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Abstract

Premium fraud concerns data misrepresentation committed by an insurance customer with the intent

to benefit from an unduly low premium at the underwriting of a policy. In this paper, we propose a

novel approach for evaluating the risk of underwriting premium fraud at the time of application in

the presence of potentially misrepresented self-reported information. The aim of the approach is to

support insurance companies in identifying fraudulent applications and their decisions to underwrite

insurance contract propositions. Likewise, it can be use to make straight-through processing (i.e. au-

tomated) underwriting systems more fraudproof, by e.g., triggering a validation on applications prone

to misrepresentations. Our approach is based on conditional density estimates for a set of validated

contracts. The proposed approach does not require historical fraud labels and can adapt to changes

in pricing policy. Moreover, the approach can be used to detect outliers in addition to predicting

underwriting fraud and is extended to multivariate self-reported data. We further demonstrate a

link between Shapley values in common conditional expectation problems and conditional density

estimations to make our approach explainable. We report a case study involving motor insurance

underwriting, in which a driver’s identity and driving record can be misrepresented to benefit from

an unduly low premium; the results indicate the effectiveness of the proposed approach for detecting

and preventing underwriting fraud.
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1. Introduction

Premium fraud concerns the intentional misrepresentation of information that is provided at the

time of underwriting of an insurance contract in order to benefit from an unduly low premium.

Premium fraud encompasses a variety of patterns and scenarios. In life insurance, for example,

self-reported smoking status often has a material impact on expected mortality and, thus, on the

premium price [1]. In the absence of an effective and credible strategy for confirming the true

smoking status of the policyholder, the latter has a peculiar incentive to conceal this information. In

motor insurance contracts, premium prices are often prohibitive for young and inexperienced drivers.

Those drivers have a material incentive to overstate their driving experience, for instance, by having

an older relative listed on the contract as the main driver on their behalf. [2] estimates that global

motor insurance premium fraud amounts to 29 billion dollars annually. In workers’ compensation,

the company seeking insurance may misrepresent its payroll information to benefit from insurance

coverage at a lower premium price [3]. The Economic Policy Institute reports that 10 to 20 percent

of workers are misreported in the U.S.A., resulting in lower premiums paid by employers [4].

Premium fraud causes a loss of premiums, which will ultimately result in an increase in insurance

premiums for all policyholders, including those who have not committed premium fraud. Another

impact of premium fraud lies in the untruthful data collected by the insurance company and the

knock-on impact on all decisions or actuarial models that are built on those data. Therefore, the

ability to detect such fraud is essential.

Since the nineteen-nineties, researchers and practitioners have been investigating data-driven ap-

proaches for improving the power of fraud detection systems [5; 6; 7]. However, unlike many other

types of fraud, insurance fraud is not self-revealing [8], i.e., the company will not gain knowledge on

the fraudulent status of a claim or contract after an event without proactive and costly investiga-

tions. The non-self-revealing nature of insurance fraud (including premium fraud) poses a serious

challenge for both its identification (the company cannot label past frauds or estimate the extent of

the problem) and prediction (without labels, supervised learning is not possible, and unsupervised

learning is difficult to validate). The literature on underwriting fraud is focused on the restricted

setting in which one binary self-reported variable is potentially misrepresented and does not consider

adaptation to changes in pricing policy.

In this paper, we contribute to the literature by presenting a novel approach for detecting premium

fraud by evaluating data misrepresentation risk. The proposed approach is based on conditional

density estimation (CDE) of a set of self-reported variables and is adaptive to exogenous changes in
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pricing policy. Moreover, we present a case study based on real motor insurance data.

The remainder of this paper is structured as follows. In Section 2, we present a brief literature re-

view on data misrepresentation and its applications in the insurance underwriting literature. Section

3 describes the methodology, in which we detail how premium fraud detection can be approached as a

conditional density estimation problem with mixed data types, using the orthogonal basis projection

trick of [9] and an adaptation of the random forest algorithm [10]. We also present how the pricing

policy can be used in combination with CDE to represent financial motivation. In Section 4, we

present an application of the presented methodology to real motor insurance data. Finally, Section

5 presents conclusions and directions for further research.

2. Literature Review

In [8], underwriting fraud is defined as covering, for example, “the dissimulation of information

during application (application fraud) to obtain coverage or a lower premium (premium fraud),

the deliberate concealment of existing insurance contracts covering the same property and casualty

(P&C) risk, and underwriting coverage for fictitious risks” [8, p. 3]. The motivation behind premium

fraud is the financial gain resulting from a misstatement in the underwriting information, such that

the premium according to the misrepresented information is lower than the true premium.

The problem of data misrepresentation has a long history in the economic literature, in which

researchers aim at estimating statistical models based on contaminated data [11]. The data misrepre-

sentation problem is often formulated in terms of conditional densities [11]. For instance, in [12] the

conditional density of the dependent variable Y , knowing the observed variable Z∗ of its unobserved

variable Z is formulated as

f(y|z∗) =

∫
f(y|z)g(z|z∗)dz

where g(z|z∗) is the conditional distribution of the true value of Z = z, knowing the observed

value Z∗ = z∗, f(y|z) the error-free conditional distribution and f(y|z∗) the error-contaminated

conditional distribution. The literature on measurement error is focused on contaminated samples

of (Y, Z∗), while making distributional assumptions on the form of the misrepresentation [11]. To

the best of our knowledge, [13] and [14] are the first studies to take this type of statistical approach

to data misrepresentation in the context of insurance underwriting. They study the quantification

of the misrepresentation of a true value Z (e.g., smoking status in a health insurance contract)

by one corresponding binary self-reported random variable Z∗ ∈ {0, 1}, compared to a parametric

distribution of the loss f(y|z) (e.g., gamma or Poisson) assumed in the insurance contract.
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f(y|z∗ = 1) = f(y|z = 1),

f(y|z∗ = 0) = (1− P (z = 1|z∗ = 0))f(y|z = 0) + P (z = 1|z∗ = 0)f(y|z = 1),

where P (z = 1|z∗ = 0) is the misrepresentation probability parameter. This equation is identifiable

in the case of unidirectional misclassification, i.e., where f(y|z∗ = 1) = f(y|z = 1). Whereas this

approach is informative on the prevalence of the problem in a population through the estimation

of P (z = 1|z∗ = 0), it is of little use in improving the underwriting decision process because it is

not a contract-dependent representation. To address this shortcoming, [15] proposes an extension of

the framework established in [13] and [14] that includes other correctly reported variables, thereby

providing a misrepresentation probability that is dependent on the contract details in the context of

generalized linear models. However, the proposed models consider only discrete binary factors with

unidirectional misclassification. The assumptions made in the above literature can be unrealistic and

limiting in practical applications. Indeed, in many insurance applications, multiple variables may

be self-reported, continuous or discrete. Moreover, insurance fraud is dynamic. Fraudsters swiftly

capitalize on opportunities [8], such as changes of the pricing policy. The misclassification direction

is not necessarily constant in this context. Also, the loss information is available only after a certain

observation period.

An alternative approach to the data misrepresentation problem uses validation data (containing

at least values of Z), although often not available [11]. When a validated dataset for (sets of)

two paired variables (Z,X) is available, the problem of estimating the data misrepresentation of

variable Z can be formulated as a CDE problem in which Z is the target variable and f(z|x) is

the conditional density one wishes to estimate. The data used for scoring insurance contracts are of

mixed data types, including continuous variables (e.g., age) and discrete factors (e.g., car model, zip

code). In the case that the target variable is binary, the posterior probability P (Z = 1|X) coincides

with the conditional mean E[Z|X] [16]. In that case, many well-documented methods are available

that can handle a large number of covariates, in particular, Lasso regressions for mixed data types

[17] or decision tree ensembles such as random forests or boosted trees, which are well suited for

high-dimensional problems involving mixed data types. However, how to obtain an estimate f̂(z|x)

for a continuous, potentially multivariate, variable Z is a less studied statistical problem. One class

of approaches in the CDE literature relies on the use of orthogonal transformations of f(z|x). The

recent work [9] proposes a flexible conditional density estimator (FlexCode) that projects the target

variable Z onto an orthogonal basis [18]. Each projection onto the basis is estimated via a well-known
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conditional mean regression algorithm (e.g. linear models, decision trees) and the goodness-of-fit is

evaluated with a variation of the integrated squared error (CDE loss). Another recent approach to

conditional density estimation is to take the CDE loss of [9] as a variable splitting function in the

random forest algorithm of [19], using a variant of a tree structure to estimate f(z|x). The most

important departure from the original algorithm is the use of the CDE loss of Equation (5), which

is used as a splitting criterion in the construction of each tree t. Random forest CDE (RFCDE)

can be interpreted as a weighted kernel density method in which the weights are obtained from

a random forest. In this paper, we will focus on those two techniques, FlexCode and RFCDE.

Alternative approaches exist for conditional density estimation, albeit sub-optimal in this context.

The estimation of f̂(z|x) can be approached directly, via its conditional distribution F̂ (z|x), or via its

conditional quantile function Q̂z|x(α). For instance, quantile regression forests [20] estimate Q̂z|x(α)

and F̂ (z|x); however, the estimated distribution F̂ (z|x) is nondifferentiable, and this method is not

suited for multivariate responses. In this paper, we focus on methods in which the conditional

density function f̂(z|x) is directly evaluated to avoid differentiability and invertibility conditions on

F̂ and Q̂z|x(α). Moreover, we have no prior information on the underlying distribution f(z|x), which

can potentially exhibit multimodality; therefore, we consider only nonparametric methods to avoid

having to make assumptions on the shape of the distribution f(z|x). In the nonparametric literature,

a common approach for estimating the conditional density is to combine the estimation of the joint

density f̂(z, x) with the estimation of the marginal density f̂(x) according to f̂(z|x) = f̂(z,x)

f̂(x)
. In one

class of nonparametric methods, this estimation problem is addressed by means of kernel functions.

[21] proposes a kernel density estimator whose bandwidth is estimated via cross-validation and that

handles irrelevant covariates. However, this method does not scale well with the dimensionality and

size of the dataset, making it impractical for larger datasets.

3. Methodology

3.1. Problem formulation

Let us define U as the true set of underwriting information and U∗ as the reported set of un-

derwriting information. An insurance premium µ(U∗) is the coverage price offered by the insurance

company based on the reported information. The job of an insurance underwriter is to assess whether

an application with information U∗ is truthful, that is, whether the reported information is equal

to its true value U . In particular, the underwriter must ensure that no misrepresentation has been

committed in order to benefit from an unduly low premium, i.e., µ(U∗) < µ(U).
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Furthermore, we define two subsets of underwriting information, namely, the self-reported infor-

mation Z and the correctly measured information X, such that U = Z ∪X. By construction, only

the self-reported information is subject to misrepresentation; accordingly, U∗ = Z∗ ∪X.

In Table 1, we present a sketch of a set of insurance contract applications where dim(U∗) = p+q,

dim(Z∗) = q, and dim(X) = p.

Table 1: Underwriting problem: Applications submitted to underwriting agents sequentially at times t1 < t2 < ... < tm.

If an application is validated by an agent, it becomes a contract.

Premium Self-Reported ... Correctly Measured

µ(Z∗, X) Z∗
1 ... Z∗

q ... X1 ... Xp

Application 1, t1: 1200 23 ... A ... 1100 ... 18

Application 2, t2: 800 20 ... B ... 1200 ... 21

Application 3, t3: 700 53 ... A ... 450 ... 19

...

Application m, tm: 980 28 ... A ... 3400 ... 32

The premium price µ(Z∗, X) is the price that is offered to the customer given the underwriting

information, which characterizes the risk profile of the customer. This is the price that provides the

customer with an incentive to misrepresent information in order to benefit from a lower premium

µ(Z∗, X).

The distinction between self-reported and other information enables us to formulate the definition

of premium fraud risk as follows:

Premium Fraud Risk := P (µ(Z∗, X) < µ(Z,X)) (1)

3.2. Self-reported and correctly measured sets of underwriting information

Naturally, an insurance company would prefer that all required underwriting information include

only non-self-reported data. In this case, dim(X) = dim(U), all information is correctly measured,

and the premium fraud risk in Equation (1) is nonexistent. However, the inclusion of self-reported

data may add discriminative power and improve the pricing accuracy compared to the use of correctly

measured data alone. Insurers need to find the right balance between exposure to data misrepresen-

tation and pricing accuracy.

As explained earlier, data deemed to belong to the correctly measured set X are data for which

the policyholder does not have the opportunity to misrepresent their values. The definition and scope

of the correctly measured variables are specific to the context of each underwriting system. In motor
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insurance, the detailed characteristics of vehicles may be sourced from third-party data or national

registers. The details on the drivers, however, may be entirely self-reported. In property insurance,

geographic and demographic variables can be sourced from external data, whereas data on the risk

behaviors of the tenants of buildings are likely to be entirely self-reported. In health insurance,

smoking status may be self-reported, whereas the age of an insured person could be verified against

a national registry.

Depending on the problem at hand, some data that are technically reported by the policyholder

could still be considered correctly measured. For instance, data that would certainly result in denial

of insurance coverage at the occurrence of a claim are most unlikely to be misrepresented [22] since

there is no financial incentive and, hence, no motivation.

The definitions of sets X and Z may vary over time, depending on the controls, opportunities

and pricing policies. The relevant processes and data are also different from one insurance company

to another.

For instance, the development of national registers of nonsensitive individual demographic data

that are accessible to insurance companies may expand their sets of correctly measured data. On

the other hand, data privacy regulations may require insurance companies to exclude some external

data and thereby increase their reliance on self-reported data.

3.3. Conditional premium fraud risk

The primary objective of our premium fraud model is to provide a risk score based on self-reported

information for a given application. Let us expand the previous definitions:

Conditional Premium Fraud Risk := P (µ(Z∗, X) < µ(Z,X)|X = x, Z∗ = z∗)

=

∫
Z
1µ(z∗,x)<µ(z,x)f(z|x)dqz (2)

The above equation can be interpreted as the risk that the self-reported variables are misstated

with respect to a certain pricing policy µ, given knowledge of the correctly measured information.

The indicator function 1µ(z∗,x)<µ(z,x) is straightforward to calculate given a commercial pricing

policy µ. Note that a broader function f(µ(z∗, x), µ(z, x)) can also be considered, for instance, to give

more weight to higher differences in premium. The conditional density function f(z|x) is unknown

and needs to be estimated.

3.4. Conditional density estimation

[9] proposes a flexible conditional density estimator (FlexCode) based on an orthogonal projection

of Z such that the CDE problem is transformed into a series of I conditional expectation estimation
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problems. The estimator is written as follows:

f̂(z|x) =

I∑
i

Ê[φi(z)|X]φi(z), (3)

where φi(z) is the projection of variable z onto the ith dimension of an orthogonal basis {φi}I of size

I. The conditional expectation Ê[φi(z)|X] can be estimated using any type of regression algorithm

(e.g., a decision tree, linear model, or neural network). The choice of the optimal basis is evaluated

based on the CDE loss.

The CDE loss [9] is the integrated square error between the true distribution f(z|x) and the

approximated distribution f̂(z|x), weighted by the marginal density of x.

LCDE(f(z|x), f̂(z|x)) =

∫ ∫
(f(z|x)− f̂(z|x))2dzdP (x)

= Cf +

∫ ∫
f̂(z|x)2dzdP (x)− 2

∫ ∫
f̂(z|x)f(z|x)dzdP (x)

= Cf +

∫ ∫
f̂(z|x)2dzdP (x)− 2

∫ ∫
f̂(z|x)f(z, x)dzdx

= Cf + EX

[∫
f̂(z|x)2dz

]
− 2EX,Y [f̂(z|x)]. (4)

In practical real-world applications, unlike in simulation studies, the distribution f(z|x) is un-

known, which makes the estimation of the conditional density difficult to validate. The above for-

mulation of the CDE loss is convenient because it isolates the f(z|x) term in a constant that does

not depend on the estimator f̂(z|x). The estimator of the above CDE loss in [9] is:

L̂CDE(f(z|x), f̂(z|x)) =
1

m

m∑
i=1

∫
f̂(z|xi)2dz − 2

m

m∑
i=1

f̂(zi|xi), (5)

which is evaluated on m observations held out for the purpose of estimating f̂(z|x), i.e., the validation

set.

This approach conveniently relies on regression models, which are well known by practitioners

and are suited for massive parallelization (each of the I regression models can be calculated indepen-

dently). However, the basis size is assumed to be unique for all X = x, and using the CDE loss alone

as the criterion for selecting the optimal basis size can be misleading for some problems [18]. Note

also that the approach can generate spurious bumps or negative values that require postprocessing,

as explained in [9].

One popular type of regression model that is suitable for high-dimensional sparse datasets of

mixed data types (continuous and discrete variables) is a random forest estimator. A random forest

estimator [19] of a conditional mean can be expressed as follows:
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Ê[Z|X] = T−1
T∑
t=1

∑n
i=1 Zi1Xi∈R(x,θt)∑n
i=1 1Xi∈R(x,θt)

,

where T is the number of decision trees, θt denotes the structure of tree t, and R(x, θt) is the region

(leaf) delimited by tree t for observation x. This estimator can be used in Equation (3) to estimate

each of the I projections of z.

Although the orthogonal projection framework proposed in [9] is designed to study univariate

responses z, extensions to multivariate responses are theoretically possible, as pointed out in the

paper, via tensor products. In the bivariate case, where z = {z1, z2} and for two bases {φi} and

{φj}:

f̂(z|x) =
∑
i,j

Ê[φi(z1)φj(z2)|X]φi(z1)φj(z2).

However, neither the paper nor the related code details a cross-validation strategy for finding mul-

tiple basis sizes in the case of multiple variables. The number of models to evaluate is large, becoming

I ∗ J with only two variables, and the numerical estimation of the CDE loss becomes a challenge in

itself as the number of dimensions increases, necessitating the computation of a multivariate integral.

The random forest for conditional density estimation in the RFCDE method [10] is defined as

follows:

f̂(z|x) = (
T∑
t=1

n∑
i=1

1Xi∈R(x,θt)∑n
i=1 1Xi∈R(x,θt)

)−1
T∑
t=1

n∑
i=1

KH(Zi − z)
1Xi∈R(x,θt)∑n
i=1 1Xi∈R(x,θt)

, (6)

where KH is a kernel function with bandwidth matrix H.

An approximation is also adopted in [10] to enable the use orthogonal series in order to avoid the

calculation of kernel densities at each split, as in [9], the size and type of the basis are parameters to

be defined.

However, the CDE loss used in [9; 10] has no meaningful interpretation. It alone is not sufficient

to evaluate the estimation of f(z|x). We therefore introduce a complimentary evaluation metric in

the next section to provide further confidence in and insight into the estimation of f(z|x).

3.5. High-density region for conditional density diagnosis and outlier detection

High-density regions (HDR) are sometimes used in the conditional density estimation literature

to diagnose the calibration of f̂(z|x), e.g., in [9].
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The high-density region [23] of a conditional distribution for a given confidence level α is R(fα) =

{z : f̂(z|x) > fα}, where fα is the largest constant such that P (Z ∈ R(fα)|X = x) = 1− α.

The empirical coverage α̂(α) is the average proportion of samples of Z that belong to the high-

density region for their respective f̂(z|x) and a theoretical coverage level α, α̂(α) = 1
n

∑n
i 1zi∈Ri(fα).

If f̂(z|x) is a good estimator of f(z|x), then the empirical coverage should converge to the theoretical

coverage for all α levels.

Based on the above definitions, we can define the HDR coverage loss as follows:

LHDR(f(z|x), f̂(z|x)) =

∫
(α− α̂(α))2dα,

which is≈ 0 if f̂(z|x) ≈ f(z|x). Note that the relation between the empirical and theoretical coverages

is a necessary but insufficient condition to determine the calibration of f̂(z|x). For instance, when

used as an estimate of f̂(z|x), the prior distribution f̂(z) can satisfy this coverage test and yet be a

poor and uninformative estimator of the posterior distribution. It is, however, an informative loss

that can be used in combination with the CDE loss during the training phase of the algorithm or

as a criterion for selecting an optimal basis size in Equation (3). It is also suited to the case of

multivariate variables Z, similar to the CDE loss.

One peculiar byproduct of the use of conditional density estimation in Equation (2) and high-

density regions is the ability to identify outliers in the self-reported values of Z, conditional on X.

Using the same calibrated conditional density estimator f̂(z|x), an outlier is defined as Z 6∈ R(fα)

for a given α level. Moreover, high-density regions can be mapped to a “traffic light” approach to

facilitate communication with nonstatisticians by means of intuitive code values [7, p. 282]. A traffic

light approach can also be related to a governance policy; for instance, all data points in the red

area, i.e., points that do not belong to the 99 percent high-density region, may require a second level

of validation.

3.6. Pricing policy form µ and stagewise validation of information

The use of generalized linear models (GLMs) is a common standard in the insurance industry for

calculating a pricing policy µ. We refer to [24] for a comprehensive overview. In this case, the pricing

model can be expressed in a multiplicative form as µ(z, x) = µ0µz(z)µx(x), where µ0 is a “baseline

premium” and µz(z) and µx(x) are relative price increases/decreases in the values of the variables Z

and X.
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In this case, the premium fraud risk simplifies to∫
Z
1µz(z∗)<µz(z)f(z|x)dqz. (7)

This is convenient for the evaluation of the premium fraud risk in practice, as one requires only

the multiplicative factor µz instead of the complete pricing model µ to evaluate the fraud risk.

In practice, we do not have a priori validated values for the self-reported values on an incoming

contract. Instead, we estimate the likelihood f(z|x) of each possible true value of the self-reported

information in the region {z : µ(z) > µ(z∗)}. This region represents all values of z for which the

premium price is greater than the price µ(z∗) and, therefore, the values for which there is a motivation

to commit data misrepresentation.

The validation problem may be approached in a stagewise manner such that the premium fraud

risk can be refined as the self-reported variables are validated. A conditional density model can pro-

vide guidance to an underwriter as he/she iteratively validates the self-reported values Z∗1 , Z
∗
2 , ..., Z

∗
q .

For instance, in the case of motor insurance, one could first investigate the validity of a driver’s

identity as variable Z1 and, as a second step, validate the claims history relating to that driver as a

separate variable Z2.

One advantage of this approach is that one can use the already-validated self-reported values to

refine the subsequent prediction and analysis of other self-reported values, f̂(z2|z1, x).

P (µ(Z∗1 , Z
∗
2 , X) < µ(Z1, Z2, X)|X = x, Z∗1 = z∗1 , Z

∗
2 = z∗2).

If the pricing policy is multiplicative, i.e., µ(Z1, Z2, X) = µ0µz1(Z1)µz2(Z2)µx(X), then the con-

ditional premium fraud risk is:

P (µz1(Z∗1 )µz2(Z∗2 ) < µz1(Z1)µz2(Z2)|X = x, Z∗1 = z∗1 , Z
∗
2 = z∗2)..

Once the value of Z∗1 has been validated, the premium fraud risk is updated to:

P (µz2(Z∗2 ) < µz2(Z2)|X = x, Z1 = z1, Z
∗
2 = z∗2).

Note that this stagewise approach provides insight into the vulnerabilities of an underwriting

system and, therefore, its exposure to premium fraud at different stages in the validation process.

For instance, the variable Z1 may be “more difficult” to predict (and Z∗1 may be more difficult to

validate) than Z2 (Z∗2 ), and thus, the company may exert additional effort in the assessment of Z1.
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4. Empirical results

4.1. Data

Although there can be, in practice, a handful of self-reported variables in motor insurance con-

tracts, two self-reported dimensions in particular are critically important in the determination of the

insurance price: the identity of the driver (particularly his/her driving experience and age) and the

driving record (represented on an ordinal scale in a bonus-malus insurance system). A bonus-malus

insurance system is a merit-based system that reflects the past driving history on a single ordinal

scale; for more details, we refer to [25].

The dataset that is used to evaluate the proposed approach contains a sample of 57 000 validated

contract quotes (Xi, Zi) spanning 4 years of history, where Xi represents the detailed information on

the vehicle as certified by a third party and Zi contains the self-reported information. As is usually

assumed, the i pairs (Xi, Zi) are assumed to be i.i.d. in nature. Note that validated contract quotes

relate here only to new customers, contract renewals are therefore not included in the dataset.

A history of four years is selected here, as this corresponds to one generation of vehicles in

Belgium. The correctly measured data X are composed of 38 variables describing vehicles’ features

(e.g., power, age of the car, height, brand, model, segment of car, number of doors, catalog value).

In the following, we present an application of the proposed methodology to motor insurance

contracts where the self-reported variable Z is:

1. univariate and continuous: the driver’s license age;

2. bivariate and continuous: the driver’s license age and the driver age;

3. multivariate of mixed type: the driving record score and the driver’s license age; and

4. univariate and ordinal: the driving record score.

The vehicle information is provided by a third party and deemed correctly measured.

4.2. Application

4.2.1. Univariate and continuous self-reported data: the driver’s license age

The marginal distribution f(z) of driver’s license age provides baseline information on the ex-

pected driver’s license age distribution. The estimator f̂(z) is depicted in Figure 1, where a traffic

light approach is used to color four different high-density regions [23] according to three arbitrary

levels α.
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Figure 1: Estimator f̂(z) of the marginal distribution of driver’s license age, estimated with a Gaussian kernel of

bandwidth 1.3. The colored areas represent the high-density regions at levels of 90, 95 and 99 percent.

However, the marginal distribution f(z) is not particularly helpful in validating incoming con-

tracts because the estimated high-density regions are relatively spread out. One way of narrowing the

high-density regions is to add the vehicle information X to estimate the conditional density f(z|x)

for a specific vehicle. If the vehicle is a “good predictor” of the driver’s identity (here, the driver’s

license age), we expect f(z|x) to define narrower high-density regions. The insight gained in this

way is measured by the difference between the posterior distribution and the prior distribution. A

common measure for comparing two distributions is the Kullback-Leibler divergence measure:

KL(f̂(z|x), f̂(z)) =

∫
f̂(z|x)log(

f̂(z|x)

f̂(z)
)dz. (8)

Measuring the added value obtained by adding the information X for predicting Z is strategically

important for considering the acquisition of new correctly measured data to add to the system.

The orthogonal-based estimator of Equation (3) requires three main types of parameters to be

set: the basis type φ, the basis size I and the parameters of the underlying I regression estimators.

Basis type: We consider the Fourier basis as used in [9], as we expect a relatively smooth function

f̂(z|x). The Haar wavelet basis is a suitable candidate for discrete responses. For an overview of

alternative suitable basis type choices, we refer to [26].

Basis size: The size of the basis is subject to a typical bias-variance trade-off, with a smaller

basis size resulting in a smoother f(z|x), while higher basis values produce less smooth functions.
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The size of the basis is evaluated via cross-validation on the basis of the CDE loss as described in

[9]. Note that a large basis size is undesirable because as many regression models must be trained as

the basis size is large, leading to prohibitive computational costs if no parallelization is implemented.

Moreover, we use the HDR coverage loss as a complementary loss, next to the CDE loss to determine

the basis size I, as presented in the methodology section.

Regression model: Any common regression model for estimating a conditional mean can be

considered. Decision tree-based methods are known to have high off-the-shelf performance with

mixed data types of high dimensionality with a large number of observations and also are suited to

parallelization in most cases. The authors of [9] have proposed FlexCode Random Forest (FlexCode-

RF) for mixed data types, which implements Breiman’s random forest algorithm as a regression

function [19]. In practice, it is preferable to opt for an off-the-shelf algorithm with good expected

performance with minimal tuning, since as many models must be trained as the basis size. We use

the fast random forest implementation in [27].

A 5-fold cross-validation strategy is used here to validate the parameters used in the base random

forest estimator. We refer to [28; 29] for an overview of parameter choice, heuristics, and selection in

random forests. Note that there is no theoretical guarantee that a set of parameters proven optimal

for conditional mean estimation is also optimal for conditional density estimation. This step is taken

as the starting point for further parameter optimization and is also useful for comparing the different

methods.

In underwriting decision problems, a good understanding of the estimated conditional density

function is critical to assess (i) the soundness of the estimators, (ii) the insight gain achieved by

adding X when predicting Z, and (iii) its explainability. Indeed, in this case, a single metric such as

the CDE loss is insufficient to assess any of these criteria.

In Figure 2, we present the results of three models trained on a test set of n/3, i.e., 19k obser-

vations. We present the vanilla random forest algorithm used as the basis for the parameter choice

as a point of comparison for a density estimator centered on its conditional mean estimate, albeit

not an estimator of f̂(z|x) in itself. FlexCode-RF with a Fourier basis of size I = 5 (minimizing the

CDE loss) is shown in the middle, and RFCDE is presented on the right.
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Figure 2: Theoretical versus empirical coverage plots and Kullback-Leibler divergence measures for the vanilla random

forest algorithm (left), FlexCode-RF (middle) and RFCDE (right).

In Figure 2, one can observe that FlexCode and RFCDE are both close to the diagonal on the

α̂ − α coverage plot. However, FlexCode tends to diverge more from the prior distribution than

RFCDE, as measured by the Kullback-Leibler divergence.

This can be explained by the use of basis transformation in FlexCode versus kernel density

estimation in estimating the prior distribution. By contrast, in RFCDE, both the prior and posterior

estimators use kernels.

Sample predictions from RFCDE compared to the prior distribution estimates for six contracts

are presented in Figure 3.
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Figure 3: Sample predictions with the RFCDE estimate f̂(z|x) and the prior density f̂(z) in gray.

In Figure 3, the top and bottom rows of plots represent lower and higher Kullback-Leibler diver-

gence measures, respectively, compared to the prior distribution f̂(z). Lower values of the Kullback-

Leibler divergence indicate that the information X does not add much evidence on the true value of

the self-reported variable. The distributions presented in the bottom row, however, indicate that the

driver of the car is likely less experienced.

4.2.2. Bivariate and continuous self-reported data: the driver’s license age and driver age

In the case that the self-reported variable Z is continuous and bivariate, the methods discussed

above are extensible to multivariate prediction via the use of tensor products for orthogonal basis

transformation, similarly to FlexCode [9], and with multivariate kernels for RFCDE [10].

Here, we briefly present a simple example with RFCDE, estimated via a kernel density method.

The CDE loss formulations of Equation (5) and Equation (6) are both applicable in multivariate

cases. However, the bandwidth H is a 2-by-2 matrix instead of a single scalar as in the univariate
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case. Duong [30] explains that the bandwidth matrix is usually parameterized as a diagonal matrix

(constrained) or as a semi-positive definite and symmetric matrix (unconstrained).

For instance, the conditional distribution estimator of the prior distribution f̂(z) (where z is

bivariate) is

0.19 0

0 0.19

 in the constrained case and

0.34 0.21

0.21 0.31

 in the unconstrained case, and

the resulting densities f̂(z) with a Gaussian kernel are displayed in Figure 4 (with prescaling of the

data and the Sum of Asymptotic Mean Squared Error pilot bandwidth selector; see [30] for a detailed

explanation).
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Figure 4: Kernel density estimation of the prior distribution f̂(z) with a constrained bandwidth matrix (left) and an

unconstrained (right) density estimation of the prior.

There are many possible strategies for the parameterization of H, most of which are based on a

numerical procedure (a “plug-in” estimator) or a cross-validation methodology; we refer to [30] for

an overview. However, those methods estimate the matrix H for each density function f̂(z|x) and

can exhibit numerical instabilities, which is undesirable, particularly when the model is intended to

provide guidance to nonstatisticians.

A simple approach to guarantee the stability of the bandwidth estimation is to estimate the

parameter of the prior density function f̂(z) and fix it for any conditional density function in Equation

(6).

Figure 5 presents one sample prediction.
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Figure 5: Conditional density function f̂(z|x) for a bivariate Z (driver age and license age). The bandwidth matrix H

is the constrained diagonal matrix of Figure 4.

4.2.3. Bivariate mixed self-reported data: driver’s license age and driving score

In the case that the self-reported variable Z is multivariate and of mixed type (discrete and con-

tinuous), computing the conditional premium fraud risk requires the evaluation of a joint conditional

density f̂(z1, z2|x).

RFCDE is designed for one type of variable, and FlexCode is univariate. Here, we adapt the

method of FlexCode to mixed-type multivariate responses using heterogeneous basis types, similar

to the vector-valued extension sketched in [9], via tensor products. {φi}I is a Fourier basis of size I,

and {φj}J is a Haar basis of size J. In this case, we set the size of the basis {φj}J to the cardinality

of the discrete variable. Figure 6 and Figure 7 present the CDE loss and HDR coverage loss for

different values of the basis size I. In this case, we observe that both losses are minimized by a basis

of size 3. Note that in this application, the postprocessing of the estimated densities is limited to

removing negative values and uniform scaling of the density surface to ensure that it integrates to 1.
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Figure 7: HDR coverage loss on the test set.

One sample prediction is depicted in Figure 8. We observe a high-probability mass at a low

driving score, which corresponds to drivers with a good driving score. A second high-probability

region is observed at a mid-range driving score, corresponding to the driving score of a new driver.
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Figure 8: Sample prediction for bivariate self-reported data of mixed type.

4.3. Fraud score application

In this section, we briefly present an application of the fraud score in a simplified, univariate

setting with the driver’s license age as the self-reported variable and a pricing function which is
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strictly decreasing with driver’s license age (see Figure 13 in appendix). We apply the premium fraud

risk model to a sample of new contract propositions, with a threshold of 5% increase in premium

price to exclude small premium price differences.

The dataset that is used to evaluate the proposed approach contains a sample of 73 000 applica-

tions spanning 4 years of history. The applications contain data which resulted in a validation and

were accepted by the insurance company, as well as applications which were rejected. Note that the

sample used here contains applications which were validated and therefore used in the training of

the conditional density estimation f̂(z|x).

Figure 9: Histogram of premium fraud risk estimated

on a sample new contract propositions.

Figure 10: Histogram of premium fraud risk estimated

on a “risky” sub-sample of new contract propositions.

Figure 9 presents the distribution of the fraud risk score on a sample of contracts to validate.

A sub-segment of 2500 applications from this sample has been labeled by experts as presenting a

larger premium fraud risk, although these applications have not confirmed to effectively involve fraud.

This sub-segment contains old cars with a self-reported middle-aged main driver, who has already

a contract for another vehicle. Therefore, the segment is classified as potentially containing hidden

young main drivers. Figure 10 presents the fraud risk scores for this sub-segment. The difference in

distributions suggests that our model does well in classifying those suspicious applications.

Additionally, in Figure 11, we present the CDEs of three randomly sampled applications from

sub-segment of Figure 10. The self-reported value z∗ for those applications is presented in red. The

area filled corresponds to the region on the CDE where premium price would be 5% higher than with

the self-reported value, and the surface represents the premium fraud risk. We provide in appendix

an infographic summarizing the decision support systems’ steps and discuss computation aspects.
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Figure 11: Sample premium fraud risk scores prediction and self-reported values of driver’s license age.

4.4. Note on the explainability of f̂(z|x)

The explainability of a model is of critical concern towards its adoption and is a challenging task,

even for common regression models estimating the conditional mean E[Z|X].

In that regard, Shapley values from game theory is a popular approach for explaining black-box

models [31]. Shapley values are attributed at the prediction level; typically, each feature in vector

x is attributed a contribution Φ (a Shapley value) to the difference between Ê[Z] and Ê[Z|X] for a

specific prediction.

In this section, we investigate the explainability of FlexCode and its input feature X. In particular

we present an additive explanation to a CDE model of the form: f(z|x) = Φ
f(z|x)
0 (z)+

∑
j Φ

f(z|x)
j (z, x).

We present in appendix the details and proofs on the methods to conveniently reuse the Shapley values

from the regression models underlying FlexCode in the context of a CDE problem.

Figure 12 presents a sample prediction of f̂(z|x), where we are interested in explaining the

difference between the prior distribution Φ0(z) and the posterior distribution f̂(z|x) (CDE raw).

This difference is explained by the contribution of each variable j, Φ
f(z|x)
j (x).

In this figure we observe the model predicts a higher density on less experienced driver compared

to the prior distribution. One can learn for instance that for the lowest value of driver’s license age

(at z = 0), the power, height, length and car age have a positive contribution on the f̂(z|x) for

observation x.

Likewise, the bump on the right side of Figure 12 may appear curious, we observe that the age

of the car feature explains in part this prediction for this observation.

The displayed sum of the values
∑

j Φ
f(z|x)
j (z, x) with j = 0, ..., p is equal to f̂(z|x) for all values

of z, as expected by the additivity property of Shapley values.

The outcomes of model explanation also serves as justification for a model user to further inves-
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Figure 12: Variable contribution for a sample prediction, explaining the difference between the prior distribution

Φ0(z) and the estimator of a sample posterior distribution f̂(z|x) (CDE raw). Four sampled variables’ Shapley values

Φ
f(z|x)
j (z, x) are presented.

tigate a given element of a contract or justify the refusal of a contract proposition.

Moreover, model explanation is helpful from a modeling perspective in applying the Occam’s

razor principle to the input feature space X, for instance, to discard “dummy” variables that do not

play any role in prediction. It can also be used in the assessment of adding new dimension(s) to the

input variables X, e.g., sourcing additional variables on the vehicle.

4.5. Discussion

We have seen that conditional density estimation can be used as a means to estimate the plausibil-

ity of self-reported information in multiple formats (multivariate, mixed data types). The validation

of a CDE system is inherently difficult because we do not observe the true conditional densities, only

sample points. Criteria such as the CDE loss and high-density regions may be used to validate vastly

different approaches, for instance, orthonormal projections (FlexCode) and weighted kernel density

estimators (RFCDE), as two valid candidates, as we have seen in Figure 2.

The choice of the CDE technique depends on the nature of the self-reported data. In this paper, we

apply the method to multivariate self-reported data of mixed type (discrete and continuous). Other

applications may benefit from simpler approaches to CDE when the self-reported data are univariate

or of nonmixed type or if a parametric form (e.g., a Gaussian distribution) can be reasonably assumed.
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The efficiency of our method in fighting fraud depends on the predictability of the self-reported values

based on the correctly measured values. In the application to motor insurance data presented here,

the task can be summarized as guessing drivers’ characteristics based on their vehicles’ characteristics.

In this application, we have limited the correctly measured variables to vehicle information. Other

correctly measured information could also be added to the system to enable better prediction of the

self-reported values to further improve the effectiveness of the system.

5. Conclusions

In this paper, we have formulated premium fraud detection as a conditional density estimation

problem. The estimation of conditional functions relies on the availability of a dataset of true values

(Xi, Zi) that has been previously validated by experts.

This formulation enables us to explicitly estimate the distribution of the self-reported variables

and their relation to the pricing policy, thereby yielding a risk evaluation in the opportunity-

motivation framework of [8] in the context of premium fraud.

Conditional density estimation can also be used for performing (conditional) anomaly detection

to detect outliers across specific dimensions Z using high-density regions and a traffic light approach

[7].

We have discussed state-of-the-art techniques for estimating the conditional densities of continu-

ous variables in large datasets of mixed data types [9; 10], which has remained a challenging statistical

problem to date. Notably, the use of a single criterion such as the CDE loss [9] appears insufficient

to evaluate the overall calibration of the conditional densities. We have proposed an alternative loss

function based on the high-density regions of [23] as a complementary loss function in CDE problems.

We have presented how Shapley additive explanation [31; 32] can be adapted to CDE problems to

make the estimated conditional densities explainable.

Moreover, we have discussed how the validation of a contract proposition can be approached in

a stagewise manner. The understanding of the predictability of a given stage in the validation of a

contract can provide insight into the weaknesses of the underwriting process and allow actions to be

taken accordingly to improve the robustness of contract validation. For instance, a higher uncertainty

around a driver’s identity based on the car compared to a lower uncertainty around the prediction of

a driving record based on the driver’s identity and the car can motivate the acquisition of additional

data predictive of the driver’s identity or a change in the variable used for pricing.

Further developments in nonparametric conditional estimation methods could also be bench-
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marked against the techniques and evaluation metrics used herein. Future research could investigate

the use of the realized loss per contract as an additional source of information supplementary to our

premium fraud risk score, thereby creating connections between the approaches of [13] and [14] and

our own.

Our approach can be used by insurance companies to improve their decision making process in

the validation of insurance contracts with potentially misrepresented self-reported information. For

instance, in automated insurance underwriting (“straight-through processing”), our premium fraud

risk score could be used to trigger a validation of the self-reported variable.

Our approach can also be applied for fraud detection in other, noninsurance domains in the

application stage (application fraud), such as overstated income on credit applications to benefit

from unduly low rates [33; 34; 35] or accounting misconduct [36].
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6. Appendix

6.1. Pricing calculation and premium fraud examples in multiplicative pricing models

We present here two examples based on dummy data to illustrate (a) a premium calculation and

(b) premium fraud when the pricing model has a multiplicative form. The pricing policy has the

form µ(z, x) = µ0µz(z)µx(x), where µ0 is a “baseline premium” and µz(z) and µx(x) are relative

increases/decreases in the values of variables Z and X.

(a) Premium calculation example: Suppose that the baseline premium µ0 is set to 100 monthly,

a car considered safe translates into the pricing policy as µx(x) = 0.9, and an inexperienced driver

translates into the pricing policy as µz(z) = 1.2. Then, the proposed price of the corresponding

insurance policy is 100 ∗ 0.9 ∗ 1.2 = 108 monthly.

(b) Premium fraud example: In Figures 13 and 14, one can read out, for instance, that the

premium price µ(z∗, x) for a driver reported as having z∗1= 20 years of driving experience and being

z∗2= 45 years old pays a premium of µ = µ0µz1(z∗1)µz2(z∗2)µx(x), where µz1(20) = 1.05 and µz2(45) =

0.99. Then, if the “true” driver, who is the child of the reported driver and in fact has one year of

driving experience (µz1(1) = 1.30) and is 25 years old (µz2(25) = 0.95), the premium that the true
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driver should pay would increase by
µz1 (z1)µz2 (z2)

µz1 (z∗1 )µz2 (z∗2 )= 18.8 percent over the premium currently being

paid.
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Figure 13: µz1 : Relative increase in premium price

according to the driver’s license age variable.
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Figure 14: µz2 : Relative increase in premium price

according to the driver age variable.

6.2. Detailed note on the explainability of f̂(z|x)

Borrowing the notation from [32], the Shapley Φδ
j(x) of a model δ for feature j and observation

x equals:

Φδ
j(x) =

∑
Q⊆S\{j}

C(δQ∪{j}(x)− δQ(x)),

where Q is a subset (coalition) feature of S = {1, ..., p}, p is the dimension of the input feature X, j

is the jth feature of X, C := |Q|!(|S|−|Q|−1)!
|S|! , (δQ∪{j}(x)− δQ(x)) measures the contribution of adding

variable j to the coalition Q for a model δ and Φδ
0 = δØ(Ø). The model δ can be expressed as the

sum of its Shapley values, δ(x) = Φδ
0 +

∑
j Φδ

j(x) as per the additivity property of Shapley values.

Proposition 1: If f(z|x) admits an orthonormal decomposition of the form f(z|x) =
∑

i φi(z)E[φi(Z)|X],

Φ
E[φi(Z)|X]
j (x) is the Shapley value of the jth feature of the model E[φi(Z)|X], and Φ

f(z|x)
j (x) the

Shapley value of the jth feature of model f(z|x) for a value of z, then Φ
f(z|x)
j (z, x) =

∑
i φi(z)Φ

φi(Z)
j (x)
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proof :

Φ
f(z|x)
j (z, x) =

∑
Q⊆S\{j}

C(f(z|xQ∪{j})− f(z|xQ))

=
∑

Q⊆S\{j}

C(
∑
i

φi(z)E[φi(Z)|XQ∪{j}]−
∑
i

φi(z)E[φi(Z)|XQ])

=
∑
i

φi(z)
∑

Q⊆S\{j}

C(E[φi(Z)|XQ∪{j}]− E[φi(Z)|XQ])

=
∑
i

φi(z)Φ
E[φi(Z)|X]
j (x).

This result is convenient as it enables to use the explanations of the underlying regression coeffi-

cients of models E[φi(Z)|X].

Similarly to the above proposition, we can also relate the Shapley values Φ
E[Z|X]
j (x) of the condi-

tional expectation E[Z|X] to the Shapley values of the regression coefficients Φ
E[φi(Z)|X]
j (x), thanks

to the relation E[Z|X] =
∫
zf(z|x)dz. The result and proof are provided in appendix.

The conditional expectation E[Z|X] is related to the conditional density by E[Z|X] =
∫
zf(z|x)dz.

Proposition 2: If f(z|x) admits an orthonormal decomposition of the form f(z|x) =
∑

i φi(z)E[φi(Z)|X],

Φ
E[Z|X]
j (x) is the Shapley value of the jth feature of the model E[Z|X], and Φ

E[φi(Z)|X]
j (x) is the Shap-

ley value of the jth feature of the model E[φi(Z)|X], then Φ
E[Z|X]
j (x) =

∫
z
∑

i φi(z)Φ
E[φi(Z)|X]
j (x)dz

proof :

Φ
E[Z|X]
j (x) =

∑
Q⊆S\{j}

C(E[Z|XQ∪{j}]− E[Z|XQ])

=
∑

Q⊆S\{j}

C(
∫
zf(z|xQ∪{j})dz −

∫
zf(z|xQ)dz)

=
∑

Q⊆S\{j}

C(
∫
z
∑
i

φi(z)E[φi(Z)|XQ∪{j}]dz −
∫
z
∑
i

φi(z)E[φi(Z)|XQ]dz)

=

∫
z
∑
i

φi(z)
∑

Q⊆S\{j}

C(E[φi(Z)|XQ∪{j}]− E[φi(Z)|XQ])dz

=

∫
z
∑
i

φi(z)Φ
E[φi(Z)|X]
j (x)dz.

6.3. Note on the computational aspects of the decision support system

We add a few comments on the computational aspects of the decision support system using

orthonormal bases with an infographic in the case of an univariate self-reported variable (illustrating

section 4.3).
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Ê[φI(Z)|x]

CDE I∑I
i Modeli

Model I+1
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Figure 15: Overview of the decision support system for an univariate self-reported variable Z.
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We distinguish three phases of the decision support system: training, validation and prediction.

We assume the decision support system is intended to score new incoming contract propositions,

hence the computational aspects of the prediction phase is more important than those attached to

the training and validation phases.

The training and validation phases are proportional to the underlying regression model training

and prediction times. In the above graph, the training phase and validation are implemented se-

quentially and stopped at model I + 1 (where a decrease in the loss function is observed), hence the

global computation time is roughly I + 1 times the underlying model’s training and prediction. This

computation time can be reduced from I + 1 to 1 times the underlying model’s if the computational

architecture allows to evaluate in parallel the different models. Similarly to the validation phase, the

prediction phase requires a prediction of each underlying regression model, hence will be proportional

to I times the prediction of the regression models (which can also be reduced with parallelization).

The prediction step also requires the prediction from the pricing policy µ(x, z), for a grid of values of

z. The pricing policy µ is typically a (generalized) linear model, whose prediction times are negligible.

In this application we used the fast implementation of random forest as underlying regression

model. The algorithm is described in [27], where the performance are detailed and documented for

different problems and dataset sizes.

Note that the choice of the basis type depends on the support and smoothness of variable Z, the

self-reported of interest and can motivate variations around this theme.

References

[1] G. Schuman, Misrepresentation of smoking history in life insurance applications, Tort & Ins. LJ

30 (1994) 103.

[2] I. S. Office, The Challenge of Auto Insurance Premium Leakage, Tech. rep., Inc. Verisk Analytics

(2017).

[3] R. A. Derrig, V. Zicko, Prosecuting insurance fraud—a case study of the massachusetts experi-

ence in the 1990s, Risk Management and Insurance Review 5 (2) (2002) 77–104.
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