Int])

pK x = (sum x, x)



16 J. Hartmann, T. Schrijvers, J. Gibbons

A list of selection functions for each type is further defined. A list of integers
is searched by each individual selection function, which then selects the integer
that will maximise a given property function.

js :: [J Int Int]

js = replicate 6 (maxWithJ [1..10])

ks :: [K Int Int]

ks = replicate 6 (maxWithK [1..10])

gs :: [G Int Int]

gs = replicate 6 (maxWithG [1..10])

Considering a list of selection functions with a length of 6, where each selection
function explores 10 possible elements, the search space size is 106. This search
space can be conceptualised as a tree with a depth n of 6 and a branching
factor K of 10. By employing the respective sequence function for each type,
along with the corresponding property function, an initial analysis of runtime
and space complexity was conducted within GHCi.

ghci> sequence js pJ

[10,10,10,10,10,10]

(3.69 secs, 1,612,913,328 bytes)

ghci> sequenceK ks pK

[10,10,10,10,10,10]

(2.85 secs, 2,431,196,064 bytes)

ghci> sequenceG gs pK

(60,[10,10,10,10,10,10])

(1.56 secs, 869,778,256 bytes)

The results obtained from GHCi already demonstrate a significant improvement
in performance for the G and K monad. It further highlights the space efficiency
of the G monad over the J and K monad, while further showing the significant
memory overhead of the K type, that is due to the nested duplications of the
final solution.

For a more robust performance analysis, the runtime of each type was tested
with increasing depth of the search tree, i.e., longer lists of selection functions.
This analysis was performed on the compiled version of the code with the -O2
optimisation flag enabled to utilise any potential performance improvements the
compiler offers.



Towards a more efficient Selection Monad 17

10
7

10
8

10
9

100

200

300

Complexity

Time (s) J

K

G

Fig. 1. Runtime of J , K, and G with increasing complexity

Figure 1 plots the runtime of the compiled Haskell code for each monad J , K,
and G as they navigate an increasingly complex search space. The graph demon-
strates a consistent trend where the G monad outperforms the others J and K
types. As the depth of the search tree increases, the gap in performance becomes
even more pronounced, clearly showcasing the efficiency and effectiveness of the
generalised selection monad approach.

Additionally, by employing Haskell’s trace debug option, the frequency with
which the property function was invoked for each monad was tallied. Through
this method, verification was achieved that for the J monad, its property func-
tion is indeed called (K + 1)n times. Conversely, owing to the performance en-
hancements, the K and G monads necessitate only Kn calls to their property
function, where K represents the branching factor and n the depth of the search
tree being explored.

7 Related and Future Work

The exploration of the selection monad, particularly the J type, has been pre-
dominantly focused on sequential games with total information[2]. This line
of research has primarily employed a minimax algorithm to calculate optimal
strategies for these games, showcasing the utility of the J monad in navigating
complex decision-making processes. Beyond this, the selection monad’s applica-
tions have extended into logic, proof theory [2], and algorithm design. Notably,
within algorithm design, the J monad can also be utilised in modeling greedy
algorithms [3].

When considering the implementation of greedy algorithms via the J monad,
it is important to acknowledge that the performance optimisations proposed in



18 J. Hartmann, T. Schrijvers, J. Gibbons

this paper do not extend to these algorithms. The reason is that the greedy
algorithm approach is already optimal when applied through the J type, with-
out unnecessarily duplicating any computations. However, this revelation paves
the way for further research into the modeling of greedy algorithms using the
new G type. Investigating this could determine if the efficiencies intrinsic to the
G monad might present any benefits for greedy algorithms, given their already
optimal performance under the J type.

Jules Hedges contributions have laid a solid foundation in understanding the
monad transformer for the conventional J selection monad [4]. This work has illu-
minated the potential for integrating selection functions into more intricate com-
putational constructs. Future research should consider extending these insights
to the G type through the development of a corresponding monad transformer.
Such endeavors could reveal new applications, potentially enhancing the compu-
tational efficiency and expressiveness of functional programming paradigms that
leverage selection monads.

The advent of the G type marks a progression by mitigating redundant
computations, thus yielding performance enhancements in specific scenarios.
Nonetheless, it is imperative to maintain a measured perspective on the impact
of these advancements. The efficiency improvements offered by the G monad
do not tackle the intrinsic challenge of exponential time complexity that is a
hallmark of exhaustive search strategies. Although reducing unnecessary com-
putations is a noteworthy optimisation, the broader issue of exhaustive search
strategies’ computational demands remains largely unchanged. Future research
might explore the feasibility of incorporating alpha-beta pruning into the min-
imax algorithm, potentially offering a strategy to mitigate the computational
intensity of exhaustive searches.

8 Conclusion

This paper presents a compelling case for the adoption of the new general se-
lection monad type G over the conventional J type in the realm of functional
programming, particularly within the context of selection functions. The intro-
duction of the Gmonad marks a significant advancement in the field, offering not
only performance improvements but also a more intuitive and practical approach
to monad, pair, and sequence implementations.

The core argument for transitioning to the G monad stems from its utility
and intuitive nature, which, though it may require a slight learning curve, ulti-
mately provides a more efficient and user-friendly programming experience. The
performance enhancements associated with the G monad are not merely theo-
retical but have practical implications for the execution of complex algorithms
and the overall computational efficiency.

Furthermore, the G monad’s design facilitates a more intuitive understand-
ing and implementation of monad, pair, and sequence constructs for selection
functions, which are central to functional programming paradigms. This intu-



Towards a more efficient Selection Monad 19

itiveness, coupled with the performance gains, makes the G type an attractive
alternative to the J type.

A pivotal finding of this research is that all G constructs meeting the specific
precondition can be seamlessly embedded into the J type. This implies that any
model or algorithm previously framed within the J type can be transitioned to,
or represented in, the G framework without loss of functionality. Consequently,
it is advocated that future research and development in the selection monad
domain pivot towards the G type. This shift is recommended not only because
of the aforementioned performance and usability benefits but also to harness the
full potential of the G type’s more advanced and efficient approach to handling
selection functions.

In light of these findings, it is proposed that ongoing and future work in
the selection monad sphere should utilise the advantages of the presented G
type. This involves translating existing work from the J framework to the G
framework, thus leveraging the G type’s advantages to foster a more efficient,
intuitive, and robust functional programming environment. The transition to
the G type represents a forward-thinking approach to functional programming,
promising improvements in both the development and execution of complex
computational tasks.

References

1. Escardó, M., Oliva, P.: Selection functions, bar recursion and backward induction.
Math. Struct. Comput. Sci. 20(2), 127–168 (2010)

2. Escardó, M., Oliva, P.: What sequential games, the Tychonoff Theorem and the
double-negation shift have in common. In: Proceedings of the third ACM SIGPLAN
workshop on Mathematically structured functional programming. pp. 21–32 (2010)

3. Hartmann, J., Gibbons, J.: Algorithm design with the selection monad. In: Inter-
national Symposium on Trends in Functional Programming. pp. 126–143. Springer
(2022)

4. Hedges, J.: Monad transformers for backtracking search. In: Levy, P.B., Krish-
naswami, N. (eds.) Mathematically Structured Functional Programming. EPTCS,
vol. 153, pp. 31–50 (2014)

5. Wadler, P.: Theorems for free! In: Proceedings of the fourth international confer-
ence on Functional programming languages and computer architecture. pp. 347–359
(1989)



20 J. Hartmann, T. Schrijvers, J. Gibbons

Appendix

Proof Monad Laws for G

Proof (Left identity).

return a >>= h

= (flip ($)) a >>= h

= (\p -> p a) >>= h

= \p' -> (\p -> p a) ((flip h) p')
= \p' -> ((flip h) p') a

= \p' -> h a p'
= h a

Proof (Right identity).

m >>= return

= \p -> m ((flip return) p)

= \p -> m ((flip (flip ($))) p)

= \p -> m (($) p)

= \p -> m p

= m

Proof (Associativity).

(m >>= g) >>= h

= \p -> (m >>= g) ((flip h) p)

= \p -> (\p' -> m ((flip g) p')) ((flip h) p)

= \p -> (m ((flip g) ((flip h) p)))

= \p -> m ((\y x -> g x y) ((flip h) p))

= \p -> m ((\x -> g x ((flip h) p)))

= \p -> m ((\p' x -> (g x) ((flip h) p')) p)

= \p -> m ((flip (\x p' -> (g x) ((flip h) p'))) p)

= \p -> m ((flip (\x -> (\p' -> (g x) ((flip h) p')))) p)

= \p -> m ((flip (\x -> g x >>= h)) p)

= m >>= (\x -> g x >>= h)


