
RECURSIVE ALGORITHMS TO UPDATE A NUMERICAL BASIS
MATRIX OF THE NULL SPACE OF THE BLOCK ROW, (BANDED)

BLOCK TOEPLITZ, AND BLOCK MACAULAY MATRIX∗

CHRISTOF VERMEERSCH† AND BART DE MOOR†‡

Abstract. We propose recursive algorithms to update an orthogonal numerical basis matrix
of the null space of the block row, (banded) block Toeplitz, and block Macaulay matrix, which is
the multivariate generalization of the (banded) block Toeplitz matrix. These structured matrices
are often constructed in an iterative way and, for some applications, a basis matrix of the null
space is required in every iteration. Consequently, recursively updating a numerical basis matrix
of the null space, while exploiting the inherent structure of the matrices involved, induces large
savings in the computation time. Moreover, we also develop a sparse adaptation of one of the
recursive algorithms that avoids the explicit construction of the block Macaulay matrix and results
in a considerable reduction of the required memory. We provide several numerical experiments to
illustrate the proposed algorithms: for example, we solve four multiparameter eigenvalue problems
via the null space of the block Macaulay matrix and notice that the recursive and sparse approach
are, on average, 450 and 1300 times faster than the standard approach, respectively.

Key words. orthogonalization, computational methods for sparse matrices, (banded) block
Toeplitz and block Macaulay matrices.

AMS subject classifications. 65F25, 65F50, 15B05.

1. Introduction. In various engineering applications, we encounter matrices
that have a particular structure, like the (banded) block Toeplitz and block Macaulay
matrix. The (banded) block Toeplitz matrix emerges in several system identification
and signal processing problems, where applications lead to (univariate) polynomial
eigenvalue problems (PEPs). Typical examples are the stiffness and vibration analy-
sis of large structures [11, 17, 19, 27], finite element discretizations of continuous
models [16, 17, 27], and the design of MIMO filters [11, 12, 27]. A multiparame-
ter eigenvalue problem (MEP), on the other hand, naturally gives rise to the block
Macaulay matrix, which is the multivariate extension of the (banded) block Toeplitz
matrix. MEPs can be found when identifying the least-squares optimal parameters of
linear time-invariant (LTI) systems [7, 28], when solving partial differential equations
(PDEs) via the method of separation of variables [3, 23, 24], or when reducing the
model order of existing high-order models [2]. In recent work [7, 28, 30], we have
exploited the structure of the null space of the (banded) block Toeplitz and block
Macaulay matrix to determine the solutions of the generating PEP and MEP, re-
spectively. Unsurprisingly, the computation of a numerical basis matrix of this null

∗Submitted to the editors October 21, 2022.
Funding: This work was supported in part by the KU Leuven: Research Fund (projects

C16/15/059, C3/19/053, C24/18/022, and C3/20/117), Industrial Research Fund (fellowships 13-
0260, IOFm/16/004, and IOFm/20/002), and several Leuven Research & Development projects,
in part by Flemish Government agencies: FWO (EOS project G0F6718N, SBO project S005319,
infrastructure project I013218N, and TBM project T001919N), EWI (Flanders AI Research Pro-
gram VR-21-29.01-0077), and VLAIO (City of Things COT.2018.018, Baekeland PhD mandate
HBC.2019.2204, and innovation mandate HBC.2019.2209), and in part by the European Commis-
sion (ERC Adv. Grant under grant 885682). The work of Christof Vermeersch was supported by
the FWO Strategic Basic Research fellowship under grant SB/1SA1319N. (Corresponding author:
Christof Vermeersch)
†Center for Dynamical Systems, Signal Processing, and Data Analytics (STADIUS), Department

of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
(christof.vermeersch@esat.kuleuven.be, bart.demoor@esat.kuleuven.be)
‡Bart De Moor is a SIAM, IFAC, and IEEE fellow.

1

mailto:christof.vermeersch@esat.kuleuven.be
mailto:bart.demoor@esat.kuleuven.be

2 CHRISTOF VERMEERSCH AND BART DE MOOR

space is an important step in the solution methods. In the case of a zero-dimensional
solution set (every solution of the PEP or MEP is an isolated point in the solution
space), the nullity of these structured matrices reveals the total number of solutions,
both affine and at infinity. Rank checks on growing submatrices of this numerical
basis matrix are required to separate the affine solutions from the solutions at infin-
ity. Since a numerical basis matrix of the null space of a (banded) block Toeplitz or
block Macaulay matrix is typically a dense (i.e., non-sparse) tall matrix, it can be
considered as a block row matrix, where we iterate over its subsequent (block) rows
in order to determine the rank structure (i.e., we determine the change of the rank
for every additional block of the numerical basis matrix)1.

All three types of matrices considered in this paper are often constructed in
an iterative way. On the one hand, the block rows of the block row matrix are
considered iteratively, since a basis matrix of its null space is important in every
iteration (e.g., to determine the rank structure of the block row matrix). Moreover,
in many signal processing applications [1, 20, 21], new data vectors in the (block)
rows are appended continuously. The process of appending new (block) rows induces
the iterative structure naturally. A mature body of literature already covers the
(block) row-wise updating of the singular value decomposition [6, 21] or tracking
of a subspace [1, 21, 25, 26]. In this paper, we restrict ourselves to the particular
subproblem where we only update in every iteration a basis matrix of the null space
of the block row matrix using results from the previous iteration. On the other hand,
the required size of the (banded) block Toeplitz matrix and block Macaulay matrix in
system processing and system identification problems often depends on the properties
of its null space. Because these properties can not be deduced in advance, we need
to enlarge the (banded) block Toeplitz and block Macaulay matrix iteratively, and
compute in every iteration a new numerical basis matrix of the null space. Several
authors have already addressed the direct null space computation of these structured
matrices [12, 18], but a recursive approach that exploits the structure and sparsity of
these special matrices clearly has a lot of potential.

Therefore, in this paper, we address these questions and propose recursive2 algo-
rithms to update an orthogonal numerical basis matrix of the null space of the block
row, (banded) block Toeplitz, and block Macaulay matrix, using results from the pre-
vious iteration. Batselier et al. [5] have developed a similar recursive algorithm to
update a numerical basis matrix of the null space of the traditional (scalar) Macaulay
matrix. However, they have not addressed the block Macaulay matrix, nor have they
tackled block row or (banded) block Toeplitz matrices. Moreover, we also develop a
sparse algorithm that avoids the explicit construction of the block Macaulay matrix
and results in a considerable memory improvement compared to its dense counter-
parts. Exploiting the structure and sparsity of the block Macaulay matrix leads to
impressive results: for example, when we use the null space of the block Macaulay
matrix to solve four multiparameter eigenvalue problems, we notice that the recursive
and sparse approach proposed in this paper are, on average, 450 and 1300 times faster

1A numerical basis matrix of the null space of the traditional (scalar) Macaulay matrix also has
a block row structure [9, 29]. The recursive updating algorithm of the block row matrix proposed in
this paper fits perfectly in the (scalar) Macaulay matrix approach to solve systems of multivariate
polynomial equations.

2We do not use the term recursion in its strict computer science meaning (“an algorithm that
calls itself on smaller input values”), but see it as an algorithm that performs the same steps on
different input values (“an algorithm that uses in every iteration the same approach on new input
values”), cf., the recursive least-squares algorithm.

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 3

than the standard approach, respectively.
Outline. The remainder of this paper proceeds as follows: In section 2 and sec-

tion 3, we consider recursive algorithms to update a numerical basis matrix of the
null space of the block row and (banded) block Toeplitz matrix, respectively. We
develop in both sections a recursive updating algorithm, followed by a discussion of
the computational complexity and several numerical experiments. We use an anal-
ogous rationale in section 4, where we discuss the null space of the block Macaulay
matrix, but in this section we also consider a sparse implementation that avoids an
explicit construction of the block Macaulay matrix. We close this paper by giving our
conclusions and pointing at ideas for future research in section 5.

Notation and preliminaries. We denote scalars by italic lowercase letters, e.g.,
a, and vectors by boldface lowercase letters, e.g., a. Matrices are characterized by
boldface uppercase letters, e.g., A. The computational complexity of an operation
is given by its number of floating-point operations (flop). We use null(A) and
rank(A) to denote the computation via established numerical linear algebra tools of
an orthogonal numerical basis matrix of the null space and the numerical rank of a
matrix A, respectively. I l×l is the identity matrix of size l × l.

Hardware and software. We use for all our numerical experiments a Red Hat
Enterprise Linux server infrastructure with nodes that have two Xeon Gold 6140
CPUs working at 2.3 GHz (18 Skylake cores each) and 192 GB RAM (or 768 GB RAM
for the big memory nodes). The algorithms proposed in this paper are implemented
in MATLAB and accessible via https://www.macaulaylab.net.

2. Block row matrix. After d iterations, a block row matrix Rd ∈ Cpd×qd
consists of d+ 1 consecutive blocks3 (or block rows) Ai ∈ Ck×l:

(2.1) Rd =

A0

A1

A2

...
Ad

 =

[
Rd−1
Ad

]
.

The block row matrix Rd has pd = k (d+ 1) rows and qd = l columns. Block row
matrices appear in applications where the data only gradually becomes available (e.g.,
online signal processing problems) or where intermediate results are required (e.g., to
determine the rank structure of the matrix). In the former situation, the desired
iteration d∗ of the block row matrix is often not known in advance. Since the block
row matrix Rd grows in every iteration d, also its null space changes with respect
to d. We denote an orthogonal numerical basis matrix of the null space of Rd by
Zd ∈ Cqd×nd , such that

(2.2) RdZd = 0,

where nd corresponds to the nullity of the block row matrix Rd. Algorithm 2.1 states
the problem more clearly: we extend the block row matrix Rd in an iterative way and
compute a numerical basis matrix Zd of its null space in every iteration using Zd−1,
until we reach the desired iteration d∗.

3Although we consider in this paper consecutive blocks Ai with an equal number of rows for
didactical purposes, an extension to consecutive blocks with a different number of rows is trivial and
does not alter the proposed algorithm.

https://www.macaulaylab.net

4 CHRISTOF VERMEERSCH AND BART DE MOOR

The standard algorithm to determine this numerical basis matrix is via the sin-
gular value decomposition and it does not consider the iterative characteristic of the
problem. In subsection 2.1, we propose a recursive algorithm that uses the existing
numerical basis matrix Zd−1 ∈ Cqd−1×nd−1 of the null space of the block row matrix
Rd−1 ∈ Cpd−1×qd−1 to obtain Zd. We do not assume any structure in the blocks Ai

of Rd, apart from the iterative construction in (2.1). Afterwards, in subsection 2.2,
we asses the computational complexity of this recursive algorithm and compare it
with the standard approach. Subsection 2.3 illustrates the theoretical derivations by
means of some numerical experiments.

Algorithm 2.1 Iterative null space updating problem of the block row matrix

Require: A0,A1, . . .
1: Z0 ← null (R0) with R0 = A0

2: d← 1
3: while d ≤ d∗ do

4: Rd ←
[
Rd−1
Ad

]
5: Zd ← null (Rd) via standard or recursive approach (e.g., Algorithm 2.2)
6: d← d+ 1
7: end while
8: return Zd∗

2.1. Recursive algorithm. We consider a block row matrix Rd−1 ∈ Cpd−1×qd−1

after d − 1 iterations and an orthogonal numerical basis matrix Zd−1 ∈ Cqd−1×nd−1

of its null space:

(2.3) Rd−1Zd−1 = 0.

When we append a new block Ad to obtain Rd, we know that there exists an orthognal
matrix V d ∈ Rnd−1×nd , so that

(2.4)

[
Rd−1
Ad

]
︸ ︷︷ ︸

Rd

Zd−1V d =

[
0

AdZd−1

]
V d = 0,

because of (2.3). The matrix V d, on the one hand, is a basis matrix of the null space
of the matrix W d = AdZd−1 ∈ Ck×nd−1 . The nullity nd of a block row matrix is at
most nd−1 because the block Ad adds (sometimes zero) linearly independent rows to

Rd. The matrix product Zd = Zd−1V d =
∏d
i=0 V i ∈ Cl×nd (with V 0 = Z0), on the

other hand, is a numerical basis matrix of the null space of Rd. This insight, hence,
yields a recursive algorithm to update an orthogonal numerical basis matrix of the
null space of the block row matrix. Algorithm 2.2 summarizes the different steps to
obtain Zd, given Ad and Zd−1, and fits perfectly in Algorithm 2.1.

Importance of correct rank decisions. In Algorithm 2.2, a correct rank decision
is essential to obtain correct results. For example, in the (limit) case when we add
a new block Ad of which all the rows depend linearly on the rows of the previous
blocks (A0, . . . ,Ad−1), the numerical basis matrix of the null space of Rd−1 also
annihilates the matrix Ad. Hence, W d = AdZd−1 (theoretically) equals zero. When
we determine V d in Algorithm 2.2 (line 2), we should obtain an orthogonal matrix

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 5

Algorithm 2.2 Recursive null space algorithm for the block row matrix

Require: Zd−1 and Ad

1: W d ← AdZd−1
2: V d ← null (W d)
3: Zd ← Zd−1V d

4: return Zd

of full rank nd−1, e.g., an identity matrix. However, due to numerical floating-point
errors, the matrix W d is only close to zero and we need to be very careful when
computing V d. Let us consider a rank 10 block row matrix R1 ∈ R40×20, which
consists of two blocks A0 ∈ R20×20 and A1 ∈ R20×20 each with rank equal to 5,
and a orthogonal basis matrix of its null space Z1 ∈ C20×10. We create a new block
A2 = 2A0 + 3A1 ∈ R20×20 and construct R2 ∈ R60×20 as

(2.5) R2 =

A0

A1

A2

 =

[
R1

A2

]
.

Since the rows of A2 depend linearly on the rows of the first two blocks by construc-
tion, the matrix W 2 = A2Z1 is close (but not exactly) zero. All singular values have
the same order of magnitude and, when using a relative tolerance, the matrix W 2

could be considered to be of full rank. A careful rank check in Algorithm 2.2 alleviates
this problem in most situations, for example by using an additional absolute tolerance
or a more advanced rank decision approach (see for example [13, 22]).

2.2. Computational complexity. When computing a numerical basis matrix
Zd of the null space of the block row matrix Rd via the standard algorithm (i.e.,
the singular value decomposition), we only use the singular values and right singular
vectors. This takes, in iteration d, about 4pdq

2
d + 8q3d flop (floating-point opera-

tions) [10, p. 493]. A substitution of the number of rows and columns of Rd yields
the computational complexity of the standard algorithm:

(2.6) 4kl2 (d+ 1) + 8l3 = 4kl2d+ 4kl2 + 8l3 = O (d) flop.

In some applications, the blocks Ai are square, i.e., k = l, which simplifies (2.6):

(2.7) 4l3d+ 12l3 = O (d) flop.

The proposed recursive algorithm consists of three main steps (see Algo-
rithm 2.2), each with their respective number of floating-point operations:

2klnd−1 flop (multiplication – line 1)

4kn2
d−1 + 8n3d−1 flop (null space computation – line 2)

2lnd−1nd flop (multiplication – line 3)

The nullity nd of Rd is equal to l − rd ≤ l = O (1), where rd is the rank of Rd. The
total computational complexity of the recursive algorithm is thus bounded above by

(2.8) 6kl2 + 10l3 = O (1) flop,

or when the blocks Ai are square, i.e., k = l, by

(2.9) 16l3 = O (1) flop.

6 CHRISTOF VERMEERSCH AND BART DE MOOR

Table 2.1: The computational complexity (given in flop per iteration d) of the stan-
dard and recursive approach to determine a numerical basis matrix of the null space
of the block row matrix Rd, for both rectangular k × l and square l × l blocks Ai.
The given computational complexity of the recursive approach is an upper bound and
depends in practice on the rank of the blocks Ai (i = 0, . . . , d).

Algorithm Rectangular Square

standard 4kl2d+ 4kl2 + 8l3 4l3d+ 12l3

recursive 6kl2 + 10l3 16l3

When we compare the (theoretical) computational complexity of both approaches
(see Table 2.1), we notice that the number of floating-point operations of the recursive
algorithm remains constant with respect to the iteration d, while the computational
complexity of the standard algorithm depends linearly on d. This behavior, of course,
does not sound surprising, as the recursive algorithm uses results from the previous
iterations and matrices of (more or less) fixed sizes, while the block row matrix Rd

in the standard approach grows in every iteration.

2.3. Numerical experiments. We consider two experiments to illustrate the
numerical properties of the recursive algorithm: a block row matrix with increasing
rank (or decreasing nullity) and a block row matrix of which the rank (and also the
nullity) stabilizes after d = 10 iterations.

2.3.1. Block row matrix with increasing rank. The first experiment con-
sists of a block row matrix Rd ∈ R100d×100, which we extend in every iteration d
by a random matrix4 Ai ∈ R100×100 with rank r = 2. The rank of Rd is equal to
rd = max (2 (d+ 1) , 100). The recursive algorithm clearly outperforms the standard

algorithm (see Figure 2.1), while the relative errors ‖RdZd‖
‖Rd‖ remain stable within the

same order of magnitude. As mentioned in subsection 2.2, the computation time of
the standard algorithm grows linearly with the respect to d, while the computation
time of the recursive algorithm remains more or less constant. Figure 2.1 even shows
a small decrease in the computation time for higher iterations, which is mainly be-
cause of the decrease in the nullity (remember that we used the upper bound of the
nullity to determine the computational complexity of the recursive algorithm, which
is especially a good approximation when the number of blocks is still small).

2.3.2. Block row matrix with stabilizing rank. In the second experiment,
we look at a block row matrix Rd ∈ R100d×100 in which the new blocks Ai after
d = 10 iterations are linear combinations of the previously appended blocks (i.e.,
A0, . . . ,A10). The rank and nullity of Rd stabilize after d = 10 iterations, and we
notice that the computation time of the recursive algorithm (see Figure 2.2) becomes
constant, i.e., the computational complexity now follows the theoretical O (1) flop.

Notice that the computation time first jumps at d = 11 before stabilizing. Due
to the rank stabilization after 10 iterations, the matrix W 11 is numerically zero and

4In order to construct a random matrix M ∈ Rp×q with a specific rank r, we multiply two
random matrices N ∈ Rp×r and P ∈ Rr×q , which have by construction a rank equal to r. Through-
out the entire paper, we always use MATLAB’s randn function to generate normally distributed
(pseudo)random matrices.

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 7

0 10 20 30
10−4

10−3

10−2

O (1)

O (d)

Iteration d

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

0 10 20 30
10−16

10−15

10−14

Iteration d

R
el
a
ti
v
e
er
ro
r

Fig. 2.1: A comparison of the mean computation time and the mean relative error
‖RdZd‖
‖Rd‖ between the standard () and recursive () algorithm applied to a block

row matrix Rd, averaged over 15 experiments (the dashed lines indicate one standard
deviation). In every iteration d, we extend the block row matrix Rd−1 with a random
block Ad ∈ R100×100 of rank r = 2. The computation times of both algorithms follow
the theoretical complexities (). The computation time of the recursive algorithm
decreases for higher iterations, because the input matrices become smaller in every
iteration (since the nullity decreases in every iteration).

considered as a matrix of full rank, the singular value decomposition of which is com-
putationally more expensive than of a low-rank matrix (like W 10). This is completely
in line with our earlier discussion about the importance of a correct rank decision (see
subsection 2.1): when we are not careful and use wrong rank decisions, the relative
error of the recursive algorithm can rise quickly. The combination of a relative and
absolute tolerance avoids wrong rank decisions in this numerical experiment.

3. Block Toeplitz matrix. Next, we consider the (banded5) block Toeplitz
matrix T d, for example

(3.1) T d =

A1 A2 0 0 · · ·
0 A1 A2 0 · · ·
0 0 A1 A2 · · ·
...

...
...

...
. . .

 d+ 1 block rows,

with seed matrices A1,A2 ∈ Ck×l. Block Toeplitz matrices often consist of more
than two seed matrices, i.e., Ai ∈ Ck×l, for i = 1, . . . , x + y. Therefore, we gather
(in iteration d) all seed matrices A1, . . . ,Ax below the block Toeplitz matrix T d−1 in
the matrix X ∈ Ck×s and the remaining seed matrices Ax+1, . . . ,Ax+y in the matrix
Y ∈ Ck×t (with s = lx and t = ly). We can, hence, define the block Toeplitz matrix
T d ∈ Cpd×qd in iteration d recursively as

(3.2) T d =

[
T 1
d−1 T 2

d−1 0
0 X Y

]
,

5In the literature, this type of block Toeplitz matrices is often called banded block Toeplitz
matrices, in order to make the distinction with full and circulant block Toeplitz matrices. To soften
the notation in this paper, we only consider the banded block Toeplitz matrix and drop the term
“banded”.

8 CHRISTOF VERMEERSCH AND BART DE MOOR

0 10 20 30
10−4

10−3

10−2

O (d)

O (1)

Iteration d

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

0 10 20 30
10−16

10−15

10−14

Iteration d

R
el
a
ti
v
e
er
ro
r

Fig. 2.2: A comparison of the mean computation time and the mean relative error
‖RdZd‖
‖Rd‖ between the standard () and recursive () algorithm applied to a block

row matrix Rd, averaged over 15 experiments (the dashed lines indicate one standard
deviation). In every iteration d, we extend the block row matrix Rd−1 with a ran-
dom block Ad ∈ R100×100 of rank r = 2, until iteration d = 10. After 10 iterations,
the newly appended blocks are linear combinations of previously added blocks, hence
the computational complexity of the recursive algorithm stabilizes. The computation
times of both algorithms follow the theoretical complexities (). The jump in com-
putation time at d = 11 for the recursive algorithm is due to the fact that the matrix
W 11 is numerically zero, hence the singular value decomposition of a full-rank instead
of low-rank matrix has to be computed.

in which we partition T d−1 accordingly into T 1
d−1 ∈ Cpd−1×(qd−1−s) and T 2

d−1 ∈
Cpd−1×s. The block Toeplitz matrix T d has pd rows and qd columns, which are given
by

(3.3)
pd = k (d+ 1)

qd = t (d+ 1) + s = ly (d+ 1) + lx,

which reduces in the square case with only two seed matrices (i.e., X = A1 ∈ Cl×l
and Y = A2 ∈ Cl×l) to

(3.4)
pd = l (d+ 1)

qd = l (d+ 2) .

The block Toeplitz matrix contains a repetition of the same two shifted blocks X
and Y in every block row of the matrix. It is very sparse and structured, in contrary
to the previously discussed block row matrix. In every iteration d, the null space of
this block Toeplitz matrix changes. When the desired iteration d∗ is not known in
advance, a basis matrix of the null space has to be recomputed in every iteration and
a recursive algorithm to do this sounds very interesting. Algorithm 3.1 sketches the
problem setting.

Subsection 3.1 develops a recursive algorithm to compute an orthogonal numerical
basis matrix Zd ∈ Cqd×nd of the null space of T d, using Zd−1. In subsection 3.2 and
subsection 3.3, we compare the standard and recursive algorithm via a complexity
analysis and numerical experiments, respectively.

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 9

Algorithm 3.1 Iterative null space updating of the block Toeplitz matrix

Require: A1, . . . ,Ax+y

1: X ←
[
A1 · · · Ax

]
and Y ←

[
Ax+1 · · · Ax+y

]
2: Z0 ← null (T 0) with T 0 =

[
X Y

]
3: d← 1
4: while d ≤ d∗ do

5: T d ←
[
T 1
d−1 T 2

d−1 0
0 X Y

]
6: Zd ← null (T d) via standard or recursive approach (e.g., Algorithm 3.2)
7: d← d+ 1
8: end while
9: return Zd∗

3.1. Recursive algorithm. We consider a block Toeplitz matrix T d−1 after
d − 1 iterations and an orthogonal numerical basis matrix Zd−1 ∈ Cqd−1×nd−1 of its
null space, with nullity nd−1, such that

(3.5) T d−1Zd−1 = 0.

If we now extend T d−1 with t = ly zero columns, then we can write

(3.6)
[
T d−1 0

] [Zd−1 0
0 It×t

]
= 0.

The nullity of this extended matrix
[
T d−1 0

]
equals nd−1 + t. If we add the next

block row of the block Toeplitz matrix, i.e., we consider the block Toeplitz matrix T d,
then we know that there exists an orthogonal matrix V d ∈ C(nd−1+t)×nd , such that

(3.7)

[
T 1
d−1 T 2

d−1 0
0 X Y

]Z1
d−1 0

Z2
d−1 0
0 It×t

V d =

[
T d−1Zd−1 0

XZ2
d−1 Y

]
V d = 0,

where Zd−1 is partitioned in accordance with T d−1. From the bottom part of (3.7),
it follows that

(3.8) XZ2
d−1V

1
d + Y V 2

d = 0,

where V d is partitioned into matrices V 1
d ∈ Cnd−1×nd and V 2

d ∈ Ct×nd . Hence,

(3.9)
[
XZ2

d−1 Y
]
V d = 0,

which means that the matrix V d is a basis matrix of the null space of
[
XZ2

d−1 Y
]

and

(3.10)

[
T 1
d−1 T 2

d−1 0
0 X Y

]
︸ ︷︷ ︸

T d

Z1
d−1V

1
d

Z2
d−1V

1
d

V 2
d

︸ ︷︷ ︸

Zd

= 0.

An orthogonal numerical basis matrix Zd of T d can be computed as

(3.11) Zd =

[
Zd−1 0

0 It×t

]
V d =

[
Zd−1V

1
d

V 2
d

]
.

Algorithm 3.2 summarizes the different steps of this recursive algorithm.

10 CHRISTOF VERMEERSCH AND BART DE MOOR

Algorithm 3.2 Recursive null space algorithm for the block Toeplitz matrix

Require: Zd−1, X, and Y
1: W d ←XZ2

d−1
2: V d ← null

([
W d Y

])
3: Zd ←

[
Zd−1V

1
d

V 2
d

]
4: return Zd

Block banded matrix without fixed seed matrices. Since the recursive algorithm
does not explicitly make use of the repetitive structure in the block Toeplitz matrix
(i.e., the same seed matrices appear in every block row), it can also be applied to
tackle block banded matrices without fixed seed matrices: the matrices X and Y are
different in every iteration. Subsection 3.3.4 contains a numerical experiment with
such a block banded matrix.

3.2. Computational complexity. We determine again the computational cost
of the standard algorithm by substituting the number of rows and columns of the
block Toeplitz matrix T d into the computational cost of computing the singular value
decomposition (see subsection 2.2), i.e., 4pdq

2
d + 8q3d flop [10, p. 493]:

(3.12) 4k (d+ 1) (t (d+ 1) + s)
2

+ 8 (t (d+ 1) + s)
3

= O
(
d3
)
flop.

In some applications, T d consists of two square submatrices X = A1 ∈ Cl×l and
Y = A2 ∈ Cl×l, so we can simplify (3.12):

(3.13) l3
(
12d3 + 68d2 + 128d+ 80

)
= O

(
d3
)
flop.

The proposed recursive algorithm, on the other hand, contains three main
steps (see Algorithm 3.2):

2ksnd−1 flop (multiplication – line 1)

4k (nd−1 + t)
2

+ 8 (nd−1 + t)
3
flop (null space computation – line 2)

2 (td+ s)nd−1nd flop (multiplication – line 3)

The nullity nd of T d with respect to the iteration d is given by

(3.14)

nd = qd − rd
= t (d+ 1) + s− rd
= (t− r)d+ t+ s = O(d),

with rd = rd the rank of the block Toeplitz matrix when rank
([
X Y

])
= r. We

assume that rank of
[
X Y

]
is very close to the number of columns, i.e., r ≈ t and,

therefore, we consider the nullity to remain almost constant with respect to the iter-
ation d. The computational complexity of the recursive algorithm then corresponds
to (with nd = nd−1 = t+ s)

(3.15) 2ks (t+ s) + 4k (s+ 2t)
2

+ 8 (s+ 2t)
3

+ 2 (td+ s) (t+ s)
2

= O (d) flop,

or, for two square l × l submatrices X and Y , to

(3.16) 8l3d+ 108l3 = O (d) flop.

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 11

Table 3.1: The computational complexity (given in flop per iteration d) of the stan-
dard and recursive approach to compute a numerical basis matrix of the null space
of the block Toeplitz matrix T d, for both the rectangular (X ∈ Rk×s and Y ∈ Rk×t)
and square case (X ∈ Rl×l and Y ∈ Rl×kl).

Algorithm Rectangular Square

standard 4kt2d3 + 8t3d3 +O
(
d2
)

l3
(
12d3 + 68d2 + 128d+ 80

)
recursive 2t (s+ t)

2
d+O (1) 8l3d+ 108l3

0 10 20 30

10−1

10−3

10−5

O
(
d3

)

O (d)

Iteration d

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

0 10 20 30
10−16

10−15

10−14

Iteration d

R
el
a
ti
v
e
er
ro
r

Fig. 3.1: A comparison of the mean computation cost and the mean relative error
‖T dZd‖
‖T d‖ between the standard () and recursive () algorithm applied to a block

Toeplitz matrix T d, averaged over 15 experiments (the dashed lines indicate one stan-
dard deviation). T d consists of two square random seed matrices A1,A2 ∈ R20×20,
such that the rank r of

[
A1 A2

]
=
[
X Y

]
is equal to 16. The computation times

of both algorithms follow the theoretical computational complexities ().

The computational complexity of the recursive algorithm is equal to O(d), which
is due to the dominating multiplication. If we compare this to the standard algorithm,
which has a computational complexity O(d3), then the recursive approach gains two
orders of magnitude. Table 3.1 summarizes the computational complexities.

3.3. Numerical experiments. Four numerical experiments with random seed
matrices A1 and A2 illustrate the numerical properties of the recursive algorithm.

3.3.1. Block Toeplitz matrix with high-rank seed matrices. In the first
numerical experiment, we consider a block Toeplitz matrix T d that consists of two
square seed matrices A1,A2 ∈ R20×20 with rank

([
A1 A2

])
= rank

([
X Y

])
=

16 (which is close to the number of columns l = 20). In every iteration d, we compute a
numerical basis matrix of the null space of this block Toeplitz matrix via the standard
and recursive algorithm. Figure 3.1 visualizes the computation time and relative error
for every iteration d. Clearly, the recursive approach outperforms the full singular

value decomposition, while the relative error ‖T dZd‖
‖T d‖ remains more or less the same.

The computation times of the standard and recursive algorithm grow cubicly and
linearly with respect to the iteration d, respectively (as in Table 3.1).

12 CHRISTOF VERMEERSCH AND BART DE MOOR

0 10 20 30

10−1

10−3

10−5

O
(
d3

)

O (d)

Iteration d

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

0 10 20 30
10−16

10−15

10−14

Iteration d

R
el
a
ti
v
e
er
ro
r

Fig. 3.2: A comparison of the mean computation cost and the mean relative error
‖T dZd‖
‖T d‖ between the standard () and recursive () algorithm applied to a block

Toeplitz matrix T d, averaged over 15 experiments (the dashed lines indicate one stan-
dard deviation). T d consists of two square random seed matrices A1,A2 ∈ R20×20,
such that the rank r of

[
A1 A2

]
=
[
X Y

]
is equal to 3. The computation time of

the recursive algorithm is higher than the theoretical computational complexity ().

3.3.2. Block Toeplitz matrix with low-rank seed matrices. In subsec-
tion 3.2, we assume that the rank of the seed blocks of the block Toeplitz matrix
T d is quite high, which means that the nullity is almost constant with respect to
the iteration d. When we use random low-rank seed matrices, like in Figure 3.2, we
violate this assumption and we notice that the recursive algorithm takes more time
than the theoretical computational complexity. However, the recursive algorithm still
outperforms the standard algorithm, since the input matrices are smaller.

3.3.3. Block Toeplitz matrix with seed matrices of different sizes. Next,
we investigate the influence of the size of the seed matrices A1 and A2 on the com-
putation time. In Figure 3.3, we visualize the total computation time to determine
a numerical basis matrix of the null space of a block Toeplitz matrix T 30 for de-
sired iteration d∗ = 30 from d = 0, i.e., the total computation time to iteratively
reach d∗. We consider both the situation in which the rank r of the seed matrices[
A1 A2

]
=
[
X Y

]
grows with the size (r = 4l

5) and the situation in which the
rank r remains fixed r = 16. The computation times of the standard and recur-
sive algorithms grow in both experiments cubicly with respect to the size of the seed
matrices.

3.3.4. Block banded matrix without fixed seed matrices. In this example,
we consider a block banded matrix Sd, which consists of two different square random
matrices A1,A2 ∈ R20×20 in every iteration, so that the rank r of

[
A1 A2

]
=[

X Y
]

is equal to 16 (which is close to the number of columns l = 20). In every
iteration d, we compute a numerical basis of the null space of Sd via the standard
and recursive algorithm. Figure 3.4 visualizes the computation time and relative error
‖SdZd‖
‖Sd‖ for every iteration d, which are very similar to Figure 3.1.

4. Block Macaulay matrix. Finally, we study the null space of the block
Macaulay matrix, an extension of the traditional (scalar) Macaulay matrix from resul-
tant theory [14, 15]. The block Macaulay matrix incorporates the coefficient matrices

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 13

20 60 100 140

103

100

10−3

O
(
k3

)

O
(
k3

)

Size k = l (varied rank)

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

20 60 100 140

103

100

10−3

O
(
k3

)

O
(
k3

)

Size k = l (fixed rank)

C
o
m

p
u
ta

ti
o
n

ti
m

e
[s

]

Fig. 3.3: A comparison of the total mean computation cost between the standard
() and recursive () algorithm to compute a numerical basis matrix of a block
Toeplitz matrix T 30, averaged over 15 experiments (the dashed lines indicate one
standard deviation). T d consists of two square random seed matrices A1,A2 ∈ Rk×l.
In the left figure the rank r of

[
A1 A2

]
=
[
X Y

]
grows with the size of the seed

matrices as r = 4l
5 (so remains high-rank), while in the right figure the rank r is fixed

at 16. The computation time of the standard and recursive algorithm grows in both
experiments cubicly with respect to the size of the seed matrices ().

0 10 20 30

10−1

10−3

10−5

O
(
d3

)

O (d)

Iteration d

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

0 10 20 30
10−16

10−15

10−14

Iteration d

R
el
a
ti
v
e
er
ro
r

Fig. 3.4: A comparison of the mean computation cost and the mean relative er-

ror ‖SdZd‖
‖Sd‖ between the standard () and recursive () algorithm applied to a

block banded matrix Sd, averaged over 15 experiments (the dashed lines indicate one
standard deviation). The block banded matrix Sd consists of two different square
random seed matrices A1,A2 ∈ R20×20 in every iteration d, such that the rank r
of
[
A1 A2

]
=
[
X Y

]
is equal to 16. The computation times of both algorithms

follow the theoretical complexities of the block Toeplitz matrix ().

of a multiparameter eigenvalue problem (MEP), which are shifted in every block row
according to a particular pattern (we refer the interested reader to our previous papers
in which we have introduced the block Macaulay matrix to solve MEPs [7, 28, 30]). For
example, the block Macaulay matrix that incorporates the quadratic two-parameter

14 CHRISTOF VERMEERSCH AND BART DE MOOR

eigenvalue problem (with eigenvalues α and β and eigenvectors z)

(4.1)
(
A1 + Aαα+ Aββ + Aα2α2 + Aαβαβ + Aβ2β2

)
z = 0,

looks like

(4.2) Md =

A1 Aα Aβ Aα2 Aαβ Aβ2 0 0 · · ·
0 A1 0 Aα Aβ 0 Aα2 Aαβ · · ·
0 0 A1 0 Aα Aβ 0 Aα2 · · ·
0 0 0 A1 0 0 Aα Aβ · · ·
...

...
...

...
...

...
...

...
. . .

 .

The coefficient matrices (e.g., A1 and Aα2) of the MEP are often referred to as the
seed matrices of Md, since the MEP generates the entire block Macaulay matrix6. In
order to keep our notation consistent throughout the entire paper, we denote the seed
matrices again by a single subscript i, i.e., Ai ∈ Ck×l (i = 1, . . . , x+y). Consequently,
we can recursively define the block Macaulay matrix Md ∈ Cpd×qd in iteration d as

(4.3) Md =

[
M1

d−1 M2
d−1 0

0 Xd Y d

]
,

where the matrix Xd ∈ Cmd×sd gathers all the seed matrices A1, . . . ,Ax (but also
some zero matrices) below M2

d−1 and the matrix Y d ∈ Cmd×td contains the remaining
seed matrices Ax+1, . . . ,Ax+y (and also some zero matrices) under the zero block.
Notice that, in contrast to the matrices X and Y of the block Toeplitz matrix, the
matrices Xd and Y d of the block Macaulay matrix depend on the iteration d, because
every iteration adds a different number of block rows to the matrix. The sizes of the
matrices Xd and Y d depend on the number of shifts smax in that particular iteration:

(4.4)

md = k

(
d+ n− 1

n− 1

)
=

k

(n− 1)!
dn−1 +O

(
dn−2

)
sd = l

dM−1∑
i=0

(
d+ i+ n− 1

n− 1

)
=

l

(n− 1)!
dn−1 +O

(
dn−2

)
td = l

(
d+ dM + n− 1

n− 1

)
=

l

(n− 1)!
dn−1 +O

(
dn−2

)
,

where n is the number of eigenvalues of the generating MEP (i.e., the number of
variables in the block Macaulay matrix) and dM is the degree of the generating MEP
(i.e., the highest total degree of the monomials in the MEP). The block Macaulay
matrix Md has a typical quasi-Toeplitz structure, as visualized in Figure 4.1, and its
number of rows pd and columns qd grows quickly very large, due to the combinatorial

6We do not elaborate on the particular structure of the shifts in this paper. Essentially, every
seed matrix corresponds to a particular monomial, e.g., α, and in every iteration this monomial is
multiplied by different (shift) monomials, resulting in a repeated shifted quasi-Toeplitz structure of
the different seed matrices. The precise structure depends on the number of variables of the seed
equation, the degree of the seed equation, and the chosen monomial ordering. A more detailed
explanation can be found in [28, 30].

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 15

XY

d = 0
d = 1
d = 2
d = 3
d = 4

...

d = 17
d = 18
d = 19

(a) Block Toeplitz matrix

Xd Y d

d = 0

d = 1

d = 2

d = 3

shift s
Xs

d,Y
s
d

(b) Block Macaulay matrix

Fig. 4.1: A visualization of a block Toeplitz T 19 and block Macaulay matrix M3

(n = 3 and dM = 1), both with rectangular seed matrices Ai ∈ R6×4. Due to the
combinatorial explosion of the number of shifts, the block Macaulay matrix grows
quickly very large, even after much less iterations d than the block Toeplitz matrix.
Note that the sizes of Xd and Y d of the block Macaulay matrix depend on d, while
this is not the case for X and Y in the block Toeplitz matrix.

explosion of the number of shifts7:

(4.5)

pd = k

(
d+ n

n

)
=

k

n!
dn +O

(
dn−1

)
qd = l

(
d+ dM + n

n

)
=

l

n!
dn +O

(
dn−1

)
.

Typically, the desired iteration d∗ of the block Macaulay matrix depends on the
structure of its null space and is not known in advance. Hence, when we want to
compute a numerical basis matrix of the null space for every iteration d, e.g., in
order to determine the solutions of the generating multiparameter eigenvalue problem,
we have to extend the block Macaulay matrix in an iterative way and recompute
a numerical basis matrix of its null space in every iteration. Clearly, a recursive
algorithm to update this numerical basis matrix poses itself useful in this type of
practical situations. Algorithm 4.1 sketches the problem of iteratively updating the
block Macaulay matrix and a numerical basis matrix of its null space.

As in the previous sections, we develop a recursive algorithm to determine an
orthogonal numerical basis matrix Zd of the null space of Md in subsection 4.1 and
determine the computational complexity afterwards in subsection 4.2. Furthermore,
we also propose a sparse adaptation of the recursive algorithm in subsection 4.3. The
numerical experiments in subsection 4.4 illustrate the standard, recursive, and sparse

7The block Macaulay matrix is the multivariate generalization of the block Toeplitz matrix, with
a multiparameter eigenvalue problem (MEP) instead of a polynomial eigenvalue problem (PEP) as
its seed equation, i.e., with monomials of eigenvalues instead of powers of single eigenvalues [30].
Notice that the expressions for pd and qd reduce to the block Toeplitz case of (3.3) when we consider
a PEP instead of an MEP (n = 1, dM = t, and s = l).

16 CHRISTOF VERMEERSCH AND BART DE MOOR

algorithm. Afterwards, in subsection 4.5, we solve several multiparameter eigenvalue
problems via the null space of the block Macaulay matrix.

Algorithm 4.1 Iterative null space updating of the block Macaulay matrix

Require: A1, . . . ,Ax+y

1: Z0 ← null (M0)
2: d← 1
3: while d ≤ d∗ do
4: Determine Xd and Y d

5: Md ←
[
M1

d−1 M2
d−2 0

0 Xd Y d

]
6: Zd ← null (Md) via standard or recursive approach (e.g., Algorithm 4.2)
7: d← d+ 1
8: end while
9: return Zd

4.1. Recursive algorithm. We extend the ideas of the block Toeplitz matrix
to the block Macaulay matrix in this subsection. Since the block Macaulay matrix
is a quasi-block Toeplitz matrix, a generalization of the recursive algorithm is quite
easy. Similar to (3.7), we partition the block Macaulay matrix Md and suppose that
we have a block Macaulay matrix Md−1 of which we know a numerical basis matrix
Zd−1 of its null space. As in the block Toeplitz matrix case, we can add td zero
columns at the end, multiply by an orthogonal matrix V d ∈ C(nd−1+td)×nd−1 , and
obtain

(4.6)

[
M1

d−1 M2
d−1 0

0 Xd Y d

]
︸ ︷︷ ︸

Md

Z1
d−1 0

Z2
d−1 0
0 It×t

V d

︸ ︷︷ ︸
Zd

=

[
Md−1Zd−1 0

XdZ
2
d−1 Y d

]
V d = 0.

The most important difference with (3.7) is that the matrices Xd and Y d are now
indexed by d and can contain many zero blocks (see Figure 4.1b). We compute V d

again as a numerical basis matrix of a null space,

(4.7)
[
XdZ

2
d−1 Y d

]
V d = 0,

and construct Zd ∈ Cqd×nd as

(4.8) Zd =

[
Zd−1V

1
d

V 2
d

]
.

Algorithm 4.2 summarizes the different steps of the entire recursive algorithm. An
efficient implementation, of course, tries to avoid the zero blocks and uses fast multi-
plications that exploit structure, an improvement that is naturally incorporated in a
sparse adaptation (see subsection 4.3).

On the iteration-wise versus block row-wise implementation. Algorithm 4.2 con-
siders an iteration-wise growth of the block Macaulay matrix and recomputes the
numerical basis matrix in an iteration-wise fashion8. One notices easily that the same

8This distinction between iteration-wise and block row-wise does not exist in the block Toeplitz
matrix, since the number of block rows coincides with the number of iterations.

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 17

Algorithm 4.2 Recursive null space algorithm for the block Macaulay matrix

Require: Zd−1, Xd, and Y d

1: W d ←XdZ
2
d−1

2: V d ← null
([
W d Y d

])
3: Zd ←

[
Zd−1V

1
d

V 2
d

]
4: return Zd

idea could also work if the recursive approach is applied in a block row-wise fash-
ion. Moreover, in a block row-wise fashion, the zero blocks are easier to identify and
avoid. The main drawback of this alternative block row-wise implementation is the
fact that, for every iteration, multiple multiplications and null space computations
are necessary, which cancels the above-mentioned computational advantages (see the
numerical experiment in subsection 4.4.1).

4.2. Computational complexity. As for the block Toeplitz matrix (but now
for growing matrices Xd and Y d), we substitute the number of rows and columns
of the block Macaulay matrix (4.5) into the computational cost of computing the
singular values and right singular vectors, i.e., 4pdq

2
d + 8q3d flop [10, p. 493], which

results in the computational cost of the standard algorithm:

(4.9)
4kl2

n!3
d3n +

8l3

n!3
d3n +O

(
d3n−1

)
= O

(
d3n
)
flop.

Most of the times, the seed matrices Ai are square or close to square, i.e., k ≈ l:

(4.10)
12l3

n!3
d3n +O

(
d3n−1

)
= O

(
d3n
)
flop.

he proposed recursive algorithm contains again three main steps (see Algo-
rithm 4.2):

2mdsdnd−1 flop (multiplication – line 1)

4md (nd−1 + td)
2

+ 8 (nd−1 + td)
3
flop (null space computation – line 2)

2qd−1nd−1nd flop (multiplication – line 3)

The polynomial nd describes the nullity of the block Macaulay matrix Md with respect
to the iteration d:

nd = qd − rd(4.11)

= qd − pd(4.12)

=
l

n!
dn − k

n!
dn +O

(
dn−1

)
(4.13)

≤ φ

(n− 1)!
dn−1 = O

(
dn−1

)
,(4.14)

where we assume in (4.12) that the rank is equal to the number of rows for d < d∗

and introduce a factor φ (and also φ
′

below) in (4.14) that does not depend on
the iteration d, but depends linearly on the size of the seed matrices (i.e., O (k, l)).
We remove the highest order terms in our upper bound, since k ≥ l in practical

18 CHRISTOF VERMEERSCH AND BART DE MOOR

Table 4.1: The dominant term(s) of the computational complexity (in flop per iter-
ation d) of the standard and recursive approach to compute a numerical basis matrix
of the null space of the block Macaulay matrix Md, for both rectangular k × l and
square l× l seed matrices Ai. We assume in these complexity numbers that the rank
rd is equal to the number of rows pd of Md for iteration d ≤ d∗ and introduce two
factors φ and φ

′
that do not depend on d.

Algorithm Rectangular Square

standard 4kl2+8l3

n!3 d3n 12l3

n!3 d
3n

recursive
(

φ
′3

(n−1)!3 + 2lφ2

n(n−1)!3

)
d3n−2 2kφ2

n(n−1)!3 d
3n−2

applications (otherwise the nullity does not stabilize). The computational complexity
of the recursive algorithm is then bounded above by

(4.15)
φ
′3

(n− 1)!3
d3n−3 +

2lφ2

n (n− 1)!3
d3n−2 = O

(
d3n−2

)
flop,

which remains the same expression when k = l (only the factors φ and φ
′

change).
The computational complexity of the recursive algorithm (per iteration d) corre-

sponds to O
(
d3n−2

)
, which is due to the dominating multiplication. If we compare

this to the standard singular value decomposition, which has a computational com-
plexity O(d3n), the recursive algorithm gains two orders of magnitude. Table 4.1
summarizes the computational complexities.

4.3. Sparse algorithm. Although an efficient implementation of Algorithm 4.2
may exploit the structure and sparsity pattern of the block Macaulay matrix, it does
not yet consider the fact that every block row contains the same generating seed ma-
trices Ai. Furthermore, since the block Macaulay matrix quickly grows very large,
storing this matrix requires a considerable amount of memory. We propose in Algo-
rithm 4.4 a sparse implementation that addresses these two shortcomings. It removes
the explicit construction of the block Macaulay matrix Md and incorporates the for-
mation of Xd and Y d into the recursive algorithm to build a basis matrix Zd of the
null space (the problem statement changes from Algorithm 4.1 to Algorithm 4.3).
For every shift s in iteration d, Algorithm 4.4 first determines the position of the
shifted seed matrices Ai and partitions them into Xs

d and Y s
d. The blocks Xs

d yield
together with the previous numerical basis matrix Zd−1 the matrix W d, similar to
Algorithm 4.2, but now per shift, and the blocks Y s

d result in Y d. The computation
of the matrices V d and Zd are similar to Algorithm 4.4. At no point in this sparse al-
gorithm, Md is explicitly built or stored in memory, but only used implicitly through
the position of its shifts.

Note that for some orderings of the monomials in the block Macaulay matrix, the
structure can be exploited even further. For example, when using the degree negative
lexicographic ordering (like in Figure 4.1b), Y d always contains Y d−1 [4].

4.4. Numerical experiments. We illustrate the properties of the recursive and
sparse algorithm via several numerical experiments with random seed matrices.

4.4.1. Block Macaulay matrices with high-rank seed matrices. In the
first numerical experiment, we iteratively build a block Macaulay matrix Md and

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 19

Algorithm 4.3 Sparse null space updating of the block Macaulay matrix

Require: A1, . . . ,Ax+y

1: Z0 ← null (M0)
2: d← 1
3: while d ≤ d∗ do
4: Zd ← sparse-null (Zd−1,A1, . . . ,Ax+y) via Algorithm 4.4
5: d← d+ 1
6: end while
7: return Zd

Algorithm 4.4 Sparse null space algorithm for the block Macaulay matrix

Require: Zd−1, A1, . . . ,Ax+y

1: for every shift s of iteration d (s = 1, . . . smax) do
2: col← positions of columns of A1, . . . ,Ax+y at shift s
3: colx ← col ≤ qd (positions of columns of A1, . . . ,Ax at shift s)
4: coly ← col > qd (positions of columns of Ax+1, . . . ,Ax+y at shift s)
5: W s

d ←
[
A1 · · · Ax

]
Zd−1 (colx)

6: Y s
d (coly)←

[
Ax+1 · · · Ax+y

]
7: end for

8: W d ←

 W 1
d

...
W smax

d

 and Y d ←

 Y 1
d

...
Y smax

d

9: V d ← null

([
W d Y d

])
10: Zd ←

[
Zd−1V

1
d

V 2
d

]
11: return Zd

compute a numerical basis matrix Zd of its null space. We consider both a lin-
ear 2-parameter eigenvalue problem with 3 random seed matrices Ai ∈ R21×20 (see
Figure 4.2) and a quadratic 3-parameter eigenvalue problem with 10 random seed
matrices Ai ∈ R22×20 (see Figure 4.3). As Table 4.1 indicates, we observe experimen-
tally that we gain two orders of magnitude in the computational complexity, while

the relative error ‖MdZd‖
‖Md‖ remains more or less the same.

4.4.2. Block Macaulay matrix with seed matrices of different sizes and
with different numbers of eigenvalues. Next, we investigate the influence of the
size of the seed matrices Ai and the number of eigenvalues on the computation time.
In Figure 4.4, we visualize the total time to compute a numerical basis matrix of
the null space of a block Macaulay matrix M15 for desired iteration d∗ = 15 from
d = 0, i.e., the total computation time to iteratively reach d∗. We consider a linear
2-parameter eigenvalue problem with 3 random seed matrices Ai ∈ R(l+1)×l, where
we increase the size of the seed matrices during the numerical experiment, and a linear
n-parameter eigenvalue problem with n + 1 random seed matrices Ai ∈ R(19+n)×20,
where we increase the number of eigenvalues during the numerical experiment. The
computation time grows cubicly with the number of columns of the seed matrices,
while the influence of the number of eigenvalues is given in Table 4.1.

20 CHRISTOF VERMEERSCH AND BART DE MOOR

0 5 10 15
10−4

10−1

102

O
(
d6

)

O
(
d4

)

Iteration d

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

0 5 10 15
10−16

10−15

10−14

Iteration d

R
el
a
ti
v
e
er
ro
r

Fig. 4.2: A comparison of the mean computation time and the mean relative er-

ror ‖MdZd‖
‖Md‖ between the standard () and recursive () algorithm applied to a

block Macaulay matrix Md, averaged over 15 experiments (the dashed lines indicate
one standard deviation). The block Macaulay matrix Md is generated by a linear
2-parameter eigenvalue problem with 3 random seed matrices Ai ∈ R21×20. The
computation times of both algorithms follow the theoretical complexities of the block
Macaulay matrix ().

0 5 10 15
10−4

100

104 O
(
d9

)

O
(
d7

)

Iteration d

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

0 5 10 15
10−16

10−15

10−14

Iteration d

R
el
a
ti
v
e
er
ro
r

Fig. 4.3: A comparison of the mean computation time and the mean relative error
‖MdZd‖
‖Md‖ between the standard () and recursive () algorithm applied to a block

Macaulay matrix Md, averaged over 15 experiments (the dashed lines indicate one
standard deviation). The block Macaulay matrix Md is generated by a quadratic
3-parameter eigenvalue problem with 10 random seed matrices Ai ∈ R22×20. The
computation times of both algorithms follow the theoretical complexities of the block
Macaulay matrix ().

4.4.3. Comparison between the iteration-wise and block row-wise al-
gorithm. Figure 4.5 compares the computation time and the relative error for the
recursive algorithm, when applied iteration-wise and block row-wise. The results of
this numerical experiment support our claim that a iteration-wise implementation of
the recursive algorithm is faster than a block row-wise approach, especially when the
iteration d grows larger.

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 21

20 60 100 140
10−1

102

105

O
(
l3
)

O
(
l3
)

Number of columns l

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

1 2 3 4
10−4

101

106

Number of eigenvalues n

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

Fig. 4.4: A comparison of the total mean computation time between the standard
() and recursive () algorithm applied to compute a numerical basis matrix of
the null space of a block Macaulay matrix M15, averaged over 15 experiments (the
dashed lines indicate one standard deviation). Md is generated in the left figure by
a linear 2-parameter eigenvalue problem with 3 random seed matrices Ai ∈ R(l+1)×l

and in the right figure by a linear n-parameter eigenvalue problem with n+ 1 random
seed matrices Ai ∈ R(19+n)×20. The computation times of both algorithms follow the
theoretical complexities of the block Macaulay matrix ().

4.4.4. Comparison between the recursive and sparse algorithm. We re-
peat the experiment with a block Macaulay matrix Md generated by a linear 2-
parameter eigenvalue problem with 3 random seed matrices Ai ∈ R21×20, but we now
compare the recursive and sparse algorithm. To make a fair comparison, we also in-
clude the time to build Md (in a recursive fashion). Figure 4.6 shows that the sparse
algorithm is clearly faster than the recursive approach (the construction of Md also
takes up a major part of the computation time) and is much more memory efficient.

4.5. Solving multiparameter eigenvalue problems. Finally, we use the pro-
posed algorithms for their intended purpose: solving multiparameter eigenvalue prob-
lems via a numerical basis matrix of a corresponding block Macaulay matrix. The null
space of a block Macaulay matrix has a special structure that we can exploit to obtain
the eigentuples of the generating MEP. We do not elaborate on the details of this null
space based solution approach, which we explain in-depth in [30]. It is important
to know that this problem fits perfectly into the problem setting of Algorithm 4.1,
where we do not know the desired iteration d∗ of the block Macaulay matrix because
d∗ depends on the properties of the null space (the nullity has to stabilize at the total
number of solutions).

4.5.1. Random multiparameter eigenvalue problems. We solve four dif-
ferent MEPs: a linear 2-parameter eigenvalue problem with 3 random seed matrices
Ai ∈ R41×40 (Table 4.2), a linear 3-parameter eigenvalue problem with 4 random seed
matrices Ai ∈ R22×20 (Table 4.3), a cubic 2-parameter eigenvalue problem with 10
random seed matrices Ai ∈ R11×10 (Table 4.4), and a quadratic 3-parameter eigen-
value problem with 10 random seed matrices Ai ∈ R12×10 (Table 4.5). Clearly, the
computation times of the recursive and sparse approaches are much smaller than the

22 CHRISTOF VERMEERSCH AND BART DE MOOR

0 5 10 15
10−4

10−2

100

Iteration d
(linear 2-parameter EP)

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

0 5 10 15
10−4

100

104

Iteration d
(quadratic 3-parameter EP)

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

Fig. 4.5: A comparison of the mean computation time of a block Macaulay matrix,
averaged over 15 experiments (the dashed lines indicate one standard deviation), when
we apply the recursive algoritm iteration-wise () and block row-wise (). The
block Macaulay matrix Md is generated in the left figure by a linear 2-parameter
eigenvalue problem with 3 random seed matrices Ai ∈ R21×20 and in the right figure
by a quadratic 3-parameter eigenvalue problem with 10 random seed matrices Ai ∈
R22×20.

0 10 20 30
10−4

10−2

100

Iteration d

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

0 10 20 30
104

107

1010

Iteration d

M
em

o
ry

u
sa
g
e
[b
y
te
s]

Fig. 4.6: A comparison of the mean computation time and the memory usage between
the recursive () and sparse () algorithm applied to a block Macaulay matrix Md,
averaged over 15 experiments (the dashed lines indicate one standard deviation). Md

is generated by a linear 2-parameter eigenvalue problem with 3 random seed matrices
Ai ∈ R21×20. The explicit recursive construction of Md () takes up a major part
of the computation time of the recursive algorithm.

time to solve the MEPs via the standard approach, while the residual errors9 of the
solutions are more or less the same: for example, we notice that the recursive and
sparse approach proposed in this paper are, on average, 450 and 1300 times faster
than the standard approach, respectively. Moreover, the computation time required to

9The residual error corresponds to the norm of the residual vector after substituting the computed
eigenvalues and eigenvectors in the MEP.

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 23

Table 4.2: A comparison between the standard, recursive, and sparse algorithm to
solve a linear 2-parameter eigenvalue with 3 random seed matrices Ai ∈ R41×40. The
table contains the total computation time to build a numerical basis matrix of the null
space of the corresponding block Macaulay matrix (requires 41 iterations), the total
memory usage to obtain this basis matrix, and the residual error of the solutions.

Algorithm Comp. time Memory usage Residual error

standard (last iter.) 168 630 s (25 771 s) 11.46 GB 3.9× 10−15

recursive 126.48 s 11.46 GB 1.8× 10−14

sparse 41.12 s 0.25 GB 1.8× 10−14

Table 4.3: A comparison between the standard, recursive, and sparse algorithm to
solve a linear 3-parameter eigenvalue with 4 random seed matrices Ai ∈ R19×17. The
table contains the total computation time to build a numerical basis matrix of the null
space of the corresponding block Macaulay matrix (requires 28 iterations), the total
memory usage to obtain this basis matrix, and the residual error of the solutions.

Algorithm Comp. time Memory usage Residual error

standard (last iter.) 21 421 s (8315 s) 5.50 MB 3.9× 10−15

recursive 128.50 s 5.50 MB 1.8× 10−14

sparse 104.07 s 0.21 MB 1.8× 10−14

perform the last iteration with the standard approach takes more time than the total
computation time of the recursive and sparse approach. Hence, even if we know the
desired iteration d∗ in advance, a recursive (or sparse) approach may still be better.
The sparse approach has the additional advantage of requiring much less memory.

4.5.2. Least-squares realization problem. We solve an MEP that arises from
a least-squares realization problem with N = 7 random data points: given a data
sequence y0, . . . , y6 (y ∈ R7×1), find the adapted data sequence ŷ0, . . . , ŷ6 so that the

misfit ‖y − ŷ‖22 is minimized and ŷ ∈ R7×1 is the output of a second-order autonomous
model [7, 8]:

(4.16) ŷk = CAkx0,

where x0 ∈ R2×1 is the initial state, A ∈ R2×2 is the system matrix, and C ∈
R1×2 is the output vector. In [7], it has been shown how this identification problem
corresponds to a quadratic two-parameter eigenvalue problem

(4.17)
M (λ1, λ2) z =

(
A00 + A10λ1 + A01λ2+

A20λ
2
1 + A11λ1λ2 + A02λ

2
2

)
z = 0,

where the coefficient matrices Aω ∈ R17×16 are as described in [7].
This problem has a positive-dimensional solution set at infinity, so the nullity of

the block Macaulay matrix does not stabilize. In order to solve this system identifi-
cation problem, we need to check in every iteration if the basis matrix of the block
Macaulay matrix contains the solutions. For this specific problem, we need d = 28

24 CHRISTOF VERMEERSCH AND BART DE MOOR

Table 4.4: A comparison between the standard, recursive, and sparse algorithm to
solve a cubic 2-parameter eigenvalue with 10 random seed matrices Ai ∈ R11×10. The
table contains the total computation time to build a numerical basis matrix of the null
space of the corresponding block Macaulay matrix (requires 33 iterations), the total
memory usage to obtain this basis matrix, and the residual error of the solutions.

Algorithm Comp. time Memory usage Residual error

standard (last iter.) 805.57 s (144.74 s) 377.59 MB 3.9× 10−13

recursive 3.54 s 377.59 MB 1.8× 10−13

sparse 1.21 s 26.56 MB 1.8× 10−13

Table 4.5: A comparison between the standard, recursive, and sparse algorithm to
solve a quadratic 3-parameter eigenvalue with 10 random seed matrices Ai ∈ R12×10.
The table contains the total computation time to build a numerical basis matrix of
the null space of the corresponding block Macaulay matrix (requires 23 iterations),
the total memory usage to obtain this basis matrix, and the residual error of the
solutions.

Algorithm Comp. time Memory usage Residual error

standard (last iter.) 48 363 s (15 720 s) 8.64 GB 3.9× 10−15

recursive 184.34 s 8.64 GB 1.8× 10−14

sparse 130.45 s 0.46 GB 1.8× 10−14

iterations to build a 7395× 7936 block Macaulay matrix (i.e., total degree of highest
monomial is equal to 30) that has a null space with the correct solutions of the prob-
lem. Table 4.6 compares the computation time and maximum residual error of the
different algorithms. The recursive and sparse algorithm are also much faster than the
standard algorithm in the case of this system identification problem, while resulting
in more or less the same residual errors. In these practical problems, the proposed
algorithms allow us to tackle problems that are much larger than possible with the
standard algorithm.

5. Conclusions and future work. In this paper, we presented recursive algo-
rithms to update a numerical basis matrix of the null space of the block row, (banded)
block Toeplitz, and block Macaulay matrix. These recursive algorithms use the nu-
merical basis matrix computed during the previous iteration in order to efficiently de-
termine an update. Furthermore, we also proposed a sparse alternative for the block
Macaulay matrix, without explicitly constructing this large block Macaulay matrix.
We provided several numerical experiments to illustrate the properties of these four
algorithms and to compare them with the standard full singular value decomposition.
The numerical experiments, like the least-square realization problem, motivated the
need for faster algorithms: the proposed recursive (and sparse) algorithms clearly
outperformed the standard approach.

The recursive approach and sparse adaptation have given us the opportunity
to solve larger multiparameter eigenvalue problems (MEPs) than possible with the
standard approach. In the future, we will consider memory-efficient implementations

UPDATE A NUMERICAL BASIS MATRIX RECURSIVELY 25

Table 4.6: A comparison between the standard, recursive, and sparse algorithm to
solve a least-squares realization problem with N = 7 data points, which corresponds
to a quadratic 2-parameter eigenvalue with 6 random seed matrices Ai ∈ R17×16. The
table contains the total computation time to build a numerical basis matrix of the null
space of the corresponding block Macaulay matrix (requires 28 iterations), the total
memory usage to obtain this basis matrix, and the residual error of the solutions.

Algorithm Comp. time Memory usage Residual error

standard (last iter.) 1049.23 s (219.28 s) 508.84 MB 5.1× 10−10

recursive 22.24 s 508.84 MB 4.9× 10−10

sparse 19.05 s 34.36 MB 1.4× 10−9

and improve our current algorithms to further push the limits. Analogue approaches
for Hankel and block Hankel matrices could also be useful in other application areas.
Furthermore, we want to translate our efforts from the singular value decomposition to
the QR-decomposition, enabling column space based solution approaches for MEPs.

REFERENCES

[1] G. B. Adams, M. F. Griffin, and G. W. Stewart, Direction-of-arrival estimation using
the rank-revealing URV decomposition, in Proc. of the 1991 International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 91), Toronto, Canada, 1991, pp. 1385–
1388.

[2] M. O. Agudelo, C. Vermeersch, and B. De Moor, Globally optimal H2-norm model reduc-
tion: A numerical linear algebra approach, IFAC-PapersOnLine, 54 (2021), pp. 564–571.
Part of special issue: 24th International Symposium on Mathematical Theory of Networks
and Systems (MTNS).

[3] F. V. Atkinson and A. B. Mingarelli, Multiparameter Eigenvalue Problems: Sturm–
Liouville Theory, CRC Press, Boca Raton, FL, USA, 2010.

[4] K. Batselier, P. Dreesen, and B. De Moor, The geometry of multivariate polynomial di-
vision and elimination, SIAM Journal on Matrix Analysis and Applications, 34 (2013),
pp. 102–125.

[5] K. Batselier, P. Dreesen, and B. De Moor, A fast recursive orthogonalization scheme for
the Macaulay matrix, Journal of Computational and Applied Mathematics, 267 (2014),
pp. 20–32.

[6] J. R. Bunch and C. P. Nielsen, Updating the singular value decomposition, Numerische
Mathematik, 31 (1978), pp. 111–129.

[7] B. De Moor, Least squares realization of LTI models is an eigenvalue problem, in Proc. of the
18th European Control Conference (ECC), Naples, Italy, 2019, pp. 2270–2275.

[8] B. De Moor, Least squares optimal realisation of autonomous LTI systems is an eigenvalue
problem, Communications in Information and Systems, 20 (2020), pp. 163–207.

[9] P. Dreesen, K. Batselier, and B. De Moor, Multidimensional realisation theory and poly-
nomial system solving, International Journal of Control, 91 (2018), pp. 2692–2704.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, USA, 4th ed., 2013.

[11] N. J. Higham, S. D. Mackey, and F. Tisseur, The conditioning of linearizations of matrix
polynomials, SIAM Journal of Matrix Analysis and Applications, 28 (2006), pp. 1005–1028.

[12] G. T. Krishna, I. Singh, and K. Giridhar, Null-space of block convolution matrix, in Proc. of
the 2013 National Conference on Communications (NCC), New Delhi, India, 2013, pp. 1–5.

[13] S. Kritchman and B. Nadler, Non-parametric detection of the number of signals: Hypothesis
testing and random matrix theory, IEEE Transactions on Signal Processing, 57 (2009),
pp. 3930–3941.

[14] F. S. Macaulay, Some formulae in elimination, Proc. of the London Mathematical Society, 1
(1902), pp. 3–27.

[15] F. S. Macaulay, The Algebraic Theory of Modular Systems, vol. 19 of Cambridge Tracts in

26 CHRISTOF VERMEERSCH AND BART DE MOOR

Mathematics and Mathematical Physics, Cambridge University Press, London, UK, 1916.
[16] S. D. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Structured polynomial eigenvalue

problems: Good vibrations from good linearizations, SIAM Journal on Matrix Analysis and
Applications, 28 (2006), pp. 1029–1051.

[17] S. D. Mackey, N. Mackey, and F. Tisseur, Polynomial eigenvalue problems: Theory, com-
putation, and structure, in Numerical Algebra, Matrix Theory, Differential-Algebraic Equa-
tions and Control Theory, P. Benner, M. Bollhöfer, D. Kressner, C. Mehl, and T. Stykel,
eds., Springer, Cham, Switzerland, 2015, pp. 319–348.

[18] N. Mastronardi, M. Van Barel, and R. Vandebril, On the computation of the null space of
Toeplitz-like matrices, Electronic Transactions on Numerical Analysis, 33 (2009), pp. 151–
162.

[19] V. Mehrmann and H. Voss, Nonlinear eigenvalue problems: A challenge for modern eigen-
value methods, GAMM-Mitteilungen, 27 (2004), pp. 121–152.

[20] M. Moonen, B. De Moor, L. Vandenberghe, and J. Vandewalle, On- and off-line identifi-
cation of linear state space models, International Journal of Control, 49 (1989), pp. 219–232.

[21] M. Moonen, P. Van Dooren, and J. Vandewalle, A singular value decomposition updating
algorithm for subspace tracking, SIAM Journal on Matrix Analysis and Applications, 13
(1992), pp. 1015–1038.

[22] P. O. Perry and P. J. Wolfe, Minimax rank estimation for subspace tracking, IEEE Journal
of Selected Topics in Signal Processing, 4 (2010), pp. 504–513.

[23] B. Plestenjak, C. I. Gheorghiu, and M. E. Hochstenbach, Spectral collocation for mul-
tiparameter eigenvalue problems arising from separable boundary value problems, Journal
of Computational Physics, 298 (2015), pp. 585–601.

[24] B. D. Sleeman, Multiparameter spectral theory and separation of variables, Journal of Physics
A: Mathematical and Theoretical, 41 (2007), pp. 1–20.

[25] G. W. Stewart, An updating algorithm for subspace tracking, IEEE Transactions on Signal
Processing, 40 (1992), pp. 1535–1541.

[26] G. W. Stewart, Updating a rank-revealing ULV decomposition, SIAM Journal on Matrix
Analysis and Applications, 14 (1993), pp. 494–499.

[27] F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, 43 (2001),
pp. 235–286.

[28] C. Vermeersch and B. De Moor, Globally optimal least-squares ARMA model identification
is an eigenvalue problem, IEEE Control Systems Letters, 3 (2019), pp. 1062–1067.

[29] C. Vermeersch and B. De Moor, A column space based approach to solve systems of multi-
variate polynomial equations, IFAC-PapersOnLine, 54 (2021), pp. 137–144. Part of special
issue: 24th International Symposium on Mathematical Theory of Networks and Systems
(MTNS).

[30] C. Vermeersch and B. De Moor, Two complementary block Macaulay matrix algorithms to
solve multiparameter eigenvalue problems, Linear Algebra and its Applications, 654 (2022),
pp. 177–209.

	Introduction
	Block row matrix
	Recursive algorithm
	Computational complexity
	Numerical experiments
	Block row matrix with increasing rank
	Block row matrix with stabilizing rank

	Block Toeplitz matrix
	Recursive algorithm
	Computational complexity
	Numerical experiments
	Block Toeplitz matrix with high-rank seed matrices
	Block Toeplitz matrix with low-rank seed matrices
	Block Toeplitz matrix with seed matrices of different sizes
	Block banded matrix without fixed seed matrices

	Block Macaulay matrix
	Recursive algorithm
	Computational complexity
	Sparse algorithm
	Numerical experiments
	Block Macaulay matrices with high-rank seed matrices
	Block Macaulay matrix with seed matrices of different sizes and with different numbers of eigenvalues
	Comparison between the iteration-wise and block row-wise algorithm
	Comparison between the recursive and sparse algorithm

	Solving multiparameter eigenvalue problems
	Random multiparameter eigenvalue problems
	Least-squares realization problem

	Conclusions and future work
	References

