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DASLog: Decentralized Auditable Secure Logging
for UAV Ecosystems

Roozbeh Sarenche, Farhad Aghili, Takahito Yoshizawa, and Dave Singelée

Abstract—Rapid technological advancements in Unmanned
Aerial Vehicles (UAVs) have revolutionized intelligent platforms
such as smart cities. These advancements have paved the way
for an emerging class of Internet of Things (IoT) systems called
the Internet of Drones (IoD), which has noteworthy security
and privacy challenges. In this paper, we tackle the problem
of secure logging and design a novel secure logging scheme –
DASLog – for the use case of aerial transport of (medical) goods
via drones. Our logging scheme provides public auditability of
logging records in the setting where all logging components
are managed by a single entity. Our secure logging system
relies on hash chains and a Merkle tree to generate proofs for
stored logging records. These proofs get written on a private
blockchain and can be used later by data consumers to verify
the integrity and completeness of a set of logging records. We
demonstrate the feasibility of our approach via a proof-of-concept
prototype relying on Hyperledger Besu and implemented on
multiple Amazon EC2 instances. The performance evaluation of
our demonstrator shows that up to 8000 logging records per
second can be processed.

Index Terms—IoT, UAV, secure logging, blockchain, Hyper-
ledger Besu

I. INTRODUCTION

A. Logging in UAV systems

Nowadays, there are various emerging use cases of Internet
of Things (IoT) technology, such as the Internet of Vehicles
(IoV), the Internet of Drones (IoD), and the Industrial Internet
of things (IIoT). Managing cybersecurity risks is a com-
plex task for many organizations using IoT devices. Popular
frameworks such as the NIST Cybersecurity Framework [1]
help to identify the necessary security and privacy controls
for information systems. One popular and important secu-
rity control is the secure implementation of logging, where
relevant data from daily operations are electronically stored.
For example, in drone or Unmanned Aerial Vehicle (UAV)
use cases, the logging records typically include UAV flight-
related information and all associated events to operate the
UAV flight service. Securely storing and managing these
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Fig. 1. Logging system in IoT use cases

logging records is a key enabler for implementing adequate
incident response management procedures, for example, to
help detecting security violations and flaws or performing
forensic analysis.

Figure 1, at a very high level, shows a typical architecture
of a logging system for IoT. Going from bottom to top, this
figure shows: (i) IoT devices that produce logging data, (ii)
a gateway for cyberphysical systems (CPS) that controls and
collects data, and forwards it to the cloud, and (iii) an auditor,
denoted as a data consumer in our system, downloads log
data for auditing. It is also apparent that there exist proofs for
verifying the correctness and completeness of this log data.
Therefore, the gateway also stores these proofs in a dedicated
register.

The need and requirements for secure logging are typically
well understood by security professionals. For example, it is
clear that security-sensitive logging data needs to be encrypted
to preserve confidentiality, and backup-ed to ensure avail-
ability. Various commercial solutions of secure logging are
available (including for IoT); most cloud providers offer secure
logging services and multiple stand-alone software tools are
present on the market.

B. Motivation

Although commercial security logging solutions are widely
available for IoT, they do not almost match well with the
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requirements of distributed IoT infrastructures such as UAV
systems. One example of IoT systems where there is a
mismatch between the state of the art and requirements, are
IoT systems where the data sources (i.e., the IoT devices in
Fig. 1) and the data controller (i.e., the gateway and cloud
storage in Fig. 1) are owned and controlled by the same entity,
but where external parties need to verify the authenticity of
the logging records (i.e., have security proofs such that the
external party knows it can trust the data it retrieved from the
logging system).

Without loss of generality, we focus in our paper on the
case of a UAV system where UAVs are used for the transport
of critical (medical) goods from one location to another. All
UAVs are controlled centrally by an operator (comparable to
an airline company in the case of passenger flights), which
is responsible for flight operations and meeting the required
safety standards and service level agreements. During these
operations, security-sensitive data is generated and stored in
logs.

In this use case, there is indeed a need for external parties to
access and verify data stored in logging records. For example:

• Usage of logging data to settle disputes with customers
about service level agreements.

• Logging data used during audits by government agencies
to verify that all safety standards were met.

• Usage of logging data during the investigation of inci-
dents by insurance companies.

The examples above already show the need for adequate
security measures to protect this data. Besides conventional
security requirements such as confidentiality, integrity, and
availability, the secure logging system in place should also
offer public auditability. Indeed, the logging data could
potentially be used as evidence to settle potential disputes.
Realizing public auditability is a challenging problem and
not offered by conventional secure logging systems. Technical
means should be in place to prevent the operator from altering
the logging records stored in the secure logging system,
deleting certain logging records, or not sending the correct
logging records to the external party during an audit. In some
cases, also additional security requirements are needed, for
example, non-repudiation.

C. Contributions of the paper

The main contributions of our paper are as follows:

• Design of a secure logging system, called DASLog, of-
fering public auditability in the setting where all logging
system components are controlled by a single entity
(denoted as the operator in the UAV ecosystem). It relies
on a private blockchain to provide an immutable and
distributed storage service of security proofs.

• Optimization of the DASLog design, allowing to process
up to 8000 logging records per second.

• Realization of a proof-of-concept of our proposed secure
logging scheme based on Hyperledger Besu, which is a
private blockchain platform, and implemented on Ama-
zon EC2 instances.

• Evaluation of the performance of our proof-of-concept
implementation and demonstration that our solution can
be practically deployed in a UAV ecosystem.

D. Organization of the paper

The rest of the paper is organized as follows. The related
work is introduced in Section II. In Section III, we explain
the UAV use case which we used as a reference for the design
of our secure logging system, including its concepts and ter-
minologies. We also list the main set of security assumptions
and security goals in this section. We provide a brief review
of blockchain technology and integration of a blockchain in
a secure logging system as preliminaries in Section IV. We
explain the components of the UTM ecosystem and our secure
logging system – DASLog – in Section V. Then, in Section VI,
we propose Simple-DASLog as a general solution for imple-
menting a secure logging system for different applications
in the IoT network. In Section VII, we present DASLog
an improved version of Simple-DASLog that is specifically
designed for the UAV ecosystem. We provide a proof-of-
concept for our proposed scheme based on Hyperledger Besu
private blockchain in Section VIII. We present the security
and performance evaluation of the proposed logging system
in Section IX. Finally, we present the conclusions and discuss
future work in Section X.

II. RELATED WORK

The problem of protecting logging records from tampering
has been addressed by various works. Schneier and Kelsey
presented cryptographic techniques to protect logging records
on untrusted storage systems [2]. Holt proposed Logcrypt [3],
which provides strong cryptographic assurances that data
stored by a logging facility before a system compromise
cannot be modified after the compromise without detection.
Crosby and Wallach presented novel efficient data structures
for tamper-evident logging [4]. Ma and Tsudik [5] proposed
an efficient and secure logging approach based on Forward-
Secure Sequential Aggregate (FssAgg) authentication tech-
niques. Recently, blockchain is being considered as a security
component within logging systems. For example, Rane and
Dixit [6] proposed BlockSLaaS: a blockchain-assisted secure
logging service for cloud forensics. Putz et al. [7] presented a
blockchain-based infrastructure for log integrity preservation
that does not depend upon trusted third parties. Paccagnella
et al. [8] presented the first kernel-based tamper-evident log-
ging system which addresses the problem of synchronous
integrity protection. Ali et al. [9] proposed a blockchain-
based log management system where administrators are not
able to modify the systems’ traces available in audit logs.
For more information regarding blockchain-based integrity
auditing, readers are referred to [10].

Not all literature focuses solely on tamper-evident secure
logging. Various work aims to design secure logging schemes
with specific additional security properties. One example is
transparency logging. This allows service providers to show
that they are compliant with a certain policy that can be
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imposed by legislation, sector regulations or internal proce-
dures, or by service level agreements made with customers or
subcontractors [11]. Sackmann et al. [12] presented the earliest
work on providing transparency of data processing by using
cryptographic systems from the secure logging area. Peeters
and Pulls proposed Insynd [13], a new cryptographic scheme
for privacy-preserving transparency logging. It improves prior
work by increasing the utility of the logging data and by
relying on a stronger adversarial model.

On the other hand, there exist several research papers
that have focused on securing the applications provided in
UAV environments using blockchain technologies. In [14], the
authors proposed a blockchain-based access control scheme
for the UAV system in the IoT environment. Their proposed
scheme allows secure communication among the UAVs, and
also among the UAVs and Ground Station Servers (GSSs).
In [15], the authors proposed a cross-domain authentication
scheme for the Internet of UAV systems which is based
on blockchain. They employed a local private blockchain to
support the registration, authentication, and security audit of
UAVs. In [16], the authors proposed an efficient data collection
system for UAV-assisted IoT systems based on blockchain. In
their proposed system, the UAV provides long-term network
access for IoT devices as an edge data collection node. They
used blockchain as a distributed, available, and immutable data
registry to store collected data from UAVs. The authors in
[17] proposed a novel secure access control, data delivery,
and collection scheme, which is based on blockchain. Their
proposed scheme provides authentication, key agreement, and
access control between a UAV and a GSS in each flying
zone. The authors describe that their scheme offers more
efficiency and better security compared to its predecessors.
In [18], the authors proposed a low-latency authentication
scheme for UAVs, which is decentralized using blockchain
technology. Their proposed scheme is zone-based architecture
in a network of UAVs, in which when the system authenticates
a UAV in a zone, it is no need to re-authenticate the UAV in
the other zones. In [19], the authors present a blockchain-
based lightweight authentication service for industrial drones.
In this scheme, UAVs can use the smart contracts deployed on
the private blockchain to acquire or update the authentication
information. In [20], the authors have proposed a blockchain-
based scheme to achieve a trustworthy UAV environment.
In this paper, a smart contract-based Proof-of-Authentication
consensus mechanism is used to verify and validate the com-
munication entities. In [21], the authors provide a review on
blockchain for medical delivery in the IoT context. The authors
of this survey inspect whether the delivery UAVs for med-
ical applications are suitable for 5G-IoT-assisted blockchain
amalgamation. However, in none of the related work above,
the need for logging and its security challenges have been
discussed.

Our work – DASLog – differs from the state-of-the-art, as
this is the first paper – to the best of our knowledge – that
aims to design a secure, tamper-evident logging scheme that
offers public auditability in the UAV ecosystem where both the
internal data sources (i.e., UAVs) and processor (i.e., logging
system) are under the control of a single entity (i.e., operator).

To realize this property, our work relies on cryptographic hash
chains and Merkle trees to generate proofs that are stored in
a private blockchain.

III. LOGGING SYSTEM FOR UAV USE CASE

Although our secure logging concept is applicable to any
IoT system where all components are controlled and managed
by a single entity, in this paper we particularly consider the use
case of UAVs that have to transport (medical) items from one
customer (e.g., hospital or care center) to another [22]. Below,
we briefly elaborate on this use case and the main components
and entities in the system.

Critical items, for example, organs or test samples in a
healthcare system, often have to be transported from one
location (e.g., medical institution) to another one. Ground
transport has important limitations, as it is not always the
fastest and most reliable option, for example, due to road
traffic. Therefore (medical) drone transport is an interesting
alternative. In this setting, one or more companies, denoted
as operators, control a fleet of UAVs, each with a carriage
system beneath. When a customer (e.g., a hospital) makes an
order to the operator to transport a (medical) item from A
to B, the operator schedules a new UAV flight. Once this is
done and approved by the authorities, the UAV will fly to
location A, pick up the item, and fly to location B where the
item is delivered. During these flights, commands are sent via
a wireless channel to the UAV, and UAV data including the
UAV’s location is received back.

It is evident that such a UAV ecosystem is heavily regulated.
Similarly, as for other air traffic, each UAV flight plan has
to be approved by the UTM (Unmanned Aircraft System
Traffic Management). Besides providing authorizations for
flights, the UTM is responsible for real-time monitoring of
all unmanned air traffic. Regulations also require operators
to be licensed to operate medical drone flights and to follow
strict (safety) procedures. Operators that do not meet these
requirements risk getting fined or even losing their licenses.
Operators will have an insurance to cover their financial losses
in case of an accident, assuming that the operator followed all
necessary procedures. Finally, operators will negotiate specific
service level agreements with their customers, as the safe
and timely delivery of some goods is crucial (e.g., in the
healthcare system, transporting an organ under the wrong
cooling conditions or not within a specific time window creates
the risk that the organ can no longer be used). Failing to meet
these agreements could result in financial compensation to be
paid to the customer.

Data and more particularly logging data is crucial during all
the processes mentioned above. Without trustworthy logging
data, it is difficult to assess whether all safety procedures and
regulations have been correctly followed or to identify the
root cause of any safety incident. Moreover, logging data is
also needed to settle any potential disputes with customers.
Therefore, there is a need for a secure logging system where
logging data can be securely stored, is only accessible to
authorized entities, and offers security guarantees to external
parties that the logging data can be fully trusted.
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Intuitively, one might think of using a decentralized
blockchain to tackle this problem. However, this would cause
latency and reliability problems, as all system entities would
have to directly forward all their logging records as transac-
tions to the blockchain. Thus, it is more reliable and efficient
to have a logging data controller that collects logging records,
stores them securely, and forwards proofs of the records to the
blockchain. In the UAV use case, this is a challenging problem,
as the logging system (i.e., the logging data controller) and
the UAVs are all under full control of the operator, which is
not necessarily trusted by the external parties requesting read
access.

A. Definitions and notations

In this section, we present the concepts, terminologies, and
notations used in our proposed secure logging system, along
with the security assumptions and goals for the UAV use case.
Table I captures the key acronyms and their definitions used
throughout the paper.

TABLE I
ACRONYM LIST

Actonym Full Name
BFT Byzantine Fault Tolerance
CFT Crash Fault Tolerance
DLT Distributed Ledger Technology
GSS Ground Station Servers
IoD Internet of Drones
IoV Internet of Vehicles
UAV Unmanned Aerial Vehicle
USP UTM Service Provider
UTM Unmanned Aircraft System Traffic Management

Below, one can find the main terminology used in the rest
of the paper.

1) Logging information: The content stored in the logging
system is organized in a hierarchical fashion, as shown in
Figure 2.

d

d

d

...

Logging DatabaseChapterLogging RecordLogging Data

Fig. 2. Log data hierarchy

• Logging data: Devices such as UAVs generate individual
pieces of data that need to be logged.

• Logging record: One or more logging data are combined
to form a logging record. A record consists of a mean-
ingful set of information combined together as a unit to
be stored in the logging database (see Section VII-B for
more details about logging record structure). Therefore,
write operations to the logging database are done at the
unit of a logging record.

• Chapter: A chapter is a collection of one or more logging
records that logically belong to each other. One can
consider a chapter as a specific view of the logging
records. Therefore, reading operations to the logging
database is done at the unit of a chapter. A typical

example of a chapter is all logging records associated
with a single UAV flight from hospital A to B.

• Logging Database: All logging records are stored per-
manently in the logging database.

2) System entities:
• UTM: The UAV Traffic Management (UTM) system is

a set of automated services that facilitates data exchange
between UAVs and other entities such as UAV operators,
UAV surveillance sensors, the air traffic management
system, etc., to ensure a safe and efficient flight for a
considerable number of UAVs [23].

• UTM Service Provider (USP): The USP is in charge
of monitoring the whole UTM system and is responsible
for UAV registration and detection, pre-flight planning,
real-time collision avoidance, etc. To monitor the UAV
ecosystem, the USP is in need of persistent surveillance
information, which is collected using tools such as radars
and surveillance sensors [24].

• UAV Operator: A UAV operator is an entity that owns
a set of UAVs and provides a specific service for its cus-
tomers, e.g., in the healthcare system, operators perform
medical parcel delivery among hospitals. The operator is
responsible to manage and monitor the flights of its own
UAVs.

• Data Source: An entity that generates logging data.
This could be an internal entity that is controlled and
managed by the operator (e.g., a UAV or any other system
component), or an external entity not under the control
of the operator (e.g., a hospital).

• Data Consumer: Any external entity requesting to read
logging records from the secure logging system is de-
noted as a data consumer.

3) Types of logging data:
• External logging data: This is logging data that is

generated by an external data source, i.e., not under the
control of the operator.

• Internal logging data: This is all the logging data that is
generated by internal data sources. An example of such
type of data is flight data, e.g., location, altitude, and
speed of a UAV.

B. Security assumptions

In this section, we list the main set of security assumptions
upon which our solution is based.

1) The logging system and its operation is under the full
control of the operator. This means that the operator
can write/read all the logging records into/from the
system and has full control over what is stored in the
logging database. This implies that the operator may try
to manipulate or alter parts of the logging records, or
omit certain logging records during the write and read
processes.

2) All internal entities in the UAV ecosystem are managed
by the operator and therefore assumed to be under the
full control of the operator. Moreover, it is assumed that
the operator and all internal entities controlled by the
operator are not compromised by an external adversary.
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Countermeasures to prevent the compromise of any
(software) component or entity in the system by external
adversaries are outside the scope of this paper.

3) A secure TLS [25] connection is available between all
the components in the logging system and their interac-
tion with the entities in the UAV ecosystem. Therefore,
any external adversary cannot read or successfully alter
logging records when these are sent from one entity to
another.

4) There are criteria in place on which data to log, how
to combine logging records into chapters, and how to
define the start and end of a chapter. These criteria are
chosen by the operator and are assumed to be publicly
known to all data consumers. The exact definitions of
these criteria are outside the scope of this paper.

5) Read requests to the secure logging system by a data
consumer are done at the granularity of a chapter.

6) Security policies are in place to define which data
consumer is authorized to access which specific set
of logging records. Different access control rules may
be applied against data consumers. Similarly, as read
requests, security policies are defined at the granularity
of chapters.

C. Security goals

A secure logging system should achieve the following
security goals [9], [26]:
Confidentiality: Only authorized data consumers can access
the content of the logging records in plaintext.
Integrity: Logging records should not be altered or deleted.
Note that the term integrity applies not only to the individual
logging records but also to the set of logging records as a
whole, i.e. chapters in our secure logging system. There exist
attacks such as a re-ordering attack and a truncation attack
that target the integrity of the whole logging record set. In the
re-ordering attack, the attacker tries to manipulate the order
in which the logging records have been processed and stored.
In the truncation attack, the attacker tries to remove some
of the logging records that belong to the same chapter. The
attacker may truncate the logging records at the beginning
or middle of a chapter (non-tail logging records) or a series
of consecutive logging records at the end of a chapter (tail
logging records) [26].
Availability: The logging records and their integrity proofs
should be available upon request.
Immutability: One should not be able to alter the proofs that
preserve the integrity of logging records.
Non-repudiation: The data sources should not be able to deny
creating a specific log record.
Public auditability: All data consumers can verify whether
or not the received logging records are correct and complete
without the need for a trusted third party.
Privacy: The process of storing logging records and their
proofs should not reveal sensitive information regarding the
log contents nor regarding the data sources.

IV. PRELIMINARIES

A. Blockchain

A blockchain is a type of Distributed Ledger Technology
(DLT) that provides a distributed peer-to-peer system for
storing data without any intermediation from a central author-
ity [27]. The blockchain network consists of multiple users
who all have access to the same blockchain ledger. In contrast
to the centralized storage systems, in a blockchain network,
multiple users can participate in the process of verifying data
and writing it on the ledger. In blockchains, data is stored in a
chain of consecutive blocks, where any new block contains
an immutable cryptographic hash of the previous block to
connect them together. Since blocks are connected to each
other using a cryptographic hash function, the data recorded
on the blockchain cannot be altered, deleted, concealed, or
falsified [28].

In a general categorization, blockchains can be divided into
two groups: public blockchains and private blockchains. In a
public blockchain, anyone can join the blockchain network and
contribute to extending the blockchain. However, in a private
blockchain, only those users who are authorized by the current
participants or validators of the network are allowed to be a
part of it [29].

The fundamental part of each blockchain is the consensus
mechanism upon which the blockchain is built. In simple
words, a consensus mechanism is a mechanism used by the
blockchain participants to agree upon a unified ledger without
the help of a central authority [30]. The most famous consen-
sus mechanism used in public and permissionless blockchains
is called Proof-of-Work (PoW). In a PoW-based blockchain,
participants need to solve a cryptographic puzzle to gen-
erate a new information block and extend the blockchain.
Since solving the cryptographic puzzle needs to consume a
considerable amount of energy, PoW-based blockchains can
defend against the Sybil attack. However, Sybil attacks are
not a threat to private blockchains because only authorized
participants are allowed to join the blockchain network [31].
Since we have more levels of trust in private blockchains
compared to public blockchains, expensive consensus mech-
anisms such as PoW are less favorable to be implemented
in private blockchains. The consensus mechanism built using
the classical fault-tolerant consensus problem, which has been
extensively studied in distributed systems since the late 1970s
and recently gained popularity in the blockchain commu-
nity, can be a proper choice to be implemented in private
blockchains [30]. Compared to PoW-based blockchains, partic-
ipants use much less computational power in the fault-tolerant
consensus mechanisms. Compared to other recently-emerged
proof-based consensus mechanisms such as Proof of Stake,
Proof of Space, etc. [32], there is no need for participants in
fault-tolerant consensus mechanisms to stake cryptocurrencies
or own huge storage space.

The fault-tolerant consensus mechanisms can be divided
into two groups: crash fault tolerance (CFT) and byzantine
fault tolerance (BFT). CFT mechanisms can only withstand
crash failures, where a crashed node simply stops executing
any operations. In other words, CFT mechanisms can be
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properly implemented in a blockchain network that is built
upon this assumption that all the network participants are
either online and following the consensus protocol or they are
offline and do not participate in the consensus mechanism. In
contrast to CFT mechanisms, BFT mechanisms can tolerate
Byzantine failures, i.e., arbitrary failures that could be caused
by software bugs, hardware errors, and malicious attacks. The
BFT-based blockchains are designed in a way that even if
there exist a few malicious participants, the honest participants
can reach an agreement upon the new blocks that extend the
blockchain. In a blockchain network comprising n participants,
the BFT-based protocols are able to typically tolerate up to
⌊n−1

3 ⌋ faulty participants [33].

B. Blockchain in secure logging systems

Since blockchain technologies can provide us with an im-
mutable and distributed storage service, they can be used to
implement a secure logging system that satisfies the integrity
of logging records, non-repudiation, and public auditability.
Blockchain immutability means that recorded data on the
blockchain ledger cannot be manipulated or modified after
being accepted by the blockchain participants [34]. Using a
blockchain platform to implement a secure logging system,
one should note that integrity of logging records and non-
repudiation property of the logging system depend on the im-
mutability of the implemented blockchain. Once immutability
is breached, a malicious user can rewrite the blockchain his-
tory, and thus, deny the validity of logging records previously
stored on the blockchain. Even if logging records are signed,
the malicious user can remove some of the logging records
and add some new logging records to the database. Although
most blockchain platforms are claimed to be immutable, there
exist some attacks that can threaten blockchain immutability.
As a result, to use a specific blockchain platform in logging
applications, one should take a closer look at the assumptions
on which the immutability of the blockchain is based to
see whether there are any feasible attacks that can break
blockchain immutability or not.

There already exist some well-known public blockchains
whose ledger has remained immutable over the past few
years. Although public PoW-based blockchains can provide a
relatively more secure ledger compared to private blockchains,
there exist some limitations such as relatively low transac-
tion throughput, long transaction confirmation time, and high
transaction fees [35] that hinder public blockchains to be used
in logging applications. In CFT-based private blockchains,
if just one of the validators decides to behave maliciously
or if the private key of one of the validators is leaked, the
malicious validator or the attacker can generate a new fork of
the blockchain ledger. As a result, a CFT-based blockchain is
not a proper choice for implementing the logging applications
since a malicious validator can generate multiple forks each
containing different logging records. The BFT-based private
blockchains are designed in a way that can tolerate malicious
validators up to a specific threshold, and thus, can be used to
implement auditing applications provided that we can make
sure that a malicious user, i.e., a user who has benefits to

change the history of logging records, has only control over a
minority of validators.

C. Approaches to implementing blockchain-based logging sys-
tems

In a general categorization, we can divide blockchain-based
logging systems into two groups:

• The logging systems in which all the logging records are
stored on the blockchain.

• The logging systems in which the logging records are
stored in a secure database and only a small amount of
information denoted as integrity proofs are stored on the
blockchain.

Although the first approach provides a high level of record
availability, it causes latency issues for the logging system.
Note that the blockchains that are implemented in IoT or IoD
networks need to provide service for a considerable number of
entities. The transaction throughput of BFT-based blockchains
is in the range of a few hundred transactions per second.
However, in the UAV ecosystem where operators need to
handle multiple simultaneous flights, the data that needs to
be processed may exceed thousands of logging records per
second. Therefore, In scenarios where a huge number of
logging records are generated, writing all the logging records
on the blockchain would be impractical.

In the second approach, a gateway collects the logging
records, stores them in a secure central database, and writes the
integrity proofs of the logging records on the blockchain. Since
the size of proofs is much less than the actual logging records,
a lower communication and storage overhead is imposed on
the blockchain in the second approach.

D. Hash chain

A hash chain is a successive application of a crypto-
graphic hash function on data. For example, in equation
c = h(h(h(x))) the value c contains the result of a hash
function being applied three times in a successive manner on x.
One of the prominent use of a hash chain is to generate a one-
time key or password. There are multiple ways hash chains can
be organized. For instance, a hash chain can be structured in
the form of a binary tree. In this case, the concatenation of
two hash values of two child nodes becomes the input to the
hash function of the parent node immediately above them. A
well-known such structure is called Merkle Tree.

E. Merkle tree

A Merkle tree is a data structure that commits a set of data
or information using a cryptographic operation, thus ensuring
the integrity of these data. It uses a binary tree, or a binary
hash chain, to organize data blocks with each of the nodes
containing the hash value in an organized fashion. Each leaf
node at the bottom of the tree holds a cryptographic hash of a
specific data block. Then all non-leaf nodes contain a hash of
its child nodes, thus subsequently forming a cascading chain
of hash values. This way, the top (root) of the tree represents
the commitment of the entire data structure represented in
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the aggregation of leaf nodes. Merkle tree, as a tree of hash
values, enables efficient verification of the integrity of the data
content.

V. DASLOG SECURE LOGGING DESIGN

In the UTM ecosystem, there exist two main components
called USP and UAV operators.
USP: In our scheme, we assume there is a single UTM service
provider (USP) that is in charge of monitoring all the UAV
flights performed by multiple operators. The UAV ecosystem
is equipped with a set of surveillance sensors that can col-
lect information regarding UAV positioning, navigation, and
tracking. This surveillance information is not only important
for real-time monitoring of UAVs but also can help detect any
conflicts in the internal logging records generated by UAVs, as
mentioned before. There is a secure communication channel
that connects each UAV, surveillance sensor, and operator to
the USP.
UAV Operators: In our scheme, we assume there exist
multiple operators that provide a specific service (e.g., medical
parcel delivery) to their customers. Each operator owns a set
of UAVs and covers a set of customers.

A. DASLog system overview

As depicted in Figure 3, there are four categories of entities
in DASLog: (1) central logging system managed by the UAV
operator, (2) data source, (3) data consumer, and (4) 3rd
party register. We discuss the high-level functionalities of each
category below.

Central Logging System managed by the UAV Operator:
In our scheme, each UAV operator is equipped with a central
logging system. For the sake of convenience, we may use the
name operator interchangeably with the central logging system
managed by the operator in the rest of the paper. The central

logging system consists of four different entities, as shown in
Figure 3: Control Interface, Logging Interface, Access Control,
and Logging Database.

• Control Interface: The control interface interacts with
internal and external entities for the purpose of managing
and controlling the secure storage and retrieval of logging
information. It accepts logging records that are generated
and sent by data sources and forwards them to the logging
interface for further processing. For retrieval of existing
logging information from the logging database, it accepts
requests from a data consumer and forwards it to the
logging interface when the access control component
accepts the read request.

• Logging Interface: For storage of new logging informa-
tion in the logging database, the logging interface accepts
logging records from the control interface, encrypts them,
and stores them in the logging database. For retrieval of
existing chapters from the logging database, the logging
interface accepts read requests from data consumers via
the control interface, retrieves the relevant chapters, de-
crypts them, and returns them to the requesting entity.
The logging interface is also responsible for interacting
with the external 3rd party register to store auxiliary
information, associated with the overall integrity of the
logged information, denoted as “proofs”. This interaction
with the 3rd party register realizes the public auditability
property, as will be discussed later in the paper.

• Access Control: The main purpose of the access con-
trol component is to decide whether a data consumer
is authorized to retrieve specific logging records. This
component contains the access control policies defined
by the administrator of the logging system. During a
read operation, the access control component receives
a query from the control interface. This query contains
a set of attributes, which fall into two categories: (1)
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object attributes, related to the logging records (i.e.,
identification and type of the logging record), and (2)
subject attributes, which are the properties of the data
consumer.

• Logging Database: The logging database is a database
that stores encrypted logging records received through the
logging interface.

Data Source: The data source generates the logging
records that need to be stored in the central logging system.
Upon generation, the logging records are sent to the control
interface component. In our scheme, data sources can be either
under the control of the operator such as UAVs, or external
entities such as the USP and customers.

Data Consumer: The data consumer is the entity that
requests one or more chapters from the central logging system.
When the data consumer is authorized to read the requested
chapters, the central logging system will fetch and decrypt
these chapters from its logging database and send the result to
the data consumer. Moreover, it will also provide the necessary
pointers (to the proofs stored in the 3rd party register, see
further) that enable the data consumer to verify the correctness
and completeness of the received chapters (i.e., all the logging
records that belong to the requested chapter are sent to the data
consumer, and these are all legitimate logging records).

3rd Party Register: Since the whole central logging
system is managed by the operator, one needs an additional
component to ensure public auditability. This entity is denoted
as the 3rd party register. It provides a particular storage
service to the central logging system. More specifically, all
data written into the 3rd party register can no longer be altered
or deleted once it is written. All data consumers have read
access to the 3rd party register and can read any information
stored on it. In our secure logging system, rather than storing
all the logging records on the 3rd party register, only a small
piece of information, denoted as proof, is stored on the 3rd
party register. At the writing time, the operator generates a
proof for each set of logging records and stores it on the
3rd party register. Later, at reading time, data consumers can
use the stored proofs to verify whether or not the retrieved
chapters are correct and complete. The 3rd party register that
is implemented in our scheme should satisfy two important
properties:
(1) Availability: all the data consumers should have access to
the 3rd party register whenever needed.
(2) Immutability: once a proof is written on the 3rd party
register, it should no longer be possible to modify or delete
the proof in the future.
In our scheme, we have used a private blockchain to realize
the security properties of the 3rd party register.

B. Private blockchain as a 3rd party register

To implement a 3rd party register in our secure logging
system, we have used a BFT-based private blockchain. A
private blockchain network consists of multiple authorized
users who have the right to write/read the information on/from
the blockchain ledger. Users in the private blockchain can play
the role of either validator nodes or non-validator nodes. The

validator nodes should participate in processing the consensus
mechanism to generate new information blocks. However,
the non-validator nodes only have access to the blockchain
information and do not participate in extending the blockchain.
In order to preserve immutability in our BFT-based private
blockchain, we need to make sure that only a minority
of validators behave maliciously. As already mentioned, the
operator is responsible to store the proofs of logging records on
the private blockchain. Once the proofs are stored, a malicious
operator should not be able to modify them. Therefore, the
number of validators under the control of the malicious
operator should be less than 33% of the whole number of
validators. To achieve this we need to distribute the role of
blockchain validators among different entities in DASLog,
such as customers, the government agency, insurance compa-
nies, and UAV operators. In this case, one has the guarantee
that the malicious operator cannot modify an existing proof
on the blockchain. In the following, we briefly mention the
main reasons to choose a BFT-based private blockchain to
implement the 3rd party register in our scheme:

(1) A private blockchain can provide a ledger to which data
consumers can easily have access at the reading time. If a few
nodes get offline, the data consumers can still fetch the proofs
from the blockchain and verify the logging records.

(2) Since there exists a strong regulation on authorizing
the entities that can participate in the UAV ecosystem, a
private blockchain should be used to implement the 3rd party
register to prevent unauthorized users from compromising the
blockchain information.

(3) A private blockchain enjoys high throughput, high
transaction speed, and zero-fee transaction support.

(4) A BFT-based private blockchain can satisfy the property
of immutability even in the presence of a malicious operator.

VI. SIMPLE-DASLOG SOLUTION

In the simple version of DASLog solution (Simple-
DASLog), we do not impose any assumptions on the logging
record structure. In other words, we let logging records have
any arbitrary formats. Therefore, Simple-DASLog not only can
be applied to the UAV ecosystem but can be used to implement
a secure logging system for different IoT applications. In
Simple-DASLog, to achieve a secure logging system, we need
to consider the following security assumption: The operator is
assumed to be honest at the time of the initial write process
of logging records, i.e., when storing a new logging record in
the logging database. This implies:

1) all logging records and their constituting data are valid
and correct (i.e., no fake data is being generated).

2) all logging records and their data are complete (i.e., no
data is deliberately omitted during the writing process).

However, the operator may not be honest during the reading
process of the logging records, i.e., when retrieving logging
records from the logging database. This implies that when
a data consumer requests to read a specific set of logging
records, the operator may try to manipulate or alter parts of
the retrieved logging records, omit certain logging records, or
even send fake logging records to the data consumer instead
of legitimate logging data.
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In Section VII, by imposing a specific frame structure on
the logging records, we no longer need the aforementioned
security assumption of Simple-DASLog.

There are three main steps in the lifetime of a logging
record: (1) writing the logging record into the logging system,
(2) reading one or more logging records, and (3) verification
of the correctness and completeness of the logging records
that were fetched from the logging system.

A. Write operation in Simple-DASLog

For each mission that takes place under the supervision
of the operator, e.g., a flight operation for parcel delivery,
a new chapter is created. All the logging records that are
generated during the mission will be added to the created
chapter. The first and the last logging records of each chapter
respectively declare the start of a new chapter and the ending
of that chapter. Each chapter C is uniquely identified by a
unique identification number, i.e., CID. We assume CID of each
chapter is publicly available to all data consumers. During the
write operation, the logging records are processed and stored
in a central database. Besides, a set of proofs is generated and
stored on the private blockchain to preserve the integrity of
the logging records. The detailed steps of the write operation
are as follows:
(1) We use a smart contract to write the proofs and other
auxiliary information on the private blockchain. Our smart
contract includes three main functions called the initializing
function, the proof function, and the finalizing function. In
DASLog, time is divided into epochs whose length is chosen
based on the secure logging system specifications, such as
the block generation time of the private blockchain used to
implement the 3rd party register (see later in this paper). The
epoch length can be set in the range of a few seconds. Let
estart represent an epoch in which the chapter CID starts. At
the end of epoch estart, the logging interface component in the
operator uses the initializing function to write the following
message on the blockchain:

M Init
CID

=
{
CID, estart

}
(1)

M Init
CID

proves that the operator has accepted the responsibility
of the mission and cannot deny performing such a mission
in the future. We assume that the first logging record of the
chapter, i.e., L1, which contains general information regarding
the mission, is the only logging record created in epoch estart.
(2) A data source sends its logging record Li to the control
interface component of the operator. Here, the index i declares
that Li is the ith logging record of its chapter. Note that the
data source and the control interface have no idea about the
index of the logging records, and the index i is just used for
the sake of convenience in representing further relations.
(3) Upon receiving a logging record, e.g., Li, the control
interface first finds its corresponding CID, i.e., specifies to
which chapter the logging record belongs. Note that it is
possible that the same operator performs several missions
simultaneously, where each of these missions has its own CID.
Then, the control interface sends the tuple (CID, Li) to the
logging interface component in the operator.

(4) Once the logging interface receives the tuple (CID, Li),
it should store the encrypted version of the received log-
ging record, i.e., Enck1

(Li), in the logging database. Here,
Enck1

(·) denotes a symmetric encryption scheme, and k1 is
the symmetric encryption key that is securely stored in the
logging system. Since in our scheme, the encrypted version
of the logging records is stored in the database, even if an
attacker gets physical access to the logging database, he/she
cannot get the content of the logging records.
(5) Prior to sending the encrypted logging record to the logging
database, the logging interface uses the relation CPID =
HMACk2(CID) to generate a pseudo identifier of the chapter.
Here, k2 is the HMAC function key that is securely stored
by the operator. Note that all logging records that belong to
the same chapter have the same CPID. The reason for storing
encrypted logging records in the database with their pseudo
identifier instead of their public factor CID is because if the
logging database gets compromised, no identifying metadata
would be leaked. Once CPID is generated, the logging interface
forwards the tuple (CPID,Enck1

(Li)) to the logging database
component in the operator, where the tuple is immediately
stored as a new array.
(6) In addition to storing encrypted logging records in the
logging database, the logging interface performs the task
of proof generation in parallel. At the end of each epoch,
the logging interface fetches all the logging records received
during the epoch. Note that the operator may handle several
missions simultaneously, and thus, there may exist several
ongoing chapters in one epoch. Since the collected logging
records during the epoch can belong to different chapters,
the logging interface distributes the logging records among
separate logging record sets, where each set is assigned to
one of the chapters. We use index e to represent the current
epoch. Let Le

C denote the set of logging records that belongs
to chapter C and is collected by the logging interface during
the eth epoch. If the operator receives no logging record for
the ongoing chapter C in epoch e, we use the representation
Le
C = ∅. In the case that Le

C is not an empty set, let
Le
C = {Lq+1, Lq+2, · · · , Lq+n} be the set of n logging

records that belongs to chapter C and is collected by the
logging interface during the eth epoch. The fact that the index
of logging records in Le

C starts from q+1 declares that logging
records L1, L2, · · · , Lq of chapter C have been processed in
previous epochs. There exist two types of proof in Simple-
DASLog: the single proof and the hash-chain proof. For
each logging record Li ∈ Le

C , the single proof P
single
i , C is

calculated using the relation P
single
i , C = H(Li), where H(·) is

a cryptographic hash function. In contrast to the single proof,
where a separate proof is generated for each logging record,
only one hash-chain proof, i.e., P hash-chain

e , C , is generated for all
the logging records in Le

C . At the end of each epoch, a new
hash-chain proof is calculated for each ongoing chapter. The
hash-chain proof of chapter C in epoch e can be calculated
using Algorithm 1. Since the hash-chain proof is generated
using a recursive algorithm, for calculating the hash-chain
proof of a specific chapter in epoch e, the logging interface
needs to have the hash-chain proof of the same chapter in
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Algorithm 1 Hash-chain proof calculation in Simple-DASLog

P hash-chain
estart , C

← H(CID||L1) ▷ Hash-chain proof calculation of the starting epoch
for i = estart + 1 to e do ▷ A loop for hash-chain proof calculation of the eth epoch

if Li
C = ∅ then ▷ In the case that Li

C is an empty set.
P hash-chain
i , C ← H(P hash-chain

i−1 , C ||Null) ▷ Null is a specific message indicating that Li
C is empty.

else ▷ In the case that Li
C is not empty: Li

C = {Lq+1, Lq+2, · · · , Lq+n}
v ← P hash-chain

i−1 , C ▷ v is a temporary variable to store the latest value of the hash-chain proof.
for j = q + 1 to q + n do

v ← H(v||Lj)
end for
P hash-chain
i , C ← v

end if
end for

epoch e− 1. As a result, in our scheme, the logging interface
stores the hash-chain proof calculated in the last epoch in a
temporary memory.

Let Pe
C = {P single

q+1 , C , P
single
q+2 , C , · · · , P

single
q+n ,C , P

hash-chain
e , C }

represent the proof set generated for chapter C at the end of
epoch e. In total, the logging interface generates n+1 proofs
for the logging record set Le

C in the eth epoch, n single proofs
for its n logging records and one hash-chain proof for the
whole set. Note that if Le

C = ∅, we have Pe
C = {P hash-chain

e , C }.
At the end of each epoch, a separate proof set is generated for
each of the ongoing chapters. In Section VI-B, we will discuss
how these proofs are used by the data consumer to verify the
received logging records at the time of reading.
(7) Once all the proofs are generated, the logging interface
creates a Merkle tree for epoch e, where each leaf represents
one of the proofs (the single and hash-chain proofs of all the
ongoing chapters in epoch e), and calculates the Merkle root
proof MRe. Then, the logging interface extracts the paths
for each leaf proof. The path of the single proof for record
Li ∈ Le

C and the hash-chain proof for Le
C are respectively

denoted by PATHsingle
i , C and PATHhash-chain

e , C .
(8) The Merkle root proof MRe is the only proof in epoch e
that gets stored on the private blockchain. There is no need
to store single and hash-chain proofs, neither in the logging
database nor in the private blockchain, which makes the
scheme efficient with low latency. At the end of epoch e, the
logging interface uses the proof function in the deployed smart
contract to write the following message on the blockchain:

MProof
e =

{
MRe, e

}
(2)

Once MRe is written on the blockchain, the logging in-
terface extracts its corresponding transaction address. We use
AddreMR to represent the address of the Merkle root proof
MRe. The address will be used by data consumers to read
the Merkle root proof from the blockchain at the time of
reading. For each Li ∈ Le

C , the logging interface forwards the
tuple

(
PATHsingle

i , C ,Enck1(e),Enck1(AddreMR)
)

to the logging
database, where it gets stored within the row data that belongs
to Li. In summary, at the end of the writing process in epoch
e, the following array has been stored in the logging database

for the logging record Li ∈ Le
C :(

CPID,Enck1
(Li),PATHsingle

i , C ,Enck1
(e),Enck1

(AddreMR)
)
(3)

In addition to logging record arrays, there exists a separate
array, named hash-chain-proof array, for each chapter in the
logging database that stores information regarding the most
recent hash-chain proof of the corresponding chapter. At the
end of epoch e, the logging interface updates the hash-chain-
proof array for chapter CID as follows:(

CPID,PATHhash-chain
e , C ,Enck1

(e),Enck1
(AddreMR)

)
(4)

The sequence of the write operation in epoch e is depicted in
Figure 4.
(9) Let eend represent an epoch in which the last logging record
of the chapter is processed. Similar to the previous epochs,
the logging interface performs the task of proof generation
for epoch eend and writes MProof

eend
on the blockchain. Besides,

Logging system

Blockchain

{Lq+1, …,Lq+n}

CPID

CPID Enck1(Li) Enck1(AddrMR)
e

CPID PATHe,C Enck1(AddrMR)
e

H(Li)

MR

Hash-chain

... . . .

MR

PATHi,C
single

hash-chain

Enck1(Li)HMAC

PATHi,C       ,   single PATHe,C 
hash-chain

Enck1(e)

AddrMR     
e

Enck1(e)

Pq+1,C
single

Pq+2,C
single

Pq+n,C
single

Pe,C
hash-chain…

Merkle tree

Logging Database

e

e

Enck1(e)

Fig. 4. The sequence of the write operation in epoch e.
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the operator uses the finalizing function in the deployed smart
contract to write the following message on the blockchain:

MFinal
CID

=
{
CID, eend

}
(5)

MFinal
CID

declares the end of the chapter CID.

B. Read operation in Simple-DASLog

Recall that read requests are done at the granularity of a
chapter. The detailed steps are as follows:
(1) As the first step, the data consumer authenticates itself to
an identity and access management (IAM) server and obtains a
fresh access token upon successful authentication (see Section
VIII-B for more details of the IAM server we used for our
proof-of-concept). The authentication process and the structure
of the access token are outside the scope of this paper.
(2) Without loss of generality, let us assume that the data
consumer wants to access one specific chapter C whose
public identifier is denoted by CID. To do this, after having
obtained a fresh access token from the IAM, the data con-
sumer sends a read request for C to the control interface
component in the operator. This request consists of two items:
(CID,Access Token).
(3) Upon receiving a read request from a data consumer,
the control interface uses the access token to enforce the
access control policies and check whether the data consumer is
authorized to retrieve the requested chapter CID. If the access
is denied, the read operation gets terminated. If the access
is granted, the control interface forwards CID to the logging
interface.
(4) Upon receiving CID, the logging interface first generates
the corresponding pseudo identifier, i.e., C read

PID , using the
relation C read

PID = HMACk2
(CID). Next, it queries the logging

database to retrieve all the arrays belonging to chapter C read
PID .

(5) The logging database will return the array set composed
of all the logging records belonging to chapter C read

PID :

{(
CPID,Enck1(Li),PATHsingle

i , C ,Enck1(e),Enck1(AddreMR)
)

∣∣∣ CPID = C read
PID

}
(6)

Note that in the representation above, the index e represents the
epoch in which the corresponding logging record is received
and processed, and since the different logging records may
be processed in different epochs, the epoch index can vary for
different logging records. Let us denote the index of the epoch
in which the chapter C read

PID has ended as eend. In this case, the
logging database returns the following hash-chain-proof array
for the chapter C read

PID :(
C read

PID ,PATHhash-chain
eend , C ,Enck1(eend),Enck1(Addreend

MR)
)

(7)

Using the key k1 stored in secure memory, the logging in-
terface decrypts all the encrypted logging records Enck1

(Li),
the epochs in which the logging records have been generated
Enck1

(e), and the proof addresses Enck1
(AddreMR). Then, the

logging interface sends the following message to the control
interface: {(

Li,PATHsingle
i , C , e,AddreMR)

)
| Li ∈ C

}
∥ (PATHhash-chain

eend , C , eend,Addreend
MR)

(8)

In addition to the logging records, the array above contains the
paths, the epochs, and the addresses of all the single proofs
as well as only the last hash-chain proof of the chapter.
(6) The control interface forwards this data to the data con-
sumer.

C. Verification phase in Simple-DASLog

Upon receiving the response from the operator, the data
consumer needs to verify the correctness and completeness
of the received logging records. The verification steps are as
follows.
(1) The data consumer needs to verify the only hash-chain
proof of the chapter, i.e., P hash-chain

eend , C
. The data consumer uses

Addreend
MR to fetch the Merkle root proof of an epoch in which

the proof P hash-chain
eend , C

has been generated from the blockchain.
Next, it uses Algorithm 1 and the set of logging records (Li)
received from the control interface to calculate P hash-chain

eend , C
.

Then, it uses P hash-chain
eend , C

and the received path PATHhash-chain
eend , C

to reconstruct the Merkle root. If the computed Merkle root
corresponds to the one retrieved from the blockchain, the
verification holds. By performing the first verification step,
the data consumer can make sure that none of the non-tail
logging records has been modified or deleted and that the
sequence of received logging records has been preserved.
(2) As the second verification step, the data consumer reads
MFinal

CID
from the blockchain and fetches eend. If the epoch in

which the last received logging record is processed is the
same as eend, the verification holds. Note that to prevent a
malicious operator from performing the tail-truncation attack
at the reading time, the second verification step is necessary.
See Section IX-A for more details regarding the truncation
attack.

When these verification steps pass successfully, the data
consumer knows the set of logging records it received is
correct and complete, i.e., no logging records have been
omitted or altered, and the sequence of logging records within
the chapter has been preserved. Note that in this case, the ver-
ification of the single proofs of each logging record would be
redundant and hence not needed. However, if the verification
procedure depicted above fails, then the single proofs of the
individual logging records can be used to spot which record(s)
have been modified or deleted.

VII. DASLOG SOLUTION

Simple-DASLog was proposed based on the security as-
sumption that the operator is honest during the write operation.
In the improved version, which is denoted by DASLog, we
introduce a logging record structure that helps us remove
the mentioned security assumption. Compared to the Simple-
DASLog, DASLog has the following advantages:
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1) The operator may not be honest during the write operation.
2) While Simple-DASLog is a general scheme that can be
applied to different applications in the IoT network, DASLog
is specifically designed for the UAV ecosystem, and thus,
considers more details regarding UAV flights.
3) The privacy level is improved compared to the simple
version.

The DASLog solution is designed based on the following
security assumptions:
1) External logging data is digitally signed by the external data
source that generated the data.
2) We assume that the correctness of internal logging data
can be verified by external parties (most notably the USP).
Evidence of these types of verification by external parties,
e.g., flight data monitored by the USP, is digitally signed by
this external party and stored together with the logging data.
Data consumers are expected to verify these digital signatures
when retrieving this type of logging data.

Before we discuss these three main phases (write, read, and
verification), we first need to declare how a new chapter starts
and specify the logging record structure in DASLog.

A. Start of a new chapter in DASLog

For each flight that takes place under the supervision of the
operator, a new chapter is created. All the logging records that
are generated during the flight operation will be added to the
created chapter. Each chapter C is uniquely identified by a
unique identification number, i.e., CID, which represents the
UAV flight number. In the following, we present a scenario
as an example to explain how a chapter starts, how a unique
identification number is assigned to each chapter, and how
the pre-flight information is processed. Note that the writing,
reading, and verification steps in DASLog are independent of
the starting scenario, and DASLog can be applied to all the
scenarios in the UAV ecosystem.

In DASLog, each entity owns a pair of public and private
keys. Let σE(M) represent the signature of entity E on
message M created using E’s private key. Assume customer
A wants to transfer a parcel to customer B. They create
a contract CNTA,B which comprises necessary information
regarding the parcel aerial delivery. This contract consists of
four parts: CNTA,B = CNT1

A,B||CNT2
A,B||N1

A,B||N2
A,B. CNT1

A,B
includes general information regarding the flight such as the
origin, the destination, and the time at which the flight will
take place – USP needs to have access to CNT1

A,B to arrange
the flight operation. CNT2

A,B includes privacy-sensitive
information such as parcel specifications, and N1

A,B and N1
A,B

represent two cryptographic nonces. Let the operator O be
chosen by customers to operate the flight. Customer A sends
the message

{
CNTA,B, σA

(
CNTA,B

)
, σB

(
CNTA,B

)}
to the

operator O, where the message contains the contract and
the signatures of customers A and B on the contract. The
operator sends the pre-flight request {FP,CNT1

A,B, N
1
A,B}

to USP, where FP represents the technical description of
the flight plan. If airspace requirements are met and there
is no conflict with the other flights, USP generates the
unique identification of the flight, i.e., CID, and returns the

t.d. s.
timestampdata signature

H(.)

Log Record LDS, j-1

i’ Log Record LDS, j

i

 H(L      )DS, j-1

i’

 H(L      )DS, j-2

i’’

Fig. 5. The structure of logging records generated by the same data
source in DASLog

message
{
CID, σUSP

(
CID||H1(CNT1

A,B||NA,B)
)
, σUSP

(
FP

)}
as flight confirmation to the operator O, where H1(·) is a
cryptographic hash function.

B. Logging record structure in DASLog

Recall that logging records are generated by a data source
and that logging records are logically combined into chapters.
Therefore, the first and the last logging records of each
chapter respectively declare the start of a new chapter and
the ending of that chapter. All the remaining logging records
are generated by one of the data sources (represented by DS),
namely customers, UAVs, and USP.

A logging record in DASLog is represented by LDS,j
i . Here,

the index i declares that LDS,j
i is the ith logging record of its

chapter. Note that the data source has no idea about the index
of the logging records, and the index i is just used for the sake
of convenience in representing further relations. The upper
index j shows that LDS,j

i is the jth logging record generated
by DS in this chapter. Whenever there is no point in referring
to the generator of the logging record, we simply use Li to
represent the logging record.

All the logging records, except the first and the last ones,
consist of four fields: the actual logging data, a time stamp,
the hash of the previous logging record generated by the
same data source, and the signature(s). The main part of each
logging record is the actual logging data generated by the
data source. The format of this data is not important for our
solution and hence is out of the scope of this paper. Each
logging record contains the time stamp at which the logging
record is generated by the data source. Besides, each logging
record, e.g., LDS,j

i for j ≥ 2, created by the data source DS
contains the hash of logging record LDS,j−1

i′ , where LDS,j−1
i′

is the last logging record generated by the same data source
DS in the current chapter. Therefore, each data source needs a
temporary memory to store the hash of its last logging record.
Moreover, the data source also signs all the fields using its
unique private signing key. This proposed log record structure
is shown in Figure 5.

If DS is a data source that is not under the control of the
operator, i.e., DS is either a customer or the USP, the logging
record generated by DS has the following format:

LDS,j
i ={
data, ts,H

(
LDS,j−1
i′

)
, σDS

(
data||ts||H

(
LDS,j−1
i′

))}
,

(9)

where data is a piece of external logging data, and H(·) is a
cryptographic hash function. Upon generating a new logging
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record, the data source DS sends its logging record LDS,j
i to

the control interface component in the operator O.
However, if a UAV is the generator of the logging record,

the UAV itself doesn’t directly send the logging record to the
operator. In our scheme, the operator is responsible to equip
and control the UAVs, and thus, can find access to the private
keys stored inside the drones. If logging records of UAVs were
sent directly to the operator, the operator could have forged
the UAV logging records. To prevent forging UAV logging
records, UAVs send their logging records to USP. Let RLUAV,j

i

denote a raw logging record generated by the UAV. We have:

RLUAV,j
i =

{
dataUAV, tsUAV,H

(
RLUAV,j−1

i′

)
,

σUAV

(
dataUAV||tsUAV||H

(
RLUAV,j−1

i′

))}
,

(10)

where dataUAV is a piece of verifiable internal logging data.
Upon generating the raw logging record RLUAV,j

i , the UAV
sends RLUAV,j

i to USP. As already mentioned, we assume
that the UTM ecosystem is equipped with drone surveillance
sensors that are in contact with USP. These sensors can detect
UAVs and collect information regarding the UAV operations
such as location, altitude, and speed of a UAV. This informa-
tion can help USP detect technical conflicts in logging data
sent from UAVs. Let datasensor denote technical information
regarding the UAV flight measured by surveillance sensors
at time tsUAV. Upon receiving RLUAV,j

i , USP generates the
logging record LUAV,j

i as follows and forwards it to the control
interface component in the operator O:

LUAV,j
i =

{
RLUAV,j

i ,datasensor, σUSP
(
RLUAV,j

i ||datasensor)}
(11)

C. Write operation in DASLog

During the write operation, the logging records are pro-
cessed and stored in a central database. Besides, a set of proofs
is generated and stored on the private blockchain to preserve
the integrity of the logging records. The detailed steps of the
write operation are as follows:
(1) Similar to Simple-DASLog, in DASLog, we use a smart
contract to write the proofs and other auxiliary information
on the private blockchain. Let estart represent an epoch in
which the chapter CID starts. At the end of epoch estart,
the logging interface component in the operator uses the
initializing function of the smart contract to write the following
message on the blockchain:

M Init
CID

=
{
CID, estart,H1(CNTA,B), σO

(
H1(CNTA,B)

)
,

H1(CNT1
A,B||N1

A,B), σUSP
(
CID||H1(CNT1

A,B||N1
A,B)

)}
(12)

M Init
CID

is the initializing message that declares the start of
the chapter CID. Customers A and B can listen to the events
emitted from the smart contract to find whether the initial
message including H1(CNTA,B), i.e., M Init

CID
, is added to

blockchain or not. Once M Init
CID

is written on the blockchain,
customers A and B can find access to the corresponding CID

of the chapter and verify the signatures of both operator
O and USP. The signature σO

(
H1(CNTA,B)

)
proves that

operator O has accepted the responsibility of the flight and
cannot deny performing such a flight in the future. The
signature σUSP

(
CID||H1(CNT1

A,B||N1
A,B)

)
shows that this

flight is authorized and will take place under the supervision
of USP.
(2) In our scheme, the operator O is responsible to generate
the first and the last logging records of each chapter. The
starting log of the chapter contains general information
regarding the flight and is created in epoch estart as follows:

L1 =
{

CNTA,B,FP, σA
(
CNTA,B

)
, σB

(
CNTA,B

)
, σO

(
CNTA,B

)
,

σUSP
(
CID||H1(CNT1

A,B||NA,B)
)
, σUSP

(
FP

)}
(13)

We assume L1 is the only logging record created in epoch
estart.
(3) As already mentioned in Section VII-B, all the logging
records, except the first and the last logging records of each
chapter, are generated by one of the data sources. Once a
logging record, e.g., Li, is generated, it is sent to the control
interface component in the operator O. The steps that the
operator performs in DASLog to process the logging records
are almost the same as Simple-DASLog with the following
difference:
- Since all the logging records in DASLog are signed by the
data sources, there is no need for generating single proofs.
Therefore, the proof set of chapter C in epoch e only contains
the hash-chain proof, i.e., Pe

C = {P hash-chain
e , C }.

- To encrypt the arrays that are stored in the database, a secure
encryption mode is used, i.e., one which uses an initialization
vector (IV)1.
(4) Similar to Simple-DASLog, at the end of epoch e, the
logging interface uses the proof function in the deployed smart
contract to write the following message on the blockchain:

MProof
e =

{
MRe, e

}
(14)

Once MRe is written on the blockchain, the logging interface
extracts its corresponding transaction address. At the end of
the writing process in epoch e, the following array has been
stored in the logging database for the logging record Li ∈ Le

C :(
CPID,Enck1

(Li),Enck1
(e),Enck1

(AddreMR), IV
)

(15)

At the end of epoch e, the logging interface updates the hash-
chain-proof array for chapter CID as follows:(

CPID,PATHhash-chain
e , C ,Enck1

(e),Enck1
(AddreMR), IV

)
(16)

(5) Once the flight operation and subsequently the chapter
ends, the operator O requests all the data sources (except
the UAV) to send the signature σDS

(
CID||LAST||H(LDS,last

i )
)
,

where LAST is a pre-defined message indicating the last
logging record, and LDS,last

i represents the last logging record

1Using IV ensures the same plaintexts will not encrypt to the same
ciphertext. More details regarding the effect of IV on privacy are mentioned
in section IX-B.
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generated by DS in chapter CID. The UAV sends the hash
of its last raw logging record, i.e., H(RLUAV,last

i ) to USP, and
USP sends the signature σUSP

(
CID||LAST||H(RLUAV,last

i )
)

to
the operator. The operator O generates the last logging record
of chapter CID as follows:

Llast =
{
σUSP

(
CID||LAST||H(RLUAV,last

i )
)
,

σDS
(
CID||LAST||H(LDS,last

i )
)∣∣

for all DS except UAV

}
(17)

Llast contains the signatures of all the data sources on the
hash of their last logging record. Similar to all the logging
records, the logging interface encrypts Llast and adds it to
the logging database. Let eend represent an epoch in which
Llast is generated. Similar to the previous epochs, the logging
interface performs the task of proof generation for epoch eend
and writes MProof

eend
on the blockchain. The last hash-chain proof

for chapter C is the one generated in epoch eend.
(6) Finally, the operator O uses the finalizing function in the
deployed smart contract to write the following message on the
blockchain:

MFinal
CID

=
{

H1(CNT1
A,B||N2

A,B), eend,H(Llast)
}

(18)

MFinal
CID

declares the end of the chapter CID. Customers A and
B can listen to the events emitted from the smart contract to
find whether the final message including H1(CNT1

A,B||N2
A,B),

i.e., MFinal
CID

, is added to blockchain or not. MFinal
CID

includes the
hash of the last logging record, which can be served as the
integrity proof of signatures included in Llast.

D. Read operation in DASLog

The read operation in DASLog is similar to the read
operation in Simple-DASLog. Upon receiving a read request
from an eligible data consumer to fetch the logging records of
chapter CID, the operator sends the following message to the
data consumer:{(

Li, e,AddreMR
)
| Li ∈ C

}
∥ (PATHhash-chain

eend , C , eend,Addreend
MR)

(19)

E. Verification phase in DASLog

Upon receiving the response from the operator, the data
consumer needs to verify the correctness and completeness
of the received logging records. The verification steps are as
follows.
(1) Recall that the logging record set generated by the same
data source in each chapter creates a hash chain. As the
first verification step, the data consumer verifies the hash
chain generated by each of the data sources. Then, the data
consumer finds the last logging record of each data source in
the set of received logging records and verifies the correctness
of the signatures included in Llast, and checks whether or
not H(Llast) is included in MFinal

CID
. By performing the first

verification step, the data consumer can make sure that not
only it has received the complete logging record set generated
by each data source in chapter CID, but the order of the logging

records generated by the same data source has been preserved.
Note that this step is necessary to prevent a malicious operator
from performing both tail and non-tail truncation attacks. See
Section IX-B for more details regarding the truncation attack.
(2) As the second verification step, the data consumer needs to
verify the main hash-chain proof of the chapter generated by
the operator, i.e., P hash-chain

eend , C
. The data consumer uses Addreend

MR
to fetch the Merkle root proof of an epoch in which the
proof P hash-chain

eend , C
has been generated from the blockchain.

Next, it uses Algorithm 1 and the set of logging records
(Li) received from the operator to calculate P hash-chain

eend , C
. Then,

it uses P hash-chain
eend , C

and the received path PATHhash-chain
eend , C to

reconstruct the Merkle root. If the computed Merkle root
corresponds to the one retrieved from the blockchain, the
verification holds. By performing the second verification step,
the data consumer can make sure that the sequence of received
logging records has been preserved.
(3) The data consumer verifies the correctness of the digital
signatures embedded in each of the logging records to assess
the integrity of individual logging records.
(4) For the logging records that are generated by UAVs, the
data consumer can compare logging data created by the UAV,
i.e., dataUAV, with the data measured by the surveillance
sensors, i.e., datasensor, to verify whether or not dataUAV

is correct. Note that dataUAV and datasensor should not be
exactly the same due to the measurement error.
(5) The data consumer can compare the generation time of the
logging records, i.e., ts, stored inside the logging record, with
the generation time of the block in which the corresponding
Merkle root proof is stored in the blockchain. This step
can help the data consumer make sure that the operator has
processed the logging records immediately after receiving
them. A malicious operator may keep a specific logging record
for a long time to perform the re-ordering attack.

When these verification steps pass successfully, the data
consumer knows the set of logging records it received is
correct and complete, i.e., no logging records have been
omitted or altered, and the sequence of logging records within
the chapter has been preserved.

VIII. PROOF-OF-CONCEPT IMPLEMENTATION

A. Private blockchain implementation

There exist multiple platforms that can provide private
blockchains. In our proof-of-concept, we have used Hyper-
ledger Besu [36] to implement the 3rd party register. Hyper-
ledger Besu is an open-source project developed under the
Apache 2.0 license and written in Java. Hyperledger Besu is
built on top of the Hyperledger framework [37] and is com-
patible with the Ethereum network. Hyperledger Foundation
is an organization that provides resources and infrastructure
to develop software blockchain projects. In fact, Hyperledger
is a well-known framework on top of which a considerable
number of private blockchains have been designed. As well as
compatibility with the Hyperledger framework, Hyperledger
Besu is also compatible with the Ethereum network, which
is a well-known and widely-used blockchain technology that
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Fig. 6. Proof-of-concept prototype, high-level overview

can provide decentralized data storage with smart contract
functionality.

One of the main reasons that make us choose Hyperledger
Besu to implement the 3rd party register is the fact that
Hyperledger Besu can provide us with BFT-based consensus
mechanisms. In our secure logging system, by design, we
do not want the operator to be able to modify or remove
the proofs stored on the private blockchain. As a result, we
should use a BFT-based private blockchain that can withstand
malicious behavior. By using a BFT-based private blockchain,
the operator cannot behave in a malicious manner to modify or
remove the proofs already written on the blockchain. The con-
sensus mechanism that has been used in our proof-of-concept
is called IBFT 2.0, which is a BFT-based consensus protocol
that ensures immediate finality of the information blocks and
is robust in an eventually synchronous network [38].

In our proof-of-concept, we have used smart contracts to
realize a storage program. This program takes a value as input,
which in our case are the Merkle root proofs, and stores these
values on the blockchain. In this project, the storage smart
contract is written in the Solidity language. Another tool that
is used in our implementation is a development tool named
Truffle [39]. With the help of Truffle, nodes can interact with
the implemented private blockchain to deploy smart contracts
on the blockchain or read information from the blockchain.
Besides, we have used HDWalletProvider [40] to sign the
transactions prior to sending them to the blockchain.

B. Demonstration of proposed secure logging system

Our demonstration of the DASLog secure logging system is
composed of four entities: (1) Operator, (2) Data Source, (3)
Data Consumer, and (4) 3rd Party Register. To ensure that our
solution can be easily (re)deployed in practice, we have opted
for a cloud-based implementation. We used seven Amazon
Elastic Compute Cloud (Amazon EC2 [41]) instances, as il-
lustrated in Figure 6, to implement the four entities mentioned
above. More specifically:

• EC2-LS is an EC2 instance realizing the operator com-
ponent. This instance stores encrypted log records and
addresses of the proofs in a MySQL database. We used
Amazon RDS [42] to implement the MySQL database.

• EC2-LG is an EC2 instance realizing the data source
component. This instance forwards log records to the
operator component via a REST (Representational State
Transfer) interface.

• EC2-DC is an EC2 instance realizing the data consumer
component. This instance requests log records via a
REST interface. It interacts with the 3rd party register
to obtain the necessary proofs to audit the log records.

• EC2-1, .., EC2-4 are EC2 instances realizing the 3rd party
register, based on a Hyperledger Besu private blockchain
network. These four EC2 instances are the blockchain
validator nodes in our demonstration, where EC2-1 is the
bootnode.

All EC2 instances are “Amazon Linux, t2.micro” located
in different virtual private clouds (VPCs). To deploy the nec-
essary cryptographic functions, we used the Python cryptog-
raphy library2. We also used Flask-Python micro framework
[43] built on top of Python for implementing all the REST
interfaces [44]3. We also used the OpenSSL library to generate
public and private key pairs [45]. More details on configuring
the Amazon RDS and EC2 instances can be found in Appendix
A.

In our demonstration, the data source component (EC2-LG)
first generates a sample log record, containing CID factor, and
sends it to the operator component (EC2-LS) via a REST inter-
face. Afterward, EC2-LS calls a mapping function to compute
the pseudo identifier using the relation CPID = HMACk2

(CID),
where HMAC is a hash-based message authentication code
using SHA-256 and a secret key k2.

The EC2-LS instance then encrypts the log record and stores
the result in the RDS database. The encryption algorithm
used in EC2-LS is the Advanced Encryption Standard (AES)
in CBC mode with a 128-bit key k1 for encryption, using
PKCS7 padding. The SHA-256 hash function is also used
in our demonstration to compute the hash-chain and single-
hash proofs. In parallel, the EC2-LS reads the latest logging
records that no proof has been generated for them. Then, it
generates proofs for these logs (see Section VI-A for more

2https://cryptography.io/en/latest/
3The source code of our demonstrator can be found at https://github.com/

logging-system/DASLog.
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details) and forwards the Merkle root proof to the blockchain
as the message MProof

e =
{

MRe, e
}

. The other program in our
demonstration regularly reads the transaction hash (addresses)
where the Merkle root proofs are stored (AddreMR). The EC2-
LS instance finally writes the encrypted address of the Merkle
root proofs as an array into an Amazon RDS database.

When the data consumer (EC2-DC) wants to access the
log records, it first sends an access token request to the
IAM server. In our demonstration, we used the Keycloak
IAM, which is an open-source framework [46]. If Keycloak
successfully authenticates the data consumer, it generates a
fresh access token and sends this back to the EC2-DC instance.
Finally, EC2-DC sends this access token along with the chapter
type and identification of the chapter it wants to retrieve to
EC2-LS via a REST interface. Note that for simplicity, we
have integrated Keycloak in the EC2-DC. More details about
the Keycloak IAM demonstration can be found here4.

After checking the access token and the access control
policies, the EC2-LS instance uses the HMAC function and the
key k2 to generate the C read

PID . Using C read
PID , EC2-LS fetches the

encrypted logging records of the requested chapter(s) along
with the encrypted proof addresses from the Amazon RDS
database, decrypts them using k1 and forwards the result to
EC2-DC as a REST response. See Section VI-B for more
details regarding the read operation steps.

Upon receiving the REST response from EC2-LS, the EC2-
DC instance uses the proof addresses to fetch the related
proofs from the blockchain. Finally, the EC2-DC instance uses
these proofs to verify the correctness and completeness of the
received logging records, following the verification process
presented in Section VI-C.

IX. SECURITY AND PERFORMANCE EVALUATION

In this section, we evaluate the security and performance of
our proposed DASLog logging system.

A. Security analysis of Simple-DASLog

In this section, we assess how Simple-DASLog satisfies the
security goals mentioned in Section III-C.
Confidentiality: In our scheme, the encrypted version of the
logging records, i.e., Enck1

(Li), are stored in the logging
database; thus, if an attacker manages to get physical access
to the logging database, he/she cannot find access to the
contents of logging records. Besides, in the reading phase,
a data consumer first needs to authenticate itself to an IAM
server to get a fresh access token. Using the access token, the
control interface component in the operator applies the control
access policies and prevents an unauthorized data consumer
from accessing the logging records. Moreover, as mentioned
earlier, a secure TLS connection is available between all the
entities; hence, an external attacker who is eavesdropping
on the communication channels cannot find access to the
transferred data.
Integrity: Prior to start of a chapter, an initial message M Init

CID

is stored on the private blockchain. Therefore, the operator

4https://github.com/logging-system/DASLog#:∼:text=Keycloak

cannot deny the existence of such a chapter. In Simple-
DASLog, we assume that the operator is honest during the
write operation. Thus, a malicious operator may try to tamper
with the integrity of logging records at the reading time. Since
a Merkle root proof is stored on the blockchain as the integrity
proof for the hash-chain proof P hash-chain

eend , C
, any modification or

deletion in/of non-tail logs at the reading time can be detected.
However, the hash-chain proof is not enough to stop the tail-
truncation attack, in which the operator can delete a set of
consecutive logging records at the end of the chapter. To
prevent the tail-truncation attack, once a chapter ends, a final
message MFinal

CID
is stored on the blockchain, which includes

eend. eend is the epoch in which the last logging record of the
chapter has been processed. If logging records in the received
chapter end before reaching the epoch eend, the tail-truncation
attack can be detected. Note that, since we are using a BFT-
based blockchain in our scheme, a malicious operator cannot
modify a piece of data that is already stored on the ledger.
Availability: The logging records are stored in a central
database controlled by the operator. Therefore, the availability
of the logging records in our scheme depends on the operator’s
availability. However, the proofs are stored in the private
blockchain, and thus, enjoy a high level of availability. Once
a data consumer receives a set of logging records, there is a
guarantee that the data consumer can find access to the proofs
to validate the logging records.
Immutability: The immutability of the private blockchain on
which the proofs are written guarantees the immutability of
our logging system. To make logging records immutable, we
should make sure that their proofs are immutable, i.e., the
operator cannot alter the proofs. Since we have used a BFT-
based private blockchain to store the log proofs, we can make
sure the blockchain history cannot be deleted or altered as long
as the operator has not colluded with a considerable number
of blockchain validators.
Public auditability: Once a data consumer receives a set of
logging records, it can use the proofs stored on the private
blockchain to verify the correctness and completeness of the
logging records. The proofs stored on the blockchain can be
accessed by all the data consumers and be verified without the
need for a trusted third party.

B. Security analysis of DASLog

In this section, we assess how DASLog satisfies the se-
curity goals mentioned in Section III-C. The analyses for
properties confidentiality, availability, immutability, and public
auditability are the same as the analyses for Simple-DASLog
in Section IX-A.
Integrity of an individual logging record: The integrity
of each individual logging record is protected by the digital
signature(s) included in the logging record. Note that it is
computationally infeasible for the operator to forge a valid
signature of an external data source that is not under its
control. However, since UAVs are equipped and controlled by
the operator, a malicious operator may try one of the following
scenarios to tamper with the UAVs’ logging records. In the
first scenario, the operator may try to forge the received UAV
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logging records since the operator is able to find access to
UAVs’ private keys and forge their signatures. To prevent this
scenario, in our scheme, the UAVs’ logging records are signed
by USP prior to being sent to the operator. Therefore, to forge
the UAVs’ logging records, the operator should forge USP’s
signature too, which is impossible. Although the operator
cannot forge the logging record received from USP, it can
still send a fake raw logging record to UAV and ask UAV
to forward it to USP. To prevent this scenario, the UAVs’
logging record contains two pieces of data, namely dataUAV

and datasensor. The former is generated by UAVs and can
contain false information. However, the latter is measured
by the surveillance sensors which are not controlled by the
operator. Since dataUAV is a piece of internal verifiable data,
the data consumer needs to compare dataUAV with datasensor

in the verification process. If these two pieces of data do not
match together, the verification does not hold.
Integrity of a whole chapter: Prior to the start of a chapter,
an initial message M Init

CID
is stored on the private blockchain,

which includes the operator’s signature on the contract created
by the customers. Therefore, the operator cannot deny the
existence of such a chapter. In addition, each data source
uses a hash chain to create its logging records; hence, the
operator can neither perform a reordering attack on a series of
logging records sent from the same data source nor delete one
of the non-tail logging records. However, these hash chains
are not enough to stop the tail-truncation attack, in which
the operator can delete a set of consecutive logging records
at the end of the hash chain. To prevent the tail-truncation
attack, once a chapter ends, a final message MFinal

CID
is stored

on the blockchain, which includes H(Llast). Llast is the last
logging record of the chapter and contains the signature of
each data source on the hash of its last logging record, i.e.,
σDS

(
CID||LAST||H(LDS,last

i )
)
. To perform the tail-truncation

attack at the reading time, the operator needs to modify or
remove the data sources’ signatures in/form Llast. The operator
cannot forge the signatures since it is computationally infea-
sible. However, a malicious operator may try to remove one
of the signatures from Llast and claim the corresponding data
source has not sent the signature. To prevent this scenario, the
hash of the last logging record H(Llast) is included in MFinal

CID

and stored on the blockchain. Removing any signature from
Llast leads to a change in H(Llast), which can be detected by
calculating the hash of the last logging record and comparing
it with the one stored on the blockchain. Note that, since we
are using a BFT-based blockchain in our scheme, a malicious
operator cannot modify a piece of data that is already stored
on the ledger.
Non-repudiation: Since a data source needs to sign all of its
logging records using its private key, the data source cannot
repudiate creating and signing those logging records in the
future.
Privacy: In DASLog, the logging records are stored in
the operator database with their pseudo identifier CPID =
HMACk2(CID) instead of their public factor CID. This is
because if an attacker finds physical access to the logging
database, he/she cannot identify which rows belong to which

chapters. Note that, we have assumed keys k1 and k2 which are
respectively used to encrypt the logging records and generate
CPID are stored in secure registers. Besides, to improve the
privacy level in DASLog, an initialization vector is used to
encrypt the arrays. Let’s assume a scenario in which IV is
not used. In this case, the tuple

(
Enck1(e),Enck1(AddreMR)

)
would encrypt into the same ciphertext for all the logging
records that have been processed in the same epoch. Therefore,
an attacker who has found access to the logging database can
find some privacy-sensitive information such as the number
of logging records processed in each epoch and the duration
of the flight. However, by using IV, we can prevent the
mentioned information leakage. In DASLog, for each chapter,
one initial message M Init

CID
and one final message MFinal

CID
are

stored on the blockchain. Besides, for each epoch, a proof
message MProof

e is stored on the blockchain. Since all the
entities in the IoD network can have access to the private
blockchain, it is of huge importance that the malicious en-
tities cannot extract any privacy-sensitive information from
data stored on the blockchain. In our scheme, chapter C
is represented by a random identification number CID. The
initial message of chapter C includes the random identification
CID, which reveals nothing about the content of the chapter.
Besides CID, the initial message includes H(CNTA,B) and
H1(CNT1

A,B||N1
A,B). Since contracts have a predefined format,

an attacker may try the brute force attack to find CNTA,B in
a way that satisfies the mentioned hash results. However, due
to using a random nonce N1

A,B in each contract, this attack
would be impossible. Similarly, the final message includes
H1(CNT1

A,B||N2
A,B), which reveals no information regarding

the contract. Besides, since two different nonces N1
A,B and

N2
A,B are used in the initial and final messages, an attacker

cannot link the initial and final messages of the same chapter.
Note that linking the initial and final messages of the same
chapter can reveal some privacy-sensitive information such as
the duration of the flight.

C. Performance evaluation

In this section, we evaluate the performance of our proposed
logging system considering the number of log records on
both the operator and data consumer sides. Without loss of
generality, we consider that all the logging records belong to
the same chapter. We obtained the benchmarks on a Linux
20.04.03 laptop with AMD Ryzen 5 PRO 3500U 2.10 GHz
CPU and 8GB RAM.

Log processing time (LPT) versus the total number of log
records (Fig 7(a)): This graph displays the time required
to encrypt logging records and generate their corresponding
proofs. In Fig 7(a), we have two graphs: one that is for the
DASLog scheme and considers the time consumption of the
encryption of the logging record and the hash-chain (SHA-
256) proof generation; the second graph is related to the
Simple-DASLog scheme and shows the time consumption of
the logging record encryption, the hash-chain proof generation,
as well as the single proof generation. In our implementation,
the hash algorithm SHA-256 is used for implementing the
Merkle tree. If we assume n+1 is the number of leaves in the
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(a) (b) (c)

Fig. 7. a) Log processing time, b) Merkle tree size, and c) Verification time

Merkle tree, the first n leaves are single proofs and the last leaf
is the hash-chain proof. As can be seen, the second graph has
an overhead which is due to the single proof generation and
Merkle tree process. Based on the results, the proposed system
can handle about 8000 log records in LPT = 1 second and
LPT = 220 milliseconds using Simple-DASLog and DASLog,
respectively.

Merkle tree size (MTS) versus the total number of log
records (Fig 7(b)): In this graph, if we look at the size of
the tree over the total number of the logging records, we can
see that this relationship is linear. In our proof-of-concept,
we store the Merkle tree (JavaScript Object Notation) JSON
file with the minimum required information for calculating
the root value and verifying the membership. Looking at the
graph, one can see that in our system, MTS grows linearly
from ≈ 0.2 (KB) to ≈ 770 (KB) for 1 to 10000 log records,
respectively. In Table II, we list the size of all data that needs
to be stored in the operator database. The result shows that
our proposed scheme consumes less than 611 KB to store
information needed for the log verification.

Verification time (VT) versus the total number of log records
(Fig 7(c)): This graph presents the time the data consumer
must spend verifying logging records. For the Simple-DASLog
scheme, there are two possible scenarios in the verification
phase: (i) no log records have been tampered with, and the
data consumer only needs to verify the hash-chain, (ii) log
records have been tampered with, and the data consumer
needs to verify all the received log records. As shown in
the graph, if the hash-chain proof is verified successfully, the
verification time is negligible. In the case that one or more
logs are tampered with (worst case), the time to verify 10000
log records is almost 1.2 sec for Simple-DASLog. However,
the verification time when using DASLog scheme is slightly
less than the worst case of Simple-DASLog. As shown in the
graph, the verification time of DASLog consists of the time
consumption of the signature verification (RSA signature is

TABLE II
THE MEMORY USAGE OF AN RDS DATABASE FOR PROOFS OF

8000 LOG RECORDS

Tree JSON file hash-chain Enck1(e) Enck1(AddreMR)
610 KB 256 bit 0.184 KB 0.184 KB

used) and the hash-chain proof.
Discussion: As mentioned above, our proposed logging

system is capable of processing up to 8000 log records
in LPT = 1 sec. Log processing consists of encrypting
and storing the logs, generating the corresponding proofs,
and writing the Merkle root proof on the blockchain. We
configured the block generation time (BGT ) as one second
in our Hyperledger Besu network consisting of 4 validators
and accordingly set the epoch length to one second. Note that
for a blockchain network with a higher number of validators,
one should increase the block generation time. Thus, in the
proposed logging system, the operator can handle up to 8000
logging records in each epoch. As already mentioned, it is
possible to fetch the proof addresses (i.e., AddreMR) from
the blockchain and store it in the database after a while,
which is less than 3 seconds in our configured blockchain
network. Thus, in our demonstration, the operator fetches each
Merkle root proof address from the blockchain 3 seconds after
writing it. Since in our scheme fetching the proof addresses
and writing the proofs to the blockchain are independent
operations, the operator could process up to 8000 log records
per epoch without delay. Therefore, one can conclude that our
proof-of-concept meets the performance requirements imposed
by the UAV ecosystem for which we have designed the logging
scheme.

X. CONCLUSION AND FUTURE WORK

Security logging is well understood by ICT professionals
and widely deployed in commercial systems. Most solutions
available merely focus on achieving the conventional re-
quirements considered in the security triad (confidentiality,
integrity, availability) and on the reliable collection of rele-
vant logging data. However, some systems require additional
security guarantees that are typically not offered by state-of-
the-art logging systems. Our work aimed to develop a secure
logging scheme for UAV-integrated IoT systems where drones
transport (medical) goods from one location to another. One
of the aspects which makes this UAV system unique from a
security point of view is that the internal data sources (for
example, the UAVs) and the logging system itself are all
managed and controlled by a single entity – the operator. Yet,
external parties requesting read access to logging records for
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auditing purposes, need the necessary security guarantees that
the set of log records they retrieved from the logging system is
complete and not altered by the operator during reading time.

In this paper, we addressed this need and proposed DASLog,
a novel secure logging scheme that provides public auditabil-
ity in the setting mentioned above. The design relies on
the generation of Merkle tree security proofs stored in a
distributed private blockchain. To demonstrate the feasibility
of our approach, we implemented a proof-of-concept of our
logging scheme on multiple Amazon EC2 instances and used
Hyperledger Besu to realize the private blockchain. Perfor-
mance evaluations of our demonstrator showed that up to 8000
logging records could be processed per second. These perfor-
mance metrics vastly exceed what is required by the UAV
system for which the secure logging scheme was designed.

In our scheme, the logging records are stored in a central
database monitored by the operator, and only the proofs get
stored on the blockchain. As future work, we can investigate
how to store the logging records on the blockchain too without
compromising the efficiency and throughput. By doing so, we
can reduce the threat of a malicious operator, and thus, further
improve security.
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APPENDIX
EC2 INSTANCE AND AMAZON RDS CONFIGURATIONS

A. EC2 instance configurations

In our demonstration, we have used four AWS EC2 in-
stances as blockchain nodes and three AWS EC2 instances
as Operator (EC2-LS), Data Consumer (EC2-DC), and Data
Source (EC2-LG) respectively.

The general process of setting up an AWS EC2 instance
was done as follows.

• The instance type must be selected as ”Amazon Linux,
t2.micro”.

• Create a new VPC. Note that, in our configuration, each
node is in a different VPC. Using different VPCs proves
that, when the system would be deployed in a real-life
setting, we can have each instance in a different account.

• Configure the security group and add inbound configura-
tion.

Blockchain node inbound configurations: In our demon-
stration, the bootnode should have the minimum inbound
configurations as listed in Table III. The UDP/TCP port 30303
is used to enable peer discovery and UDP/TCP port 8545 is
used to accept inbound traffic sent from the client nodes (i.e.,
EC2-LS and EC2-DC instances in our proof-of-concept).

TABLE III
THE INBOUND CONFIGURATIONS FOR THE BOOTNODE

Type Protocol Port range Source
Custom TCP TCP 30303 0.0.0.0/0
Custom UDP UDP 30303 0.0.0.0/0
Custom TCP TCP 8545 0.0.0.0/0
Custom UDP UDP 8545 0.0.0.0/0

SSH TCP 22 My IP

In our demonstration, all other nodes except the bootnode
should have the minimum inbound configurations as listed in
Table IV. The UDP/TCP port 30303 is also used to enable
peer discovery. Note that, in all the inbound configurations
above, Secure Shell (SSH) is used to communicate with an
AWS EC2 instance on port 22.

TABLE IV
THE INBOUND CONFIGURATIONS FOR THE OTHER NODES OF THE

BLOCKCHAIN

Type Protocol Port range Source
Custom TCP TCP 30303 0.0.0.0/0
Custom UDP UDP 30303 0.0.0.0/0

SSH TCP 22 My IP

Inbound configurations of the other AWS EC2 instances:
The EC2-LS settings are given in Table V. As is shown, this

instance accepts MYSQL database traffic on port 3306. EC2-
LS also accepts traffic from port 5000, which is for the Flask
REST API. The EC2-DC settings are given in Table VI. As
mentioned, this instance also implements the Keycloak IAM,
which listens on port 8080. Note that the EC2-LG instance
only needs an SSH inbound on port 22.

Installing Hyperledger Besu on EC2 instances: Using
the steps below, one can install Hyperledger Besu on EC2
instances as nodes of the blockchain.

• To upload the Besu version besu-21.7.2m, run
wget https://hyperledger.jfrog.io/artifactory/besu-
binaries/besu/21.7.2/besu-21.7.2.zip.

• unzip besu-21zip
• sudo amazon-linux-extras install java-openjdk11 -y
• sudo ln -s /home/ec2-user/besu-21.7.2/bin/besu

/usr/local/bin
Installing Truffle on the operator and data consumer

EC2 instances: Using the steps below, one can install Truffle
on the operator and data consumer EC2 instances.

• curl -o- https://raw.githubusercontent.com/nvm-
sh/nvm/v0.34.0/install.sh | bash

• . ∼/.nvm/nvm.sh
• nvm install node
• npm install -g truffle
• npm install –save @truffle/hdwallet-provider

The readers are referred to the readme file in https://github.
com/logging-system/DASLog#readme for the rest of the con-
figurations and steps that must be done in the operator, data
consumer and data source components.

B. Amazon RDS configurations

When setting up the MySQL database on AWS RDS, one
should consider the following:

• After creating and running the Mysql database, be sure
that the database is located in a VPC with a security
group that accepts traffic to TCP port 3306.

• Create an empty database and table.
The readers are referred to the readme file in https://github.
com/logging-system/DASLog#readme for more information.
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TABLE V
THE INBOUND CONFIGURATIONS FOR THE EC2-LS

Type Protocol Port range Source
MYSQL/Aurora TCP 3306 0.0.0.0/0
Custom TCP TCP 5000 0.0.0.0/0

SSH TCP 22 My IP

TABLE VI
THE INBOUND CONFIGURATIONS FOR THE EC2-DC

Type Protocol Port range Source
Custom TCP TCP 30310 0.0.0.0/0
Custom TCP TCP 8080 0.0.0.0/0

SSH TCP 22 My IP
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