KATHOLJEKE UNIVERSITEIT LEUVEN
FACULTEIY WETENSCHAPPEN
FACULTEIT mEGEPASTE' “E’I'ENSCHAP_PEN
i DEPAKI'EI\&'ENT COMPUTERWETENSCHAPPEN
; Celestifnénlaar 2004 — B-300% Leuven (Heverles)

ON THE SEMANTICS OF META-PROGRAMMING
AND THE CONTROL OF PARTIAL DEDUCTION
IN LOGIC PROGRAMMING

Examencommissig : Proefschrift vdorgedragen tot.
Voarzitter Prof. Dr. ir. Y.I. Willems het behalen van het docioraat
Prof..Dr. D. De Schreve, promotor in de Informiaticd

Prof. ir. M. Gobin, promotor
Prof. Dr. ir. M: Bruynooghe . .
Prof, Dr. 3. Gallagher (University: of Bristal} Bernhard MARTENS
Prof..Dr. F..van Harmelen (Univ. Amsterddm)

door

Februari 1994

On the Semantics of Meta-Programming
and the Control of Partial Deduction
in. Logic Programming

Bernhard Martens
Department: of Computer Science, K.U.Leuveir

ABSTRACT
In logic programrning, meta-programming hias been advocated as a major route
towards increased knowledge representation and Teasoning capabilities. And writ-
ing programs that treat othér programs as data is not difficult to accomplish
within its framework, However, in many cases, the practice seemed to lack a
clear semantical foundation. '

In the firsi pari of this thesis, we therefore study a semaniics for uniyped,
vanille mete-programs, using the non-ground representation for object .']e_vel vazi-
ables. We do not only address the basic vanilla meta-interpreter, but. also. sorme
interesting extensions, including programs which allow $ome forms of amalga.ma~
tion. We show that for stratified object programs, associated meta-programs are.
weakly stratified, For a large class of object programs, we establish a natural cor-
respondence between the object level-perfect and the meta level weakly perfect
Herbrand models; thus providing a sensible meta-program semantics.. Finally, for
definite object programs, we reconsider and generalise these results in the cdn'te_xt
of an extended Herbrand semantics, designed to closely mirror the ‘operational
behaviour of logic programs.

Another problem faced: by meta-programiming applications is a considerable
loss of ezecution efficiency {compared with reasoning directly at.the object level).
Specialising meta-interpreters with Tespect to object programs helps. Partial,
deduclion. constitutes one 'teci'hnique used t_o pursue this effect. However, its.
relevance is not limited to this particular setiing.

‘This leads us, in the second part of this thesis, to a study of pariial dedue-
tion for (pure} definite logic programs. Within that context, we focus on the.
(online) control of unfilding, devising methods to ensure its términation in a
way that reflects Strutturail properties of the query and program to be unfolded.
We propose a general framework for finite unfolding, based on well-founded ‘or-
derings. We extensively investigate several cancrete instances and present fully
aufomatic algorithms. Using such unfoiding to construct finite- SLD-trees, we for-
mulate a sound and complete, -always terminating, completely automatic method
“for partial deduction. Finally, some experiments, comparing various-approaches,
are briefly discussed. Throughout our presentation, we particularly emphasise
detailed formalisations; allowing formal proofs for interesting properties of the
various algorithms. ' '

Acknowledgements

My first words of thanks are meant for you, readeér of this thesis. After all, what
greater joy can there be for one who writes than the existence -of one who reads 7
Or yes, perhaps the very act of writing itself, Indeed, working on this thesis has
often (though niot always) given mé tremendous pleasure, I realise it is probably
asking too much, but I can. mot-rid miyself of the secret hope that -some of this
enjoyment might occasionally leak through the subsequent pages.

Now, there is no:escape possible, I have to face 2 task which has proven itself
beyond my limited capabilities: finding the right words to thank my supervisor,
Professor Danny De.Schreye. After many hours of pondering, T decided to simply
give up and admit defeat. Lét me, taking advantage of the Dutch word for
“supervisor”, just cite Chuck Berry: “He is the tnost wonderful promoter I have
ever had 1* '

Next, I would like to express my gratitude towards Professor Mare Gobin for
accepting to be-my second supervisor. 1thank him, as well as the remaining mem-

‘bers of the thesis commiitee, Professors Maurice Bruynooghe, John Gallagher,

Frank van Hatmelen and Yves Willems, for the time spent on reading my thesis
and for very valuable feedback.

Science; like life, ‘is. often a very lonely activity. However, feither can be
performed in complete solitude. Luckily, there were colleagues; at the Leuven.
Department of Computer Science, at ECRC, in Compulog, &nd elsewhere, as
well as some (other) friends who decided, to a greater or lesser extent, that it
was fun to keep me company for a while. One; named Ingtid, ever choose to
share an unusually large part of my life. Thanks to all of them.

At a more technical level, the content of this thesis greatly benefited from
discussions with and contributions made by many peqplg’-fshroughout the past.

seven years. | mention just three who were particularly important: Danny De

Schreye {of course), Maurice Bruynooghe and Tamids Horvath. If you find you like
the work below, please realise that at least part of the credit is theirs. However,
if you.do not, the blame is entirely mine.

Bern Martens _
Leuven, January 1994

Financial support for my work has been kindly provided by: the Katholieke.
Universiteit Leuven, the Belgian government project RFO-AI-03, the Belgian
National Fund for Scientific Researck, ESPRIT Basic Research Action COMPU-
LOG II, and the GOA *Non-Standard Applications of Abstract Ihterpretation”
{Belgium).

This thesis.is dedicated
to my father
and my mother,

And also to Jaak Moors,
whose wonderful teaching:

first introduced me-

to the delights of mathematics.

3 DT e Y A AT LI D T e, i S

Contents

1 Introduction

1

2 Technical Background 5
21 Imtroduction. 5
2.2 Basicsl 5
2.3 Definite Logic Programs e e e e e E e e e e i 8
2.4 Normal Logic Programst 14

I Why Untyped Non- Ground Meta-Programming is Not

(Much of) a Problem 17
3 Two Preliminary Concepts. 19
3.1 Imtroduction B [
3.2° Language Indépendence. 4
3.2.1 Language independent stratified programs e st e 22

3.2.2 Language mdependence for other classes of programs . 28

3.3 Weak Stratification 27
3.3.1. Weakly stratified programs and wea.kly perfect models . .. 20

4 Herbrand Semantics for Meta-Programs 39
41 Introduct.zon...................-...-- 39
4.2 Vanilla Meta-Programs . R 40
4.2.1 Definitionis i 40

4.2.2 Weak stratification of M. T 41

4.2.3 A sensible semantics for M e e e e . 43

'4".3 Bxtensions. 47
4,.3.1 Definite programs and t.helr -extended meta«programs 47

4.3.2 Normalextensions 49

4.4 A Justification for Overloading 51

i

4.5

4.6

4.7

4.8
4.9

CONTENTS
Amalgamation T ~ .. B2
4.5.1 Amalgamated vanilla meta-programs 53
4.5.2 Meta2-programs ek e e e e e 54
S-Semnantics for Meta-Interpreters.. 58
46.1 Totroductiono v et acr ... B8
4,62 S-Bemantics e e e e 59
4.6.3 Vanilla meta-interpreters e i ... BY
464 Extended meta-interpreters P
4.6.5 Concludingremarks, chu.u s . 66
Reasoning about Theories and Provablhty e i ... BB
4.7.1 An explicit theory a:gument P e ia s a . B6
4.7.2 The demo predicate - 14
Discussion, Some Related Work v, .. 10
Conclusior e e e e e e e e s 73

II Partial Deduction and the Gentle Art of Finite Un-

folding _ 7
5. Prelude 79
51 Imtroduction :................. e e e e e 79
5.2 Partial Evaluation s e aa BO
5.3 Partial Deduction in Logic Progra.mmmg R <11
54 Foundations R . |
5.5 A Partial Deductlon Method . .\ v vvr ot e e e e 85

6 A Framework for Finite Unfolding 89
6.1 Imtroductionol [P - 1]
6.2 Well-Founded and- Subset-Wlse Founded SLD -’I‘rea; R 1]
6.2.1 Well-founded sets and trees - 11

6.2:2 “Subset-wise founded trees 92

6.3 Using Finite Prefoundings 95
6.3.1 Finite prefoundings. . « .v e e .. 9B

6.3.2 Afirst algorithm e e e e i e e e e e .. 97
~-B8:38.3 Usfoldiiig tmeta-interpreters .., 2 . v . o s oo 08

6.4 Using Hierarchical Piefoundings e i e e e e -100
6.4.1 A motivatingexample e e e e e e 100

6.4.2 Hierarchical prefoundings P S 102

6.4.3 A more sophisticated algorithin. e e e e 107

6.5 Applicability and Automation, e i e e e 11t
6.5.1 TRelated techniques A)

6.5.2 Setting the stage for automation 113

CONTENTS

6.5.3- Meta-interpreters revisited. AN
6:6 Discussion-and Conclugion

T Sound and Complete Partial Deduction

7.1 Iatroductiom. e e e e e e e e e
7.2 Automatic Finite Unfoidmg P e e e ey e
7.3 An Algorithm for. Par_ttal.Deduc_tlon S e e e Cea
7.3:.1 Another termination problem
7.3.2 A partla.l deduction. algorithm and its propertles .
7.4 Discussion, Some Related Work
7.5 Experiments. e e e e e SRV
7.5.1 Setup
7.5.2 Results
7.5.3 Dlscusmon........‘........._...._._..
7.6 QConclusion

8 Advanced Techniques in Finite Unfoldmg

8.1 Introductwn-........,.._ e e e e .
B.2 Lexlcographlcal Priorities FRNE
8.2.1 Imtroduction, ... e e e e .
8.2.2 More powerful measures N
8.2.3 An -automatic unfolding algorithm, ..
8.2.4 Relamng monotonicity L L, L, L.
8.3 Consxdermg the Context e e e e

8.3:1 Introduction

8.3.2 Handling corouitining , ,, . e e e
8.3.3 Back propagation of mstant:a.tlons
8.3.4 Focusing on ancestor literals Do
8.4 Refining Measure Functions: A Generie Trea.tment
8.4.1 Imtroduction
8.4.2. A genericalgorithm, C e :
8.5 Incorpora.tmg Variant. Checkmg e e e e e -
8.5.1 Intreduction Bt e e e e D e e e i
8.5.2 Reconsidering the framework e e e e e
8.5.3 Issugsm_a.ut._omatmn.,........;......T_
8.6 Focusingon Subterms_.. ...,
8.8.1 Introduction:.. ..
8.6.2 More detailed meastres., .. e
8.6.3 Automation e e e "
~ 8.6.4 Unfolding meta- 1nte.rpreters
8.7 Discussion and Conclusion. e e e e

iit

Ce .1.16

c.o. L 144

iv

9 (General Discussion and -Conélusion

A Proof of lemma 3.3.12
B Benchmarks for Partial Dednction

Bibliography

CONTENTS

221
‘225
235

(241

List of Figures

21 AnSLDdree. T .
2.2 Avprooftree. ..., 13
5.1 Aninfinite SLDstrees 87
B.1. A subset-wise founded SLD -tree. e e e e e e - .. D4
6.2 Atreetoosmall. .. ,. T 1) 1
8.3 The resulting tree for example 8.4.13. e e e » - 110
6.4 Two exira dangling leaves.. _ 115
7.1 The SLD-tree for example-7.2.3. .., R o8
7.2 The SLD-tree for example 724, T I 1.4
7.3 An infinite number of (finite)- SLD-trees. 126
7.4 -match program produced by Diwed: 139
7.5 KMP-like match PIOBTAIL. . v . . v v vt iy e e e e 139
8.1 Unfolding with weightsin IN2. _ 147
8.2 Direct covering ancestor annotation.. 159
8.3 Unfolding when considering other diterals. 161
8:4 A coroutining SLD-derivation., O | 4
8.5 Handling back propagation. 173
8.6 Part of the SLD-tree generated for exa.mple 83.23.... .. c 175
8.7 A case for yet more powetful measures. e e 177
8.8 An infinite SED-derivation. . : 178
8.9 A properly unfolded datalog tree., ... e e .. . 188
8.10 Infinitely many goals with equal welght but uon-vanant measured.
part. e Cee e .o 2190
8.11 Combining set based and Ton-variant unfoldmg. e e ... 183
812 Inieresting. subargument behaviour. e e .. 104
B.13 Initial unfolding. 111
8.14 Continued unfolding, e e e e e ... 210
v

vi

LIST OF FIGURES

8.15 Concluding unfolding. A L 1)
8.16 Meta-interpreting append. S 218
8.17 The need for c-refinement. <.216

8.18 Algorithm 8.6.46istooweak. . . : . . .« v oL L n o 217

Chapter 1

Introduction

Logic programming developed out. of the work on automated theorem proying be-
tween 20 and 30 years ago. An important discovery, enabling this breakthrogh,
wag'the invention of the resolution principle by Alan Robinson, whose main: pa-
‘per on the subject ([145]) appeared in 1965, The next major step was taken by
Robert Kowalski, who realised that, reasoning with a particularly simple form of
logic formulas, called Horn clauses, only requires a simple and efficient instance
of general resolution (LUSH, later renamed to SLD, see [161]). This led to his
milesione paper on predicate calculus as a programmiing language ([96]). Fi-
nally, the semantic foundations of the new Programming paradigm were firmly
established in. [170]. Me'améhil'ef-, a prototype implementation of a practical pro-
gramming language was developed by Alain Colmerauer and Philippe Roussel,
whose wife coined the name Prolog {“Programmation en Logique™) ([149]). Two
graciously written personal accounts on the roots and early development of logic-
programming-and Prolog, can be found-in [98] and [148].

Later developments include the transfer of the logie programming approach to,
the field of (relational) databases, leading to the birth of the nowadays flourish-
ing deductive database: concept (seé.a.0: [167), [168], {31}, [74]), and the adoption
of (parall_e_]) logic programiming as the basic computing paradigm underlying the
Japanese Fifth Generation Computer Systems Project ({61]). One of the major
technical extensions of the logic programiming framework itself meanwhile has
been the inclusion of the so-called “negation as failure” rule {[35]). This en-
Hancement greatly increased the expressivity of the framework, but also caused
quite & few semantical and procedural problems. We refer to chapter 2 for some
further details. i

Against this background, Kowalski recently sketched the.ambitions of the
logit programming community as no.léess than {we quote from the abstract. of"

[99)):

2 CHAPTER 1. INTRODUCTION

“The ultimate-goal ... is to develop the use of logic for all aspects
of computation. This includes not only the development of a single
logi¢ for representing. prograns, program specifications, databases,
and knowledge representations in artificial intelligence, but also the
development of logic-based ma.nagement tools.”

continuing as follows:

“] shall argue that, for these purposes, two major extensions of logic
programming are needed — abduction -and metalevel reasoning:”

It is the latter extension which is part-of this: thesis’ subject matier.

Meta-level reasoning can be characterised as “reasoning about reasoning”. It
is; in fact, commion practice in a human’s everyday life. (A dehghtfully phrased
and carefully analysed example, of a particular kind; namely réasoning about
onie’s own reasoning, also termed “reflection”, can be found in [TS]._) Many au-
thors have therefore: argued. that -a- full-fledged knowledge. representation and.
reasoning tool should include: stich a facility. In a logic settmg, the idea boils
down to the comistruction of theories about theoties; in a programiming context,
it "translates into programs that take as inpit, manipulate, and for produce ‘as
output other prograrms. Since logic: programming does not really distinguish be-
tween programs and data, it has no conceptual difficulties with such a practice.
And indeed, applications of logic “réta”-programmiing have beer manifald (see
‘séction 3.1 for some referénces). o

However, tiany such applications seemed to lack a well-established semantics
(amalgarnation, the frierging of object and meta theory, a practice closely related
to the concept of reflection, posing especially challenging, problems). Sincea firm
semnantical foundation in first -order logic is one of the main features boasted by
logic programming, this situation’can ha.rdl}' be deemed sa.tlsfactory In the first
part of this thesis, we therefore cons1der in detail the semantics of one pa:rtlcularly
influential kind of meta-programming. ‘We remain as close as possible to the basic
Herbirand semantics framework for logic programs (see chapter 2); and establish
corzespondernice results between meta- and object-level semantics.

As'mentioned. above, logic programming does not only provide a knowledge
representation tool with a clear semantic foundation. It is also a programming

- paradigm; pm\udmg the-opportunity fo.write and-execute: Programs hls_dua.l
capatity can in fact be considered its main outsta.ndmg feature. Wntmg pro-
grams, however; implies being: concerned about their execution efficiency. Now,
a subsiantial volume of research in logic programming has aimed at relieving the
programmer as much-as possible from this task, and shifting the burden of find-
ing-efficient execution strategies to the underlying system. The. work on recursive
query answering in deductive databases ([31]) can be mentioned as one example,
the work on transformation and specialisation of logic programs as another (see

3

e.g. [106]). Taken to its limits, such an approach leads $o the complete reduction
of programming to knowledge representation. This luring prospect, however, still
‘'seems to lie well beyond the realm of the curréntly feasible.

However, it is not only its dual nature, combining knowledge representation-
and programming, which makes logic-programming a suitable vehicle for such
undertakings. An equally important aspect is its well-established semantics, In-
deed, this feature enables -comparisons.of various programs, including for example.
the demizind that they should have the same “meaning”, in spite of perhaps huge-
operational differences. Clearly, in a program transformation context, such an
asset ia-a precious one. It makes possible the formulation of important resuits.
‘as the basic soundness -and...comp'lefeﬁess theorem '.fo;'_pantia.l deduction by LIoj_(d
and Shepherdson (see section 5.4).

Which brings us to the particular transformation technique studied in part IT
of this thesis: partial evaluglion, nowadays usually renamed to partial deduction
in a logic programming context. Originally borrowed from other fields of com-
puting, its basic idea is the .{é.utomati_q)__ specialisation of a given program with
respect to partiaily known input, ‘The resulting mere specific program shonld
then be capable of dealing with concrete values for the rest of the input'in a
mare efficient way than the original general program: (For 2 mére extensive
introduction to partial evaluation/deduction, we refer to chapter 5.}

A particularly important application of partial deduction is:the specialisation
of a meta-interpreter with respect to various object programs. Typicaily, the
resulting program runs an order of magnitude faster on {remaining) concrete
‘object level input. Even two orders of magnitude speedups have been reported
in a context of specialising Gédel {[80)) ground representation reeta-interpreters
({75]). In fact, practical meta-programming in. logic programming seems hardly
feasible without sophisticated Program specialisation techniques of this kind..

The latter consideration provides the main conceptual link between the first
and the second part of this thesis. Indeed, in part II below, we shift our attention
from the semantical aspects of meta-programming, addressed in part I, and turn
to more operational issues. We.study.pai_rti_al d_eductio_n_ of logic prograins, largely
concentrating: on one subproblem: the control of unfolding. We construct a
framework to ensure its termination without zesorting to ad ho¢ technigues and
develop several fully automatic algorithms. We also include a méthod:for overall
partial deduction, which we show to always terminate and satisfy important
‘correctness properties. Finally, we discuss some experiments comnparing various,
ways-to control partial deduction and unfolding.

Apart from chapters 3 and 4 in part 1, chapters 5 to 8, constituting part II,
and the present introduction, this thesis comprises two more chapters. Chapter 8
concludes the thesis. It briefly returns to the topical concluding discussions end-
ing most chapters, reconsiders the overall picture, and indicates some additional

4 CHAPTER 7, INTRODUCTION

directions for possible future research. Finally, in chapter 2, the one which imme-
dla.tely follows.this. mtroductlon, we have compiled the main technical ba.ckground'
on loglc programming semantics, with whick we suppose familiarity throughout
the rest of this thesis.

Chapter 2

Technical Background

2.1 Imtroduction

In this chapter, we stimmarise the main technical-background on the semantics
(declarative as well as procedural) of logic programming, with which we suppose
familiarity throughout the rest of this thesis. The presentation below is based
on [110] and [5], mainly following the terminology adopted in the former work.
In the present context, we can only include the biiefest ‘possible introduction,
attempting fo provide that material which seems ‘indispensable for. a good un-
derstanding of what follows. We refer to [110] and/or (5] for a more general
and thorough treatment with further details, including extensive references to
relevant papers. _ S

Next, since (definite) logic programs are a (parﬁicularly--simplg) kind of first
order logic theories, notions and results of plain (mathematical} logic are also
relevant. We refer to any of the numerous texthooks available ({50} and [58]
can be mentioned as examples). Finally, our presentation below will be in a
setting of first. order predicate calculus. All relevant notions can’ of course be
straightforwardly applied to a proposiiional calculus program.

In sections 2.% and 2.4, we sum up concepts and results on, respectively,
definite and normal logic program semantics, But first, we present a bird’s-eye
view of some undef_lyihg_ basic notions.

2.2 Basics

Suppose that some first-order language, containing va'ﬁa.bl_és', constants, func-

tion-symbols (or functors), predicate (or relation) symbols. (and propositional
constants) is given. Function and predicate symbols have dn associated arity, a

5

& CHAPTER 2. TECHNICAL BACKGROUND

natural number mchca.tmg how .many arguments the symbol takes i in the defini-
tions which now follow. Terms are defined as follows:

s z variableis a term
e a constant is-a term
& a function symbol applied to terms is a term

and. atoms as follows:

a predicate symbol applied to terms-is an atom.
A literal is an atom ‘possibly preceded by a négation sign. Literals of the latter
kind will be called negative; Posifive literals are simple atoms. A program. clouse
‘s a forraula of the following form:

A—By,....Bp,n>0
This formula is to: be undetstood as a logical implicationi, with. the condition
part béing a:conjunction of literals and the consequent an‘atom. .All variables
occurting in its literals are supposed to be undversally quantified, with the scope
of the: quaatifiers extending over the entire clause. A js called the kead. of the
clause and Bi,..., B, its.body. The body may be empty. In that case, the
resilting clause i5°a fact. ‘A ‘query or goalis & clause with an empty head and a
‘non-empty body:

— BI, Bn., > 1
It'can be read as a logical implication the consequent part of which'is false. A
tetm, atom, claitse, goal, ... without any variables is called ground. We will use
the word “expression” to refer to any object which is a term, an atoin, a claise,
a goal.

Throughout the rest of this thesis; we. will adopt the followmg syntactical

éonventions for the noiation of clauses and goals

e Variables are denoted by strings starting with a capital from the latter half’
of the alphabet.

™ Constants functlon symbols and predicate. symbols are denoted by strmgs
"startmg w1th a Yower case chardcter.” Offen’a; b, &) ' for'c
stants, f, g, %, ... for function, and p,q,r,... for predicate. symbols, occa-
sionally .enhance‘d with. rumerical indices, a(:_cents, ete..

o Lists, constructed through the use of the Hsi-forming functor . will be
represented in the conveiitional [|] Prolog notation, where [| denctes the
empty 1i5t' constant,_ Ilii'. [ai b[X] = '(al‘(.bi X))! [ﬂ,b] = (ﬂ'., (b! [D) a.nd.
{X] = (X, [}) are some examples. o o

2.2, BASICS T

» Occasionally, we will need to name terms, atoms, <clauses, etc.. Strings
starting with a lower case character (usua.lly §,t,...) will normally tefer to
the former; Strings headed by a capital from the former half of the alphabet
to atoms and clauses.

Next, a substitution isa. (finite) mapping from (distinct) variables to terms,
deénoted -as:

= -{;let;[, winy :/tn}

whereé each X; # 4. A ground substitution is one that maps to ground terms.
Substitutions.can be applied to expressions. If ¥ is an expression and § a sub-
stltutlon, than E8 is the expression obtained by replacing domain variables of 8,
dccurring in -, by their corresponding term. We call E§ an instonce of E, If E
and F are expressions such that Z is dn instance of F and F is an instance of B,

we call the two expressions variants. A substitution # such that E6 is a va.nant
of E'is called a renaming (subststuiwn} for-E. Fma.lly, if 7 is an expression and
F an’instance of E, than F is called more genersl than (or a generalisation of,

or an anti-instance of) .. Bubstitutions can be composed

Definition 2.2.1 Let § = {X1/s1, .+ Xm/sm} and o = {Yi/ty,..., ¥, [t} be
substitutions. Then the composition Ba' of & and o is the substitution obtained

from the set

{X'-'-/slﬂ"! -y mfsmo': Yl/ih o ¥n /tn}'

by deleting any binding X;/s;o for which Xi = 5;0 and deleting any bmdmg

Y;/t; for which ¥; € {X1,..., Xn}.

A particularly important operafion on’ expressions is called unification. We-
only need unification of terms or atoms. Let is call expressions of the latter kind.

: szmp!e And let us- extend the applicability of a substitution to sets of expressions

in the obvious way, Then:

Definition 2.2.2 Let S be a finite set of simple expressions. A substitution @

is called a unifier for S if 56 is-a smgleton A unifier 8 for S is called a most

general unifier for § if, for each umﬁer o of 5, there exists a substitution 7 such

that o = fv;

Ifa set of expressions is ‘inifizble, then its most general unifier (mgu) is unigue

(modulo renaming of its target terms). Umﬁcatmn algorithms, checking whether

a given set of expressions is unifiable and, if so, computing its mgu, can be found
in [110] and {5].

Next, an outstanding feature of logic is its model theory. It allows reasoning
about truth in a theory, without actually performing any reasoning within the
theory. (A delightful account of the historical background and the fundamental

importance of model theory in mathematics can be found in. [90].) Since a logic

8 CHAPTER 2. TECHNICAL BACKGROQUND

program can be understood as a logic theory, logic programming inherits’ this
asset. Moreover, in a logic programming context; for most: purposes it suffices
to consider interpretations of a particularly simple kind, the domain of which
coincides with the set of ground terms in the given language.. They are called
Herbrand interpretations. In such interpretations, 2 constant is interpreted as
itgelf, a furiction symbol as a function of tuples of ground térms to ground terms,
where the-image of a given tuple is the term obtained by using the terms in the
‘tuple ‘as- argnn‘iénts for the given fiinctor, and a predicate’ syrhbol as a relation
on tuples of ground terms: It can be noted that a Herbrand interpretation (kn a
given language) is ‘completely characterised by the set of its true. ground atorms.
The followmg tesult is basic for the semiantics of 1og1c programs:

Proposition 2.2.3 Let 5 be a set of program clauses and gueries. Then S has
a model iff. § has a Herbrand model.

For a given collection of program clauses, and a query, we. will be interested in
finding instances of the. query, inconsistent, with the collection of clauses (1 e. its
body literals are satisfied in any. model of the: clauses, i.e. loglcally implied by
these clauses). The above proposition:ensures that this question can be consid-
ered on the basis of Herbrand interpretations-only.

We introduce some terminology. Let P be a set of program clauses.in some
language £z (usually assumed to contain those constants; functors and predicate
symbols which-actually appear in P; see section 3: 2), then:

e The Herbrand universe; Up is the set of all ground terms in Lp.
@ The Herbrand bese, Bp iz the set of all ground atoms in Lp.

Observe-'t_ha.t any Herbrand interp'retation can be identified with a'subset Qf-thc
Herbrand base, and vice versa, the atoms in“the subset being true, and the
rest false. We will maké this identification throughout what follows. Ther. the
following definition makes sense:

Definition. 2.2.4 Let P be a set of program clauses and H C Bp, a Herbrand
model of P. Then H is a minimal Herbrand model of P if there is no H' € H
which is also a model of P.

e rly,. g. al consequence of a set of progra.m clauses’ P .
iff it is true in every minimal Herbrand model of P.

2.3 Definite Logic Programs

A definite program clause (or goal) s is a program clause. (resp goal) that does riot
contaih any negative literals. A definile lagic program is a finite set of definite

AT g T T Y S A T T AT A Y S A P 1 e o T e

-2.3. DEFINITE LOGIC PROGRAMS 9

program clauses.. For-such programs, there is a firmly established,. and: very.
‘appealing, semantical theory.

Proposition 2.3.1 Lét P be a definite program and Sy a non-empty sef of
Herbrand models of P, Then the intersection of the elements in Sy is also a
Herbrand model of P.

‘The set- of all Herbrand models of a given definite program P is non-empty since
Bp is always a model. - The intersection of all P’s Herbrand models is therefore
again a model, denoted Hp. Obviously, it is the smallest, in the sense that it is
-a subset. of all other Herbrand inodels and none-of'its (strict) subsets is.a model..
It is called the least Herbrand model of P. It is P’s unique minimal model and
decides on its own which ground iterals are logical consequences of the program.

Theorem 2.3.2 Let P be a definite program. Then:
Hp ={A € Bp|4 is a logical consequence of P}

The least Herbrand model of a definite program can therefore be considered as
e declarative description of ita m_ganing_,-.independeni from any operational isgues.
However, the above characterisations.are not very constructive. Luckily, there is
a much ‘more convenient way to obtain. a program’s least. Herbrand model than
computing the intersection of all its Herbrand models. To this end, one associates
a so-called. fizpoint operator T with P. It maps Herbrand interpretations of P
into Herbrand interpretations of P. If we denote by P(Bp) the set. of subsets of
P?’s Herbrand base, i.e. the set.of P’s Herbrand interpretations, a formal definition
looks as follows: ’

Definition 2.3.3 Let .P be a definite program. The mapping
Te 'P(.Bp) — 'P(Bp_)
is defined as follows. Let J < ‘P(Bp), then:
Tp(I)={A € Bp|Ad+ Bi,...,B, isa ground instance of a clausein P and
{Bls ey Bn} Q:I}

The next propérty provides one reason why Tp is interesting:

Proposition 2.3.4 Let P be a definite program and I a Herbrand interpretation
of P. Then I is a model of P if Tp({I) C 1. '

Clearly, T5 is monotonic with respect to the C-order on P(Bp). One is usually
interested in the series of interpretations obtained through repeated application of
Tp, starting from @. The mterpretations thus computed are denoted by Tptm,
where m is some natural number, taking Tp10. = 0, 7511 =.Tp({0), Tr12 =
Tp(Tp11), etc.. Orne can prove-that, for any definite program, the union -of all
these sets is the least fixpoint of Tp. In other ‘words, it is the smallest set such
'f.ha.t Tp maps it toitself. But:this is exactly P’s least. Herbrand model. Formally:

10 CHAPTER-2. TECHNICAL BACKGROUND

Theorem 2.3.5 Let P be a definite program. Then Hp = {fp(Te} = |); o, TP i

‘This union is.also denoted as Tplw znd it. might or might not be eqnal to Tpin

for some finite n (and any m larger than such =). '
Next, we introduce a notion that will serve as a bridge to- the procedural

semaritics of logic programming: correci: answer substitutions. '

Definition 2.3.6 Let P be a definite program.and G a definite goal. An gnswer
for P'U {G} is 2 substitution for variables of G,

Definition 2.3.7 Let P be a definite program, G a definite goal « Ay, Ax
and @ an answer for P U{G}. @ is called a correct enswer for P U {G} if
Y{(Ad.. &:Ak)e) is a logical consequence of P.

Theorem 2.3.8 Let P be a definite program and G a deﬁnite goal— Ay, ..., 4;.
Suppose 8'is an answer for P U {G} such that (Al& .&4:)8 is ground. Then
the following are equivalent:

« g is_ correct.
@ (A;_& .--%&A4;)8'1s irue in every Herbrand model of P.
o (A1&...&4;)0 is true in the least Herbrand model of P.

Lét us now turn to. the comronly used exetution mechanism for definite
logic programs.. The material to be présented now is often terined the procedural
semantics of (definite) logic programming. We first introduce the 'special form-of
resolution {called SLD-resolution) used to reason with definite logic programs.

Definition 2.3.9 Let G be « A1,..., 4m, ., 4 and C be 4 — By, ..., B,.
Then G is. derived from & and C using mgu § if the following conditicns hold:

1. Ay, is'an atom, called the selected-atom in G
2..8is.an mgu of A, and A
3' : Gr 15 the goal — (All g Am—erli B Bq: Am-}-la A ':AE)G

In faet, in 'pa.r’c':II of thls thesis, keeping a possible gene_ra}_isa.tion. to normal pro-
grams.in mind, we will usually speak about selected literals, rather than atoms,

Definition 2.3.10 Let P be a definite programi afid G. a definite goal. An SLD-
derivation of PL) {G} consists of a (finite or infinite) sequenice Go = G, Gy,... of
goals, a sequence Y, Cg, . of vdriants .of program clauses of P and & sequence
9.1,-93, i ... 0f mgi's siich that each -G_g.[.]_ s de’rived'_from' G; and C{.{..'; us‘ing: 6§'+ 1

2.3. DEFINITE LOGIC PROGRAMS. 11

SLD-derivations may be: finite or infinite. A finite SLD-derivation may be sue-
cessful ot failed. A successful SLD-derivation (also calied SLD-refutation) is one.
that.ends in'a goal without any literals. A failed: SLD-derivation is-one that ends.
in a nop-empty goal with the property that the selected atom in _t".'};i_s godl does
not unify with the-head of any program clause.

Now, we can define the following important concept:

Definition2.3.11 Let P be a definite program and G a:definite goal. A computed
answer @ for P'U{G} is the substitution obtained by restricting the composition
81.. 85 to the variables of G; where 8,,...,6, is the sequernce of mgu’s used in
an SLD-refutation of P U{G}. '

As the term suggests, computed answer substitutions are what’is actually “com-
puted” when constructing SLD-derivations for a given program and query. Two
theorems, fundamental in the theory of logic programming, assure that computed:
answers correspond ni‘cely-- to correct answers. '

Theorem 2.3.12 {soundness of SLD-resolution) Let P be a definite program.
-and G a definite goal. Then every compirted answer for PU{G}isa correct answer
for P U{GY. '

‘Theorem '2.3.13 {completeness of SLD-resolution) Let P be a définite
program and G a-definite goal. For évery correct arswer 8 for PU{GY}, there
exists a computed answer & for P U {G} and, a substitution 7.such that 8 = oy.

Against this background, the importance of results such as theoréem 5.4.7 below,
can be-appreciated: '

Let us finally introduce two Tepresentations of the overall reasoning Process
‘involved in computing answers for = given program’ and query, to be used fre-
quently in part II of the thesis. ' '

Deﬁnitiﬂn 2.3.14 Let P be a definite program and G-a definite goal: An SLD-
‘tree for P U{G} is airee satisfying the following:

‘1. Bach node of the tree.is a (possibly empty) definite goal

2. The root node 'is G-

3. Let — Ay,... Am,...,4i (k > 1) be a-rode in the tree and suppose
that 4., is the selected atom. Then, for each (variant of &) clause 4 +—
Bi,.:., B, in P-such.that A, and A are unifiable with mgu #, the node
has:a .c:__]iild:

- .(..Al', . .,Am_l, Bl-_, - :BgyAm+1 ren ;-,--AE)G.

12 CHAPTER 2. TECHNICAL BACKGROUND

Obviocusly, the branches of an SLD-tre¢ are SLD-dérivations. When one or more
branches are iiifinite detivations, the tree is called infinite, if there is none, finite.
Observe that for ‘a finite program P, a finite SLD-tree is alsc a finite tree, in
the sense that its set of nodes is finite. This is clear, since the tree is finitely
branchmg and therefore Konigs lemma (see &g [58]) can be applied. Next, an
SLD-tree all branches of which ate failed derivations, is ca.lied finitely failed. 1t
indicates that no answers can be found for the guery w]:_u_(_:h_is its root. Finally,
leaves of an SLD-tree are called success or failure nodes, depending on whether
they terminate & successful or a failed derivation.

Definition 2.3.15 A computation ruleis.a function from a set of definite goals?

to a set-of atoms such that the value of the funciion for a goal is-an atom, called
ihe. selected atom, in that goal,

Note that the shape of an SLD-tree {modulo permutations of its branches) is
completely determined by a program, a goal anda €omputation rile.

- P(X,b)

= AX,Z), pb)
(success)

=4

= p(bb)

O e gbZ),p@b)
(suGgess) (failure}

‘Figure 2.1: An SLD-tree.

Consider the follow_in_g'éxample...borrowed' from [110]:

Example-2.3.16 Take the -:fullowing..-prog:am:-
(X, X) o i
p(X,Y) = ‘I(X: Z)-,.p_(_z, Y)
'9(.‘1!'.5.)..{_'

‘and guery:

1 Possibly atgmented with & history.

2.3. DEFINITE LOGIC PROGRAMS 13

Assuming a “choose the leftrnost atom” computation rule, the resulting (finite,
not finitely failed) SLD-tree is depicted in figure 2.1. Selected atoms. are un-
derlined, and branches are annotated Witk the necessary equalities to: allow the
reconstruction of compuited answer substitutions. '

We will dlso need the related notion of a proof tree. For a given program, query
and computation rule, it can be constructed in parallel with the SLD-tree, . and
registers in finer detail how an atom, considered for a derivation step, derives:
from atoms considered earlier. The latter feature is the reason for its (imiplicit)
use in this thesis. There are two different kinds of nodes , called and- and or-nodes
respectively. ‘These names refer to whether every or Just one descending branch
skould be followed in order to find an answer for the given guery. 'We will not
include. formal definitions, but simply reconsider example-z_-.fi._-];"ﬁ_.

Example 2:3.17 The proof tree carresponding to the SLD-tree in figure 2.1 can-
be found in figure 2.2. And-nodes are indicated by dots a_.nd_.'thé_l_inl_cs_‘ originating.
from them are joined by an arc to stress the fact that they should be considered
together. Or-nodes can be enhanced 'by a label, indicating relevant variable bind-
ings produced in other parts of the tree, before this particula.r node is considered,
(In figure 2.2, there is actually one such or-node.) Observe how in figure 2.2, the
two (unrelated) g atomis do ot appear in the same branch of the tree, while they
do in figure 2.1,

pX.b)
g
X=b
O
® 9'/\9
'X:-fa ‘
!]

q(b,Z*) p(Zb)

Figure 2.2: A" proof tree.

14 CHAPTER 2. TECHNICAL BACKGROUND

2.4 Normal Logic Programs

If the restriction to. positive literals in"prograin ¢lause bodies and goals.is lifted,
one speaks about normal program clauses, goals and programs, The possibility to
add negati'o'n's is mot strictly necéssary fiom a computational viewpoint {definite -
logic programming is Turing comiplete), but it adds greatly to the knowledge
representation’ capabilities. However, there is a ¢onsiderable price to pay.

Indeed; normal logié programs usually no.longer have a unigue (least) mini-
mal Herbrand model, nor is: théir associdted Tp-operator monotonic. {Iterative
fixpoint computations are no longer poSSible') However, it turns out that for
a large class of programs, using negation in a restricted way; there is an ob-
vions choice of one particular model | amonyg iis. minémal Herbrand. models that.
somehow refiects best the inténded meéaning of the program. These programs are.
called siratified and the preferred model their perfect Herbrand model.. Moteover,
perfect-models cen be characterised through an iterative construction. Thus, the
perfect Herbrand miodel concept generalises the least Herbrand model one and
inherits ifs agreedble properties. _ _

We now include an extremely brief formial account of the. stratification ap-
‘proach to thie declarative semnantics of normal logic programs, presenting required
background material for part I of this thesis.

Let us first identify stratified programs.

--'D.gﬁnition 2.4.1 The dependency graph Dep(P) of a program P is defined as
follows:

o Its vertices are the predicate symbols of P

‘e There iz a positive (resp negative) directed edge from g to p if there is a
clatise in- P with p in its head and g.in a positive (resp. negative) body
literal.

One says that a predicate. symbol p depends positively (resp. negatively) on a
predicate symbol ¢ if there is a path from ¢ to p in Dep(P) containing only
positive edges (resp.-at .least one negative edge).

Definition 2.4.2 Let P be a normal program. We call a partition P 1.,_ iuaq P of
Plsoget of predicate symbols-a stratification of P, if-tke following two-¢onditions
‘holdfori=1,...,n

1. All predicate symbols on which the elements of P¥ depend positively are:
contained. in Ujes

2 All-predicate. symbols on:which the elements of P* depend- negatively are
contained in | J;

2.4. NORMAL LOGIC PROGRAMS 15.

Observe that siuch a stratification exists iff Dep(P) contains no cycles with a
negative edge. In other words, no predicate should be defined (directly or indi-
rectly) in terms of its own negation. If this is the case, P is called siraiified and
P,..., P™ its strata. Usually, there is more than one stratification possible for
& stratified program. Obviously, definite programs are stratified.

Now, suppose that P is stratified, then we can compute-a model of P, pro-
ceeding stratumwise, starting from the fizst {bottom) stratum, and interpreting
negative literals with respect to the aiready computed part. of the model. It is
exactly condition 2 in definition 2.4.2 which makes the latter possible.

Formally, one can first associate with. a normal program P an (in general
non-monotonic) operator Tp, through 4 straightforward generalisation. of defini-
tien 2.3,3. Suppose now that P is a normal program and. I C Bp. Then the
following notation is introduced: '

e Tpf0{l) =1

e Tpft(n + 1)(I) = Tp (Trpn(I)) U Trtin(I)
Next, suppose that PY,...,P" is a stratification of the program P. Then one
can consider normal. programs. P, -<3 B, where each T; contains precisely all
clauses of P-with head predicate symbol in P, Obviously, these are (possibly
-empty) normal prograrns, and one can define the following sequence of Herbrand
‘interpretations:

Hy =Tpw(0), Ha=Tpfw(Hy), ..., Hu=Tp fi(Hny)

If one takes Hp = H,, the following theorem can be proved;
Theorem 2.4.3 Let P be a stratified normal program and P, .. .y P" a straj-
fication of P. Let Hp be defined as above, Then the following hold:

1. Hp'is a minimal Herbrand model of P.

2. Hp does not-depend on the particuiar stratification of P, used in the -above.

construction.

S0, among the miinimal Herbrand models of a stratified program P, there is one
which seems - particularly natural; It tends: to minimise positive infermation on
predicates in lower strata: ‘We include one elementary example.
Example 2.4.4 Consider as P the f_oIlbWing_' program, containing a single clause:
pla) —not g(a) .
P has two minimal Herbrand models:
{p(a)} and {g(a)}

Hp equals the first of these two.

— et ampo e — - e e AR T P AR AT A 5 250 0 e v, Y S e TP

16 CHAPTER 2. TECHNICAL BACKGROUND

One calls Hp the perfect Herbrand model of P. Note that perfect Herbrand
models are a proper generalisation of least Herbrand models. Indeed, result 1 in
‘theorem 2.4.3 implies that for a definite program, the notions of least a.nd perfect
‘Herbrand model coincide.

Perfect ‘models have been defined for a wider class of programs. ‘To-this
end, one does not stratify the set of predicate symbols in a program P, as in
definition. 2.4.2 above; but instead its Herbrand. base, Bp. [Usmg a ground
dependency graph, constiucted on the basis of all possible ground instances of
clauses in: P. See: definitions 3.3. 1 and 3.3.2 in the next cha.pter) Programs
admitting such an operation are called locally stratified. Again a unique perfect
model can be defined. Stratified: programs are locally stratified and the two.
notions of perfect model coincide on this class of programs.

1t is possible to take yet a further step, and construct the mentioned stratifi-
cation of Bp .dynamically, using information obtained i in the already built part of
the Herbrand model to deléte irrelevant remaining clanse instances. In this way,
the class of weakly stratified programs is.introduced, generalising locally stratified
programs. Section 3.3 below deals in detail with wea.k stratification.

The procedural sermantics of (1ocally) stratified normallogic programshas also
been considered. ‘A proof procedure, called SLS-resolution was proposed,.and
shown to be sound and complete with respect to the perfect model. However,
this procedure can not be implemented (since it woiild incorporate & solution to
the halting problem). A workable, sound approximation is SLINFsresolulion; -an
extension of SLD-resolution that allows dealing with negation s fashuie, Further
details on these topics are not heeded in the contéxt of this thesis.

Much more can be said on the semantics of negation in logic programming.
One approach to'attach such semantiés to (almost} alf normal programs, in effect
predating ‘the stratification method, is called completion semantics. More recent
research has, in various ways, a.lmed at ezlending the preferred model idea to
-all wormal logic programs. And unifying frameworks for the. resulting plethora.
of semantics have heen proposed. Sc}_me of this work will be' briefty referred to
‘below, but:since it is not immediately felevant to the bulk-of this thesis, we leave.
it undiscussed here. Let 1us oaly mention that all semantics collapse irto least
‘Herbrand iriodel semantics on the class of definite programs and that el preferred:
-model approachés coincide on weakly stratified programs.

Part I

Why Untyped Non-Ground
Meta-Programming is Not
(Much of) a Problem

17

Chapter 3

Two Preliminary Concepts

3.1 Introduction

Since the appearance of [19] and [71] in [36]}, meta-programming has become
increasingly important in logic programming and deductive databases, Applica-
tions in knowledge representation and. reasoning, program transformation, syn-
thesis .and analysis, debugging and expert systems, the modeling of evaluation
strategies, the specification and implementation of sophisticated optimisation
techniques, the description -of integrity constrairit checking, etc. are constitufing
a sigpificantly large part of the recent work in the field {see e.g. [18], {99}, [161],
[64].. [159], [77], [158], [28], [164], [20]). A biennial, specialised workshop is ded-
icated to the subject, and its proceedings ([1], [24] and [130]) provide excellent
reading ‘material on foundations, implementational issues and. various. applica-
tions.

[82] and [160] were the first to ‘seriously ‘investigate theoretical foundations
for meta-programmiing in logic programming. Particularly the ideas and resulis
in [82) formed the starting' point for the 'development:of the novel logic pro-
gramming. language Gédel ([80]). Originally mounted as an attempt to take
meta-programming sericusly ([113]), the latter language now constitutes a fill-
fledged. declarative successor to Prolog, providing 'exféns_ive support for the sound
development of further mefa-programming applications.

As pointed out in chapter 1 however; it was not the sound semantics for meta-
programming, nor the existence of Gadel, that attracted so much interest ‘into
meta-programming in logic programming to start with. (Although they have
clearly accelerated the activity in the area). Indeed, we already menticned that
one main motivation certainly is the desi_ré._i_:p extend the expressiveness of Horn
clause logic augmented with negation as failure. Meta-programming adds extra

19

20 CHAPTER 3. ‘TWO PRELIMINARY CONCEPTS

knowledgé representation and reasoning facilities ([99]). .A second attraction is
related to practicality. In applicative languages (both pure functional and pure
logical), data and programs are syntactically indistinguishable. This is an: open
invitation {e writing programs that take other prograrns as input. We believe that.
the: practical success of, in particular, untyped vanilla-type meta~programming
has restilted from this. Eowaver, in spite of this success, little or no effort was
made to provide it with a sensible semantics in' the usual framework of untyped
Herbrand. lnterpreta.tlons Domg Just this; is the main motivation for the work
presented in this part of the thesis.

In {82], the possibility.of providing such adeclarative semantics is rejected im-
mediately; on the basis that the. intended interpretations of vanilla meta-programs
can never be models in such a framework. Now, this statement seems somewhat
inaccurate. The intended meaning of a vanilla-type m_e_t.a. -theory (1_11__ which differ-
ent variables range over different doma.me] can simply not be captured within the
formal notion of an mterpretatwn as it is:defined for. untyped first order logic.
So, 8 more precise sta.tement would. be tha.t the intended meanmg can nol be
formalised as an untyped interprelotion. However, this problem is not typical for
untyped vanilla programs; it generally ‘appears in the semantics of most untyped
logic programs. Indeed, any such program in which a functor is used-to- represent
a partial function suffers from:the sarne semantical problem and, in practice, total
functions seldom occur in real applications. (See [47] for a thc_)tough discussion
of this issue.) '

Whether this and other arguments ({112]) in favour of typed logic programs
(1131]) should convince us to abandon the notational simplicity of untyped logic
programs all together, is an-issue we will not address.

From here on, we will assume that the sernantics of an (untyped) program
is captured by the alternative notion of its (least /perfect/well-founded/. . .) Her-
‘brand model, avoiding’ the problems with intended interpretations. Even in this
more Testiicted context, problems v._r;t__h the semantics of untyped vanilla meta-
programs are present. Consider the {definite) object program F:

PX)
a(a) —
Let_M denote the_standard {deﬁmfe) soive interpreter:
" .'solve(empiy)" —
solve(X &Y'} + solve(X), solve(Y)
solve(X) «— clause(X,Y), solve(Y')
In addition, let Mp denote the program M. augmented with the following facts:

clause(p(X), empty) —
clause(g(a), empty) -
Although ‘the least Herbrand meodel of our object program is {p(a),q‘(q]}, the

3.2. LANGUAGE INDEPENDENCE 21

least Herbrand meodsl of the meta-program Mp contains completely untelated
atoms, such as solve(p(empty)), solve(p{g{a))), etc..

This is certainly - undesua.ble, sifice we, in general, would like‘at least thai the
atoms of the form solve(p(t)) in the lea.st. Herbrand model of Mp correspond in
‘a one-to-one way with the atoms of the form (%) in P’s least Herbrand model.

Our main result shows that for a certain, important class of. object programs,
this. property is indeed: satisfled. That class-of programis is characterised by the
language independence condition, introduced below. ‘However, we have judged it
appropriate not to restrict our tréatment to definite programs, but to widen our.
perspective 50 as to also consider stratified object programs-and their associated
meta-programs. Such meta-programs turn out not to be stratified themselves,
‘but they do satisfy the required conditions for the broader notion of weak sirdti-
ﬁcatwm So, we can consider their weakly perfect Herbrand model and compare
it with the perfect Herbrand model of the underlying object” program. Again,
language independence is the key to good results:

In chapter 4, we prove that the perfect Herbrand riodel of a stratified, lan-
guage. 1ndependent object.program corresponds in a one-to-one way with a nat-
ural subset. of its yneta-théory’s weakly perfect Herbrand miodel. In. a.dchtmn,
we show how our approach can be extended to provide a semantics for various
related meta-programs, including a limited form of amalgamation. Moreover,
we demonstrate that. the language independence. condition can often be skzpped
in a semnantics that reflects more. closely the prograin’s operational behaviour.
But first, in the next two sections, constituting the main body of this prelim-
inary chapter, we introduce znd discuss the notions of language independence
and weak stratification respectively.

Finally, 2 condensed version of both this and the next chapter can be found
in {121].

3.2 Language Independence

"The intuition behind lengiage independence is simple. In the logic programming
community, there seemsto'be a broad agreement that the decla.z:a.twe semantics of
rmost or a.l] logic programs can be described by a particular Herbra.nd model of the
prograin’l. Two well-known classes of j programs whose semantics is the subject
of little or no controversy? are definite programs: with their least Herbrand model
(see e.g. [170]) and stratified programs with their perfect Herbrand model (see
e.g. [7], [139)).

1¥n the context of this work, we do not considerwhat has been termeéd “the universal query-
~problem”. See c.g. [141] and’ [147}
See however section 4.6.

22 CHAPTER 3. TWO PRELIMINARY CONCEPTS:

In general however, these models depend on the la.nguage in which we are
considering the Herbrand rnode]s A simple exa.mple sufﬁces to show this. Con-
sider the program-consisting of the' su‘lgle clause p{X) ¢ Its least Herbrand
model {in fact, its only Herbrand model) in a language with.one constant symbol
-a and no funct!on symbals s {p(a)}. If we however add the constant symbol 5,
we obtain {p(a); p(b)}: Basically, we will call'a program language mdepena‘,ent
when its charactetistic Herbrand model does not depend on the particular choice
of language:

-A formal introduction and characterisation of the notion for stratified pro-
_grams-follows below. Some comments and results on language independence for:
other classes of programs are included &t the end: of the section.

8.2.1 Language independent stratified programs

Suppose Pis a logic.program. Let Rp, Fp and €p denote the sets of predlca.te,
function and constant symbols. oceurring in the program. We can then consider
a first order la.ngua.ge Lp, which has exa.ctly Rp and. Fp as its sets of predlcate
‘and function symbols, respectively. As its'set .of constant:symbols, we take Cp
i 1t 18 mot emply and {*}, 2 set with a: single arbitrary element *; if it is. Lp
is called the language underlying the program P. Although this is not imposed
as.a limitation in e:g: [1 10], Herbrand interpretations of the program are usually
'constructed mth this underlymg langua.ge in mind. For our purpeses inthis

work, howe_ver, we need ‘more. ﬂe;ublllty We. therefore mt_roducc the-following
two definitions.

Definition 3.2.1 Let P be a normal program with underlying language £p. We
call a language £/, determined by R/, F' and ¢ -an eztension of Lp if Rp C R/,
FpCFland Cp CC #£0.

Notice that if Cp is empty; ¢’ may be any non-empty set of constant symbols. In
particular, it does not have to cortain . The fellowing deﬁmtlon makes explicit
the language in which Herbrand intetprétations are constriicted,

Definition: 3.2.2 Let P be a nofmal program with underlying language Lp.
A Herbrand :nterpretatlon of P in & language £'; extension of £p, is ¢alled an

In"-f.'he‘ seqiuel, -we. will oftén refer EO'.-Herbfmﬁ'd":iﬁtérﬁfeﬁfi’ons aﬁﬂ'xﬁodéls- df'a.
program P with underlying language £p, when in fact, we mean £p-Herbrand.
inteérpretations or models.

We are now'in a position to inttoduce the notion of language independence.
Definition 3.2.3 A stratified program P with urnderlying language Lp is called
language independent iff for any extension L' of Lp, its perfect L£'~Herbrand
model is equal to its perfect L p-Herbrand model, '

3.2, LANGUAGE INDEPENDENCE 23

Notice that this definition entails that no atom in any perfect Herbrand model
can contain any predicate, function and /or constant symbols not occurting in P.
In particular, when Cp is empty, any perfect Herbrand model can only contain
prdp'o_sitidns.'.(This.obServaﬁiqn will be used implicitly in the sequel. It ensures
that the infamous * constant does not cause too much trouble. See also the
rematk following proposition 4.2.9.) _

We illustrate definition 3.2.3 with some simple examples.

Example 3.2.4 Of the_fdlldwi’ng ‘programs,) and P; are not languape inde-
pendent, while P; and P; are.
Py : p(X) = not g(X)
a(a) « o
P5: p(X) « r(X), not-g(X)
r(a)
P, : p(X,Y) — r(X), not q(X)
hia)

r{a) —

It is clear that language independence, introduced here as a concept tuned-
‘towards the sernantics of. logic prograumis, is strongly related to domain indepen-
.dence. The latter coricept was defined. for any formula in the context of full
first. order logic (see e.g. [45] and further references given there). The following
example shows that the two Tiotions do not coincide,

‘Example 3.2.5

P(X) + ¢(X), not 7(X, Y)

'q_('a) —

(e, 6) +

s(b) —
Indeed, this program is language independent. But there dre (ron-Herbrand)
models, having ounly one -element in their domain of interpretation on which
Both @ and b are mapped, in which p{a) is not true. It therefore is not domain
independent. .

However, it seems that, when restricted ‘to Herbrand interpretations (with
free equality), both notions do coincide. And indéed, the concept of domiain
indegendent databases (function-free, with equality) as introduced in [163], cap-
tures‘the same basie property as onr definition of lengyage independent programs
(see lemma 3 on page 229 in [163]). We 'féel, however, that the above intro-
duced terminology better reflects the underlying intuition. We should peint out

24 CHAPTER 3. TWO PRELIMINARY CONCEPTS

that [163] contains an extensive discussion on the relation between domain in-
deperdence.and .cllowedness, a notion similar to the riotion of range restriction,
introduced below. Moreover, it is argned -extensively that non-domain indepen-
dent. databases are unreasonable and should be avoided. Finally, it'is shown that
for function free, stratified, normal’ ‘programs, domain independence. (or, rather;
language independence) is decidable:

‘Ini general, however, it is clear that; like domain independence for full first
order logic (see e.g. theorem. 2. on page 224 in. [163] and further reéferences. given
theré), language independence is an undecidable property. To see this; observe
that checking language independence boils-down o checking refutability of goals®:
It is therefore important to investigate the existence of syntactically recognisable,
and thus decidable, subclasses of the class of language mdependent programs; It
turns out that the well-known concept of range resiriction determines.-suéh a
class. _ _

Let us fizst repeat its definition, specialised to the tontext of normal logic
‘Programes..

Definition 3.2.6 A clause in a program P is called range vestricied iff every
vana.ble inthe clause appears in a poaztlve body-literal.
A program F is called range restricted it all its clauses are range restricted.

It is obvious that range restriction is a syniactic property. It has been defined
for more genera.l formulas and/ or programs and was nsed in other. contexts. See
e.g. [128] and [30] for its use'in the context -of i integrity checking in relational and
deductive databases. Two related notions are safety, used by Ullman in [167] and
allowedness, defined in [110] and important for aveiding floundering of negative
goals in SLDNF: The limitation to range restricted programs is natural in many
contexts. Moreover; it can be noted that {119] includes a general method to
transform a non range restricted program P into a range restricted program P’
thirough the addition of dom(X) calls to the bodies of clauses for every variable X'
which is not “restricted™. dorriitself is-defined to hold for every ground termin the
Herbrand universe of the given Janguage via a range restricted definite: program.
Obviously; this transformation preserves stratificationi. Moteover, there is a-one-
to—one correspondence between Herbrand models of P and P such that they
e for all predicates in. P,

i 'shows that this important class of loglc
is & subélass of the language indepenidént ones. '

'Pl'_?i:ip'OSItlbn 3.2.7 Let P be & stratified program. If P is range restricted then
P is lanpuage independent.

AThis .observation was first mndc by an’anenymous referec of [122). Morc coraments on
the mlposm'blhty of finding an efective and always tcrm.ma.tlng query answering procedure for
pesfect Herbrand model semanitics can ¢.g. be found in [141}

3.2. LANGUAGE INDEPENDENCE 35

Proof Let £p be the underlying language of P and let £° be an extension of
Lp. We prove that for any predicate p, the perfect £p-Herbrand model of P and
its perfect £’-Herbrand model coincide. "The proof proceeds through induction
on the strata of P, Suppose first that p is defined in the bottom. stratum F,. B
is a.definite program. Let Ty, be the immediate conseguence operator applied in
the context-of Lp. and Tp, the corresponding operator applied in. the context of
L. 'We prove that for each n > 0.: Tp, Tn="Tg Tn.

‘The proof is through induction on n. The base case is trivial. Furthermore,
if the (positive} body literals in a ground instance .of a range restricted clause
‘are instantiated with terms in £p, then so-is the head. The induction stép-now
follows immediately.

Next, suppose p is defined in the ith stratum (i > 1) of P. Then an ‘argument
similar to the one above; and considering the fact that also all negative body.
literals will be. instantiated with terms in £p, shows that application of the
fixpoint operator gives identical results in. the context.of € p and £', The resul
follows. ' 0

Example 3.2:8 It can be.noted that of the programs in example 3.2.4, only Ps

is range restricted, In particular, P, presents a simple.case of a program that is

language independent; but not range restricied, The ¥ in the head of its first
clause does not constitute a problem, because the body of that clause tan not
be satisfied and therefore the perfect. Herbrand model of Py remains the sarrié in
:@ny language.,

Trom this example, one is tempted to infer that the difference between language
independence and range restriction lies largely in- the fact that the first notion

allows the presence of some non range restricted;, but in the present program also

“non applicable” clanses like the first orie of program Fj. However, the situation
is more complex, as the following example programs show.

Example 3.2.9 Of the programs below, none is range restricted, but all except:

Py are language independent.

Ps: p(X,Y) —g(X)

P : p(X,Y)— g(X), not r{X)
(X} + (X}
g(a) «

Py pEJg) — g{(X)},not r{X,Y)
g{a)—

Py : p(X) — q(X),not r(X,Y)
5

26 CHAPTER 3. TWO PRELIMINARY CONCEPTS

It can be noted that Py is language independent, ekactly because all- conditions
in the only ground instance of its non range restrictéd rule are satisfied in the
given program’s perfect Herbrand model. For .Pg, the opposite holds.

For ‘2 more precise resuli on the relation between. la.ngua.ge independence and
range restriction in the context of definite programs, we refer to'proposition 3.2.10.

Readers who judge the difference between the two notions insignificant are
free to.substitute: “renge restricted” for “language independent” throughout most
what follows. They may however obseive that the notion of langunage indepen-
dence renders miore elegant most proofs in the next ¢hapter.

3.2.2 L'an_guage. independence for other classes of programs

Above, we have introduced the notion of language independence for sirafified
prograins, It is'obvious that this generalises the concept.- «of language mdependence
for definite ‘programs, based on the invariance of the least Herbrand model, as it
was defined in'[41]. It is also obvious that on the'class of definite programs, both:
definitions coincide.

However, for definite programs, the difference between language independence
and range restriction is more easily characterisable, as the following propesition
shows?,

Proposition 3.2.10 Let P be a definite program. Then P is language inde-
pendent iff all ground (£p)-instances of every non range restricted clause in P
contain at least one body atom, not true.in its least Herbrand model,

Proof: First suppose there is a non range restricted clause that. does not satisfy
the stated condition. It iininediately follows that P is not langusge indepéndent.
This proves the only-zfpart..

The proof of the ifpart s cornpletely analogous to the reasoning o the bottom
layer in the proof of ‘proposition 3.2.7. a

Notice that this result still leaves language independence . as an undecidable prop-
erty. '

‘We conclude otir reflections on definite, la.ngua.ge 1ndependent progra.ms with
the following proposition.

Proposition . 3.2.11 Let. P be a definite. program. Then P is language inde-
pendent iff for any definite goal G, all (SLD-)computed answers for P U {G} are
ground.

4This observationis due to an.anonymous referee of [41].

3.3. WEAK STRATIFICATION 27

Proof We first prove the. only-if-part. Suppose there is a goal «— Aj,. ., Ay
such ‘that 8 is a non-ground computed answer for P U {— Ay,..., Az}. Then
there must be at least one A;,1 <i < k such that Vzd;8isa logical consequence
of P (herte T represents: the non-empiy set of variables, free in 4;6). In pariicular,
'VZA;6 must be satisfied in any least Herbrand model. This implies that P is not
language independent. '

For the if-part, first: observe that for any particular goal, computed answers are
not affected by language extensions. Suppose now that all computed answers to
all goals are ground. This means. that in particular all computed answers to any
goal G where each argument is an uninstantiated variable, are ground. From the
completeness of SLD-resolution {theorem 8.6'in [110]), it now follows that the set
of computed answers for. P U {G} is exactly equal o the set of correct answers
for P U {G}: We can conclude that P is language independent. 0.

Proposition 3.2.11 provides yet another characterisation. of the class of definite,
language independent programs. We will find occasion to apply it-in section 4.6.

T'he_-_nqtion of language. independence can also be considered for classes,
broader than the one of stratified programs. A generalisation to locally strat-
ified: programs is straightforward. And also ieskly stratified programs with their
weakly perfect Herbrand meodel (introduced in the next section} aflow an obvious
adaptation of definition 3.2,3 and proposition 3.2:7. A complete analysis of its
usefulness in the context of different tlasses of logic programs and their semantics
is outside the scope of the present work. Notice however, that in those seman-
tics in which the “preferred” Herbrand model is three-valued (e.g- well-founded
semantics, {172]), one will demand only the positive information'in the model to
be invariant under language extensions. Indeed, it is obvious that the negative
information will be affected for almost. all reasonable Programs. and semantics.
We return bneﬁy to this issue in section 4.9. '

3.3 'Weak Stratification

1In section 3.1, we pointed out that, in general, there'is a problem with the least
Herbrand model of vanilla meta-programs. In the next chapter; we show that
for langnage independent Programs,; this problem disappears. ‘Bowever, as was
mentioned above, we donot wish to restrict our developmient to definite programs.
In particular, we would like to consider stratified ohiect and meta-programs and
compare their perfect Herbrand models.

But in this context, another difficulty has to be addressed first. We. illustrate
it through the following example. Consider the stratified, language independent
ohject program P:

28 CHAPTER 3. TWO PRELIMINARY CONCEPTS

P(X) (X)), mot g(X)

r(a) — -
Let M denote the standard {normal) solve intérpreter:

solve(empty) «

solve(X &Y) « solve(X), solve(Y)

solve(~XY «— not solve{X) {5)

solue(X) « clause(X, ¥), solve(¥) (i)
In adaition,'lgt:' Mp denot.e the program M augmented with the followi’ng_fa_.’cts‘:

clause(p(X), n(X)&~g(X))

clause(r{a) empty)
Obviously, Mp. is not stratified.. Moreover, it is not even locally stratified. To
see this, consider clause (34) of Mp. For any two ground atoms, solve(t;) and
solve(tz) in the Herbrand base for-the language undetlying Mp, we have that
both _

solve(ty) « clause(ty, i), solve(ts)
and '

solve(ty) — clause(ts,t1), solve(ty)
are ground. instances: of (n) Therefore, in any local stratification of Mp, -all
the ground atoms of the form solve(t) miust be in the same stratum. On.the
other hand, by clause (1.), any .ground atom solve(-it) must be placed in a higher
stratum, tha.n the corresponding atoin solve(t). So no local stratification can: be
possible.

However, there is a simple way to overcome this problem. Consider the new
theory, Mp, obtained from Mp. by performing one unfolding step of the atom
cIause(X YY) in clause (i), using every available clause-fact of Mp. Clause (i)
is replaced by the resultants:

solve(p(X)) « solve(r(X)&=q(X})
soh:e(r(a)) s saiue(empty)

Ore can easily verify that Mp is locally stratified. It can be shown that for any .
stratified object program P, the program obtained from its associated vanilla.
meta-program through a mm:lar unfolding transformation, is: locally.stratified.
In [136] and [138], Przyrmusinska ‘and Przymusinski mtroduced weakly stratified
-loglc .programs: and . their: ‘unique weakly: perfect :Herbrand . model... Now,. from
‘theis: deﬁmtlons, it follows that programs which can be unfalded ifito & locally
stratified one, aré weakly stratified. It can therefore be showr that a stratified
Gbject program gives rise to a weakly stratified vanilla meta-program. This allows
us to consider the weakly perfect Herbrand model of the latier as the description
-of its semantics.

So, before we. actually embark on a study of meta-program semantics, we
‘devote the next subsection to a formal 1ntroduct10n of weakly stratified programs

3.3. WEAK STRATIFICATION 29

and weankly perfect models.. Moreover, it turns out that we. do not need the
fully general concepts in our restricted context. We will therefore derive a more
easily verifiable sufficient condition for weak stratification, to be ised throughout
chapter 4.

3.3.1 Weakly stratified programs and weakly perfect mod-
els

‘Weakly stratified programs and weakly perfect inodels were first introduced in
[136]. However, that paper is reitricted to the case of function-free (so-called
datalog) programs, Obviously, our needs surpass that limitation: the example
met&prpgrams above clearly contain functors. ‘Since the necessary generalisa-
tions are-mot completely straightforward, we turn to the. fully general treatment
in [138]. And since both weak stratification and weakly perfect models are not
(vet?) fully standard concepis in logic programmiing; we include the relevant
parts of their definition. Finally, it can be pointed out that the overview paper
[137] also has a section on weak stratification and weakly perfect ‘models. The
Presentation there is essentially the same, in spite of the fact that some of its
basic definitions are chosen differently.

We first introduce both concepts in an informal way, and then'give the (some-
what more general) formal devélopment, ' '

To-decide w_hg'_ther a normal logic program P is-weakly atratified and if so, to
determire its weakly perfect Herbrand ‘model, one. basically proceeds. as foliows.-
‘Consider all ground instances of clauses in P. Consider the set- A of ground atoms
that do not depend negatively on other atoms (either dirgctly or indirectly). If
:A is empty, then the program is not weakly stratified and the construction. fails,

Otherwise, _tihv_: clause instances whose head is in 4 constitute a definite logic:

program only containing atoms in the chosen set. Gompute the least Herbrand
model H of this (definite) partial program. Consider now the ¢lanse instances
left. Eliminate clause instances-with a body literal such that its atom belongs to.
A, when the literal is not satisfied according to H. Simplify the remaining clause
instances by deleting condition literals with atoms in A4, satisfied according to
H. Repeat the above -construction on this new set of ground clauses. If this

construction can bé carried out: (possibly transfinitely) until no clause instances.

are left, take the union of the computed least Herbrand models. This is the
weakly perfeci Herbrand modetl of P. _

The following formal development is abridged (and slightly adapted} from
[138]. For further details and examples, we refer to.that paper.

Definition 3.3.1 Let P be a normal program, We denote by Grround(P) the
(possibly infinite) set of ground instances of clauses in P and we callit the ground

program associated with P.

I L e e A bR A e P P i B0 4L A AN T = Tt 10

30 CHAPTER 3. TWO PRELIMINARY CONCEPTS

In the sequel; we will often apply notions defined for (finite) programs in the con-

‘text of infinite ground programs. The- generalisation of the ‘classical” definitions
is-straightforward. As usual, we use the notation Bp to denote the Herbrand
base for the language underlymg a program F:

Definition 3.3.2 The ground dependency graph Depg(P) of a program F is
defined ‘as follows:

@ Iis vertices are the atoms in Bg.

e There is a- positive directed edge from A to B if Ground(P) contains a
clanse B ..., 4,....

° There- is a negative directed.-edge from A to B if Ground(P) contains a
clause B ..., not4,. ...
Then we define the following relations between atoms in Bp:
"Definition 3.3.3
‘e A < B iff there is a directed path from A to B in Depg(P).

e A <Biff there is a directed path from 4 to' B in Depg(P) passing through
2 negative edge.

o A~Biff(4d=B)V(A<BABCA).
~ is.an equivalence relation on Bp, the equivalence classes of which we wili call
componenis of Bp. Weé can define a partial order between these components.
Definition 3.3.4 Suppose €y and C are two components of Bp. We define:

Cy1 < € iff Cf £Cy A4y € C1, 34, € Cr(Ay < 43)
A comiponent Cy is called minimal, iff there is no component €3 such that C2<Cy..
Definition 3.3.5 By the.botiom siratum S(P) of a ground program P, we mean
the union of all minimal components of P, i.e.

S(P).= [J{C|C"is a minimal component of Bp}.
By the bottom layer L{P) of a ground program P, we mean the corrcspond'ing
_ _subprogra.m of P, ie. .
 L{P)=the set of a.ll cla.uses from P whose' heads belong to S(P)

In the context of the ensuing construction, (passﬂ.)ly partial, three—va.lued) inter-
pretations and models that- expllcltly register negative information will be used.
They contain not only positive, but also negative ground lltera.ls Pos(I) will
denote the positive subset of such an interpretation. 1t is of course itself a stan-

dard (two-valued) interpretation. In-the next definition, as usual, we assume
not(notL) = L for any ground Lteral.

3.3. WEAK STRATIFICATION 31

Definition 3.3.6 Let P be 4 ground program of which I is a partial interpre-
tation, By a reduction of P modulo I, we mean a.new (ground) program %

. . T
obtained from P by performizg the following two reductions:

9 rémoving--frorn P all clauses which contéi_n a prem'isve L such that riotL € T
or whose head € I (i:e. clauses true in I)

o Temoving from the remaining clauses all premises I € T.
Finally, remove all non-unit clauses whose heads appear as anit clauses.

‘We can now .describe the (transfinite) iteration process that leads to the .con-
struction of a wedkly perfect model. {The union of three-valued interpretations,
used in definition 3.3.7, is defined as straightforward. set union. ‘Since the 5,
sets are disjunct, the-'co_lrr_esponﬂin'g H; ‘models can not contain contradictory
informaticn and their union is wel'l-déﬁ'ned.')’

Definition 3.3.7 Suppose that P'is 2 logic program and let Py = Ground(P),
Hp = 0. Suppose that a > 0 is a countable ordinal such that programs P; and
partial ihterpretations H; have been already defined for all § < . Let

Na=Uscallr Pa= Sa=S(P), Lu=5(Pa)

* If the program P, is empty, then the cons'truci;"iqn__stop_s and Hp = Pos{N,)

is: the weakly perfect Herbfan_.d model of P.

o Otherwise, if S, = B or if L, has no least Hetbrand model, then the:

‘construction also stops: (P has no weakly perfect Herbrand ‘model.)

o Otherwise, H, is defined as the least Herbrand model of L, and the con-
struction continnes,

Finally; we define weakly sfratified programs.

Definition 3.3.8 We say that a.program P is weakly stratified if it has a weakly
perfect model and all L, are definite.

The following result is immediate.

Proposition 3.3.9 Every (lcica'.ll_y_}_ stratified program is weakly stratified and its
perfect and weakly perfect Herbrand model coincide.

Proof Immediate from theorem 4.1 and corollary 4.5'in [138]. m]

Thus we se¢ that weak stratification isa conservative extension of (local) strati-.

‘fication. It can even be argued that weak stratification is in many ways a more
suitable extension of stratification $han local stratification is. Indeéd, the latter

32 "CHAPTER.3. TWO PRELIMINARY CONCEPTS

property- is not invariant under some elementary program transformations, as
was shown above.. o _

In chapter 4, we show that meta-programs associated with stratified object
programs are indeed weakly stratified. However, a number of details in‘the above
general construction are rather inconvenient in that restricted comtext.

e We want to avoid the use of three-valued interpretations, Bven_dur;mg-con-_
struction of the (two-valued) weakly perfect miodel. '

& "We will not nieed transfinite inductio.

o We. are only interested in weakly perfect models for programs that are
actually weakly stratified. '

. Definition 3.3.7 takes 5, always equal to the entire union of minimal com-
“ponents of Bp, . In other words, the weak stratification built is as “tight” as
possible. Following this practice would considerably damage the elegance
of the proofs in the next chapter. We need the ability to. only consider
“safe” subsets of that union. "

e Finally, we will not remove non-unit clauses whose heads appear as unit
clauses, as stipulated in definition 3.3.6.

For all these reasons, we present a meodified construction procedure in propo-
sition 3.3.11. Successful application of. this procedure guarantees weak stratifi-
cation and constructs the weakly perfect model: In other words, we show that
_proposition 3.3:11 provides a sufficient condition for ‘weak stratification. A con-
dition which will then actually be used throughout the rest of our work. Some
_sxmple programs; not satisfying: it, but nevertheless weakly stratified according
{o definitions 3:3.7-and 3.3.8.are included among the examples below. Before we
can state proposition 3.3.11, we need one more auxiliary ¢oncept.

Definition 3.3.10 If P is & ground program, then we denote by CH{P) the set
of all heads of clauses in P.

Propomtlon 3.3.11 Let P be a riormal program Then we define the following:
i P1 - Ground(P) . . e
If P, # 0.is defined and Bp, has one or more minimal components, we define:

o 5= S(P)

e Vi a non-empty subset of 5; such that if B € V; and 4 < B (a.nd hence
AgeS)thenAdeV;

3.3. WEAK STRATIFICATION 33

® L, the set of clauses in P; whose head is in V;
o H;: the least Herbrand model of '.E_g_ if L; is definite
I H; is defined; we define the following;
e P/, ,: the set. of all clauses in P \Li for which' the following holds:

- for every positive body literal B, Be V; = B € H;
—for every négative body _]it_erai notB, BeV,=> B g H;

© Pip1: Plyy with the V; body literals deleted from the clauses

‘I there is an i such: that P; = @, then téke Hp _::'UJ- <iH;.

‘Else if H; is defined for all j < & and Nj<cw CH(P;) =18,

then take Hp = | J, . Hj. _

In both cases, P is weakly stratified.and Hp 1s.its weakly perfect Herbrand model.

Proof First, it can ‘be verified that our use of two-valued .interpretations is a
correct recasting of definitior 3.3.6 and its use in definition'3.3.7. N ot removing
non-unit clauses in the presence of corresponding unit. clauses, might lead to
failure (see also example 3.3.20 and the comment that follows it), but does not,
influence Hp upoii success, A detailed formal proof of this point can proceed in
a similar way to the proof for lernma 3.3.12 below. .Fur'therm__org, the definition of
the H; now incorporates the condition that each L; be definite, and P therefore
weakly stratified. Next, note that .ﬂj <o CH(P;) = @ means that all clauses’
in Ground(P} areé consumed during the iteration process, and therefore halting
succesgfully is correct. It remains to be shown that constructing a non-tight
stratification is safe. In other words: that any choice of the ¥, leading to a
successful halt, returns the samé Hp. (The fact that some choices ‘might lead to,
success, while others might not, is not & problein, sizce we are only claiming'a
sufficient condition.) This follows from lemma 3.3.12 below. -

Lemnma 3.3.12 Let P be a normal program such ‘that a series Vi,... leads
to successful termination of the construction in proposition 3.3.11 with resulting.
model HpV, Then -i‘.hc_. ('maximal choice} series S, .. . alsoterminates successfully
with Hp® = Hp" .

Proof. The proof of this lemma can be found in appendix A. o

. Leét us now briefly turn to some examples. The first one is taken from [138],
where it was borrowed from [72]. '

34 CHAPTER 3. 'TWO PRELIMINARY CONCEPTS

Example 3.3.13
Let P be the following program:
(%) p(X,¥), not o(Y)
P is neither stratified, nor locally stratified. It is however weakly stratified:
Py:p(1,2)+
q(1) —p

1,1), not ¢{1)
1, 2),not g(2)
g(2} — (2, 1), not-g(1)
q(2) «— p(2,2), not ¢(2)-
Sl = '_{P(.la 1)_:'?(1:' 2:).:'1-7(23'_ 1-)_5.?(2) 2)}
=8¢
I ='{P(lg 2) '_}
Hy = {p(1,2)}
.'Pé. = {q(l) i_—_p(l,'Z)',_ not q(Z)}
Pp = {g(1) « not: g(2)}

——

—

5z = {a(2)}

V2 ={4{2)}
o=@

Hg-: @

Py = {g(1) + miot q(2}}
Py ={g(1) <}
Sz = {¢(1)}

Va = {g{1)}
Ly ={q(1) ~}
Hy={q(1)}
Pl=0=F;

P’s weakly perfect Herbrand model Hp =Uyea; = {p{1,2),¢{1)}

The following well-known example'is often presented as a mofiva.t_i_og for ex-
tending the concept of stratification to.local stratification (see e.g. {139]). We
demonstrate that it is also weakly stratified.

Example 3.3.14
‘Ligt-P-riatne the following program:

even{0) «

even(s(X)) —not even(X)
Py = {even(0) «-} 1 {even(s" (D)) — not even(s™(0))[n-> 0}
51 = {even(0)} ' -
Wi=25 :
Ly = {even(0) —}

3.3. WEAK STRATIFICATION 35

Hy = {even(0)} o
P;= {even(s"+1(0)) — not even(s"(0))|n-> 1}

Be= Py

82 = {even(5(0))}
/2 = 83 ' '

Ly=19

Hy =@

Pi=P,

Fs = {even(s(5(0))) =} Udeven(s*1(0)) « not even(s™ (0))in > 2}
S3 = {even(s{s(0)))}

Va =83 _

s = {even(s(s(0)))).

Hy = {even(s(s(0)})}

In this way, by constructing the successive Vi sets, we dynamically build a strati-
fication. of B p, containing an infinite amount of strata, each with one single atom.
Notice that this stratification is-identical to the (most tight) local stratification of
Bp. Put otherwise, Ground(P) can be split into an infinite amount of “layers”,
each containing one single ground clause instance, the head of whick corresponds
to the sole element of the respective V;,

Example 3.3.15 The 3p example program on page 28 js also weakly stratified.
Ground(Mp) contains a {countably) infinite amount of layers, each of which is
composed of an infinite amount of ground-clause instances. For more details, we

refer to theorem 4.2.5 and its proof.

The programin the next example has no weak]y=-pe;fect Herbrand model.

Example 3.3.16
p—rnolg
. g+ not-p _
Indeed, the complete program is contained in its single layer, which has two

distirict minimal Herbrand models, and therefore no least.
And also the following program ‘P has no weakly perfect Herbrand model.

‘Example 3.3.17
‘even(0) — .
even(X) « not even{s{X))
The bottom stratum of Ground(P) is empty.

.36 GHAPTER 3. TWO PRELIMINARY CONCEPTS

A small change to example 3.3.16 gives us a prograin that does. have a weakly
perfect: Herbrand model, even though it is still not weakly stratified.

Example 3.3.18

P+—gq

g not p
The modified prograin still consists of a single (non—deﬁmte) layer,’ ‘which now
however - has a least Herbrand model: {p}

Finally, we include two weakly stratified programs that do not satisfy the condi-
tion in proposition 3.3.1%.

Exaraple 3:3.19
FP: pla)
B{f(X)) « not p(X)
9(X) — mot p(X)
r(a) — p{X),a(X)
r{f(X)) +—not r(X)
Clearty, ﬂ < CH (P # @ and.yet P is weakly stratified. However, establishing
the latier fact reguires transfinite induction.

Example 3.3.20
p—not. g
p—r

T

Example 3.3.20 shows a case where the removal of clauses {with a-non-empty
body) having-z head for which also: a fact is present (see the bottom line in
definition 3.3.8), nakes a crucial difference. As a motivation for proceeding thus,
the authors of [138] mention the desite to keep separated so-called intensional
and eztensional predicates. In the context of logic programming, this difference
is however far less significant than in the context of deduttive databases. And
exa.mple 3.3.20 illustrates ‘that the’ mﬂuence of this measure goes beyond the
concern stated above, Tn'general, it seeins that one of its effects is incorporating
a kind of “tie breaking” strategy, where definite information originating from
.another source is used. to resolve conflicts resuliing from mutual recursion through
negation. It is up to the feader to decide whether programs like the.one above
should indeed. be called “weakly stratified” or not. For our applications, this
practice is not needed. ‘We theréfore did not incorporate it in the construction
presented in proposition 3.3.11.

3.3, WEAK STRATIFICATION 37

Figally, we point out that in[148] the closely related notion of modular strafi-
fication has been defined for datalog programs, Essentially, it builds a component-
wise dynami_c_'locafl stratification. It is worth noting that-the above m‘e:iti"oned
“fie breaking” strategy is nof built into its definition. Since every meodularly
stratified (datalog) program is weakly stratified (theorem 3.1 in [148]), the latter
is the more general property.

38 CHAPTER 3. TWO PRELIMINARY CONCEPTS

Chapter 4

Herbrand Semantics for
Meta-Programs

4,1 Introduction

In chapter 3, we indicated somé apparent problems with the Herbrand. semantics
of untyped vanilla-like meta-programs. We introduced the concepts of language
independence and weak stratification and annouriced. that both would: be used as
basic tools in our development. Haying worked our way through the Tnecessary
[preparations, we can in this chapter address our. proper sizbject: meta-program
semnantics.

QOur presentation- is structured as follows. Section 4.2 contains ocur basic
results for stratified object programs and their straightforward Unityped. vanilla
meta-version. Some.related (more “useful”) meta-programs are. considered in
section 4.3. We justify overloading logical symbols in section 4.4 and address
‘various (limited) forms of amalgamation in section 4.5. Section 4.5 contains some
‘mieresting Tesults for definite programsin the context. of S-semantics. The latter
Is.a variant of standard Herbrand semantics, allowing also, non-ground atoms to
‘appear in interpretations and models ([55),[56]). Tt was designed to miore. closely
mirfor the operational behaviour.of (definite} logic programs. Section 4.6 includes
a short presentation of its main characteristics, sufficient for a good understanding
of its use in the present context. Next; section 4.7 deals with applications that
involve explicit references t6 theories and explores the applicability boundaries of
our-approach. We discuss and compare related work in section 4.8. Finally, some
'con_cluding remarks ‘and ideas for further research, listed.in section 4.9, round off
this part of the thesis. '

39

40 CHAPTER 4. HERBRAND SEMANTI&S FOR META-PROGRAMS

4.2° Vanilla Meta-Programs
In this section, we present the two key results.that lie at the heart of our work.

4.2.1 Definitions

We g_et' out with t}ie_fdlloﬁWin‘g de_ﬁnitio_ns, fprma!ly i_ntx_'_odj.lc_ing-_fth'e_ concept of a
‘vaniile meta.program.

Definition 4.2.1 Suppose £ is a first order language and R its finite (or count-
-able) set of predlcate symbols Then we define Fr tobea ftmctomatwn of R iff

_.’FR is a set of funciion symbols such that there is a one-to-one correspondence
‘between elements of R and Fr. and the a.nt.y of correspondlng elements is equal.

‘We introduce the following notation: Whenever A is ah atom in a fitst order
latiguage £ with predicate symbol set R and a functorisation Fr of R is given,
A’ denotes the term produced by replacing.in A the predicate symbol by its
correspondinig element in Fg.

_Deﬂnltlon 4.2.2 The following normal program M will be called vapille meta-
tnierpretem

solve(emply) «

soltie(X&Y'} « solve(X), solve(V)

solve{—~X) + not solve(X)

solve{X) +— clause(X,Y), solve(Y}

Notice M is neither linguage independent, nor stratified {nor locally stratified).
And these properties carry over to Mp-programs, défined as follows:

'Deﬁmtmn 4:2.3 Let P be a normal program. Then Mp, the venilia meta-
progrem associnted with P, is the normal program consisting-of M together with
a.fact of the fonn
clause(4’ &:B'&. AnC& L)
for every cla.use A .y By...,notC,. .. in P and a fact of the form
clause(d’, empty) -
for every fact A — in.P.

T bt of femarks Ate iR orders

e If Lp, ‘the langnage under]ymg P, 15 determined by Rp, Fp and.Cp, then
Ly, the language underlying Mp, is detérmined by:
— R, = {solve, clause}
- ?M‘é :'fp_.U.fRP U_:{&?. ‘“.1} . N
where Fr . is a functorisation of Rp, pre-supposed in deéfinition 4,2.3.

4.9. VANILLA META-PROGRAMS 41

— Cup = Cp U {empty}
e For clarity, except when .e':cplicitly stated otherwise; we will demand:
~ Fp N {solve, clause} =
- RpN .{sp_l't_fe;zclau.se].- =9
— FpiFp, =0
— empty & Cp.
for all object programs P throughout this chapter.

o In the sequel, when we refér to Herbrand interpretations and /or ihodels (of
a program P.or Mp) and related concepts, this will be in the context. of
the languages £p and £y £y 28 defined -gbove, unless when stated explicitly
otherwise.

¢ Finally, we introduce the following notation:

— Up: the Herbrand universe of a program P

— Up™® =Up x...x% Up (n copies)

— p/r: a predicate symbol with arity r in Rp
P'/r: its associated function symbol in Fitp

The following proposition, which wili implicitly be used in the sequel 18 Im-
mediate.

Proposition 4.2.4 Let P be a normal program with Cp £ 0 and Mp its vanilla
meta—program Then Up C UMP

Proof Obvious from the definitions, &

Notice, however, that the property does mot hold when Cp = §. Indeed, iri‘that
case. Up contains terms with =, while Unt does not.,

4.2.2 'Weak stratification of Mp

We are now: ready to formulate and prove the first of our two. main results. Tt
shows that the concept of weak siratificaiion-has a very naturol application in the
realm of melo-programming.

Theorem 4.2.5 Let P be a stratified ‘normal program. Then Mp, the vanilia
meta-program associated: with P, is weakly stratified.

42 CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS

Proof We can choose:
V1 = {clause(ty, t2)|clause(ts, t2) is a ground instance
of a clause(t, s)-fact in Mp?}
It immediately follows that L; is definite and H; = ¥
It a.‘ls'o follows that
= {solve{empty)}
U{C[C is a ground instance of solve{ X&Y') «— solve(X}, solve(Y)}
'U{C|C is a ground instance of solue(~X} — not solve(X)}
U{solve(t1) « sque(tg)|clause(t1,tg) € Wi}
Now suppose that I:"1 _ Pk is a stratification of P. Then we can choose:
-[solve(t)1t € T}"} ‘with
mh={p'{@)lp/n € PL,ECc U, "}
U{ty &dalty, 12 € T}
V{fD)f/n€ Fp,ie Un"}
u CMp
1t follows immediately that L is a definite program.
Moreover, for 3 <1< k+1, we can choose:
V= {sol'ue(er =11 with
7l {p(B)lp/ne Piie Unms"}
U{ta&talty s € U i and g orty €7 13
V{~tit € -2}
and for i > k4 1:
Ve {solve(t)|t € 71} with
Al = {t;-&t? [t_'l,_f,_z c Uj'gi-l'Tj and troriz € Ti_l}
u{—tit e 772}
It follows that for ali-3 < 4.
{solve(~t) — not solve(t)[t € Up, \ 72}
is:the set of clauses with a negative Ilteral in F;. From this, we can conclude that
every L;{i > 3) is definite. Moreover, r]J <w CH(P))=0. a
This: result shows that the meta-program on page 28 is indeed weakly stratified,
since its obJect program is stratified. In fact, we can infer from the proof above
that siirobservition ‘on ‘page 28 ‘dbout: the Tocal: stratlﬁca.tmn of the i gram; M"
can also be generalised. Indeed, once Pg is obtained, the rest of the stratification
process is essentially static: P;is locally stratified. I'r. ‘can therefore be argued-that
the concept- of weak s_imnﬁca._twn is perhaps a _bl_’r. too-strong for-our purposes.
However; we conjecture that all results in this chapter formulated for stratified
object programs, also hold for weakly stratified object programs. We will not
explicitly address this topic‘in the rest of this work, but it is clear that in the latter
context; meta-programs will in general no longer be “almost® locally stratified.

4.2. VANILLA META-PROGRAMS 43

4.2.3 A sensible semantics for Me
Now follows our basic result:

Theorem 4.2.6 Let P be a stratified, language independent normal program
and Mp its vanilla meta-program. Let Hp denote the perfect Herbrand model
of Prand Hpr,, the weakly perfect Herbrand model of Mp. "Then the following
holds for évery p/r.€ Rp: '

Vi€ Uy, : solve(p/(B)) € Hyrp, =1 Up" & p(t) € Hp.

Prosf Suppose Pl.._., P* isa stratification of P. The-proof is through indic-
tion on the P-siraiim to which p belongs. Suppose first that p € P, Let P;
‘name the collection of clauses in P corresponding to P (P, is a definite, lan-
guage independent program.) Let Tp, name its’ifnrnedi_ateconseque_n_ce operator.
We learn from the proof of theorem 4.2.5 that atoms of the form solue(p' (1)) ate
in the V; layer of Bas,,. Bui this imeans:

solve(p' () € Harp < solve(r’' (D)) € Hy (%)

Let Ty, name the immediate consequence operator corresponding to the (infinite}
definite ground program Lj. (Throughout the rest of this proof, names such as
Vo, Ha and Ly refer to the construction showing the weak stratification of M P.)
‘We first prove the following:

Ve Up",¥n € IV : p() € Tp, Tn == 3m € IV : solve(p'(T)) € Ty, Tm (1)
Theé proof proceeds throngh induction on n. The base case (n = ¢ ;Tp, 10 = §)
is trivially satisfied. Now suppose that p(t) € Tp,Tn;n > 0. Then there rusi
be at least one clause € in P; such that. p(E) — €4,...,C% (k > 0) is a ground
instance of C'and Cy,...,C: € Tp, T(r —1). Consider first the case that we have
one with k = 0. In other ‘words, p(f) « is'a ground instance.of a fact in P. In
that case, Ly contains the clause’ solve(p' (1)) — solve(empiy). It follows that
solve(p'(T)) € Tp, T2
Suppose now k. > 1. Then Ly contains the clause

solve(p'(I)) + solve(Cl&... &CY),
aswellas _

solve(Cile.. .. &CL) solve(CY), solve(Cly& .. &C5) YIg!i<kh, _
-The.i_xi_du_cﬁo:’n hypothesis guarantees for every C; the existence of an my € IV
such that solve(C{) € Ty, Tmy. Let mim denote the maximum of these mi. It
fakes only a straightforward proof by induction on I to show. the following:

V1<I<k:solve(Ci&.. . &CL) € Ty, T(mm +k —I).

From this, it follows that in particular

solve(Cl k... &C) e Tp, M(mm-tk — 1)
and therefore: o . '

solve(p' (1)} € Tr, T{mm + k).

a4 CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS

This completes the proof of (1). -(Notice that, in this part of the proof the
language independence of P is -only implicitly used, to deal with the case that
Cp = @. See also the remark following proposition 4.2.9.)
Nexi, we prove:

Vi€ Uy, ,¥n € IV : solve(p' {—)) e Ty in

= teUp" & Ime I :p(t) € Tp;Tm {(2)

We: first deﬁne L' to be:the la.nguage determined by Ry, Fu, and Carp. L' is
an ext.ensmn of .{ZJ;:1
The proof again’ proceeds through an irduction on n. The- base case where n.== 0
and Tz,10 = 9 is trivially'satisfied. Suppose that solve(p (1)) € Ti,Tn where
n> 0. Then either there is a clause-fact in Mp of which clause(p'(f), emipty}
is a ground instance or-this is not the case. Suppose first there is. Then P,
must contain a fact of which p(_) — is a ground -instance in £’ This. means
that p(f) € T, 11in L. But, since P, is language independent, this implies.that
t€Up, ™ (and thus T € Up") and p(t) & Tp, T1.
If there is no such clause-fact in M; P, then there must be one with & ground
instance clause(p’ (t) Cl&...&CL) where k> 1, such that solve(Cl& .. . &CY) €
Tr,T(n—1). A simple lnduc_tIOI_l argument on k-shows that we obfain the follow-
ing:

V1<i<k:Ini<n€ N :solve{Cl) € Tp,Tna.
Through the induction hypothesis, we get:

V1<i<kidmie NG & Trim &EeUp™
(where %;-is the tuple of arguments appearing in the atom C; and r; the arity of
its predicate). From the above and the fact that Pj is language independent, (2)
follows. '
The desired result for the bottom stratum. is an immediate consequence of: (*),
(1) 2nd (2)..
I:Now, let pE i (% > 1) and assume that the result is obtained for allg € Pi, j< i
We first prove the if-part. From p(f) € Hp and p.€ F%, wé:know there must be
a clause in P suck that '

P(_) = C1;...,Cr(n20)
is a ground instance of if. for which holds-that all posﬂ.we C; € Hp and for no
..negatwe Cj=. mtB,,B €-Hp.,. Now . R RS

‘e If there is mo C; containing a predicate symbol € P‘ then- we can. prove
(through mductlon on 1):
_solv_e(p(Yy €:Liga.
From this; the desired result follows immediately.
@ In ihe other case, we can, without loss of generality, suppose that Ci, ..., Cy
are the literals containing predicate symbols &€ P'. 'We then have. in Liga:

4.2. VANILLA META-PROGRAMS 45

solve(p(Z)) « solve(Cl&... &CLY
solve(C1 &:. . . &C) +— solve(C)), solve(Ch k... &C))
solve(Cy& . . . &CY) « solve(Ch), solve(Ci& ... &CL)

solve(Cl{& .. . &C!) « solve{C])
(Here, if C,, is & negative literal notB, C,, of course denotes ~B'.)

solve(p'(f}) € Hu,. now follows through an induction argument analogous.

1o the one used in the proofof (1) above.
Finally, we turn tothe only-ifpart. We have one of the following two. cases:’

o If solve(p'(F)) « € Lisa, then there is a clause in P such that
P —C1,...,Ca(n>0)
is a ground instance o_f it, all C; contain predicate symbols .€ UJ <,-'-P3
and are true in Hp. The desired result now follows from the language
independence of P.

@ Otherwise; L;y; must contain a clayse:’
so_lve(p"(f)) — solve(C& . . &Ct)

such that -so'lve(c';&'. &G € H£+_-i-— (Here again, CJ possibly denctes
—B’ for soine atom B.) Let us (without loss of generality) suppose that
€i,+ .+, Crare the only literals containing predicate symbols € F?, then it
follows that L;y dlso contains:

solve(Cl & .. . &) « solve(C}), solve(Ch& . .. &CL)

solve(Ch& . .. &CLY) +— solve(C}), solue(Clk .. &CLY

solve(Crér. . . &CL) salve(CY)
An induétion argument similar to the one in the proof of (2) above now
brings us the desired result.

a

Strictly speaking £ € Up” is of course implied by p(1) € Hp, but since we judge

the former fact to be an important result in its own right, we have chosen-to:

include the staternent. explicitly in-the formulation of the theorem.
Theorem 4.2.6 shows that-untyped non-ground vatiilla meta-progtams have a
very reasonable Herbrand model semantics for a large class of object prograims,

‘Notice, however, that it does not. incorporate any results on *negative” informa-

tion. It is obvious that a'-étraightforwa'.rd generalisation to atoms of the form
solve(—p'(2)) is not possible:

46 CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS

Example 4.2.7 Indeed, consider a very simple stratified, language independent
object program P:

Pla)+
We have solve(—p'(empty)) € Harp while of course empty ¢ Up.

However, we do have the result helow:

Corollary 4.2.8 Let P be..;a stratified, language independent program such that
Cp #0 and Mp its vanilla meta-program. Let Hp denote the pérfect. Herbrand
model of P and Hyr, the weakly perfect Herbrand model of Mp. Then the
following holds for every p/r € Rp:

Vi€ Up” : solve(—p'(1)) € Har, < p(I) € Hp.
.P_roof‘ From theorem 4,2.6, we have:-

Vi Up™ : solve(p'(T)) € Hurp, <> p(f) € Hp
And therefore: o _ ' '

Yie Up™ : not solve(p’ (E)} is satisfied in Hagp <I>~p(f]€ Hp
But-then defiriition 4.2.2 implies: '

Vi€ Up™: solve(—p'(t)) € Hu, < p(f) ¢ Hp o

-'OEviously;i'this_ result, can be extended to i € U Mo, if-one so desires. Noteé that
it is essential that €p # §.

To.conclude thissection, we bneﬂy dwell upon the “strength? of theorem 4.2.86.
In other words Jcan a similarresult be proven for classes of programs, mgmﬁca.ntly
larger than the class of la.nguage independent programs ? We believe this not to
be the case. One argument in favour of thisis the fact that, the proof of theo-
rem 4.2.6 relies on the]a.nguage mdependence of the object program in, a very
'na.tura.] way. However, one direction of the <= can be shown to held for: (a.]most)
ull deﬁmte object programs (in- proposition 4:2.9, M, p is supposed fo be defined
without the third clause of definition 4;2.2; see, deﬁmtions 4.6.10 and 4.6.11):

Proposition 4.2.9 Let P be 2 d¢finite program with €p 5 0 and Mp its venilla-
‘meta-program. Let Hp denote the least Herbrand model of P and Hyy, the least
Herbrand model of- Mp: Then the following holds for every p/r € Rp:

o Y€ TR 2 0(E) € Hp = solve(dl (2)).€ Hutp. .

Proof The result' immediately follows from:

Vie Up",¥n € IV : p(t) € Tpin = Im € IV : solve(p’'(})) € Tis; T
The proof of the latter statement is ana.logous to the one for (1).in the pioof of:
theorem. 4.2.6. o

{In fact, we can just as well use Mp as defiried in definitions 4.2.2 and 4.2.3, as
the first part of the proof for theorem 4.2.6 shows.) Again, Cp # @ is an essential

4.3. EXTENSIONS 47

condition. Indeed, the least Herbrand model of a non-language independent
program contains nen-propositional elements. All-terms in these atoms are of
course. ground and the only constant involved is *, which is not even present
in the language of the meta-program. It should also be mentioned that when
the restriction to térms in the object universe is imposed as a precondition, the
reverse of proposition.4.2:9 does hold. This. is proved in [87].

The following example shows that proposition 4.2.9 can néot be extended to
‘the class of stratified programs and their (weakly) perfect Herbrand models.
Example 4.2.10 The following program P is stratified, but not language inde-
‘pendent,)

(X} = not p(X)
P(X) « not g(¥)
g(a) «
We find that r(a) € Hp, and yet solve(r'(a}) ¢ Hyr,.

It seems then that theorem 4.2.6, coiollary 4.2.8 and proposition 4.2.9 are

about the best we can do in the context of “classical” ground Herbrand semantics.
In section 4.6, we show that it is often possible to drop the condition of language
independence in the framework of an extended: Herbrand semantics, designed to
mirror more closely: the operational behaviour of logic programs. But first, in
‘the next few sections, we present some Interesting extensions of the basic results
obtained above.

4.3 Extensions

Théoremn 4.2.6 is interesting because, for a large:c_laa_s-o'{? programs, it provides us
with a reasonable semantics for non-ground vanilla meta-programming. However,
it also shows that we do not seemn to gain much by this kind of programming.
Indeed, (the relevant part of) the rneta-semantics can be identified with the object
semantics. So, why going through the trouble of writing a mets-program in the
first place 7 The answer lies of course in useful eztenisions of the vanilla intérpreter
(see e.g. [159] and further references given there). In this section, we study meta-
programs that capture the essential characteristics of many such extensions. We
will first consider definite object and meta-programs and turn o the normal case
afterwards..

4.3.1 Definite programs and their extended meta-programs

In the definitions below, the prefix “d” serves to make z distinction with normal
meta-interpreters. However, when- it is clear from the context. whether a definite

48 'CHAPTER 4 HERBRAND SEMANTICS FOR META-PROGRAMS

or a normal meta-program is intended, we will often not write dows that “d”
explicitly.

Definition 4.3.1 A definite program of the following form will be called eztended
{d- Jmeta-interpreter:

solve{empty, Ly, - - ,_,t.m) — Cay. oy iy

solve(X&Y tayy. .. lzn) «— soI‘ué(X 313 tan)y solve(Y, tay, . - . 14q),

 Caryee i Cimy

sblﬂe(X t51, .0 oy bsn) clause(X Y) 80lve(Y, L6154 .y ton)s Cat, - - -5 Clam,
where the t,;.-terms are extra arguments of the solve-predicate and the. Ciy-
atoms extra conditions in its body, together with defining clauses for any other
predicates- occurring in the Ci; {none of which contain solve or clause).

Definition 4.3.2 Let: P be a definite program and E an extended (d-)meta.—
interpreter. Then Ep, the E-ertended duthéta-program assoctaied with P, is the
definite program consisting of B together with a fact of the form
clause(A’, Bi& .. &BL) «
for every clause 4 « By, ..., B;, in P and a fact of the form
clause{ s empty)
for every fact 4 — i P.

As an example of this Kind of meta-programming, we include the following
program F; adapted from [169]. It builds proof trees for definite object level
programs and gueries.

Example 4.3.3

solve(emply, empty) —

solve{ X &Y, Po&Py) — solve(X, Pz), solve(Y, Py)

solue(X, X if Py) —_ cIause(X Y),sol-ue(}’ Py)
As is illustrated in. [159], the proof trees thus construeted :can be used as a basis.
for explanation facilities in expert systems. .Further. examples can be found in

e.g. [158].
‘We have- the following proposition:

P!‘OPOSIthIl 434 Tt Phea deﬁmte, Iangua.ge mdependent progra.m and Ep
an.F-extended d- -meta-program associated with P. Let Hp and Hg, denote their
respective least Herbrand models. Then the following holds for every plre Rpt

V_GUE, (HSGUEP . solue(p{-), EHEP)=>t€Up &p(_)eHP

Proof It followsimmediately from an obvious property of definite logic prograins

that. solve(p'(%),5) € Hg, implies solve(y (1)) € Lpp-Hir, (Mp's least Lgp-
Herbrand model). Let £’ be the language determined by Rp, Fz, and Cg,. L'

L AP A A

4.3. EXTENSIONS 49

is an extension of £p. The result now follows from the language independence
of P. o) Q
It can be noted that the right hand side of the mnplication in proposition 4.3.4
i equivalent with ¥ € Up,” & solve(s'(])) € Hy, {where Mg dexnotes the
vanilla d-meta-program associated with P, defined as'in definition 4.6.11, and’
Hpysp its least Herbrand model). This follows from the definite program version
of theorem 4.2.6 (theorem 11 in [41]), the proof of whick is similar to the bottom
stratum part of the proof for theorem 4.2.6.

Proposition 4.3.4 essentially ensures us that working with extended meta-
programs is “safe” for definite, language independent programs. Indeed, no un-
wanted solutions of the kind mentioned in section 3.1 .are produced. Further
resesrch. ¢an perhaps determine conditions on E that allow-an equivalence in
proposition 4.3.4. We know such extended interpreters. exist: The proof tree.
building program in example 4.3:3 above presents an instance.. [n general, pro-
grams where the extra arguments and conditions neither cause failures nor addi-
tional bindings on the main arguments are obviously safe. {See subsection 4.6.4
for a related comment.)

4.3.2 Normal extensioiis
We will-now address norm_al’-objec"t. ‘prograins and their normal extended meta-

programs. The definitions we set out with, are of course very similat to those in
the previous subsecticn.

Definition 4.3.5 A normal program of the following form will be called extended
metd-interpreter: '

solve(empty; 111, . .., t1n) — Ciy,- ..., Cim, _

solve(X &Y 31, ... izy) —solve(X,¥a1, - . .,83.), solve(Y, tey, .. ., tan),

L1y -+, Comy, '

solve(—X, %51, . .., t6n) «— nol solve (Xit61s - - vrten): Carye - vn Camy

solve(X,1ri, .., b)) +— clause(X, Y), solve(Y, tg1,... ., ten), Cay, - - ., Clim,
where the #;;-terms are extra arguments of the: solve-predicate and the &% -literals
extra conditions, defined through a stratified program included in the extended
meta-interpreter (but not containing selve or clause),

Definition 4.3.6 Let P be anormal ptogram and E an extended meta-interpreter.
"Then Fp; the E-eztended meta-program associated with P, is the normal Program
comsisting of E together with a fact of the form

clause(4',.. . &B'&. . &~C'&...) —
for -evel_:y-' clause A —..n B, ., notC . in P and a fact of the form’

clause(A’, emply) —
"-i"or.evegy fact A — in P.

B0 CHAFPTER 4. HERBRAND SEMAN TICS FOR. META-PROGRAMS.

The first question now is:. Are such programns.weakly stratified ? The following
proposttion shows they indeed are, when the object program is stratified.

Proposition 4.3.7 Let P be a stratified program.. Let E be an extended
meta-interpreter: Then Ep; the E-extended meta-program associated with P, is
“weakly strafified.

Proof A construction completely analogous to the one.in the. proof of theo-
rem 4.2.5.can be used since:

o The strata of the program that defines the Cji-literals-can be considered
firat.

® We can gtill divide the solve-atoms in strata, based on the struchuré-of their
first argument.

a

Having estabhshed this result, we would like to generalise proposltlon 4.3.4.
However, the fo]lowmg simple examples demonstrate that this is not possible,

Example 4.3.8
P:p—rmnot g
Notice P is language independent and (trivially) range restricted.
E: Pirst 3 clausés as in M (definition 4.2.2)
:solve(X) « clause(X,Y), solve(Y), good(Y)
good(—g')
‘We have p ¢ Hp and yet solve(7') € Hp,-

Example 4.3.9

P plX,Y) — r(X),not (X))
q(a) — k(a)
r(a)
h(a).. o . A
Notice P is Janguage independent, but not range restricted.
.E: First 3 dauses as'in M {deﬁnltlon 4.2.2)
soh.le(X) + clause(X,Y); solve(Y), not bad(V")
bad(k(a))
We have sol'ue('(a, emipty)) € He,. {and, of course, (a; emply) & Up?).

Hawever, we-de have the following result:

4.4. A JUSTIFICATION FOR OVERLOADING 51

Proposition ¢4.3.10 Let P be a stratified, range restricted program and let Ep
be an extended ¥iefa-program associated with P. Let H Ep be its weakly perfect
Herbrand model. Then the folIowmg holds for every p/r € Rp:

VEE Up,™ : (35 €.Ug,™ : solve(p' (1), 7 3 € Hp,) =T Up”

Proof First, ohserve that all facts in a range: restricted progra.m P are ground.
Secondly, a.ll variables. in the head of a ‘clause appear in positive body liter-
als. Therefore, basically, when -applying Tr, all variables are instantiated with
terms propagated upwards from the ground facts. Now, the same holds for the
t-arguments of solve(p’ (1),)-atoms in the context of Ep (provided P is range re-
stricted). Therefore, such arguments can not be instantiated with terms cutside
Up. A fully formal elaboration of this reasoning involves a completely straight-

-forward induction proof. a

A few remarks-are in order:

¢ Example 4.3.8 shows that this proposition cannot be strengthened to also
‘include p(f} € Hp in the. right-hand side of the implication. And, in view
of what might be required in actuai apphcatlons this seems very natu-
‘1al. Consider for example a jury finding a guilty person innocent: through
lack of sufficient. proof. When formalised by means of an extended meta-
interpreter, this would result in something like sofne(mnocent") being true
at the: ‘mheta-level, while innocent would be false at the object level.

o However, proposition 4.3.10 doés certify that one does not obtain nonsen-
sical solve(p' (%, 5))-atoins in the weakly perfect Herbrand model of the ex-
tended meta-program, at least for range resiricted obJect programs. Indeed,
example 4.3.9 shows that -even this minimum result can not be extended to
the class of all stratified, lenguage independent programs. In other words,
language independence proves to bie too weak a concept in the context. of
extended mormal meta-programs.

4.4 A Justification for Overloading

In'the next section, we extend some of the results of section 4.2 to provide a
semnantics for a limited form of amalgamation. The simplest example of the kind
‘of programs we will consider is the (textual) combination P 4 Mp of the clauses.
of -an object program P with the clauses for its associated vanilla program. Mg,

A more complex case is obtained by further (texf:ua.lly) extending P + Mp with
additional elause/2-facts and -statements, covering’ the clauses in Mp jiself. In
the most general case; we allow moreover the occurrence of solve /1-calls in the
bodies of clauses of P. Furtherrmiore, we will i impose the use of one particular
functorisation F P namniely the one in which all functors in Fr. are identical to

52 CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS

their associated -pred_ig_ate__ symbols in Rp. (And, in-the more complex cases, we
will proceed similarly for the predicates solve and clause.)

Postponing the discussion on the generalisation of our results, we first address
the more basic problem with the semantics of such prograims; caused by overload-
ing the symbols in the language. Clearly, the predicate symbols of P occur both
as’ predlcate aymbol and as functor in P+ Mp (and in any forther extensions).
Now, although this was not ma.de explicit'in e:g. [110}, an underlying assurnption
of first order logic is. that, the class of functors and-the class-of predicate symbols
of a first order language £, are dlsjomt (see e.g. [50], [142]). 8o, if we aim to
extend our results o amalgamated programs, without.introducing any kind of
naming to. avoid the overloadmg, we need 1o venfy whether the constructions,
definitions and resulis on the foundations.of logic programming are.still valid if.
the functors and predicate symbols of the language overlap.

We haye checked the formalisation and proofs in [110], starting from the as-
sumption that the set of functors and the set of- predicate symbols may. overlap.
We found that none of the results become invalid. Of course, under: this assump-
tlon, there is-in general no way to dlstlngulsh well—formed formulas from terms.
They as. well have a non-empty intersection. But this causes no problem in the-
definition of pre—mterpreta.tmns, va_na.ble- and term-assignments. and interpreta-
tions (see e:g. [110], p.12). It is clear however, that a same synta.ctlcal object can
be both term. and formula and cantherefore be given. two different ‘meanings, one
under the pre—mterpreta.tzon and vana.ble—asmgnment the other under the corre-
spondmg m’cerpretatlon -and variable- asmgnrnent But this causes no confusmn
on the level of truth—asslgnment to . well-formed formulas under an mt.erpreta.tmn
and-a variable- -assignment. This deﬁmtmn performs a complete parsing of the
well-formed formula.s, making sure that the appropriate assignments are. applied
for each syntactic substructure. In particular, it should be noted that ne para-
doxes can be formulated in thése languages, since each formula obtains a unique-
truth-value urider- every interpretation and: vanable-a.ss:gnment

On the level of declarative logic program semantics, the main results both for
definite programs, the existence. of a least. Herbrand model and its characterisa--
tion as the least fixpoint of T ({110}, Prop.6.1, Th.6.2; Th.6.5); and for {weakly)
stratified normal programs, the e:ustence of a (weakly) perfect Herbrand model
for P'{[110]; Cor:14. remain valid-in the extended I
Thus, the amalgamated programs we airn to study can he given a unique z_;_emar;LQ
tics. In the mext section, we.démonstrate that it is also a sensible semantics.

4.5 Amalgamation

From here on, 't_hroughout the rest of this chapter, ‘functorisations will .alwa.ys
-contain ezactly the same symbols as their corresponding sets of predicate symbols.

4.5, AMALGAMATION 53

A justification for this practice was given in the previous section. It leads to an
increased flexibility in considering meta-programs with several layers. In fact,
as shown in subsection. 4.5.2 below, we can now deal with an unlimited amount
of meta-layers. However, we first briefly consider a completely stiaightforward
extension: Including.the object~program in the resulting meta-program..

4.5.1 Amalgamated vanilla meta-programs.

Definition 4.5.1 Let P be a normal pro'_gr'am-.a.nd Mp its a.ssqcia.t_‘.gd vanilla meta--
prograri (see-definition 4.2.3). Then we call the textual combination P+ Mp of
P and Mp the umalgamated vanilla meta-program associated with P.
Notice that Lpyar, is determined by

Rpym, = Rp U {solve, clause}

Fpise = FpURp U{&,~}

Cpiup = Cp U{empty}
We immediately have the 'followihg_:.

Upsarp = Unms

The semantic properties of P 4+ Mp are of course straightforward variants of
those obtained above for Mp. First, we have ihe following:

'Propqsit'ibn-4.5.2 Let P be a stratified program,then P 4 Mp, iis associated
-amalgamated vanilla meta-program, is weakly stratified.

Praof For the construction in proposition 3.3.11, we can first consider the strata
of P and then continue as in the proof of theorem 4.2.5. £

‘This enables us to formulate the next theorem:

Theorem 4.5.3 Let P b’e_'a_‘ stiatified, language independent prograrm, Mp its
vanilla and P + Mp iis amalgamated vanilla meta-program. Let Hp, Hy,, and
Hp i, denote their (weakly) perfect Herbrand models. Then ‘the following holds
for.every p/r € Rp: ;

Vi€ Upyar,” - solve(p(t)) € Hpym, <= pf) € Hpim,

V'E E U‘P_!_Mpr b sOIﬂ&(p{t)} e HP-{-M;; <=.>t g U_p"r &P(Z) c H.F'

Vi€ Upyaiy @ solve(t) € Hpop, <1 € Uy & solve(t) € Hy,,
Proof Obvious from definition 4.5:1 and theorem 4.2.6. m
Naturally, adapted versions of corollary 4.2.8 and proposition 4.2.9 also- hold:

Considering eziended amalyemated meia-programsis likewise straightforward.

We will not do this explicitly 'a._nd'.'.oply Hlustrate by an example the extra pro-.
gramming power one can gain in this context.

54 CHAPTER 4, HERBRAND SEMANTICS FOR META-PROGRAMS

Example 4.5.4 In applications based on the proof tree recording program from
example 4.3.3, it inay be the case that users are not interested in branches for
particular predicates. To reflect this, clauses of the forr:

solve(p(z), some_info) — p(z)
can be added (combined with extra measures to avoid also tsing the standard
clause for these cases).

In- other words, on the basis laid out in this subsection, we can bulid a sen-
sible semantics for a rumber of meta-programs involving reflection. Some brief
coriments on the issue of reéflection can be found below, at: the end of this section,

4.5.2 Meta2-programs

In this subsection; we consider meta-programs that include clause-information
for the Mp-clauses therselves, thus allowing the use of an unlimited amount of
meta-layers. Programmingof this kind is relevantin e.g. the contexts.of reasoning
about reasoning (see-e.g. {89])-and proof-plan consiruction and manipulation (see
eg [B3). o

We start with a formal definition,

Definition 4.5.5 Let P be a normal program, Ther MZp, the vanills meta2-
program associaied with P, is the program M (sce definition 4.2. 2) together with
the following claise:
clause(clause(X, Y), empty) « clause(X,Y) (*)
and a fact of the form _
clause(4,.. . &B&.. &~C&...) —
forevery clause- 4 + ..., B, ..., notC,..-in P or. M and a fact of the form
elavse(A, empty) —
for every fact A + in P or M,

Notice that th1s -definition €ssentially adds to the vanilla mmeta-program clause-
facts for the four solve-clauses in M and for every clause-fact, An actual textual
execution of the latter intention would however demand the addition of an infinite
amount of cIause—fa.cts Indeed, we.do yiot only want clouse-facts for the clanses
in P and M and the clause- fact's in My, but also for the clause facts about these
clause-facts, etc.. Rule (%) in definition 4.5.5 covers all the “facts about facts”
cases. Definition 4.5.5 implies that £ aMay Is determined by

Rasa, = {solve, clause}.

Fuzrp = Fp URp U {solve,clause, &, 1}

Cppap = Cp U{empty}
It follows that Cp £ @ ==>-Up C Upa,,

4.5. AMALGAMATION 55

The proof of the following theorem is a straightforward adaptation.of the one
for theorem 4.2.5.

Theorem. 4.5.6 Let P be a. strat1ﬁed program, Then MZp, the va.nlﬂa. meta2-
program associated with P, is weakly stratified.

Proof Suppose that P',..., P* is a stratification of P. To see that MZp is
indeed weakly stratified, it suﬂices to take the sets V; in the construction described
in proposition 3.3.11 as follows:

o Vi = {clause(ts, ta)fty,82°€ Upps,

° Vz = {solve(t)}t € 7'} with
= {p(Dlp/n € P',1 € Up,"}
.-U-['h&:t;lt;,tz ['."1}
U ch '
U{clause(il,tg)[h, 2 € UM:P}
L{solve(t)jt € '}

eFor3<i<k+1:
Vi = {solve(t)lt € 71} with
ri = {p(d)jp/n € P, T € Upe,")
Ut &ty b € U i<im1 7 and either #; or ¢, € ‘-"'_1}
Uf-tlt e 72}
U{solve(t)]t € 7’"1}
o Fork+ 1.«
V; = {solve(t)|t € 7"~1} with
P2 {h&izitl,tz e U; i 17 and either ¢; oL €7 "1}
{—ltli & ‘T‘_z}
U{solve(t}|t g -1}
W]

At least part of the following theorem will by now no longer come as a surprise.

Theorem 4.5.7 Let P be a stratified, language independent program and MZp:
1ts va.mlla. meta2:program. Let Hp denote the perfect Herbrand model of P and
the weakly perfect Herbrand model of M?p. Then the following holds;
Vt € Unpay, ¢ solve(solve(t)) € Hypz, <= solve(t).€ Higa,,
Moreover, the follow_ing.hd]ﬂs for every p/r € Rp:
VEE Uys," o solve(p(l)) € Hapa, <= T € Up" & p(f) € Hp

56 CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS

Proof The proof of the second equivalence is analogous to the proof of theo-
tem 4.2.6. To prove the first, we discern between different possibilities for the
structure of .

& { = empty
From definition 4.5.5, it is clear that both, solve(solve (empt-y))
‘and’ solue(empty) arein Hapi,

o =t &ty a.nd suppose the equivalence holds for #; and i;. Then we have:
solve(solve(t)) € Hars,
=y cla.use(solue(h &tz),y) and solve(y) € Huys,
<= solve(solue(t; }asolve(tr)) € Hppa,
< solve(soive(ty)} and so!'ﬁe(so!ve(tg)) € Harzyp
= solve(tl) and so!ve(tg) € HMz
== solve(iy &tg) € Hppa,,

o t = -’ and suppose the equivalence holds for #. Then we have:
.so!ve(so!ve(t]) & Hppag,
<= Ty clanse(solve(t’)iy and. solve(y) € Hyray,
<= solye(—solve(t')) € Hyjs,
<= solve(solve(t')} & Hys,
= .solue(t") & Haap,
<= solve(—t') & HMn

¢ Finally; we deal with the remaining cases.
solve(solve(t)) € Hu, _
<= Hy clause(sol‘ue(t)) and solve(y) € Hars,
<= Jy solv&(cfause(t v)&solvely')) € Hifa,
<= Jy solue(cfause(t v')) and solve(solve(y')) € Hara,
<= 3y, v clause(clouse(t, '}, y"), solve(y'") and solve(solve(y')) € Hyray
=3y clause(t, y") and solve(solve(y')) € Hpss,
Now suppose ¢ € 7°. Then we ‘can use induction on-the level at which
the 77, -operator derives solve(solve(t)). Indeed solve{solue(y]) w1ll be
“dertved: at-a lower: level; and-therefore ‘wehave:
— 3y cfause(t_,_y'_} aqd.solve(y.’) £ H‘M’p
<= solve(t) € Hpra,

a

‘Theorem 4.5.7 shows that vanilla meta2-programs have a. sensible Herbrand: se-
mantics, just like plain vanilla meta-programs. Notice that the language inde-
pendence of P is not used in the proof of the first equivalence.

4.5 AMALGAMATION 57

Tt'is obvious that corollary 4.2.8 can be rephrased for met32~programs And
we also have the following:

Corollary 4.5.8 Let M*p be the vanilla meta2- -program associated w1th a strat-
ified Object program P. Let Hpa, denoté its weakly perfect Herbr_a.nd model.
Then the following holds::

Vi€ Upps, 1 solve(-solve(t)) € Hypa, <= solve(t) ¢ H Mg

Proof ‘The result follows immediately from definition 4.5.5 and the first. equiv-
alence in theorem 4.5.7.]

Various. amalgamated and/or ‘extended meta2-programs ¢an be treated. We
~will just point out one interesting further step it is possible to take: Indeed, we
can consider meta2-programs in which the “objéct” clatses contain meta—calls
It is clear that we: can in such cases no longer discern between -an object- and a
theta-level. Results similar to whai we obtained before make no sense. But we
can state the: fullowmg proposition:

Proposition 4.5.9 Let P be a stratified program and Jet P + M2, be its amal-

gimaled vanilla metuz-program Let PM be a program-iextually identical to

P+ M?p; except that an. arbitrary number of atoms A in the ‘bodies of clauses

in the P-part of it have been replaced by solve(A). Then the following holds:
Hpimap, = Hpar

- Proof (Sketch)

First, both P43 2 p and PM can be shown fo be weakly stratified. For PAS, p(t)-
and soh:e(p(t)) atoms of course have to be taken together.in the same stratim.
Moreover the same can be done in the dynamic stratification of P + M?; p- A
proof- through induction can then be produced to show that every layer in one
program has the same least Herbrand model as its corresponding layer in. the

other program. o

Note that language independence is not immediately relevant here, since. P+M?p
and PM have identical underlying languages.

Example 4.5.10 In this framework, we can address interesting examples from
[19]. Consider e.g. the followxng clause, telhng us that. a-person is innocent when
he is-not found guilty:
innocent(X) « person(X);not solve(guilty(X))
Of course, such possibilities only become really interesting when using extended
_meta—mterpreters, involving e.g. an extra sol-ue-a.rgument limiting the resources
available for proving a person’s guilt. Results similar to those in section 4.3, but

now pertaining to the relationship between PM.- like programs: and their extended’

-versions, can be stated and proved.

58 CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS

Further extensions are possible, but we ‘believe that the above sufficiently
illustrates the flexibility, elegance. and power of -our approach.

We conclude this section with.& brief comment on reflection. Basically, the
term refers. to. the transfer of queries/answers from one-level of reasoning to. an-
other.. In this way, in a.meta-programmingsystem, we obtain additional inference
rizles: ‘When something is shown 1o be true at one-level, conclude the truth of
the. corresponding statement at the other level. Translation of a meta-level goal
to the object level is generally termed ‘downward reflection, while proceeding in
the other direction is known as upwerd reflection.. Reflection rules were fitst in-
troduced to artificial intelligence in [177]. Bowen and Kowalski mentioned them
in the context of logic programining in [19]. An exampleof a meta-programming
approach in logic programming that relies heavily on reflection, can be found in
[37]. A number of papers addressing the issue of reflection, together with fur:
ther referesices, can be found in [117]. In terins of our framework, we can point
out that the amalgamated meta-programs of subsection 4.5,1 provide a basis for
considering prograins involving downward reflection (see. example 4.5. 4) while
meta2-programs are a starting pomt for the incorporation of wpward reflection
(see proposition 4.5. 9) Of course, in this context, these terms do not zeally refer
to: inference rules, but rather to the embodiment of the underlying. Teasoning in
actual program clauses.

4.6 S-Semantics for Meta-Interpreters
4.6.1 Introduction

We believe that in many applications, the resirictions we imposed on the object
programs in the previous sections, are very naturally satisfied. Nevertheless, the
condition of langnage independence can be regarded as a somewhat annoying
limitation. Indeed, the actual praciice of meta-programmiing reaches beyord this
bourdary, WLthout experiencing much trouble. "The underlying reason for this
phenomenon is the fact that standard least/ (weakly) perfect Herbrand semantics
does not really accurately reflect the operational behaviour of miany logic pro-
grams..Indeed, Herbrand models contain only ground: atoms w}ule 10glc pragram-
execution:often-produces:non-ground-angiber-subsiilutions: -

In [55] and [56}, non-ground Herbrand models are: mtruduced to 'bndge the
gap between declarative semantics and operational behaviour. In this section, we
will show that many of our résults can be: generalised beyond 1a.nguage indepen-
dence in-the context of the so-called S-semdntics. {Readers judging-an approach
to:declarative semiantics which involves non-ground atoms in models to be unac-
ceptable, can perhaps regatd the sequel as a formal treatise on the operational
behavionr of untyped non-ground meta-programs.)

4.6. S-SEMANTICS FOR META-INTERPRETERS 59

The rest. of't'_hiiv. section then, contains first a short intro'du'cfiqn to S-semantics;
We contimie with a look at venilla meta-interpreters, point out some interesting

complications for extended meta-programs and finish our exposé with a brief

.c_o:_nclusipn_. A last remark must be made: Since cuzrrently S-semantics is only
fully developed for definite ‘prografms, this whole section is restricted to definite
object and meta-programs.

4.6.2 S-Semantics-

We first recapitiilate some relevant basic notions. and results concerning ‘the S-
semantics for definite logic programs, as it was introduced in [55] and [56].

For atoms .4 and 4', we define 4 < 4* {4 is more général than A"Y iff there
exists a substitution 8-51.1_::]1 that A8 = A’. The relation < is a preorder. -Let
be the associated equivalence relation (renaming). (Similarly for terms.) Then
we can. define the follow'i_ng.. '

Definition 4.6.1 Let P be a definite program with undérlying language Lp.
"Thenits. S-Herbrand universe USp is the quotient; set of all terms in £p with
‘regpect- to A&, '

So, Up basically contains all possible terms, not only ground ones. Notice
however that terms which are renamings of each other are considered fo.be one
anc the. same element of U¥p5. The following deﬁnit_i__on. siriilarly extends the
concept of Herbrand base.

Definition 4.6.2 Let P be a-definite program with underlying langiage Lp.
Then.its S-Herbrand base BS p is the quotient set of all atoms'in £ with respect.
to mz.

We can now extend the notions of interprelation, truth and model.

Definition 4.6.3 Lét P be a definite program, Any subset IS5 of B® 5 is called
an S-Herbrand interpretdtion of P.

Definition 4.6.4 Let P be a definite program and IS an S-Herbrand interpre-
tation of P.. |

e A (possibly non-ground) alom A in Lp is S-truein IS p-iff theré exists an

atom A, such that (the equivalence class of) A’ belongs to IS pand A’ < A.

o A definite c!_an._se‘ A—By,..,Byin Lp is S-irue in IS5 iff for all atorns
Bi',..., By belonging to T % p,.if there exists a substitution
6 =mgu((Bi',..., B.), (Bs, .., Ba))
then Af belongs to I°p .

60 CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS

Definition 4.6.5 Let ISp. be an S-Herbrand mterpretatlon ofa deﬁmte Pprogram
P. I®p is an S-Herbrand model of P iff every clause of P is S-true in Ifp.

Tt is clear that S-Herbrand ihterpretations and models contain non-ground atoms.
Notice that the notion of S-truth is defined differently for atoms and for facts
(1 e. clauses with no literals in.the body) The reason for. demanding 48'€ ISp,
instead of 46 S-true in IS, ' p,isthe wish to attach a different semantics t6 programs
such as P; and P; in example 4. 6.9 below. Deﬁmtwns 4.6.3 to-4.6.5 are taken
from [55). In [56], a more elegant, but also-slightly more elaborate approach leads
to.the same resulls.

On ‘the set of S-Herbrand interpretations of a given prograin, we 1mp05e an
ordenng through set inclusion, just.as in the case of “ordinary” ground Herbrand
interpretations. We can then include the following result from [58].

Theorem -4.6.6 For every definite logic program. P, there is a unique least S—
‘Herbrand model H* p:

We wﬂ] cOBSi:dQI this least S-Herbrand model of a definite program P as-the
description of its S-semantics. _ _
‘A fixpoint characterisation of the least'S-Herbrand model is possible.

Definition 4.6.7 Let P be a definite’ program. The mapping T¥p on the set of
8-Herbrand mterpreta.tmns, associated with P, is defined as follows:
TEp(ISp J={dle Bip |34 131, w2 Bnin P 3}31 ey Byl € 15,
36 = mgu((Bl y e B) (Bls ﬂ))) 3nd A= Ag}.

The followmg theorem can now be included from [55] It provides the désired
least fixpoint characterisation of H5p

Theorem ‘4.6.8 For every definite program P:
HEp = fp(T%p) = Upe TP (0)(= T 1 0)

Finally, it can be pointed out that the least S-Herbrand model of a program
exacly characterises computed answer siibstitutions for completely uninstanti-
ated queries with.respech, to this program. We refer to [55] and/or [56] for a full
furma.l development with soundnéss and completeness results.

W conélude this brief introduction to §- semantics with a few simple: cxa.mples
to illustrate the concept of a least S-Herbrand model.

Example 4.6.9

P pla) —
7%, = {p{a)}
B: pe) e~

HEp, = {p(2)}

4.6. S-SEMANTICS FOR META-INTERPRETERS 61

P .p('ﬂ)l —

pla) —
Hp, = {p(z),p(a}}
Py plz) « q(<)
g(a) e

H%p, = {p(a),a(a)}
P p(z,y) —q(c)

gla) «

HSp, = {p(a,=),q(a)}

Notice that « (see section 3.2) does not show up in' #¥p,, Indeed, definition 4.6.7
and theorem 4.6.8 show that atoms in the least S-Herbrand rnodel of a program
‘without constants do not contain any constants either. In particular, the special

constarit #, added-to the underlying]anguage, plays no tole in least S-Herbrand.

sernantics although. it does of course occur in the'S-Herbrand universe of such
'programs.

4.6.3 Vanilla meta-interpreters

As pointed out above, this section is about definite ‘programs. For clarity and
commpleteness; we include the definition of a definite program’s vanilla meta-
program below. ‘We leave: oui-the “d”, used in similar circumstarices in subsec-
tion 4.3.1, since in the context of the present section, no confusion with normal
meta-programs is posmb}e Finally, we remind the reader of the fact that we use
functorisations which are jdentical to their associdted sets of predicate symbols.

Definition 4.6.10° The following definite program M is called vanille meta-
inderpreter:

solve{emply) —

solve(X &Y') « solve(X), solve(Y)

sohre(X) « clause(X,Y), solve(Y)

Definition 4.6.11 Let P be a definite program. Then Mp, the vanille. meta-
‘program associated with P, is the definite program conmst.mg of M together with
a fact of the form

clause(4, Bi& . .. &B,) —

for every clause A4 «— By, ..., B, in P and a fact of the form
clm;.se(A, gn’a_pty) —

for every fact 4 + in P,

We have:

62 CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS

‘Proposition 4.6.12 Let P be & definite program with Cp- # #.and Mp p its vanilla
meta-program. Then USp C US Mp-

Proof Obvious from tlie -deﬁmt_;ons'. u)

Just like before, » precludes a generalisation of proposition 4.6.12 to all definite:
object progra.rﬁs ‘However, our observation above guarantees the: absence of
problems with * when considering the least S-Herbrand model of programs where
Cp =0 and their meta-programs.

We are now in 2 pasition to start proving the main result of this section. We
set out with the following two lemmas.

Lemma 4.6.13 Let P be a definite program and Mp its vanilla meta-program.
Then the following holds for every p/ reR Pl

VieUSp" ,Wne IV : p(t) €T pTn == Im € IV : solve(p(%)}E T% e Tm

Proof The proof is through induction on m, The base caj.se_-_(u- =0;T%p10=10)
is trivially satisfied. Now suppose that p(f) € 75 ptn,n.>> 0. Then there must
be at least one clause A « By,..., Be(k > 0) in P such that 3Cy,...,Ck €
T3p1(n— 1), 30 = mgu((Ci,...,Ck), (B1,...,B)) and p(j AB. Conmder
first the case that we have one w1th k=0.In other words, p{t) +— is.a fact in P.
In that case, definition 4:6.11 immediately implies that solve(p(t)) € T 5, 12.
Suppose now: k > 1. The induction hypothesis guarantees for every C; the
existence of an m; € IV such that solve(C;) € T%4r,. 1m;. Let mm denote the
maximum of these m;. This means that V1< i< k1 s0lve(C;) € 75 arp Trom,
In particular, solve(Cr) € TS prp .
Moreover, for any 1 < I<k,

solve(Ciya&.. . &Ch) € TSy, Tmom + k= I~ 1)
iniplies

solve{Cr1&Cry 1 & .. . &C) € TP praf{mm +k ~1).
Tt follows (induction on 1) that

V1< U<k solve(Crde. . . &Cr) € TS p J(mm + k= 1)
In particular, '

soI'ue(Cl& &!C;:) E TSMPT(mm—i- k— 1)
‘Since we ‘also: know that

o clg.use(..‘i, Bi&k.. &B)e TS'M:PTI,
) 9=:mg‘u(_'(c1,,.‘-,C'k),(31.,---:Bk)'),
o p(f) = 46,
it follows that solve(p(E)) € T pr, T (. + k). o

4.6. S-SEMANTICS FOR META-INTERPRETERS 63

Lemmae. .4_._6__.14'_Lét P be a définite prograim and Mp its vanilla meta-program.
Then the following holds for eveéry pireRpi
vi E'US_MPT,'V'R. €.V : solve(p(t)) € TS5y I _
= ieU%% & 3Ime IV .:-p(f) €Tiptm

Proof The proof uses induction on n. The base case (r = 0 T 50510 = §) is

trivially satisfied. Suppose that solve(p(1)) € TS ¥p I, n > 0. Then either there

is a-fact clause(p(t), emply) — in Mp or this is not the case. Suppose first there

is, Then there must be a fact p(t) « in P and the result follows.

If there is no such clause-fact in M Py then the following must be true:
e Jclause(4, Bi&.. . &By){k > 0) € TSy, 1(n — 1),
@ Jsolve(Cr& ... &Ch) € T p, 1{n— 1)

.38 = mgu{(clause{4, B1 & ... & By), solve{Cik . .. &C_‘k))_,_ _
(elause(X,Y), solve(Y)))

and solve(p(Z)) = solve(X)8 '
From the last point, it follows that,

if o = mgu((B1&. .. &Bg), (C1&. .. &Ck)), theii p(F) = Ac.
Furthermore, the first point implies the presenice of a.clause 4 — B,,..., By in P
and the second can only be true i

V1<i<k, Ing<ne N tsolve(C;) € TSy, s
Through the.induction hypothesis, we obtain

Y1<i<k, Am e IN:C; € TSptmi; & Letusyp,
where #; is the tuple of arguments'a_p_peaﬂng in the atom €} and # the arity of
its predicate,
The desired result now follows. (e

Our main result on the S-semantics of vanilla meta-interpreters. is expressed
by the following theorem.

Theorem 4.6.15 Let P be a definite program and Mp. its vanilla meta-program.
Let HSp and_H."_"-Mp -de_not‘e_i_'.he;-. least S-Herbrand model of P and M. P Tespec-
tively. Then the following holds for every p/r € Rp:

VE_E'USMP? : solve{g(2)) € Hs},;h = leUS & p(f) e HSp

Proof The thedrem follows Immediately from lemmas 4.6.13 and 4.6.14. O

Whea we compare this theorem with theorem 4.2.6; we first of all notice that:
it is-restricted to defirite object and meta-programs. However, we conjecture
that this limitation follows from the current state of S-semantics, and is not

B4 CHAPTER-4.. HERBRAND SEMANTICS FOR META-PROGRAMS

inherent to meta-programming. We briefly return to thiis issue at the end of this.
section. More important is the .absence. rJf the Ianguage mdependeuce condition,
Indeed, theorem 4.6,15 shows that there is a sensible correspondence between
the :S-semantics- of any definite object program and its varilla ‘meta-program;
Therefore, this theorem can be regarded as a formal confitmation thak this kind
of programming gives no practical problems, not even for programs that are not
language independent. Notice, by the way, that theorem 4:6.15 also generalises
proposition 4.2.9. Indeed, as indicated above, $-semantics allows 2 more elegant
treatment of the Cp = § case than classical ground Herbrand sermantics.

4.6.4 Extended meta-interpreters:

In the previous. subsection, we have shown how- our earlier resulis on vanilla
meta-semantics can be generalised beyond language. mdependence in the context
of S-semantics. Having established theorern 4.6.15, the next question that comes
to mind is: Can we accomplish a sumlar feat for proposition 4.3.47 Contrary to
our initial expectations, this question has to be answered negatively.

'The definitions of definite extended meta-interpreters and -programs were
alréady givén in subsection 4.3.1. We will not repeat them here and simply refer:
to definitions 4.3.1 and 4.3.2. Now, consider the following example. It involves
very simple, definite, non-language independent object program and. an equally
simple associated extended met_a-prograr_n._

Example 4.6.16

P (z)

H® p ={p(z)})

Ep: solve(empty) —
solve(z&y) « solve(z), solvel(y)
solve(z) « clause(z,y), solve(y), inst(c)
clause(p(z), ernpty) —

inst(p(a))
It is'easy to see that.solve(p(a)) € H g,.
The source of the problem is clea.rly ‘the fact that answers might 'becorne fur-
ther-instantiated ‘than-is the: case in. ‘the-object: ‘Progian Sin
Herbrand model represents the most general answer substit’utions, this means
that astraightforward generalisation of proposition 4.3.4 is impossible.
However, we' can.prove .a more modest- vatiant of proposition 4.3:4. Indeed,
proposition 3.2.11 ensures us that computed answers for. language 1ndependent
definite programs are ground. It is clear that such answers can mot be further
ingtantialed. Therefore, language independent programs-again prove to be “safe”.
“‘We first :prove the following: ' '

4.6. S:SEMANTICS FOR META-INTERPRETERS 65

Proposition 4.6.17 Let P be a definite program. Let Hp denote its least
Herbrand and. HS g its least S-Herbrand model respectively. Then P is language
independent if Hp = HSp

Proof The proposition follows from definition 2.6. 7, theoremn 4.6.8 and propasi-
tion 3.2:10 via a straxghtforWard induction proof. o

Notice that Hp = HS p implies that H¥; 7 -coniains only ground atoms. Seen
in the light of our earlier comments and results, proposition 4.6.17 can hardly
be called surprising. Indeed ‘it is just an S-semantics reformulation of proposi-
tion 3.2.11. It follows. that:

Lemma 4.6.18 Let P be a definite, language independent program and Mp its
associated vanilla meta-program, Let H* s, denote the least.S-Herbrand model
of Mp. Then the fGIIowmg holds for every pfr € R

Vie USMP solve(p(t)) EHS y,=11is ground
Proof The lemima follows from thearem 4.6.15 azid Proposition 4.6.17 g
We need & second lémmas:

Lemma 4.6,19 Let Pbea definite. program, Mp the vanillaand Ep an extended
‘meta-program associated with P. Then the following holds:
Vi€ USg, : (T8 USs," : solve(,) € HS Beo))
= 38, Jsolve(t’) € HS3, 1t =16
Proof Obvious from the definitions: m]
‘This.zallows us to prove the following variant.of ‘proposition 4.3.4:

'Proposition 4.6.20 Let P be a. definite, langnage independent program and Ep
-an E-extended meta-program associated with P. Let H5 p and H” g, denote the
least S-Herbrand model of P-and Ep respectively: Then the following holds for
every pfr € Rp:
Vic U%g, : (F5 e USE," solve(p(t),) € H%g,)
=1cU%:" & pli) € HSp

Proof Lemmas 4.6:18 and 4.6.19 ensure that solve(p(t),5) € HSE,_, implies

3olﬂe(p(t}) € HSu, (and therefore € US a)+ The result now follows from
‘theorem 4.6.15.. o

Example 4.6.16 shows that the S-sermnanitics results for vanilla meta- -programs
can not immediately be carried over to extended meta-programs. And, indeed,
in practice, logic programming with extended meéta-programs can-generate un-

wanted answer substitutions. Proposition 4.6.20 shows that this is not the case

86 CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS

for fanguage mdependent object programs, It is of course possible to investi-
gate conditions on the meta-program which would ensure that proposition 4.6.20
holds. for any definite object program. It is not even very difficult to conjecture
some such conditions. (See the comment concluding subsection 4.3.1.} However,
we will not pursue this topic in the present work.

4.6.5 Coricluding remarks
A treatment of a.malga:ma.ted meta-programsand meta2-programs in the context
‘of S-semantics is straightforward and ot particularly enlightening.. All the results
from section 4.5 can be generalised in the expected way. We will neither state
‘nor prove them explicitly.

Concerning the: limitation to definite programs; we can remark that [166]
extends [55] and [56], drawing from work on constructive- negation, and in this
‘way perhaps provides a setting for addressing normal object and rn_t‘:ta.-progra.r_ns_

4.7 Reasoning about Theories and Provability
4.7.1 An explicit theory argument

An ipteresting variant: of the meta-programs we considered above, is obtained
wheén an ezira ergument, demoting o particuler objeci theory, is added to the
solue and. clouse predicates.

The basic definitions are as follows:

Definition 4.7.1 We call the following normal program M? th-venills metu-
inierpreter:

solve(T, empty) — ()
solve(T, X&Y'} — solve(T, X), solve(T,Y)
solve(T, - X) — not solve(T, X) (wx)y

solve(T; X) « clause(T, X, Y}, solve(T, Y}

Definition 4.7.2 Let P be a normal program. Then M tp, the ih-vam“a. meta-
program associated with P, is the normal program ccnsmtmg of M* together with
-afa.ctoftheform . e e
c_lq_use_(p, A,. &B&z &—-C&.)4—
for every clause A s, B -,notC, ... in P and a fact of the form
clause(p, 4, empty)
for every fact A« in P,

In the above definition, the constant p.in the clguse-facts indicates that they
correspond to clauses in the object program P.

4.7. REASONING ABOUT THEORIES AND.PROVABILITY 67

Obviously, all earlier results can straightforwardly be generalised to programs
of this form. Nolice that clauses (*) and (¥+) in definition 4.7.1 do-not’ proir.ide' a
tange for their theory argument. Thus, Hoge, will comtain numerous: irrelevant
ground atoms, where the theory argument is instantiated to séme other term
than the constant p. This «can be avoided by either introducing a theory range
predicate for theories, or typing (see section 4.8 for some related comments). Of
coirse, an'S-semantics approach is. likewise free from such inconveniences.

The meta-program in definition 4.7.2 deals. with a single ‘object program.

Extending it to cope with several such object programs is straightforward: Simply

introduce more constants referring to object theories and annotate the clause
facts correspondingly. More interesting are.meta-programs surpassing the vanilla
context by defining interactions between the different object theories.
Consider the following example, adapted from [22]. It consists of a2 meta-

interpretative definition of (definite) logic program intersection.
Example 4.7.3

solve(T, emply) +—)

solve(T, X&Y'} — solve(T, X), solve(T,¥)

solve(T,X) « clause(T, X, Y), solve(T, V')

clause(TNT', X, Y&Y") « clause(T, X Y, clause(T', X, ¥} (1)
And, of course, a mumber of facts of the form

clause(p, 4, B1& ... &B,,)

clause(px,C, Di& . . . &Dps). _
to represent the object programs P; to Py, respectively.

The union of {definite) programs can be defined similarly, as shown'in [22].

Example 4,7.4 _
We replace clause (1) of the program in example 4.7.3, by the following two
clauses: ' '

clause(TUT', X,Y) « clause{T, X, ¥)

clouse(TUT", X, Y) « clause(T', X, Y)

Notice that the latter two clauses again do not _p’rcv-ide a (full) range for their
theory. argument.

4.7.2 The demo predicate

In many meta-programming applications in logic programming, not the solve
‘meta-interpreter; but a related program is used. i involves the so-called derrio
ot dernonsirdte predicate., This namerefers to a somewhat different darigin-and fér

68 CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS

underlying motivation of most of this' work. Indeed, while the solve interpreter
refers to (poss:.bly modl.ﬁl:d) query answering in logic programming, the demo
program is situated in the context:of formahsmg provability. The dlﬁ'erence is
obviously rather subtlé, but, in general, one can perhaps say. that solve has a
slightly mote procedural flavour than demo.

‘The demo predicate was originally introduced in chapter 12 of [97] and further
elaborated 1pon in a.0: [19] and.[54]. In [89], we find the following definition of
a derno for definite propositional programs.

Definition 4.7.5
demo{T, true) «—
demo(T, P&Q) — demo(T, P), demo(T, Q)
demo(T, P) — demo(T, P+Q), demo(T, Q)

A similar meta-interpreter was used in (23] as.the basis for a reformulation of the
work in [22].

The most-striking difference with (the definite variant of) the M?* program
in definition 4.7:1 above, is the absence of a clause predicate. Kowalski prefers
the formulation in definition 4.7.5 because of its greater generahty and its sim-
1la.r1ty with a modal logic approach. However, in the context of a meta exten-
310n/51mula.t10n of an object program, the- formulation with clause seems more
natural to us. Indeed, the distinction between data in the program and’ Iesults
derivable from the prqgram remains more clear.

A related issue is the choice between a ferm- and o constant-based Tepresen-
{ation .of the object theory. In definition 4.7.2-and in examples 4.7.3 and 4.7.4,
we introducéd an eéxtra argument in the clause-facts and -clauses, and named
object” theories through meta-level constants. The same technique-can be used
with the demo predicate. In that case, definition 4.7.5 needs to be extended
with demo-facts, representing the object theory, in exactly the same way as the
clause-facts above: Ari alternative possibility is representing the object theory
as:a ferm in the meta-goal. We adapt the following simple exarmnple from [99].

Exarmple 4.7.6 Execution of the object level program and query
p—q,r
' ot A
Te—
53—
can. be sirnulated by executing thé meta-guery
— demo{[p—gder, g—s,T—true, se-truel, p)
on the coridition that the program in definition 4.7:5 is'extended with the follow-
inig clause:

4.7. REASONING ABOUT THEORIES AND PROVABILITY 69

demo(T, P) +— member{P,T)
and a definition of the member predicate.

This works well for propositional ob’ject theories, but can produce inconvenient
variable bindings when used for object programs that contain variables. More-
over, since the object-theory is no longer represented in.the meta-program itseif,
comparing least Herbrand models does not immediately bring us anything. Even
an extended least Herbrand mode}, somehow incorporating the information ¢on-
tained in the query, does not rea.]]y refer to the object. theory, but to ground
instances of that theory. Therefore, in these cases, a ground representation of
the object theory (using meta-level constants to refer to object-level variables)
miight be preferable, We. briefly return to this issue in section 4.8.

Further apphcatlons and cornments mcludmg a number of 1nterest.mg further'
references; can be found in [99]; {There exists e. g. quite a lot of work on the
rela.t1onsh1p between meta-logic and modal logic. However, that intriguing issue.
is clearly outside the scope of this thesis,)

'We conclude: this section with a brief comment on one of-the most well-known,
and also most advanced, applications of the demo predicate; the so:called 3
wisemen puzgle. It was proposed as ‘a benchmark for testing the expressive:
power and naturalness of knowledge representation formalising and; in a logic
programming setting, has been addressed in a.o. {4], {89) and [100].. For more.
details about the problem and possible solutions, we refer the interested reader to
these. papers and further references given there. Also [88 contains some. relevant

“meta”-rernarks, pa.rt:cula.rly pertaining to the: solution presented in jul 00] Here,
‘it suffices to point out that problems like this one, and their solutions, fall cutside
‘the framework built above. TIndeed,. consider the following simplified subproblem
of the 3 wisémen puzzle.

Example 4.7.7 Given is the object knowledge C:

whitel V white? «

1hite2 —
At the meta-level the truth of white 1 has to be considered, without using a closed
world assumption: In:particular, we:do not want.to concludé deimof(c, ~whitel).

‘Clearly, issues of disjunctive logic programming and incomplete knowledge are
involved. The former can possibly be:dealt with by an extension of our results
to the-semaritics devised for disjunctive programs (see e.g. [57) and [116]). The
latter means negation as failure is not fit .as a. general reasoning méchatism.
Which 1mplles that (waakly) perfect. Herbra.nd sermantics:-is not satlsfa,ctory

Finally, notice that (100) as well as 99] uses syrbol overloadifig as addressed
-ln section 4.4.

70. CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS

4.8 Discussion, Some Related Work

“This section contains some further commentson our approach to meta-semantics
.and its results, mainly through a discussion of some related work. Sirice. there is
a vast literature:on _meta-logic, its semantics, possible applications, -advantages.
‘and disadva.ntages, we do ot strive for compleieness. Instead, we only consider
some imore or less closely related papers within logic programming.

First, we would like to miention. [154] It presents & truth predicate for full first
order logu:, exteridable intoa meta-interpreter. which is executable in a first order
-programming system. Unlike .our framework, the approach incorporates a full
naming mechanism for first, order terms and formulas. “This enables self-reference,
which, together with negation, gives rise to the possible expression of paradoxes.
So, a three-valued sernantics is inevitable. Summarising, we can conclude that the'
approach to meta-programming proposed ih [154] is more complicated; but also
more powerful than the vanilia: meta<interpreter and its extensions, considered
here: In. particular, full quantification inside named expressions. is poss;ble while
this ia-as yet lacking from vanilla related meta-programs (see below for further

comments on this issue).

‘Next, a rather theoretlcally oriented treatment of the demo predicate; includ-
ing a consideration of self—reference and the'simulation. of non-classical logics can.
be found. in [17] The paper also contains some further references that might be.
relevant to the: ;interegted. rea.der

A work more closely rela.ted to. whal we presented here is. [82] Tndeed, in.
the first part of that. paper, it is shown that through the use of appropriate
-typmg, vanpilla meta—programs can be given a suitable declaratlve (the welll known.
Clark’s completlun serpantics is used) and procedural seriantics. Moreover, in a
sécond parf, a ground representation for.object level terms at the meta-level is
considered, and it is shown how & number of problematic Prolog built-ins (statm
and of the type: called “first- order”, Le. not referring to clanses or goals, in [8])
can be given a declarative meaning in this settmg

Addressing the latter topic first, it should be noted that such Prolog meta-
predicates, of which var/l and nonvar/i are prototyplcal examples, are not
included in our language. This certainly puts some limitation on the obtained
expressiveniess. Observe, however, that in the typed non-ground repxesentatlon
proposed in [82];:no alternative for var /1" was ju roduced_eﬂ.her and “that the
‘declarative war/1 predicate introduced in the ground representation. approach-
provides no direct support. for the sort of functlonalltles (e.g. control and corou-
‘{ining fa.cﬁltles] ‘that the var/1 predicate in Pro]og is typically used for. Recently,
(8] proposed a declarative semantics for such predicates. We conjecture that, if
‘one 0. desires, our basic methodology can be adapted to the semantics described
‘there, thus. ena.bimg the inclusion . of such built-ins in our language. Fmally,
perhaps superior alternative for providing the latter kind of facilities is the use

4.8. DISCUSSION, SOME RELATED WORK 71

of delay control annotations as in Gédel,

For the assert/l1 and retract/1 Prolog built-in predicates, the solution of
_[81], to represent dynamic theories as terms in the- meta—progra.m, can as well
be applied in cur approach. However, as was noted in section 4.7 above, this
Tequires special care with variable bindings; 2nd leads to some inconveniences
in-the context of a ground Herbrand model approach to semantics. A thorough
discussion of the problems related to these predicates is given in [81] and [111].
They are also treated in [].68] discussed below. As a final remark about Prolog
built-ins, we would like to mention that our use of. overloading largely eliminates
the need for a call/1 predicate, as example 4.5.4 illustrates.

Next, observe that the condition of range restriction, which is the practical;.
verifiable, sufficient condﬂ.xon for language independence our approach was. mostly
designed for, is strongly related to typing. Indeed, typing can in principle be
converted into-additional atoms that are added in the bodies of clauses, expressing
the range of each variable. See e.g. [50] and [110]. In this context, it'is interesting

to note. the apparent duality between. -range restriction at the object. level and

typing at the meta-level. If one. “ha.rdwues types. into the code of the ob_]ect
prograim through range restriction; typing (or range restnctlon} at the meta-
level is no longer required for a sensible declarative semantics. [69] can alsc be
mentioned here. It presents a program transformation technique that. enables
to. minimise run-time type checking in systems: which represent-types as (unary)
predicates, thus largely eliminating one of the main-advantages types might offer
in. comiparison with: ranges.

Finally, [82] does not address amalgamation. And Gddel (see [80]), the
programining language whose extensive meta-programming facilities are largely
based upon the foundations laid out in [82] and. [81] does not allow it. While
deahng with amalgamated programs of the kind addressed in subsection 4:5.1
seems relatively siraightforward, a generalisation of the typed a.pproach 10 meta2-
programs is probably not immediate.

With. respect to the extension to amalgamated programs, we should point
out that our use of overloading is strongly related to the logic proposed in [144].
Indeed, in his:analysis of the problems connected ‘with reference and moda.hty,
R1chards considers logical languages that contain their well-formed famu!us as
terms. He mterprets these languages on specially devised models the domains.of

which are a union of the constents and the sentences. (i.e. closed formulas) in the-

language.

Kalsbeek {{87]) recently proposed a variant of Richards’ logic as a suitable

basis for studymg the semantics- of met.a—programs She allows any. formuls to
be: ¢ term in the language and uses (Herbrand) interpretations with arbitraiy
closed terms in the domain. In the logic framework thus obtained, soundness

and completeness of definite vanilla meta-programs with respect to-their definite.

72 ‘CHAPTER 4. HERBRAND.SEMANTICS FOR META-PROGRAMS

object program:-are proved, restricted to terms in the object level language.

Jiang ([84]) praposes an even more ambivalent language, also allowing terms
as formulas. He shows that a pumber of interesting properties (Herbrand thec-
rein,- completenesa), lost in R.Lcha.rds logic; ate recovéred, Varilla meta-programs
‘are considered, leading to snmla.r results. as obtained by others. The framework is
however more powerful and: particularly suitable for addressing qua.nt1ﬁed object
level statements and full amalgamation. To this end, a sophisticated treatmient
of va.mables, not: synta.ctlca.lly distinguishing between ‘variables and their names
is proposed. ‘'This allows the consideration meta—theones dea.hng with full first
order object statements. However, at the time of ‘writing, this work is not yet in
a ﬁn_a]lsed_ state. Particularly the treatment of variables seems to require further
study.

Summarising; our technique of overloading function and predicate symbols is
probably less powerful than approaches using more fully ambivalent syntax, bit
it requires 1o modification of the faniiliar notion of Herbrand interpretations and
‘models.

A comparison with the work in [34] basically leads to. the same concluslon
The semantic techniques proposed. there. provide a. first order semantics for a class
of programming constructs that includes the kind of amalgamation we consider,
but: significantly surpasses it. ‘Clauses like solve(z) — z are allowed, as well as
hlghe:r order functlons, generic prechca.te definitions, etc.. The basn: cha.ra.cter-
istic of HiLog logic is the fact that “teérms. may represent 1nd1v1duals, functmns,
predicates, and atomic formulas in different contexts”. However, the semantics
required to support this, is a- less 1mmedlate extension of the comrmon ﬁrst-—o_rder
logic semantics: '

Next, it should be noted that [108] independently extended the result for
vanilla meta-programs of language independent programs in [41] to all definite
object programs and their vanilla meta-programis in the context of 8- semantics.
Moreover, a sizeable meta-programming application is sketc¢hed and its semantics
discussed in the proposed framework.

We would like to-conclude this overview of related work with a brief discussion
of [150] In that paper, the foundations of a theory of metaloglc programming
in (deﬁmte) logic programmiing are laid out. The framework incorporates & flﬂl-
~fleédged tiatning device; like: the well-Known Godel numbermg"" This; ‘a/na
beé attached to any formiila in.the object lakguage: Axiom schemes for a mlmber
of meta-predicstes, among which a provability predicate; an assertional and -a
retractional predicate, are introduced. This gives rise to metalogic programs
including clauses for these prédicates. A.Herbrand model semantics for such
programs is then developed. Particularly interesting is the fact that universal
guantifiers in named object formulas cause problems in the fixpoint semantics,
ag shown by the following éxample, taken from {160].

4.9. CONCLUSION 73

Example 4.8.1
i demo('(Va)g(z)')
a(a) ~—
g(s(2)). — g(=)
If we consider the immediate consequence -operator T that can be associated with
this program (for an exact definition, we refer to [160]), we notice:that all atoms

of the form ¢(t) are in 7T T w, but p is not. However,pe Tt (w + 1} So, T is
noi continuois.

Subrahmanian then goes on to define a model theoretic forcing technique, which
makes it possible t6 re-establish the basic sémantic results, known for “plain®,

‘non-metalogic definite Togic programs. A numbes of interesting further issues are
discussed, among which are meta-unification and -proof theory, naming and its
re]a.tlonshlp with different degrees of amalgamation. & detailed discussion leads
too far; we just mention that & brief treatment. of the three wiseinén puzzle is
.also included. With respect to. the relationship to our own work, we can once.
again state tha.t for definite programs, the framework ir {160} is definitely more
powerful than ours. Indeed, it provides quantification of object level formulas in
meta-level stat.ements, as well as'a fully developed naming mechanism. However,
the price to be paid for thisisa non-trivial modification of the standard Herbrand
‘s¢émantics for logic programs. How this approach generalises ‘to programs with
negation is also not immediately clear.

It seems then that our approach is a good compromise between complicat-
ing semantics and enhancing programming power.. If orie considerably wants
to extend the latter, e.g. by allowing full quantificatior. in named object level.
statements, a more complex sermantics is probably inevitable.

4.9 Conclusion

In the first part of this thesis, we have considered untyped. rion-ground meta-
programs. We have studied rather extensively the semantic propetties: of vanilla
meta-interpréters-of this kind. And we have locked at interesting extensions and
varianits involving {a limited form of) amalgamation. It turned out that.in most
of these cases, the least or weakly perfect Herbrand semantics is. wejl-behaved
for definite respectively stratified longuage independent object. programs.. (And
if'not, then at least for range restricted ones. See propos1t10n 4.3.10.) This is an
interesting result since these semantics are widely accepted as-good declarative.
semantics for logic programs. Moreover, we believe that our methodology can
often also be appiied when considering untyped, non-ground mieta-programs that
do not immediately fall within one of the categories we explicitly considered. So,
contrary to what was generally assumed, untyped non-ground meta-programming
often does not really present semantic préblems.

T4 CHAPTER 4. HERBRAND SEMANTICS FOR META-PROGRAMS.

We have also shown. how, for non-extended (deﬁnzte) meta-programs, the
restriction of language mdependence can be lifted in the context of'adeclarative
semantics that more closely reflects the procedural behaviour of logic programs.
‘These results explain why the language independence condition almost never
surfaces.in logic programming prectice. Next, we addressed some issies which
-arise in the context of meta-programs with an. exphcnt theory argument, And we
'bneﬂy discussed :the formalisation of- prova.blhty in the related demo predicate,
mcludmg an indication of some hmztatmns mherent to our current. work, Finally,
¥e compared our a.pproa.ch_ with some r_e_le__Ya-I_l_i_: other work,

Along the way, we have moreover shown that vanilla meta-programs, as well
as their variants, associated with stratified object programs are weakly stratified:
We have conjectured-that £his resulf can be generalised-to weakly stratified. ob-
ject programs. Our work therefore seems to provide-evidence in favous of the
view that weak stratification is = much moré natural and useful generalisation
of stratification than local stratification. appears fo be. It is in any case the
former concept which finds an important area of application in the realm of
meta«progra.mmmg Finally; it ¢an be noted that SLS-resolistion, introduced in
[141] as & query answering procedure which is sound and compiete with respect
to the perfect modelsemantics of stratifiéd prograims, retains the same properties-
in the context of weakly stratified programsand Weakly perfect model semantics.

It seems to us that almost all realistic logic programs are at least weakly strat-.
ified. Nevertheless, it. can be.a topic of further research to investigate ‘whethetr”
our resilts can be genera.hsed in the context of a'semantics. that is able to dea).
with any logic program. Well-founded semantics {see.e.g. [172]) is one such. ap-
-proach which recently has gained popularity (see-e.g. [147], (171, [140}, [137)). It
‘attaches to any logic program a (possibly partial, 3-valued) unlque well-founded
Herbrand model. If we want-to recast our results in this setting; the first step is
of course a. reformulation of ‘the languege mdependence niotion. T}us provides no
fundamenta.l difficuities,. but some care has {o be taken since for miost sensible
programs, the negative 1nforrna.t1on unphed (now explicitly’ mcorpora.ted in the.
‘well:founded model], does.depend on the language. So, one should only require
stability. of the positive information. Having established this, a generalisation of
our resuits can be.attempted. We feel.no funda.mental-dlfﬁcultles or big surprises

malisms. proposed asa sema.ntxcs for a:rblt.rary normai loglc progra.ms It mlght
therefore’ be more worthwhile to study meta-program semantics in-the context
of ‘a generic unifying semantic framework such as provided in e.g. [46]. In some
sense, by restricting ourselves to a class of programs the semantics of which is
the subject of little or no cantroversy, we have, in the present work, taken a dual
approach,

4.9. CONCLUSION 75

Finally, other possible topics for further research include the following:

© A precise characterisation of extended meta-programs. that would allow
more powerful variants of propesitions 4.3.4; 4.3.10 and/or 4.6.20. The
classification of enhancements of the vanilla meta—mherpreter presented in
[158], can perhaps be . starting point here.

e An extension of sectlon; 4.6 to normal programs.

e A reformulation of our results in the contéxt of a declarative: semantics for
Prolog built-ins, as proposed in 81

o A study of object theories beyond the scope of normal logic programs, and
their associated mmieta-programs.

76 CHAPTER 4. HERBRAND SEMANTICS FORE META-PROGRAMS

Part 1T

Partial Deduction and the
Gentle Art of Finite
Unfolding

7

Chapter 5

Prelude

5.1 Introduction

In this second main part of the thesis, we address partial deduction of definite

logic programs. Within this context, we particularly facus on methods to perform-

sensible ﬁmte unfoldmg, obtammg terimination in-a way that reflects structural
properties of the unfolded query and programi.

The three subsequent’ chapters contain the following material. In chapter 8,
we constract a general framework in’ which unfolding strategies can be described.
We formulate algorithims and show that. they indeed terminate. In chapter 7,

we use a pa.rtlcula.r, fillly sutomatic unfolding algorithm developed. within the-

framework lajd out in chapter 8, as a basis for a partiil deduction method. We
show that the latter satisfies the conditions of the fundamental $heorem 5.4.7 be-

low, and alwa.ys terminates. We also briefly discuss the results'of an’ experimental-.
study, testing the proposed method on some benchmark programs and comparing.

its results with those obtained through related strategies. Finally, chapter 8 fur-
ther elaborates on finité unfolding. Several algorithms, incorporating advanced
features, are deveioped with a particular streéss on full autornation.

But first, in the present preliminary chapter, we present some background
material on partial deduction. To set out; we briefly sitnate the notion of partial
evaluation in computer:science as & whole. Next, in section 5. 3, we dwell some-
what more extensively on work in the more narrow context of loglc programming.

Section 5.4 sums up essentizl notions and fésults contained in-an influential foun-.

dational paper on partial deduction of logic programs. In section 5.5, we conclude
chapter 5with a sketch of a first partial dediction method explicitly based.on the
given forral foundations. We illustrate its operation on, some simple examples
and show that its unfolding does not always terminate.

74

80 CHAPTER 5. PRELUDE

Fmally, throughout part 11, we will explicitly address only definite logic pro-
grams. - Therefore, unless sta.ted otherwise, from now on, the term “(logic) pro-
gram” will refer t6 a definite logic program.

5.2 Partial Evaluation

What is nowadays usually called “partial deduction” in a Togic programming
setting, derives from partial evaluation, tesearch on'which originated, grew and
still (also) flourishes outside the context of logic programming. . In this section, we
présent an extremely brief"introduction to the development of partial evaluation
in cornputer science.as a whole and provide a minimal amount, of references. Our
account is largely based on (chapter 18 of) [85]: We refer to that soutce for more
details, example applications and comments on related topics, as well as a very
recent, rather extensive bibliography.

In the introduction to [85], & program perforrnmg partial evaluation is char-
acterised as follows:

A particl evaluator is given a subject program p togéther with part
of the latfer’s input data.. Its effect is to construct a new program
which, when given p’s remalmng tiput, will yield the same result that
p would have produced given both inputs. In. other words, a partial
evaluator is a program specialiser.

Of course, the underlying intention is that the resulting specialised program does
whatever it is: supposed to do- with that- ‘remaining input, in a way superior to
the onglnai program’s performance on the: complete input.

The theoretical feasibility of partial evaluation is asserted by Kleene’s ssm-n
thearem ([90]), showing that any given program can be specxahscd with respect
to any part: of its inphit. However, obtaining a performance improvement was not
considered an issué. Pm‘sumg just that has been the main objective of subsequent
research by computer suentmts

Following some early work in the 607s, the first contribution of major 1mpor~
tance was made by Futamura ({62]). He proposed the use of partial eva.lua.t.lon
to specislise wn interpreler to aw object program and-‘ in thls way obt i

-formed: object” program-(ot; since” the ‘new prog g
interpreter, which, in-general, does not have to be identical to the language of
the-origihal object program, a compiled object program). It is exactly this so-
called first Futarhura projection which has received much attention in a logic
progra.mmmg ‘contexs.

Futamura also proposed to apply a partial eveluator fo siself; including some
interpreter as known partial input. The result of such an exercise is a compiler.
One can even proceed one. further step, <hoosing the partial evaluator itself as

5.3. PARTIAL DEDUCTION IN LOGIC PROGRAMMING 81

‘the interpreter program that serves as input, thus obtaining what has been called

a compiler generator, These conceptually quite advanced applii{:atibns? known as
the second and ihird Fulomura projections, have beén intensively pursued by re-
searchers working in a functional programming context (see e.g. [86]). Within

logic programming, however, until recently, they have received very little atten-

tion. In this thesis too, the issue of self-application is not {explicitly) addressed.

Other influential early work, in the context of imperative languages, was
petformed by Ershov, who introduced the term mized computation (see e.g. [51]).
Closely related also is the research by Turchin on supercompilation (seee.g. [165]).

Around 1985, interest in partial evaluation had increased .comsiderably. A
first. specialised workshop was held in October 1987, and reported on.in [53].
The latter reference also contains a historical account by Ershov ((52]) and ar’
annotated bibliography ({155]) of all papers on partial evaluation that were known
at that time. Recent developments can be observed in the proceedings of the.

annual ACM Sigplen symposium/workshop devoted to. partial evaluation and
semantics based program manipulation {see e:g. [2] and [3]).

This conludes our brief 'int__ro'ductip_n to partial evaluation in general. Before:
taking a closer look at the work in a more narrow logic programming setting, we
adopt a piece of uséful terminology: In a functional piogramming context; it is
ciustomary to discern between snline and offiine approaches to partial eévaluation.
‘The former term refers to work which takes most or all decisions on how {and
whether) partial evaluation should proceed, while actually performing it. Offiine
approaches.on the other hand include a:more or less sophisticated preprocessing
phase, during which supporting information is derived; and a number of control
decisions that will steer the actual partial evaluation, are made. An assessment
of advantages and disadvantages of eithér methodology is not withixn the scope of
this. thesis. We refer to [85] for further details. But it is importantto note that,
throughout our whole development in’ the ensuing chapters, we remain within.
& context of onkine partial deduction and unfolding, only presupposing a rather
elerhentary analysts phase that discovers which predicates in a given program are:
recursive. '

5.3 Partial Deduction in Logic Programming

Komorowski ([92]} was the first to consider partial evaluation in a logic ‘pro-
gramming context. Later; the same author proposed the use of the term perticl
deduction, since, after all, the basic computation principle in logic programming
is deduction rather than evaluation (see e.g: [94]). Other early work, applying
partial evaluation to optimise (deductive) database gueries; is described in [175].

The specialisation of logic program meta-interpreters with respect to object
programs was- first explicitly studied in [64], {161] and [151}. The former con-

82 CHAPTER 5. PRELUDE.

centrated on interpreters specifying centrol strategies, while [151] aimed at the
enhancement of object programs with various extra functionalities (see aléo chap-
ter.19 of [159] and section 4.3 of this thesis). [158] can’'be citéd as a well-known
example of further work along the latter line. Finally, [109] describes partial de-
duction of meta-programs in a context of full Prolog; including some non-logical
system predicates. ’

Various points connected to the treabment of (1mpure, not always free .of
side. eifects) Prolog programs were also: dlscussed in [176]. In fact, the procedural

“aspects of Prolog programs pose many additional challenges to.a paa:t:al deduction.
sys’f.ern. So.much so, that it has been proposed to keep-the term: particl eyaluation
in that context, to- empha.sme the distinction with work en pure; declarative logic
Pprograms. Smce in this thesis, we clemrly stay within the latier hne of research;
we do not include any further commenits- on issues spec:.ﬁc to the freatment: of
full Prolog. For a detailed discussion of many such aspects, e.g. [153] can be
consulted.

Returning to the specialisation of reta-interpréters, we can mention that.
‘some: aitthors have explicitly addressed theé (possible) limitations of partial de-
‘duction in that context; ['1'7.3] provides one. example, [129] an‘ot_'her. Particulatly
in the latter paper, it is argued that partial' deduction should not only rely on
-unfoldings to tiansformm programs (as formally described in the next section), but

also allow foldings . and- the definition of fresh predicates. The latter two notiors
are cenitral in so-called’ unfo!d/foid transformations of logic programs (see e.g.
[162) Which leads us to the overall research. concerning transformation. of logic
programs, a setting more general than partial deduction, both in its aims and its
techmques An interesting compa.ra.tlve discussion is oﬂ'ered n [135] Comiments
pertaining to this issue can also be found in [65] and [93], two recent titorial
papers on partial deduction in logic programming.

We just note that the view taken in [129] is countered in [102], where Lakhotia
argues that partial deduction should not unnecessarily be complicated: - Unfolding
suffices. In. the context of concrete applications, further program optimisations
can be pursued: through the use. of various other, complementary transformation
techniques. It is this latter view, restricting: the coneepts involved in partial
deduiction to the bare esseniials, which is adhered to in this thests.

_Partial deduction for:some ‘uarmnts and/or extensions of the basic. 10g1c pro-
gramming paradigm has also been considered. Concitrrent Prolog s addressed in
section 4 of [68], constraint logic programming in {157] and [79]. Another topic of
interest has been the relationship between partial deduction and S0INE reasoning
schemes in artificial intelligence, particularly machine learning (see e:g. [174]}.

Two notewotthy recent developments are the use of sophisticated analysis
techniques ([68], [66], {70]}, based on abstract interpretation ([38]), and an id-
creasing interest in self-application ([127], [107} and [75]). [75] specifically ad-

5.4, FOUNDATIONS 83

dresses the partial deduction of Gadel meta-programs, for which some quite
spectacilar results are obtained. '

Finally, we can mention that the Journal of ‘Logic Programming recently
dedicated an issue to partial deduction ({95]). Relevant material can also be
found in the proceedings of the annual LOPSTR 'workshop on logic program
transformation and synthesis (see e.g. [106]). '

More can be said (and occasionally will be, see e:g. section 7.4) and many
more references can be given. However, weé presently conclude this shoré survey
section and simply refer to [65] and/or [93] as possible starting points for fur-
ther study. Instead, in the next section, wé look in somewhat more detail at a
particularly influential paper on formal foundations.for partial dechiction in logic
programming.

5.4 Foundations

Much of the above mentioned work, though often presenting valuable ideas as
well as interesting results; had a somewhat heuristic, empirical flavour, .and lacked
sound formal foundations. This situation was rectified by Lloyd. and Shepherdson
in [114]. In that paper, formal correctaess criteria for partial deduction of logic
programs. are derived.

Our work is built on this theoretical basis. ‘Chapter 7 in particular will rely-

heavily upor it. ‘We therefore judged it appropriate to render briefly [114]% main
definitions and results. Moreover,. since some ‘of these also play a background
role in those subsequent: chapters not immediately concerned with overall partial
deduction, but rather fscusing on the control of unfolding; we decided 4o include a
section on-[114] in this preliminary chapter. Finally, since our work only addresses
definite programs, we will adapt the treatment in [114], presented for normal

_programs in the context of completion sernantics, to our more limited needs:

First, we extend the notion of SLD-tree by allowing it to be incomplete. This

means that apart from success and failure nodes _(oc"cé.éionally called trivial goal.

nodes in what: follows), also arbitrary goal statemets (where rio litera) has been
selected for further unfolding) can be leaves.
Next, we adapt the following basic definitions on partial deduction.

-Definition 5.4.1 Let P be a definite program, 4 an atorn and- —A, Gy, G

withn > 0, a.n-SLD'-d_eriva,tion_-fqt PU{—A}. Let 8y,...,6, bethe corresponding
sequence ‘of substitutions and let Gy, be —A4y,..., 4.
Ay -0y — Ay,... yAm iscalled the resultant of the derivation “—4;,G1,...; Gy

Definition 5.4.2 Let P be a definite program, A an atom and 7 a finite SLD-

tree for P U {«—A4}. Let {Gili = 1,...,7} be the (non-root) leaves of the hon-

failing ‘branches of 7 and {R;li = 1,... »7} the resultants corresponding to' the

84 CHAPTER 5. PRELUDE

derivations {«4,...,Gili = 1,...,7}. The set {R;|i = 1,...,7}is called a partial
deduction for A in P. ,
If A ={44,...,4,}is a finite set of atoms, then a partial deduction for A in P
is the union of the partial deductions for 4;,...,4,1n P,
A pirtial deduction of P wriie A is a definite logic program obtained from P by
replacing the set.of clauses in P whase head contains one of the predicate symbols
‘appearing in A {called the portially deduced predicates) by a partial deduction
for A in P. '

We also include the following:

Definition 5.4.3 Let A be a finite set of atoms. We.say A is independent if no
pair of atoms in A have a.common instance.

Deﬁnitioi_n- 5.4.4 Let S be a set of first-order formulas and A -a finite set of
atorns. We-say 8§ is A-c_!ﬁ_;e_d_ if each. atom in S containing a predicate symbot
oceurring in an atoin i A is an instance of an atom in A.

Definition 5,4.5 Let P be a definite program and & a definite: goal. We say G
‘depends upon a predicate p i P if: there is-a pa.th from a. predlca.te in G to ‘pin
the dependency graph for P.

.I',_l_eﬁ.nition 5.4.6 Let: P be a definite program, G z definite goal, A & finite
set of atoms, P’ & partial deduction of P wit A, and.P* the subprograin of P
consisting of the definitions. of the predicates in P’ upon which & depends. We
say P’ U {G} is A-covered if P* U {G}is A-closed.

The fo]iowi'ng basic soundness and completeness theorem can now be formu-
lated.

Theorem 5.4:7 Let P be a definite logic program, G a definite goal, A a finite,
independent set of atoms, and P’ a partial deduction of P wrt A such that
Pu{G}is A—-covered Then the following hold :

e P’ {G} hasan SLD-refutation with computed answer 8 iff P U {G} does.
© ¢ o PFUU{GY} has'a finitely failed SLD:tree iff PU{G} doss.” '

In other words, under the conditions stated in this theorem, computatlon with a
pa.rtlal deduction of 2 program is sound and complete with respect to computa-
tion with the original program. This is clearly a very desu'abie characteristic of
any procedure for partzal deduction. Itis therefore important to devise methods-
for ‘partial deduction that ensure the conditions of theorem 5.4.7 aze satisfied,

(In fact; the independence condition is not _st_rl_ctiy necessary When only deﬁn_ite-

3.5, A PARTIAL DEDUCTION METHOD 85

progra.ms are considered. However, it does avoid the creation:of duplicate compu-
tdtions in P’. For this reason,and with a possible later extension of our method
to normal programs in mind, we decided to. keep it.}

‘The: presentation above reproduces the core ‘ingredients of [114} needed in
‘the context.of our work. For further motivation, examples, proofs -and’ results
(including some on declarative semantics), we refer to [114] Finally, it can be
noted that Lloyd and Shepherdson. present their work in the context of com-
‘pletion sernantics. Recent papers have recasted it to suit other, more recently
‘developed semantics for normal logic programs; [10] provides an example. Since
we restrict our treatinent in this thesis to definite logic. programs; these efforts
are not immediately relevant to what follows. (We refer to sections 6.6 and 7.4
for some brief further comments on negation.)

5.5 A Partial Deduction Method

A methed for partial deduction of {normal}. logic programs, based on the frame-
work in [114], was first presented in [14]. Before giving a rough, somewhat sim-
plified account of it, we include the following definition of the concept of mosi
apecific genemlwatmn {or msg) from [14].

Definition 5.5.1 Let' S be a set of atoms. Then an-atom A is an msg.of S iff
a 'For'every atom B'in S, A .is'more general than B:

s If Cis an atom more general than each atom in. S, then € is more general
‘than A.

Notice an msg is uniquely defined up to variable renaming. {The notion of mast
specific generalisation was introduced in {132} and [143). See also [105).)
Baisically, the dlgorithm presented in [14] proceeds as follows. Fora given goal
‘G and program- P, a partial deduction for G'in P is. computed. This is repeated’
for any goal occurfing in.-the resulting clauses which is not an instance: of one

already processéd. Assuming the ‘procedure . terminates, one gets: in this way a

set of clauses § and a'set' A of partially deduced atoms satlsfymg deﬁmtlon 5.4.4.
But one alse wants A to'be independent. Tn order to achieve this, the procedure
is modified as follows. Whenever. a goal occurring in S'is not an instance (nora
variant) of orie:in A, but has a common instance with it, the latter i is removed
from A and a partial deductlon is computed for their msg (whmh itself is therefore
added to.A) and added to S. The original partial deduction for the removed goal
is itself also removed from 5. The process stops if A becomes independent and S
A-closed. ‘S can then be used to synthesise a partial deduction of P wrt A which

satisfies the conditions of theorem 5.4.7 for any goal G’ which is an- mst_a.n_ce of

G.

86. CHAPTER 5. PRELUDE

We illusttate the algorithm with a simple example.

Example 5.5.2
Source program:

append([l, Y, Y) —

append([XX 3], Y, [X|Zs]) « append(Xs,Y, Zs)
query:

+— append([L, 2| Xs], [7}, Z¢)
partial deduction for « append([1, 2|Xs),[7), Zs):

append_([l,.-i’], [7]! [l, 2y 7]) ot

append(_[l, 2,X|Xs),[7], (1,2, X|Zs]) appénd('xsi_m_,- Z5)
partial déduction for +— wppend(Xs, (7], Zs):

ﬂPPe"d(D: [7]= {7]) o)

append([X{X s, [7], [X|Zs]) — append(Xs, (7], Zs)
resulting partial deduction of the append program:

append([], {7), [7]) «—
append([X|Xs), (7], [X|Zs]) — append(X 5,7}, Z3)

This example shows liow the factic of taking msgs to make A independent causes
an unacceptable loss of specialisation in the resulting partial deduction of the
append program. To remedy this, the authors of {14] introduce a renaming trans-
formation as ‘2’ preprocessing stage before running their algorithm. It amounts
to duplicating and renaming the definitions of those predicates, ocourring in the
‘original goal &, which are likely to pose speCLa.llsatlon problems. The details can
be found in [14] : we will ofily reconsider the previous example,

Example 5.5.3
program after preprocessing:
append([, Y, Y) +—
append((X|Xs], Y; [X|Z3]) «append'(Xs,Y, Zs)
append ([, YV, Y} — e
append'([X|Xs], ¥, [X|Z5]) — append(Xs,Y, Zs)
partial deduction for «— 'dp'pend({'l, 21X s), (7}, Z3):
~append([1,2]; [7], {1;2,7)) =
-append([1,2, X|X s, [7] i,z XIZs]}‘—append"(Xs Zs)
'partial dedirction for «— append’(Xs, (7], Zs):
append ([, 17], (7]} - _
append’([X[Xs],[?], [X1Zs)).« append'(Xs, [T}, Z5)
-resulting partial deduction of the append program:
append({1,2], (7, (1,2, 7]) +

5.5, A PARTIAL DEDUCTION METHOD 87

append(]1,2, X | Xs], [T}, [1, 2, X|Zs]) +— append'(Xs,[7], Zs)

append!([},[7], 1) - o
append!((X|X s, [7], [X|2s]) « append’(Xs, [7], 7}

The latter program U the goal + append([1, 2|X 8], [7],Z5) is indeed covered by

the independent: set {append([1,2|Xs),[7], Z5), append'(X s, [7], Z5)}. Moreover,

the result does show: the desired specialisation.

One question is left more or less unanswered until now: How to obtain the
(incomplete) SLD-trees used as a basis for producing partial deductions ? In other.

‘words, which computation rule should be used for building these. _trees_(l_n_c_ludmg

the question of deciding when to stop the unfolding) ? [14] mentions 4 criteria.
and proposes the following one as-the best : The computation rule R, selects the.

leftmost. atom which is not a variant of an atom. already selected on the ‘branch

down to the current goal. (This ule was actually vsed in examples 5.5.2 @nd.

5.5.3.) However, this rule fajls to. guarantee the production of finite SLD- trees in

all cases. We present a counter-example. It is the well-known reverse program.

with accumulating parameter.

< rev({1,21Xs1,[1,Z)

< rev((21%s1[11,2)

- 1ev(X5,2,132) (*%)

h{W:[X‘IXs’]
Xs=]] - o

o -~ 1ev(Xs' [X’,2,1),2) (%)
Zs=[X",2,1],
Xs'=[]

0 - 1ev{Xs"[X",X,2,1.Z)

~ Xs'=[X"IXs"]

Piguré 5.1: An infinite SLD-tree.

88 CHAPTER 5. PRELUDE

'SOUICE PIOgram:

reverse([l, Z, Z) « _

reverse([X|Xs),Y, Z) — reverse(Xs,[X]Y), Z)
query:

« reverse([1, 2| X s); 1, Z)
The infinite- SLD-tree, generated by R, is depicted in figire 5.1.. Notice reverse
.has been abbreviated to fév. Along the ‘rig]_:ltrhOSt branch of the tree, rev’s'second
argument: giows with each urfslding, In this way, an infinité series of literals is
‘produced, tone of which is-a vdriant of any other.

R, and / or other computation rules have been used for loop prevention during
unfolding in. (a0) [109] [158] [161]. None of the proposed strategies, however,
guarantees automatic finite unfoldmg iti all cases (often human assistance is sup-
posed). Imposmg a depth bound ‘on the unfolding process of cotirse presents &
solution, but- seer_r_nngl_y in-a rather ad-hoc way which does nét reflect any proper-
ties of the given unfolding problem, We therefore develop an alternative approach
in-this thesis. (Apart.from finiteness of unfolding, there is 2 second termination
problem involved in partial deduction, It will be addressed in chapter.7.)

Chapter 6

A Framework for Finite
Unfolding

6.1 Introduction

In this chapter, we present 2 general framework for assuring the comstruction
of finite SLD-trees when unfolding logic programs. 1t is rooted in well-known
techniques for proving termination of programs, based on well-founded sets, as:
developed by a.o. [59] and [118]. We construct ‘unfolding algorithms and prove.
tkat they indeed terminate. We also include some brief comments on how to
fully automate algorithms in a sensible way. The latier issue, however, wiil be
addressed in much greater detail in subsequent chapters.

In our work, -6ur basic aim is to-push the. unfolding of a program to its limits,
while preserving finiteness of the generated SLD-tree. The limits we observe are
get by-the constraint that some. form of datai-consunipt_ion.shodld occur at each
un_fb_ldi_ng. ‘Of course, in the context of partial deduction, ma.:»;i'mal unfolding is-
not always desirable, as it can lead to an explosiveé growth of the program. and
therefore possibly deteriorates performance. We return to this and a related issue
in section 6.6, N

Our presentation below is structured as follows. In section 6,2, we -_ﬁrst__ge_r_mr:-
alise the notion of an SLD-tree to that of an SLD~-tree. We then introduce the

concepts of well-foundedness and ‘subset-wise foundedness and show how ‘they

ensure. finiteness of SLIJ~-trees. Next,section 6.3 presents a first framework and.
algorithm for finite unfolding, based on these. ingredients. However, a detailed
scrutiny of the algorithm’s operation shows that it falls.short of treating a large
class of prograrms in a sensible way. A more sophisticated: approach is there-
fore developed in section 6.4. Section 6.5 briefly addresses simulation of existing

89

80 ‘CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING.

technigues, includes:.a discussion of some related work and sets the stage for full
-automation. Moreover, it can be mentioned that both sections 6.3.and 6.5 contain
goine reflections .on the particular issues involved in unfolding meta-interpreters..
Some concluding refriarks round off the. chaptet in section 6.6.

~ Finally, we point out that the material included in this chiapter is largely
identical to the contents .of [27], an abridged, preliminary version of which can
‘be found in [26]. S

6.2 Well-Founded and Subset-Wise Founded
SLD -Trees
6.2.1 Well-founded sets and trees

It is clear that, given a program P, an atomic goal «— A and a computation rile
R for P U {+ A}, there can be (possibly infinitely) many different SLD-trees T
for P_U't{«_-"A‘}'-:indgz- R. These ate all subirées of the complete SLD-tree y for
PU {+« A} under R. The problem we address is how to select & finite subtree of
70 that forms a suitable basis for paitial deduction. First, we introduce a concept:
useful for setting up otr general framework. :

‘Definition €.2,1 Let P be program and + 4 a goal: Then we call any subtree
of an SLD-tree 7 for P U {— 4}, having the.same root as 7, an SLI -tree (for-
PU {4— A]-)

“The SLD™-tree concept is mdre general thin that of an (incomplete) SLD-tree.
Indeed, it allows branching points where soine, but fot all possible brarniches
are actually included in ‘the tree. For any SLD™-tree T, we denote by vt the
unigue minimal SLD-tree containing it. Obviously, 7+ can be.obtained from v
by adding to + the first derivation step from each branch {originating from a
nop-leaf) missing in 7.

Twa basic 1ngred1e11ts of-our approach aré strict order relations, denoted >;
and wefl—founded medsures. A strict ordeér relation is an anti-reflexive, anti-
‘symmetfic and transitive binary relation. A (partla.lly) strictly ordered set,
V, >v, will be called an #-poset, the corresponding order, >y, an s-orden.

'Deﬁnxtmn 6:2.2. An s~poset V, s called- well-founded if there~is no: infinite
sequence of elements e1,€ez,...1n v such-that e; > ey 1, for all_z > 1.

Definition 6.2.3 Let V, >y be an s-poset. A well-founded measure, f, on V,>v
'is. a monotonic function from’ 'V, >v to some well-founded set W, >w.

As discussed in e.g. [49), well-founded sets are a commonly used tool for proving
termination of programs. [59] applied themn to prove termination of imperative

6.2. WELL-FOUNDED AND SUBSET-WISE FOUNDED SLD--TREES 91

programs, [118] and also [49] itself for dealing with termination of production
systems. Some further references {particularly pertaining to tlie latter- issue) can
be found in [49]. _

Let us now return to the context of SLD-tree construction., Given an SLD—-
tree T, an s-poset, can be associated with it in a patural way, by taking the goals
in the tree as elements of the-set and the tree structure itself.as a strict ordering
on this set. For. technical reasons, the actual définition of the associated s-poset
will be slightly more complicated. ILet 75 be the compléte. [posmbly inifinite)
SLD-tree of which 7 forms part. We assume ‘a numbering on the nodes of 7y
(e.g. left-to-right, top-down and breadth- first), Then we 'can associate with 7 the
Efo_]]owr._::_tg_:5?.1;

G, = {[G #)|G is a goal of 7 having i as its-associated number in 7o}
{With slight abuse of notation, we will occasionally also refer to pairs (G,1) &s
goals or nodes in or 7y (mstead of G; or G,).) Considering (G;i) >, (G ')
if node ¢ is-an ancestor of node § in 7 results in G, >, being an s-poset. This
allows the followmg deﬁmtmn

Definition 6.2.4 An SLD ™ -tree. 7 is well-founded if there exists-a well-founded
measure f on GT_, .

We are nowin a position to formulate a first basic theorem underlying our ap-
proach.

Theorém 6.2.5 An SLD™-tree 7 is finite I it is well-founded.

Proof For the if-part, assuming that r has an infinite derivation, we can con-
struct a sequence (G1,41)} >r (Gzit2) >, ... 0o Gy > Applying the well-
founded measure f'to it, we get an infinite sequence (G, i1) > f(Gziz) > -.-
in W, >w. For the only-if part, since. Gry >y 152 well-founded s-poset itself, take-
f equal to the identity functlon e, [u}

Strictly speaking, in the above ptoof, we should of course have used the notation
f((G,4)), However, in order not to overload the riotation, we have left out the
extra pair of brackets, clear from the context. We will proceed stmilarly on
various occasions throughout what follows. '
Now, how can we use definition 6.2.4 and theorem 6.2.5 operabionally-?. Well,
for a start; we choose a function f : 79 — W, >w, where W, >w is some well-
founded s-poset, For'an.initial 7 = {{+— 4, 1)}, the restriction of f to the domain
. f i.,, is obvmusly monotonic.. Then, we control the construction of the SLD-
tree 7, by imposing that. each unfolding must preserve the monotonicity of fi,.
The resulting SLD " -tree will be:the largest SLD- “subtree T of 7y such that Flr
is monotonic. Clearly, it is well-founded through f and therefore finite. As final
finite SLD-tree serving as a basis for partial deduction, we then ta_ke the SLD-tree

92. CHAPTER'6. ‘A FRAMEWOR_K FOR FINITE UNFOLDING

7% corresponding to . This basi¢ strategy of unfolding in such a way that some
given measure fanction is kept monotonic, is the motivation for introducing the
terminology prefounding in section 6.3 below.

6:2.2 Subset-wise founded trees

Of course, the piobléin of obtaining sensibly expanded SLD-trees has now been
‘shifted to that of finding sensible functions on 7. Although for each finite SLD™-
subtree 7, a.corresponding function on 7y -exists, it may be hard to generate
useful furictions'that lead to-sensible SLD-trees. Therefore; we introduce a more
refined characterisation of finite SLD™-trees, in which several measures can be
combined. Bach such measure will focus :0n a separate part of the recursive
inference expressed in the SLD™-tree. As a result, it will be more €asy to generate
them.

The inspiration for these rmore general measures stems: from certain criteria
which seem reasonable in ‘practice to control unfolding. When buildieg an SLD-
tree, one tends to compare the literal selected for unfolding ‘with the selected
literals in the ancestor goals of the same derivation. Especially: if two such sub-
goals-are calls tothe same predicate, a comparison 1may allow the avoidance of
loops in:the derivation. Within thé context of our approach, this corresponds to
the observation that it is not: really necessary to. have a measure that decreases
at each derivation step, _But- that the measure shauld decrease between each twao
goals in the same derivation, where.a literal with a sarne recursive predicate was
selected for unfolding. _

A-second motivation for allowing more liberal measures is rooted in the ap-
plication of partial deduction to meta-interpreters. Typically, for vanilla-type
meta-interprefers (see definition 4.6.10), one is not réally interested in compar-
ing the measure assigned to two goals, unless the selected literals are both of type
solve(A). More in particilar, one almost never wants to stop the urfolding of
a subgoal of type solve(A&B) (or solve(empiy)) Therefore, measures assigned
to goals where such literals are selected should not interfere with the:control of
unfolding. Oz, more radically; no measure at all should be a.tt.a.ched to them.

These two considerations lead to the following gener_a.llsgd notion of founded-
ness..

Drefinition 6.2.6 An SLD " tree 7 is subseiiwise founded if
1. There exists a ﬁnitg numbgr- of sets, Cg', ..+, Cn, such that G, =) » G

2. For eachi=1,..., N, there exists a well-founded measure
ft 1.0 > VV,, i

3..For each: (G, k) € C and edch derivation D in 7 containing _(-'G_;)

6.2. WELL-FOUNDED AND SUBSET-WISE FOUNDED SLD~-TREES 93

e either D is finite
o. or there exists a descendant (G,) of (G, k) in D such that
(&, j) € C; for some 7 > 0.

This definition makes both observations above explicit:

o Not every two goadls in a same derivation must be comparable: The measure
function only needs ‘to decrease if the goals belong to the same set Cy.

e Some goals (the ones in Co) are disregarded completely. Imposing condi-
tion 3 on Yy ensures that this can be done. safely. Indeed, it demnands that
goals. in-Cp have a descendant within the same denvatlon, which is either
contained in a set with a measure function, C;,4> 0, or which is.2 leaf.

:Throughout what follows, we will denote’ by R(G 1) the literal selected in.a given
goal (G, 4) in an SLD™-tree' 7 by the computation rule R, used to construct 7.
This being agreed upon, let us consider an example 1llustra.t1ng definition 6:2.6,

Example 6.2.7 Consider the following simple program, defining the relation
contains-pal where contains_pal(X,Y) holdsif ¥ is an initial sublist of a list X
-and Y is a.palindrome.

contains_pal(X, Y‘) — tusublisi(Y, X, palindrome(Y')

i-sublist([], Y s)

i_sublist([X |Xs], [X|Ys]) — i_sublist(Xs,Y s)

palindrome(X) «— reverse(X, g, x)

reverse([], s, Zs}) « '

reverse([X[Xs] Y3,Z5) — reverse(Xs,[X|Y 5], Zs)
Choose:

Co = {(@, k)| R(G, k) contains contains_pal or palindrome and k € N}
U {(3,k)|k € N}
= {{G, k}|R(G, k) contains i_sublist and k € N}
Cg ={{G, kJIR(G k) cortains reverse and k €N}
and:
F1:C1 = N, f1(G, k) = the namber of function symbols in. the second
argimient of R(G, k) (this is the input argument of i. subhst)
f2:C2 = IN, f2(G, k) = the number of finction. symbols in. the first
argurnient of R(G k) (the input argument of reverse)
Finally, assume that R, in each goal, selects the leftmost literal where at least one
argument contains a constant, A maximally large subset-wise founded SLD~-tree
T for

- contains_pal([3]X],Y)

94 CHAPTER: 6. A FRAMEWORK FOR FINITE UNFOLDING

is-depicted in figure 6.1. Selected literals are underlined; dnd predicate names
have been abbréviated.in an obvious way..

< cp(3X1L.Y)

= is(Y,[3IX]), p(Y) fi-value = 1

Y=[31Y3]
~=p(D A

| < is(Ys,X), p31Ys))
<00 Tvale=0 |
I ~ is(Ys,X), r([3!Ys],[3[31Ys])

O | f2-valee=1

<= is(Ys,X), r(Ys,[3L[31¥s]) [3IY5])

Ys-{] / £2-value =

- ls({] X} fl-value=40

fa
Figure 6.1: A subset-wise founded SLD™-tree.
Obs_e_rve;-:that every_;wel'l-fou_ndcd SL_D‘-tree Tis subset-wise founded. Just
take N =1, C; =Gy, Co="0, fy = . A second basi¢ theorem follows.
Theorem 6.2.8 An SLD -iree 7 is finite iff it is subset-wise founded.

Proof Fist, if = is finite; then it is well-founded and therefore subsét-wise
founded. Conversely, let 7 be subset-wise founded-and assume that it is infinite.
; inite derivation D and G- is included in the union. of
1 'is infinite. ‘On ©y, ..., Ci ve

have a well- founded measure. . Thus, ' must be 0
Now, since D is infinite; by definition 6.2,6, for each (&, k) in CoND, there exists
a (G,1) g some C;N'D, 5 > 0, such that (G, k) > (G, 1) Becausé CoN'D is
infinite and str_;ctly decreasing in Gy, >y, this allows us to construct: an infinite
number of elements.in Uj>0-_C:,-';. “Thus, one of the sets 'C; N D must be infinite,
which contradicts the existence of -f;. G

6.3. USING FINITE PREFOUNDINGS 95

Notice that as a consequence, the noiions of a finite, a well-founded -and a
subset-wise:founded SLD-tree coincide, This makes us return to the question why
it is useful-to introduce the subset-wise founded measurés at 31, ‘The answer
is that interesting subsets of ‘goal statemenits can be defined and that simple
‘well-founded measures can. be provided ori them. This is especially useful if we
aim to use t".h_e given theorems operationally, in the sense that we first define
sets and measure functions, and consecutively constrict the SLD-tree under the
constrainis imposed by the measures, Finding sensible and ugeful well-founded
measures on the entire tree is often more complex;

So, in the next two sections, we present operational counterparts of the above.
introduced static notions' and unfolding -algorithms based o them. Proceed-
ing fhus; formal finiteness and termination proofs will ‘be possible. Moreover,
we will also explicitly demonstrate the links with the static framework we have
established in the present section.

6.3 Using Finite Prefoundings

I_n this section, we present a first. operational derivative of thé ‘concepts described
above. And we base on:it a first algorithm for finite unfolding,

. Throughout the rest of this chapter, P denctes a definite program, + A a
‘definite goal with one atom, £ the language underlying both P and — A, R a

‘computation tule for P U {« A} and 7 the complete SLD-tree for P U {~ 4}

under .

6.3.1 Finite prefoundings

We now introduce the notion of a prefounding, announced at the end of subsec-

‘tion 6.2:1. The definition of a finite prefounding, ((Cy, ..., Cx), (fl, o I d),
Jor 7, below, is essentially identical to. the conditions imposed on the pair

((Co .., C), (f1, .-, fiv)) in the definition of 4 subset-wise founded SLD ™ -tree
7 (definition 6.2,6), except that:

e 7 is replaced by 7 (in particular, (Co,. .-, CN) is & covering of 7p)
o fi: C; - Wi, > (3> 0) is not required to be mondtonic
Given such a prefounding, it will be possible to construct a subset-wise founded

{and. thért:fo're'ﬁnite_) SLD™-tree , by unfolding; goals as long as the functions
fiyi >0, remain monotonic on the restricted domains €; T

96 CHAPTER 6. A 'FRAMEWORK FOR FINITE UNFOLDING

Déefinition 6.3.1 A pair ({Co,:.., Cx), (fiy---, fn)) i8 & finite prefounding for
Tor if .
1. Bach C;, i < N, is a set of pairs (G, k), such that G is a goal in L,ke N
and Gy, C U;<N Cs

2. Foreach i=1,...,N, fi'is a function, f; : Ci — W, >;, where W;,>; is a
weli-founded s-poset.

3. For each pair (G, k) € Co and each derivation D'in 7 containing (G, k):
® either I is finite
s ‘or there exists a descendant (G, 4) of (G, k) in D .such that
(G',4) € C; for some:i">.0.

Before looking al ain example of a finite prefounding, we-introduce a class of
practical mieasure functions.

Definition 6.3.2 Let Term denote the set of terms.in £. We define the funcior
norm as-the function |.]: Term — IV

Ft=f(f, - tn)n>0

then [¢).=1 + [f1] + - - - + [l

else [t}=0

The functor norm counts the number of functors in a given term. Alternatively,
we could have chosen to count the number of constants as well. However, we
do not.expect that this leads to an improved measure function with respect to
termination properties. (See however section 8.5 for unfolding where constants
do.matter,)

Definition 6.3.3 Let p be 4 predicate of arity nand § = "{"6_1-':_-' cvemhl<a €
n, 1<k <1, a set_of argument positions for p. We define the functor messure
with respect to p.and 5 as the function

[i|5.s = {Al4 is an atom with predicate symbol p} — IN:

|P(t1= . f‘!tﬁ)ip;s = Ita;1 ot e |

Both, definition 6.3.2 and definition 6:3.3 will be heavily used in the cortext of
a.utoma.tlon throughout the. followmg two chapt.ers Let us now:illustratein which
way natural and useful finite prefoundmgs can ofien be constiucted.

Example 6.3.4 Suppose: t_he"prog’ra‘m P has {a finite number o_f.) recursive. pred-
icates p1, ..., pn. Given the computation rule R, we take:
C; = {{G, k)}G a goal such that R(G, k) contains p; and k € N}, for i >> 0
Co ={{G, £)|G a goal such that R(G, k} contains a rion-recursive predicate
symbol-and k € W} U {(0,)|k e V¥

6.3. USING FINITE PREFOUNDINGS a7

Clearly, G, C Uiy Ci- Also, if (G, k) is-in & derivation D of 7o, then either D
is finite or there is a descendant (G, ;) of (G, k) in D, such that R(G',7) is an
atom. with 4 recursive predicate (independent of whetker or not {G,k)is in Cp).
So, the conditions 1 and 3 of definition 6.31 are: fulfilled. S

The functor measure induces-in 2 natural way functions fi-on the sets Cy,4.> 0.
For each set C;, let §; bea set of argument, positions of interest for the predicate
pi. Essentially, these: will be the input arguments for p;. (Later, we will deter-
mine these in-an automated way.) Then, define f; t6 be Vilpe,5:

‘In particular, the pair ({Co, Cy, C3), (fi1. 2)) as presented in example 6.2.7 is a.
cornciete instance of thi's-ger;er'i'c example. Indeed, i_sublist and reverse ate the
program’s recursive predicates;, f; = |-i_sebtise.f2y and f3 =] Areverse, {13

6.3.2 A first algorithm

Given & finite prefounding ({Co,...,Cn),{f1,---, fn)), the ‘following algorithm.
computes a finite SLD~-subtree. T of g, which is subset-wise founded with respect
‘to the s-posets Cp M T, Drypes O N7, >, and the functions fi, .+ -5 [y Testiicted
to these s-posséts. The basic criterion for unfolding used in the algorithm is
that each of the functions fis+ s+, fwr should invariantly remain monotonic on - its
domain. '

Algorithm 6.3.5

Initialisation
7 1= {{(+A4,1)}} {* an SLD-tree with a single one-node derivation *}
Terminated :=)
While there exists 'a derivation D & 7 such that D & Termingted do
Let (G, i) be the leaf of D '
Let Derive((,1) be the set of all its immediate >7,-descendants
Let Decrease(G,) be the set of all (G',7) €.Derive(G, 7), such that.
for all & > .0, such that (G',5) € Gk, '
for all (G, j') € D NCy;: '
Fe(G",3") > £ilG,)
If Decrease(@;1) = 0
Then add D te Terminated.
Else {* r is further extended *}
Replace 7 by r\ {D}u {Du {{C' (G, 7} € Decrease(@;4)}
Endwhile

_Fina._l:ly, a finite SLD-tree for P'U{— A} under R is obtained by extending 7 into
7, its finimal containing SLD-4ree;

98 CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING

Let us reconsider the above example.

Example 6.3. 6 For the contains pal program of example 6.2.7 and using the
finite prefoundmg mentmned in example 6.3.4, the SLD™-tree produced by algo-
rithm 6.3.5 i is exactly the one: depicted in ﬁgure 6.1. Tlie corresponding SLD-tree
contains one additional node:

— t.sublist([Y'|Y's'], X reverse(Ys', (¥, 3], [3, Y |V's))
Whlc]_:l_. is a child node of:

—isublist(Y's, X), reverse(Y 5, [3], [3]Ys])
where Y's has been unified with [¥|Ys’]. This leads to the following partial de-
duction for

+— contains_pal([3|X1,7)
in the contains_pal program (definition 5.4.2):
contains. pal([3|X],) —
contains_pal({3| X1, [3]} —
contams.pal([lilX] [3,Y11¥5) HtJubIzst([Yqu'L Y
reverse(Y s, [¥, 3}, [3, V'[¥s"])

We have the following theorem:

Theorem 6.3.7 Algorithm 6.3.5 terminates. The resulting finite SLD -tree 7
is subset-wise founded with téspect to-the sets Conir,...,Cy nT and the well-
fonnded measures fi,..., fir restricted to these sets.

Proof In case the algorithm would not terminate, it wotld construct at-least
one infinite derivation. We ¢can now argue along the same lines as in the proof.
‘of theorern 6,2.8. To prove subset wise foundedness, observe that by the first
condition of deﬁn_ltlon 6.3.1, the sets CoNr,...,Cn NT cover T, as required by
the first condition of definition 6.2.6. For_e_a.éh.of _thn: s-posets C; M7, >q,%.3> 0, the
.corresponding f; is monotonic by construction, so-condition 2 of definition 6.2.6
is satisfied.. Finally, its third and last condition i is identical to the third condition
in definition 6.3.1, restricted:to 7. n}

1t is p0351b1e to formula.te a similar algonthm that immediately computes,

an SLD-irec. It suffices to adapt-the stopping criterion in such a way that (all

possible) unfoldings are carried ‘out as long as ‘the relevant measure function is

._.monotomc on the node to. be. unfoldei The resultm tree_would be ____bset-wme _
founded with the exceptmn of those of its. 1eaves that are.in a Ci,t > 0. We

‘return to this issue, and actually exhibit one such. algorithm, in subsection 6.5.2.

6.3.3 Unfolding meta-interpreters

The second motivation we mentioned for introducing :bptﬁ the-concept of a subset-
“wise founded SLD ™ -tree and that of a finite prefounding, was the application of

6.3. USING FINITE PREFOUNDINGS 99

partial deduction to meta-intérpreters, As recognised in a.o. {158] and [103), it
is-certainty desirable that if partial deduction is applied to meta interpreters, it
should at least perform the parsing task. This leads %o the. somewhat ad hoc
-rale that for interpreters of the vanilla-type, calls to solve where the argument
is 2 conjunction of multiple object level atoms, should always be unfolded. Orn
the other hand, for solve calls with an argurnent containing'only one object level
atom, the. control of the unfolding should be based on properties’ of the atom
itseif,

This idea fits well within the context of a finite prefounding. Assume that
P1/01, . iypr [rn are the recursive ‘predicates (with. their arities) of the object
prograr. Then we infroduce the following sets: '

Ci = {(G,k)|R(G, k) is an atom of type solve(p; (24, .., 1,0},
where t;,1 < § < n; are any terms, and k-¢ N}
Co = {{G,)} R(G, k) is an atom of type solve(p(iy,. .., 1)), where p/nisa
non-recursive predicate, £;, 1 <.j < n terms, and k € IV }
V{(G, k)| R(G, k) is an atom of type solve{ AZB) and k€ IV}
H(G, B} R(G, k) is an atom of type solve(empty) and k& N}
U{(G, k)| R(G, k) is an atom of type clause(4, B) and k € IV }
u{(q, k)k € "W} . .

Again, functor measurésare--apprqpriate for the functions J; on thesé sets, al-
though we would warnt more expressivity in the sense that subterms of arguments
should be measured instéad of just arguments. This is achieved by allowing se-

lector functions. In the following definition, Atomp and Termp denote the sets .

of atorris and terms in £ .'respéc’ﬁyrel_y.

Definition 6.3.8 A selector function s {for. P), denoted as a finite, non-empty
sequence of positive integers connected with slashes, n1/naf ... [ng, is a (partial)
function: Atemp UTermp — Termp, recursively defined as follows:
Hs=nandn<m
The-l_l s{r(ty,. .., tm)_)' =1, S
Else if s = m/nz/ o/ Tk, My <'miand naz/ ... /ne{tn,) is defined
.ThEn..S(T(_tl, teey tm)) = ng/ el /ﬂ-k(tﬂl_}.
Else s(r{fy,...,tm)) is undefined.

Tt is not diffcult to generaljse definition 6.3.3 of a functor medsure with respect
to 2 predicate p and a set of argument positions S to that of a functor rmeasare
with respect-to p and a set of selector functions S {see :deﬁnition]&;ﬁ.ﬁ)_.

Then, when the set of interesting argument po: itions for the récursive preds
icate p; of the object program is Sy = {81, ., ap}, let S, ={1/a1,...,1/a;},
and define: ' '

fiz I-Iaol_ur._,s;‘,; for 1= 1,....,N

100 ‘CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING

In view of full automation of partial deduction applied to mea-interpreters,
several other issues need to be addressed, such as:

® how to-recognize meta-interpréters

e how to distinguish in-general between: the rneta-predicates that perform the
parsing and the arguments within them that confain the object program
goals '

© how to avoid loops for those: predlca.tes in-the meta interpreter that perform
ta.sks different from the parsing

We return to these issues in subsection 6.5.3.

6.4 Using Hierarchical Prefoundings

6.4.1 A motivating example

Concrete finite prefoundings of the Kind introduced in examiple 6.3.4, although
not difficult to genezate -and handle automatically, and effective in many cases,

have at least one clear disadvantage. The following simple example exposes the
‘problem.

Example 6.4.1 In the program below, the predicate sums holds if its second
argument is the. list of a.ll sums that can recursively be computed for the numbers
in the list that is its first argument, in the tail of that list, and so on.

sums([l [])

sums{[X[Xs], [YYVs]) «— sum([X]X 5], Y), sums(Xs,¥'5)

sum([], 0) «-

sumn([X X s}, Y) « sum(Xs, 2);add(Z,X,Y)
where add(X,Y, Z) is supposed to be defined through a number of tuples, and
implements the addition of natural numbers. Now, we apply algorithm 6.3.5
with:

A = sums([1,2],Y)
-and the fipite prefounding: ((C’g,C;, Cz) (f;,fg)), where: - S

Co = {(G, k)| R{G, %) has predicate symbol add} U {(0, k)|k € .!N}

= {(G, B} R(G, k) has predicateé symbol surns}

Cz = {{@, k)| R(G, k) has predicate syinbol sumn}-

and:’

fl = 1 tauma,{.’l}
fz - i |aum,-[1}

6.4. USING HIERARCHICAL PREFOUNDINGS

The resulting subset-wise founded SLD™-tree is shown infigure 6.2, Arrows

indicating the structure of the associated prooftree are added.

—

/ | _v;mvs’]

== sum([1;2],¥"), sums{[2],Ys") f2-value =2

/[1\

= Sum([21,7), add(Z;1,Y"), sums([2].¥s") f2-value =1

/]

= sum((1.2%), add(Z’,2,Z), 2d3(Z:1,Y"), sums((2],¥s")

E Y’=3 . f2-valhie = 0
nfold: ~Sums([2].Y<') fl-valye = 1
uﬂfo_ .ng: - ' . : XL " "
staps .here"/ / | _YS =[Y"TYs"]
= sum([2],Y"), sums([[,Ys") f2-value = 1)

‘Figure 6,2: A tree too small..

Clearly, unfolding is stopped prgma:,t_.u_rely.' The reason for this unwanted be-
haviour. is easily discovered. The culprit is the comparison of the fa-value (1}~
associated with the goal between brackets with-the first one met when mounting
the derivation {0). However, although the selected literals in both goals involved
obviously ¢ontain the same recursive predicate. symbol surm, it would be appro-
ptiate not to compare them. Indeed, the second is. not-a recursive descendant of
the first. It can theréfore safely be unfolded, in spite-of its larger weight.

The problerm occurs systematically when we have clauses of the type:

p(L) —gl. .'._); p(._ . }
o) o)

ar

pl--) = p(. il)

Ig both cases, the SLD-tree 7p contdins derivations with selected literals featuring
the same predicate symbol in goals that are in 'diﬁ'gr_ent-'branches_ of the associated
proof tree. Many familiar logic programs are of this type, e.g. naive. reverse,

permutalion.sort, quicksort; n_queens.

102 CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING

For the.sums-program and -query in example 6.4.1, $he erraii¢ behaviour of
-algorithm 6.3.5 can easily be remedied. It suffices to provide a better tuned finite
prefounding. Replace C; by:

Cy1.= {(G; k) € G| R(G, k) is a descendant of sum([1,2],Y") in the
associated proof tree}
Cyz = {(Gyk) € C3|R(G, k) is a descendant of sum{{2], ¥"’) in the
a.ssocxated -proof tree}
However, not only is this techmque lmpractlcal in view of a.utomatwn, biit the
underlying reason why it works in example 6.4.1is that 7o is finite. In geheral, if
we ‘want to cover an SLD-tree with sets C; such that goals with selected literals
originating from different branches in the proof tree are placed ‘in different sets
Ci, an infinite _numbe_!: of such sets are needed. This observation motivates the
the concept of & hierarehical prefounding, introduced in the next subsection,

6.4.2 Hierarchical prefoundings

Definition 6.4.5 below recasts definition 6.3.1 and formally describes the dnswer:
to ouf needs. First, however, we introduce a.refined ancestor concept on literals’
and goals; and prove an important property.

Definition 6.4.2 Let {(z,1) = ((HAl, ey Ajyney An)yt) be & node in an SLD™-
tree 7, let "R(G, i} = A; be the call selected by the computation rule R, sup-
pose that H « Bi,..., B is a clause whose head unifies with A4; and let
8 = mgu(A;, H) be theu: rmost- genieral unifier. “Then (Gy z)_ha.s a s6n (G, k)
in T, (Fik) = (—AL .y A1, B1, ..y Biny Ajg1, .. -3 An)0, k). Let (G, 1) be
a descendant of (G, k) in 7 with R(G",1) = B8, for some r'<'m and ¢ the
CbmpoSition of all mgu' s on ‘the -subderivation from. (G", k) to {G”, 7). ‘We say
that B84 in (G”,1) is a direct descendant of 4; in (G,1) and that 4; in (G, 3)
w-a direct ancestor of B, 6y in (G”,1).

Stated otherwise, the selécted literals of two goals i an _S]:;D“-.tree T are in the
_ﬂire‘c_t descendant relation if in the proof tree associated fo 7, the two nades la-
beled by these atorns are connected by an are.

Definition 6.4.2 (Continued) The binary relations descendant and ancestor,
defited on (selected) literals in goals, are the transitive closures of the: direct
descendant 2nd direct ancestor relations respectively. For 4 an atom in (G 1.)
and B an ator in (G L F)h Alis an arcestor of B'is denoted as A >p,- B (“pr”
stands for proof-tree).

The relations descendant and ancestor on pairs of atoms-in goals of 7 lnduce
in a'natural way:descendant and ancestor relations on 7. Let (@, 1) and (¢, k)
be in 7. We call {G,4) a proper ancestor of (&, k), if (G,1) >, (G, k) 2nd
‘R{G; 3) Spr R(G', k). Abusing notation, we denote the latter relation between
goals as (G, 1) >pr (G K).

6.4. USING HIERARCHICAL PREFOUNDINGS 103

Definition 6.4.3 Let 7 be an SLD -tree; We call a (possibly infinite) sequence
(Giyyis) >pr (Giy,d2) >pr - .. of goals in 7 a.proper ackain, if for each m > 1,
R(G:_",,‘-.: Tm) in (Gi,,, %) is a direct ancestor qf:_R(G',-M”_im*.l) in {Gy, 0 dma).

The fd_llowing proposition is fairly i'mm‘ed_ia.te, but_importa.nt background for what
follows, and therefore stated explicitiy.

'Proposition 6.4.4 If a derivation D in an SLD™-tree contains no infinite propet

acha.in,_--thén it contains only a finite numbet of proper achains..

PBroof D can only contain an infinite number of proper achains if 77 is infinite.

But then the assotiated proof tree contains an infinite branch, implying that D
contains an infinite proper achain. a

The notion of 2 hierarchical prefbunding for w5, which we now. introduce,
differs from that of a finite prefounding in essentially two ways.

e First, it is more specificin the sense that, instead of 'claSsifying (with possi-
‘ble overlaps) the goals of 7 into a finite mimber of sets C;, we tow initially

‘partition the selected subgoals of the.goals in 7 into a finite number of sets

Ry and, in a.second phase and for each R; separately, we classify (with
possible overlaps) the goals with a selected subgoal in R, into a umber
of ses C;; (Notice that hisrarchical prefouridings hardwire into the frame-

work the assumption that comparing selected lterals plays & basic role.

in finite unfolding algorithms.) In this second phase, the classificition is
completely deterministic: Two goals (G, n) and (G7,m) with-their selected
literal in a particular R; are placed in the same Ci, 7> 0, if one of them is
a proper ancestor of the other (in-other words, if either (G, n) 3o (G', m)
or (G, m) >p (G, 1)) '

e Seconidly, in another respect, hierarchical prefoundings are more genéral
than finite ones, because the number of seis C; is allowed to be infinite.

Definition 6.4.5 A pair ((Co, C1y Cay ..)i {f12 Sy - »)} is a kierarchical prefound-
ing for 7y if:

1. There exists a-finite partition Ry,..., By of R,, = {R(G, z)[(G, i) € 7o}

such that:

e V(G,i) &1\ Co:
Ci={(Gg}u o _
UG"7) Emolk 11 < b < N, such that-B(G, i), R(G',) € Ry
and, (G,1) >pr (G, 3) or (G, 7) >pe (G")} .
° Co = {(G,9) €| R(G,3) € Ro}uU{(0, i) € o}

104 CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING

2. fi, fays.. are _f_unctibns, tespectively mapping C1,Cj, ... to oné of 4 finite
number of well-founded sets W,>1,..., Wy, >x such that f; maps C; to
W} if the selected literals:of the goals in C; belong to. Bj. Moreover, for all
i’lj >0: fiic,'_l'lc,‘ = fle.l‘ICJ-

3. Cp contains no infinite proper achain.

Before giving-an example; a.comment on the relation between the third condi—-
tion above and condition 3 in deﬁmtmn 6.3.1 seems appropriate. Indeed, in: terms
of the associated proof iree’s structure, the condztlcn above can be reformulated
as follows:

3. For each pair (G, k) € Cp and for each'branch B in the proof tree associated
with 7 containing R(G, k)

— either B is finite

— orthere exists a descendant. (G”,) of (G, k) with R(G",) a descendant
of .R(G k) in B such that (G',7) € C;, for séme 4.3 0.

This formulation is completely similar to the one of condition 3 in definition 6.3.1,
with the branch B .in the proof tree playing the.role formerly dllotted to the
derivation I in 7o,

The followmg example introduces 2 generic type of hierarchical prefoundings
that will prove to be usefl i in‘many practical cases.

_E_x_ample 6.4.6 Assume that the recursive predicate symbois of the program P
are py,...,pn. Then define:

Ry = {R(G,i) € R,,|R(G;i) contains py}, where k>0

Ro = {R(G,3) ¢ R.,- |R(@,4) contains a non-recursive predicate symbol}
In this way; Cp winds up being basically identical to Gy in example 6.3.4. For
each node (G,) € 70 \ Co, C; isthe set of all ancestors and descendants of (G, 1)
such that their selected literal under R:

e contains the same (recursive) predicate symbol as R(G,3).
e and is a >p,-ancestor or -descendant of R(G, i)

Now, assume that the functions f; are fuictor measures {definition 6. 3'3} on-the
atoms selected in goals (&', 5) € C;. Then it should be clear that, in order to
decide on the unfolding of R(G, i), the ancestor goals of (G,) in C; (and their
selected literzls) are. precisely what we want to compare with: Exa.mple 64.13
below will provide a concrete instance of this kind of hierarchical prefoundmgs

6.4, USING HIERARCHICAL PREFOUNDINGS' 105

Definition 6.4.5 itself is more general than the above generic example. It par-
ticular, it ‘does not impose the one-to-one correspondence between R;-iets and
recursive predicate symbols. And indeed, in general (e.g. when dealing with
meta-interpreters, see subsection 6.3.3), more refined partitions of R,, may be
useful. We return briefly to this issue in subsection 6.5.3 and more extensively,
in.a context of full automation, in section 8.6.

The term “Rierarchical prefounding” refers to the fact that if such a prefound-
‘ing exists; then the nodes of 1 can be partitioned into hierarchical layers. This
observation is described formally in the following definitions.

Definition 6.4.7 Let ({Co, Cy, C, .. 3 (f1s f2r..) bea hierarchical prefounding
for 7o, with associated partition R, .. - Ry of Ry, and let (G, 4) and (&, j) be
in 70 \ Co. We say that (&, 7) covers {G, 1) if the following two conditions are
satisfied: ' ' -

1. (Gls.'a') ">pr (G’ i)
2. dk > 0: R(G', j), R(G,i) € Ry

Note that if (G, j) covers (G, 1), then C; C C;. Moteover, for each (G54) € 15\ Cor
G = {(& 3}V {(G"9)(G",5) covers (G,3) or (G, i) covers (G,)}
In other words, the C;-sets are. classes of covering goal fiodes.

Definition 6.4.8 Let. {Co,;Cx, Ca;..), (f1s fay--} bea hierarchical.prefounding
for 1o, with associated partition Ro;..., By of R,,. We define a function layer :
mp—{0,1,..., N} as follows: ' '
If (G, eCy
Then layer(G,1) =0
Else if (G, j} covers (G, 1)
Then layer(G, i) = layer(G', 7}
Else layer(G, i) = maz({0} U{layer(G', 5){G",7) >pe (G,9)})+1

Notice that the range of the layer funciion is indeed {0,1,...,N}. There are
only N +1 sets B, and the layer value does not increase between two nodes
(@', 7) and (G, 1), such that (& +§) covers (G,£). Moteover, on a given proper
achain, layer induces a one-to-one correspondence between numbers k such that
R(G, 4} is in Ry 4nd numbers n such that layer(G,1) = n.

It is due to proposition 6.4.3 and the existence. of this finite: number of hi-
erarchical layers that a procedure for constructing finite -S'LD"-fr:es can be for-
mulated on the basis of: definition 6.4.5. The underlying idea is that if ‘the sets
-C; corresponding to nodes’ of each layer & ate well-founded (through £:), then
‘(using the hierarchical layer structure) we can prove that only a finite number of

A S A 4 A g N P A Ty T e 1 1 1 = A B 3 b 1

106 CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING.

‘mutually non-covered sets of each layer k exist, As a consequence, {sitice “cov-
-ered™ lmplles “contained in”), we can find & finite number of sets that contain
the entire SLD~+tree. So, the tree has become subset-wise founded.

With the exception of the iree construction procedure itself, this reasoning is.
formalised in the following basic theorem and its proof, serving as main founda-
‘{ion for most material on finite unfolding throughout the ‘ensuing sections and

chapters of tlns thesis.

Theorem 6.4.9 Let; ((Co, €1, Cs, . ..} (Fis fos -) be.a hierarchical prefoundmg
for 5.and suppose that 7 is-an SLD-subtree of 19, If every f; is a well-founded

-measure on & N7, >-, then there ‘exist & finite- pumber of sets Cij,...,Cy,,
atnong. €1, Ch4, ..., such that T 15 subset-wise founded with respect to the pair
((CO O CENT . Cope T (fiyy oo Fige))

Proof

» We show directly that + is Rnite: Assumne that it is not and that D is
an infinite derivation in 7. Then it follows from: propesition 6.4.4 that IJ
contains an infinite proper achain (Gi,y 31) >pr (Giyy82) 3pp .. By condi-
fion 3.of deﬁmtlon 6.4.5, proper achains in Cp are of finite length We may
therefore assume that (Giysi1), (Gisyiz), ... are in 75\ Co. Since there only
exist a finite number of sets Rj, a finite number of members of this proper
achain; (G i1l - -+ (G, Jr), 2re maximal elements under the covered-s-
order. All other. members (Giyyii) are covered by some (Gy,, Jshl<Ss<r.
For each such (Bj,,s), the associated set C;, N 7 is well-founded through
f:. by assumption.. Furthermore, nodes covered by (Gj,, js) arein C;,. But
this means that (Gi,,31) >pr (Giy, i2) >pr ... is finite.

e Since 7 is finite, it is subset-wise founded (theorem 6.2.8). It rernains to
be shown how a finite number of sets. Cipy - - -1 Gy can ‘be selected from
-C;, Ca,.. . such that T is subset-wise founded thh respect to ({Colir; L0

1 Cane NT), (firs - +wrfise))- Define for any n, 1 <n < N:
5, = {(G’ ife T|Iayer(G i) =n and thete exists a k,1 <k <N,
such that R(G,) € Ri a.nd there does not exist a node

(&, 1 €7, suchi that (G,) covers (G, i}

Now, let {¢ iy 3 ‘be the -sequencg__of Ci-sets in the given | h1era.rch1-‘
cal prefoundmg such that their corresponding nodes. (Gy,, %) are in some.

. Let (fi-- f,u) be the associated sequence of functions f;, : Gy —
'W:_n>;; Then T is subset-wise founded with respect to ({CoN7,Cy N
T ""_!GSM n"“)..-(ff-;.’ l_fuw))

1. Clearly, each of the sets G, N 7 satisfies C;, N+ C G.. To prove
that Gr C Ueroi,..iuy C¢ M7, observe that each node (G,i) €

6.4. USING HIERARCHICAL PREFOUNDINGS 197

T which is not in Uk<N Sy is either in Cp or is covered by a node
(&,7) € Uycn Sk~ If the latter is the case, then C; C Cy. So, G, C
Useg0,i1,esiney G N7 and condition 1 in definition 6.2.6 is fulfilled.

2. Each CeNr g # 0, has the well-founded messure f, by assumption,.
satisfying condition 2 in definition 6.2.6.

3. Einally, condition 3in deﬁn’itib‘n 6.2.6 on Cp directly follows from
condition 2 in definition 6.4.5 and proposition 6.4.4.

0

6.4.3 A more sophisticated algorithm

Obviously, the pair of poientizlly infinite sequences ({Co, C1y ..)y f1y -+ -)) can
‘hardly be considered a practical specification of & prefounding. Iii'p‘ai:ticular, it
caun. not bé used as input to an algorithm computing finite SLD-trees. Instead,
-we will specify hierarchical prefoundings through:

o a finite partition Rg;.. ., Ry of R,

o together with functions Fy,. .., Fy such that
Fy : {(G,4) € 70| R(G,4) € Re} — Wi, >x
where Wi, >5,1 < k < & are well-founded s-posets.

Observe that due o condition 2 of definition 6.4.5; such functions FLl<k <N
.can be associated with any hierarchical prefounding ({Co, C1,...), (fi,-..)). More
precisely, for any {G,17) with R(G,1) € Ry, F{G,i) = (G5, Conversely,
‘the pair ({Ro, R, ..., R¥),(F1,..., Fy)) allows the full reconstruction of the
hierarchical prefounding, where, for each (G,3) with R{G, 1) € Ry, fi = Filo,.

So, let us now proceed to sliow how the concept of a hierarchical prefounding
can be used in a constructive way to produce finite SLD-tress. Before we can
actually formulate an algorithm that improves on the unfolding behaviour of al-
gorithm 6.3.5, we need one more definition, singling out & particularly interesting:
covering ancestor of a goal. '

Definition 6.4.10 Let {G;7) and (G', 7) be two distinct nodes in 7y \ Co. (G, 4)
is called - the direct covering ancestor of (G,7) if:

1. (&, 5) covers (G, 4) and
2. any other (G, k) that covers (G,) also.covers (G,)

It follows that the direct covering ancestor of a node, if it exists, is unique.
In algorithm 6.4.11, we assume that the proof tree is constructed simultane-
ously with the SLD™-tree, Without making this construction explicit, we make

108 CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING

use of the >, -relation, derivable from the (pa.rtla.lly generated) proof tree. The
basic structure of the a.lgorlthm is quite similar to the one of algorithm 6.3.5,
except that its operation is now controlled through a hiérarchical prefounding
((Ro, Ra,- -, Bx), (Fi,..., Fx)), instead of a finite prefounding..
Algorithm 6.4.11
Initialisation
7 := {{(+A4,1)}} {* an SLD-tree with-a single one-node derivation *}
Pr:=§ {* in Pr, the >, -relation will be constructed: *}
Terminated := P
‘While there exists a derivation I} € 7 such that I ¢ Terminated do
Let (G, 1} be the leaf of D ‘
Let Derive(G, i) be the set of all its immediate >r,-descendants
Let Decrease(G, i) be the set of all (¢,) € Derive(G,), sich that
If (G",k) is the direct covering ancestor of (G, 7)
and R(G','J) R(G", k)€ R,(1 Sn< NY
Then F,(G", k) > F, (& 2 5) ‘
If Decrense(G,1) =@ _
Then add D to Terminated
Else {* = is further extended *}
Replace 7 by v\ {D} U{D U{(G", /}}|(C", }) € Decrease(G, i)}
Extend the Pr-relation accordingly
Endwhile

Of coursg; the resulting SLD™-tree T again must be completed into 7+, its min-
imal containing SLD-tree..
We havye the following theorem:

Theorem. 6.4.12. Algorithm €:4.11 terininates. Thére exisi a. finite number of
sets Co,...,/Car and functions fi,..., far, such that the resulting finite SLD~-
tree 7 is subsei-wise founded with respect to CoNi7y...,Car- O 7 and the welk-
founded measures fi, ..., far restricted to these sets.

Proof Termination follows in a way completely similar to the finiteness: part in

the. proof of theorem 6.4.9. The subset-wise foundedness of 7 is-an immediate.
consequence of theorem 6.4.9. N x|

Finally, Jet us illustrate the operation of algorithm 6.4,11 on an example.
Example 6:4.13 We consider a program for transposing a matrix, represented
as & list of lists, the latter corstituting its rows.

transpose(X, [) +— nullrows(X) o
transpose(X,[Y |V s]) « makerow(X,Y, Z), transpose{Z, ¥ s)

6.4, USING HIERARCHICAL PREFOUNDINGS 109

makerow(]], [, [).—

mkef‘m([[xlxslw}; [XIV]: [Xle]) A mkerm(&:.?& W)

nullrmus{u).H

nullrows([]| X]) «— nullrows{ X
We wish to construct an SLD-tree for the following query:

-+ iranspose([fa, b]| X 5], V)
using algorithm 6.4.11. For the required hierarchical prefounding, we take an in-
stance of the generic one proposed i example 6.4.6. Since all three predicates in
the above program are recursive, this gives rise to four Ri-seis. The correspond-
ing functions ¥;,7 > O are the functor measures associated with the Tespective
selected literals and their sets of input argument positions. If we abbreviate pred-
icate names, just using their initial character, and label R-sets and |.|-functions
accordingly, we obtain:

_ ((RD} Bt': -Rr'n! Rn)! (i.'[f.,{'l'}_! [_'im,{l'}: H‘n,{l})))
Finally, for the computation.rule R, we.assume a rule that, from each goal, se-
lects an atom with ‘an associated funétor measitre value smaller than the functor
measure weight of the selected atom in the direct covering ancestor (if the lat-
ter exists). If there is a choice of several such atoms, the leftmost with weight
larger than 0 is selected, or, if they are all mappéd to 0, simply the leftmost.
Pigure 6.3 depicts the resulting SLD-tree, which happens to coincide with its
minimal containing SLD-tree. As usual, selécted literals are underlined. More-
over, each non-trivial goal node is labeled with a ‘triplet, containing, first, its
number, second, the nurnber ‘of its direct covering ancestor (if the latter does
not exist, the mark ‘_‘;” has been used), and, third, its weight under the relevant
measure function. Notice the finely tuned ancestor selection for nodes with 2
selected. literal containing makerow. Obviously, this kind of refined focusing on
relevant ancestor goals indeed solves the-problem with the sums Pprogram in ex-
ample 6.4.1. _

From the tree; the following specialised transpose clatses can be synthesised

(tidying up variable names):

iransposel([[a, 8], [[a], [3]}) — _

transposel(([a, 8] X, X'\ Xal0), [la, X|¥T,[b, X120 =

makerow(U, Y, V), makerow(V, Z, W), nullrows([X s{W])

Partial deduction of the transpose program was also studied in e. g:[64] and [13].
The amount of ‘specizlisation obtained in the clauses above is slightly less than in
the clanses produced by the method in {13], using the R, computation rule (see
also section 5.5), which, in this case, allows some additional nseful unfoldings.
However, as shown in example 5.5.4, in general, R, does not guarantee the con-
stiuction of a finite' SLD-tree. More comments on the practical effects of various
computation rules can be found in section 7.5 below.

110 CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING

Finally, it isfiz1_tergs’_t.ing to note that algorithm 6.3.5, using the obvious instance
of the generic finite prefounding intreduced in example 6.3.4, and assuming the
same 7¢ as above, would stop unfolding at node 10, thus deriving a single spe-
cialised transpose clause:

transpose2([[a, BIX], [ol7], [512])) —
makerow(X, Y, V), makerow(V, Z, W), nullrows(W)

'This is precisely the result obtained in [64].

¥=[) *-l([[a'.§]|XS],Y-} (1,_3)

_ —(——/_\E[Y’l"l’-s?]
== a(ila,bliXs]) (2.3}

=< m([[2,b]X8].Y" Z), Z.Ys") (3,.3)

| Y aY)

. fadl = m(Xs;V,W), ({[bIW].Ys") (4,1,2)
s'=[] =
'YS‘=[Y“!YS“]

< m(Xs VW), s(BIWD) (5.0 T o
| < m(Xs, VW), m({[bIW],Y"Z), K2 Y5 (6,_2)

fail T bV

- m(Xs,V. W), m(W, V' W, ([IIW'],Ys") (7.4.1)
' Ys"=[Y3IYs3)]

< m(XsV, W), m(W,V", W), a((IW']y (8,_1)

<= m(Xs,V,W}, m(W, VW J{[[IW1Y32"), €Z Y3 {9_-a_,'1:')

~-m(Xs V,W), m(W,V" W) a(W') (1030} fail
Xs:[l VA 'Xs;[[}.(’]Xs’_]lU‘.]'
=~ m(f], V"W). n(W") (116.0) VEEX]
V)| < (U, VW), mXs TWI LV W), W) (12,6,1).
<) (138.0). K=K [V Xy
| == m{U VW, m-('-W".-V3,w3)_,:n(_[xs"lW3]') (14,12,0)
D.

Figure 6.3: The. resulting tree for-example 6.4.13.

6.5. APPLICABILITY AND AUTOMATION 111

6.5 Applicability and Automation

In this section, we first show how our technique can be regarded as a general
framework for controlling the unfolding in partial deduction. We illustrate how
existing methods can be simulated and briefly discuss the relationship with work:
on static termination analysis. Next, we address full autoration. We point
out which jssues are stil! to be settled, and propose a slightly modified version
‘of algorithm 6.4.11 to be used .as the actual basis for the development of fully
-automatic algorithms in subsequert chapters. Finally, we return to the specific
1issue of unfolding meta-interpreters.

6.5.1 Related techniques

Typical heuristics for finite unfolding as proposed in the literature aim at loop
detection and decide not to unfold a goal when a loop is suspected, The four
criteria mentioned in [14] do not unfold a literal T when there is, eatlier in the
same derivation, a:node with selected literal I’ and respectively, L is'a variant
‘of, is an instance of, is more general than, or'uniﬁgs--(has 2 common instdnce)
with-I/. We already menticiied that none of these critefia._'e;ccl_udcs_ all loops, as
can easily be verified in figure 5.1. In general, problems accur with predicates
containing arguments which tend to Erow In successive unfolding steps. Such
heuristics thereforé must be'enhanced with the use of & depth bound on generated
derivations. -

Although the résulting combinations seem quite unsatisfactory (the >pe Tela-
tionis not taken into account when ‘comparing two nodes.and depth bounds are
very ad hoc), they can easily be simulated in our framework. Consider e.g. the
“variant” rulé, R,. Use of a finite prefounding with = single class is sufficient,
The weight to be associated with a goal which is the sth step in a-derivation is NV
if the selected literal is a variant of a previously selected one (i.e. unfolding that
literal yields a.not well-founded measure) and is maz(0, N'—i) otherwise (ie a
derivation is limited to N steps). Alternatively, a slightly more-natural simu-
lation can be done with.a finite prefounding having one class for each recursive
predicate and one for the other predicates. Observe, however, that a direct apph--
cation of our approach ensures' termination in a natural way; without simulating
any depth bound. '

Several pragmatic loop prevention tests are proposed in {152]. (See also the
discussion of [15] below:) They range from a- simple resiriction .on the number of
times a literal with the same predicate symbiol may be selected in'a derivation, to
more sophisticated: approaches, featuring comparisons of successive calls to the
same predicate through the use of some measure function, related to the functor
measure of definition 6.3.3. However, the >pr relationis not taken into account
when deciding which goals are to be compared.

112 CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING

Bol, Apt and Klop ptesent a systematic and formal account of (run-time)
loop checks for logic programs in [16]. They discern between sound and complete
checks. The former ensure that no solutions aré removed and have maidly been.
focused on in Wwork on run-time termination analysis; The latter guaraniee termi-
nation, possibly at tlie cost of deletmg soime solutions. In [15}, ‘Bol argues. that in
the context .of unfolding for partial deductlen, sound loop checks can be helpful
to improve the performance of partmlly deduced programs, but complete loop
checks are essential to terminate unfolding, . (Smr.:e complete checks sometimes
remove non—loops as well, this approach is also referred io as loop prevenizon
rather than loop deiecimn.) Next, a detailed formalisation of the. various loop
checking sirategies employed by Mlxtus ([152}) is-included. Finally, [26] is dis-
cussed and its content briefly compared with the. forma.hsed [152] methods. It is
stated that its basic framework might be. of theoretlcal interest as a standard for
complete loop checks, -and natural instances should be easily lmplementa.ble We
hope chapters 7 and ‘8 will convince the reader that both conjectures are in fact
true.

Somewhat more distantly related is the considerable amount of work on
compile-ime analysis techniques. for the detectlon of: (non—)termma.tmg programs
and goals. (See e.g. [169], [¢], [6], [133], 43]. A recent, extensive survey of the
work in this field can be fovnd in [40]) These techniques also use well-founded
TIeasures. (often called “level mappings” in this conbext) to prove termination.
However, important-differences. are that comnpile time termma.tmn ana.lysls

¢ provides proofs of finiteness for complete SID-irees 1y for the given pro-
Eram and goal and is not concerned with characterisation of finiteness for
incomplete SLD-trees.

° oniy relies on the source code of the program, or at the most, a fintle,
abstract representation of its evaluation (e:g. through abstract interpreta-
tion, [38]) to prove termination. We, on the other hand consider concrete
computatl_qx_l steps..

These differences, in general, represent the _fypical distinction between compile-
time termination analysis and (run-time) loop checking or Ioop prevention,

S4ill, static termination amalysis seems useful to further optimise our ap-
-proach ‘Consider a goal :

-and assume that its direct covering ancestor is

— plIX. ¥, Z{X s))
Then the functor measure maps both goals to the same weight. (3). Algo+
rithm 6.4.11 will therefore not include the former goal in the generated SLD-tree
T Now, assume that in a preprocessing phase, compile time termination analysis

6.5. APPLICABILITY AND AUTOMATION 113

has shown that any p query terminates when its single argument is bound to.a list
of fixed] length. Thég'we can safely add the former goal, and all its descendants,
o 7. Such information can perbaps beincorporated in a prefounding by placing
such safe goals {and their descendants) in Cp. _

Further challenging study material is provided by techniques related to partial
deduction, such. as the program transformation methodology described in [135)
and the work on compiling control ([25], [39], [42]). A detailed comparison of
the termination criteria employed by these and various other techniques with
the approach presented in this thesis is non-trivial, but might reveal interesting
connections. '

6.5.2. Setting the stage for automation

We have shown how our approach providés a good framework for finitely ua-

folding logi¢ programs. Algorithm 6.4.11 %0 particular incorporates a refined

treatment of recursion. However, as it stands, it can not figure as part of a
fully automatic partial deduction system for logic programs: Indeed, it pre-

‘supposes. as given a particular hierarchical prefounding (represented by a. pair

({(Ro, Ry, ..+, By, (Firo..y Fi))) and a computation rule R, together:determiin-

ing one single complete (but possibly infinite) SLD-tree 7, for the considered:

program and query. However, in a fully autormatic context, oiily ‘the query and
the Program are provided as inputs to the system, which itself should be capable
of finding optimal valuesfor Ro, Ry,.. Ry, Fy,... , Frr-and .

Various. fully autematic algorithms performing these tasks-with different de-

-grees of generality and sophistication will be proposed. in chapter 7 and, partic-

ularly, in-chapter 8. In each case, the selected literal in a goal G will be one of
the key factors in deciding which weight should be assigned to G. It therefore
turns out that a somewhat more elegant treatment of such automatic methods is
obtained on the basis of a slightly specialised version of the fratnework presented
above: Indeed, when an:incomplete SLD-tree 7'is not considered as a subtree of
some fixed, complete 7o, it seems very sensible to regard its non-frivial leaves as
goals without a selected literal: Not. 'being_' assigned ‘any weight, such pgoals can-
then be included in the SLD-tree without endangering subset-wise foundedness,
In this way, the resulting algorithm immediately produces finite, subset.wise
founded SLD-trees.

In this subsection, we provide'a formal basis for this minor shift of perspective
and include & variant of algorithm 6.4.11, to be 1ised as the ‘template for later
completely automatic algorithms.

We set out with a usefu! definition.

Definition 6.5.1 A leaf node'in an SLD-tree which is neither a success Tor
a failure node, but an arbitrary goal statement without selected literal, will be
called a dangling leaf: '

114 CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING

Now, we can. gssociate one par__tii:u!dr SLD™ -iree to a given SLD-tree.

Definition 6.5.2 Suppose 7 is an SLD-tree. Then we call the tree 7~, obtained
by deleting from 7 its dangling leaves (if any), the SLD~ -tree associated o T.

Of course, for any SLD-tree T, (r=y =r.
“We have the following resilis:

Proposition 6,5.3 Let 7 be an SLD-tree and 7~ its associated SLD™-tree. If
77 is subset:wise founded with respect to {Co,C4, ..., Cv), (f1,---, fir)) than
7 is-subset-wise founded with respect to ((C'o, Cy, . - -, CN)','-(:f.'l, ooy FW)), where
Cla=GCoU{(G, 3} € 'ri(G',.1'.)__is'a."dangling’.leaf{of'r}. o

Proof Allthree conditions of definition 6.2.6 are immediately verifiable. |

Corellary 6.5.4 Let 7 be .an SLD- subtree of the comnplete SLD-tree To and.

suppose. that ({Co, Ci, Cs, .. NW(Fi,fan Y isa hierarchical prefounding for ..

Tevery fi is a well- _found_ed measute-on C; M7, 2>, -, then there. exist a finite

‘number of'sets Ci,, . G » among C1,Cy, .. s_'uch that r is subset-wise founded.

-'wtth respect to ((C'o, C’;1 n-r- voeaCine N7), (Fiys - o fing)) where C'g = (Con
TYUH(G,3) € 7l(G, i) s & da.nglmg leaf of 7}.

Proof The corollary is an-immediate consequence of theorem 6.4.9 -and' propo-
“sition 6.5.3. Q

In view of this result and our earlier observation that any hierarchical prefcunding
can be uniquely identified through its pair ((Ro, R1,: - ., By), (Fi,- - i)}, we
wﬂl in subsequent cha.pters take the liberty to abuse our t.ermmoiogy as follows:
We. WIlI occasionally call an:SLD-tree + subsel-wise founded with respect to. ¢ pair
((RO; Rll RN)‘! (Fl: FN})

‘We can now-modify algorlthm 6.4.11. Note.that its resulting variant still
expects a pair ((Ro, By,..., Ry}, (Fy,.. FN)) and’ ‘a computation rule R to be
fixed in advance,

Algorithm 6.5.5

Inltlahsatlon

e {{(«—A 1)}} {* an SLD tree 'with a singlé dne-niode derivation *}
Pr:=0 {* in Pr, the >;.-relation will be constructed *}
Terminated := 0.

While there exists a-derivation D ¢ 7:8uch that D ¢ Termznated do
Let (G,4) be the leaf-of D
Let Derive(G, 1) be the set of all its immediate >, -descendants
If Derive(G;i) =0 {* (G,3) is a success or a failure node *1

6.5. APPLICABILITY AND AUTOMATION 115

Then add D to Terminated
Else if there is'a direct covering ancestor (&, j).of (@, 1)
with R(&,5), R(G,4) € R, __
_ such that not(F, (G, j) >, F,(G, 1)) _
. Then add I to Terminated {* (@,i) becomes a dangling leaf *}
Else {* 1 is further ‘extended *} '
Replace by 7\ {DYU{D U {(G", k)}|(G", k) &€ Derive(G, i)}

Extend the Pr-relation accordingly

"Endwhile

The difference between this algorithm and. algorithm 64,11 can be charac-
terised as follows. A node in some Derive(G, 1), but not in the corresponding
Decrease(G, i}, is rejected by algorithm 6.4.11, whilé it is classified as a dan-

'gl_igg"l_ea_.f by algorithm 6.5.5 and included in 7. In this way, other t.'h'm'gs equal,

algorithm 6.5.5 sometimes {though often not) generates a larger SLD-tree than
aigorithm 6:4.11 does (after completion of its result into an SLD-tree). Differ-
ences only appear at (non-trivial) nodes (@,4) sich that Decrease(G,i) = 4.
Such nodes are unfolded one more level by algorithm 6.5.5, all their descendants
being dangling leaves. Reconsidér some earlier examples. '

Example 6.5.6 The final result for the contains_pal program in-example 6.2.7 is

the same in both cases: The extra leaf directly included by algorithm 6.5.5 is als6

added after execution of algorithm E..clf;_ll 1o complete the 'SLD”-‘t’ree'd'epictéd in
figure 8.1 into its minimal containing SLD-tree, as indicated in exampleé 6.3.6.

Example 6.5.7 Algorithm 6.5.5 does: produce a larger iree for the transpose
prograrii and query in‘example 6.4.13. To the SLD-tree in figure 6.3, two dangling
leaves are added as descendants: of node 14, as indicated in figure 6.4. Note that
the Decrease set of node 14 is indeed empty.

< m(U", V", W"), m(W", V3, W3), s((Xs"IW3]) (14,12,0)

_ \ V3=[TIV4]
== m(U’,V",[), n([Xs"])

= m(U", V", [[TITs]IS]), m(S,V4,W4), n([Xs", TsIW4])

Figure 6.4; Two extra dangling leaves:

116 CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING.

The reason ‘why algorithm 6.5,5 coristitutes a suitable basis for complete au-
torriaion can now be suspected: An automatic. unfolding algorithm: will sim-
ply terminate-an (incomplete) derivation when no literal can be selected in the
derivation’s.leaf. This way of proceeding nicely matches the structure of algo-
tithm 6.5.5.

Finally, the following theorem tomes as:no surprise:

Theorem 6.5.8 Algorithm 6.5.5 terminates. Let ({Co, C1,'C5, .), (f1, far - <))
be the hierarchical prefoundmg of the complete SLD-tree. vy determined by the-
‘pair ((Ro, B1,..-, RN), (Fy,-.., Fx)) and the computation rule R, underlying
‘an -application of algorithm 6 5.5. Let T be the finite SLD:iree 'bm.lt by al-
gorithm -6.5.5. Then there exist a finite number of sets Cj ,...,C},; among
C1,Ca;. . .such that 7 is subset-wisé founded with respect to C'q, G,_;.l- Ny, Ciy
N7, where Gy = {Co N7 YU{(G; i) € 7|(G,4) is & dangling leaf of 7}, and the.
well-founded measures f;,, ..., fi,; restricted to these sets, '

Proof Obviously, termination can again be demonstrated in 2 way similar to-
the finiteriess part in the proof of theorem 6.4.9. The subset-wise foundedness
result follows from corallary 6.5.4]

6.5.3 Meta-interpreters revisited

To conclude this section, we retarn to the particilar issues involved in handling
_meta-interpreters.

First, there is the problem of ldentlfymg a program as a meta-interpreter.
Most meta-interpreters written in Prolog use the built-in- predicate-clause to ac-
cess a representation of theiobject program. (This practice is simulated through
an exphmt]y defined clause predicate in.part I of this thesis:) These are easy to
recognise.. However, as already discussed in subsection 4.7.2, the -object code can
also be denoted by meta level terms, In the logic programming language Gadel
([80]), this is standard practice. There, such meta-prograins can automatically
be told.apart from ob,]ect level term handling programs-through the required ar-
.gument type declarations. .In Prolog, however, this is not the case, and thezefore,
this type of meta-interpreters can not easily be spotted. Wé return to this issue
below.

-~ When & program:has-been identified as a meta-interpreter; it should receive
a special treatment as was. illustrated in subsection 6.3,3. The control of the
unfoldmg should be based on the _properties of the object level. goals denoted by
the meta level argumenits. In addition, unfoldmgs performing only parsing should
a.lways be.allowed. It seems poss;ble to generalise the approach described in sub-
section 6. 3.3 to this end. Consider for example'the followmg meta-interpreter. It
is shght]}' more cornplex than the one treated in subsection 6.3.3.

6.6. DISCUSSION AND CONCLUSION 117

solve(empiy) «—
solve(X& Xs) — clause(X,Y), concat(Y, Xs,Ys) , solve(Ys)
Here, we want to focus attention on thé arguments of the first conjunct in
solve(A& B) calls. Assuming that.pi,...,py are the recursive Ppredicates of the
object program, we define: '
Ry = {R(G,i) € R,y |R(G, i} is an atom of type solve(pi(is, ..., tny)& B)},
where 1 <k < N
Ro = {R(G, %) € Ry, | R{G,1) is-an atom of type solve(p(t1, .. ;1) &B),
where p is a non-recursive predicate}
U{R(G, i) € R,,|R(G,)is'an atom of type solve{empty)}
W{B(G, i) € R, [R(G,4) is'an atom of type clouse(d, B)}
W{B(G;1) € R, |R(G, 7) is-an -atom of type concat(4, Bs, 4s)}
and, for 1 < k< N:
F_}: :'lil.s_oiu'e,s;.
‘where S contains élements of the form 1 [1/n,1 < n < ng. _
ﬁ.’otﬁe_,j_ however, that such an' approach is énly correct if the parsing is cor-

.rect, in the sense that the meta-interpreter terminates when executed with a

completely instantisted goal. Moreover the goal with respect to which partial

deduction. is performed should not-contain. meta Jevel variables.

Next, we return to the issue of dealing with Prolog meta-interpreters that

-represent object theories through meta level terms. Here, we would . need tech-

niques enabling-us to prove at compile time that certain arguments.of predicates
take their values in a set.of terms that can be partitioned in a finite number of
classes. Each of these classes should be a set of terms starting with the same
functor (denoting.an object level predicate). In this way, control on the level
of the object program would be feasible. Type inference through abstract. in-
terpretation seems promising to provide such information. More generally, even
outside a strict meta-programming context, this could prove a usefial refinement
of the techniques presented in this thesis. Moreover, similar techniques may help
to find interesting Si-sets:for mieta-fnterpreters of any kind.

Finally, in a context of full automation, section 8.6 presents a different point

of view, not assuming any a priori differerice between meta-interpreters and “or-

dinary” programs. We. refer to subsection 8.6.4 for some further comments per-

taining to the issues raised in the previous two Pparagraphs.

6.6 Discussion and Conclusion

In this chapter, we 'h_ave_-_'e_la_bor'a.ted a general framework for the control of un-

folding during partial deduction of definite logic programs. We. have adapted

i_‘.-hé wellknown concept. of & well-founded set to obtain.a workable ché.r_aéteri'sa.-'

118. 4 CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING

tion of finite SLD-trees. We have proposed two different operational derivatives
-of this characterization, and shown liow they can be used to construct sensible
finite SLD-trees. “This led to the formulation of two:algorithms, the second of
which provides a more refinéd treatment of recursion than ‘the first. Thanks
to their roots in the developed framework, both ‘algorithms could be formally
shown to terminate on all programs and gueries. Next, we briefly discussed some
related work-and reflectéd on particnlarities connected to the treatment. of meta-
interpreters. Finally, we proposed a. generic algorithm to be used as the teimplate
for complete automation in subsequent chapters..

We already mentioned that the use .of well- founded orderings-to prove fer-
mination properties is by no.means a novel idea. Apart from the a.pphca.t:ons
referred to in. subsection 6.2.1, their extensive role in the work on termination
of term rewntmg.sy_stems ([48]) should not go unnoticed. Also within logic pro-
gramming, many approaches to partial deddction have, implicitly or explicitly,
used the notion to impose some control on unfolding., The Wwork on termination
analysis of logic programs can-alse be mentioned here. Particularly [133] explic-
itly defines 2 well-fousided ordejing to. be iised for supervising: unfeldmg Fizally;
sinilar problems arise with partial evaliation in a finctional framework, Wwhere
one has to decide on unfolding of furiction calls: We refer to chapter 14 of {85] for
some references and a discussion on offline termination analysis in that context.

Our main contributions lie in tailoring the concept to the treatment of logic
programs, establlshmg an elaborate formal- framework based .on it, and demon-
strating the latter’suse for. the construction of nnfelding algorithms with a. fine-
grained treatment of recursion. Moreover, subsequent chapters will present vari-
ous.concrete 1nstances of our frameworle, analyse their respectwe merits, and pro-
vide strategies to, within a. given category, a.utoma.tlcally focus on Wel] founded
measures that are:optimal for a given problem. Finally, section 8.5:will reconsider
the basic f?a.:j_ne_wo;jk and slightly ex_i;end it to further increase its power.

We have concentratéd on pure definite logic programs, even ekcluding nega-
tion. In {14], it is proposed that during unfolding, negated calls should be exe-
ciitéd when ground and remain in the resultant when non-ground. This of course
_]eopardlses termination, since termination of “ordinary” groiind.query execution
is not guaranteed in general. Oné solution consists in Testricting attention to
specific subclasses ‘of programs, known to terminate on ground queries (the work
on: compile-time-fermination analysis, cited above, is. relevant. here) bt .other,
‘iore ambitious, approaches seem feasible. We bneﬂy returh to thisi issue, . in an
overall partial deduction context, in section 7.4

Next, it has been observed that ensuring temin‘dﬁan of -u:(fo_l_ding does-not
suffice to provide 2 good unfolding strategy in the context of partial deduction.
Indeed unlimited unfolding brings along the danger of code ezplosion, possibly -
resulting in a “specialised” program in fact less efficient than the original general

6.6. DISCUSSION AND CONCLUSION 119

program®. Tn cther words, ‘good unfolding does not only deliver SLD-trees of

finite deptk, but also keeps their widik within reasonable bounds. While we have
‘mot explicitly addressed the latter issue in out work, a few remarks on this topic

can be included:

@ In principle, the two issues can be considered independently. When. finite-
ness of the. trees is guaranteed, extra measures can be.added fo ensure
reasonable width.

o This bemg said, it can be observed that “data consumption based” unfold-
'ing as carried out by methods based on-our framework, goes: a.lrea.dy a long
way towards the latter goal. Since such algorithms tend to only unfold

“sufficiently instantiated” atoms, often branching is very low,

e When thoroughly indeterministic programs nevertheléss cause wide branch-
ing, sophisticated indexing. techiniques, as availablein most Prolog compil-
ers, can often efficiently cope with the resulting large number.of highly
specialised clauses. Again, this specialisation is caused by the demand that
unfolding should only proceed as long as data are consumed.

Summa.nsmg, we conclude that it makes sense to- pursue strategies for maximat
sensible finite unfolding, Further research must settle the question to what.extent
additional .measures to control the width of resultmg SLD-trees are necessary.
Such measures can be ihcorporated in devéloped algonthms, or, perhaps, run
in.a postprocessing phase on generated SLD-trees. We returd to this. ‘topic in
secticn 7.5, when we discuss the resulis of some. experiments..

Gallagher mentions a related subtle issue in [65]. Assuming a lefi-to- right
computation rule for logic programs, he points out that unfolding a chéice point
to the right. of another goal can cause duplicated computation and an associated
loss of efficiency in the specizlised program produced by partial deduction. Again,

this issue; or its generalisation to a context without pre-determined. computation.

rule, will not be considered in the rest of this thesis. Methods to handle it can be
developed independently. And the overall resulting unfolding strategy will stiil
profit from the presence of a basic rnethodology that guarantees termination.

18ee [126] for e Ereatmenit of related issues in explanation-based learning.

120 CHAPTER 6. A FRAMEWORK FOR FINITE UNFOLDING

Chapter 7

Sound and Complete
Partial Deduction

7.1 Imtroduction

In this chapter, we return to the issue raised in seéction 5.4: We develop an al-
gorithm for automatic. partial deduction of definite logic programs and goals;
show tha.t its result satisfies the conditions of theorem 5.4. 7, and prove that it
a.lways terminates. To this end, in section 7. 2, we fitst derive a fully antomatic
algorithm for ﬁmte unfolding, based on the fra.mework laid out in the previous
chapter. Next, we use it as a stepping stone for the development of a partial
deduction a.lgonthm in section 7.3. We demonstrate. the latter’s operation on
some simple examplesand give férmal proofs for & number of interesting prop-
erties, including certified termination. We discuss some less formal aspects and
briefly comment on related work in section 7.4. Next, section 7.5 addresses ex-
periments performed with-an- 1rnp1ementa.tlon of the developed method as well as
some related techniques, proposed in theliterature for the control of unfolding or
of the overall partial deduction. On the basis of the obtained restlis, we ventire
some preliminary comparative comments.. Finally, the chapter closes with a short
overall conclusion in section 7.6.

7.2 Automatic Finite Unfolding
Qur first task then, is deriving a fully automatic instance of algorithm 6.5.5. To
this.end, we have to come up with comncrete choices for the the computation rule

R and the pair ((Ro, Ry,.. RN) {Fr,-.., Fa)).

121

122 CHAPTER 7. SOUND AND COMPLETE PARTIAL DEDUCTION

Now, for the Rg; Ry, ..., Ry partition, it seems appropriate to proceed as in
example 6.4.6. In other wards, we associate one R; with every recursive pred-
icate p;, and place all calls to 2 non-recursive predicate in Rg, thus ‘ensuring
that they will always be unfolded. Given. the (elementary) analysis capacity to
automatically- identify -recursive predicates in a given program, this choice for
Ro, Ry, .. RN is trivial to automate. Moreover, it ensures that condition 3 of
definition 6 4.5 is satisfied. For the measure functions. Fijoooy Fry functor mea-
sures -as introduced in definition 6.3.3 can be: employed. (To be precise, a goal is
mapped to the weight of its selected literal inder the. relevant functor measure.
Here and elsewhere in similar c1rcumsta.nces, we will overload function symbols,
and-apply to goals functions. defited.on atoms.) However, this requires addi-
tional decisions on the composition of the argument sets S;; to be used in the

F; = |-lp;,s,, functions.

F1nd1ng appropriate sets of argument positions and a suitable: computation
rule-R can be regarded as a search problem. Initially, in algorithm. 7.2.1 below,
for each S, the entire set of argument positions of its associated predicate p
is taken. This coarse starting value.is dynamically 'reﬁned while the SLD-tree
is generated: argumient positions that contain “growing” terms are removed.
Pinally, B is operationally determined by the presence or absence, in goals, of
literals that can safely be unfolded.

We obtain the following algorithm:

Algorithm 7.2.1

Input.
a definite prograin P
a definite goal «—.A
Ontput:
a finite SLD-tree 7 for P U {—A}
Initialisation. _ _
T :=A(—4, 1)} {* an SLD-tree with & single derivation *}
Pr =0 {¥in Pr, the >,,,-—rela.t10n will be constructed *}
Terminated := @
Failed := 9
Tor.each, recursive predicate p/n inP; §p:={1,...,n}

‘While there exists a defivation D in 7 such that D ¢ Terminated do
Let ((3,t) name the leaf of D
¥ (G, =(0,5)
Then {* {G,?) is a success node *}
add I to' Terminated
Else:

7.2, AUTOMATIC FINITE UNFOLDING 123

{* First, we-try to determine R(G, 1) *}
Select the leftmost atom p(¢y, .. .ytn) in G such that
one of the following (mutually exclusive} conditions is satisfied:
s (G, 1.) has no direct covering ancestor
s (G, 7) is the direct covering ancestor of (G, i)
and |B(G, 7)lp,s, 3 |Plta, - .1 En)lps,
e (7,7} is.the direct covering ancestor of (G,7)
and IR(G’I J)!P - = !p(tls 1tﬂ)|}?,3,
and FR(G :J) 3, 5 > [p(tla stn)Ep,S jre Where
™™ =5, \ {ar € S, liplts, .- vt lprten) > IR(G))l a3} 7 0
a.nd 7 remains subset-wise founded with respect to
((R(}: R,,.. RN) (I fPl,S,I 2y | Ep,sp"““: .o s.[|PN|SFN)J
H such an atom p(tl, ., tn) cannot be found
Then {* (&, 1) becomes & dangling leaf *}
Add D to Terminated.
Else
R(G,3) 1= plt1, .- . 1)
If R(G, z) was selected on the basis of the third condition above
Then §, := §,™¥
Let Derive(Q, 1.) name the set of all derivation steps
that can be performed
If Derive(G,1) =0 _
Then {* (G,%} is a failure node *}
Add D to Terminated and Failed
Else
{* Extend the derivation *}
Expand D:in.7 with the elements of Derwe(G’ i) _
Let Descend(R(G,1),1) name the set of all pairs. (((G, 1), 4), (B8,)},
where ' '
— B is an atom in-the body of a clause:
applied in an element of Derive(@,)
- 6 is the corresponding m.g.u
— j is the number of the corresponding descendant of. (G 1)
Apply 8 to the affected elements of Pr
Add the elements of Descend(R) (G,1),%) to Pr

Endwhile
The following theoremis an immediate consequence of theorem 6.5.8,

Theorem 7.2.2 Algorithm 7.2.1 terminates. If a definite program P and &
definite goal +- A are given as inputs, its outpit 7 is a finite (possibly mcomplete)
SLD-tree for P U {—A}.

R e ST

124 CHAPTER 7. 'SOUND AND COMPLETE PARTIAL DEDUCTION

Proof Aslongasno 5, changes, algorithm 7.2.1 is an instance of algorithm 6.5.5.
The result follows since from a finite set, Dnly ﬁmtely many elements can be
-Temoved; and there are only ﬁmtely many S,-sets. (m3

We rgconsi_dér some of the exa:ﬂplgs-above.

Example 7.2.3 For the append program and query of examiple 5.5.2, we get the
SLD-tree depicted infigure 7.1, (append has been abbreviated to app:) The set.
Sappend does not change: {1,2, 3} is its final as well as its initial value.

< dpp({1,2IXs L[71.Zs)
Zs={11Zs']
~ app([2X5],[71.Z5")
Zs"=[2|Z5"]
= app(Xs {71,257
Zs'=[7) Zs"=[X1Zs3]
| Xs=[X"1X5’]

0 < app(Xs",(7].253)

Figu:_e 7.1: "The SLD-tree for example 7.2.3.

Example 7.2.4 For the reverse program and query of example 5.5.4, the gen-
erated SLD-tree is shown in figure 7.2. (Again, rev denotes re'uerse] Notice
that, unlike the tree'in figure 5.1, it is. indeed finite. This time, the algorithm
does refiné the initial chioice for Sreverse; Which is of course {1,2, 3}, to the more
suitable {1,3}: the growing accoriiulating parameter is removed.

Example 7.2.5 Suppose that: the recipe for literal selection in the above algo-
rithiri is further refined in such a way that priority is given to non-zero-weight
literals (as indicated in example 6.4. 13).- Then, for the transpose program and
query of example 6.4.13, 1t indeed produces the tree depicted iii- figure 6.3, en-
hanted with the two" ang ing leaves shown in figure 6:4. Since none of the three
(retursive} predicates involved shows growing argument behaviour, no elemerts
are deleted from any 5, set.

Finally, observe that algorithm 7.2.1, unlike the algofithms io the previous
chapter; is indeed fuily automatic, in the sense that it requires as inputsfrom its
user only a program and a query, and relies on no further human assistance Whlle

7.3. AN ALGORITHM FOR PARTIAL DEDUCTION 125

< rev([1,21Xs),{1,Zs)

= rev([21Xs),[1].Zs)
< rev(Xs,[2,13,Z5)
Xs=[}

N\ XS=[X1X5']

J = rev(Xs",[X’,2,1],Z5}
‘Figure 7.2: The SLD-tree for example 7.2.4.
running. (It of course also needs _ihforma._t_icnj on which predicates. are recursive
in the given program. However, this only requires'a static program analysis of
-a basic kind, and iseasy to-automate. It amounts to constructing a program’s
dependency graph.)
7.3 An Algorithm for Partial Deduction

7.3.1 Another termination problem

In the previous section, we presented an algorithm for the antomatic construction

of {incomplete) finite SLD-trees. In this section, we develop a sound and complete:

partial deduction method, based on it. Moreover, this method is' guaranteed io
terminate. The following example shows that this latter property is not obvious,
even when termination of the underlying unfolding procedure is ensured. We-nse
the basic partial deduction algorithm from [14], described in section 5.5, together
with our unfolding algorithm. '

Example 7.3:1 For the reverse program and query-of example 5.5.4, an infinite.

number of (finite) S_LD-trees'i_s prodirced (‘éec. figure.7.3). This behaviour is.caised
by the constant generation of “fresh” body-literals which, because of the growing
aci:umula.ti_ng_ pé_.ramgter, are not an instance of any atom that was obtained
before. Conseq'u_enﬂy, they require 2 separate partial deduction,

In [13], it is remarked that:a solution to this kind of problems can be truncating
atoms.put into A at some fixed depth bound. However, this again seems to have
an ad-hoc flayour to it; and the next section therefore proposes a method not
relying on any depth bLound.

126 CHAPTER 7. SOUND AND COMPLETE PARTIAL DEDUCTION

< rew([1,21Xs1,{1.Zs) < rev(Xs’ [X"2,1],Zs)
7s=(x2,1)

=~ 1ev([2IXs],[1].Z5) Xs'=0 /"
O - rev(Xs",[X",X"2,1],25)

X' =[X"IXs"]

== rev(Xs,[2,1],Zs)
Zs={2.1},,
Xs={] / :

Xs=[X'IXs’] ~ rev(Xs" [X" X" 2,11:Zs)
O - rev(Xs",[X’,2,1}.Z5)

Figure 7.3: An infinite number of (finite) SLD-trees.

7.3.2 A partial deduction algorithm and its properties
“We first introduce 2 useful definition and prove a lemma.

Definition 7:3.2 Let P be a definite _prograrm | and p a predicate symbol of the
language underlying P. Then the complete pp-renaming of P is the prograin
obtained in the following way:

o Take P topether with an extra copy of the clauses defining p.

Replace pin the heads of these new clauses by some new: (predicate) symbol
g’ {of the same arity as p).

¢ Replace p by p’ in all goals'in the bodies of clauses..

Example 7.3.3
-original .program:
o(X,Y) e (X, Z)
a(X, Y}~ (X, ¥)
B(X,Y) - a(X, V)
B(X,Y) —a(X, X
~complete. aa’-rena.mmg
a(X,Y) — B(X, Z), 6 '(z ¥)
o(X,¥) — X, ¥)
a"('X, ¥} b(X;2),a{Z,Y)
a'(X,Y) +c(X,Y)
B(X,Y) — (X, ¥)
B(X,Y) e a(X, X),d(¥)

—r

,a{Z,Y)

At et Wt

,d(Y)

7.3. AN ALGORITHM FOR PARTIAL DEDUCTION 127

Lemma 7.3.4 Let P be a definite program and P; the complete’ pp'-renaming
of P. Let G be a definite goalin the language underlying P. Then the following
hold:

o P, U{G} has an SLD-refutation with computed answer @ iff PU{G} does.
® P, U{G} has a finitely failed SLD-tree iff P U{G} does.

Proof There is an obvious equivalence betweer SLD-derivations and -trees for
P and F.. i

We can now formulate (let £p be P's underlying language):

Algorithm 7.3.5
Input
a definite program P
a definite goal —A=+p(ty,...,t.)in Lp
a predicate symbol p/, of the same arity as p and not in £p
Qutput '
a set 6f atoms-A _
& partial deduction P’ of P,, the complete pp'-renaming of P, wrt. A
ﬁitidisatibn_
Fr := the complete pp'-renaming of P
A = {A} and label A unmarked. _
While there is an unmarked atom B in A do
Apply algerithm 7.2.1 with P. and «B as inputs
Let v name the.resulting SLD-tree
Synthesise P, g, a partial dediction for B:in F,, from 75
Label .B marked
Let Ap name the set of body literals in P p
For each'predicate g appearing in an atom in Ap
Let msg, name an msg of all atoms in A and Ap
having g as predicate symbol
If there is an atomin A having ¢ as predicate symbol,
less general than msg,,
‘Then remove this atom from A
If now there is no atom.in A having g s predicate symbol
Then add msg, to A and label it unmarked
Endfor '
Endwhile o
Finall_y_,- construct the partial deduction P,/ of P, wrt A,
‘using the partial deductions for the elements of A in P,.

128 CHAPTER 7. SOUND AND COMPLETE PARTIAL DEDUCTION

We show how algorithm 7.3.5 deals with the two-simple examples, addressed
above.
Example 7.3.6 _
complete renaming of the append program:
append([],¥,Y) +
appen-d([X[Xs] X|Zs]) —append'(Xs,Y, Zs)
append'([], ¥, Y) +=
append ([X|X3), Y, [X|Zs]) +— append'(Xs,Y, Z3)
partial deduction for +— append([1,2{Xs]; [7], Zs):
append([1,2], (7], (1,2, T —) _
append([1,2, XX, [7], (1,2, X|Zs]) — append'(Xs, [7], Zs)}
partial deduction for « append'(Xs, [7], Zs):
append'([], [7, [7]) ~—
append ([X | X sl, [7], [X|Zs}) — append(Xs, [7], Zs)
résulting set A: {append([L,2|Xs), [7], Z5), append(Xs,[7], Z5)}
resilting partial dé_duct'ion: “ -
append([, 2], [7}, (1,2, 7))«
append([1, 2; X|Xs] [?] [1, 2, ; X|Zs]) «- append'(Xa,[7),Zs)
append'({], [7], [7]) —
append'({X|Xs], [7], X|Zs]) — append'(Xs, (7], Zs).
Notice that this resilt is equal to the one obtained in‘example 5.5.3.
Example 7.3.7
comiplete renaming of the reverse program:
reverse([], Zs, Z5) — _
reﬂer.‘se([Xth Y s, Zs) +— reverse’(Xs, [X|Vs], Zs)
reverse (ﬂ Z3,Z3) —
reverse' ([X|Xs), Y s, Zs) — reuerse’{Xs, [X|¥s], 29)
partial deduction for «— reverse(| 1,2|X5), [}, 25):
reverse([1, 2], 11,[2,1]) « .
reverse([1, 2, X|Xs), [y Z5) — reverse'(Xs; (X, 2; 1], Z5)
partial deduétion for «- reverse’ (X 5,1X,2,1], Za):
re‘uerse'(ﬂ 1X,2,1],1X,2,1])
revérse’ ([X*{X3s],[X,2; l},:'Zs) reverse! (Xs, [X, X2, A7, Z)
msg of reverse’(Xs, [X, 2,1}, Zs) and reverse'(Xs,[X', X, 2,1], Zs):;
reverse'(Xs, [X, Y, Z|Y's], Zs)
partial deduction for « reverse'(Xs, [X,Y, Z|¥s), Zs):.
reverse’ ([, [X, Y, Z|Ys), (X, Y, Z|Ys]) —
reverse' ([X'|Xs], [X,Y, ZiYs], Zs) — reverse’ (Xs, (X', X, Y, Z|Ys), Zs)

{_

5.4

7.3. AN ALGORITHM FOR PARTIAL DEDUCTION 129

resulting set A: {reverse([l,2|Xs],[],Zs), reverse’(Xs, [X, ¥, Z|Ys), Z 5}
resulting partial &eductibni

reverse([1, 2];[], [2,1]) —

reverse([l, 2, X|X s}, [], Zs) +— reverse' (X s,[X,2,1], Zs)

reverse'([], [X Y, ZY) ,[X, Y, Z|Ys]) =~ '

reverse' ([X'|X3], [X,Y, 2|Ys], Zs) — reverse'(Xs,[X', X, ¥; Z|Vs], Z 8)

Of course, the abtained specialised ‘programs can be further optimised by elimi-
nating redundant functors, usingtechniques as proposed in {67] or [12].
We can prove the following interesting_-' properties of algorithm 7.3.5.

‘Theorerm 7.3.8 A]go_rif.hm_ 7.3.5 terminates.

Proof Termination of the For-loop follows from the finiteness of A and A p and
from the fact that for a finite number of terms, an.msg can be computed in a
finite amount of time (see e.g. [105] for an algorithm):

We now show termination of the White-loop (and therefore of the entire al-
gorithm}. Termination of a single execution of the While-loop is immediate from
the above and theorem 7.2.2: That it will only be executed a finite number of
timies is shown by the following argument. We first notice that whenéver an atom
is.added to A, A does not contain any atom with the same predicate symbol as
the one to be added. In:other words, for each Predicate symbol occarring in
Fr U{+4}, there can be at most one atom in A (and none for any other predi-
cate symbol). This means that at any time, the number of atomsin A is not only
finite, but is bounded by the (finite) number of predicate symbols oceurring in
P, U{+—A}. Secondly, the (initially unmarked) atom considered in a specific iter-
ation, is always marked. Finally, whenever a marked aformnin A isteplaced by an
unmarked ore, the latter isa generalisation of the former. This entails that this
process of replacement will stop after a finite amount of iterations, at the latest
when for this particilar predicdte, a most general atom {all terms being eqgual
t6 uninstantiated variables) has been reached. These three considerations taken
together ensure that after-a finite amount of iterations of the While-loop, there
‘will be no unmarked atoms in A. So, execution of the ‘While-loop terminates, D

Theorem 7.3.9 Let P be a definite program, +pf(t;,.. <18n) be a goal and p'be
a predicate symbol.used as inputs té algorithm 7.3.5, Let A be the (finite) set
of atoms and F,’ be the program output by dlgorithm 7.3.5. Then the following
hold: '

e Alis inde_pendent.’-

© For any godl G = « Ay, ..., Am consisting of atoris that are instances of
atomsin A, P,' U {G} is A-covered.

130 CHAPTER 7. SOUND AND COMPLETE PARTIAL DEDUCTION

Proof

‘e We first prove that A is independent.
In the proof of the previous theorem we have already argued that no two
atoms in A contair the same predicate symbol. Independence of A is an
immediate consequence of this. "

» To prove the second part of the theorem, let P,.* be the subprogram of P, g

congisting of the definitions of the predicates.in P, upor which .G depends
‘We show that P;* U{G}is A-closed.
Let Abeanatomin.A. Then the For-lcop in-algor_it:hm'Z.B.S.en_s_,ures_ﬁhere' is
in A a generalisation of any body literal in the computed pariial deduction
for 4 in P,'. The A-closedness of P.* U{G} now follows fiom: the following
two facts :

1. P, is a partial deduction of a program (F;) wrt A.
2. All atomisin & are instances of atoms in A.

a

Corollary 7.3.10 Let. P be a definite program; «—p(t1,..:,%,) be a goal and
p be.a predJca.te symbol used as inputs to algorithm 7.3.5. Let A be the set of
atoms and 7, be the program output by algorithm 7.3.5. Let. G = +— A4,,..., An
be-a goal in the language underlying P, consisting of atorns that are instances of
atoms in A. Then the:following hold:.
o P.’U{G} has an SLD-refutation with computed answer ¢ iff P {G} does.
o P.'U{G} has a finitely failed SLD-tree iff P U {G} does.

Proof The corollary is an imimediate consequence -of letnma 7.3.4 and theorems
5.4.7 and 7.3.9. O

Proyposition 7.3.11 Let P be a definite program and +—A be an. atomic goal used
asinputs to.algorithim 7.3.5. Let A be the set of atoms output by algorithm 7.35.
Then A € A.

Proof A is put into A in the initialisation phase, From definition 7.3. 2, it follows
that:no clause in Py contains a.condition literal w1th the same pred1cate symbol
s A, Therefote; A will niever e tetioved from ‘A" ™~ R o

This proposition ensures us that algorithm 7.3.5 does not suffer from the kind
of- speci'a.l'lsatlon'loss illustrated in example 5.5.2; The definition of the predicate
which appears in the query « A, used as: starting input. for the pa.rt.lal deduction,
will indeed be replaced’ by a partial deduction for 4 in. P in the program ontput
Dby the algorithm.

7.4. DISCUSSION, SOME RELATED WORK ' 131

Finally, we have :

Corollary 7.3.12 Let P bé a definite program, «+—A = —p(ty,...,%,) be a goal
and p' be a predicate symbol used as inputs to algorithm 7.3.5. Let -P.’ be the
program output by algorithm 7.3.5. Then the following hold for any instance A’
of A:

¢ P.'U{—A% has an 'S_LD-refl.l__ta.tic_:n: with computed answer 9 iff Pu {«A'}
does.

e P/ {4} has a finitely failed SLD-tree iff P U {+ A’} does.

Proof The. corellary immediately follows from corollary 7.3.10 and ptt;ip'dsi—.
tion 7.3.11. 0

Theorem 7.3.8 and corollary 7.3.12 are particularly i_nteresting. In words, their
content can’ be stated as follows. Given a program and a goal, algorithm 7.3.5
produces & program which -provides the same answers as the original program
to the given query and any instances of it. Moreover, computing this (hopefully
more efficient) program-terminates in-all cases. '

7.4 Discussion, Some Related Work

Let us first briefly compare algorithm 7.3.5 with the partial deduction proce-

dure with static renaming presented in [14] (see section 5.5). First, we showed
abovc-.that_our. procéedure terminates for aII"déﬁni_t_e_ programs and queries while.
the latter does not. The culprit of this difference in behaviour is (apart from

the unfolding strategy used) the way in which msg’s are taken. We do this
predicatéwise, while the authors of [14] only take an msg when this is necessary

to keep A indépendent. This may keep rnore specialisation, but causes.non--

termination whenever an infinite, independent set A is generated (as illustrated

in example 7.3.1}. The. use of algorithm 7.2.1 {or further refinements, see below).

guarantees that all sensible unfolding (and therefore specialisation) is obtained.
The:way in which algorithm 7.3.5, in addition, ensures soundness and complete-
nesy; takes care that none of the obtained specialisation is indone. Therefore,
in principle, it does not .seem worthwhilé to.consider more than .one msg per
predicate. See however subsection 7.5.3 for some further cominents on this issue.

Next, the method in [14] is-formilated in a somewhat more gederal framework
than the one presented here. A reformulation of the latter incorporatinig the ¢on-
cept of L-selectability {i.¢. some predicatescan be declared “not to be unfolded”)
and allowing more than one literal in the starting query: is quite straightforward
(see also the subsequent séction).. Not-at a_ll-imm_edia'te_, however, is a generalisa-
tion to normal programs and queriésand SLDNF-resolution, ‘while retaining the

132 CHAPTER 7. SOUND AND COMPLETE PARTIAL DEDUCTION

termination property. In e.g. [14], it is proposed that during unfolding, negated
calls can be executed when ground and re_m_air; in the resultant when non-ground.
This of course jeopardises termination, since termination of “ordinary” ground
loglc prograrmn execution is not guaranteed in general ‘One-solution is restricting
attention to specific subclasses. of programs (e.g. acyclic or accepta.ble programs,
see (€], [9]). Another might be using an adapted version of our unfolding criterion
in the evalnation of the ground nega.twe call, .and keepmg tke latter one in the
resultant whenever the produced SLD(NF)-tree is not complete. Yet a-third way
might be offered by the use of more powerful techmques related to. constructive
negation (see [32], [33]). {20] can also be mentjoned here, It presents a spemah-
sation method for normal programs, based on the transformational approach to
negation taken in [11) and constructive negation. It will be interesting to inves-
tigate the relationship with extensions of our method. Finally, [10] is another
récent paper that freats nega.tlon in partial deduction. In the context of well-
fourided model semantics ({172}, it -re-establishes a theoretical framework for
partial deduction, including provisions for unfolding non-ground negative literals
and applying loop checks.

Returning to [14], we can mention that its partial deduction. method has
been. fiirther extended with supporting transforimations in [12]. Two separate
optiriisation techniques are initroduced. The first is called dynemic rendming and
-constitites a generalisation of the renaming techniques described above. Indeed,
these onlyapply to the predicate sytmbol(s) occurring in the initial goal for which
a partial deduction is computed. However, it. might be advantageous to simjlarly
avoid specla.hsa.t:on loss for other predicates, appeating in SLD-tree leaves (and
this in'A). To this end, instead of statically introducing renamied definitions for
some predicates, one performs.renaming dynamically, during partial deduction.
Atoms that are.added to A and are unifiable With one already present, but not
2 variant (mo_dulo renaming) of any such atori, obtain a fresh predicate symbol.
In this way, 1o specialisation loss at all occurs. A more modest strategy, only’
rena.mmg atomsthat are, again modulo renaming, not an instance of one already
‘present, s also mentioned. Tt does not prevent all. specialisation loss, but since it
more moderately mtroduces new predicates and their definitions, it is less prone
to cause code explosion. Further details and formal correctness proofs can be-:
found in [12].

econd: optm-usatxon technique proposed.in:[12], can be termed argumeni.
. ﬁ 1. In essence, it is.a postprocessing procedure’ that IEMOVes COIINON con-
stants, structures and multlple occurrences of variables from atoms- with the
same predicate symbol in the resulting. program and goal. Similar techniques
‘have been extenswely studied in [67). The beneficial influence on size and speed
‘of transformed programs is often cons;derable.

‘Next, an interesting approach to program specialisation is proposed in [66]

H
H

7.4. DISCUSSION, SOME RELATED WORK 133

and further elaborated in [70]. its general flavour differs from that of partjal

deduction as presented. above, and its overall aims are more ambitious. We.

will not attempt a full discussion, but rather limit ourselves to some issues that
are immediately relevant to our work in the presént context. A first important
ingredient is the use of ‘determinism to cottral unfolding. In the context of pute,
definite logic programs, this reduces to unfolding atoms that match the head
of only one program clauge, Proceeding thus avoids code €xplosion and other
phenomena that effectively diminish instead -of increase 2’ program’s execution
efficiency (see also section 6.6). Several enhancements to this basic strategy are
also proposed, one:of the most noteworthy of whi¢h is a “look-akead” faci_ﬁt_y,
which essentially relaxes the “match only one head” criterion into “start only one
non-failing branch”. We briefly return to the importance of the latter inn the next
section. Tt is argued that determinism suffices to ensure termination of ‘unfolding
for realistic programs. However, a depth ‘boundis necessary to safely deal with
exceptional cases, '

A second issue we would like to discuss; pertains to the-'oyera.lj control of
partial deduction (i.e. the manipulation of the A set). The method in [70] first
-constructs A-during a separate fow analysis phase. The central ingredient of the
latter is an abstraction -operation, relying on the notion of characleristic path,
‘Such a path formally characterises how an'-.SLD'(NF)-déi'ivation “looks™. Bvery
concrete atom that produc_es :a derivation with. the same “look” is represented
by the. same atom in A. In this way, a good compromise is achieved between
having not. encugh atoms in A (and missing out on important specialisation
opportunities) and having too. many-6f them (with code explosion as a result).
Especially when eombined with restrictive un_fdl_di'ng.'Stratég’ie's,- this issue seems
a crucial one. Tn géneral, certified termination of such & fow analysis requires a
fixed unfolding depth bound.

Finally, another. recent, quite closely related work is presented in [75). It
constitutes an automatic partial deduction system for Gédel programs, and is also
based on finite unfolding and the frarnework in [114]. Especially the specialisation
of meta-programs using the ground Tepresentation stands in the focus of ‘attention
{[76]). Moreover, the system s self-applicable, Particularly interesting in the
present context, is its control strategy, both to ensure the termination of unfolding

and to handle the composition of A.-The former issue is dealt with through &

static termination analysis, dividing predicates into safe and unsafe, based on
the behaviour of their arguments during an abstract partial deduction. During
concrete partial deduction, calls to unsafe predicates are not unfolded, Moreowver,

the abstract analysis also returns msgs for calls t6 unsafe predicates. In this way,

both the computation rule and composition of A are statically determined. This

might result in less specialised Prograrms, bzt facilitates self-application. And, as

test results show, the system‘s overall performance is quite satisfactory.

134 CHAPTER 7. SOUND AND COMPLETE PARTIAL DEDUCTION
7.5 Experiments
7.5.1 Setup

Horvath ([83]) has implemented the above presented procedure for partial deduc:
tion, as well as several techniques drawn: from the work discussed in-section 7.4.
The resulting system piovides a good testbed fot various approaches to the con-
trol of partial deduction and unfolding. In this sectior, we present some resulis
obtained for five well-known betichmark programs, used to compare. partial de-
duction systéms in [104].

The five examples we: will consider @re fairly small, definite Prolog programs.
Some of them cotitain calls to built-in comparison predicates (that are, of course,
free of side effects): The current implementation does.not. touch such atoms
during partial deduction. Since their role is all in all-quite modest in the consid--
‘ered programs, this turns out not o be too big a limitation, and the programs
can simply be assumped, pure. (In fact, we decided not to discuss results. for the’
.ssupply pogram in {104] for this reason,. since that paz_ti’qu_l_a.r program does rely
heavily on sich comparison predicates.) The source code of the five benchmark
programs, together with the goals for which partial deductions were computed,
as well as the goal ingtances used for run-time tests, can’be found in sppendix B

Horvath's system allows the transformation of programs using various comi-
binations of control technigues. We*will present results for the following overall
methods:

Swr Basically algorithm 7.3.5, However, the implementation is founded-on the
‘work in [124] and [125], the essence of which coincides with the content .of
sections 7.2 and 7.3. Some details vary; mainly in the unfolding algorithm
used (see e.g. subsection 8.2.4 below}, but these donot affect the discussed
exarple programis. ' '

Swir: As above but with one itnportant modijfication to a'.lgqrithm_?ﬁ.l: An atom
¢an be selected for unfolding if the résulting goal weight eguals the weight
«of thie direct covering ancestor, unless.a variant of that atom was selected
in somie ¢overing ancestor. In other words, the unfolding strategy of Swv
.amalgamates those of Sw above and Sv below.

_ Used.in this crude form, Swr no longer guarantees finite' unfolding., How-
ever, b section 8.5, ‘wé show How ‘the basic framework ‘of chapter 6 can
be extended to-enable safe modifications of automatic unfolding along this
line. Agatn, the example programs below are not affected by the inore sub-
tle aspects involved &nd the current implementation of Swv can be used.

Swus Partial dediiction is again performed as in alg‘ozifhm 7.3.5, only now Ry (see
page 87_]‘ ‘governs unfolding:.

7.5. EXPERIMENTS 135

Swud: As Swy, bu’t,_ with t-he_.p'ossi_ble"'-cm:eption of the ﬁrst_-sfep,.nnfolding the
root of an SLD-tree, only determinisiic unfoldings are performed, Here,
determinisin is to be undersiood in the strict sense: No look-ahead is avail-
able.

Dwvs The _unfblding strategy of Swv is combined with an overall partial deduc-
tion method that performs dynamic reneming {according to the. eager “not
a variant™ hetrristic).

Dwvd: As Duw, but unfoldings.are again deterministic, as in Sw'_uc'i;

Diwvd: As the previous one, but with ihe more moderate “not an instanée”
renaming sirategy.

Finally, in all cases, the gross result programs are further optimised, filtering
arguments and removing obviously useless clauses, in a ‘postprocessing phase.

For the original (Orig) and the various. transformed Pprograms produced by
the methods described above, we present the following data:

o ClauseNr: the number of clauses in the program

e Int-Time: thie approximate CPU-time (in microseconds) of interpreted ex-
ecution with the run-time goal

¢ Comyp-Time: the approximate CPU-time (in microseconds) of ‘compiled ex-
-ecution with the run-time goal

CPU-times are not very accurate {fluctuations-of 20 t6 50 microseconds are com.-
mon); but do provide a correct overall picture of major tendencies. Experiments
were run in ProLog by BIM on a Sund,

7.5.2 Results

Our first example concerns. the already familiar transpose program’ (page 236).
Table 7.1 displays the obtained test data. Each program is labeled with the ndme
of the method used t6 produce it.

Table 7.1 shows that algorithm 7.3.5 (Sw) performs very well on this example.
It succeeds in cotmpletely unfolding the source program and obtains a single fact,

for transpoging a 3 x 9 matrix, as its result. .Of course, both Sww and Duwy lead

to exactly-the same outcome. Interesting is the behaviour of Su. It lacks the
facility to.focus on covering ancestors, which turns out to be a serious handicap:

for dealing with this example (see also. example 6.4.13). Of course, R, can be
‘meodified so that. it does restrict, comparisons to chains of covering ancestors, but
currently, this is not implemented. Finally, we can also ¢hiserve that the metliods
with deterministic unfolding are somewhat too cautious. The method without

L
i

Y R Mmoo

S N

136 CHAPTER 7. SOUND AND COMPLETE PARTIAL DEDUCTION

Program | ClauseNr Int-Time Comp-Time
Orig _ 6 1440 310

Suw 1 310 80

Swu i 310 80

Sv 6 1280 210,
Swud 2 400 80
D 1 310 80
Duwd 10 450 80
Diwvd 10 440 90

Table 7.1: Test results for trenspose,

dynamic renaming (Swvd) can not sufficiently specialise. Tt produces a {quite
elegant) program for transposing a matrix with 3 rows, ¢containing just a single
predicate defined through ohe base and one recuzsive clause. Dynamic Tenaming
prevents specialisation loss, but leads $o a rather large program, with ten clauses
for ten different predicates; each processing one element in 3 increasingly shorier
rows. The culprit is the non-deterministic recursive transpose call. Obviously,
a one-level look-zhead, deciding whether nullrows{ Xmatriz) holds, would solve
the problem. '

Let us now consider relalive (page 237), a program. without any function
‘symbols. Test results are exhibited in table 7.2.

Program | ClauseNr Int-Time Comp-Time
Orig 15 6300 1090,
" Sw 60 2010 -280

Sury ' 21 40 10

Sy 53 610 15D
Swvd 15 6270 1100
Dy 21 a0 20
Duvd 18 5110 500
Pawvd, L A8 8100 950

Table 7.2: _Test resulis for relotive..

N'_c')t surprisingly, the performance of Sw is totally insufficient. But Swv
behaves. excellently: It prodices a program with only ground facts, registering
all relatives of john, most of which-occur mitltiple times. Deterministic unfolding

7.5, EXPERIMENTS 137

either dbes.-noﬁhing‘, or, when combined with. dynamic. renaming, produces two
slightly specialised. definitions of ancestor: one finds ancestors of Jjohn, the other
is peneral. A somewhat unexpected result iz found for Sw. “That method again
suffers from the lack of :something: equivalent to hierarchical prefoundings, due to
the presence of two ancestor calls in the-clause for relative. (Note that this does
not -irn;'11t=:a;1ia.t.t*:l)_r fit either of the two. patterns on page 101. We could therefore
add a third case tI’ie’re_;) Moreover, the current implementaﬁion of Sv doey not
distinguish between recursive and non-recursive predicates. Asa result, not only-
some encestor goals, but also. various calls to. parent are not unfolded.
Our - third exarnple involves meta-interpretation, computing the depth of &
proof through a vanilla-like meta-program (page 238). Table 7.3 shows the. test

i
i
4
%
‘

data.
! .
: Prograin | ClauseNr Int-Time Comp-Time.
Orig) 1380 300.
Su 13 90 20
Swv 12 T0: 20
Sv 12 100 20
Buvd 10 1430 310,
Dhww 13 680 30
Duvd’ 13 1390 320
Diwud 12 1395 310
| Sw™ ' 10 1030 260

Table 7.3: Tést results for depth,

At fivst sight, the results for this example are quite ‘surprising, In: subsec-
tions 6.3.3 and 6.5.3, we discussed how properly unfolding meta-programes fe-
quires sophisticated meaéur'e"fUnc'tions, focusing on subarguments. And’ yei, al-
gorithm 7.2.1, which lacks. such a capacity; performs very well. Sw (and Swv) :
‘produces - twelve. ground facts, one for each element in the input list. For the i
given goal, this resuit is optimal. (Less surprisingly, Sv reaches the same result.) :

'However',:fur.t_.'her reflection leads to the conclusion that this excellent result is an
artefact, created by the extremely simple nature of the objéct program at hand: . {

It contains mogrowing arguments, and no clause bodies with more than ore goal.
The latter feature implies that it can be meta-interpreted completely without
parsing; depth’s sécond clause is never used. The former cancels the need for
focusing on.subarguments, as long as the same object predicate is dealt with, So ;
the only remaining difficelty for Sw’s unfo'lding is the (single) transfer from {
member to append. And this particular increase in goal weight. happens to be-

138 CHAPTER 7. ‘SOUND AND COMPLETE PARTIAL DEDUCTION

handled by the static renaming. Without such a renatning, the result is far less
satisfactory, as ¢an be seen in table 7.3%s Sw™ entry. It conies as no surprise then
that dynamic renaming (Dwv) improves on the performance of Sw”™: Specialisa-
tion is now obtained through the construction of separate SLD-{rees. However,
‘the optimal Sw result is not reached: Moré arguments and structures: are left in
the twelve facts, and an extra “transiation” top-level clause is p_r__o'duc_:_ed. Finally,
it can be observed that deterministicunfolding is again too weak, We return to
the specific issue of unfolding meta-interpreters in subsection 8.6.4 below.

Next, let us address a classic example from partial evaluation and deduction
Titerature: the (in)famous match program (page 239). The obtained test resulis-
are depicted in table T.4. ' '

Program | ClauseNr Int-Time Comp-Time
Orig 4 ' 1560 470
Sw 8 1590 480
Swy 8 1560 470
Sv 20 4120 830
Svo 12 2630 610
Swud ' 4 1820 480
Dwu, 31 1530 480
Dwvd 13 1060 4000
Diwvd T 1080 400
K mp G 970 350

Table 7.4: Test results for match.

The first striking aspect of this example is the apparent. breakdown of Sv.
Part of tlie problem, however, seems to be-the untouchable nature of the \==
builé-in, even when both of its arguments are ground. As a result, a number of
obviously useless clauses are leftin the transformed program. A postprocessed,
hand-optimised:version, not including such nonsensical clauses nor evidently true
\== calls, was therefore producéd and tested. As the Sve entry in table 7.4
shows, this turns out fo be only a partial remedy. $o; it seems that R, really
performstoomanyunfoldmgson'ﬁhlsex.a.mple it e

Sw, Swy and Dwy do not succeed in transforming match in a useful way. It
¢ah be _n_oted‘_tha_t the same was true for the partial d‘edui:‘tio‘n_ systems tested in
[104]. However, deterministic unfolding comibined with dynamic repaming does:
prodiice. interesting Tesults. Particularly Diwvd, usirig a moderate remaming
‘strategy, leads to the elegant and comcise program in figure 7.4. As can be
observed in _i;a.ble 7.4! its execution times iinprove noticeably upon those of the

7.5. EXPERIMENTS 139

match(X) — matchl{X)
matchl([X|Xs]) « o \==-X, match1(X)
..m,_qi_c’hl{ {alX a) — match2{X 8)

match2([X[Xs]) — g \== X »match1{[X (X s])
match2([alX §]} e match3(X s)

mateh3(LX|X3)) b \== X, match1([a, X|Xs))
match3([b[Xs])

Figure 7.4: mateh Program produced by. Diwvd,

-original match program. However, we also find that the basic “upon a non-match,

shift one position in the string and Testart the search® strategy of match is jefi
untouched. A smart “Knuth~Mor_riS»_Prat’t-”-like‘ (see the comments and references.

on'page 239} patbern maicher would Ppass smaller arguments to the “riatch” call
in the first clauses for. match2.and. match3, A Program operating in that way is

dépicted in figure. 7.5. We also submitted this Program to a test-run, using the

match(X) e match1(X)

matchl([X|Xs]) - a \oz X, matchl1{Xs)
matchl([a|Xs])) — match2(Xs)
mateh2([X|Xs)) « q \== ¥, matehl(Xs)
match([alX s}) — match3(X s)
match3((X| X)) o b \== X, match2([X | X))
match3{{b| X s]) ' '

Figure 7.5: KMP-like ‘match program;

performance improverment i indeed attained, In spite of the fact that the given
goal does not elicit X mp’s major talents,

same goal as béfore. The Kmp entry in table 7.4 shows the results: ‘A farther

handle grouﬁd_“-\':—_.zz atoms w_bulﬂ do the trick, Ih'fac_t,._ t‘he-'resqlt'. would be
the program cbtained by Gal__laghe_r in [65), from which K mp -can be derived
viz duplicate cqll removal. And indeed, {65] uses deterministic unfolding with a

As a fina] example; we consider a more intricate pattern matching Program,

‘nained contains (page 240). Test. data for some ‘methods with weight based
unfolding can be found in table 7.5,

First, unlike for the match pro'g_ra,_m just considered, methods. with determin.

{
H
:
i
i

140 CHAPTER 7. SOUND AND COMPLETE PARTIAL DEDUCTION

Program | ClauseNrt int-Time Cump-T-.ime_|
Orig 7 3230 680
5w 24 5090 500
[Buwv 29 3190 480 |
| Swod 7 3150 ‘660
Duwv 32 930 320
Duvo. 27 820 270
Duvd 13 3080 660
Diwid 11 3130 630
Duwvo-ma-. | 27 1860 550
| Orig-ma. 7 ~ 7230 1440 ki

Table 7.5: Test results. for contains.

istic unfolding return the original program virtually wnchanged. This agrees with
[70], where 1t ig-also observed tha.t:-'det‘._érm_ini_stic-unfoldin‘g--sgems gnable to deal
properly with the profoundly non-deterministic contains- example. Sw and Swv
show signs of code explosion: the result programs are fairly large and the speed
of interpreted execution is in fact considerably worsé than that of the original
program. In section 8.5, we conjectured that in such cases, compiled execution
will perform muck better, Clearly, the present examplé cotifitms this. Tt can be
observed that of Sw and Swy, the latter produces a better result: The larger pro-
gram is in fact faster because, through deeper urnfolding, more 's'peqialisatié_n can
be kept. However, both rhethods suffer from the 4one msg per predicate” strategy
which inhibits proper specialisation of con. Dynamic renaming offers salvation:
Duw produces theé largest program, but also the fastest. In-fact, the improper
treatment of \== again leaves some-obviously discardable calls and clauses: The
Dwuo entry “in table 7.5 shows the tesults after ‘manual postproge_s_sihg.-

Finally, we thought it might be arnusing to ran: Dwvo with the:(mor_e-difﬁt:ult)
run-time'patiern matching task used in the match example. The outcome of this
experinient: is included in the Duvo-ma entry. It can be compared -with the
performance of the original conitaing program on the sdme query (Ovrig-ma) and
thie reailts Varlo .sis.noted above, for neither

5 for the various fdte hoversions: -Of conrse; 3
of the two run-time goals contains’ more clever '_repds'itioniﬁg.s'iira,tegy is of much
ase. A fair comparison should therefore include tests where the string does
contain (initial) parts of the search. pattern, However; such further explorations
-are ot of"imr_r_icdiate Jnterest in the present context:

This concludes our presentation of éXpe_rimental' results. Further material on
various comparative tests can be found in [83]..

7.5. EXPERIMENTS 141

7.5.3 Discussion

Of course, the above experiments constitute a somewhat shallow basis for g gen-

eral comparative discission. However, we. nevertheless. endeavoir t6 formulate
some tentative conclusions which may-be the subject of future experimental ver-

ification.

® First, weight based '.unfo.lding,' particularly within. the framework of hiergr-
ehieal prefoundings, seems to Provide a good foundation for partial deduc-

tion. Not ‘only does it enable unfolding that terminates in a.non ad-hoc way,

but its behaviour is also quite_reason;-blc from a practical point of view,

This can be cqntras_ted.With-ndn-variant_ based unfolding which, apart from

possible 'ncn'-'termin_a.’r_.ign, ls'also plagued by a tendency to unfold too deeply.
(For conlains, partial deduction’ using Sv completely expledes.) Moreover,
the covering ancestor concept seéms of prime practical importance.

¢ However, algorithm 7.8.1 iself is not powerful enough to provide Pproper

unfolding in &l cases: A combination with non-variant unfoiding is obvi-

ously an improvement. It aiso lacks sophistication. to deal with complex
meta-prograis, ‘Qther issues beyond its veach include unfolding obeying

co-routining computation rules, and handling back propagation of varidble
instantiation. These topics: are extensively studied in chapter 8 of this
thesis, '

- De'terminisiic unfolding in its-elementary “matchi-only-one-clause” form is
often foo resirictive. A look-ahead facility seerns indispensable. Of course;
taken to its limii, this reverts to the weight based construction of en-
tire (incomplete} SED-trees and the subsequent pruning of “inappropriate”
branches. However, deciding which branches should.in faci be cut, is by

To means straightforward. For the transpose. and the reloiive Progrars.

above, both giving rise to-complete SLD-trees, it would be easy o see that
no such trimming should in faci take place. But as matck and contains
show, the general picture is not. so simple. We conjecture that the op-
timal choice depends on the amount of non-determinism inherent in the
program, bui clearly a challénging area of research ligs here, to the best of

our knowledge virtually unexplored.

interest because it Euarantees termination, and, combined with powerful
anfolding, not at .alf practically useless, is probably insufficient. First of
all, as could be. expected, restrictive unfolding strategies obviously need
more fiexible approaches: in most examples Swvd does virtvally nothing.
More mipottantly, also in most examples, 2 method with 'dy'n_amic:renaming
produces the best result, or at least equals it. Interesting in this respect.is.

¢ Finally, having one msg in A per-preidicate symbol, though of theoretical

£

I g 00 £ e S,

et e

142 CHAPTER 7. SOUND AND COMPLETE PARTIAL DEDUCTION

the one exception: depth. It reveals-a drawback inherent in the constriction
of several sraatler SLD-trees: specialisation can ftot pass- from subsequent:
trees to earlier ones. Repeated processing provides a remedy: for depth,
running Dww on its cutput leads to the optimal program produced by Stw.

o Next, it can be noted that it is not so much the dynamic renaming that
is responsible for the good behaviour of Dwv {of, for’ match, Diwvd). In
fact, very little Ténaming. is _going- on in.most of the .above experiments, and
simply using th‘e-.A—.cpﬂ"&._rcj:l_;é_t:_étegy of [14]- produices basically. the ‘same
resilts. We nevertheless “decided ‘to coricentrate o1 the dynamic renaming
strategies, because these ja.re_-;.thé:mofe genéral. Of course, neither of the }wo.
approaches guarantees fermination. In spite of thie excellent test resulfs
ahove, this shorbcoming should be. judged unacceptable. A possible way
out iight be provided by the application of weight based methods, not
unlike our approach to unfolding, to govern the composition of A. The
basic idea is as follows. If an atom-appeats in the leaf of some SLD-tree,
and it is a candidate for addition to A, one would first check whether it
“descends” ‘(through a series of SLD-trees) ffom some atom in A with the
same predicate symbol. If so, the latter shotld be “heavier”™: OF course;
hookkeeping might: get-quite complex. An alternative is provided by a safe
(i.e; sufficiently abstract) preliminary analysis to decide the corriposition
of A as proposed in {70]. A cotitbination, improving the precision of the.
analysis, seems 2lso feasible. Further tesearch is necessary-

7.6 Conclusion

In this chapter, we derived a first fully antomatic algot’ithm for_ﬁnite'unfolding-,
based on the framework Jaid ut i chapter 6. We then used: it'as a building block
in an overallpartial.deduction rnethod for definite:logic program and queries. The
latter was shown io be sound and complete in-the sense of [114], and to always
terminate. _ _ '
We also sketchéd somie of the main ingredients found in related work on
partial -deduction. Experiments comparing various blends were performed and.
‘their results briefly discussed. _
. - Weight based:unf 1ding of the kind proposed in chapter § emerg; as a promis-
ing approach, also. from a practical point of view, Howevet, quite: few issnes
require further study, in the. control of automaticfinite unfolding; as:well as in
the giidance of overall partial deduction. We will leave the latter as a topic for
possible. future research, but gxtensively address the former in the next chapter.

Chapter 8

Advanced Techniques in
Finite Unfolding

8.1 Introduction

In section 7.2, we presented a first fully automatic unfoldmg algorithm, based
on the fra.mework laid out'in chapter 6. We. discussed its operational merits in
section 7.5, and concluded that it seems to provide a good basis for the; construc-
tion of operationally viable unfolding. strategies. Howsver, we also pointed out
some .of its inherent limitations, and in fact already applied some modifications,
not yet formally justified.. ‘This final chapter of part I therefore reconsiders the
problem of how to finitely unfold definite logic programs and gueries. Detailed
formal developments and concrete algorithms are presented. Proceeding in tlhiis
way, we strive to achieve several .aims:

° Fi:_'s_t_, we present’ (at least partial) sclutions to the unfolding issues left open
in the preceding chapter. We also provide formal justifications for already
mentioned modifications:and enhancements to 'a.l'g_or'ithm 7.2.1.

‘». Throughout. most of what follows, we will particularly concentrate ori-issues
pertaining to full automation, presenting extensive formalisations of the
technicalities involved at a gradually increasing level of- generality. In this
way, it will be possible.to uncover common principles. underlymg our fully
automatic techniques.

» Elaborating several concrete instances of the frairework in cha.pter B, we
hope to illustrate its generality and Hexibility.

143

144 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

e Finally, in & wider perspective,; this chapter can be regarded as a.study on
what seems possible:and what not in online loop prevention, dot relymg on
any substa.ntlal offline analysis techniques.

This Jeads to the. following sketch of the present chapter’s further layout.
Section 8.2 describes a first: generalmatlon of the earlier work,. More general mea-
sure functions are introduced that incorporate le:ucogra.ph:ca.l ‘priorities. among
argumetits in a selected literal. We present an automatic unfolding algorithm
relymg oh such functzons, as well ag a noteworthy optimisation. In ‘section 8.3,
we build on this work and expand our horizon to alse consider parts.of a goa.l not
belonging to. the literal to be unfolded, while .deciding on unfolding: 'Wé show
how this enableés a treatment of co-routining, as-well as variable- instantiation
back propagation. Section 8.4 contains-an explicit formalisation of the underly-
ing issues in the search for optirmal measure funct:ons, carried out by automatic
unfolding algorithms. Next, section 8.5 forges a.unified approach, incorporating
both weight based nnfoldmg and the “checking for a variant ancestor” fechnique.
In this. ivay; it presents.a formal justification for the “combined” unfolding rule
used in section 7.5. Next, in section 8.6, we propose yet another reﬁnement of
the basic unfolding method in algonthm 7:2.1; We show that the. fra.mework in
chapter 6 is. sufficiently powerful {o allow automatic focusing on subarguments.
We illustrate how the resulting algorithm improves unfolding of meta~programs.
We touch on remaining problems in that context and sugpest possible solirtions
as. mt.erestmg directions for further research. Finally, a brief overall discussion
again constitutes. the chapier’s end.

8.2 Lexicographical Priorities
8.2.1 Introduction

In this section, we consider a first generalisation of the automatic unfoldmg
method. proposed in section 7.2. Indeed, algorithm 7.2.1 relies on rneasures con-
sidering & subset of the selected hteral’s ‘argument, positions, as introduced. in
definition 6.3.3. Tt turns out that solving some of the problems.mentioned above,
- Tequires: measnres that also fake into account arguments of other]iterals in the
:goal;.avd moreover; are capable:of imposing a priority between: different {subsets
of) argurments:

A method incorporating these facilities will be presented in the next section.
Fitst we prepare the way by elaboratmg an ‘intermediary extension of the pre-
ceding work. We will in this section still limit ourseives to measures based on
the arguments of a goal’s selected literal; but we will ‘tmpose priorities among
different argument posstwm We will show that this first advance already results
in increased unfolding power.

8.2, LEXICOGRAPHICAIL PRIORITIES 145

Below, we first infroduce measure fiinctions based on partitions of a predi-
cate’s set of argument positions and show that they can be used-as well-founded
measures on an SLD-tree, resulting in increased unfolding potential. Next, we
present a fully automatic .unfolding -algerithm, capable of discovering optlmal
-partition based measures, Finally, we show that an tinportant sifmplification of
the a.lgonthm keeps the refined control and the guaranteed termination while
efficiency is improved.

8.2.2 More powerful measures
We set out by introducing the following bits of notation. Let V be a set.
e Then P(V) denotes the powerset {or set, of subsets) of V.

o ‘Then V™ denotes the n-fold Cartesian product V x V.x ...x V (n copies)
of V. '

This allows us to define the following:

Definition 8.2.1 Let V be a set -and lét S1;+..,5; be k mutually disjoint,
non-empty subsets of V, togethier foriming a pa.rtltmn of V. Then the k-tuple
51, S;,) € P(V) is'called an ordered. k-partition of V.

In the sequel, we will often simply use the term ordered partitisti when the dimen-
sion (k) is clear from the context, or unimportant, Moreover, our attention will
focus on ordered partitions of the set of argument positions of predicate symbols.
In this context, we will refer to a predicate symbol and an associated ordered
{k-)partition; without explicit mention of the fact that the latter is a partition
‘of the former’s set of ergument ‘positions.

Definition 8.2.2 Let pbea predic'ate of arity n with an associated ordered
kipartition O = o105+ riashe v oo Lhaty oo ny 01 }). We define |, lp, {AIA is.an
atom with predicate syrabol p} — W as follows

]p(h, tﬁ-}lp 0 = (It'-n|+ -+ It11;|! *3 If"&n] R Itu:])
whiete |.| is the finctor norm as defined in definition 6.3.2.

Exampl_e B.2.3
]P([a?"s_l el, f(g(a.))’,_b) Ep.({l,z.a}} =(3 +2+ 0.) = (5}
Ip(la,5; ¢}, g(a), Bl (qatqn,3m = (1,3)

We intend to use such partition based rmeasure funictions.instead of the subset
based ones introduced in definition 6.3.3. However, an atom is no lenger mapped
into an element of IV, but into.a tuplein IVE, (% of course can be 1,-as’in the
first line of example: 8 2.3 a.bnve) ‘We must therefore first establish that we can
indeed define an order on IV®, siich that it becomes a well-founded set.

146 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING.

Definition 8.2.4 Let V be a set with an order > (and equality =). Then we
define the femcogmphscal order 3 on VF as followa

(wts ey v} >k (wr, .00 wE)
iff
VY01 <i< b:o = wior v > w;or wy > v
and _
Al<i<hiy >uwand V1l <j <y Sy

Notice that the relation -3 thus deﬁned is mdeed astrict order- re]a.tlon Tke
first. condition in the above definition is necessary in the context of partial orders,
to impose the restnctlon that the components of: both tuples should be pairwise:
comparable. For IV and IVF, ihis condition is of course trivially satisfied since
we have a total order on V.

Proposition 8.2.5 'I_.g_t_ _V_T,_>. ke a wel_l-:fqundg_d set, and »; the associated lexi-
cographical order on V. Then V*, 5y is a well-founded set.

Proof The proposition follows from the well-foundédness of V, >, definition 8.2.4
and the fact that-a tuple in V* has only a finite number, k, of comiponents. 0O

In particitlar, for each &, IN¥, ¢ 15’2 well-founded set. This means that functions
as introdiiced in definition 8:2.2:can indeed be used as measure functions to
control-nifolding.

Proposition 8.2.6. Let & be an ordered k-partition associated to a predicate
p- Let 7 be an SLD-iree and -5, a subset of G such that all goals in S, have a
selected litetal with predlca.te p. Suppose F, is defined as follows:

Fp S-rg >'r'_“ N >"k (G 3) [= S — FR(G 3)[}?'
“Then F, is-a welt-founded measure-on 5y, >, iff ¥, is monotonic.

Proof This immediately follows from definition 6.2.3 and proposition 8.2.5. O

Doing so can etail a significant gain in unfolding capacity, as the following
prototypical example shows.

Example 8.2.7 Consider the following prograrn:’
produce_consume([X|Xs] [} + produce_consume(X's, [X])
produce_consurne(X, [Y|¥'s])+ produceconsume(X,Ys)
And qguery:.
— produce consume({1, 21X s], [|)
Now.apply algorithm 6.5.5 using a single R-class for all selected literals, with as-
sociated measure function |.|;_,o where O'= ({1}.{2}) is an ordered 2-partition

8.2. LEXICOGRAPHICAL PRIORITIES 147

=—p_c({1,21Xs],I) (weight=(2,0))

< p c((20Xs]I1]) (weight = (1,1))

~—p_c(2IXs},[]} (weight=(1,0))

- P_c(Xs,[2]) (weight={0,1))

<= p_c(Xs,[]} {weight = (0,0))

Xs = [X'IXs']

- p_e(Xs,[X'D)

Figiire 8.1: Unfolding with weights'in IV Z,

associated to the predicate produce consume, abbreviated to p-ec. The resulting
incomplete. SLD-tree is depicted in figure 8.1. Nodes are annotated with their
weight, except the last one, which is a dangling leaf,

Nadtice that, when. a sinmiple one-component weight of the kind intioduced in.
definition 6.3.3 is used, only a trivial single step is possible if ‘both arguments
(or only the second) are considered, while focusing on the first argument causes
termination after two steps. '

8.2.3 An automatic unfolding algorithmi

In this subsection, we present a detailed, fully aufomatic algorithm for uﬁfo]_d—
ing, based on the ingredients introduced above. I is a first extension of algo-
rithm 7.2.1. We would like to obtain a concise and clear formulation of the algo-
rithm, including the automatic search for optimal measure functions. To make

148 CHAPTER:8. ADVANCED TECHNIQUES. IN FINIFTE UNFOLDING

this possible, e first include somie helpful definitions and prove a few relevant
‘properties about the colicepts they introduce.

Setting the scene

We set out with some straightforward definitions related to the behaviour of

measure functions on a pair of atoms.

Deﬂnltlon 8.2.8 Let p be a predicate of arity ni. Let Pi = p(t4;.. n) and
= p{dy,...y 5r) be two atoms and F a mapping from the set. of terms in the

_]_angua.ge underlying Py and P to @n s-poset ¥, >>. Then an argument position
i(l <4< n)is

o (Py,.P;)-decreasing for F iff F{ﬁ) > Fla;)

s (P, P;)-increasing for F.iff Fs)y> F(t,)

o (Py, P;)-stable for F iff F(t;) = F{s;)
Example 8.2.9 Let || be the functor norm, counting funictors in terms as definéd
in definition 6.3.2. Take

P =p([ﬂ,b, C], f(g(a)):b)

and _ s
‘Then:

¢ 1'is (P, P;)-decreasing for [;|

¢ 2 is { Py, Pa)-stable for ||

o 3 is (Py, P)-increasing for |.|

In the present section, we will always take F equal to Jl- We will therefore usually
omit the explicit “for |.|* addition. Notice that, since |.| maps to the totally
(stnctly) ordered N, >, an argument position is elther decreasing or increasing
or stable for |.|. A similar remark pertains to definitions 8:2.10 and 8.2.12 helow:
‘The next definition focuses not on argument pomtlons, but one level higher up
the scalé, in the restricted context of partition based tieasure’ hinetiong:

Definition 8.2.10 Let p be a predicate of arity n and O an assotiated ordered
k-partition, Let Pi and. P; be two atoms such that |P1ls0 = ('u;, .,) and
|Palp,0 = (..., ws}. Then the i-th {1:< i < k) component of Ois:

o (By, P,)-decreasing iff v; > w:

o (Pi, Py)-increasing i w >

8.2. LEXICOGRAPHICAT, PRIORITIES 149

o (P, P;}-stableiff v; = w;

‘We will use the notation.Ofi] to denote the i-th component of an ordered partition
0

Example 8.2.11 Take P, and P; as in example 8.2.9.
o Let O = ({1,2, 3}) then its single componest {1,2, 3} is (Ps, Py)-stable.
o For Of = {{1,2}, {3}), we have:
- O'[1] = {1,2} is (Py, P2)-decreasing.
— O'[2] = {3} is (P1, P,)-increasing.
Finally, at the level of complete measure functions, we can introduce;

Definition 8.2.12 Let M be a mapping from a set 5 of atoms to an s-poset
V,>. Let P, and P, be two atoms in §. Then M is:

o (Pi, Py)-decreasing il M(Py) > M({E;)
o (Pi, Py)-increasing iff M(P;) > M(P;)
o {Py, P;)-stable iff M(Pl) = M(DB,)

Of course, also definition 8.2.12 will mainly be applied to [|p;o-like measure
functions;

Example 8.2.13 Take P;, Pz, O and O as-above.
° |._|'3',_éo'.i5. (Fr, P;)-stable.
® E-Ip,o-" is (P;, P2)-decreasing, since. (5, 0)>2(4, 1)
o If 0¥ = = ({3} {1, 2}) then . \mon s (Pl_, Pz) -increasing, since (1,4)>3(0, 5}.

In the seque_], we will occasionally drop, the (P,,', P,;) annotation while using the
terminology introduced above (and below), when it is cléar which couple of atoms

.is.intended.

The above definitions will be useful i in the.coritext of comparmg the weight of
a goal with the weight of its direct covering ancestor. If we find that the weight
increases, we will try to replace the ordered part.itlon in use by one that does
result in a decrease. The next few definitions further prepare the way for this
opera.t.lon

Definition B.2.14 Let p be a predicate of arity » and O an associated ordered
k-partition. Lét Py and P; be iwo atoms with predicate symbol p. Then O[z] is
O’s lefimost (P1, Pa)-increasing comnponent If

150 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

1. itis (Pl-, P;)-.in_cre'asing
2. there is no 1. < j < 4 such that Off] is (Py, Pz)-increasing

We will occasionally use “leftmost” and “rightmost” in similar contexts without
explicitly mcludmg a precise definition as. the one above.

Definition 8.2.15 Let Pphea predlca.te of arity n. Let P, and.P; be two atoms
with predicate symbol p.and O &n associated ordered k-partition. Then we call
:a comnponent O[4} (Py, P;)-sensitive if the following two conditions are satisfied:

1. O_[ij contains at least one decréasing argument position.

2. If |.ly;0 is (Py, Po)-increasing and Off] is O%s leftmost increasing compomnent
then 7 <1

Below, we will be interested in replacing a non-decreasing measure. by one that
does decrease, th:ough -a more detailed partitioning of the set of argument posi-
‘tions. In: particular, this can be obtained by splitting a sensitive component in,
first, a decreasing and, second, an increasing part. Note that, for non-dec_rcasmg'
measures, both parts will be non-empty. However, splitting a component in this
way only produces the desired effect if it is not preceded by an increasing compo-
-nent. This is the reason for the second condition above. Finally, note that; while
‘the lefimost is therefore: the focus of attention among the increasing components,
‘below we will be interested in the' rightmost among the sensitive comiponents. In-
deed, splitting that one will result in the least drastic, useful weight change- (see
point (2b)in the proof of proposition 8.2.24). The. following definition focuses on
non-decreasing measures..

Definition.8.2.16 Let p be a'predicate of atity n and O an associated ordered
k- pa.rtltmn Let Py .and P; be two atoms with predicate symbol p, such that
|.lz;0 is not {Py, Pp)-decreasing. Then we say that |:lp,0 has (Py, Ps)-potential iff
@ has at least one (Pl, P;)-sensitive component.

Example 8.2.17 Take Py, P;, O, O’ and 0" as above.

‘o O[l] i’ (Pl, Pg) sersitive, - Since | |jp o1 (Pl, Pg) stable, “this 1r11pl1es ‘that
[-lp,0 ias {Pr,.Pz)-potential.

@ O'[1] is (Py; Pp)-sensitive.
e O" has no (P, Pg-)éSensi'Ei_ve components.

We have the following property:

8.2.. LEXICOGRAPHICAL PRIORITIES 151

Proposition 8.2.18 Let p be a predicate of arity ri and O an associated ordered
k-partition. Let P; and P; be two atoms with: predicate symbol p, such that
|:lp,0 has (Pl,Pg} potential. Let Ofi] be a (Pl,Pg)-senmtwe component. Then
V1 <j<i:0ljis (P, P)-steble.

Proof |.|,,0 has (Py, Py)-potential. It is therefore eifhier {Py, P;j-increasing or
(P;, Pg)-sta.b]e In the latter case, the result 18 ithmediate. In.the former case, it
follows from the second condition in definition 8.2.15. 0

We now formally introduce a refinement operation for o_rdercd.parﬁitions‘ and
‘partiticn based rneasures.

‘Definition 8.2.18 Let O = (CYy;...,C:) be an ordered k-partition of some set
V. Then the otdered &+ I1-partition O’ = (¢!, ... Cy,1) is called an i-refinement
of O (1< i< k)if:

o Gy =ClUCl,,
eVl <j<ii =0l

oVi<i<Lk:Cy= =Cly

Example 8:2.20 When defined as above, both @ and 0" are 1-refinements of
O.

As in the’ followmg definition, we will occasionally use the ferm’ “refinement” in
contexts where the actual 7 index does not matter.

Definition 8.2.21 Let p be'a predicate .of arity n and O an associated ordered
partition. Let O’ be a refinement of O. Then we call |.{,, 0 a refinement of |.|;.0-

Finally, we aré in a position to introduce the following key concept:

Definition 8.2.22 Let p be a predicate of azity n and O = (@4, .. C;,) an
associated ordered k-part.ltion Let P; and P be two atoms with predlcate
symbol p, such that |.[p,c has (P;, P;)-potential. Let €} be (s rightmost (Py, Py)-

sensitive coriiponent. Then: [.|,0 is the tight (Py, Pp)-decreasing refinement of
Lg0if @' is an {-refinement of O and:

s O'[l}={i € Cil¢ is (P, Ps)-decreasing or (P, Py)-stable}
o O’[l-+1] = {i € Cili is (Py, P;)-increasing}

Example 8.2.23 In our runging example, |.|, o is the tight (Pl, P;)-decreasing
refinement of |.|,,0. Notice that no refinement of |.[5,0n is {Py, Pp)-decreasing:

152 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

Definition 8.2.22 is.central in the automatic search for good measure functions.
Indeed, when a given measure function does not result in a weight decrease; we
will (try to) replace it by its tight decreasing refinement; thus enabling further
unfolding. Before we present the details of the procedure in the. algorithm below,
we first establish that tight decreasing refihements are well-defined.

Proposition 8.2.24 Let p be s predicate of arity n-and 0 = (Cy,...,Ck) an
‘agsociated ordered k-partition. Let Py and P, be two atoms.with predicate.
symbol p, such that 1.|p,o has (P, Ps)-potential. Then ||p,cr, the tight (Py, Po)-
-decreasing refinement of |.|;, o, exhibits the following properties:

1.].|p::o: is '(Pl',.Pg')-decrea,sing.

2. Any other (P, P;)-decreasing reﬁnement, |-lp,00, of |ip,0, obtained by
sphttmg one of (s components in two subsets, one of which contains all
its increasing argument positions, has the following property:

There i no atom P with predicate symbol psuchthat
1Plp,0n k41 |Plp,or-

‘Proof Definition 8.2.16 assures that O has a Tightmost (P, Pa}-sensitive. com-
ponent. Let I 'be its index. Then we-can argue as follows:

1. First, we zote that O[l] is- (P, Pp)-decreasing. .Next, proposition 8.2.18
implies that all O’ components to. the lefi of O[l] are (P, F;)-stable. 1t
follows that {-.I_p,_o.f is (#,, P;)-decreasing.

2. The desired property 'follows from the following considerations:

(a.) Splitting 2 component which is not (P, P,)-sensitive, if posmble, does
not. result in- a (P1, P;)-decreasing measure.

(b) Suppose we split a (P, P;)-sensitive component O[] with ¢ # . Tt
follows that % < I. Suppose that:|P|, 6 = (v, ..., vk).
Let _ _ _
|Plp,0r = (015 - vy By e s f"_;:”.f-;;.: Ry -“-;e-m_.)
and
IPEP ou = (1"1! -t ”_; 1 "":-Hr 1’1 ¥ ”_l.-+1)
“Then Y1 <3 < Uj _v_, _—.v" Moreoverv'*v‘ and v bl

o If v; > o then obvicusly IP[p,o:»k+1|P|p on.

° If'u, = o thenv¥; = 0. Moreover, Vit 1< j<l: v o= 0=
v,y = 0. Finally, v = 0= 9f, = v = of|, while, of course,
VI+1<i<k+1l: _.,-"—11'51=‘UJ So, either v} # 0-for
some < § < I, from which it follows that |P|p,o->~;,+1[P|p o,
O |Ply,0r = [Plpo

8.2. LEXICOGRAPHICAL PRICORITIES 153

(c) The-property is immediate for any refinement where also some. noxn-
increasing argumernt positions are put intoO*{I+ 1].

o

The second property above is the motivation for including “txght” in the namiing

done in definition 8.2.22. It ensures that we are relatively “conservative” when
taking refinements. Bigger weights are generally better than smaller because they

allow a longer decrease, which means more unfolding potential. It would of course.
be possible to further “tighten” definition 8.2.22 by splitiing off sufficiently large.

subsets of the set of increasing argument positions in the rightmost increasing

component. We have decided not to do this because it would complicate the
method both concepfually and computatmna.lly ‘Moreover, we.conjecture that

there would almost never be: a_substant_la_.l gain in.unfolding capacity;

The algorithm

Above, we developed partition based measure functions, thus generallsmg the

subset based. functions introduced in definition 6.3.3. We . now use them as a.

basic ingredient of an advanced automatic algorithm for sensible finite unfolding.
In a!gont.hm 8.2.25 below, we choose Rg, Ry,..., By as indicated in sec-

tion 7.2.- This means that a goal (G',J) such that {G’ 7) >pe (G,i}, covers.
(G, i) if: their selected Hierals contain the same recursive predicate symbol. For

Byeen, Fyy we ta.ke |-]5,0,-like functions, one per recursive predicate, where, as

before, we- a.ssoclate w1th a goal the value of the relevant measure function. on .

its selected literal The optimal partitlons Oy to be used for each recursive pred-

icate p; and the computation rule R are dynam:caliy fixed while executing the
algorithm.

Algorithm 8.2.25

Input
& definite program P
a definite goal —A4
Cutput
a finite SLD-tree 7 for P U {4}
Initialisation _
7 == {(—4,1)} {* an SLD-tree with a single derivation *}
Pr:= @ {* in Pr, the >,,-relation will be constructed *}
Terminated := 0
Failed := ¢
For each recursive predicate p/n:in P: O, == ({1,...,n})

154 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

{* We set ouit with 1-partitions
grouping ‘all argumerit positions in a single component *}
‘While there exists a derivation D.in r such that' D € Terminaied do
Let (@&, i) name the leaf of D
If (G.5) = (E‘:'i) .
‘Fhen {* (G,1) is & success node *}
add D to Termindted.
Else
{* First, we try to determine R(G,3) *}
Select the leftmiost atom p(ty, .. .,1n) in G such that
-one of ‘the following {mutually. exclus:ve) conditions is satisfied:
(G z) has no direct covermg ancestor
(G’, J) isthe direct covermg ancestor of (&, {) and
i IP,O, 15 (R(:J)l P(tls)) decreasl.ng
® {@&,7) isthe direct éovering ancestor of (G, 1) and
|.lp.0, has (R(G, 3), p[ih ¢yt))-potential ang
|-|p,04 s its tight (R(G"; 3)ip(t1, - - -, tn))-decreasing refinement and
T remains subset-wise founded w1th Tespect to
((Ro, Ry -, BN), (1505, 5-ves [0t s -1 Hlprei0yy 1) (%)
If such an-atom p(ty, ..., i,) caniot be found
Then {* (G,1) becomes a danglingleafl *}
Add D to Terminated
Eise
R(G z) = p(tla :tn)
If R(G, i) was selected on the basis of the third condition above-
Then {* Register the new partition *}
Oy = 0;,
Let Derive(G,7) namie the set of all derivation steps:
that can be performed
X Derive(G,i) = ¢ _
Then {* (G, 1) is a failure node *}
Add D -to Terminated and Failed
Else. _
kAl Extend the derwatmn *}
Expand I ini 7 with the elements of Derwe(G 3)

Let Descend(R(G,i),7) name the set of all pairs'((R(G, 1), a), (B8, 7)),
where

— B is an atom in the body of a clause.
applied in an element’ of Derive(G, 1)
~— @ isthe corresponding m.g.u.

8.2. LEXICOGRAPHICAL PRIORITIES 155

— J-is the number of the corresponding descendant of (G, z)
Apply 6 to the affected elements of Pr
‘Add the elements of Descend(R(G, 1),i} to Pr

Endwhile

Example 8.2.26 For the produce consume program and query of example 8.2.7,
algorithm 8.2.25 produces- exactly the SLD-tree. depicted in figure 8.1, Indeed,

‘the first unfolding is possible on the basis of the “no covermg ancesior” condition.
‘When we try to continue; we notice that fleags, 25) ‘is-not decreasing. . Bitt it has

potential, and its-tight decreasing refinement, |. lp ey, {2})s is the actual measure

function used to construct the SLD-tree dlsplayed above,

Theorem 8.2.2T7 Algorithm -"8,2.-25-_ terminates. The resulting SLD-tree T is.

finite.

Proof We first note that, @s long as changes in the measure functions do not

-oceur, the computation rule R is developed in a way that renders algonthm 8. 2.25
-an instance of algorithm 6.5.5. The result then follows from theorem 6.5.8. Tt

remains to be shown that the operation of replacing a measure function by its
tight decreasing refinement. occurs only a finite amount of times..
Pirst note there is only a finite number of distinet measure functions considered

atany ‘moment, one for each tecursive predicate in the input progam- P. Next,
the operation of taking a fight decreasmg refinernent involves splitting 2 non-

empty set of argument positions in two disjunct mon-empty sets. of argument
positions. The result. follows from the fact that any predlcate symbol has only a
finite number of arguriient positions. O

Concluding, we have proposed,. formalised and proven ¢orrect (termmatlng)

an automatic unfolding method for definite logic programs. This method gen-

eralises our previous approach where increasing argument ‘positions were deleted
from the consldered set, Instead of employing this strmghtforward but drastic,
technique, we now shsﬁ such argument. positions to the right in the considéred
partition, where they determine a. lexlcogra.p]:ucally less important component of
the resulting weighs. Unlike before, doing so allows future consideration of the
corresponding arguments, This creates extra unfolding opportunities, as exam-
ple 8.2.7 illustrates. We conjecture that partition based measures are- strictly
more powerful (i.e., other things equal, produce at least equally large SLD- -trees)
than those based on sets. (But see subsection 8.5.3.) Intuitively, this sesms ob-
vious. Indeed, set based unfolding is equivalent to considering only the leftmost
component in partition based unfolding, ‘We-do not include 2 formal analysis
of this issue, but instead proceed to exhibit an important simplification of the
above algorithm.

156 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

8.2.4 Relaxing monotonicity

We will not present a co’mjilete formal complexity analysis of algorithm 8.2.25,

However, one important observation should be made: it.is possible to’ irnplement’
such weight based unfolding algorithms in such a way that their behaviour is
Bnear in the size of the gemerated SLD-iree, as long as 1o change in Theasure.
function is‘required.. Indeed, as shown below, efﬁuent la.belmg techniques engure
that for any literal, deciding whether it should beé compared with the selected
literal of an ancestor goal, and, if so, carrying oul the comparison, can be done
‘without; any search,

However, the requirement that, upon refining a measure function; the whole
SLD-tree generated thus far, should be checked to verify whether it Temains
subset-wise founded, destroys this linearity property. It was alieady pointed out
in [125) that in practice this re-checking can safely be ignored, without damaging
termination, Experiments in [83] confirmed this conjecture, but 1o forrmal proof
was given. In the present subsection, we do present a brief formal development
on this issue.

First, we generalise the notion of & well-fourided measiire.

Definition 8.2.28 Let V, >y be an s-poset. A nearly-founded measure, f, on-
V. >v is a function from V, >y to some well-founded set W, >w such that the
fo]lowmg holds for only a finite number of pairs of elements v and a; € Vi

v; >y v; and not(f(n) >w f(v;)).

Unlike a well-founded measure {definition 6.2.3), a nearly-founded measure does
not have to be monotonic, But it is “almost™ monotonic: There are only a finite
number of offending. Ppairs in the mapped set. We now mtroduce the notion of a
subset-wise nemrly—founded SLD-tree, and show that it still guarantees finiteness.

Deﬁniﬁdh._S.Z;ZQ A SLD-tree T 18 subsét-wise neariy-founded if
1. “There exists a finite number of sets, Co, .., Ci, such that & = | J; . Ci-

2. Foreach i=1,. ., N, there exists a nearly-founded. measure
_f C-“ >q"""’ m; >':.

s, For ea.ch (G’ h) 6 C‘o a.nd each derlvatlon D inr conhmmng (G k)

e cither I is finite

e or there exists a descendant {G',7) of {G, k) in D such . that
{&', 5) € C; for some i > 0.

Theorem 8.2.30 An SLD-tree 7 is finite 1 it is subset-wise nearly-founded.

8.2. LEXICOGRAPHICAL PRIORITIES 157

The proof is a straightforward .adaptation of the proof for theorem 6.2.8. We -

include it. for completeness.
Proof

- If 7isfinite, then it is subset-wise founded and therefore:subset-wise nea.rly—
founded.

o Conversely, suppose that 7 is subset-wise nearly-founded and. infinite. Then
it contains an Infinite derivation D. From the first condition in defini-
fion 8.2.29, it followas that. ‘there must be a C; such that C;N D is in-
finite. In othel: words; there is some G containing an. infinite sequence
(Go, $0) o (Gls?'l))-,- ‘e

— Suppose i > 0. Then fi((Gy,,35,)) >i £i((Gisridsa))>i - . is.an infinite
sequence in W;, >;, contradicting the well-foundednéss of Wi, >

— This leaves-© = 0 as the only pmssﬂ:uhi;‘w,r But then condition 3 of deﬁ-
nition 8.2.29 implies that- DnU,>u ; is infinite, which again requires
the existence of some O, 1 > 0 such that C; N D is infinite.

We modify algorithm 8.2.25.

Algorithm 8.2.31 Algorithm 8.2.25 remains almost completely unchanged. We
Just delete the fourth conjunct (*) from-the third condition enabling a. literal

.selection. We do not reproduce the: whole remaining algorithm description here,

Proposition 8.2.32 Algonthm 8.2.31 constructs a subset-wise nearly-founded
SLD-tree.

Proof Most of the reasoning is identical to what has been presented in the
subset-wise founded case. We only point out that measure functions are indeed
nearly founded, since when refining = partition the resulting measure function:

1. might be non-monotonic on the finite subtree constructed. thus far
2. will be (subset-wise) strictly decreasing on newly added nodes

Furthermore, as argued in the proof for theorem 8.2.27, replacing -a measure
function by its tight decreasing refinement. occurs onily a finite nymber of times.
Together, these considerations imply that {subset wise) non-monctonicity will

‘hold for- only a finite amount of pairs in the overall tree. O

We ther_efore' -obtain:

168 CHAPTER 8, ADVANCED TECHNIQUES IN FINITE UNFOLDING

Theorem B8.2.33 Algorithm 8.2.31 terminates. The resulting SLD-tree T is
finite.

Having established its termination, we briefly return to the perfermance prop-
erties of algorithm 8,2,31. It is important to realise that checking the ucfoldability
of & certain literal can be done without searching branches in the SLD-trée, thus
giving rise-to the.above mentioned- linearity property.. Indeed; there is just o
sirigle test involved: a weight comparison with the selected llteral of the direct
covering ancestor. Finding out whether such a direct covering ancestor exists,.
and if so, spotting it (in oflier. words, ‘maintaining and using the’ Syr-relation),
can be efficiently implemented through the use' of lists of relevant node nurmbers.
With an atom in a goal, one such- list is associated. It registers per atom for

every recursive predicate the closést . -ancestor node where the selected literal
contains that predicate symbol.

Example 8.2.34 Consider the following schematic program with three recursive.
‘predicates:

P+~ q,p

ge—r

T 'I—P
Ar annotated SLD- derivation for .« pis deplcted in figure 8.2,
Since the program contains three recursive predicates, the length of thie lists
associated to the atoms in goals is 3. In each list,'the first position corresponds
to p, the second to g, the third to = Elements of the list ‘associated to an atom
A, are the mdlces of the most recent. goal node where 4 >p-ancestor literal of 4
with the corresponding pred:.ca.te symbaol was selectéd. A few concrete examples
will l::la_nfy this somewhat complex deseription:.

» In (2); the two descendant literals of the selected p:atom in (1) both geta 1
on the first list position. The other list p051t10ns of course rernain #vacant”.

e In (4), the left p-literal has >, -ancestors of every kind, the right one does
not.

'« In (5), the g-literal and the left p-literal both descend from the p-lltera.l
-selected.in. (4).- The right - p-literal; however; does not. - e

In this‘way, direct covering ancestors can immed:iately be spotted.. Con51der goal
(5) above:

= Selecting the g-literal requires a weighit comparison with the selected literal
of (2).

o The left p—litepaj must be compared with the selected one in (4).

8.2, LEXICOGRAPHICAL PRIORITIES 159

(2) =gl,_.) Pl

(3)-::—r[12_],p{1 |

(#) = p[1.23], pI1._,]

(5) <= q423, p 4231, p (1,_,_]

Figure 8,2: Direct covering ancestor annotation.

o Finally, the right p-literal, not descending from {4)’s. selected literal, can be
unfolded if its weight is less than the one associated to the ongmai p goal,
selected in (1).

‘1t is clear that the above results do not depend on the use of partltlon based
measures; they carry over stralghtforwa.rdly to.methods using set based measures,
thus providing the formal justification for the version of algorithm 7.2.1 that was
actually implemented and used in the context of [83].

At this point; it is interesting to include a brief comparison with some other
criteria to control unfolding as they have been proposed-in the literature. First,
for all four possible tests mentioned in [14), apart from the fact that they are
not safe (or mot “complete”, using the terminology proposed in [16] and [15)),

another drawback, more 1mmed1a.tely relevant to the discussion at hand, can be

observed. Indeed, any such criterion unavoidably necessitates searching th_rough
the ancestor goals, thus destroying the above mentioned: linearity property. Next,
consider the increasingly sophisticated criteria, proposed in [152]. The most sim-

ple minded one just involves counting the number of occurrences of the various

160 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

predicate symbols in-selected literals throughout the derivation. This can obvi-
ously be implemented such that linear behaviour results. For the more advanced
‘methods, this seerris less straightforward. Finally, [134] proposes & method for
partial deduction which involves niot only unfoldings, but also the introduction
of new predicaies and foldings.. A detailed discussion leads too far, bat it can be
noted ‘that the method behaves linearly with respéct to-a parameter related to
‘the size of the SLD-tree upon infolding, Qur analysis shows that similar results
can be obtained through the use of weight: based unfolding.

Theoretically, algorithm 8.2:31 might build larger trees than alporithm 8.2.25.
Indeed, its third condition for literal unfoidability is micre easily satisfied, since
it does not.contain (x). However, switching to. the-tight decrea.smg refinement of
the measure under con51derat10n, and thus extending the given derivation, might
be at thé cost of diminished unfolding capabilities in otler derivations. The
latfer possibility would be excluded ‘thirough the use of separate partitions per
chain of covering nodes. In practice, it turns out that all such technicalities are of
very minorimportance: argurments of most. progza.ms behave in a way sufficiently
regular to mask-these ‘details. [Condmon {*) e.g: 15 usually satisfied when takirg
a tight decréasing refinement. .J Weé'therefore simply note that we have eliminated
.a possible source of considerable inefiiciency from algorithm 8.2.25, while still
‘guarantesing termination. And we will do likewise for al} weight ba.sed unfolding
algorithms to be presented below.

8.3 Considering the Context

8.3.1 Introduction

Above, we:introduced partitions of the set of, and priorities amiong argument
positions of & goal’s selecied literal. We illustrated how this generalisation. of
section 7.2 brings extra unfolding power. In the present section, wé will take yet
‘another step towards. increased power.

Indeed we will return to:our.original ob_]ectwe mentioned in the introduction
to section 8.2: Talkmg into account arguments of several / all literals in the goal,
not only the candidate for selection. In other words, the basic idea underlying our

--approa.ch s ‘kept-intact: - The: we:ght of successive nodes with the same selécted
litéral in a chain of covering goals. should:decrease. But, weights will no. longer be
assigned-solely or the basis of the selected literal. A recasting of example 8.2.7
shows what we have-in mind.

Example 8.3.1 Consider the following program:
produce([, [} — _
produce([X|Xs], [X{Vs]) + produce(Xs,Ys)

8:3. CONSIDERING THE CONTEXT

= prodf1,21X],Y}, cons(Y) weight = (2)
Y={11Y"]
= prod([2X],Y"), cons(f11Y"]) weight= (1,1

= prod([21X],Y"), cons(Y") weight = (1)

= prod{X,Y"), cons([2Y"}) weight=10,1)-

= prod(X,Y"), cons(Y") weight= (0)

X=XIX, =X

*-_'conS(t.]) weight = (-,0)

~ prod(X".Z), cons([X*IZ])
O

Figure 8.3: Unfolding when. considering other literals.

consumell) —

eonsume([X |Xs]) — consume(Xs)-
and query:

«produce([1,2|X],Y), consume(Y")

161

We apply algorithm 6.5.5.imposing o corouiining ‘¢ompuiation Tile and choosing

the pair ((Ro, Ry, By), (F1, Fy)) as follows:
e R; = {R(G,1) containing produce}

e Ry = {R(G,3) containing consume}-

. Fl = .l'.'[praduéc',(.{lnz_}.)

= (F-jpraduce',:{-_l-,ﬁ.}s ! Ftan._mme',{i})

162 CHAPTER 8 ADVANCED TECHNIQUES IN FINITE UNFOLDING

The resulting SLD-tree is depicted in figure 8.3. Selected literals are usderlined
and nodes are a.nnota.ted with their: weipht accordmg to Fy or Fy.

It can be noted that the second consume- -unfolding is not allowed using a measitre
function just taking the consume-argument into account.

Ir this extended context, a major difficiilty is the dyndmic nature. of literal
occurrences: in goals. This is illustrated by the left branch of the SLD-tree in
figure 8.3. As long as the goalsto be measured basically look the samie; containing
one produce and one’ consumé literal, a measire function like 52 indeed makes
sense. But this is riot the case for the last non-empty goal in the above left branch,
where the produce call has “disappeared” (indicated by a “” in the associated
weight couple). Worse even, in general more than one literal with the same
predicate symbol might appear-in one goal, and it is by ho meaits immediately
clear what should be compared with what in suéh circumstances.

Qur work in this section will be presented as follows. First, we exhibit in
detail a rather straightforward solution. to the problems. lndlcated above, and
show that the- resulting algorithims possess sufficient power to handle typical
'producer—consumer coroutining applications. Secondly, we demonstrate how a
more satisfactory treatment of an annoying issue in “standard” unfoldmg 1s also
enabled Finally, we briefly describe a more. sophlstlcated approach:

8.3.2 Handling coroutining

‘We present two algorithins suitable for unfolding under coroutining-like computa-
tion rules. The first one, algorithm 8.3.11, is simply-a properly ‘specialised version
of algorithm 6.5.5. Algorithm 8.3.19 on the other hand, is a semi-automatic gen-
eralisation of algorithm 8.2.31. Along the way, we need to generalite a number
of concepts introduced above.

Tuning the basic algorithm

First, we want to allow argument positions of non-selected literals among those
determining a goal’s weight. On the other hand, we will stick to comparing a
goal with ifs direct covering ancestor. So, the _selected Hiteral will- continue to
play a major role, as actually seems quite natiral in the context of unfolding
logic programs. (See-also[15].) We set out: with the following definition:: = -

Definition 8.3.2 Let P be a program containing-a (recurswe) predicate symbol
p. A conlezl considering ordered h-pariition {cco-k-partition) associaied 1o p
in Pis a kituple O = ({ivgs... 65} 5. -, {dey- - -, dpi}) satisfying the following
conditions: ' '
1.-O has two kinds of components. Some, which we will call p-components,
consist of argument positions of p. The others contain argument positions

8.3. CONSIDERING THE CONTEXT 163

of recursive predicate symbolsin P, and will oceasionally be named non-
‘p-componenis,

2. The p-components together form an ordered partition of p’s set of. argument
positions:

3: Argument positions of recursive literals in P (1ncludmg) can appear in at
most one non-p-component.

Example 8.3.3 For the program. in example 8.3.1, the following are some -cco-
2-pa.rt1’r.10ns assoc'.la.ted to consurne:.

o ({Iproauce, 2produce); {11)
® ({Iproduce}, {1})
® ({1} {Pprottces Leonsume])
o ({13 {Leansumel)
Some further examples, ‘this time of cco-partitions associated o ‘prodiice are:
« ({12
o ({1}, {leonsume}: {23)
While the next two tuples are not legitimate produce associated cco-partitions:.
® _(.{1}-"{1=mwm!}-)
¢ ({Tconcume}s {1, 23, {leonsume})

Note that definition 8.3.2 is a conservative extension of the notion “associated
ordered k-partition™ introduced above. Indeed, we extend the ea.rher partltlon
of a. predicate’s set of argument positions with “components” containing some
argument positions of other relevant predicates. Although possible, we have de-
cided against requiring the presence of all argument positions of all (recursive)
predicates, since this'would often introduce a great amount -of irrelevant infor-
matlon in a goal’s measure function. The same conmderatlon is the meotivation.
for only considering recursive predicate symbols: Fmally, note that we anticipate.
a distinction between p in 'the selected- literal, and the same predicate symbol
occurring in non-selected literals: Argument. positions of P appearing in non-p-
components refer to such occuriences.

Before we can actually Totroduce the generalised measure functions, we need
to cater for “absent” arguments.

T AR L L ey b B e T A A A ., i 0 YA o

164 CHAPTER 8, ADVANCED TECHNIQUES IN FINITE UNFOLDING

Definition 8.3.4 We define IV, = IV U{.L}. We extend the usual order relation,
>, on IN with 0 >L. ‘We extend the usual addition, +, on IV with 2+ 1=1
4z =1,

L is an exira “bottom™ element. It will serve as the image of a measure function
or an-absent argument.. Notice that we have overloaded the >, 4 and = symbols,
and that the result of an addltmn involving L is 1, Of .course, IV, 5y >1s a well-
founded. get, and 80 i .k -k for any k> 1. _

“We need an operation on finite subsets..of BNy, delivering theéir maximim
elerneant.

.Dqﬁ__ni_tipn 8.3.5 We define maz ::P(N-b)' — IV, as follows:

o mag(@) =L

o maz({vy,... ,_11,,,}.) =v;such that Vi< j<n:j£i=ny > v
_ﬁote that, since > is a total .Ordgr on INy, moz is well-defined -on finite sets and
-its result uniquely determined. We continue:

Definition 8.3.6 Let & be a-goal consisting of a tumber of atoims, one of which:
has heen selected for unfolding, p an n-ary predicate symbol and 1 <i<m
Then we define:
M(Gyp, i) = maz({|;|}t: is the term occurring as ith argument _
of some non-selected atom p(t1,...,%,) in G})

Finally, we can formulate the following generalisation of definition 8.2.2:

Definition 8.3.7 Let P be 2 program and pan n-ary (recurswe) predicate symbol
appearing in P. Let O be a cco-k-partition associated to-p in P. Then we define
|l:lis;0 -+ {G|G is'a goal in the language underlying P whose selected literal kas-
predicate symbol g} — V¥, G — (91, -+ v as follows:

e If Ofr] = {ir1ys.4,%s} is & p-component and Pty .1 .ytn) is G's selected
literal; then v, = |t;_ |+ - -+ |8,]-

o If Ofr] = {ir1p,05- z.,,p”} where the pﬁ-subscnpts denote recursive
predlca.te symbols in P then o, = M(G Pt z,.l) BN M(G, Drjstrs).

Example 8.3.8 The weight annotations in figure 8.3 correspond to:
° Of?’qd".ce':"(-{l'! 25

L4 O_'cb_s-_uume ({1produ==} {1})
(taking _O,_cmmmg[l] {13,,..,3“.-,6, 2p,°duc=} glves the same resu.lts)

8.3. CONSIDERING THE CONTEXT 165

Example 8.3.9 Suppose
® p, ¢ and r are recursive predicates:

o G = q(f(a)), o F{f(a)), £(0)), B(f(a), &), o F(F(a)))
e in G, the first p-atom is selected

Then ||Gllp,0 = (240,24 1,14 L) ={(2,3, 1)

We have the following equivalent. of proposition 8.2.6:

Proposﬁ;lon 8.3.10 Let P be 2 program and p a predicate symnbol appearing
in P. Let O be a cco-k- partztlon associated to pin P. Lét 7 beran SLD-tree for-
P and 5, a subset of G, such that all goals in S, have aselected literal with
predicate p. ‘Then]| ﬂp,o is. a well- founded measure on .Sy, >, iff it is monotonic:

Proof The proposition follows immediately from definitions 6.2.3 and 8:3.7 and
the well-foundedness. of JV,*, > 4. fu]

Suppose ‘now that a (cor‘outihin‘g] computation rule R 'is fixed, to be used
while urfolding a goal with respect to a program P. Moreover, also given are
cco-partitions Oy, one for every recursive predicatepin P. Then we can introduce
the following specialised version of algorithm 6.5.5:

Algon‘thm 8.3.11 As before, we associate one Ry to every recursive predicate.
If pp 'is a recursive predicate with ‘associated class Ry, then Fi = ||. Hpuios, -

Adapting the code of the algorithm is straightforward; we do not reproduce it
here,

Theorem 8.3.12 Algorithm 8.3.11 terminates. The resulting SLD-tree 7 is
finite. '

Proof ({(Ro,R;,...);{Fy,...)) is chosen such that it indeed determines a hierar-
chical prefounding of the complete SLD-tree 76, Tesulting for the program P and .
a given goal under the computation rule R. The result follows immediately from
theorem 6.5.8. o

Example 8. 3.13 We have formalised the intuitions underlying example-8.3.1.
Indeed, instead of the ad hoc couple of “measurs” functions used for Fy there,
we can now take Fp = ||. Heonsume,({1yrssncetrady (A0 Fi = [}.|[produce;({1,23)-
And alsa the disappearing produce call can now be dealt with property within
our framework.. An application of algorithm 8.3.11 using these: Jingredients, re-
produces the SLD-tree depicted in figure 8.3. Goal weights result.as mdlcated
except (,0) which ‘becomes (L, 0).

166

CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

Example 8.3.14 As'a concrete exdirnple of coroutining behaviour, we consider
the well-known permutation sort program:

(1)

(2)
(3)
4).
(5)

(6)
(7)
(8)

perm([X|Xs], [Y ¥ o]) del(¥, [X|Xs], %), perm(Z, ¥ s)
del(X, [Y1Y's), [Y]Z]) + del(X, Vs, 2)

ord()) —

ord([X]) — :

ord([X,Y|Z]} « X < Y ord([Y{Z])

“We do not-include explicit clauses for <; and simply assume that 2 X' < ¥ call
can be evaluated when both arguments are ground. We want to build an SLD-
tree for the query: '

+ sort([5,2|X),¥)
using the following coroutining computatlon rule (the actions are listed according
to priority, “possible” refers to. associated weight behav1our)

1.
2.
3.

4.

Evaluate X <'Y if both arguments are ground.
Unfold a-del call if possible.

Unfold an ord call if possible, provided its argument is not an uninstantiated
va.rmble

Unfold. a perm call if possible,

“We will use the following:R; classes:

Ro = {R(G,7) containing <} U {R(G, i} containing sort}
Ry ={R(G,¢) containing del}
Rz = {R(G,1) containing ord}

Ry = {R(G,) containing perm}

and as associated cco-partitions:

Oz = ({1: 233})

Ouri = {lpermbh {13)

DPerm_'- = (-{1}t {2})

8,3. CONSIDERING THE CONTEXT 167

Rather than reproducing the complete SLD-tree resuliing from au application of
algorithin 8.3.11, we select one SI.D-derivation and depict-it in figure 8.4. Bach
node is. annotated with a label showing its identifier, the one of its direct covering
ancestor and its weight under the relevant measure function. Links are enhanced
with & number indicating the clause used in that particular unfolding. Selected
literals are underlined.
e son([52X]Y) ()
|
~= pemy([5,2X],Y), ord(Y) {b,{2,00}
(3j| Y=[Y'iYs']
= del(Y",[5,2X1,Z), perm(Z,Ys"); erd(IY 1Y)y (€2}
®)] z=151
= GEI(YTIAXLZY), perm([SIZ'LYS'), ord([YIYS]) (die,1)
.(_4_)| Y'=2 Z'=X
== perm([SIX1,Ys"), ord([2Ys")) e,-{1,1})
(3) | Ys'= [UIUs]
== perm{[SIX],[UIIs]), 2<=U, ord([LHUs]} (Fib,(1;10)

®)|
<= del(U[SIX),V); perm(V,Us), 2<=U, ord([UISY) (g.~,1)
('4}'| V=5 V=X

-— pcrm(X U:), 2e=5, ord({SJUs]) (h -1
== perin(X,Us), ordk[SlUsD 40,1
1] V=l
= perm(X,{) (£, 0.0
@] x=n
O

Figure 8.4: A coroutining SLD-derivation.
Especially noteworthy is the unfolding carried out between nodes (i) and (j}. It

would be prohibited when using a measuré function based solely on the ord literal
itgelf.

T L g T e b T A T T T i T A0 1 e =it

168 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING.

Automaticaﬂy-reﬁning’_' measure functions

‘Having established that algorithm 8.3.11 can cope. with coroutining when apt
ceo-partitions are provided, we want to take a further step. Indeed, it seems
appropriate to relieve the user from the. burden of choosing the right partitions.
In other words, we wani to obtain an algonthm similar to algorithm 8.2.31 {or
algorithm 8.2. 25) with the difference that some computation rule preferences are
specified by the user; as was done in exa.mple 8.3.14 above.

First, we introduce proper variants of the definitions in- subsection 8.2, 3.

Definition 8.3.15 Let P be a program containing an n-ary predicate symbol
. Let O be & cco-k-partition associated to p in P. Let G; and Gy be two
-godls in the language underlying P. Let the selected literal of Gy and Gy be
Plt,.i51p) and p(sy,.:., 5n) respectively. Finally, let [IG1]ls,0 = (v1,.. o2 Tk
and |[G’2HIJ o ={(wi,...,w). Then we define the following:

‘® An drgument position ¢ in a.p-component of O is
= (G1; Ga)-decreasing iff |£:] > |5
—~ (G, G2)-increasing iff |s;] > |t:)
= (G1, Gg)-stable iff [t;] = |s;
o An ergument position i, is
— (G, Ga)-contezt-decreasing iff M(Gy,q,3) > M(G3,q,7)
— (Gh; Ga)-contezt-increasing iff M(G2,q,i) > M(G1,q,1)
= (@1, G2)-contezt-stable iff. M(G),q,i) = M{Gyq,)
When we consider arguments as elements of a non-p-component of a cco-
partition, we will occasionally describe their behaviour without the expl1c1t
“context” addition. In such cases, it i is clear that we 1efer to 3£- and not
|- j-values.
o The i-th component of O is
= (G4, Ga)-decreasing iff v; > w;
— (G4, G3)-increasing iff w; > w
— (G, Ga)-stable Uf v; =w;

e |0 s

= (G'yy Gz)-decreasing iff [}G1]lp.0>||Gallp0
— (Gi; G2)-ncreasing iff ||Ga2i[p,00-x G| l,0

8.3. CONSIDERING THE CONTEXT 169

— (G1yGa)-stable iff ||G1|l,0 = {|C2llp,0
o O[] is O’s leftinost (G, Ga)}-increasing component if
1. it is {Gy, G9)-increasing
2. there is no 1 < § <'¢such that O[J] is (G, Gz)-increasing

» We call a component O[i]_ {G1, Ga)-sensitive if the following two conditions
.are satisfied:

1. O[i} contains at least one (G, Ga)- decieasing argurrient position.

2. If{l.llp,0is (Gl, Gy)-increasing and Off} is O’s leftmost increasing com-
ponent then i< 1,

Definition 8,3.16 Let P be a program céntaining an n-ary predicate symbol p.
Let O be a cco-k-partition associated to pin.P. Let G .and Gy be two goalsin
the language underlying P whose selected literal contains p. Suppose [|. Ho,o 18
not (1, Gz)-decreasing. Then we say that |||}, 0 has

o internal (G4, Gg)-potential iff O has at least one (G, G;)-sensitive compo-
nent.

o ezterndl. (Gl, Gy)-potential HT there is at least one. argument position 4, of
somie récirsive predicate g in P for which the following two conditions hold:

1. 3, is (GI,'Gg)acontext-decrea.smg

2. For every non-p-component Of3] of O: i, ¢ O]
(We will call ¢, contezi-absent in O.)

We will occasionally say that a measure function ||. [lg,0 has (G 1, Gz)-potential; if
either of the abiove two conditions is satisfied.

Just like before, we are intérested in refining obsolete (i.e. non- decrea.smg) mea-
sure. functions. The notion of mtemal potential with respect to.a pair of goals is.
an immediate generalisation. of the paientml with respect to a pair of atoms as’
it was introduced in definition 8.2.16. New is the capability of sdding argiment
positions of non—selected literals to the “pariition®. A measute function.with
ezterndl potential can be refined into & decrea.smg one, doing just that, At this
point, we will not include explicit generalisations of definitions 8.2.19 and 8.2.21.
Instead, we: 1mmedla.te1y define an extended notion:of tighl decreéasing refinement.

Definition 8.3.17 Let P be a program. contammg an n- ary predicate symbol p.
Tiet O be a cco-k- -partition associated to pin P. Let Gy and G; be two goals
in the language underlying P whose selected literal cotitains p. Let |[.|}p,0 have
(G1,Ga)-potential. Then ||.|lp,o is the tight (G1,G3)- decreasing refinement of
1 lp,0 if ©' is defined as follows:

170 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING-

s If ||.||s,0 has internal (G, G)-potential and O[] is O's rightmost (G4, @2)-
sensitive component, thex:

- Y1 <G <1 O] =
~VI<ji<k:Oi+1] = O]
- H O[I] ‘i8 a p-component, then:
* O[N] = {EIE O' % is ("G"l,'G’é) décreasing or '(Gl,.G.g'}-_'sta'.b'ic}
* O'l+1] = {i € Ofl}fi is (€1, G3)-increasing}
~ Else:
¥ O'[] = {i, € Oflll5; is (G1, @z)-context-decreasing or (G1,Gg)
context-stable} \ {¢;|M(G:, ¢,1) =L}
* Ol41)=1{i; ¢ Ofi]|iy-is (Gh, G3)-context-increasing}
U-{ig |[M(Gh,q,%) =1}
o Else if ||.|l,,0 has external (G1, Ga)-potential, then:

~ O'[1] = {i[s is (G, Gz)-context-decreasing and context-absent in O}
- V1<j<k:Of+1]=0[j]

Again, the first part of the above definition generalises' definition. 8.2.22. Notice
the special treatment for Lsvalued atguments, This is rnecessary since 1l is an
a.bsorbmg element for +in V. The second pa.rt is.e¥tra. It can be noted that our
particular choice for what might be termed a.tight (G, G3)- deciedsing erternal
refinement is'in fact not so tight, in the sense that a reformulation of the second
property-in proposition 8.2.24 does not Tiold. Several “more tight” variants can be
imagined, but. we do not believe they would significantly improve the behaviour
of algorithm 8.3.19 on a meaningful ¢lass of programs. In. consequence, we have
preferred intuitive appeal and simplicity of formulation.. We do have the following
property;.

Proposition 8.3.18 Let P, p, O, G, G and O’ be as in definition 8.3:17. Then
” ”p.o' is. (Glst) decreasing.

Proof
e Th‘e'.-'J:esuit-:is.immedia.te-when.. Of is-anezternael refinement..o

s The proof for the internilrefinemerit case is similar to the proof for point (1)
in-proposition 8.2.24. We jiist need the extra observation that any (G, Gz)-
context-decreasing argument i, in O[f] (in case it is a non-p—cornponent)
ccertainly has M (G1,q,4) #1, thus guaranteeing that O'[l] is non-empty
and (G4, Gg) decreasing.

A

8.3, CONSIDERING THE CONTEXT 171

‘We. can. riow formulate a first algorithm for automatic maximal sensible un-
folding under some computation tule preferences. The algorithm assiumes that
a computation rule R is partially specified; in the sense that for any goal a
(partial) priority order among literals, candidate for selection, is known (see e.g.
example 8.3.14' above).

Algorit]:l’.ni 8.3.19

Input
& definite program P
a definite goal «—A-
Output’
a finite SLD-tree 7 for P U {+A}
Initialisation
7 := {(«—4,1)} {* an SLD-tree with a single derivation *}
Pr:= 0 {*in Pr, the > -relation will be constructed *}
Terminated ;== §
Failed := 0 .
For each recursive predicate p/n in P: O, := ({1;...,2})
{* We set out with cco-I-partitions
grouping all p’s argument positions in a single p-component
and without any non-p-éomponents *}
While there exists a derivation D in 7 such that D ¢ Terminated do
Let (@, 3) name the leaf of D
If (@,4) = (&, z)
Then {* (G;1) is a success node *}
add P to Terminated
Else
{* First, we try to determine R(G, i) %}
Select the leftmost R—preferred atom plt, .. -11a) in G such that.
one of the follomng (mutually exclusive) condltwns is satisfied:
o (G i) has no direct covering ancestor
o (&,) is the direct covering ancestor of (G 1) and
[0, is (G, G)-decreasing
©.(G,) is the direct covering ancestor of {G,4) and
[[-llz,0, has (G, G)-potential and
Il- ||,,‘or is its tight (G, G)-decreasing refinement-
If such an atom p(iy,..., tﬂ)..can_not be found.
Then {* (G, %) becomes a dangling leaf *}
Add D to Terminated
Else

i72 CHAPTER 8. ADVANCED TECHNIQUES'IN FINITE UNFOLDING

R(G,%) :=plt1y.. . tn)
H R(G,1) was selected on the basis of the third condition above
Then {* Register the new. cco-partition’ *}
Oy =0,
Let. Derwe(G) name the set-of all possible derivation steps
H Derive(G;i) = 0
Then {* (G, %} is a failure node *1
Add D to Terminated and Failed
Else
{* Extend the derivation *}
Expand D in'r mth the elements of Derive(G, i)
Let Descend(R(G, 1);i) name the set of all pairs ((R(G, 1), 1), (B8, 7)),
where '
— B is an atom in the body of a clause
applied in an element of Derive(G,4)
~— 8@ is the corresponding m.g.u
— § is the number of the corresponding descendant of (G, 1)
Apply 8 to the affected elements of Pr
Add the elements of Pescend({R(G, i);i) to Pr

Endwhile

Theorem 8.3.20 Algonthm 8.3. 19 terminates. The. resiilting SLD-tree T is.
finite.

‘Proof ‘The only substantially new element is -the-:fa,_éility to externally refine a
cco-partition. It can be seen that this does not jeopardise termination, since:

@ A program P contains only a finite ainount of recursive predicates, all of
finite arity.

e Any afgument ._.'p'osifibrji_ of any recursive predicaté can océur in-at most one
non selected literal componént of a cco-partition, and once included in the
partition, is. never removed.

=
-'Example 8:3.21: Applying: a.lgonthrn 8.3.19: 4o the -programs; -algorithms and:

‘computation riles discussed in examples 8.3.1,.8.3.13 and 8.3.14 produces the’
results presented there,

8.3.3 Back propagation of instantiations

At this point, it is interesting to have a look at the behaviour of algorithm 8.3.19
when no computation rule preferences are in fact specified. In that case, the

8.3. CONSIDERING THE CONTEXT 173

search for an unfoldable literal reduces: to the basic “take the leftmost whose
{possibly refined) measure functxon allows it” technique, used above Tt turns out
that, thanks to-its context conmdenng capa.blhtles, algorithm 8.3.19 can often
improve upon an. annoying deficiency of algorithms. solely focusing on selected
literals. Consider the following prototypical example.

== bp(X,[11Ys])-

< a(X,Z), b(Z,[1IYs]) ()

< B(Z,{1I¥s]) X:[X?'IXs’_]

é <= do_a(X',Z), a(Xs"Z), b(Z [11Ys])
~— a(Xs’,Z), b(Z,[11Ys])
Z=[7"175°]
= a(Xs',{2'1Z5'), do_b(Z’, 1}, b{Zs’,¥5)

A
< a(Xs',[f(1)Zs]); bEs’,Ys) (**)

Figure 8,5: Handling back propagation.

Example 8,3.22. _

B(X,Y) - alX, Z),b(7,)

o[, ¥) _

a([X|X3] Y) + do.a(X, Y) a(Xs, Y)

HILD— e .

b([xlxs]? [YiY's]) +— dob(X, Y}, b(Xs,Ys)
(The definitions for do.a and do.b do not matter here. Just suppose they: can be
fully resolved at unfolding time.)

- — S o S S g o e i LR £ S AR s T VL, 5 A 8 e T T o e

174 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

We are interested in unfolding the following query:

—bp(X,[1{Ys])
Part of the SLD-tree genierated by a.lgonthm 8.3.19 is depicted in figure 8.5.
The unfo]dmg carried out in node (**) is particularly interesting. At that point,
|- I|s1({1 2}) is increasing with respect to the pair formed by (*+) and its direct
_covermg ancestor (*). Moreovet, it kas no internal potential. But “ Nastiza3i1s, 2})
is its ezfernal (%, #+)-decreasing refinement. Tt maps (¥} into (1, 0) and (+*) into
(0,1}, and therefore allows the u.nfoldmg of the a-goal. No measure function
solely based on a-argnments can do likewise.

The above examiple illustrates a general phenomenon In unfolding, back prop-
agation of information (i.e. in‘the reverse direction as the- “scan” for unfoldable
literals) is very similar to coroutining. {Observe that a further mstantzated sec-
ond argument in the bp starting goal would lead to further little by little passing.
‘of informatior ¢hunks fromi the b to the o goal:) It creates similar problems,
-ahd requires similar sclutions. Therefore, the work in-this section also i improves
on earliér algorithms with respect to this previously rather disturbing issue. We
include’ a final exarnple; illustrating that the mere capacity to register the “dis-
appearance” of literals from the context has already beneficial effects.

Example 8.3.23 Consider the well-known “naive reverse” prograrm:
rev(f], [} —
rev([X|Xs),Y) « rev(Xs, Z),app(Z, [X),Y)
app{{], X, X))+))
app([XiXs], Y: {XlZS]} = GPP'(IXS: Y, Zs)
Together with the following gizery:.
— rev([1|Xs], ¥)
From an SLD-tree produced by algorithm 7.2.1, we synthesise:
rev([1], [1]) —
rev([1; X|Xs], [X, 1)) — rev(Xs, [})
rev([1, X|Xs], [¥,1]) e rev(Xss, [V [Ys]); app(Y s, [X], [[)
?‘ev([l XiXs|, Y, 2{Zs]) — . '
rev(Xs, [Y[Ys]), app(¥'s, [X] 1,12125)), app(Z5’, [1], Zs),
Usidg a.lgonthm 8.3.19 for unfolding; a.pplymg a snnple “select the leftmost suit-
-able literal™ cormputation rfule; we obtain the mére sénsible:
rev([1], [1])
rev([1, X}, [X, 1]}«
rev([1, X!Xs] ¥, Z|Zs}) — _
rev(Xs, [Y[Y's]), app(¥s, [X], (2] 25]), app(25, [1], Zs)

The resulting cco-partitions are:

8:3. CONSIDERING THE CONTEXT 175.

~— rev([11Xs], Y)

= 1ev(Xs,Z), app{Z,[11,Y)

PRt
T

- rev(Xs',7"), -ap‘p(Z’;[X’];Z),_aPp.(Z,[I],Y)_

-~ rev(Xs™,[1); app(EX'LI1LY)

: = rev(Xs' [UIUs]), app(Us,[X"];Ts), app([UITs],{11,Y)
< revXs) (9 |

e] < rev(Xs',[UIUs]), app(Us.[X"}:Ts), app(Ts.[1),Y’)
-~— rc\r;(_US_,T ' a-PP(Ts[U]:[]) l. - =

< rev(Xs"[UIUs]), app(Us, [X'],[1) (*%)

fail i
fail

Fi_gure.'a;'ﬁt.'Pa._rt of the SLD-tree generated for example 8:3.23,

Orey = (-{_I‘IPP.J-zﬂPPJSGPP}s {1, 2})

Oapp = ({lﬂpmzép}"' app}r{L, 2,3}
We do rot include the complete generated SLD-tree, but an interesting portion
can be found in figisre 8.6. Non-depicted branches are 1nd1cated by a dashed link
at their origin. Particularly noteworthy are the unfoldlngs at node (*) and node
{#%): They cause the differences between the first and-the second set of resulting
clauses ahové.

Sumrnarising, we can state that we.generalised previous concrete methads for
“weight-based finite unfolding, by allowing (also) the consideration of non-selected
Titerals in a goal. We have presented fwo algorithis incorporating this feature,

the second. one automatically focusing on sensible measure functions. We have
shown how they handle corcutining and the related issuie of instantiation back
propagation.

176 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING:

Numerous variants of and/or enhancements to algorithm 8.3.18 ¢an ke con-
sidered.

s Argument positions of non-recursive context literals can be included in cco-
partitions.

o Priority can be given to unfolding literals which cause little branching in
‘theé tree.

i Usmg separate cco-partitions for different chains of covermg tiodes seems
reasonable; and will probably have a more profound influence than is'the
case in approaches’ sqlely based on measuring selected literals.

¢ It-seems possible that, in larger applications, some extra limitation should
‘be imposed, restricting unfolding literals on account of a- -contextual weight.
decrease to those who have actually been “influenced” by those context un-
foldings. It is however not immediately clear how to- pin down this notion
of “influeniced”. Demanding a-higher weight, or simply not béing a vari-
ant of the call selected in the direct covering ancestor, are too restrictive
conditions, as an inspection of the.coroutining examples 8.3.1 and 8.3.14
‘Teveals. A comparison with the state of the corresponding. literal in some
Jintermediate- ‘godl node seems more appropriate.

e A further step towards more sophistication can involve an offline analysis
‘phase to derive useful supporting information about {mutual): influences
‘among argument positions. This might help to resolve the problem indi-
cated above, It might also lead to:more “sensible” tight decreasing refine-
‘ments. Reconsider example 8.3.23 above. Rather than the resulting Oy,
the partition ({1}, {Lapp}, {2}) (0r ({1}, {Lepps 2arg» 3anp}, 121)) might be
considered .as the natural one to.be used: for the rev predicate. In fact,
‘with these partitions, the whole tree is subset-wise founded, while this i is
‘not-the case with O,.;. The development of releva.nt ana.1y51s techruques
and an.assessment of their value are challenging topu:s for future research.

Rather than delving into the above sketched issues, in the next subsection, we.
will address: another: topic glossed: over by the development: so-far. Indeed
algorithm 8.3,11°and 8.3.19, relying on definition 8.3.7, are mca.pa.ble of dlstln-'
guishing between several non-selected: literals with the same predicate- symbol in
one goal. "This’is fine for most producer-consumer coroutmmg applications, where
‘the basic struchire is typlca.lly of the simple linearly recursive type as exhibited
by the ‘programs-in examples 8.3.1 and 8.3.14. But, in general, they might fall
-short of” dea.hng properly with instantiation back propagation in logic PTOgTrams.
exhibiting a more complex structure.

8.3. CONSIDERING THE CONTEXT 177

8.3.4 _Foc.u's'ing on ancestor literals

We restrict ourselves to a somewhat informal discussion of the issue and its most
striking aspects, omitting a complete technical development.

Example 8.3.24 Let us.unfold the naive reverse prograim with respect to the
following query:

— rev({l,2|Xs}, Yy
using the cco-partitions produced in example 8.3.23. Some fragments from an
interesting SLD-derivation are shown in figure 8.7.

= rev({1,21Xs].Y)
<= 1ev(Xs'Z"), app(Z " [X*1,2"). app(Z’ [21.2). app(Z.[11,Y)

~— rev(Xs;[UlUs]), app(Us,[X'1,Ts), app(fUITsL{23,2), app(Z,[11,Y)

=~ rev(Xs' [UIUs]), app(Us X" ITIT], 4pp(Ts' {21,Vs"), app(UTIVS LI1LY)

= rev{Xs™ [UIUs]), app(Us,[X° _},[.T!T's‘]__)',. app(TS-'_,{_Z].'[}) *)

Figure 8.7: A case for yeb miore powerful measures..

In (#}, no literal can. be selected for unfolding. ‘Our measure functions aré too
coarse; they do not register the “disappearance” of the last app literal.

A solution for the problem illistrated in example 8.3.24 is cbvious: Introduce
more fine grained comparisons among context literals. The second part of defini-
tion 8.3.7 does not-distinguish. between literals in different ancestor-descendant
chains. Redefining cco-partitions and their associated measure functions in this
sense is possible: compare (maximum) argiment weights of context literals in
the descendant goal with the argument weights of the corresponding literal in
the ancestor goal, situated on the same branch of the associated proof tree. (Of
course, often the comparisor will simply be between a literal and a possibly less

178 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

instantiated version of the same Hiteral, This is the case when the considered
literal itself has.not ‘been the subJect of unfaldmgs carried out between the two
‘inspected goals.) It can be noted that such an.approach would indeed allow
further unfoldings in example 8.3.24.

Rather than going through the complete technical developinent; rephrasing
deﬁmt:ons and results in subsection 8.3,2, we conclude this section by pointing
out an intriguing additional difficulty emerging in this context, Consider the
following schematic examiple.

Example 8.3.25 Suppose we unfold the program:
a(X) —a(Y),b{X,Y)
(X, X) .
some other.(recarsive) clauses for &
and the query:
— a([1]X])
using. more: refined measure functions of the kind sketched above. Part of =
possible SLD-derivation is depicted in-figure 8.8,

==a({lIX])

< a(¥), HIUKLY) (9

- a(Y"), b(Y,Y"), b({1IX],Y)

- a(Y), bU1XLY)

< a((LX]) (**)

Figure 8.8: An infinite SLD-derivation.

‘The nnfolding.in (#*) is allowed On-éccou_nt--df ¥’s disappearance;, .;;ox_npar_e&-with
(#). In this way, continuously appearing.and disappearing “fresh” b literals create

8.4. REFINING MEASURE FUNCTIONS: A GENERIC TREATMENT 179

an infinite series-of tight decreasing refinements.. As a result, unfolding does not-
terminate.

Example 8.3.25 shows that an unrestricted application. of fine. grained con-
text cons:ldenng unfolding techniques may lead to non-termination. Imposing
a_bound om the mumber of cermponents allowed In a cco—part:.tmn is:an obvious.
remedy. More refined variants of this basic idea can of course be imagined, e. £
predicate-wise bounds. Moreover; it seems liksly that offtine analysis can be help-
ful, perhaps even to the extent of reducing the choice of measure finctions to a-
restricted Tange, again safely guaranteeing termination.

However, we must leave these and related considerations as a subject for
future research. Indeed exainple 8.3.25 glso sheds further hght on the prmc:plea
wnderlying sulomatic finite unfolding. It is this latter-issae that, in the néxt
section, we wish to reconsider in proper detail. Meanwhile, we believe that
sections 8.2 and 8.3, as they stand, give a good imypression of the power and
generality of partition based unfolding, using lexicographical priorities among
arguments occurting in goals.

8.4 Refining Measure Functions: A Generic
Treatment

8.4.1 Introduction

At this point, it seems a good idea to interrupt our presentation of sophisticated.
weight based unfolding methods for a brief moment of reflection. Indeed, now
that we have worked our way through quite a few algonthms, a clarified picture
of commmon underlymg principles emerges. Formalising this understanding is our
business in the present section. We will resume the development of concrete
algorithms. afterwards.

First, we notice tha.t the framework laid out in chapter 6 has proved to be
quite general. We were able to. deal both with example 8.2.7 and examiples 8.3.13
and 8.3.14, using suitably specialised versions of algorithm.6.5.5. In the next.
section, we will find occasion. to relax some- of its inherent. hm:gtatlons_. For the
moment, however, ‘we ‘concentrate on our increased insight in the structure of
automation.

Compared with algorithm 6.5.5, fully automaticalgorithms presenied or men-
tioned in sections 7.2, 8.2 and 8.3:

¢ Dynarically fix the compitation rule,. poss1bly keeping count of statically
fixed preferences among selectable literals,

180 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

o All use the same particular recipe for choosing Rg, Ry, . .., Ry, assigting
one F; per recursive predicate symbol in the program, t6 remain unchanged
throughout the execution of the algoritbm,

o Each incorporate one particular basic strategy to assiph to.a goal a weight,
i.e. an element in some well-founded {until now-always fotally ordered) set.

o Use measure functions based on this strategy, one. function per R, to asso-
ciate concrete we1ght.s to goals. Initial choices for these measure functions.
are built into thie algorithms. Measure functions are reﬁned dyna.m.lca.lly, if
desirable and possible, to enable further unfoldlng

In this section, we will concentrate on & generic formalisation of the latter point,
-treatmg the other issues at about ‘the same level of generality as was adhered to
in chapter 8.

8.4.2° A generic algorithm
We statt with some definitions.

Definition 8.4.1 Let P be a definite’ program, than we denote by Atomp the
set. of atoms that can be formed in the language underlying P.

Definition 8.4.2 Tet P be a definite program, Lp its underlying language and
suppose that Ro, Ry, .. Ryisa partition of Atomp. Let W, >y be some well-
founded ‘set. Then we ca._ll a function

F : {G[G is a definite goal in Lp with selected literal € Rp} - Wisw
‘an- (R;;, P)_—ap?ﬁca,bfe measire function with targel sei W.

Deﬁmtlon 8.4.3 A set {F|F is an (K, P)-applicable measure fuiiction} is called
an (R, P)- applicable measure space:

In the sequel, when P (or .Cp) is clear from the context, we will often dencte’
an (B,)—a.pphca.ble measure space, by Fy. Note that different elements of a
measure space may have different target sets. Finally, we demand that some
.pwrtml order relation. be defined oo measure spaces. For a. space. F, we will
denote itbyye,
We €Al now formu]a.te a genenc algonthm for. automa.tlc, wmght-»ba.sed ﬁmte
‘unfolding,

Algorithm 8.4.4
Input
a definite program P
a definite goal +—.4

8.4. REFINING MEASURE FUNCTIONS: A GENERIC TREATMENT 181

QOutput
ah SLD-iree 7 for P u {+—A}
Initialisation
7 is initialised as the SLD-tree that contains a single derivation,
eohsisting of the goal +— A, without selected literal.
Initial choices are made for the measure functions Fy..., Fn.
‘While there exists a non-terminated derivation D in .7 do

If D is succesful, Then terminate £
Else If D's lea.f-node contains no selectable atom, Then terminate D
‘Else '
selgct. an Ripreferred selectable atom _
H no derivation steps are possible, Then terminate and fail D
Else extend D
Where an atom p(th;. .., tn) € R; in a goal G'is selectable
if one of the following (mutually exclusive) conditions holds,
in ease it is actually selected:
@ 7 has no direct covering ancestor
o G’ is the direct covering ancestor of G and

F;,(G’) > Fi(G)
» & is the direct covering ancestor of G and
not(F(G') >4 Fi{G)) and
AF € Fpe (1) Fy })kF
(2) F(G") > F (@)
If an atom plty, .. tn) has been selected on the basis of the thitd: ‘condition,
Then replace Fk, in the sef-of measure functions in use,
by some F}. satisfying the conditions (1) and {2) above.
Endwhile

In order'to produce an ekecutable instance of the above algorithm, the fol-
lowing is necessary::

o Computation rule preferences can be. stipulated, resulting in a concrete
meaning of the term “R-preferred”. If none are given, all atoms are equall}r
R-preferred,

s Ro, Ry, ..., Ry should be chosen such that they form a partition of Atomp
and guarantee the satisfaction of the third condition in definition 6.4.5.

e Forevery k, 1. < k < N, we tmust. ‘specify fk,>>k ‘and. choose an initial Fy,
in Fi.

182 .CHAPTER 8 ADVANCED. TECHNIQUES IN FINITE UNFOLDING

o Finally, if so desired, a sibset-wise foundedness check like condition (*)in
algorithrm 8.2.25 can be added.

‘We will call any executable instance of algorithm 8.4.4, thus determined, proper.
We have the following theorem::

Theorem 8.4.5 A propet instance of algorithm 8.4.4 terminates for a definite
-program P and goal «— 4, producmg a finité SLD-trée.7 fof P L {—A},ifVk, 1<
E<N:Fi,>iisa well-founded set. The resulting 7 is subsei-wise nearly'
founded with respect to-the fifial ((Ro, Ri;..., Rw), (F;, - Fa}).

Proof (Sketch)

‘The well-foundedness condition ensures that a change in the set of measire func-
‘tions used, can-occuy only finitely many times. The rest of the proof is analogous.
to what was présented before. (m]

Tt ¢cén be verified that algorithms 7.2.1, 8.2.25, 8.2:31 and 8:3.1§ are proper:
_instances. of algorithm 8.4. 4 and therefore termlna.te Indeed:

® Only algorithm 8.3.19 caters for user-specifiable computation rule prefer-
ences; The others do not. All eliminate remaining. non-determinism in
lzteral selection through a “choose the leftmost selectable” sfrategy:

o The choice for Ry, Ry,..., Ry is always along the same- basic line: one R;
per-recursive prechcate symbol in P, Ry for atomns fea.tunng anén-recursive
predicate symbol Obviously, this satlsﬁes the above specified conditions
on Ry, Ry, ..., Ry.

@ The measure spaces used are of ircreasing complexity:

‘— Algorithm 7.2.1 uses set-based measures; universally mapping tc ¥, >.
~ The measure functions in aigorithms 8.2.25, 8.2.31 and 8.3.19 are-re-
spectwely ‘based on- partitions and cco—pa.rtltzons of argument posi-

tions. They map to some IN®,%; or N}* > respectively, i varying
th.hm measure spaces.

® Definition 8.2:21 can serve as a basis for the required order relation on par--
tition based measure spaces. Indeed, transitively. closmg the inverse of the
“is a tefinement of” relation results in a strict partial order on such spaces.
Introducing a similar notion for set and cco-partition based measures is
straightforward, and implicit in‘the work presented.

e All measure spaces involved are finite, and therefore (trivially) well-founded,

8.5. INCORPORATING VARIANT CHECKING 183

¢ Remaining non-determinism in the choice of a refined, properly decreasing,

‘measure function (i.e. sa.tlsfymg conditions (1) and {2) in algorithm 8.4:4)
‘has. always been removed by imposing extra conditions (s¢e. e.g. defini-
tion 8:2.22 and proposition 8.2.24).

» Some book-keeping instructions related to the maintenance of the covering
relationship have not been included in the generic algorithm 8.4.4.

Finally, it is interésting to reconsider subsection 8.3.4, The underlying rezsons
for non-termination in example 8.3.25 now become clear:

1. Measure spaces ate 1o longer guaranteed to be finite.

2. And the adapted notion of refinement no longer guaraniees that the result-
ing ordering is well-founded.

Imposing a bound on the number of components re-establishes finiteness, while
more sophisticdted order relations, inspired by an offline analysis, could perhaps
guarantee well-foundedness of measire spaces, left infinite.

8.5 Incorporating Variant Checking
8.5.1 Introduction

Structure based weights; as presented above, are obviously not a good basis. te
control unfelding of datalog (i.e. functor-free) programs. Cousider the following
example, biorrowed from [13].
Example 8.5.1

reach(X, X) —

reach({X, Z) « reach{X,Y), edge(Y, Z)

'gedg'e'(a,, b) +—

edge(b,d) «—

edge(f,g) «
For the query

«— reach(a, X)
partial deduction produces the follo'wing--: specialised clauses from the SLD-tree
built according to any-of the methods dis¢ussed above:

reach(a, a) —

reach(a; }) + reach(a,q)

reach(a, d) + reach(a, b)

reach(a,; g} «— reach(a, f}

18¢. CHAPTER & ADVANCED TECHNIQUES IN FINITE UNFOLDING

If instead we unfold the leftmost literal without an unfolded variant on the same
derivation, we are ablé to derive:

reach(a, a) «—

reach(a,b) —

reach(a,d) —

However, as alzeady illustrated in examiple 5:5.4 (; page 88), for logic programs
with functors, this non-variant based unfolding in general does not guarantee
termination. One possible. solutlon seems identifying datalog predicates in & pro-
gram: Abstract interpretation e.g. should be able to uncover predicates whose
arguments will certainly be free from functors. These can then be treated in a
special way during unfoldmg, ignoring their {0) weight, but applying the above
mentioned non-variant check. However, we have opted for a more- global ap-
proach, unifying the two criteria in one generally applicable unfoldmg methodol-
OgY.- The basic idea can be described as follows: Selecting a literal A in a goal @
is permitted, even when this results i in equa! weights for G and its-direct covering
ancestor; if no goal covering @ has a selected literal- which is-a variant of A,
However, it is clear that a strmghtforward application of this coarse rule does
not always guarantee finiteness. Let us reconsider example 5.5.4.

Example 8.5.2 Under the set-based measure function |- lrev,11,3}, 2ll non-empty
goals from the third downwards in figure 5.1 have weight 0, and yet selected
literals are not variants. However, restricting the attention to the first- and thlrd
argurment, i.e. those “measured” by ||, {1, 3}, we find that they wre variants.

Example 8.5.2 shows that welding together weight and non-variant based un-
folding requires. sorne care, but it also suggests that the enterprise is not hopeless.
The test -of this section formially'develops this issue. We first adapt/specialise
the framework underlying algorithm 6.5.5. In & second step, we briefly address
full antomation.

8.5.2 Reconsidering the framework

Throughout this section, we will be dealing with definite goals, containing a finite
amount of literals: (which all are, of course, atoms). This allows us to siippose a
“numbéring ‘on’ the literals in & goal e.g- from left to'right, stariing with 1. Each
argument position in 4 goal is then unambigucusly determined by a pair of natural
numbers: (literal number-within.goal, argumeént_number within_literal).

In order fo simplify the ensuing presentation, we agree on. the following for
the rest of subsection 8.5.2:

e Given a definite program P, Lp will denote: its underlying language, en-
hanced with an arbitrary funciion symbol, if P contains none, The reason

8.5. INCORPORATING VARIANT CHECKING 185

for this slight deviation from convention will become clear below. Note that
a finite program’s underlying language contains only finitely many constant
and function symbols.

» A goal to which some measure function # can be applied, will be called F-
suitable. For. msta.nce a goalin some language Lp, such that Ho, Rs,..., By
is a partition of Atomp is suitable for some (Rj, P)-applicable measure
function if its selected l;te:al is in Ry,

We can now introduce the following:

Definition 8.5.3 Let F be a measure function and G an F-suitable goal. Then.
we call 2n argument position (7, j} of G F-measured if there exists an F-suitable
goal G’ such that; '

1. (@) 2 F(G)
2. G and G are identical, except at argument position (i, j).

We call the set of all F.measured argument positions of G its F-measured ar-
gument set, denoted MSr(G), and the multi-set of terms occurring on these
argument positions in G, its F- measured part, denoted M Pr{G). Finally, we.
will use the notation tg(z, 7 to denote the term corresponding to an argument.
position (%, 7) in a goal G.

The ihtuition behind this definition is simple: Measured argument positions in~
dicate terms whose structure influences the weight associated to the goal. The
reason for demanding the preseiice of at least one functor in the language now
becomes cledr: In a larguage without any function symbols, the first condition
above would be. unsatisfiable for the structure based. measure functions in the
focus of our interest. Definition 8.5.3 in that case no longer correctly formalises
the intuitive nétion just deseribed.

Example 854

o With a constant. measure function, mapping any suitable goal to the same
element in its target set, goals obviously have empty 1measured argument
sets:

e A measure funct.mn, merely counting the number of atoms (possibly con-
taining a given predicate symbol) in a goal; likewise results i empty mea-
sured argument sets.

e A suitable goal’s measured argument set under a set bosed measure .|, s

contains: exactly the argument positions corresponding to the selected 1it-
eral’s argument positions in S.

186 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

e All argument positions of the. selected lite_r'a.'l, and none other, are in the
‘measured argument set under a partition dased measure.

- Finally, all argument positions corrésponding to elements occurringin the
underlying cco-partition are in-a goal’s measured argurment set: under a cco-
pariition based measure. function. Consider e. g. the second goal from the
top, mcluded in figure 8,7 on page 177.

Let Oapp be ({Lapps 2upps 3app}y {15 2, 3)). Then that goal has the following
||-Happ, Oups-measured argument set: {(i,jjl2<i<4,1< < <3}

We will be interested in venfymg whetlier the measired ‘parts of two goals
are “variants” of each other. The following definition lays down an.exact content
of the variant notion in this specialised context.

Definition 8.5.5 Suppose F is a measure. function and let G and G be two F-
suitable goals. Then we say- that the F-measured paris of G and G’ are varianis,
denoted MPr{G) ~ M. Pp{G')iff thereis a one—to-—one correspondence & between
M5Sg(G).and MSg(G?) such that ({3, Wi, 3 € C implies:

og:j'

. The ith literal in & and the #/ih literal in G have the same’ predicate
symbal,

o The-ith literal in @ is selected iff the 3thliferal in G is.

e There exist (renaming) substitutions & and 8 such that
V((3,5), (#,3)) € C : tals,5)0 = te(#,) Atedi')8 = ta(i,d)

We will also use the: fo]lowmg notation: G ~p G. Obviously, ~p isan. equivalence
relation on the set of F-suitabie goals.

The first three items above demand “equality” of the two measured argument
sets.. In that case, we can properly compare the terms in the corresponding
measured parts, and require that they indeed be variants, as expressed in the
fourth item.

.Example 8.5.6 Consider the: following goals (selected litetals are vindeilined):
& G = p(f(X), X),q(9(¥})
o Gr=—q(g(X"));q(a(Y")), p(f(Z'), Z")

and the following neasure functions:

© 1= L

8.5. - INCORPORATING VARIANT CHECKING 187

* P = |p, (423421
o s = [llpgr.n 8023y
Then we: have:
o MS5r,(G) ={(1,1)}
o MSp,(G") = {(3,1)}
o We can take: C-={((1,1),(3,1))}, 6= {X/2"}, & ={2'/X}.
And therefore: G ~p, &'
And:
° M5r,(G)={(1,1),(L,2)}
© MSp(G)={{3,1),(3,2)}

e 0= {((1 1); (3, 1)), ((1,2),(3,2))} (uniquely) satisfies the first three con-
ditions in definition 8.5.5. But no 6 and &, as. required in the last part of
the above definition, can be constru_cted_

So: G g, &
Finally:.
o MSr,(G) =4(1, 1.(1,2), (2,1)}
s M5k, (G*):: {(1,1),(2,1),(3,1),(3,2)}

e There is no one-to-one correspondence between MSp,(G) and M S, (G')-
This means: G £r, G

Notice that all three measure functions assign equal .Weigilts to G and G 1
(1,0) and (1, 1) respectively.

We.can now adapt algorithm 6.5.5 {we only include an-updated version of its
main loop):

Algorithm 8.5.7

While there exists a non-terminated derivation .D € r do
Let (G, 1} be the leaf-of D
Let Derive(G,1) be thieset of all its immediate >.,,-descendants.
If Derive{G, 1) = @
Then add D to Terminated
‘Else if there is & direct covering ancestor (G, 3) of (G,7)
with R(G, 7), R(G,i) € R

188 CHAPTER 8, ADVANCED TECHNIQUES IN FINITE UNFOLDING

suck that none of the Jollowing is satisfied:
1) FulG,.3) >p Fu(Gi4)
2) Fa(G', 1) = Fo(G,) A
~3(G", k)€ D1 (G", k) covers (@, i)A
Ful@' k) = Fu(G, DA
(G" k) ~F, (G;9)
Then add D to Terminated '
Else
Replace 7 by 7\ DU {DU{(G*,)}|(G*,1) € Derive(G,3)}
Endwhile

Algorithm. 8.5.7 differs from algorithm 6.5.5 by the presence. of condition 2). It
allows extending ‘a derivation whose leaf has @ weight identical to: the weight of
ita direct covering ancestor, bit contains a measured part which is not a variant
of the measured part found iz any covering ancestor of equal weight;,

Example 8.5.8 Consider. the program and query in example 8.5.1. Take:
e Ro = {atoms.containing edge}
e R; = {atoms.containing reach}
o Fy = |-|=aaa};,{1,-2-}

The SLD-tree produced by algorithm 8.5.7 can be found in figure 8.9. Notice
that all measured goals have the .samie weight: 0. However, condition 2} in
algorithim 8.5.7 enables proper unfolding.

Example 8.5.9 For the reverse program and query treated in example 5.5.4,
algorithm 8.5.7 stops._unfol_ding after the first'branching in figure 5.1, (producing
the .tree in figure 7.2) both when applied with |-lrew,{1,3 and |-l (£1,33.421)-
In the former case, ‘goal (+) and its direct covering ancestot, (%+), have. eqital
weights (0}, but also variant measured parts, {Xs', Z}'and {Xs, 2} respectively..
|-'|uu,({1,3}-‘{3}} on the other hand is sisnply (##, ¥)-iticreasing. '

. -Kinally, we address the question whether algorithm 8.5.7 always. terminates.
Unfortunately, this is not the case.

Example 8.5.10 Consider the fo_llowing'prog_ram fraginent:
P(X) e g(f(X)),r(a(X))
9(X) — g(X), 7(X)

And unfold the goal

8.5. INCORPORATING VARIANT CHECKING 189

=— reach{a,X)
X=a - .
O =~ reach(a,Y), edge(Y,X)

= reach(a,b)

- reach(a,a). =< reach(af)

/\ < reachia,Y"), edge(Y’,b)

L e reach(a,V), edge(Y,a)

~ reach(a,Y"), edge(Y' f)

[=~ reach(a,a) |

fail : /\ fail

O« reach(a¥), edge(Ya)

fail

Figure 8.9: A properly unfolded datalog tree.

using the cco-partition based measure function ||. g, {1hi))- The first few nodes
of the resulting infinite SLD-desivation are depicted in figure 8.10. Measured
nodes are annotated with their weight. Note that the measure function is stable,
but the measured a.rgument set changes with each unfolding. Condition 2) in
algorithm 8.5.7 is therefore always satisfied and the derivationmnever terminated.

So,_.a_lgori_'t-_]:lm 8.5.7 may fail tio terminate. We need a notidn to characterise “safe”
measure functions.

Definition 8.5.11 A measure function # with target set W is called Finitely
megsuring for a language Cp, if for any weight w € W, the quotient set {& in-
Lp|F(G) = w}/~p is finite..

In-other words, only a finite number of goals, expressed in the ‘given language,
‘with noni-variant mea.sured ‘part, have the same weight.under F

190 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

= p(a)
= q(f(a)); r{g(a) weight = (1,1)
< g(f(a)), r(i(@)), r(g(a)) weight = (1,1)

< q(f@), r(f(@), t(f(@), r(e(@) weight =(1,1)

Figure 8.10: Infinitely many goals with equal weight but non-variant measired
part.

Theorem 8.5.12 Algorithm 8.5.7 terminates for a definite program P and godl
4, usinga given computation rule B and pair ((Ro, Ry, ... - BN), (Fl, o Fa))
if F1, ., Fi are finitely’ measuting for- £p. The resultmg finite SLD—t.re_e T is
.subset-wme nearly founded with respect to ({Ro, By, ..., Ry}, (F1,-- -, Fn)).

Proof (Sketch)

The proof is similar to the proofs for analogous theorems above, now relying on
definition 8.5.11 and condition.2) in algorithm 8.5.7, to argue that the measure
functions are nedrly founded on.chains of covering nodes m)

Theorem 8.5.12.shows thai: algorithm 8.5.7 can- safely be used with finitely mea-
suring' measure functions. The remairing question is whether we can. characterise:
€lasses of medsure functions as finitely ‘measuring. In particular, are measure
finictions of the kinds introduced in this thesis; finitely measuring ? We have the
following results (overloading function symbols as was implicitly done before):

Propesition 8.5.13 Let P be a.definite program and .Cp its: {enhanced) under-
lying. la.ngua.ge Vet pbea predlca.te symbol of arity n in Lp. Let § be a set of
argument positions of p and O an ordered k-partition associated to P. Then:

1. The measure function ||, s :
{@|G is a definite goal in. Lp with selected literal p(ti,...,04)} — IV,
G [p(te - -58n)lp,s
is finitely measuring for Cp.

8.5. INCORPORATING VARIANT CHECKING. 191

2. The measure function |.|p,0-:
{G|G is a definite goal in £y with selected. literal oty i tn)} - INE,
_.G = [p(t; ... ' frn).lp',o
is finitely measuring for Lp.
Proof Since Lp contains only & finite amount of constant and function symbols,
there is cnly a finite number of non-variant terms in £ to which the functor

norm |.|, defired in definition 6.3.2, assigns the same natural number. The results
now follow from definition 8.5.11 and

1. definition 6.3.3 together with the observation under the third point.of ex-
ample 8.5.4 for case (1).

2. definition. 8.2.2 together with the observation under the fourth point of
example 8.5.4 for case-(2).
0

So, indeed, set and ‘pariition based measure fiinctions are finitely measuring for
languages underlying a finite program. Algorithm 8.5.7 will certainly terminate
when using them. Their common characteristic, guaranteeing these results, is

the fact that all goals suitable for such a measutre function have essentially the

same measured argyment sef under that measure function. Example 8.5.6 already
shows that this is not always the case for ‘¢cco- ‘pariition besed measure functions.
And indeed, example 8.5.10 demonstrates that such measure functions are in

general not finitely measuring. Of course, safely combining their use with some

form of “equal weight but non-variant” unfolding remains possible. It suffices to
focus on-the selected literal for the variant test: Alternatively, a specially tuned
version of the “measured- part“ notion, to soMme extent also incorpordting context
information, can probably be developed Bowever, we will not devote a detailed
study to this issue. Rather, we shift. gur aftention to automation of the “safe™
cases in t_he next subsection,

-8.5.3 Issues in automation

Basically, it is very straightforward to adapt algorithm 8.2.31 for fully automatic

‘partition based unfolding along the lines of the previous subsection.

Algorithm 8.5.14 We add one more item to-the list of conditions enabling the
selection of a literal for unfolding:

e (G, 7) is the direct covering ancestor of {G, 1) and

|-ls,0, is (R(G',g),p(tl, .1t))-stable and

-3(G", kY € D :[(GF, k) covers (G, 1) A o _
|:lp,0, is (R(G", &), p(21, - . ., t))-stable A
(G %) ~i4p0, (Go3)] |

182 CHAPTER 8. ADVANCED TEGHNIQUES IN FINITE UNFOLDING

‘The rest of algorithm 8.2.31 remains unchanged (except for otie detail addressed
‘below).

Example 8.5.15 Algont.hm 8.5.14, applied to the program and query in exam-
ple 8.5.1, produces the SED-free dep1cted in figure 8.9. Throughout the whole
unfolding process, Oreachs is never changed, and keeps its initial value: ({1 2})
In general, it is obvious that no partition based measure, as introduced in sec-
tion 8.2, ever has potential in a datalog context:

It is not difficult to realise that algorithm 8.5.14still terminates, and builds
a finite, subset-wise nearly founded SLD-tree. One detail remains to be settled.
Indeed, the enhanced list of conditions for: hteral selectlon no Ionger contains mu-
"tually ezchmve cases: | |p,o, can at the same time be stable-and have potential.
Let 1s once more have & look at exa.mple 5.1. The measure function . lrew,({1:2,31)
is stable all-along the top three goal nodes of the tree in figure 5.1. Moreover,
the rev literals are not variants of ea.ch ‘other. Therefore, algorithm 8,5.14 allows
unfolding without changing the measure function to i [,w'({l 2},{3]) as would be.
done by algorithm 8.2.31. {Note, however, that’ both terminate unfolding at node-
(#).) Such a'behaviour might be considered. in conflict with our basic philosophy.
It.can easily be-avoided by imposing a priority ‘among the unfoldability condi-
tions: first try a refinément, only if that fails, iry unfolding on the “equal weight
but non-variant® basis.

A second point, and an- additional motive for i imposing the just mentioned
:pnomty, is the polenticl meﬁcwncy of the non-variant check. Indeed, the latter
does require sea.rchmg through a list-of {equal wmght) covering aricestors. So,
the: linearity property, established in subsection 8.2.4, is lost. It might therefore
be a good idea to restrict as xmuch as poss1ble the cases in which such scans
are undertaken. Observe, however, that the implementation technigue proposed.
in subsection 8:2.4, provides excellent suppori for scanning chains of covering
ancestors; if so desired. Reconsider figure 8.2 on page 159, If we select e.g. the
left p literal in node {5), the covering ancestors can easily be spotted. “The literal
is annotated witk ‘the list-[4,2, 3] (remember that. the first ‘element of these lists
refers to p). So, node (4)is the direct covering ancestor. Its:selected p-hteral has
annotation [1,2,3]. This means that.the next. covering ancestor, is-node:{ 1) -and
the “ on the first position of its annotanon Tist marks the top of the chain.

Summarising, we. can state that an integration of variant chiecking with pur-
tition based unfélding is relatively straightforward, even in a fully automatic
context. And, since the. measured part for these measure functions inivariably
coincides with the whole se]ected literal, the full generality of the developmenit
in the previous subsection i s, in this restricted context, probably somewhat-of an
overkill. Open issues requiring further (_expenmental} reseazch aré a.o.:

8.5. INCORPORATING VARIANT CHECKING 193

e How big is the gain in sensible unfolding capacity outside 2 strict datalog
context ?

e How severeis the mentioned efficiency. problem ?

Fma.lly, we briefly address set based unfolding. Since, now, part ‘'of a selected
‘literal can be “disregarded”, our integration enterprise involves somie more subtle
‘issues. Clonsider the following example:

Example 8.5.16
P(X,¥) — o(X, 2), 52, [X]V])
Part of an SLD-derivation for « p(e,Y) can be found in figure 8.11.

- paY) **)

< _g(a2), p(Z[alYD)
< phl¥D *

Figure 8.11: Combining set based and non-variant unfolding.

In node (%)}, we would like to be able to carry ouf the 1nd1ca.ted unfolding step.
'This is possible with-combined unfolding using }. lp, 1} a8 measure funciion. How-
ever, setting: out with the initial ||, f1,2), and adapting the notion of tight de-
creasing refinement to the context of set based measures in the ébvious way, the
above measure function is not a (#+, *)-decreasing refinement of .|, {1,23- In fact,
there is nore.

‘So, we meed' to revise the automatic unfoldmg aIgonthm in such a way that
Tneasuré functions are refined into non-increasing ones, possibly leading to useful
stable unfolding on the basis of the newly added non-variant condition. Doing so
can make sei beded unfolding more powerful than porttlion based in S0Ime cases,
thus outdating our conjecture at the end of subsection 8.2:3. Of course, blending
the two approaches is possible, through partitioning subseis of a selected literal’s
argument positions.

194 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING
8.6 Focusing on Subterms
8.6.1 Introduction

All concrete unfolding. stra.tegms presented above rely on atom and goal weights.
determined by one or imore arguiments in the considered atoms. (As can be
observed in definitions. 6.3:3, 8.2.2.and 8.3.7.) And indeed, we have shown how
this provides & good basis for unfoldlng miost logic programs. However, in some.
cases, it seems more appropriate not to consider the overall structure of entire.
arguments, but instead to focus attention on specific. parts of complex-terms.

"The following exarplé indicates what we have in mind.

Fxample 8.6.1 Consider a clause as follows:
p(F(IXIY), 2)) — p(F(Y, [X, X|2]))
A-nd take as query to be unfolc_ied
« p(f{[a, b, clY}, 2))
An (mcomplete) SLD-derivation is. deplcted in figure 8.12. Nodes are annotated

‘with the weight assigned to'p’s single argument by the functor norm introduced.
in definition 6:3.2:

<= p(fab,clYLZ)) (4
< p(i(b,CIY],[a,Z])) (5

= p(f([elY],[bbiaalZ]) (6)

<~ pEY.[cchbbaazZl)) (7)
‘Figure 8.12: Interesting subargument behavionr.

1t seems quite reasonable to expect that. (at least) this ameunt of unfolding wouid
be: performed at partial deduction timié. Hewever, iinder a.ny ‘concrete ineasure
function introduced in this thesis, goal weights contmuously inérease throughout
‘the derivation.. The unfolding algorithms based on them.will therefore halt after
just one step. The first f-argument is.what we need to-measure, rather than the
whole p-argument.

The rest of the present section contains a formal treatment of thisi issueé. Be-
low, we first show how algorithm 6.5.5 can cope with argument behavicur as in

8.6. FOCUSING ON SUBTERMS- 195

éxarnple 8.6.1, provided it is run with a suitable ((Ro, Ra; ... Bw), (Fy;. - 5y F))
pair. Next, subsection 8.6.3.addresses automation. It 1nc1udes a formal develop—
ment of more flexible ingtruments, needed in this more sophisticated contexi, as
well as an algorithm that is capable of automatically focusing ori suba:rguments
Finally, meta-interpreters already surfaced as a class of programs requiring so-
phisticated measuring of this kind. Some examples and preliminary considera-
tions were included in subsections 6.3.3 and6.5.3 above. Our development here
sheds new light on the issues involved in (automahcally) unfolding such Prograins.
We: therefore exphcxtly revisit the subject in subsection 8.6.4.

Throughout this. section, in «ofder to coricentrate on the major novel issues
specific to subterm’ focusmg, we w1ll use as a basis the simiple framework of set-
based measures,

8.6.2 More detailed measures

As pointed out above, definition 6.3.3 lacks sophistication to properly serve our
needs in the présent context. We néed more powerful measure functions, In fact,
definition 6.3.8 provides a suitablé basis. For convenience, we repeat it here [let
Termp and Afomp respectively denote the set of terms and atoms in the first
order language Lp; used to define a given theory P}):

Definition 8.6.2 A selector function s (for P}, denoted as a finite, non-empty
sequence -of positive integers connected with slashes, ny/ns/ . .. fug, is a (partial)
fanction: Atomp U Termp — Termp, recursively defined as followss
¥s=rnandn<m
Then s{r{ly,...,tn)) =t
Else if s = nljn;;/ ./np,ny <meand ngf . «/r(ts,) is defined
“‘Then s{r(tl, tm)) = nz/ ne(tn,)
Else s(r(fy,. . :f'm)) is undefined.

We include the following definition for later use.

Deﬁnltmn B.6.3 Let F, and P; be two atoms in Atomp and s be a selector
function such that both s{P;) a.nd 3(Pg) are deﬁned Then s is:

e (Py, Py)-decreasing iff |s(Py)| > (P2}
o (Py, Pa)-increasing iff |s(B5)| > |s(By)]
o (P, Py)-stable iff |s(21) = [s(o)

We continue:

Deﬁmtmn 8:6.4 Let V bea subset of Atomp UTermp. Then a selector fanction
s for P is called V-applicable if s(v) is defined for every v € V.

196 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

Example 8.6.5

Cousider
81 = 1 / 1
s2=1 /2
83 = 1/2/2
And

A =p(f([e, b c[Y], 2))
B = p({{[5,c[¥], [a,al2]))
Then 43 and 83 are {4, B}~a.pphcable, but sy Is not.

Furthermore
$1(4) = [a,5,cfY] 1(B) = B, elY]
32(11) z s;(.B) = [u,a|Z]
33(4) is undefined 53(B) = [a|Z]

Definition 8.6.6 Let V be a subset of Atomp. Let § = {e1;...,5m} be a
{non-empty) set of V-applicable selector functions. We define |. lv,s: V ~ IV as:
follows::

s = s (8)]+ -+ I
where' [.| is the functor norm introduced in definition 6.3.2.

Example 8.6.7 BElaborating example 8.6:5; we have:
|Al{4,8 51,003 = @ Biel¥]| + |21 = 3
|Blga,8},{s1,22) = llbsclY]] + |[a, alZ]] =4
|Bli2y,fsa,ns} = ll@,alZ]] + {[e] 2] = 3

Using the terminology introduced in definition 8.4.2, a function |.lv;s thus de-
fined, can be considered a (V, P)-applicable measure function with target set IV
(often simply to be called a V.applicable measure function). Indeed, through—
out this entire section, a. goals weight will’ always ‘be taken equal to the weight
of its selécted literal. Therefore, we will {again) overload our language and our
.mathermatical symibols, and use ‘identical notation and terminology to zefer to
(measure) functions defined on atoms on the one hand, and on entire goals (with
a.selected literal) on tke other hand.

It turns out that definition 8.6.6 is slightly too general for .our purposes.
Indeed, as can. be observed in the above: exampie some parts. of.an atom.may be:
considered more than once in determining its- weight. This'is remedied as follows:

Definition 8.6.8 Let s and &’ be two selector functions, denoted by the strings ¢
and #'. Then the string t/¢’ also denotes a selector function, called a subselector
.of a.

If a selector function. s is applicable to some set V', than all selector functions of
which it is a subselector, are too. For any element of V, they will select larger

8.6. FOCUSING ON SUBTERMS 197

subtermis than s. Hence the name “subselector” for s. We will also need the
following, more specific, concept:

Definition 8.6.9 Let s be a selector function, denoted by ¢. Letn be: a positive
integer. Then t/n denotes a firsi level subselector of s:

Example 8.6.10 _
In example 8.6.5, 55 is:a {first level) subselector of sg.

Definition 8:6.11 Let V be a-subset of Afomp and § 2 (non-empty) set of
V-applicable selector functions. Then we define |.lv,s to be singulerly measuring
if no element of 5 is a subselector of another element of 5.

Example 8.6.12 . .
[-114,8}.{6s,55} I8 singularly measuring, but Ll¢stsa 52} 15 not.

The notioh of & singularly measiring medsure function is the generalisation of
definition 6.3.3 that we will actially use throughout this section. Note that all
meéasure functions of the kind introduced in definition 6.3.3 are indeed singularky
measuring;

“We now have the rlght tools to apply algorithm 6.5.5 succesfully to exam-
ple B.6.1.

Example 8.6.13 _
Running the algorithm with
Ro ®
= {instances of p{f(X,Y?)}}
Fx = | Ry /m
produces the desired result: the derivation in figure 8.12 with one eéxtra (dangling)

leaf. The root goal’s weight equals 3. The goal weight decreases with I at each
unfolding until it finally reaches 0.

The following is a Slighfly more. complicated example.

Example 8.6.14.Consider the following clauses:

p(F(IX1Y], 2)) — p(g(X, Y, Z})

P(g(X,Y; Z)) — p(£(Y, [X, X|2}))
together with the query from example 8.6.1. There might be other ways to handle
this situation, but obvious choices are:

Ry = {instances of p(f(X, i

Fr = e g/

Ry = {instances of ple(X, ¥, Z))}

Fy=||p,qapsy or Fa =] |R=.{1;z 1/2}

198 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

The above exa.mples ‘brief as they may be, ¢learly annoiince the main issues
to be considered in the context of automation;

° Ta.kmg one R; per recursive predicate symbol, as was standard practice until
now, is no longer-satisfactory, Rather, the R; classes must be dynamiically
determined, together with the associated reasure functions.

e An extended notion of tight decreasing refinement is réquired. Instead of
just removing elements from:S as proposed in section 7.2, we might want
to replace them by one or more of theéir subselectors.

o We must ensure that each F; is.indeed R;-applicable.

‘e Finally, new issues. in termination arise,

8.6.3 ‘Automation
Preliminaries

Automatic uifolding with 2 “focusing on subterms” fa.mllty involves a oumber
‘of quite subtle issues. A defailed technical treatment of all aspects is beyond
the scope of this thesis. Rather than mcludlng a high level, somewhat vague, de-
scriptive discussion, we do present a precise technical development and a (nearly)
concrete algorithm. Let it be clear however, that this subsection is Tneant to serve
as one ezample. study of how subterms can-bé dealt-with in the context of online
logit program unfolding, thich more than as 2 final treatise on the subject.

In section ‘8.4, we presented a generic treatment of automatic weight based
unfoldzng, hlghhghtmg the commion pnnc1ples underlylng most of our algorithma.
.However, in the pair ((Ro Ryy .0y By), (Fl, FN)) of atom classes and associ~
ated measure functions, underlymg the template algorithm 8.4.4, the ;- classes
‘are ﬁxed and only the Fi-functions are- ‘dynamically tuned to reach optimal val-
‘ues. It is clear that this choice is no- longer sufficient if we want to dynamically
focus on subterms. We must have the. ability to refine the atom élass pariition
as well as the associated measure functions.

Let us first. introdirce some geheral terminclogy.

‘Definition 8:6.15 A pair .(-_(Rdaf-Rl; RN) (Fl, v Fa)) where Roy Ry vov Ry
is'a partition of dtornp and Fp,.. FN a series of assoma.ted measure. functlons,
will be called a class-measire pair (cmg) (for P).

Definition 8.6.16 Let Gy _a_ncl Gz be iwo goals inLp: w1th selected literals Py
-and Pp. Let ((Ro,Ry,..., Ri, ..., Ry), (Fl, s Fize sy Fn)) be a criip such that
Py, Pz € R;. Then we call ’t.h1s cmp (G1,G)- decreasmg, respectively -incregsing
or ~sigble, iff F; is.

8.6. FOCUSING ON SUBTERMS 199

Before we can actually describe the required refinement notions, we need a
formal symbolic apparatus enabling us to handle the cmps that are of Immedzate
interest in the context of this section. In the previous. subsection, we already
completed this task for the measure functions to be considered. Let us now
address atom.classes. (Throughout the following definitions, we assume. that
every function symbol and every predicate symbol in Lp bas a single associated
arity, which we can then saféely leave implicit:)

Deﬁnit’io_n 8.6.17 A term flag is recursively defined as follows: "
® A variable symbol is a term flag..
o A set of function symbols is a term flag.

» A function symbol-applied to arguments which are.term flags, together not
containing any- variable symbol more than once, is a term flag.

Clearly, no variable symbol can occur more than onte in any term flag, In the
sequel, we will refer to term flags of the above introduced varieties as var flags,
set flugs and funcior flags respectively. A term flag appearing at sorne level inside
a (functor) flag, will be called a subflag of the latter. [Notice that only functor
flags have subflags.)

Definition 8.6.18 Let ¢ be a term flag (m Ep) Then we define its covered term.
sel Ty as follows:

o If v is a var flag, then 7, is the set of all terms in £p.

o If i is a set flag, then 7, is the set of all’ terms in Lp whose. top level functor
(if any) does not occur in @.

e o= f(®15« - otp) and Tmr -« -y Tg, arethe term sets respectwely covered
bY ®15. 0y 90, then Ty = {F(ta,..., tn)lt1 € T.Pl, cerin € T%}

Definition 8.6.19 A predicate symbol applied to argumenis which are ferm
flags, together not containing any variable symbol more than once, is an siom

.ﬁa.g.-

Again observe that repeated occurrences of the same variable symbol within an
atom flag are not allowed,

Definition 8.6,20 Let ¥ be an atom ﬂ'ag__p_(.kpl, v+ s ©n). Then its covered atom
zet’ls defined as-follows: '

Ay =Pttt € Toyye ooy tn € T}

200 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

It-can be observed that fags-identical up to variable symbol Tenaming, cover the
same set (of atoms or terms) We will therefore' not distinguish between. such
flags and' consider for example p(X) and p(Y).as one and the same atom flag.
The following property is immediate: -

Proposition 8.6.21 If ¢ is an atom flag then Ay, # 0,
‘Example 8.6.22
e p(X) is an atom ﬂag,-cbv’eriiig the set of all atoms with predicate symbol p.

* p(f(X, Y)) is an atom flag and its covered atom set contains-all atoms
which are instances of p(f(X,¥)).

o In general, when an atom: flag contains no term flag of the “set” type,
its'covered atom set comprises éxactly. all instances of the atom which is
syntactically identical to the'given flag.

o p{{f}) covers the set of all pratoms that do not have f as the top level
function symbol of their argurment.

» p(f(X,{g.h}}) covers the subset of Ap(zix,y)y that contdins all its atoms
with nmther g nor k as the top level functor of the second ¥ argument.
Thus:

- p(f(X,Y)} e -fip(ﬂx,-{g,h}n
- P(f(Xl LQ(X! a, h(b))! &])) E.APU(X-{H}-’I}']}
= p(f(X, 9(X, 2, h(5))}) & Ap(r(x, {03

The above introduced formalisi could be slightly extended to allow more fex-
ibifity at the-level of atoms. That would for example be of immediate use in the
description of Rg. However, for Ro, we will, also in this: section, always make the
sarie static choice: it will contain all atoms thh a non-recursive predicate sym-
bol. As a consequence, if R;,..., R » forms a partition of the rest of Atomp, the
required partition property as well as the third condition in deﬁmtmn 6.4.5 will be
satisfied for. Ro Rl, R N Which can then be sa.fely used as a basis for unfold-
ing; given. proper measure functions. Inthe sequel we wﬂl therefore no Zonger £2-
plicitly refér 1o’ R, and characterise cmps by ((Rl, Ry, (R -+ Fx)) pairs.

Definition 8:6.23 A cmp ((Bi,..., Ry), (Fi,..., Fy)) (for P)is well-structured
iff . /
o Bi... RN is a partition of the set'of dtomsin £ p with arecursive predicate

symbol
e Vi <i< N :F;is Ri-applicable.

8.6. FOCUSING ON SUBTERMS 291

Example 8.6.24 Suppdcse that, in the given language, p is the only (recursive)
predicate symbol. Then the cmip used in example 8.6.13.can be represented as:

((Aptrxy s Asern) (o f171b g myndan))

To simplify notation somewhat, we will henceforth drop the A from the measure
function subscripts. Doing so, we teconsider example 8.6.14;

Example 8.6.25 Ta.king the sécond choice for F;, the cmp becomes:

(CAp(s(xr yi Ao, v, Aotts,on)i

(Ll v, i/t Hptoxzan iz yah etesan, i)
.Clearly, both this cinp and the one in’ example 8.6.24 are well-structured.

The following definition will be convenient:

Definition 8.6.28 Let 4,..., Y be N atom flags such that Agiy oo Aygy isa

partition of the set of atoms with ‘a recursive predicate symbol. Let Sl, Sy

be N sets of selector functions, such that each S; contains only A, -a.pphcable

elements, and each |.|y, s; is singularly measuring. Then we call the cmp
(("4’4‘1 pev g Aggyan e, A’PJ\{')! (HWF’:,Sn T |_‘|\b€,'3i-’_' " ’-!'liﬁw,_sn)-)

a selector basea’.- emp (sbemp)..
Proposition 8.6.27 A selector based cmp is well-structured.

"Proof Immediate from definitions 8.6.23 and 8.6:26.]

Two refinement notions

Definition 8.6:30 below presents the firsi of two refinement notions on sbemps. It
is-a straightforward: reformulation of the already familiar one on measure func-
tions.

Definition 8:6.28 Let v be an schp, R TR 1 SO]1;,“ Sis -0} Let Gy
and G2 be two goals with respective selected l1terais P1 a.nd Py, both covered by
2;, stich that x is not {G1, G3)-decreasing. Then we say that x has (G, Gz) m-
potential iff S; contains at least one (Py, Pp)-decreasing selector function,

Example 8.6.29 Let G; be a goal with selected literal P; = p(f{(a, b, e|Y], 2))

and Ga be a goal with selected literal P, = p(f([b,c|Y], [a,e|Z])). Then the

‘sbemp o)
((Aps iy Angia) (-l iz ian e)

‘has _(Glg'Gg)-m-pdt'ential.

202 CHAPTER 8. ADVANCED TECHNIQUES IN.FINITE UNFOLDING

Definition 8.6.30 Let x, Gy, G, Py a.nd Pz be as in deﬁmtlon 8.6.28. Let x
have (G’1, Gz)-m-potential. Then we define the (G, G2)-m-refinement of x to be
the pair

(- erpin - Do [Flyasrer -)
identical to), except. at §';, for which the following holds:

8 =8 \{s & S;]eis (P, P:)-increasing}

Example 8.6.31 The (G1, Gj):m-refinement of the sbcmp in example §.6.29 is:
((Apirixr s Asttrn) et vty Marde)
The following proposition Shows thet m-refining is a well-defined operation.

Proposition 8:6.32 Let x, Gy, Gz, Py and Py be as in definition 8.6.30, Let %
be-the (Gy, Gg)-m-reﬁnement of x. Then:

Lox#x

2. ¥’ is ah sbecmp.

3. x' is (Gy, G3)-decreasing.
Proof

L. x is {G1,G2)-stable or -increasing and has (Gl,Gg) -m-potential. ‘This
means that there is at least one (Py, Py)-increasing selector in S;. So,
5; # Si.

2. No change is made to the atom- classes, so they keep-the required partition
property. Furthermore, deleting one or more selectors: from §; obviously
does not affeéct the A.“r,‘ applicability of the- remaining ones. Nor does it
damage the singularly measuring property of |.|y.s;. TFinally, all other
measure functions rémain unchanged.

3. Thete is at least one- (P1, Pz)-decreasing element in 5 and none which is
(Pr, Py -increasing. The result follows.

-

Tlus concludes the constructmn of the ﬁrst reﬁnement notlon Ob\rlously,
it: does not brmg anything substantially new. We now turn our atiention. to
the description of o second refinemeni operation which does present a major
innovation. It incorporates the possibility ‘to shift .attention towards subterm
structure. This not only requires changes in ‘the. measure functions of an sbemp,
but also necessitates adapting the atom classes. It is this operation which we
will not formalise in its fullest generality. Rather, we will’ lll’l’lit the complexity of

8.6, FOCUSING ON SUBTERMS 203

the ensuing presentation by hard-wumg a number of particular choices into our
definitions. We will briefly indicate some possible alternatives at the end.of this
subsectlon

First, we.need some additional tools for ma.mpulatmg flags. Generalising def-
inition 8:6.2 such that selector functions can also be applied to Bags is straight-
forwa.rd and will not be done explicitly. Then we can define the following:

Definition 8.6.33 Let ¢ be an (al‘.om or term) flag and s a sélector function.
We call s leaf selecting for @ if. s(#) is a'var or a set flag.

Definition 8.6.34 Let 3 be an atom flag, s a selector function which is leaf:
selecting for-¢ and f a function symbol (with arity n), not occurring in s(3).
Then' the (s, f)- reﬁnement of ¢ is the atom flag obtained from 4 by replacing
s(#) with f(X 13wy Xn), where Xy;..., X, are distinct variable symbols, not
appearing in . ' '

Occasionally, we will simply speak about a “refinement” in contexts where the
actual s and f do-not matter.

Definition 8.6:35 Let %) be an atom flag, s a selector function which i Teaf.
selecting for 4 and f a function symbol. Tet 4y be the (s, f)-refinement of 9.
Then the y-complement of ¢y is the atom flag ¥ defined as follows:

o If s(¢}) is a var flag, then v results from ¥ by replacing s(4) with the set
flag {f}.

o If s(3) is a set flag, then +; results from 4 by adding.the function symibol .
f to s(u’:)

Example 8.6.36 Lét f and g be function symbols with arity 2'and 3 respectively.
Then:

o p(f(X,Y)) is the (1, f)-refinement. of p(X) it has p({f}) as its p(X)-
completnent,

o The (1 g)-refinement of p({f}) is p(9(X, Y, 2)), the p{{f})-complement of
which is p({f, g}).

¢ Finally, the (1/1,9) refinement of p(f(X,Y)) is p(f(g{X1, X2, X3),Y)).
Here the 3(f(X Y))-complement is p{ F{gh Y))-

The following proposition motivates definition 8.6.35:

Proposition 8.6.37 Let 3 be an atom flag, 41 a reﬁnemen’c of 4 and 4f; the
1-complement of 4. Then the following hold:

204 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

o Ag, dy, =0

o .A‘g LU 'A‘w.’ = A1‘(,
Proof Obvious frorn the definitions.]
"We need one more concept:

Definition 8.6.38 Let 1 be an atom flag ‘and S a set of .Ay-applicable selector:
functions. Then we call ||y, leaf méasiring if every s € § is leaf selecting for ..

Proposition 8.6.39 Let ¢ be an atorm flag and 5 a set. of Ay-applicable selector
functions. If |.|y,s is leaf measuring then |.,, s is singularly measuring.

Proof A selector function whick is: leaf measuring for 4 hag no Ay-applicable
subselectors. ‘0

Fiha.l:ly,__ we can present the second refinement notion..

Definition. 8.6.46 Let x be an sbemp, ((..., Agr-+ Dl ooy |- lpasis - o)), such
that |.|y,,5, isleaf measuring, Let-Gy and G be two goals with respective selected
literals P; and Pz, both covered by y;, such that x isnot (G1,G2)-décteasing.
Let s € 5;. Then we say that x has (Gy, Gz, s)-c-potential iff the following two
conditions are both satisfied:
o ‘There is a function symhol f siich that the {5, f)-refinement of ¥ covers
both P, and P;. o

e At least one first level subselector:of s'is {P1, P)-decreasing.

Note that f, if it exists, is uniquely determined by &, Pyand P, {and thus by:s,
G and Gy)-
Example 8.6.41 Consider the first and the second -goal in figure 8.12. In other
words:.

Gz = p(f([b; cjY], [a,012]))

Pj =-p(f([a., b, CIY}:-Z))_ _
- Br=p(£([b,cl¥],|a, a}Z]))
Let

x = ((Apxy), (lpex),423))
Then:

® x is an sbcmp.

® |lp(x),(1y is leaf measuring.

8.6. FOCUSING ON SUBTERMS 205

P p(X)_.-cov_e'rs P, and .Ps.
o x is (G, Ga)-increasing.
It follows that x has (31, Gz, 1)-c-potential, since:
o p(f(X,Y)), the (1, f)-refinement of p(X) covers both P, and P,.
o 1/1is a (Py, P,):decreasing first level subselector of 1.

Definition 8.6.42
Take xX = ((!"411'1—11'4'& A"qﬁ’wl! 1 ! i\b w1381 I Iz)‘J‘,S,; | !¢’|+1:3|+u)):

Gy, G, Py, P;.and s-as in definition 8 6 40 Let x have (G’l, G, 5)c- potentla.l
Let f be the function symbol satisfying the first condition in definition 8.6.40.
Then we defitie the (G,, G, 5)- c-reﬁ.nement of x to be the pair

((A'P‘-UA’P ‘A'@'"?A“l‘ﬂ-n

. (3 ! i‘xb‘-—-:l.;st-i 1 l 11}" 5'! I I',b" ;?I l'ﬁu+1,5 - B ‘})
where:

o ! is the (s, f)-refinement of 4;.
‘e 3 is the P;-complement of ¥}

o S{= 5: \ {s}\ {¢’ € 5:l¢ is (P}, P,)-increasing}
U{s"}s" is a Ay: :-applicable first level subselector of s
which is not (P, P2)- mcreasmg}

Example 8.6.43 Continving example 8.6.41, we obtain

((Aperex i A (g Fegsana)
as-the (Gl,Gg, 1)-c-refinement of x.

Just like m-refining (see proposition 8.6.32), c-refining is well-definied.

Prop051t10n 8.6:44 Let ¥, G4, G2, P, P; and s be as In definition 8.6.42. Let
x' be-the (Gi, Gy, s)-crefinernent of X Then:

L x"#x

2. ' is.an sbemp.

3. %' is(G1, Gy)-decreasing.
Proqf '

1. Obvious from the definition.

206. GHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

-2.. Let x and x' be denoted as above in .deﬁniﬁidn_&ﬁ.él We have to address
three properties of an sbemp {definition. 8.6.26);

* e A At Ay Aoy - Jsa partition of: ‘the set of atoms with
a recursive predlcate symbol. This follows from the fact that x is-an
sbemp, and from propositions 8.6.21 and 8.6,37.

o We know that any S; in x contains conly .Aﬂ, -applicable eleiments.
Now, definition 8.6.35 1mphes that the selector. functions in S; are also
A¢u-a.pphca.ble Moteover, it follows from. deﬁmtlon 8.6.34. that-they
are A,;,:-a.pphcable which means that the latter property holds for any
element in St

¢ Finally, the second part of the proof for proposition 8.6.45 below shows.
that all measure functions in x' are leaf ‘measuring. So, they are
smgula.rly measuring (propoaltzon B.6. 39)

‘3. Since P, and P; are covered by ¥, we have to show:
|Pylgs g0 > P2y st
This follows from the fact that S} contains no {P;, Ps)-i mcrea.smg and at
least one (Pl, FPy)-decreasing selector function. .

o
Finally, the following property holds:

Proposition 8.6.45 Let x be an sbemp, x’ an m- and ¥ a c-refinement of x.
_If eack measure funétion in i is.leal' measiiring, then so-is each measure function
in x"and-each measure function.in x”.

Proof

e-In definition 8.6.30, 5] is derived from S; through the deletion of one or
more selectors. Obvmusly, the remaining ones are still leaf selecting for ;.
'Thls ‘proves the result for %',

e For ", the proof is shghtly more complex. Let % be an atom ﬂa.g, 5a
selector function which is leaf selecting for 9 and. f a function symbo! ‘Let
‘" be‘the (&) F)-refinemient of ¢ and $" it y-complement. Tet |-J,s be the
measure function in x which is replaced by |.Jyr, 5 and [y« 5 in x”, where
-5 is derived from § as stipulated in definition 8.6: 42, Then we hdve to
show that |, lwt,5t and |:|yus are leaf measuring.

— %' is identical to 1, except at s{y’) where a var or a list flag has been
replaced by a functor flag. This implies that all elements of 5§ {a} are
leaf selecting for ¥, Finally, since s(#') is a functor flag with only var

8.6. FOCUSING ON SUBTERMS 207

subflags, .Ay-applicable first level subselectors of s are likewise leaf
selecting for /.
- Since ¥ is derived from 9 by replacicg a var flag by a set flag; or by

extending a set flag, any selector function which is leaf selecting for 1
is also leaf selecting for 9",

0

An salgorithm:

Algorlthrn 8:6.46 below incorporates an automatic unfolding method with a built-
in “focusing on subterms” facility. It is presented in the same ovetall style as
algorithm 8.4.4 in subsection 8.4.2, for ¢éase of comparison. However, in the.
present complex context, it. seems very reasonable to provide, as has been sugs
gested before, a separate sbemnp for each proper achain (see definition 6.4.3 on.
page 103). In other words, below; sbemps as well as sbemp refinements are local
to proper achains. Moreover, the whole algorithrn is designed in such a way that
it is guaranteed to. terminate. Some variants, not. enjoying this property, will be.
discussed below. _
Before we proceed, we introduce some further terminology:

o It can be seen -from definition 6.4.7 that the notion of one goal covering
another depends on the atom class partition in-use. Until now, in our
algorithms, this counld be safely left: imiplicit because this partifion was
stable throughout the algorithm (and even always chosen in the same way).
However, thisis no longer the case. So, for clarity, below, we will explicitly
mention the considered sbemp and refer to-a x-covering ancestor.

» Suppose ¥ is an shemp and X its {Gi,Gg, s)-crefinement with Ay » as
freshiy introduced complement class. Then we say that G; pseudo covers
proper. descendant goals with selected literal in .4y, (But no longer goals
with selected literal'in any refinements or refinement complements of Ay .}
‘Moreover, the weight of Gy under x ‘will be called the master weight asso-
ciated with A,J, . It follows that a pgoal has at most one p_seuqlo_covermg
‘ancestor and assoctated master weight. Both notions play an important
role in restricting the behaviour of algorithm 8.6.46 in: such a way that its
termination is ensured:

a Selectability condition (2) in-algorithm B.6.46 abuses terminology: It de-
mands that an sbemp should e (W, G)-decreasing, where W is niot a goal,
_but a master welght The intention is-obvious: the welght of @ under ¥
should be stnctly smaller than W.

208 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

Algorithm 8.6.46
Input
a definite program P
‘a definite goal «—4
Output
an SLD-tree rfor P .U {—4}
Initialisation
7 ig'initialised as the SLD-tree that contains a single derivation,.
consisting of the goal A4, without selected literal,
One starts with a smgle sbcmp, composed as follows;
For each recursive predicate p/n in P:
— an-atom class Ayex, .. x.)
—.a measure function |.[yrx,,. . x X {1
No other atom classes or measure functions:
While there exists & non:terminated desivation D in T do
If D is-succesfyl, Then terminate D
Else If Ds lea.f-node contains no selectable atom, Then terminate D
Else
select the leftmost selectable atoin
If no derivation steps are possible, Then terminate and fail D
Else extend D
Where an atom p(iy,...,2,) in a goal G is selectable
if one. of the following condltlons holds in case it is: actually selected:
(Let x nanie the: shemnp. currently controlling the proper achain
‘to whith @ belongs if P{try. - tn) is selected.)
{1) G'has neither a ¥-covering nor & pseudo- covering-ancestor.
{2} G hasne X-covering ancestor and
G’ s its pseudo covering ancestor and
W is its associated mastér weight and
 xis (W,@)-decreasing,
(3) @”is the direct x-covering ancestor of G and
- xis (&,6)- -decreasing.
(4) G'isthe dlrect x-covenng .ancestor of & and

' (5) Ther_g are a goal G 1n D and a selector functmn s such that
x has (&, G, 5)- 'c-potentla.l and’
&' is the direct ¥’ -covering ancestor of @,
where ' is the (¢, G, s)-c-refinement of X
M an atom p{ty; ... ,t,) has been selected on the basis of condition (4} or (5),
Then replace x by its corresponding reﬁnement

Endwhile

8.6. FOCUSING ON SUBTERMS 209

The following propesition shows ﬁhat-_al'gbrithm.SLﬁ-.4ﬁ is well constructed in
an important sense.
Proposition 8.6.47 Throughout algorithm 8.6.46, the pairs of atom classes and
-mieasure functions underlying its operation, are sbermps; all of whose measure
functions are leaf measuring.

Proof
© The property is obvicusly satisfied afier initialisation.

‘& Propositions 8.6.32, 8.6.44 and 8.6.45 guarantee that the property is pre:
served by m- as wéll as c-refinements.

(W]

So, x-in the above algorithm is sufficiently well-behaved; it always satisfies the
basic preconditions for both refinemerit operaticns.

We include two simple examples, 11]ust.rat.1ng some basic aspects of algo-
rithm 8.6.46’s operation.

1) =~ p{f{ablY]Z) (1)

2) = plg@blYLz) (3

3) = p(([blY],[a,alZ]))

‘Figure 8.13: Initial unfolding,

Example 8.6.48
Reconsider:

P(F([X]Y], 2)) — p(g(X.Y, Z))

P(¢(X, ¥, 2)) — p(F(Y, [X, X|2]))
with the query:

e pfladivlz) -
‘Algorithm 8.6.46 builds-an SLD-tree with one SLD-derivation that contains just
a single proper achain. Let x name its:sbcmp, then initially:
= ((Agex)s (hlp(x),423))

A ﬁrst part-of the SLD-derivation produced by algorithm 8. 6.46 iz shown i in fig-
ure 8.13: In this and the fol]owmg figures, goal nodes are labeled by a number to

210 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

their'left. The labels at the right indicate the selectability condition (accordmg

to the list in algotithm 8.6.46) satisfied upon unfolding by the (single) literal in
the goal.

If we select the sole literal in goal 3), its direct x-covering ancestor .is goal 2).

We ‘observe that ¥ is not (2; 3)-decreasing, nor does it have (2, 3)-m-potential.
However, there is (1, 3, I)-c-potential, and after c-refinement, we obtain:

= ((ptrexens Apcis e (- ptzcrmayrin Leggrn.m))
This enables farther unfolding as indicated in figure 8.14.

3) = p((bIY]fa,aZ]))y (5)

4) < p(e®.Y.[4aZ])
Figure 8.14: Continued unfolding.

Now, goal 2) is the direct x~covering ancestor of goal 4). Again, c-refining is the

only way to continue unfolding. We replace x by its (2,4, 1)-c-refinernent and
obtain:

X = ({Ana(e ps Aot v, 2000 Astis, e

(Llatrerrniad Hetopnrandzmare Mecsen, i)
The resulting-additional unfolding steps are depicted in figure 8.15.

4) =< pla®.Y,[aaZ])) (5)

5) = P(f(‘Y,_[h',b,'a.aIZ])} €3
6} p(e(X’,Y",[b.b,a,a1Z)))
Figure 8.15: Conchiding unfolding.

‘Goal 6), constituting the leaf in figure 8.15, contains no selectable literal. Un-
folding stops-and algorithm 8.6.46 terminates:

8.6. FOCUSING ON SUBTERMS 211

Examp_‘l_e 8.6.49
Consider the following 2 goals:

®. .G_l . p(f([a[XD,Y)
¢ Ga = p(f(X), al¥))

And suppose that

x = (v) (- lexivy.as,en) |
Then x is not (G, Gz)-decreasing, but it has both {G, @3)-m-potential and
(G1, G, 1}-c-potential. Refining gives the following results:

m: ((Apex,ryh (|-l r03))
& ({(Ap(s) vy Apcrrnon b (He ey i e rning)

Example 8.6.49 indicates that algorithm 8.6.46 is non-deterministic; its conditions
for literal selectability are not mutually excliisive. More precisely, conditions {(4)
and (5) might both be satisfied upon selection of @ certain literal in a’ given. goal.
Moreover, it is also. possible that there.are more than one &' and s such that X
has (G’, G, ¢)-c-potential. We present some brief remarks on these and various
other issues below..

Let urs first prove the termination of algorithm 8.6.46.

Theorem 8.6.50 Algorithm 8.6.46 terminaies, The resulting SLD-tree T is
finite.

Proof’ We must prove that algorithm 8.6.46 can not produce an infinite SLD-
derivation. To this end, it suffices to show that every proper achain tnust neces-
sarily be finite (proposition 6.4.,4).

So; consider a proper achain €' constructed by algorithm 8.6.46. Every non-leaf
goal in this chain has a selected literal. We will call such a goal of kind 1 to
respectively § if its selected.. literdal was chosen on the hasis of ‘condition. (1) to
respectively (5) in algorithm 8.6.46. The proofs of the following two statements
are analogous to what was presented abover

‘o If there is goal G of kind 4 or 5 in C which has no.descendant goal in €
of either kind 4 or 5 (in other words, literal selection in (& caused the last
sbemp refinenient), then & has only a finite number of descendants in €.

o Between two kind 5 goals, C' contains only a finite umber of kind 4 goals.
(In other words, only a finite amount of m-refinements is possible between
two c-refinements.)

212 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

It remains {0 be shown that C can contain only finitely mary geals of kind 5 (i.e.
c-refinement can occur only finitely often).

‘We introduce some terminology. Consider an atom flag 4. ‘Then we can associate
a levél with term flags occurring in 4 as follows. The arguments of ¥’s predicate
symbol are its level 1 term flags. If ¢ is'a level n functor flag in 4; then the
arguments of its function symbol are level n+1 term flags in ¥. Then let the
depth: of an atom fleg be the maximum among the levels of its term flags, and
the depth of a-set of atom flags be the maximum among the depths of its atom
flags. In particular, we can .associate o depth with the atom. class partition (acpf
(+++1-4g;s -) of an sbemp.

Now, there are only finitely many predicate and function symbols in the program
and goal serving as input to algorithm 8.6.46, each of which is of finite arity.
Therefore, there can be only finitely many diﬁ'efent scps of a certain depth.
-Next, we observe that of the two shemip ¢hanging operations in algorithm 8.6.46,
_m-refinemnent does not infhience the acp, and c-refinement changes it into a fresh
(not used before.in C) acp, the depth of vhich is either eqial or larger than that
of the current acp. So, it suﬂices to prove that there is an upper bound to the
poss:b!e depth of the acp. in C's.sbemp. In particular, sincé a flag’s depth can
-only increase through c-refinement, it suffices to establish an upper bound. for
the dept.h of the refined flag after c:refinerment in €.

We in fact show that for any recursive predicate symbol, there is one such up-
- per bound for atom flags with this predicate symbol. Ciearly, the maximum of
such predicate-wise upper bounds constitutes an upper bound for the overall acp
depth. So, et P be a recursive predicate symbol. Call goals in € the selected
literal of which contains p, p-goals, and atom flags with p, p-flags. If there is
no p-goal, than the required result follows trivially: the depih of the sole p-flag.
occurring in-any sbemp: generated for € is simply 0. So, let us assurne that there.
is at least one p-goal. Now every p:goal is asmgned a weight under any shemp for-
the given language However, ‘one weight is particularly interesting: the weight
which resulled under the shemp in force when the literal was actinlly selected for
goals of kind 1 i0 3, or the: sbemp produced by refinement for goals of kind 4 dnd 5.
‘We introduce: some notation. Suppose that G-is'a p-goal, then, in the context
of this proof; it will-'be convenient to denote the weight of G under some shemp
x as x{G). The above characterised sbemps and weights will be denoted: by %e.
and xg (G} = wa: respectwely Next; the atom-flag in x that:covers the selected
literal in. &, will be referred to as ¥g and its depth as dg. We show that there 45
a bound on the dg vilues.

Let H be the fizst (i.e: top-most in C') p-goal. We prove that for any p-goal Gt

dg +we Luwy (%)

thus exhibiting wy as such a bound. Since H is the first p-goal, there’is just a
-single pflag in xg and its depth equals §. It follows that dg = 0 and we obtain

8.6. FOCUSING ON SUBTERMS 213

(#) for G = H. Let now (x) be satisfied for all p-goals occurring before a certain
p-goal G'# H,then we. show tha.t it also holds for GG. The proof proceeds through
a case analysis on the kind of G.

1. ‘G can not be of kind 1. Indeed, if G has'a selected. literal in some atom
class A of ye, then since C' is a proper achain, any ancestor p-goal with
a selected literal in 4 yg-covers G. So, in order.to be of kind 1, & must
be the first p-goal with a selected literal in A. Moreover, A can not be a
class created as a complement class at. some c-refinement, since then there
would at least be a-psendo covering ancestor. But nelther can A be a non-
complement class creatéd. at c-refinement, becanse that operation ensures
that somie goals with seleéted literal in such a-class are already present. So,
H is the only kind 1 p-goal.

2. If G is of Xind 2,1t has a pséudo covering ancestor G*'and associated master
weight W, such that wg < W. Moreover, the definition of. c-refinement
entails that W = wg (and therefore wg < war) as well s dg = dgr. For
G, (#) now follows from (*) for- e

3. A kind 3 goa.l & has a direct ‘X g-covering ancestor. G such that we <
xc,-(G’) Moreaver, ¥ = Pg and xg(G’) = xe:(G') = wa:: So, again
we < wgr and dg = dg. '

4, In-case G isa kind 4 goal, there again is a yg-covering ancestor &' for which
tic = g (and therefore dg = dé) holds, Moreover, wg < xg(G’) <
xa' (@) = wg:.

5. Finally, suppose 7 is.a kind 5 goal. Then there isa Xg-covering ancestor
&' such that wg < xg(G"') < wg:. Moreover, dg- < dg < dgr + 1. Since
(*) holds for G, it again follows for G.

u}
Assorted remasrks
A number of brief eomients on various topics concludg section 8.6.3-on antoma-
tion.

First, in our study of automation, we have. remdined within the general lice
of development in this thesis. Indeed, we have formahsed an approach not re-
lying on any substantial offline anaiysxs. This led to the introduction of the
c-refinement notion which enables dynamically focusing on mterestmg subargu-
ments. However, c-refining or dynamically changing 2 cmp’s atom class parti-
tion in general are quite complex operations that involve a number of subtleties.
Alternative approaches to antomation, avoiding these comphcatlons, are con-
ceivable, Offline analysis techniques can perhaps statically determine interesting

214 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

(sub)arguments, thus resulting in a-smarter cmp initialisation and eliminating
the need for (c-)refinements.

Next, definition 8.6.26 demands a cmp to contain only singularly measuring
measure finétions. This limitation redices compiemty' and-seems very reason-
able. However, definition 8.6.40 imposes the more stnngent condition that the
relevant measure function be leaf measuring. And proposxtlon 8.6.47 shows that
a.lgorlthm 8.6.46 ensures this property for any measure function actuaily used
while running' it. Moreover, definition 8.6.42 only caters for replacement of .a:
selector function by one or more of its first level subselectors, Finally, only one
selector function tan be replaced ‘by subselectors. These choices are .debatable.
Their main underlying motivation is our‘wish to reduce the overall comple:uty of
the presentation above. Less restrictive definitions require more complex atom
class manipulation; neatly splitting a class in a refined class and its complement
no loriger being urniversally sufficiexit.

We have already pointed out that algorithm 8.6.46 is non-deterministic. In-
deed, more than one c-refinement option might be available for the same literal,
candida.l:e for selection. Again, this is caused by our wish to keep the defini-
tions simiple. Furthermote, it is. not completely obvious that ail freedom of choice
in this context can be eliminated in a reasonable way Another source of mon-
determinism is the lack of rautual- exclusivity between the conditions for m- and
c-zefinement. (If can even bie observed that an sbemp. with ‘m-potential usually
also has c-potential, e.g. in a list- processing contéxt.) Here, the obvious solution
seemg. a.tta.chmg priority to the more straightforward operation of m-refinerment.
However, this does entail a: Joss of generality in the processing of any atoms which
¢-refinement might have put into the resulting complement dtom class: for this.
class, no selector functions are remaved from the méasure function.

Next, algonthm 8.6.46 has been carefully designed in such a way that its
termma.tlon is ensured. Some more liberal variants can be considered.

® First, the notion of a pseudo covering ancestor can be left out, as in algo-
rithm 7.50 in [123]. Whether this implies possible non-termination is as yet
not clear to us.

o A further step leads to 'a variant of elgorithm 8.6.46 which is obviously
ed to term nate. Indeed a deﬁmtzon of c—reﬁnement can be

be decrea.smg on the conmde.red goal w1th respect fo its mew direct covering

ancestor. Instead, not having a covering ancestor Wwould also be all Tight.

This modlﬁca.t.ion fits neatly into the overall frameWork, but, in general, it

destroys termination.. Having a clduse as simple as the followmg suffices:
P(XY — p(F(X))

Imposing a depth bound on flag siructure is an obvions solution, but would-

8.6, FOCUSING ON SUBTERMS 215

allow ad hoc termination behaviour, not always preventing. unfolding be-
yond reasonable limits. The latter phenomenon is avoided by the algorithm
as it stands, wh1ch can of course be enhanced. with one of more depth
bounds, if so desired. However, in some cases, it seemis. to be too weak.
{See example 8.6.53 below.)

o A third possible way to. proceed, perhaps offering both termination and
more flexible urfolding, is briefly outlined towards the end of the next
subsection.

Finally, it is clear that checking for.c-potential and carrying out c-refinements
can be quite costly: operatzons They require scanning and. adapting complete
chains of covering ancestors.

8.6.4 Unfolding meta-interpreters

== 5(a([1,21XsL Y, 20}
< c(al] l,zlx.s],IY.Z)_.B), s(B)
-c'.—-c(a(EZIXs]-ﬁfl;Z’.).B’}_'. s(B")
|

<= ola(Xs,Y,Z).B ™), s(B™)

== s(empty) - s(a(X_S';",Y-Z*'j)

B

Figure 8.16: Meéta-interpreting append.

To conclude section 8.6, we'return to the issue of unfolding meta-programs, and
discuss the operation of algorithm 8.6.46 on- some examples. In particular, we

216" CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

consider the vanilla meta-interpreter for definite programs, introdiiced. in defini-
‘tion 4.6.10°0n page 61. We encode various simple shject programs ‘afid consider
the resulting unfolding behaviour for relevant ‘meta level queries. For convenience,
we will'abbreviate predicate and function names'in figures.

Example 8.6.51 Our first-example concerns the standard ‘append program for
concatenating two-lists. It is encoded at the meta level as follows:
clause(append([], X, X), enipty) —
cIause(append([X|Xs] ¥, [X]Z]) append(Xs, Y, Z)) —
Consider now as starting query:
+—solve(append([1,2|Xs], ¥, 2))
Then algorithm 8.6.46 produces the SLD-tree depicted in figure 8.16.
‘Comparing this tree with figure 7.1, we conclude that the result is entirely satis-
factory. It is obiained w1t.hout executlng any refinement. S0, all proper achains.
‘have an associated sbemp, 1dent1ca.l to the one created at imitialisation:
((_Amu(x)), (E-lso{ue(-x),{-l_}__))
Example 8.6.52 Next, reconsider the reverse program for reversing a list, using’
an accumulating parameter:
clause(reverse(f], X, X), empty) — _
clause(reverse([X|Xs},Y, Z), reverse(Xs,[X|Y), Z2)) —
and the following query: - o
ﬁsoluc(reuérSE([l, 21X}, 0, 2))
‘The initial sbemp is of course:
'(-(Asohr e(X))!(l . I-MI"G(XL'{ 1}))

Using:' such an sbemp, we can perform -the_._unfoldinga.__shown in ﬁgur‘e 8.17.
- s(e({L21Xs1.0,Z)

-~ ¢(r([1.21X5],{1,2)B), $(B)

== $(r{[21Xs],[11,2))

Figure 8.17: The need for ¢-refinement.
At this point, c-refinement is the only way to continue. It produces the followirig
refined shemp:

((Aaolua(rcueru{){,?a'))i aque({rweru}))
(| |aol'u=[rwgru(x Y, Z2)),{141,1/3}:] !ulvc({r:uzru}} {1}))

8.6. FOCUSING ON SUBTERMS 217

Proceeding with this sbemp, algerithm 8.6.46 carries out all desirgd unfoldings,
and then terminates.

Algorithm 8.6.46 deals aptly with example 8.6.52 ‘However, lét us consider, in
the followmg example, a slightly more complicated object program, the so-called
“naive” reverse program. ‘It dxﬁers from the above twa examples ‘in that if
requires non-trivial parsing.
BExample 8.6.53
clause(reverse([},), empty) «— _ _
clause(reverse([X|Xs},Y), reverse(Xs, Y s)&append(Y 5, [X],Y)} —
clause(append([], X, X), empty)
clause(append(X],Xs] [XIZ]), append(Xs Y, Z))
«—golve(reverse([1,21X s}, Y))
Using the same initial shemp again, we halt at the leaf in figure 8:18..

~—g(r{[1,21Xs),.Y)} _

. |

= ¢(r([1,2Xs),Y),B), s(B)

<= (r{[21Xs], Y)&a(Y" [13,Y))

Fig__ure 8.18: .Algorithm 8.6.48 is too weak.

The performance of algorithm 8.6.46 on éxample 8.6.53 is clearly unacceptable.
Its above discussed second variant (allowing c-refining also in the absence of a
properly covering ancestor) gives better results. However; in general; it requires

an (ad hoc) depth bound. Again, it seems possible that some form of program
a.na.lysls can infer, for'a given programi (and query) sensible depth bounds. When
e.g. abstract interpretation shows that for the given query, all terms in subsidiary
calls necessarily are of bounded comiplexity, no depth bounds are necessary, -and
algonthm 8.6.467s more powerful variant can'safely be used. Such methods might
also provide valuable information in a context where mieta-programs more com-
pléx than the above vanilla interpreter areto be dealt with. [See e.g. subset-
tion. 6.5:3.).

An alternative online approach, offering guaranteed termination as well as suf-
ficiently flexible unfolding, might also be feasible. It would combine thé following
two novel ingredients:

218 CHAPTER 8. ADVANCED TECHNIQUES IN FINITE UNFOLDING

e No notion of pseudo covering ancestor would be introduced: and creating
atom classes would be allowed ‘even in the. absence of & covering ancestor.
However, such atom classes, lacking an initial covering ancestor, should only
be further reficed if the depth of their flag: (see the proof of theotern 8.6.50
for the definition of this notion) does not increase. In this. way, it seems
likely that termination can’be recovered..

e Additional flexibility in unfolding would be provided by expléiting mtual
recursion. Indeed, one could perbaps within a proper ‘achain require global
weight decrease for just one {or more) classes of goals and demand decreases.
for other classes only “locally” if the goal’s selected literal descends direct]y
(see definition 6.4.2) from that of its direct covering ancestor.

In further work, we hope to investigate whether safe and powerful online unfolding
of meta-intérpreters can actually be based on the above ideas.

‘Finally; it can be mentioned that the particular problem of controlling unfold-
ing during partial deduction of meta-programs has been explicitly considered in
[103]. The proposed approach relies on annctations to certainly allow unfolding

-sufficient to remove the pazsing overhead. This however presupposes & distinction

between meta-interpreters and “ordinary” prograins.and a clearly dlstmguzshable
'parsing component, immune t6 pon-terminating unfolding. These characteristics
-can indeed be observed in (vorrectly written) vanilla-like meta-interprefers; but
it is'not obvious that they will hold for any program a general partial deduction.
sysiem might be applied to. We have therefore mvestlgated another approach,
not singling out meta.-mterpreters as being special in any sense. Our. succint
development above shows some successes, but also leaves’ open questmns, to be
addressed in future research.

8.7 Discussion and Conc¢lusion

In this chapter; we have elaborated in.detail the issue of finite unfoldmg We have
"built on the basic’ framework- ‘presented in chapter 6 and shown various instances
.of it, capable of dealing with some advanced urifolding issues, We have consis-
'tently avoided ad hoc solutions as much as posmble, always trying to. concenirate:
O meamngful properties: of the:fasgk: ;;hand Particilar: emphasxs ‘was: pitt-ion
‘the development -of fully a.utomatic unfoldmg algonthms, requiring no usér as-
sistance apart from providing 2 program and s guery to be unfolded. Moreaver,
we - have. opted for a general, hlghly formalised presentation, trusting. that this
choice prov1de3 better chances for uncovering commen underlying prmmples In
‘this way, we believe that we have enhanced the basic framework with a good
understanding of at least some issues involved i in automatic, maximal, sensible,
finite unfolding. Finally, we have shown that weight based unfolding often can

8,7. DISCUSSION AND CONCLUSION 219

be made o enjoy good complexity properties, its execution effort being linear in
the size of the generated SLD-tree whei a clever implementation scheme is used.

A first major part of this chapter concéntrates on methods relying on. struc-
ture based weights assigned to arguments upon which lexicographic priorities
were imposed. Much of the inspiration for thi__s approach came from work on-ter-
mination of rewtite systems. (see e.g. [48]). Well-founded and related orderings.

also play & major role in that context, and the use of lexicographic priorities is-

common practice. However, since there are some important differences between.
a-set of rewrite rules and a logi¢ program, and most of the work in the former
context is on siatic termination analysis, we have decided against an attempt
to literally translate approaches. Extensive comments on, the relationship be-
tween rewrite systems and logic programs, seen from the perspective of (statlc)
termination analysis, can be found in [40],

The possibe use:of lexicographic well- founded orderings to'control the unfold--
ing of logic programs is already mentioned in {60]. To the best of our knowledge,
however, our work is the first to carry out complete. formal developments and
present concrete algorithms based on this idea. We also believe that the work in

section 8.3 is the first. to present concrete algorithms basing unfolding decisions.

in logic' programs not solely on the shape of a goal’s selected literal, but also
on contextual information in the rest.of the goal. We have shown kow our tech-
niques can deal with co-réutining and, {o a certain extent, with back propaga.tlon
of variable-instantiations. To be sure, a number of challengmg issues remain as
subjects for further research; we refer to subsections 8.3.3 and 8.3.4 for more
detailed comments. '
Next, in section 8.5, we.have integrated into our framework, the well-known
keuristic that & literal can be 1nfolded if it is not a variant of one. already un-
folded in the samé derivation.. As a‘stand-alone. method,; this heuristic does not
provide safe ‘unfolding. Combined approaches gua.ra.ntee termination when spe-
cific cond_ltlon_s_. are fulfilled. Our work casn be extended to reach more genérally

satisfied conditions for termination, or specific classes of instances of the frame--

work can be studied in further detail, this perhaps establishing termination in

spite of the fact that the above mentioned general conditions are not satisfied..

Further experimental work is. needed to assess unfolding pawer in complex cases,
compearing different instances of the’ frameéwork. Another issue that merits fur-

ther attention are.the performance characieristics of integrated methods. We.

already pomted out. that the above mentioned linearity property is lost. 1t may

‘be that this has llttle practical consequences, but re-establishing linearity would'

certainly be. of interest. An attempt in this direction might starf from .an idea
mentionedin [21], where it is suggested that some order conld be infefred among
constants in & datalog program on the basis of the program’s stom dependency

graph. Such an offline program analysis might enable the definition of a measure

220 CHAPTER 8 ADVANCED TECHNIQUES. IN FINITE UNFOLDING

function again just requiring a comparison with the direct covenng ancestor o
decide on unfolding. Whether this idea actually holds water, is as et unclear to
us. More generally, it seems very hkely that various: sophrstrcated offline analysis
techniques might provide useful supporting information for online unfoldmg as
studied in this thesis.

Section 8.6, finally, explores the boundaries of what is possible within our basic
framework for online weight based finite unfolding. It presents- an- a.igon’shm not’
-only refining. measure functions: dynamically, but. also occaslona]ly recahbra.tmg
the partition of SLD-derivations in chains of covering nodes. It blurs the dis-
tinction between predicate and functlon symbols, in this way cloamg part.of the
gap between logic programming on the one hand, and functional programming
as well as term rewtiting on'the other. Our main motivation for this part of the
work was the desire to handle meta-interpreters properly. Unfolding behaviour
for such programs should be determined as much as possible by the evolution
of subterrns, representmg the arguments of object level predicates. Since our
ultimate aim is a. fully general, completely automated: partial deduction system,
we_have mvestrgated .an. approach not making any 'a priori distinction between
meta- and other programs. However, as e already mentioned, & numnber.of open
Jissues.reriain as topics for further research

Finally, we wish to point out that; in the formulation of the algorithims (except
-a.]gorlthm 8.6.46), we have consistently reduced indeterminism to a minimem:
summing argument Werghts ‘per component in pariitions, choosing the leftmost
unfoldable literal, imposing the choice of cne particular decreasing refinement,
limiting the range of possible measure function switches through-a “narrow” defi-
nition of the refinenient concept, Only the choice of a non-terminated derivation,
‘candidate for extension is left open. We have not stizdied in detail whether some
of these decunons sometimes reduce unfolding potentaa.l However, we conjecture
that this will hardly ever be the case. We thereforé preférred to formulate al-
-gonthms in such a way that their implementation requirésé a mirimum of extra
design decisions. {On. the other hand, the development of the biasic framework
and the generic treatment in section 8.4 have both besn kept very genera.l) An
exception is clearly algotithm 8.6:46, which has heen presented mofe or less in
the same stylé as algonthm 8.4.4. The former. incorporates autornatic unfoldlngl
of a kind outside the generic framework built in section 8. 4. Ease of compar-
ison: with-algorithm 8:4.4 was ‘therefore a ‘major-concern- w}ule formulating it.
'Moreover wie also feel fhat some subtle ‘design: decisions are involved in further.
reﬁnmg algonthm 8.6.46: (or & more powerfui va.nant} So, at this early stage, we
-preferred to leave them open.

Chapter 9

General Discussion and
Conclusion

In this thesis, we bave addressed the semantics of meta-programiming and the
control of partial deducticn in logic programming. Both issues meet in the prac-
tical, efficient use of meta-interpreters.

In part I, we have studied the Herbrand sernantics of vanilla-like, untyped,
non-ground meta-programs. First; we have shiown that the vanilla meta-program
associated with & stratified norma.l object program is weakly (bixt not loca.lly)
stratified, in'this way 1dent.zfy1ng an important application area for the notions of
a _weak]y stratified program and & weakly perfect model. We contend that weak
stratification is.not only a mote general, but also a much more natural extension
of stratification than local stratification is. In that context, lemma 3.3:12 and
its proof in appendix A are interesting. Indeed we conjecture-that they provide .
the essential ingredients for a completely general proof showing that & weakly
stratified program possesses a unique weakly petfect model, independent of the
particular {successful) “weak stratification” used to obtain.it. In other words,
definition 3.3.7 can bé reformulated to allow the use of non-maximal layers as in
proposition 3.3.11, This is an important issue from a practical point of view, and
one that was, o the best of our knowledge, not addressed before.

-Returning o the subject of meta-programming, we have ntroduced language
independence as a generalisation of rarge restriction, and shown that it plays a
key role in the classical ground Herbrand semantics of untyped meta-programs
using the non-ground representation for object level variables. Indeed, for lan-
guage. independent object programs, there is .a natural correspondence ‘between
the perfect model of the object program .and the weakly perfect model of its
associated vanilla rieta-program. '

221

222 CHAPTER 9. GENERAL DISCUSSION AND CONCLUSION

Next, we-have investigated to what extent these results can be generalised
for 2 class of meta-programs that are (more useful) extensionis of vanilla. Tt
turned out that, in general, language independence again ensures good results
for definite programs, but- that the concept isitoo lax to deal properly with normal
programs. Range restriction rectifies the situation. Of course, as we ‘mentioned,
further research can refine the classification of meta-programs and strengthen the.
results obtained in this thesis.

“We: have also considered. several kinds of amalgamation, welding together
object and meta-program through a very simple and. straightforward. overloading
technique for function and predicate symbols. Tt is mainly in applications of this’
kird that the non- ground 2pproach to- meta.—progra.mmmg might be preferable.
-to the ground approach, since. the latter tends to i impose mote strict separations
between various “layers” of reasoning. Our work indicates a sensible semantics
for some limited, but nevertheless interesting forms of amalgamation.

Finally, in the context of S-semantics, an extended “non-ground” Herbrand
semantics for definite logic programs, we were able to generalise our basic re-
sult beyond the cliss of language independent object programs. But language
‘Independence did resurface in. the treatment of extended meta-interpréters.

“Various topics for further research were mentioned throughout chapters 3-
and 4, and particularly in section 4:9. Let us Jjust mention that we judge the
development of an elegant and- powerful semantical framework a.llowmg both
“full amalgamation and more general object Jevel formulas, to be a particularly
challenging and infriguing issue. With the work in ‘this thesis, we hope to have:
contributed to the. quest for this ultimate goal.

Subsequently, in part II of the thesis, we turned our attention to partial
deduction of (deﬁmte) logic programsand the control of unfolding in that context.

A fitgt contnbutlon on the latter topic is the: develupment of & general frarme-
work -within which algorithms for finite unfolding can be formulated. Tumng
the notion of & well-founded set and introducing that of a well-founded measure,
we provided a general and. practically useéful clisratierisation of finite-SLD-trees:
Building on that foundation, we presented two operational approachés of in-
creasing sophistication. In particular, the notisn of a hierarchical prefounding
provides a refined treatmient of recursion and was therefore used as the basxs for
a seml-automa.tlc genera.l algorithm for finite: unfolding.:. U

In section 7.2, but mainly in chapter 8, several’ fu]ly a.utoma.tlc unfoldlng_
‘algorithms were derwed from this template. First, measure functions were intro-
duced that base unfolding decisions on (sib)sets of the selected literal’s argument.
‘positions. .And it'was shown how these can be tuned dynamically during the'con-
struction of an- SLD-tree. Next, more refined measuring used ordered partitions,
‘first solely concentrating on the literal, candidate for selection, but subsequently
enlargmg the perspective to also. ta.ke into account context mformatlou in the

223

remainder of a considered goal. The latter capability allows a treatment of phe-
nomena such as cofoutining and instantiation back propagation. We also investi-
gated a modification of the basic framework that enables a combination of weight
based. unfolding with the classic non-variant checking. Experiments showed: that
the practical importance of this enhancement is considerable: The. tested com--
bined method performed very well. Finally, we. explored automatic focusing on
subarguments..

Throughout, we have particularly aimed at & precise mathematical formalisa-
tiofi of the occasionally quite complex operations involved. As a -resull, we were.
able to formally: investigate interesting (termmatlon) properties of the various-
algorithms. Moreover, we were also able t6 gain a.good insight into the underly-
ing issues invelved im the search for optlmal measure functions, used to control
unfolding.. '

Most of chapter 7 is devoted to the 'topic of ‘overall partial deduction, of
which constructing finite SLD-trees is one important component. An' algorithm
was presented that, using finite unfolding with set based measures, performs
sound and complcte partial deduction and always terminates. Moréover, we
performed experiments, blending in different ‘ways various techniques to control
partial deduction and unfolding, and compared the performance of the résulting
overall methods on some benchmark _programs,

An important aspect of our work is the following: virtually all conttol deci-
sions -are taken online, during partial deduction/unfolding. Apart from an ele-
mentary {syntactic) identification of recursive predicates, no preliminary offiine
analysis of any kind is included. We have, however, on. several occasions dis-
cerned the limits.of-such an approach, PFurther work can therefore clearly be
mounted in that direction. On the other hand, in subsection 8.6.4, we outlined
some further ideas that might enable more- powarful and yet stll} safe, online
unfolding of meta-programs. Other interesting topics for future research were
mentiored in subseétion 7.5.3. They includea refined. control of the set of atoms
to be partially deduced and techniques to obtain operationally optimal amounts.
of unfolding. Of course, also the extension of our work to programs including,
negation stands as a non-trivial task.

Finally,-a promising application, drawing together the two major threads in
this thesis, liesIn the area of update related integrity checking. Effective- methods
for verifying integrity constraints in deductive databases upon an update have
been extensively studied; see e.g: [44], [115], [150); [120], [29], [30]. Gallagher
(63]) suggested. how the whole process can be seen as an application of pa.rtlal
deduction to meta-programs. However, the respective formalisations offered in
[115} and [114] aré quite distinct. Tt will be interesting to elaborate this subject,
both from 'a formal and an operational peint of view.

224 CHAPTER'Y9. GENERAL DISCUSSION AND: CONCLUSION

Appendix A

Proof of Lemma 3.3.12

Thioughout this appendix, P will denote some normal program. Observe that,
for any normal program. P, Ground(P)is'a (possibly infinite, but countable) set
of grourid clauses. It is then possible:and convenient to -associate a particular
natural number with-each claise in Ground{P). So, we will occasionally refer
to @ clause in Ground(P) as being a couple (C, nc) where no twe clauses in:
ernd(P) have the samie associated ng. In this way, we can in the construction’
in proposition 3.3,11, always 1dent1fy the unique clause in Ground{P) from which
a clause in a given F; is derived (through the deletion of true body litérals): they
have identical labels. In. the saine way, correspondences between clauses in F;-
sets in two different such constructions can be established. Fma.Hy, when we refer
to some series. Vl, . below, we always mean a series of sets chosen to serve as V;.
sets in the context of the construction in proposition 3.3.11. We will occasxonally
use the notation V' (or other characters ini a similar way) to denote such a serics.
And we will vse superscripts to distingnish P;, L;, H; and Hp sets in different
constructions. Observe that for any series “): pY = Ground(P). And alsé:
BP = .BGraund[P) = Bp. .
"We start with a fairly basie lemma:

Lemma A.0.1 Let V = V4,... be a series such that P;” is defined. Let N;¥ =
{nc € IN| there exists & clause (Cync) in P;”}. Then:

o Ny¥,...is meonetonically decreasing:
e Bp v,...is monotonically decreasing.

Proof Jn the construction in proposition 3.3.11, each P,+1 ~ is obtained from
PY by:

1. deleting some clauses

225

226 APPENDIX A. PROOF OF LEMMA 3.3.12

2. removing some literals from the remaining clauses
Both statements above trivially follow.. o
Lernama A.0.1 enabies the followin g definition:

Definition A.0.2 Let V = V,... be a series such that PYis defined. Then for
each atom A € Bp \ Bp,v, we define the V-layer of A, Iy(4), to be the smallest
(1< i<i) such-that A ¢ Bp .. v..

Notice that h(4)is well-defined in the sense that it does not deperd on i. In
particular, if V terminates successfully; then each A € Bp hias a unique associated
layer-ly(A4).

The layer concept is- interesting, since we.can easily show:

Lemma A.0.3 Let A € Bp such that 1= T (4): ‘Then for any j # % such that
Lj-v is deﬁned there are no clauses with- head 4 3 in Ly

Proof Forj<i, Ac Bp,_ ,v- Therefore 4 € V;, from which the result follows.
On the. other hand, A & BP .v, 50 that.the desired result for 7 >4 follows from
lemma A 0:1. |

S6, wher an atom is “consumed” by & series, the unique definite program corre-
_-spondmg 1o its layer is the only one that possibly contains clauses defining A. It
is therefore this program which decides whether A is in the resillting model (if
any).

Another useful property of the layer concept is. the following:

Lemma A.0.4 Let A € Bp such that lv(A) = 3. For any B"€ Bp.v, such that
B < A, we have: Iy(B) = i.

Proof By the construction in proposition 3.3.11,'B € V;. Thus, B & Bp,,.
(which exists since 1y (A) = 7 exists). Obviously, B €-Bp,v, so that the: result
follows.)

We can now prove a quite powerful result, basically establishing equality of
truth a.ceordmg to tivo diflerent. series for the same P,

'Lemma A.0.5 Let V- a.nd W be two series such that B v and P ‘are defined.
Let A be an atom in Bp\ (Bp,v UBp, w) Then:

AeUﬂL{IH <:=:>AEUm(J

Proof Notice that the result trivially holds if either i or j equals 1, since in

that case Bp \ (Bp,v W Bp,w) = B. Suppose therefore that they are both bigger
than 1. Tt follows from lemma A.0.3 that for. any A€ Bp\(Bp,v U Bpw}:

227

Ael, . Hm <=>A6H;v(ﬁ.)

m<i
and

AeUm<3 “.:?AE.H;w(A)
So, it is sufﬁc:ent to _show that:

A€ Hyn)" <= A€ Hiy)” o
The proof proceeds through induction on ly(A4) and Ly (A).
We first comment on.the sirdcture of the induciion progf, which'is non-standard.
Let us denote by Equi(k,{) the following formula

YA € Br \ (‘B_P-\‘v U.Bpjw) H

(W(A) Sk Alw(A) < D) => (A € Hy' <=4 €H,,)")

Notice that, since for any A € Bp\(Bp,v UBp,w); (lu(4A) < i-1Alw(4) £ j—1)

trivially holds, we need to-prove Equi(i — 1;7 — 1). In order to achieve this, we
will show:

1. Equi(l,l), forall I < j - 1.
2. Bqui{k —1,1) A Equi(k,1-- 1) = Bqui(k,1); forallk <i—1and 1< j-1.

From 1, due to symmetry, Eqm(k 1), for all k¥ < 4 =1, follows. Then, by
repeatedly applying 2, Equi{i — 1,7 -1)is implied by a ﬁnlte “conjunction of
formulas.of the iype Eqm(l 1);I'< 3—1 and Equi(k, 1}, k < i—1, which completes:
the proof:
The proof'ofl is by induetion on I. For the base case, { = 1 A& Hl' s Ade
W follows immediately, because the .subprograms of L1 -and L;" on which
A depends are identical. This is due to the constructiod in proposition’.3.3:11,
which ensures that:

o L;" and L," contain oll clauses of Ground(P) with head A.
s V1 and W; contain all atoms B with B < 4.

o L,V and L, also contain all clauses of Ground(P) with such B’s as their
head.

Next, assume that Equi(1,7—1) hclds, with | < j~ 1. We prove Egui(1,1). The
increment of Equi(1,1) over Equi(1,1 - 1) is:

VA € BP \ (-B_piv’ U B"ij). M
(W(A) =1Aw(a) =) = (A cHY = 4 B")
So, let A be an atom with Iv(A) 1 and Lu(4) = {. From the way clauses

are transformed and/or deleted in the construction procedure! we obtam the
followmg correspondence between clauses with head 4 in Z;¥ and Li"

228 APPENDIX A. PROQF OF LEMMA 3.3.12

1. :Every such clause (C,n) € L'_lv such that there is no clause (C¥, n) € L'V,
has 2 body with at least ote atom in U <t Wan, but not in |) <1 H,Y

2. There is a one-to-one correspondence between all other clauses (4 « BV, n)
€ L;¥ and {4 « B¥ n) € LV, where BY is identical to BY except for
the possiblé becurrenice of atémsin BY that aré not in BW butin|J,, .; Wm
andin |, . B -

‘We show by induction that:
¥4 € Bp\ ('B_'p‘.v U_B_p&,w) :

(w(A) =1Aw(A) =) = Fm: A€ T vIm <= Im' 1 A€ Ty, w ')
First, if A € Ty, v11, then ;" contains & fact (A+,n). Only 2 is applicable
ancf,__ since the Li'V?clause ‘can only have more body atoms than th_e__correspon'd_ing
L;-W'éclausg, (A—,n) € LY so that 4.¢ Ty wT1. Conversely, if A & 'TL‘wT'l,
thén (Ae n) e L". Again, only 2'is a.pplii:ahle. Thus, L,¥ _confains a clause
(A « BY,n), where.all atoms in BY are in Unet Win and in Unct Bn” . Let B
_be:such an atom. Since Iy(B) =1 and Lw(B) < I, we can apply the induétion
hypothesis Egui(1,1 - 1). It statés that B € H," <= B € H,,(z". But since
B € Upci Hn", the right hand side holds, so that B € H,Y . Therefore, there
exists an mp such that B & Ty, vTmp. Taking miy = mag({inp |B_-iri;'.BV}.) +1,
weget A€ Ty vIma. _

For the induction step and the left-to-right implication, let 4 & T, vTm and
assume that this implication holds for.all B ¢ Tp,vT(m —1). So, there exists a
clause (4 — BY,n) ¢ L;¥, such that B E'TvaT(m" 1); for each B € BY,

First, we prove that {4 — BY,n) must be of type.2. Assume that it is of type 1,
then there exists a- B in BY such that B ¢ U<t Won \ Upmes Hn” . Clearly,

Iv(B) =1 and hy(B) < I, so that the induction hypothesis Bqui(1,I— 1) applies..
So; BE H,Y <= B¢ Hi,,(5)" . But since B¢ Hyym)"” <= Belnaln"
and B ¢ U._m.-{_f'.—H.mW} we oblain B¢ H.'l_v. This contradicts B € Ty, «T(m —1).

8o, {A «— BY,n) is of type 2 and there exists a clause (4 « B%,n) in L;”
containing a subset of the body atoms in BY. For each such atom, B in BY,
B € Tp;v1(m — 1) holds. By the induction hypothesis, B € Ty,w Tmg for some.
mg. Taking my = maz({mg|B in B¥}) +1, we get 4 € Ty, wlmna.

JFinally, for the induction. step. on the right-to-left implication, lét A€ Ty wim.
and ‘assume that the implication holds for all B € Tp,wl{m —~ 1). Again, there
exists a clause (4 « BY,n) in L;", such that B €Ty w{(m— 1), for all B in
BW. Only ¢ase 2 can apply. Thus there exists a clause (4 — BV n)in LV,
identical to (4 «- BW ,n), except that it may contain some add_i_’tiona] body atoms
B, where B], <« Wi Ny Hem + For the body atomns B which arehoth in
BY and BY , we can apply the tight-to-left induction hypothesis: B ¢ Ty, vTmg,
for somie mp. For the atoms B not in BY , we again have 1p(B) =1, wiB) <!

229

and B € H, tw(B} . Bo,we apply Fqui(l,i— 1), obta.mmg Be H 17 ,-which means.
that B & T, vaB, for some mp. Agam, My = mnz({mg [B in BV}) +1 allows
the couclusmn of the proof.
Next, we prove the implication:

Wk < 4, V1< 1 Bqui(k - 1,0) A Bqui(k, | - 1) = Bqui(k, 1)
‘The proofis completely similar to the previous step,. cxcept that more different
correspondence cases between clauses in LV and L;” can be distinguished.
Let 4 be an atom with ly{4) = % and Iw (A) = |. From the way clauses are
trangformed and f or deleted in the construction in proposﬁ.lon 3.3. 11 we can how

distinguish the following possible cases for clauses in Li' -or in L*Y havmg A
as their head:

1. Every such clause (CV,n) € L,V such that there is no clause (Cw,n) €
L;W, contains at least one body atom B, such that B isin: u W.., but
not in Uy o Hm L
-Notice that this is less trivial than the corresponding statement for L1
and. L;" above. Although it is clear that the clause {C,7) in Ground(F)
contains at least one such body atom B, in (CV,#n} this body atom could
have been removed. However, since Eqm(k 1— 1) is given and since B ¢
Un,‘lr <l Hm , we have B €1, ., Hm' Thus B has not been removed from
{C¥,m).

Further_more, Egui(k,! — 1) also implies that this atom B.is not.in Hy”.

m(l’

2. Every such clanse (C%,n) € Ly"" such that. there is no cla.use (CV,n) €
L;,, . con{'.a.ms at least one atom B such that B is-in Um <k Ym, but not in
Unicr H: Y. {Here, we have used Eqm(k — 1,1).) Now, Eqm(k 1,1) also
implies tha.t B ﬁ HY

3. There is.a one-to-one correspondence between other clauses (4 « BY ,n) €
V and (A~ BY, n) & L, where BY is identical to BW except that

(a.) BY might contain atoms not occurr_ing in BY.
All such ‘atoms are in Unct HEm' W but then also in. H:Y on account
of Equi(k,1 1)

(b) BY might contain atoms not occurring in BY.
All such atoms are in | J,, ., H.,Y, but then also in H% on account
of Equi(k —1,1).

The proof again proceeds through induction, proving the statement:
V4 € Bp \ ('Bp W UBP w)i
(fv(A) =kAlw(4]_—- N==p(Tm: A€ Tbhv]'m*::} Im' . A €Ty wim)

230 APPENDIX A. PROOF OF LEMMA 3.3.12

Tt is very similar to the proof of the inductior step for Eqm(l). The main
differences are:

¢ Due tosymmetry, we only need to prove one of the implications.

e We occa.smnally use lemma A.0.4 to establish that any atom B dccurring in
LY (resp. L"), on which A depends, also has y(B) = (resp. ln(B) =),

We omit the details, o

Let us now take a first lock at the ma.xlmal choice series for some P and its
relationship with a. successful other series.

Lemma A.0.6 Let Vi, ... be a series such that the constructmn in proposi-
tion 3.3.11 termihates successfully for P with resultmg model BV p . Let 8;,..
be the ma.xlmal choice series for P. Then, for every i-such that P;® is defined:

Uj{z - 5= HP n (BP- \.BP.‘S)

Proof Let i be such that B is defined. First, if A € Bp,s, then. both 4 ¢
U’Q H;° and A ¢ Bp \ Bp,s are. tnmally satisfied. S, siippose that A & Bp,s.
Then A € HpY <= 4 € U:{!y[.é}«]—l H;Y, and, of course, A ¢ _Bplv“)_i__lv. The
.result now follows from lemma A.0,5. '

We need one more lemma before wé can actually complete the proof of
lemma 3.3.12.

Lemma A.0.7 Let V = V,,. ., be aseries such -that tlie constructioz in propo-
sition 3.3.11: terminates- successfully for P with resulting model H 5. Let S =
Si,... be the maximal choice series for P. Then, for eveéry i-such that P Vs
'deﬁned one of the following holds:

1. Either there i 15 a J < i such that P = and
Us<i B2¥-= Bp® N (Bp\ Bp,v)

2..08 PS5 is defined and non-empty aid the following both hold:

(a.) ng HY = quﬂk n(BP \-BP V)

(b v(C5, ne) € B° 3(CV ng) € B;", where GV is identical to C$
except for the possible presence of extra body literals, with an atom
i3 Uk(: 5, which dre satisfied in Uk(: H.S.

Proof Not sirprisingly, the proof proceeds through induction on i Again,
the base case (i = .1) is immediate (either. Ground(P) = 0 and 1 holds or
Ground(P) # @ and 2 holds). So, let us prove the induction step. In other

231

words, we assume that the property is satisfied for every i < n. If BY = (ﬂ then
PY i not defined for i > n and we are done. Suppose therefore that B," # 9,
then P,1," is defined and we have to show that the property holds for i = n+1.
Now, if thereisa j <n+1 sn'ch'tha.t-.Pj'S = @, then it follows from lemma A.G.5
that:

VA € Bp \BPa'+'1'V 14 € HPS"<‘_-=> A€ Uk_{;n.+.1-H.kV
Moreover, ¢bviously: '

YAE Bp, v AE Upengs ¥
and the result follows., '
This leaves us with the ¢ase that P,5 is deéfined and non-empty. We have to

show that also Pn+1 is defined, and that 2a and 2b hold for 4= n 4 1 in case if
is non-empty.

o We first show that P, has at least one minimal component. Suppose that
this is not the case. Then every atom in Hp s is member of some infinite
series of atoms Ay, da,... such that A; > A, > Now, the claiises i m
Ground(P) (for the'atoms in Bp _s) that correspond to the clauses in P,
might contain extra body lltera.ls whose atom is not in Bp_s and which are
satisfied according to Uk < H)°. Lemma A.0.5 ensures that these literals'
can néver be falsified in the v-constructlon 5o, the V-construction can
‘delete none of these clauses without first having an atom from Bp s in a
botiom component of some Bp, v. This; however, is not p0551ble and there-
fore the V-construction can not terminate successfully: Which -contradicts
‘the assumption that it does.

o. Our next task is showing that L% is definite. Suppose that it is not. Then
there is.a bottom component B of Bp_ 3 contammg at least one atom with
a non-definite defining clause. C'in P . But then, if any atom in B is:
defined in terrms of an atom not in B, B would not be a bottom component
of Bp_s. Therefore, all clauses in P, 5 with a head'in B only contain literals
with an atom in B. Again, it follows that none of the corresponding clauses
in Ground(P) can be deleted by the V—constructlon without first having B
‘as part of some V;. But then also ;" would be non-definite, which again
contra.t_ilcts the a.ssumptlon that V terminates successfully.

e So, P,.+1S. is indeed defined. Above, we have already dealt wif.h the case
that it is empty. Assume therefore that it is non-empty. We prove 2a and
26 fori=n+41.

— ‘We start ‘with 2b and first. show that V, N Bp. s € S,. Let 4 €
VaNBp_s. We show that the subprogram of P," on which A depends
iseither empty or definite. Tn both.cases, A does not depend negatively

232

APPENDIX A. PROOF OF LEMMA 3:3.12

on any atom in Bp s, so-that by definition, A €5..

- contains'no clavse Wwith A4 as its head, we are done. Otherwise,
et (A BS ng) € Bc. By the induction hypothes:s 2b, there exists-

a clause (4 « BY ng) € B,Y iy such that every literal in BS is-also in.
BY. Because A € Vi, and:L," is definite, (4 « BY,nc) is definite

and so is (4' < BS,ng). It remains to be shown that for all other
-atoms B € Bp_ s, such that B.< A, thé same holds. Let B be such

an a.tom Using. mductlon hypothesxs 2b again, B < A4.alse holds in

B,V for any sequence of cla.uses (Cv®,mc)i in P7, a;ta.bhshmg the

dependency of Aon Bin P;%, the correspondmg sequence (C’g ing Je.

in BV estabhshes the dependency in P, ¥ . Therefore, B-€ V, NBp_ s,
-and, by the same argument as uged for A above, the clauses in P,~

with head B are definite. Thus, the subprogram of P,® .on which 4
depends is definite; and 4 € §,,.

'Next, we show that:

Y(C5,ng) € Paga® 1 3(CY ,nc) € Poys
Since it is given-that: _ '

YOS, no) € Pu® i CY ne) € PV
it suffices to prove that 1f a clause (c® ng] € .P,? is not pruned during’
the.construction of L % from B.%, then neither is'the correspondmg'

¢clauge (CV, ne) € P " pruned while constructmg Prgy’ from B,Y
Suppose that such a CV wng) € B,V s, Jprunied. One possible cause:

is that (C¥,ng) € Ln”. Since (€%, np) has the same head, say 4, as
cv nc)andAEV ﬂB_ps by Va DBps CSmweha.veAES
‘So; (CF, ng) € L, and is pruned too.

Alternatively, (C‘ nc) € P,V \1L,Y can be pruned becaiise it contains

i body literal B; with atom B® € V,, such:that' B is falsified in
=Y. By mductlon hypothesis 2b, the only body literals of (CV ng]

that do not occur in the body of (C'S ng) are satisfied in | J; <n H:S.

'.Flu'thermore, by lemma: A.0.5:

V4 € Bp\ (Bp i U Bpm v):
A€ Uk BV = A€y Hi® ()
so that B is fiot satisfied in | J; ., Hi® andis a body literal of (€, nc)
Finally, B%€ $7, because B“ EVai Bp, s, and B is falsified in H,,°,
because it is falsified in H," and () holds Thus, (Cl“"T ng) would

‘also be pruned in the S-constructlon

It remains to be proved that CS and CV are related as stated in 25.
To see this, let (CF, ng) € B,%, (_Cv,nc) e Ry, (¢ '8 ng) € Puys®
and (G, 7o) € Paya” . We know that €5 and GV are related in the

233

‘proper way. Moreover, C'S is identical to €% except for the possible
temoval of bedy literals with an atom in ™ which are satisfied in H, nS.
And €'Y is identital to 'V except for the possible removal of ‘body
Literals with an atom in V" which are satisfied in H,Y . The result now
again follows from (*) and V;, " Bp s C Sn, since we -obtain that no
literal which.occurs “inithe;bodiés_ of both-'G5 and -CV,_ can -be removed.
from the latter without likewise being removed from the former.
" Finally, we prove 2a for i =n+ 1.
First, 20 for i = n+ 1 irplies:
_ -B__Pn“-s < B'P¥.+z v
Therefore, () can beé rewritten as:
VAe€Bp\Bp, , v:iAE€ U_k-<"n+1.HkV —=4de Uk(__n-hl H?

Moreover, from: the definition of the construction in proposition 3.3.11:

Urcnta He” 0 (Bp\Bp, v)=Upcnss Bi”
5o that 2a fori = r + 1 follows.

‘We can now complete the proof for lemma 3.3.12:

Proof {(of lemma 3.3.12) Pirst, it is clear that & will also terminate successfiilly.
Indeed, suppose there is some ¢ such that B = 0, then case 2 in lemma A.0.7 can
not hold for 3, due to 2b. Therefore, case 1 holds-and S terminates successfully.
8o, suppose P,-V' # @ for all . If there.is an -3 such that case 1'in lemama A.0.7
holds, we again obtain successful termination of S. When case.2 holds for every
4, P;® is defined for every i <w. But since ;. CE(F") = 0; 2b implies that
also (i, CH(PS) =0 _

Next, lemma A.0.6 implies that for every j such that P;° is defined, | J k< H® c
H pv-._ It follows that H. p° CH . Similarly, lemma A 0.7 guarantees that for
every i such that PV is defined, J,, Hi" C Hp® and we obtain Hp” C Hp".
“Therefore, the two models are equal. (]

234 APPENDIX A. PROOF OF LEMMA 3.3.12

Appendix B

Benchmarks for Partial
Deduction

In this appendix; we include the.code of the five definite logic programs on which

the tests in section 7.5 weére run. Together with each program, we-also present

the goals for whick partial ‘deductions were computéd; as well as their further

instantiated versions that were used in run-time comparisons: As mentioned in

section 7.5, these programs and goals are taken from [104]; where they function
as benchmarks for the comparison of five partial deduction systems. Finally, all
va.na.b]e names in the prograins below start with X. To convert the- Programs
into code that can actually be run.on a ProLog by BIM systein, these X’s must

‘be replaced by underscores; i—’s by : —’s; and dots must bé addéd to signal clause

ends.

235

236 APPENDIX B. BENCHMARKS FOR PARTIAL DEDUCTION

transpose

We already met the first test program in chiapter 6. It is the program for trans-
posing'a matrix, studied in example 6.4.13. But the PD-time goal below is further
instantiated than the top-level goal used for unfolding in that example.

transpose(Xrnatriz, []) —
nullrows(X matriz)
transpose(Xinatriz, [Xiransrow| Xiransremmatriz]) —
makerow(Xmatriz, Xtransrow, X remmatriz);
transpose(X rémmatriz, Xtransremmatriz)
makerow([, },[)«— _ -
akerow([[Xel| Xrrow]|X matriz), [Xel| Xtrrow], [Xrrow| Xrmatriz]) «
makerow(Xmatriz, Xtrrow, Xrmatriz)
nullrows(]]) «
nullrows([[]iX remmatriz]) «
nullrows(Xremmatriz)

PD-time goal:
+— transpose([[X1, X2, X3, X4, X5, X6, X7, X8, X9], Xr2, Xr3), Xirm)

Run-time goal:’ _
« transpose([[1,2,3,4,5,6,7,8,9],[2,3,4,5,6,7,8,9,10], _
[3,4,5,6,7,8,9,10, 11]], Xirm)

237

relative

The second example program is a {functor free} database application. It involves
the standard pareni-ancestor trapsitive closure, with a non-recursive predicate
relgtive defined on top of ancesior,

relative(Xpersonl, Xpersonl) «
ancestor (X commonancestor, X per sonl),
ancestor(X commonancestor, Xperson2)

ancestor(X ancestor, X person)
parent{ X ancestor, X person)
ancestor(Xancestor, X person) «—
_parent(Xancestor, Xcloseraricestor),
ancesior(X closerancestor, Xperson)

parent(Xparent; Xchild) «—
father(Xparent, Xchild)

pareni(Xparent, Xchild) «—
mother(Xparent, X child)

father(zach, jonas) «

father(zach, carol) «—

father(jonas, maria) —

mother{carol, paulina) «—
mother{carol, albertina) «—
rother(albertina, peter) «
mother(maria, mary) —
mother{maria, jose) —
mother{mary, anna) —
mother(mary; john} «—

PD-time goal: —-relative(john, Xwho)

‘Run-time. goal: «— relative(john, peter)

238 APPENDIX B. BENCHMARKS FOR PARTIAL DEDUCTION
depth

Next, depth constitutes a simple vanilla like meta-interpreter, registering the
number of steps in & proof,

depth(empty, 0) —
depth((Xgoal, X goals), Xdepth) —
 depth(Xgoal, X depthgoal),

.depih(xgoafs, Xdepthgoals),
maz(X depthgoal, X depthgoals)

depth(X goal, s(Xdepth)) |
pelause(X goal, Xbody),
depth(X body, X depth).

maz(Xhum, 0; Xnum) «

maz(0, Xnum, Xnum) +—

maz(s(Xnuml), s(Xnum?2), s(Xmae)) «—

maz(Xnuml, Xnum?, Xmaz)
pelause(member(X el, X1), append(Xany1, [Xel| Xany2], X1)) —
pelavse(append(]], X1, X1), ernpty) — o
pelause(append([X h|X3], X1, [X b1 X)), append(Xt, X1, Xnt)) ~—
-PD-time goal: - depth{member(Xel, (o, b, ¢, m, d, e, m, -'f:g_, m, i, 71), X depth)
Run-time goal; «—. depth(member(z, [ﬁ, b, L d: e,m, f,g,m, %, JD: Xdep“'h)

239

match

The rnatch program below is a classic in partial evaluation (see e.g. section 12.1
in [85]) and partial deduction (see e.g. [156] and section 3 of [65]). It serves
to match a certain pattern with part of a given string, using a straightforward
strategy. Notice that match, upon dlscovermg a non-ma.tr.hmg symbol, simply
restarts the: search for the whole patiern in the string minus its first symbol.
Clever partial deduction can produce, for a known first argument, an efficient
“Knuth-Morris-Pratt”-like ([91]) linear pattern matcher.

rmatch{ Xpat, Xstr) -
Tnatch l(Xpa.t Xstr, Xpat, X str)
matchl(]], X:myl Kany?2, Xeny3) «
matchl{[Xterm|Xanyl], X di fierle any?2), Xpat, [Xany3 [X remstr]) «
Xterm \== Xdifterm,
matchl(Xpat, X remsir, X pot, X remstr)
matehl([X term|X rempat], [X term! Xremst], Xpat, X str)
match1{ Xrempat, Xremstr, Xpat, X str)

PD-time goal:
— m,a'f.ch([a, @, b], X'string)
-Run-time goal:
= mtc}"([‘“’! a,; b]! [a" b: €y d: L -f:-gi h: 1':1 j! kili ™m, 71, 0,
g, 5tu,v,0,0,b4, 3, y, z])

240 APPENDIX B. BENCHMARKS FOR PARTIAL DEDUCTION
contains

Thke final benchmark ‘program also petformns pattern matching, but in a more
sophisticated way than match. Tlie two arguments of the predicate con are used
as follows. The first argument registers the string to be searched. through. The
second argument is a couple of lists. The first list contains the part of the search.
pattern that was already found on the string positions immediately preceding: the
current initial string symbol. The second registers the remainder of the search
pattern: the part that still has to be found {as initial part of ‘the remaining
string). netw tests for identity of the first symbols in the Temaining string. and
the part-of the patern. still to be found. If they indeed furn out to be the
same, (trivially) adapted values of the “(found notyetfound)”~pair are returned
to con for further search, If not, a more compléx operation returns a valiie for
con's second argument witha (non-deterministically chioosen) valid new “already
found” part. As a result, unlike mazchl which occasionally retraces its steps, con
processes 1 element of the input string in each recursive step. On the other hand,
it is non-deterministic.
contains(Xpat, X sir) —
cor X str, ([}, Xpat))
con{X anyl, (Xany2,)«
con([Xterm| X remstr], X patinfo) —.
' néw(Xierm, Xpatinfo, X newpatinfo),
con{Xremstr, X newpotin fo)
new{Xierm, (X found, [Xterm|Xrempat)), (X newfound, Xrempat)) «—
append(X found, [Xterm|, Xnew found) _
new(Xierm, (X found, [X dz'ftérm|X.rempat])y (Xnewfound, Xnewrempat)) +—
Xierm \== Xdifterm,
appeﬂd(xf ound, [X term}, Xpr ecsir),
append(X néu found, Xrést, X found),
append(Xany, X new found, X precstr),
append(Xrest, [Xd: flerm| X rempat], X neiur'empat')
append([], Xlist, Xlist) +
append([X head|Xtail, X list, [X head) Xnewtail]) «
 append(Xtail, Xlist, Xnéwtail)
PD-time goal:
« contains(fa,a, b, Xstring)
Rup-time goal:

— c‘or_itains'([a_,'a,__b], fa,b;c;de, 1,4, k, a,a, b1, Ji ks .
T, G, T 8, 0w, 0, W, 2, z])

Bil

bliography

[1] H. Abramson and M. H. Rogers, editors.. Meta-Programming in Logic Pro-
.grammaing, Proceedings of Mets’868. MIT Piess, 1989.

[2] ACM, editor. Proceedings PEPM’91, Sigplan Notices, 26(8), New Haven,
Connecticut, USA, 1991,

[3] ACM, editor. Proceedings PEPM’93, Copenhagen, Denmark, 1993.

[4] L. C. Aiello, D: Nardi, and M. Schaerf. Reasoning about knowledge and
ignorance. In Proceedings FGCS'88, pages 618-627, Tokyo, 1988, ICOT.

5] K. R. Apt. Logic programming. In I..van Leeuwen, editor, Handbook of-
.0 g g g :
Theorelical Computer Science, Volume B, Formal Models and Semantics,
pages 493-574. Elsevier Science Publishers B.V., 1890.

[6] K. R. Apt and M. Bezem. Acyclic programs. In B. H. D. Warren
‘and P. Szeredi, editors, Proceedings ICLP’90, pages 617-633, Jerusalém,
Tune 1990. MIT Press. .Revised version in New Generalion Computing,
9(344):335-364.

{7] K. B. Apt, H. Blair, and A. Walker. Towards a theory of declarative

..k_nowle:d'ge. In 3. Minker, -editor, Foundations of Deductive Dalabases and’
Logic Programming, pages: 89-148. Morgan-Kaufmangn, 1988..

8] K. R. Apt, E. Mazchiori, and C. Palamidessi. A theory of frst-order built-

in’s -of Prolog. In H. Kirchner and G. Levi, editors, Pi—aceerﬁngs of the.
rd Imiernational Co'ﬂfergné_e on Algebraic dnd Logic Programming, pages
69-83. Springer-Verlag, LNCS 632, 1992,

[8] K. R. Apt and D. Pedreschi. Studies in pure prolog: Termination. In
J. W. Lloyd, editor, Proceedings of the Esprit. Symposium on Computslional
Logic, pages 150-176, Brussels, November 1990. Springer-Verlag.

241

242

[10]

[13]

[14]

[15]

[16]

[17]

(18]

(18]

[20]

[21]

BIBLIOGRAPHY

C. Aravindan and P. M. Dung. Paitial deduction of logic programs wet.
well-founded semantics: In H. Kirchier and G. Levi, editors, Proceedings.
of the 3rd International Conference on Algebraic and Logic Programming,
pages 384—02. Springer-Verlag, LNCS 632, 1992,

| R, Barbuti, P. Mancarélla, D. Pedreschi, and F. Turini. A transformational

approach to negation in logic programming. Journal of Logic Progmmmmg,.
8(3) 201-228,-1990.

K. Benkerimi and: P: M. Hill. Supporting transformations for:the partial
evaluation of logic programs: Joarnal of Logic and Compulation, 3(5):468-
486, 1993,

K. Benkerimi and J. W. Lloyd. A procedure for the:partial evaluation
of logic progratns. Technical Report TR-89-04, Department of Computer
Science, University of Bristol, Great-Britain, May 1989,

X. Benkerimi and J. W. Lloyd. A partial evaluation procedure for logic pro-
grams. In S, Debray and M. Hermenegildo, editors, Proceedings NACLP9n,
pages 343-358, Austin, Texas; October 1990. MIT Press.

R. Bol. Loop:checking in partial deduction. Journal of Logic Programming,
16(14:2):25-46, 1993,

R. N: Bol, K. R. Apt, and 1. W. Klop. An .analysis of loop checking’

.mechamsms for logic programs. Theoretical Computer Science, 86(1):35—

79, 1991,

P. A. Bonatti. Model theoretic semantics for Demeo. In A. Pettotossl, editor,

Proceedings Mela 9%, pages 220~234. Springer-Verlag, LNGS 649, 1992.

K. A Bowen. Me_ta;—_f_le_vel _progxa.m_m’ing and knowledge representation. Neip
Generation Computing, .3(4):359-383, 1985,

K. A. Bowen and R. A. Kowalski. Amalgamatinig language and metalan-
ghage in logic programming. In K. L. Clark and S.-A. Tétnlind, editors;
Lagzc Progmmmmg, pages 153—172 Academ.lc Press, 1982

‘K. Broda andB. T. Ng Pa.rt1a.lly eva.iua.tmg the completed progra.m Tech-

nical Report DoC 91743, Department of Computing, Imperial: College, Lion-
don, Great-Britain, December 1991,

A. Brodsky and Y. Sagiv. Inference of monotonicity constraints in datalog
programs. In Proceedings PODS’89; pages 190199, Phijladelphia, Pennsyl-
vania, USA ‘March 1989, ACM.

BIBLIOGRAPHY 243

[22]

(23]

(24]
[25]

[26]

(27]

28]

[26}

[30)

[31]

(32)

(33]

A. Brogi, P, Manca.rella, D. Pedreschi, and F. Turiai. Composition. op-.
exators. for logic theories: In J. W. Lloyd, editor, Proceedings of the Fs-

_prit Symposium on Computalional Logic, pages 117~134. Springer-Verlag,

November 1890.

A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Meta for modularising
logic programming. In A. Pettorossl, editor, Proceedings Meta’92, pages
106-119. Springer-Verlag, LNCS 649, 1992.

M. Bruynooghe, editor. Meta’gﬁ Proceedings of the Sééond Workshop on
Meta-Programming in Logic. K.U.Leuven; 1990,

M. Bruynooghe, D. De Schreye; and B. Krekels. Compiling control. Journal
of Logic Programmiing, 6(1&2):135-162, 1989:

M. Bruynooghe; D. De Schreye, .and B. Martens. A general criterion for
avoiding infinite unifolding during partial deduction of logic programs. In
V. Saraswat and K. Ueda, editors, Proceedings ILPS’91, pages 117-131,
San Dlego, October 1991, MIT Press.

M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for
avoiding infihite unfolding during partial dediction. New Generution Com-
puting, 11(1):47-79, 1992.

F. Bry. Query evaluation in rectrsive databases: Bottom-up and top-down
reconciled. Data & Knowledge Engineering, 5(4):289~312, 1990:

F. Bry; H. Decker, and R. Manthey. A uniform approach to constraint sat-
isfaction-and constraint satisfiability in deductive databases. In Proceetim_qs
EDBT'88, March 1988,

F. Bry, R. Manthey, and B. Martens. Integrity verification in knowledge
bases. In A. Voronkov, editor, Proceedings 1. st and 2nd Russian Conference
on Logic Programming, pages 114-139. Spnnge:—Verla.g, LNAI_ 592, 1992.

S. Ceri, G. Gottlob, and L. Tanca. Legic Programming and Databases.
Springer-Verlag, 1950,

b. Chal_.'l. Clonstructive mnegation based on the gompl__et_ed_database_.ln R.A.
Kowalski and K. A. Bowen, editors, Proceedings ICSLP’88, pages 111=125,
Seattle, August 1988, MIT Press.

D. Chan and M. Wallace: A treatment of negation during partial evaluation.
In H. D. Abramson and M. H. Rogers; editors, Proceedings Meta’88, pages
299-318. MIT Press, 1989.

244

[34]

(38]
[3€]

[37]

[38]

[39]

[40]

[41]

[42]

(43]

[44]

(45]

BIBLIOGRAPRY

W. Chen, M. Kifer, and D). S. Warren. HiLog: A-foundation for' higher-
order logic programming. Journal of Fogic Programming, 15[3) 187-230,
1993,

K.'L. Clark. Negation as failure. In H. Gallaire and I. Mmker, edxtors,
Logic and Date Bases, pages 293-392, Plenum Press, 1978.

K. L. Clark and $.-A. Tarnlund, editors. Logic Programming. Academic
Press, 1982.

8. Costantini and G. A. Lanzarone. A metalogic programining. language.
In G. Levi and M. Martelli, editors, Proceedings IGLFP’89, pages 218-233,
Lisbon, Portugal, June 1989. MIT Press.

P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs, Journal of Logic Progremming, 13(2&3):103-179, 1992.

D. De Schreye and M. Bruynooghe. On the transformation of logic pro-

grams with instantiation based computation rules. Journal of Symbolic

Computation, 7(2):125+154, 1989.

D. De Schreye and 8. Decorte. Termination of logic programs: the never-
ending story. Technical Report CW182, Departeinent Computenveten—

schappen, K. U.Leuven, Belgium, October 1993. To. appear in the Journal

of Logic Programming;

D. De Schreye and B: Martens. A sensible least Herbrand semantics for
uniyped vanilla meta-programining and its extension to a limited form of
amalgamation. In A. Pettoross1, editor, Proceedings Meia’32, pages 192—

‘204 Springer- Verlag, LNCS 649, 1992.

D. De Schreye, B. - Martens, G. Sablon, and M. Bruynooghe. Complhng
bottom—up and. mlxed derivations into top-down executable logic programs.
Ji ozrmal of Automiated Reasoning, 7(3):337-358, 1981,

D. De ‘Schreye, K. Verschaetse, and ‘M. Bruynooghe A framework for
'analysmg the termination of definite logic. Programs w1th respect to call

patterris. Tn ICOT, editor, Proceedings FECs98, .pages 481-488, 'I‘okyo

June 1992 Omsha ILtd.

H, Decker. Integrity enforcement on deductive databases. In L. Kerschberg,
editor, Praceedmgs Ezpert Database Systems ‘86, Charleston, USA, 1986.

R Demolombe. Syntactical characterization. of a subset of domain indepen-
dent formulas, Journal of the ACM, 39(1):71-94, 1992.

BIBLIOGRAPHY 245

[46] M. Denecker and D. De Schreye. Justification semantics: A unifying frame-
work for the semantics:of logic programs. In A. Nerode and L. Pereira, edi-
tors, Proceedings LPNMR 93, pages 365-379, Lisbon, Portuga] June 1993.
MIT Press.

[47] M. Denecker, D. De Schreye, and Y. D. Willems. Terms ir logic programs :
a problem with their semantics and ifs effect on the programming method-
ology. CCAI Journal for the Iniegrated Study of Artificial Intelligence,
Cognitive Science and Applied Epistemology, T(3&4):363-383, 1990,

[48] N. Dershowitz, Termination of rewriting. Journal of Symbolic Computation;
3(1&2):69-115, 1987.; Corrigendum in 4(3), pages 409-410.

[49] N. Dershowitz and Z. Manna. Proving termination with-multiset orderings.
Communications of the ACM, 22(8):485-476, 1979.

50] H. B. Enderton. A Méthematical Ftroduciion o Logic. Academic Press,
1g72.

[51] A. P. Ershov. ‘Mixed computation: Potential applications and problems for
study. Theoretical Compiter Science, 18:41-67, 1982,

[52] A. P. Ershov., Opening key-note speech. New Generation Compiiting,
6(2&3) 79‘—36 1988,

[53] A. P. Ershov, D. Bjgrner, Y. Futamura, K. Furukawa, A, Haraldson, and
W. Scherlis, editors. New Generation Compuling, 6(263): Special Issue
with Selected Papers from the Workshop or Partial Evaluetion and Mized
C‘om;mf.ats_qn, 1_.98_7 1988.

[54] K. Eshghi. Meta-Language in Logic Progremming. PhD thesis, Department
.of Computing, Imperial College, London, Great-Britain, 1986.

- [65]" M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Decle_xra.tive-_mpdél—
ing of the operational behaviour of logic programs. Theoretical Computer
Seience, 69:289-318, 1989.

[56] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A model-theoretic
 reconstruction of the operational semantics of logic programs. [Information
and Compulation, 103(1):86-113, 1993.

[57] J. A. Ferndndez and J. Minker. Semantics of disjiinctive deductive
~ databases. In Proceedings ICDT’92, 1992.

.[58 M. Fitting. Firsi-Order Logic and Autometed Theorem Pramng Springer-
Verlag, 1990..

246
[59)

[60]

[61]

62}

[63] .

f64]

[65]

(e8]

[67]

[68]

&

[70}

.Brlta.m, NOVember 1991.

4]

BIBLIOGRAPHY
R. W. Floyd. Assigning meaning to programs. In Proceedings Symp. in
Applied Math., 19, pages 19-32, Providence, R.L, 1967, Amer:Math Soc.
H. Fujita and H. Furukawa. A self-applicable partial evaluator and its use
in incremental compilation. New Generation Compuiing, 6(2&3):91-118,
1088,
K. Furukawa. Logic programming as the integrator of the Fifth Generation
Computer Systems Project. Commaunications of the ACM, 35(3):82-92,
1992,

Y. Futamura. Partial evaldation of a computation process — an approach
to a compiler-compiler. Sysiemnas, Computers, Controls, 2(5):45~50, 1971.

I..Gallagher. Personal Communication:

1. Gallagher. Transforming logic programs by specialising interpreters. In
Proceedings ECAI’86, pages 109-122, 1986.

1. Gallagher, ‘Tutorial on specialisation of logic programs. In Proceedings:
PEPM’93, pages 88-98, Copenhagen, June 1993: ACM.

J. Gallagher and M. Bruynooghe. The derivation of an algorithm for pro-

.Bram speciﬁlisaﬁion In D. H. D. Warren and P. Szeredi, - editors, Proceedings

ICLP’.‘?G, pages 732-746, Jerusalem, June 1990. MIT Press. Revised version
in New Generalion Computing, 9(3&4):305-334.

Y. Gallagher and M. _Bruynooghe. Some. low-level source transformations
for logic programs. In M, Bruynooghe, edltor, Proceedings Meta 90, pages
229-244, Leuven, April 1990

J. Gallagher, M. Codish, and E: Shapiro. Specialisation of Prolog and
FCP programs using abstract interpretation. New Generation Computmg,
6(2&3):159-186, 1988..

J. Gallagher and D. A. de- Waal. Deletion of redundant unary type predi-
cates: from logic programs. In K.-K. Lau and.T. Clement editors, Proceed-
tnga LOPSTR ’92 Spnnger Verlag, LNCS 1993

J P Ga.llagher A system for spec1a1151ng logxc programs, Techmca.l ‘Report
"TR-91-32, Computer Science Department, University of Bristol, Great-

H. Gallaire and C, Lasserre. ‘Metalevel contral for logic. programs. In X. L.
Clark and S. A, Téarnlund, editors, Logic Progmmmmg, pages 173-185.
Academic Press, 1982,

T [T = e A A P T R IS WA L 1S e e e

BIBLIOGRAPHY 247

[72] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. A. Kowalski and K. A. Bowen, editors, Proceedings ICSLP 88,
pages 1070-1080), 1988,

{73} P. Giunchiglia and P. Traverso. Plan formation and executlon in a uni-
form architecture. of declarative metatheories. In M. Bruyncoghe, editor,
Proceedings Meta'90, pages 306-322, Leuven, Aprzl__19_90

[74] J. Grant and:J. Minker. The impact-of logic programming on databases.
Communications of the ACM, 35(3):66-81,.1992.

[75} C. A. Gurr. A Self-Applicable Partial Evaluaior for the Logic Programming
Langiage Gadel. PhD) thesis, Department of Computer Science, University
of Bristol, Great-Britain, 1993. Submitted August 1993,

[76] C. A. Guur. Specialising the ground representation for the logic program-
ming langunage Godel. In Y. Deville, editor, Proceedings LOPSTR93,
Louvain-la-Neuve, Belgiumi, 1994. Springer-Verlag, Workshops in Comput-
ing Series.

[77] P. Hammond. Micro:PROLOG for expert systems. In K. L. Clark and
F G McCa.be, editors, Micro- PROLOG ; Programming in Logic, pages
294-319. Prentlce-Hall 1984,

[78] P. J. Hayes. The logic-of frames. In D. Metzing, editor, Frame Concep-
tions and Teazt Underatundmg, ‘pages 46-61. Walter de Gruyter and Co.,
Berlin, 1979, Reprinted in “Readings in Knowledge Representation”, R. J.
Brachman and H..J. Levesque, editors, Morgan Kaufmann, 1985.

[79] T. J. Hickey and D. A, Smith. Toward the partial evaluation of CLP
- languages. In Proceedings PEPM’91, Sigplan Notices, 26(9), pages 43-51,
New Haven, Connecticut, 1991, ACM.

{80] P. Hill and J. Lioyd. The Godel Progremming Language: MIT Press, 1993.
To Appear.

[81] P. M. Hill and J. W. Lloyd. Meta-programiming for dynamic knowledge
bases. Technical Report ‘CS-88-18, Computer Science Department, Univer-
sity of Bristol, Great-Britain, 1988.

(82] P: M. Hilland J. ' W. Lioyd: Analysis of meta-programs. In H. D. Abramson
and M. H. Rogers, editors;, Proceedings- Meila’88, pages 23-51. MIT Press,
1989,

[83] T. Horvith. Experiments in partial deduction.. Master’s thesis; Departe-
ment Computerwetenschappen, K.U.Lenven, Lenven, Belgium, July 1993.

248 BIBLIOGRAPHY

[84] Y. 1. Jiang. On the semantics of real metalogic programming ~— a prelimi-
nary report. Technical report, Department of Computing, Imperial College,
London, Great-Britain; July1993.

[85] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Fvaluation and Auio-
matic Program Géneration. Prentice Hall, 1093,

[86] N. D. Jones, P. Sestoft, and H. Sendergaard. Mix: A-self-applicable. par-
tial evaluator for experiments in compiler generation. Lisp and Symbo!zc'
Coemputation, 2(1}:9-50, 1989.

[87] M. Kalsbeek. The vanilla.meta-interpreter for definite logic programs and

~ aimbivalent syntax. Technical Report CT-93-01; Department of Mathemat-

i¢s and Computer Science; University of Amsterdam, The. Netherlands,.
January 1993.

[88] M. Kalsbeek and F. van Harmelen. Somé more questions concerning “A
metalogic programming approach. to multi-agent knowledge and belief”. In
FProceedings. Benelog’92, Luxembourg, Septembez 1992. CRP-CU.

[89] 7.-S. Kim and R. A. Kowalski. An application of amalgamated logic: to
multi-agent belief. Tn M. ‘Briynooghe, editor Proceedings Mela’90, pages
272-283, Leuven, April 1990.

[o0} S; C. Kleene, Introduction to Meta-Muathematics. North-Holland, 1952.

[91] D. B. Knuth, J. H. Morris, and V. R. Pratt. Fast _pattern matching in
strmgs SIAM Journal of Compitation, 6(2):323-350, 1977.

[92] . Komorowski, 4 Specification of ¢n Abstract Proloy Mackine and its
Application 1o Partiel Evaluation. PED thesis, Department. of Computer
and Information Science, Linkoping University, 'Li’nkﬁping, Sweden, 1981.

(93] I. Komorowski. An introduction: to partial deduction: In A. Pettorossi, ed--
itor, Proceedings Meta’92, pages 49-69. Springer-Verlag, LNCS 649, -1992.

[94] 1. Komorowski. Guest editor’s introduction. J ournal of Logic Programminyg,
16(1&2) 1--3, 1993

[95] 1. Komorowski; editor. Jou.ma! of Logzc Progmmmmg, 1 6(182) Specwl
Issue on Partial Deductwn, 1993,

[96] R. A. Kowalski. Predicate calculus as 2 programming language. In Pro-
ceedings of the Sizth IFIP Congress, pages 569-574. North Holland, 1974.

[97) R. A. Kowalski. Logic for Problem Solving. Ndrtﬁ-.Hblland, 1979.

BIBLIOGRAPHY 249

[98] R. A. Kowalski. The early years of logic programming. Communications
of the ACM, 31:38-43, 1988.

[99] R. A. Kowalski. Problems and promises of computational logic. In-J. W,
Lioyd, edltor, Proceedmgs of the Esprit Symposium on . Computaiional
Fogie, pages 1-36. Springer-Verlag, November-1990.

[100] R, A. Kowalski and J.-S. Kim. A metalogic programming approach to
multi-agent’ know]edge and behef In V. Lifschits, editor, 4#tificial Intelli-
gence and Mathematical Theory of Compulation, pages 231-246. Acadeimic
Press, 1991,

[101] R. A. Kowalski and I, Kiiliner. Linear-tesolution with seloction function.
Aﬂzﬁczai Iutelh_gence, 2:227— 260,.1971.

[102] A. Lakhotia. To PE.¢r not to PE. In M. Bruynooghe, editor, Proceedings
Meta’00, pages 218-228, Leuven, Apil 1990..

~.[103] A. Lakhotia and L. Sterling. How to control unfolding when specializing
interpreters. New Generation Comiputing, 8(1):61-70, 1990.

[104] J. K. K. Lam and A. J. Kusakik. A comparative analysis of partial deductors
for pure Prolog. Technical repoit, Department of Computatmnal Science,
University of Saskatchewan, Saskatoon, Saskatchewan; Canada, May 1990.
Revised April 1991,

[105} J.-L. Lassez, M. J. Maher, and K. Marriott. Unification revisited. In

J. Minker, editor, Foundations -of Deductive Dai_.abaée_s and Lagic Program~

ming, pages 587—625. Morgan-Kaufmann, 1988,

{106] K.-K. Lau #nd T. Clernent, editors. Logic Program Synthesis -and Trans-
formaiion, Praceedmgs of LOPSTR’82. Springer-Verlag; LNCS, 1993

[107] M. Leuschel. Self-applicable partial ‘evaluation in Prolog. Master’s the-
sis, Depa.rtement Computerwetenschappen, K.U.Leuven, Leuven, Belglum,
September 1993.

[108] G. Levi and D. Ramundo. A formalization of metaprogramming for real.
In D. §. Warren, editor, Proceedings ICLP98, pages 354-373, Budapest,
June 1893. MIT Press.

[109] G. Levi and G. Sardu. Partial evaluation of metaprograms in a2 multiple
worlds logic language. New Generation Computing, 6(2&3) 227-247, 1988.

[1.10] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

250 BIBLIOGRAPHY

[111] 3. W. Lloyd. ‘Directions for. metasprogramming. It Proceedings PGCS’88,
pages 809~617, JCOT, 1988.

[112] 3. W, Lloyd. Designing logic programming languages. In P. Dewilde and
1. Vandewalle, editors, Computer Systems-and Sofiware Engineering, pages
263-285. Kluwer Academic Publishers, 1992.

[113] J. W. Lloyd. Personal Communication, Septemiber 1993,

[114] J. W. Lioyd and 7T, C. Shepherdsen. Partial evaluation in logic program-
ming. Journal of Logic Programming, 11(3&4):217-242, 1991.

{115} 3. W. Lioyd, E: A. Sonenberg, and R. W. Topor. Integrity checkmg in
stratified databases. Journal of Logic Programming, 4(4):331-343, 1987.

[116) 1. Lobo, J. Mznker, and A. Rajasekai. Foundations of Disjunétive Logic
Programming. MIT Press, 1992.

[117] P.'Maes and D. Nardi, editors. - Meta-Level Architectures and Reflection.
North-Holland, 1988,

[118] Z. Mapna and S. Ness. On the termination of Markov algorithms. In
P'roceedm_qs 3rd Ha.wan Int. Conf on-Syst. Sci., pages 784792, Honoluln,
Ha.wa.n, 1970.

[119] R. Manthey and F. Bry. SATCHMO: a theorem prover impleinented in
Prolog In E. Lusk and R. Overbeek, editors, Proceedings CADE’88, pages
415-434. Spnnger—Verlag, LNCS 310, May 1988.

[120] B. Martens and ‘M. Bruynooghe.. Integrity constraint checking using a
rule/goal graph. In L. Kerschberg, editor, Proceedings Ezperi Datlabase
System;i; '88, pages 297-310, Tysons Corner, Virginia, April 1988,

[121] B. ‘Martens and D. De Schreye. Why untyped non-grotnd meta-
programming is not (much of). a problem. Journal of Logic Programming.
To Appear.

[122] ‘B. Martens and D. De Schireye. A perfect Herbrand sernantics £t untyped
' vanilla meta-programming.. :.In K. Apt, editor, Proceedings JICSLP'92
pages 511-525, Washington, November 1992. MIT Préss:

[123] B. Martens and D. De Schreye. Advanced techiniques in finite unfold-
ing. Techunical Report CW180, Departenient Comiputerwetenschappen,
K.U.Leuven, Belgium, October 1093.

BIBLIOGRAPHY 251

[124] B. Martens, D. De Schreye, and M. Bruynooghe. Sound and complete.
partial deduction with unfolding based on well-founded measures. In ICOT,
editor, Proceedings FGCS’92; pages 473-480, Tokyo, June 1992. Omsha
Lid.

[125] B. Martens, D. -_D'e‘ Bchreye, and -T. Horvidth. Sound and cornplete. par-
tial deduction with unfolding based on well-founded measures, Theeretical
Compuler Science, 122(1-2):97-117, 1994.

[126] S. Minton. Quantitative results concerning the utility of explanation-based’
learning. Artificial Inielligence, 42:363-391, 1990,

[127] T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator
for Prolog. In K.-K. Lau and T. Clement, editors, Proceedings L OPSTR92.
Springer-Verlag, LNCS, 1893.

[128] 3.-M. Nicolas, Logic for improving integrity :checKing in relational
databases. Acte Informatica, 18(3-_):227—253,_ 1982,

[126] S. Owen. Issues in the partial evaluation of meta-interpreters, In H. D.
Abramson and M. H. Rogers, edifors, ._Praceedmgs Meia’88, pages 319-339,
MIT Press, 1989.

[130] A. . Pettoressi; editor. Meta-Progmmmmg mn Loy:c, P'roceedmgs of Meta’92.
Springer-Verlag, LNCS 649, 1992.

[1_31} ¥. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.

[13"2] . Plotkin. A__note on i__ndu_cti_.ve generalization. In B, Meltzer and D. Michie,
editors, Machine Inielligence 5, pages 153-163, 1970.

[‘133] L. Plﬁ:mér Termination. Proofs of Logic Programs. Springer-Verlag,
LNCS 446, 1990, :

[134] S. Prestwich, Online partial deduction of large programs. In Proceedings
PEPM’93, pages 111-118, Copenhagen, Denmark, June 1893. ACM.

[135] M. Proietti and A. Pettorossi. The loop absorptich and the generalization
straﬁegles for the devélopment of logic programs and partial deduction.
JFournal of Logic Programming, 16(1&2):123~161, 1993.

[136] H. Przymusinska and T. C. Praymusinski. Weakly perfect model semantics
for logic programs. In R. A. Kowalski and K. A. Bowen, editors, Procesdings
ICSLP’38, pages 1106-1120, 1988.

252 BIBLIOGRAPRHY

[137] H. Prgymusinska and T. C. Praymusinski. Semantic issues in deductive
databases and logic programs. In R. B. Banerji, editor, Formal Technigues:
in Artificial Intelligence, pages 321367, Elsévier Science Publishers B.V.,:
1990.

_[‘13_8] H. Przymusinska and T'. C. Przymusinski. Weakly stratified logic programs
Fundamenia Informaticae, X1IL:51-65, 1990,

[139] T. C. Przymusinski. On the declarativé semantics of deductive databases
and logic. programs. In J. Minker, editor, Fourdaiions: of Deductz'ue
Databases and Logic Programming, pages 193-216. Morgan-Kaufmann,
1988.

[146] T. C. Przymusmskl Every logic program has a natural stratification. and
an iterated least fixed point model. In Proceedings PODS 189, pages 11-21,
Philadelphia, Pennsylvania, USA, March 1888, ACM.

[141] T. C. Przymusinski. On the declarative and procedural semantics of logic
programs. Journal of Aulomated Reasoning, 5(2):167-205, 1989.

[142] A. Ramsay.. Formal Methods in Artificial Infelligence. Cambridge: Univer-
sity Press, 1988.

143) J. Reynolds: Transformational systems and the algebraic structure of
E
atomic formulas. In B. Meltzer and D. Michie, editors, Machine Intelli-
gence 5, pages 135~152, 1970..

[144] B. Richards. A point of reference. Synthese, 28:361-454, 1974.

'[145] I. A. Robinson. A machine-oriénted logic based on the resolution principle.
' Journal of the ACM, 12:23-41, 1965.

_[146] J. A. Robinson. Logic.and logic programming, Communications of the
ACM, 35(3):40-65, 1992.

[147] K: A. Ross. A procedural semantics for well founded negation in logic pro-
grams. In Proceedings PODS ’89, pages 22-33, Philadelphla Pennsylva.ma,
USA ‘March: 1989.. ACM . . .

[148] K. A, Ross. Modular stratification and magic sets for DAT_A"LOG_' pro-.
grams with negation. In Proceedings PODS’90, pages 161~171, Nashville,
Tennessee, April 1990, ACM.

[148] P. Houssel. Contribution to fhie pannel on the history of Prolog: JICSLP92,
November 1992.

BIBLIOGRAPHY 253

(150] F.:Sadri and R. Kowalski. A theorem-proving approach to database in-
tegrity. In:J. Minker, edltor, Foundations of Deductive Dotabases and Logic
Programming, pages 313-262, Morgan-Kaufmann, 1988.

[151] S. Safra and E. Shapiro. Meta interpreters for real. In H.-J. Kugler, editor,
Information Processing 86, pages 271278, 1986,

[152] D. Sahlin. The Mixtus approach to automatic partial evaluation of full Pro-
log. In S. Debray and M. Hermenegildo, editors, Proceedings NACLP 90,
Pages 377-398, Austin, Texas, October 1990. MIT Press.

[153] D. Sahlin, An Automatic Particl Evaluctor for Full Proleg. PhD thesis;
Kungliga Tekniska Hégskolan; Stockholm, Sweden, 1991,

[154] T. Sato. Meta-programming through a fruth predicate. In K. Apt, editor,
' Proceedings JICSLP’92, pages 526- 540, Washington, November 1992, MIT
Press,

[155] P. Sestoft and A. V. Zamulin. Annotated bxbhography on partial evalua-

tion and mixed computation. New Generation Cowmgputing, 6(2&:3) 309-354,
1988,

[156] D. A. Smith. Partial evaluation of pattern imatching in constraint logic
programming languages. In Proceedings PEPM’91, Sigplan Notices, 26(9 '},
pages 62-71, New Haven, Connecticut; 1991. ACM.

[157] D. A. Smith and T. I. Hickey. Partial evaluation of a CLP’ language. In
S. Diebray and M. Hermeneglldo ed1tors, Proceedings NACGLP’90, pages
119-138, Austin, Texas, October. 1990, MIT Press.

[158] L. Steriing and R.'D. Beer. Meta interpreters for expert system construc-
tion. Journal of Logic Programming, 6(1&2):163-178, 1989.

[159] L. Sterling and B. Shapiro. The A7t of Prolog: MIT Press, 1986.

[160] V. S.- Subrahmanian. A simple formulation of the ‘theory of metalogic
programming. In 'H. D. Abramson and M. H. Rogers, editors, Proceedings
Meta’8s, pages 656-101. MIT Piess, 1989.

[161] A. Takeuchi and K. Furukawa. Partial evaluation of Prolog programs and
its application to metaprogramming: In H.-J. Kugler, editor, Information
Processing 86, pages 415-420, 1988..

[162] H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In
S-A. Tamlund, editor, Proceedings ICLP'84, pages 127-138, Uppsala, Tuly
1984

-254 BIBEICGRAPHY

{163] R.'W. Topor and E. A, Sonenberg. On domain independent databases. In
J. Minker, editor; Foundations of Deductive Dalabases and. Logie Programi-
ming,; pages 217-240, Morgan—Ka.ufmann, 1988,

(164] J. L. Trédff and 8. D. Prestwich. Meta-programming for reordering literals
in deductive databases. In A. Pettorossi, editor; Proceedings Meto’92, pages.
280~293. Springer-Verlag; LNCS 649, 1992.

[165] V F. Turchin. The concept of a supercompilér. ACM Transections on’
Pragmmmmg Langiages and Systems,’ 8(3):292-325, 1986.

[166] D. Turi. Extending S-models to logic- programs with negation. In K. Fu-
rukawa, editor, Proceedings ICLP 91, pages 397-411, Paris, June 19971, MI'I‘
Press.

[_1'67] J. D: Uliman. Database and Knowledge-Base Systems, Volume L Computer
Science Press, 1988..

{168] J. D. Ullman: Deiabase ond Knowiedge-Base Systems, Volume I, Com:
puter Science Press, 1989

{169] J. D. Ullman and A. Van Gelder. Efficient tests for top-down términation
of logical rules. Journal of the ACM, 35(2):345--373, 1988.

[170] M. H. van Emden and R. A. Kowalski. The seraritics of predicate logic as-
a programming lenguage. Journal of the ACM, 23(4):733-742, 1976.

[171] A. Van Gelder. The alternating fixpoint of logic programs with negation
(extended abstract) In .Proceedings. PODS '89, pages 1-10, Philadelphia,
Pennsylvania, USA, March 1989. ACM.

[172] A. Van Geldcr, K. A. Ross, and J. S.-Schlipf. ‘The well-founded semantics
- for general logic programs. Journal of the ACM, 38(3):620-650, 1991.

[173] F. van Harmelen, The limitations of partial evaluation. In P. Jackson,
H. Reichgelt, and F. van Harmelen, editors, Logic-Based Knowledge Rep-
-resentation,. pages 87-111. MIT Press, 1989,

{174] F. “van Harimelen and A. Bundy. Explanatlon based genera.hsatlon = partial
‘evaluation. Artificial Intelligence, 36(3):401-412, 1988.

[175] R. Venken, A Prolog meta interpreter for partisl evaluation aid its ap-
plication to source to source: transformation and query optimization. In
‘T. O’Shea, editor, Advances in Ariificial Intelligence, Proceedings EC A8,
pages 347-356. North- Holland; 1984.

BIBLIOGRAPHY 255

Il?_ﬁ] R. Venken and B. Demoen. A partial evaluation system for. Prolog :
- Some practical considerations. New Generation Computing, 6(2&3):279-
290, 1988. '

[177] R. W. chhrauch. Prolegomena to a theory of mechanized formal reason-~
ing. Artificial Inielligence, 13(1&2):133-170, 1980,

256 BIBLIOGRAPHY

Over de semantiek van meta-progamma’s
en het beheersen van partiéle deductie
in logisch programmeren

Bernhard Martens
Departement Computerwetenschappen, K.U.Leuven

Saemenvatting

In logisch programmeren is meta-programmeren verdedigd als een krachtige en
makkelijk realiseerbare techniek om de mogelijkheden voor kennisvoorstelling en
automatisch redeneren te vergroten. Vele praktische toepassingen leken echter
een duidelijke semantische grondslag te ontberen.

In het eerste deel van het proefschrift wordt daarom een semantiek bestu-
deerd voor vanille meta-programma’s zonder types, waarin veranderlijken die
figureren op het object-niveau, worden voorgesteld door middel van veranderlij-
ken. Niet alleen de elementaire vanille vertolker is voorwerp van studie, maar
ook enkele interessante uitbreidingen, met inbegrip van programma’s die een
beperkte vorm van versmelting tussen object- en meta-niveau toelaten. Derge-
lijke meta-programma’s blijken zwak gelaagd indien hun onderliggende object-
programma gelaagd is. Voor een grote klasse van object-programma’s stelt men
een natuurlijke overeenkomst vast tussen hun perfecte Herbrand model en het
zwak perfecte meta-model. Zodoende is voor dergelijke programma’s een zinnige
meta-semantiek bepaald. Voor positieve programma’s kan men deze resultaten
bovendien veralgemenen, gebruik makend van een uitgebreide Herbrand seman-
tiek, ontworpen om het operationeel gedrag van logische programma’s beter te
vatten.

Meta-programmeren wordt ook belemmerd door een ondermaatse uitvoerings-
efficiéntie. Partiéle deductie kan dit euvel verhelpen. Bovendien is deze techniek
ter specialisering van programma’s ook relevant in andere contexten.

Daarom behandelt dit proefschrift in een tweede deel partiéle deductie van
positieve logische programma’s. Veel aandacht gaat uit naar het beheersen van
ontvouwen. In het bijzonder worden technieken onderzocht om ervoor te zorgen
dat deze laatste operatie steeds eindigt, en wel op een manier die strukturele
eigenschappen van de beschouwde vragen en programma’s weerspiegelt. Een al-
gemeen, formeel kader wordt voorgesteld, evenals diverse volledig automatische
algoritmen. Bovendien wordt een eveneens geheel automatische methode voor
partiéle deductie behandeld. Een aantal interessante eigenschappen van de be-
schouwde algoritmen blijken formeel bewijsbaar, ondermeer het feit dat ze altijd

eindigen. Tenslotte komen enige resultaten van een proefondervindelijke studie
kort aan bed.

Inhoudsopgave

il

2

Inleiding i
Herbrand semantiek van meta-programma’s ii
2.1 “Twee inleidende DeplIPPen . . .ovinih » % 4 « = 6 v o & % & & 5 = & s i1
2:28 SVanille'en andereismaken . i o s wn e b e e 0w e v
2.3 Versmelbing . . . o« v o v 5 ccmennms e s w6 E s B S w s R G W S vii
2:4. Stsemantiek o s e o e el w8 S S S viii
2.0 Beslliti. .. o v n x s s s e s e B R R G viii
Een raamwerk voor eindig ontvouwen ix
3.1 Welgegronde en gedeeld gegronde SLD~-bomen ix
3.2 Ontvouwen met eindige pregronden 53
3.3 Ontvouwen met hiérarchische pregronden xii
3.4 Naar antomatisering: o i o 5 iiaran = d o h o s b e e e xiv
3.50 :Besliits: i s ok 5 a5 s n e e ke R R YD D s xiv
Correcte en volledige partigle deductie xv
4.1 Automatisch eindig ontvouwen xv
4.2 Een algoritme voor partiéle deductie xvil
43 EXPETIMEenten. & &« 5 5 3 o e s e e e e e e e e s xix
4.4 Beslutbee o0 & 5 2 0 o S g e o e e e b n et o e xx
Meer over eindig ontvouwen xx
5.1 Lexicografische prioriteiten . ..o« v v i o u v o v vw con e . xx1
5.2 Decontext: Beschouwen! ocine wwv m i s a o i v vt o s . xxiii
5.3 Automatisch maten verfijnen Xxvi
5.4 Een gecombineerde aanpak xxviii
1) BTS00 s 0 6 oo B dA S 6 B e B e h s XXX
5.6 Besluibi, ., . o . o w e o o e e s e e e e e s Xxx1

Besluit xxxi

1 Inleiding

In logisch programmeren is meta-programmeren verdedigd als een krachtige en
in principe makkelijk realiseerbare techniek om de mogelijkheden voor kennis-
voorstelling en automatisch redeneren te vergroten. In het algemeen kan “rede-
neren op een meta-niveau” gezien worden als “redeneren betreffende redeneren”.
Vertaald naar logisch programmeren resulteert zulks in programma’s die andere
programma’s als gegevens behandelen, als invoer nemen, analyseren, transforme-
ren, en/of als uitvoer produceren. Talrijke toepassingen (zie de verwijzingen in
sectie 2.1) illustreren het praktisch nut en de conceptuele eenvoud van “logisch
meta-programmeren”.

Menige toepassing leek echter een goede semantiek te ontberen. Vooral de lo-
gische status van programma’s met “versmelting” (amalgamation) van object- en
meta-niveau is veelal erg onduidelijk. Een degelijke logische semantiek is nu net
één van de belangrijkste voordelen van een logisch programma, en helderheid op
dit vlak is dan ook gewenst. In hoofdstuk 2 bestuderen we daarom de semantiek
van meta-programma’s behorend tot een bepaald, wijd verspreid type, waarbij
object-veranderlijken op het meta-niveau eveneens door veranderlijken worden
voorgesteld. We blijven zo dicht mogelijk bij de algemeen gangbare Herbrand
semantiek voor logische programma’s en bewijzen interessante overeenkomsten
tussen de semantiek op het object- en die op het meta-niveau.

Logisch programmeren verschaft niet enkel een werktuig voor de voorstelling
van kennis. Het is ook (en in zekere zin vooral) een programmeerparadigma
dat de gelegenheid biedt programma’s te schrijven en uit te voeren. Maar wie
programmeert, dient aandacht te schenken aan overwegingen in verband met
efficiéntie. Een niet onaanzienlijk deel van het onderzoek aangaande logisch pro-
grammeren behandelt technieken en methodes om de programmeur enigszins van
deze taak te ontlasten. Het computersysteem zelf zou dan in grote mate verant-
woordelijk zijn voor het bepalen van efficiénte uitvoeringsstrategieén, eventueel
via (automatische) programmatransformaties en -specialisaties.

Naast zijn tweevoudige natuur als kennisvoorstellings- en programmeerwerk-
tuig, blijkt ook de formele semantiek van logisch programmeren een onschatbaar
hulpmiddel bij een dergelijke onderneming. Inderdaad, dit laatste aspect maakt
het mogelijk programma’s te vergelijken volgens hun “betekenis”, afstand nemend
van eventuele operationele verschillen. Zo worden belangrijke stellingen omtrent
de semantische equivalentie van oorspronkelijke en getransformeerde en /of gespe-
cialiseerde programma’s formuleerbaar. Een welbekend voorbeeld van die aard
verschaft de stelling van Lloyd en Sherpherdson omtrent de correctheid en de
volledigheid van parti€le deductie (zie stelling 4.5).

Precies parti€le deductie, een specifieke techniek voor programmaspecialisatie,
ook wel bekend onder de naam “partiéle evaluatie”, wordt behandeld in hoofd-
stukken 3 tot 5. De centrale doelstelling in partiéle deductie is het (automatisch)

ii 2 HERBRAND SEMANTIEK VAN META-PROGRAMMA’S

specialiseren van een gegeven programma met betrekking tot gedeeltelijk bekende
invoer. Het aldus verkregen meer specifieke programma zou konkrete waarden
voor de rest van de invoer sneller moeten kunnen verwerken dan de oorspronke-
lijke algemene versie.

Een belangrijke toepassing van partiéle deductie betreft het specialiseren van
meta-vertolkers voor verschillende gegeven object-programma’s. De aldus ge-
produceerde programma’s zijn vrij van de extra bewerkingen die samenhangen
met de meta-vertolking, hetgeen vrijwel altijd een zeer aansienlijke winst aan
efficiéntie oplevert. Zelfs honderdvoudige verbeteringen werden verkregen voor
Godel meta-vertolkers ([75]). Prakiische aanwending van meta-programmatie in
logisch programmeren lijkt dan ook niet denkbaar zonder dergelijke specialisa-
tietechnieken.

Hiermee is meteen het verband aangegeven tussen hoofdstuk 2 enerzijds en
hoofdstukken 3 tot 5 anderzijds. Inderdaad, zoals hoger reeds vermeld werd,
gaat vanaf hoofdstuk 3 onze aandacht niet langer in de eerste plaats naar seman-
tische aspecten van meta-programmatie, maar bestuderen we meer operationele
onderwerpen. We behandelen partiéle deductie van logische programma’s (niet
enkel meta-vertolkers) waarbij veel aandacht uitgaat naar één specifiek deelpro-
bleem: het beheersen van ontvouwen (unfelding), met name het verzekeren van
de eindigheid ervan. In hoofdstuk 3 stellen we vooreerst een algemeen kader
voor waarin eindigende methodes voor het ontvouwen van positieve (definite) lo-
gische programma’s en vragen geformuleerd worden. Vervolgens behandelen we
automatische parti€le deductie met dergelijk eindig ontvouwen in hoofdstuk 4.
Hoofdstuk 5, op zijn beurt, stelt diverse verfijningen voor betreffende automatisch
eindig ontvouwen. Tenslotte is een kort algemeen besluit begrepen in hoofdstuk 6.

2 Herbrand semantiek van meta-programma’s

Talrijke vorsers hebben meta-programmatie in logisch programmeren bestudeerd;
zie bijvoorbeeld [18], [99], [161], [64], [159], [77], [158], [28], [164], [29]. Ondermeer
de verslagen van de tweejaarlijkse gespecialiseerde META conferenties bevatten
verder interessant materiaal ([1], [24] en [130]).

Heel wat toepassingen zijn gebaseerd op meta-programma’s waarbij object-
veranderlijken op het meta-niveau worden voorgesteld door veranderlijken. Der-
gelijke meta-vertolkers kunnen gebruik maken van de ingebouwde unificatie en
resolutie. Dit leidt tot eenvoudige en relatief efficiénte programma’s; de wel-
bekende “vanille” meta-vertolker is een standaard voorbeeld en vormt de kern
van talrijke nuttige varianten. Een alternatieve mogelijkheid behelst het gebruik
van constanten (of, meer algemeen, volledig bepaalde (ground) termen) ter re-
presentatie van object-veranderlijken. Deze laatste strategie werd bijvoorbeeld
weerhouden als basis voor meta-programmatie in Godel ([80]).

2.1 Twee inleidende begrippen 1i1

In dit hoofdstuk onderzoeken we de semantische grondslagen van vanille-
achtige meta-programma’s. Daartoe benutten we het gebruikelijke kader met
typeloze Herbrand interpretaties en modellen. Vooraleer we resultaten op dit
vlak kunnen voorstellen, dienen we echter eerst twee, bij de verdere behandeling
cruciale, begrippen in te voeren.

2.1 Twee inleidende begrippen
Taalonafhankelijkheid

In het algemeen hangt het perfecte Herbrand model van een normaal (normal)
gelaagd (stratified) programma af van de taal waarin we het programma beschou-
wen en het model bouwen. We zullen een programma taalonafhankelijk noemen
als zulks niet het geval is.

Een logische taal wordt bepaald door verzamelingen R, F en C, met res-
pectievelijk symbolen voor predikaten, functies en constanten. Indien P een
programma is en Rp, Fp en Cp de verzamelingen van symbolen die in het pro-
gramma voorkomen, dan noemen we Lp, aldus bepaald!, P’s inherente taal
(underlying language).

We definiéren:

Definitie 2.1 Zij P een normaal programma met inherente taal £p. Een taal
L', bepaald door R', F' en ', noemen we een uitbreiding van Lp asa Rp C R,
FpCF enCp CC #0.

Definitie 2.2 Zij P een normaal programma met inherente taal £p. Een Her-
brand interpretatie van P in een taal £’, uitbreiding van Lp, is een £'-Herbrand
interpreiaiic van P.

Definitie 2.3 We noemen een gelaagd programma P met inherente taal Cp
taalonafhankelijk asa het perfecte £'-Herbrand model van P gelijk is aan het
perfecte £Lp-Herbrand model van P voor elke uitbreiding £’ van Lp.

Taalonafhankelijkheid is een veralgemening van het welbekende “beperkt be-
reik” (range restriction) concept.

Definitie 2.4 Een regel in een programma P heeft een beperkt bereik asa elke
veranderlijke in de regel voorkomt in een (positief) atoom in het lichaam van de
regel. Een programma P heeft een beperki bereik asa het enkel regels met een
beperkt bereik bevat.

Stelling 2.5 Zij P een gelaagd programma. Indien P een beperkt bereik heeft,
dan is P taalonafhankelijk.

1 Als Cp = 0 dan nemen we een willekeurige constante * in £p.

iv 2 HERBRAND SEMANTIEK VAN META-PROGRAMMA'’S

Tenslotte kunnen we opmerken dat, aangezien voor positieve programma’s
het perfecte en het (unieke) kleinste (least) Herbrand model samenvallen, de bo-
venstaande definities en resultaten rechtstreeks toepasbaar zijn in een dergelijke,
meer beperkte context.

Zwak gelaagde programma’s en zwak perfecte modellen

Verderop wensen we meta-programma’s te bestuderen die overeenkomen met ge-
laagde object-programma’s. Nu blijken zulke meta-programma’s zelf niet gelaagd
te zijn. En hun semantiek kan dus niet worden beschreven met behulp van een
perfect Herbrand model. De meer algemene notie van zwakke gelaagdheid ([138])
biedt echter soelaas. In dit beperkte bestek is een gedetailleerde opbouw van de
relevante begrippen helaas niet mogelijk. We beperken ons tot een informele be-
schrijving die voldoende zou moeten zijn als achtergrond bij de resultaten in de
rest van dit hoofdstuk.

De kerngedachte bij zwakke gelaagdheid is dat recursie via negatie voldoende
beperkt is om, ondanks de afwezigheid van gelaagdheid, toch de berekening van
één welbepaald “intuitief juist” (tweewaardig) Herbrand model toe te laten. Om
te beslissen of een gegeven normaal programma P zwak gelaagd is en, in dat ge-
val, zijn zwak perfecte Herbrand model te berekenen, kan men ruwweg als volgt
te werk gaan. Beschouw alle volledig bepaalde instanties (ground instances) van
regels in P. Neem een voldoend grote verzameling A van volledig bepaalde ato-
men die niet negatief van andere atomen afhangen (direct dan wel indirect). Als
er zo geen atomen zijn, dan is het programma niet zwak gelaagd en de construc-
tie faalt. In het andere geval vormen de regelinstanties met een hoofding in A
een positief logisch programma Pg en A dient zo gekozen dat alle atomen die
voorkomen in dit programma in A zitten (in die zin moet 4 “voldoend groot”
wezen). Bereken het kleinste Herbrand model Hp, van Pg. Bekijk vervolgens de
overgebleven regelinstanties (degene die niet in Pg terechtgekomen zijn). Schrap
regelinstanties met in het lichaam een doel (goal) waarvan het atoom in A zit,
maar dat niet voldaan is volgens Hp,. Verwijder uit de resterende regelinstan-
ties alle doelen met een atoom in A. Herhaal de hele constructie op de nieuwe,
kleinere verzameling volledig bepaalde regels. Indien tenslotte geen regels meer
overblijven, slaagt de constructie: alle ogenschijnlijke lussen via negatie konden
dynamisch worden verwijderd. P heet zwak gelaagd en de unie van de berekende
kleinste Herbrand modellen het zwak perfecte Herbrand model van P.

Voorbeeld 2.6 Het volgende programma is niet gelaagd en ook niet locaal ge-
laagd, maar wel zwak gelaagd:

p(1,2) —

9(X) — p(X,Y), not ()

2.2 Vanille en andere smaken v

2.2 Vanille en andere smaken

Nu kunnen we de eigenlijke studie van meta-programma’s en hun semantiek aan-
vatten.

Vanille
We defini€ren vanille meta-programma’s zoals in [158] en [82].

Definitie 2.7 Het volgende normale programma M noemen we vanille meta-
vertolker:

solve(empty) «—

solve(X&Y') « solve(X), solve(Y)

solve(—X) + not solve(X)

solve(X) — clause(X,Y), solve(Y)

Definitie 2.8 Zij P een normaal programma. Dan weze Mp, het vanille meta-
programma verbonden met P, het normale programma gevormd door M samen
met een feit

clause(A,... &B& ... &-C&...) —
voor elke regel A « ..., B,...,notC,...in P en een feit

clause(A, empty) —
voor elk feit 4 « in P.

Een eerste belangrijk resultaat volgt.
Stelling 2.9 Zij P een gelaagd normaal programma. Dan is Mp zwak gelaagd.
We voeren enige notatie in:
e Up: het Herbrand universum van een programma P
o Up" =Up X ... x Up (n keer)
e p/r: een predikaatsymbool met ariteit = in Rp
Nu kunnen we de centrale stelling van dit hoofdstuk formuleren.

Stelling 2.10 Zij P een taalonafhankelijk gelaagd programma en Mp het ver-
bonden vanille meta-programma. Laat Hp het perfecte Herbrand model van P
voorstellen en Hps, het zwak perfecte Herbrand model van Mp. Dan geldt het
volgende voor elke p/r € Rp:

Yt € Up,™ : solve(p(t)) € Hyp, <= 1€ Up” & p(I) € Hp
Voor taalonafhankelijke programma’s bevat het zwak perfecte model van het

meta-programma dus zinnige informatie. Een eenvoudig voorbeeld toont aan
dat taalonafhankelijkheid cruciaal is.

vi 2 HERBRAND SEMANTIEK VAN META-PROGRAMMA’S

Voorbeeld 2.11
Stel dat P bestaat uit de feiten p(X) «— en g(a) —.
Dan verkrijgen we

Hp = {p(a), q(a)}

en nochtans
solve(p(empty)), solve(p(g(a)),... € Hy,

Uitbreidingen

De vanille meta-vertolker is een boeiend studie-object vanuit theoretisch oogpunt
omdat hij de essentie van talrijke meta-programma’s weergeeft. Maar meer prak-
tisch belang hebben verwante programma’s met meer argumenten in solve en/of
bijkomende doelen (betreffende predikaten die afzonderlijk gedefiniéerd zijn) in
de lichamen van de regels. Dergelijke meta-programma’s zullen we uitgebreid
noemen. Betreffende de semantiek van dergelijke gevallen hebben we eveneens
enkele algemene resultaten.

We beperken ons in eerste instantie tot positieve obj ect-programma’s en meta-
programma’s zonder een regel voor negatie (hierna aangeduid door de “d” anno-
tatie).

Stelling 2.12 Zij P een taalonafhankelijk positief programma en Ep een uitge-
breid d-meta-programma verbonden met P. Laat Hp en Hg, hun respectieve-
lijke kleinste Herbrand modellen voorstellen. Dan geldt het volgende voor elke
p/r € Rp:

Vi€ Ug," : (35 € Ug," : solve(p(t),5) € Hg,) =t € Up" & p(%) € Hp

Voor specifieke uitgebreide meta-programma’s is natuurlijk een equivalentie mo-
gelijk in stelling 2.12. Het bewijsboom bouwende programma in [159] verschaft
een voorbeeld.

Laten we vervolgens gelaagde object-programma’s en hun normale uitgebreide
meta-programma’s beschouwen. Ten eerste blijken dergelijke meta-programma’s
weer zwak gelaagd als hun eventuele extra predikaten gedefiniéerd zijn via een
gelaagd programma. En dan verkrijgen we:

Stelling 2.13 Zij P een gelaagd programma met beperkt bereik en Ep een uitge-
breid meta-programma verbonden met P. Laat Hg, het zwak perfecte Herbrand
model van Ep voorstellen. Dan geldt het volgende voor elke p/r € Rp:

Vi€ Ug,” : (35 € Ug," : solve(p(l),s) € Hg,) =T € Up™

Het blijkt in het algemeen niet mogelijk p(f) € Hp op te nemen in het rechterlid.
In het licht van bepaalde toepassingen lijkt zulks gepast. Maar bovendien geldt
zelfs het beperkte resultaat in stelling 2.13 niet voor sommige object-programma’s
die wel taalonafhankelijk zijn, maar geen beperkt bereik hebben.

2.3 Versmelting vii

2.3 Versmelting

Het is mogelijk een verdere stap te zetten: object- en meta-niveau kunnen samen-
genomen worden in één enkel programma. Deze praktijk noemen we versmelting
en de resulterende programma’s heten versmolten.

In dergelijke gevallen figureren dezelide symbolen nu eens als predikaatsym-
bolen, dan weer als functoren. Dit is ongebruikelijk zowel in logica, als in de
meer beperkte context van logisch programmeren. Men kan echter verifiéren dat
geen noemenswaardige semantische problemen opduiken. In het bijzonder blijft
de resulterende logica vrij van paradoxen.

Als we op deze wijze de betekenis van symbolen overladen, kunnen we in een
eerste stap P en Mp tekstueel samenvoegen. De voor de hand liggende resultaten
zijn makkelijk bewijsbaar. En programma’s met neerwaarise reflectie passen in
dit conceptuele kader.

Boeiender vanuit theoretisch oogpunt is het toevoegen van meta-feiten voor
solve (en clause) zelf.

Definitie 2.14 Zij P een normaal programma. Dan weze M?p, het vanille
meta2-programma verbonden met P, het programma M (zie definitie 2.7) samen
met de volgende regel:

clause(clause(X,Y), empty) «— clause(X,Y) (%)

en een feit
clause(A,.. &B& ... &-C&...) —

voor elke regel A «— ..., B,...,notC,...in P of M en een feit
clause(A, empty) «—

voor elk feit A — in P of M.

Bemerk dat regel (*) alle gevallen van “feiten over feiten” dekt.
We verkrijgen:

Stelling 2.15 Zij P een gelaagd programma. Dan is M?p zwak gelaagd.

Stelling 2.16 Zij P een taalonafhankelijk gelaagd programma en M?p het ver-
bonden vanille meta2-programma. Laat Hp het perfecte Herbrand model van P
voorstellen en H pss, het zwak perfecte Herbrand model van M?p. Dan is waar:
Vi € Upa,, : solve(solve(t)) € Hpya, <= solve(t) € Hys,
Bovendien geldt voor elke p/r € Rp:
Vi€ Una," : solve(p(t)) € Hya, <=1 cUp” & p(l) € Hp

Deze resultaten kunnen een basis zijn voor de studie van programma’s met
opwaartse reflectie, waar er niet langer een wezenlijk onderscheid gehandhaafd
wordt tussen object- en meta-programma.

viii 2 HERBRAND SEMANTIEK VAN META-PROGRAMMA’S

2.4 S-semantiek

De voorgaande secties behandelen meta-programma’s in het kader van de stan-
daard Herbrand semantiek. Taalonafhankelijkheid blijkt daarbij een belangrijke
rol te spelen. Nu kan men zich afvragen waarom deze voorwaarde nauwelijks
of niet opduikt in praktische toepassingen. Welnu, Herbrand modellen bevatten
volledig bepaalde atomen, terwijl programma’s dikwijls niet volledig bepaalde
(non-ground) antwoordsubstituties opleveren. Deze laatste zijn zinvol bij vele
meta-vertolkers, ook als het object-programma niet taalonafhankelijk is.

In [55] en [56] wordt voor positieve logische programma’s een semantiek voor-
gesteld die hun operationele gedrag getrouwer weerspiegelt, de zogenaamde S-
semantiek. In essentie worden nog steeds Herbrand interpretaties en modellen
gebruikt, maar deze kunnen willekeurige atomen in de gegeven taal (en niet enkel
volledig bepaalde) als elementen bevatten. Men toont aan dat elk positief pro-
gramma één enkel kleinste S-Herbrand model heeft, berekenbaar als vast punt
van een karakteristieke operator. Bovendien beschrijft dit model exact de ant-
woordsubstituties voor vragen met enkel veranderlijken als argumenten.

Wanneer men nu de S-semantiek van vanille meta-programma’s onderzoekt,
blijkt dat, voor positieve programma’s, stelling 2.10 kan worden veralgemeend
naar niet taalonafhankelijke.

Stelling 2.17 Zij P een positief programma en Mp het verbonden vanille d-
meta-programma. Laat Hp het kleinste S-Herbrand model van P voorstellen
en HY p,, het kleinste S-Herbrand model van Mp. Dan geldt het volgende voor
elke p/r € Rp:

VEE U Sy, : solve(p(t)) € HS iy, <=1€ USp & p(f) € HSp

Bij het beschouwen van uitgebreide meta-programma’s duikt taalonafhanke-
lijkheid echter wel weer op. Verder onderzoek kan uitwijzen welke beperkingen op
de aard der uitbreiding hieraan verhelpen. (Het al eerder vernoemde bewijsboom
bouwende programma stelt bijvoorbeeld geen probleem.)

2.5 Besluit

In dit hoofdstuk hebben we de Herbrand semantiek van een belangrijke klasse
meta-programma’s onderzocht. Taalonafhankelijkheid en zwakke gelaagdheid
bleken beide een sleutelrol te spelen bij zulke onderneming. Via een eenvou-
dige overladingstechniek was het ook mogelijk bepaalde vormen van versmelting
te beschouwen.

Een verdere studie van wezenlijk meer complexe object- en meta-programma’s
(bijvoorbeeld met een volledige behandeling van kwantoren en/of meer exotische
vormen van versmelting) vergt wellicht een meer gespecialiseerd semantisch ap-
paraat.

3 Een raamwerk voor eindig ontvouwen

Zoals reeds aangekondigd in hoofdstuk 1, verleggen we vanaf nu onze aandacht
naar meer operationele beslommeringen. Met name partiéle deductie en in de
eerste plaats ontvouwen, een belangrijk onderdeel daarvan, worden bestudeerd.
Globale partiéle deductie komt aan bod in het volgende hoofdstuk. In het hui-
dige stellen we eerst een algemeen raamwerk voor betreffende het bouwen van
eindige SLD-bomen bij het ontvouwen van logische programma’s. Tenslotte dient
aangestipt dat zowel dit hoofdstuk als de volgende expliciet enkel positieve pro-
gramma’s behandelen.

De structuur van het onderhavige hoofdstuk is als volgt. Vooreerst worden
eindige SLD-bomen statisch gekarakteriseerd in sectie 3.1. Vervolgens leiden we
een operationeel bruikbaar concept af in sectie 3.2 en een meer verfijnde variant
in sectie 3.3. Tevens formuleren we algoritmen voor eindig ontvouwen. Sectie 3.4,
tenslotte, bereidt de weg voor volledige automatisering, een onderwerp dat aan
bod komt in sectie 4.1 en verder uitgediept wodt in hoofdstuk 5.

3.1 Welgegronde en gedeeld gegronde SLD~-bomen
Welgegronde verzamelingen en bomen

Naast succesvolle en falende takken laten we verder in SLD-bomen ook onvolle-
dige takken toe waarbij het blad een willekeurige (conjunctie van) doel(en) kan
bevatten. Een boom met één of meer onvolledige takken heet onvolledig, zonder
is hij volledig. Indien een programma P, een doel A en een computatieregel R ge-
geven zijn, dan bestaat er slechts één volledige (eventueel oneindige) SLD-boom
o voor P U {«A} via R. Eindige SLD-bomen voor P U {«—A} via R zijn deel-
bomen (met dezelfde wortel) van 75. Bij gelegenheid zullen we veronderstellen
dat alle knopen in 75, en dus ook in elke deelboom, een uniek nummer bezitten.
En we zullen een dergelijke knoop (een (conjunctie van) doel(en) dus) dan ook
soms aanduiden met behulp van een koppel (G, i), waarbij i het natuurlijk getal
voorstelt dat als nummer werd toegekend. Voor een SLD-boom 7, zal G, de
aldus verkregen verzameling koppels aanduiden. Tenslotte ordenen we G, via
een orderelatie >, die de voorouder-afstammeling (ancestor-descendent) relatie
tussen knopen in 7 weerspiegelt.
We definiéren nu formeel nog enkele benodigde concepten.

Definitie 3.1 Zij P een programma en «—A een doel. Dan noemen we om het
even welke deelboom van een SLD-boom 7 voor P U {+A} met dezelfde wortel
als 7 een SLD™-boom (voor P U {«A}).

Voor elke SLD™-boom 7 is er een unieke kleinsie omvattende SLD-boom, geno-
teerd als 7+,

x 3 EEN RAAMWERK VOOR EINDIG ONTVOUWEN

Definitie 3.2 Zij V, > een strikt (eventueel particel) geordende verzameling. We
noemen V, > welgegrond als er geen oneindige serie elementen ej,ez,... in V
bestaat waarvoor geldt e; > e;1; voor alle > 1.

Definitie 3.3 Zij V,> een strikt (eventueel partiéel) geordende verzameling.
Een welgegronde maat op V,>y is een monotone functie van V, >y naar een
welgegronde verzameling W, >w .

Definitie 3.4 Een SLD ™ -boom 7 is welgegrond als er een welgegronde maat
bestaat op G+, >-.

Dan kunnen we nu eindige bomen kenschetsen als volgt:
Stelling 3.5 Een SLD~-boom is eindig asa hij welgegrond is.

Nu blijkt echter deze beschrijving niet voldoende soepel. We voeren daarom een
tweede, makkelijker bruikbaar concept in.

Gedeeld gegronde bomen
Definitie 3.6 Een SLD™-boom 7 is gedeeld gegrond indien

1. er een eindig aantal verzamelingen Cy, . ..,Cy bestaan zodanig dat
G, =; <N G
2. er voor elke i = 1,..., N een welgegronde maat bestaat

fi 1 Gy >e— Wi, >4
3. voor elke (G, k) € Cp en elke tak D in 7 die (G, k) bevat:

e ofwel D eindig is

e ofwel D een afstammeling (G, j) van (G, k) bevat zodat
(G',7) € C; voor een i > 0.

Stelling 3.7 Een SLD™-boom is eindig asa hij gedeeld gegrond is.

Bemerk dat op Cp geen maat gedefiniéerd is. Voorwaarde 3 zorgt ervoor dat
zulks veilig kan.

3.2 Ontvouwen met eindige pregronden

Laten we nu een eerste aanpak voor ontvouwen voorstellen. In de rest van dit
hoofdstuk verwijst P naar een positief programma, « A naar een positief doel
(met één enkel atoomn), £ naar de taal waarin P en A gesteld zijn, R naar een
computatieregel voor PU{+ A} en 7, naar de volledige SLD-boom voor PU{«A}
via R.

3.2 Ontvouwen met eindige pregronden xi

Definitie 3.8 Een koppel ((Co,...,Cn),(f1,---,fn)) is een eindige pregrond
voor 7Tp indien

1. elke Cj, ¢ < N, bestaat uit koppels (G, k), zodanig dat G een doel in £ is,
k€N en Gr, C Uiy Cs

2. voor elke ¢ = 1,..., N, f; een functie is, f; : C; — W;, >;, die C; afbeeldt
op een welgegronde verzameling W;, >;

3. voor elke (G, k) € Cp en elke tak D in 7 die (G, k) bevat:

e ofwel D eindig is

e ofwel D een afstammeling (G’, j) van (G, k) bevat zodat
(G',3) € C; voor een i > 0.

Stel nu dat een dergelijke eindige pregrond gegeven is. Dan kunnen we een
eindige deelboom 7 van 7o konstrueren door ervoor te zorgen dat de gegeven
functies f; welgegrond zijn op 7. Het is precies dat wat het volgende algoritme
doet als ((Co,...,Cn), (f1,---, fn)) de gegeven pregrond is.

Algoritme 3.9
Initialisatie
7 := {{(+A4,1)}} {* 1 tak met 1 knoop *}
Gedaan := 0
Zolang er een tak D in 7 bestaat zodanig dat D ¢ Gedaan doe
73j (G, %) het blad van D
Laat Afstam(G,1) alle directe >, -afstammelingen van (G, 1) bevatten
Laat Afname(G,1) alle (G’,j) € Afstam(G,1) bevatten zodaning dat
voor alle k > 0 zodanig dat (G, j) € Ck,
voor alle (G”,5') € DN C,:
fk(GHsj,) >k fk(G’: j)
Indien Afname(G,:) =10
Dan voeg D toe aan Gedaan
Anders {* 7 wordt verder uitgebreid *}
Vervang 7 door 7\ DU {D U {(G",)}|(G’, j) € Afname(G,i)}
Einde

Tenslotte verkrijgt men een eindige SLD-boom voor P U {«—A} via R door 7 te
vervolledigen tot 7+.

De volgende stelling toont aan dat algoritme 3.9 altijd eindigt. Ze legt ook
het verband met sectie 3.1.

Stelling 3.10 Algoritme 3.9 eindigt. De verkregen eindige SLD™-boom 7 is
gedeeld gegrond met betrekking tot de verzamelingen Co N 7,...,Cn N 7 en de
welgegronde maten fi,..., f; beperkt tot deze verzamelingen.

xii 3 EEN RAAMWERK VOOR EINDIG ONTVOUWEN

3.3 Ontvouwen met hiérarchische pregronden

Voor een aantal gevallen geeft algoritme 3.9 goede resultaten. Maar in het al-
gemeen schiet het tekort inzake de bekandeling van recursie. Een meer verfijnde
aanpak vereist het opsplitsen van (een oneindige) 7o in een oneindig aantal deel-
verzamelingen, en wel op een manier die de dieper liggende structuur van de
aanwezige recursie weerspiegelt.

We voeren enige verdere terminologie en notatie in.

e Voor een doel (G, i) stelt R(G,) het (door R) geselecteerde atoom voor.

e Zij (G,%) en (G',5) doelen in een SLD~-boom 7, met (G,j) >, (G,3i).
Dan noemen we (G', j) een eigenlijke voorouder van (G, 1) indien R(G,1)
afstamt van R(G’, j). We noteren: (G', j) >p. (G, 1).

o Een serie doelen (Gi,, 1) >pr (Gi,,12) >pr ... In T is een eigenlijke vketting
indien voor alle m, R(Gi,,im) in (G;_,im) een directe voorouder is van
R(G:. i bmta) IN (G Bmi)-

Wat we nu willen is doelen enkel vergelijken met (relevante) >,,-voorouders. Dit
ligt ten grondslag aan de omschrijving van de C;-verzamelingen in de volgende
definitie. De R;-partitie bouwt de extra “relevantie” notie in. (In het bijzonder
zullen we enkel doelen waarbij het geselecteerde atoom hetzelfde predikaatsym-
bool bevat, met elkaar vergelijken.)

Definitie 3.11 Een koppel ((Co, C1, Ca, . ..}, (f1, f2, - - .)) is een hiérarchische pre-
grond voor 7p indien:

1. er een eindige partitie Ro,..., Ry van R,, = {R(G,1)|(G,1) € 10} bestaat
zodanig dat:

L] V(G, ‘l:) ETo \ CQ:
Ci ={(G,)} U
{(G",4) € 7|3k : 1 < k < N, zodanig dat R(G, i), R(G', j) € Ry
en (G,i) >, (G,]) of (G',7) >pr (G,1)}
* Co ={(G,i) € 70| R(G, i) € Ro} U{(D,1) € mo}
2. f1, f2,... functies zijn die respectievelijk Cy, Cy,... afbeelden op één van
een eindig aantal welgegronde verzamelingen Wi, >1,..., Wy, >N zodanig

dat f; C; afbeeldt op Wy indien de geselecteerde atomen van de doelen in
C; behoren tot R;. Bovendien moet voor alle 4,7 > 0: fi|c;nc; = fileine,-

3. Cp bevat geen oneindige eigenlijke vketting.

Het verband tussen wat voorafging en het gebruik van een hiérarchische pre-
grond als basis voor eindig ontvouwen, is vervat in de volgende stelling.

3.3 Ontvouwen met hiérarchische pregronden xiii

Stelling 3.12 Zij ((Co, C1,Cy, . ..), (f1, fa,--.)) een hiérarchische pregrond voor
7o en 7 een SLD™-deelboom van 7y. Indien elke f; een welgegronde maat op
Ci N 7,>, is, dan zijn er tussen C;,C3,... een eindig aantal verzamelingen
Ci,, ..., Ciy , zodanig dat 7 gedeeld gegrond is met betrekking tot het koppel
((Caﬂ‘rs Co Niryeae; Gy nT):(fin“-lfiu))'

((Co, C1,C3,--.), (f1, f25 - - -)), een koppel potenti€el oneindige reeksen, is voor
praktische doeleinden natuurlijk nauwelijks geschikt. We kunnen echter een
hiérarchische pregrond ondubbelzinnig (en bruikbaar) beschrijven met behulp
van een eindige partitie Ro, ..., Ry van R,, en functies Fy,..., Fiy zodanig dat

Ly {(G, 3) € TolR(G, ‘l) € R;g} — Wi, >k
waarbij Wi, >, 1 < k < N welgegronde verzamelingen zijn.

Als we nu nog een laatste vereist begrip invoeren, kunnen we een verbeterd
algoritme formuleren. We zeggen dat een doel (G’,j) een doel (G,i) dekt als
(G',7) >pr (G,1) en R(G',j), R(G,1) tot dezelfde Rj-klasse behoren. De meest
nabije voorouder die een doel dekt, heet zijn directe dekkende voorouder.

Algoritme 3.13 vooronderstelt een gegeven computatieregel R en een gegeven

koppel ((Ro, Ry, ..., Rn), (Fy, ..., Fn)).
Algoritme 3.13
Initialisatie
r 1= {(—A0})
Pr:=0 {* in Pr construeren we de >,,-relatie *}
Gedaan :=0
Zolang er een tak D in T bestaat zodanig dat D ¢ Gedaan doe
Zij (G, 1) het blad van D
Laat Afstam(G, 1) alle directe >, -afstammelingen van (G, i) bevatten
Laat Afname(G,1) alle (G, j) € Afstam(G, i) bevatten zodanig dat
Indien (G”, k) de directe dekkende voorouder van (&, j) is
en B(G',§), R(G",k) € Ra(1 < n < N)
Dan F.(G", k) > F.(G',7)
Indien Afname(G,:) =0
Dan voeg D toe aan Gedaan
Anders {* 7 wordt verder uitgebreid *}
Vervang 7 door 7\ DU {D U {(G’, j)}|(G', j) € Afname(G, i)}
Breid overeenkomstig de Pr-relatie uit

Einde

Natuurlijk moet ook nu weer de verkregen SLD~-boom 7 vervolledigd worden
tot 71, zijn kleinste omvattende SLD-boom.
Tenslotte geldt volgende stelling:

xiv 3 EEN RAAMWERK VOOR EINDIG ONTVOUWEN

Stelling 3.14 Algoritme 3.13 eindigt. Er bestaan een eindig aantal verzame-

lingen Co,...,Ch en functies fi,..., far, zodanig dat de resulterende eindige
SLD™-boom 7 gedeeld gegrond is met betrekking tot Co N 7,...,Car N T en de
welgegronde maten fi,..., far beperkt tot deze verzamelingen.

3.4 Naar automatisering

Het aanwenden van algoritme 3.13 vereist concrete keuzen voor R, Rg, R1,..., Ry
en Fy,..., Fy. Dit onderwerp komt verderop aan bod, in sectie 4.1 en hoofd-
stuk 5, bij het voorstellen van volledig automatische algoritmen voor ontvouwen.
In dat kader blijkt een variant van algoritme 3.13 echter beter bruikbaar als uit-
valsbasis. Deze variant meet doelen, niet wanneer ze toegelaten worden in de
SLD-boom in opbouw, maar nadien, bij eventueel verder ontvouwen.
Algoritme 3.15
Initialisatie
ri={(—4,0})
Pr:=19
Gedaan := 0
Zolang er een tak D in 7 bestaat zodanig dat D ¢ Gedaan doe
Zij (G, 1) het blad van D
Laat Afstam(G,i) alle directe >, -afstammelingen van (G, i) bevatten
Indien Afstam(G,i) = 0 {* (G, <) is een succes- of een faalknoop *}
Dan voeg D toe aan Gedaan
Anders indien er een directe dekkende voorouder (G, j) van (G, 1) is
met R(G’,j), R(G,i) € R,
zodanig dat niet(Fn(G’,j) >n Fu(G,1))
Dan voeg D toe aan Gedaan
Anders
Vervang 7 door 7\ DU {D U {(G", k)}|(G", k) € Afstam(G,i)}
Breid overeenkomstig de Pr-relatie uit
Einde

3.5 Besluit

In dit hoofdstuk hebben we een aantal concepten ingevoerd die eindigheid van
SLD-bomen op een interessante wijze karakteriseren. Ze zijn namelijk geschikt
als basis voor vrij algemene en elegante algoritmen. Deze bouwen eindige SLD-
bomen zonder gebruik te maken van adhocmaatregelen.

Drie verschillende semi-automatische algoritmen werden geformuleerd. Het
tweede biedt een meer verfijnde behandeling van recursie en werd daarom uit-
verkoren om in een wat aangepaste vorm (het derde algoritme) als vertrekpunt
te fungeren voor volledige automatisering.

Xv

4 Correcte en volledige partiéle deductie

In dit hoofdstuk bestuderen we partiéle deductie voor positieve programma’s en
vragen. In een eerste stap leiden we een concreet, volledig automatisch algoritme
af voor het eindig ontvouwen van dergelijke programma’s en vragen. In sectie 4.2
benutten we dit vervolgens als bouwsteen in een aantoonbaar correcte en vol-
ledige methode voor partiéle deductie. Ook hier weer formuleren we een geheel
automatisch algoritme dat zeker altijd eindigt. Tenslotte hebben we verschillende
globale methodes voor partiéle deductie vergeleken aan de hand van een vijftal
testprogramma’s uit [104]. In sectie 4.3 formuleren we kort enkele tentatieve
conclusies naar aanleiding van deze beperkte proefondervindelijke studie.

4.1 Automatisch eindig ontvouwen

We dienen dus in de eerste plaats algoritme 3.15 compleet te automatiseren.
Keuzen voor Ro, Ry, ..., Ry zijn snel gemaakt: één klasse per recursief predikaat,
Rg voor de niet recursieve. De vereiste maten laten we de complexiteit van
argumenten opmeten.

Definitie 4.1 Zij Term de verzameling van termen in £, de beschouwde taal.
We definiéren de funciornorm als de functie |.| : Term — IN:

Indien ¢t = f(t1,...,tn),n >0

dan |t| = 1+ |t1] + -+ [ta]

anders |t| =0

De functornorm telt dus het aantal functoren in een gegeven term.

Definitie 4.2 Zij p een predikaatsymbool met ariteit n en S = {a1,...,am},1 <
ar < n,1 <k < m een verzameling argumentposities voor p. We definiéren de
Junctormaai met betrekking tot p en S als de functie

l.lp,s : {A]A is een atoom met predikaatsymbool p} — IV:

[P(#1, . - s En)lp,s = [tas | + - + [te.]

Functormaten reiken geschikte keuzemogelijkheden aan voor Fy,..., Fy. Het is
echter niet zonder meer duidelijk welke specificke S voor een bepaald predikaat in
een gegeven probleem optimaal ontvouwen toelaat. Het onderstaande algoritme
vertrekt daarom met maximale verzamelingen voor elk recursief predikaat. Deze
initiéle keuzen worden dynamisch verfijnd: posities met groeiende argumenten
worden zo nodig verwijderd. Ook het selecteren van atomen ter ontvouwing
(met andere woorden het vastleggen van R) geschiedt tijdens de uitvoering van
het algoritme.

Al deze ingrediénten tezamen maken het mogelijk algoritme 4.3 te formuleren
en de eindigheid ervan te bewijzen.

xvi 4 CORRECTE EN VOLLEDIGE PARTIELE DEDUCTIE

Algoritme 4.3

Invoer
een positief programma P
een positief doel «— A

Uitvoer

een eindige SLD-boom T voor P U {«A4}
Initialisatie

T:={(+4,1)}

Pr:=0

Gedaan := @

Gefaald := 0

Voor elk recursief predikaat p/n in P: S, := {1,...,n}

Zolang er een tak D in 7 bestaat zodanig dat D ¢ Gedaan doe
Zjj (G, 1) het blad van D
Indien (G, 1) = (O, 1)
Dan {* (G, 1) is a succesknoop *}
Voeg D toe aan Gedaan
Anders
{* Tracht R(G, i) te bepalen*}
Selecteer het meest linkse atoom p(#i,...,%,) in G zodanig dat -
één van de volgende (elkaar uitsluitende) voorwaarden vervuld is:
e (G, 1) heeft geen directe dekkende voorouder
e (G',§) is de directe dekkende voorouder van (G, i)
en |R(G', 5)lp,s, > p(t1,- - -, tn)lp,s,
e (G',7) is de directe dekkende voorouder van (G, i)
en !R(G’! j)lp,sp < |p(11, veey tn)l?.-sp
en |R(G', j)lp,s,msevw > |P(11, - -1tn)lp,s, niexw Waarbij
spnuuw = SP \ {Gﬁ = SP ”p(tl! LREE t‘n)lp,{ah} > |R(G’l j)|p,'{¢|.}} ‘-Ié 0
en 7 blijft gedeeld gegrond met betrekking tot
((Boy Bay ooy BN, (Llpaysp 00+ oo g, s, miemes s [l))
Indien een dergelijk atoom p(iy,...,t,) niet kan gevonden worden
Dan
Voeg D toe aan Gedaan
Anders
R(G,) :=p(t1,...,tn)
Indien R(G,) geselecteerd werd via de derde voorwaarde hierboven
Dan.S, ;= 5,0
Laat Afstam(G,1) alle directe afstammelingen van (G, i) bevatten
Indien Afstam(G,i) =0

4.2 FEen algoritme voor partiéle deductie xvii

Dan {* (G,1) is een faalknoop *}
Voeg D toe aan Gedaan en Ge faald
Anders
{* Breid de tak uit *}
Breid D in T uit met de elementen van A fstam(G, i)
Pas Pr aan

Einde

Stelling 4.4 Algoritme 4.3 eindigt. Indien de invoer bestaat uit een positief
programma P en een positief doel + A, dan is de uitvoer 7 een eindige (eventueel
onvolledige) SLD-boom voor P U {+—A}.

4.2 Een algoritme voor partiéle deductie

In deze sectie nemen we aan dat de lezer vertrouwd is met [114], een belangrijk
artikel waarin theoretische grondslagen voor partiéle deductie in logisch program-
meren gelegd werden. De belangrijkste stelling is de volgende:

Stelling 4.5 Zij P een positief logisch programma, G een positief doel, A een
eindige, onafhankelijke verzameling atomen, en P’ a parti€le deductie van P met
betrekking tot A zodanig dat P’ U {G} A-gedekt is. Dan gelden:

e P'U{G} heeft een SLD-refutatie met berekend antwoord 6 asa zulks het
geval is voor PU {G}.

e P’ U {G} heeft een eindig falende SLD-boom asa zulks het geval is voor
PuU{G}.

Met andere woorden, parti€le deductie dient erover te waken dat geen twee ato-
men in de resulterende verzameling A een gemeenschappelijke instantie bezitten
(de onafhankelijkheidsvoorwaarde) en dat alle relevante atomen in P’ U {G} in-
stanties zijn van atomen in A (de dekkingsvoorwaarde). In dat geval wordt
namelijk G op dezelfde wijze (maar hopelijk wel efficiénter) beantwoord in het
oorspronkelijke en in het gespecialiseerde programma: partiéle deductie is correct
en volledig.

We formuleren nu een algoritme dat partiéle deductie uitvoert. Het maakt
gebruik van twee begrippen die een korte uitleg behoeven. Een msv van een
aantal atomen is een meest specifieke veralgemening (most specific generalisation):
het minst algemene atoom waarvan alle gegeven atomen instanties zijn. Elk stel
atomen met hetzelfde predikaatsymbool bezit een msv, enig op het hernoemen
van veranderlijken na. Een pp’-hernceming van een programma is een equivalent
programma, waar het predikaatsymbool p in lichaamsdoelen werd vervangen door
een vers symbool p’ en regels voor p’ werden gekopiéerd van die voor p.

xviii 4 CORRECTE EN VOLLEDIGE PARTIELE DEDUCTIE

Algoritme 4.6

Invoer
een positief programma P
een positief doel «—A = «—p(t1,...,1,)
een vers predikaatsymbool p’ met dezelfde ariteit als p
Uitvoer
een verzameling atomen A
een partiéle deductie P.’ van P,, P’s pp/-hernoeming, met betrekking tot A
Initialisatie
P, := de pp/-hernoeming van P
A := {A} en label A niet gemerkt
Zolang er een niet gemerkt atoom B is in A doe
Pas algoritme 4.3 toe met P, en «— B als invoer
Zij 7p de resulterende SLD-boom
Stel uit 75 P, samen, een parti€le deductie voor B in P;
Label B gemerkt
Zij Ap de verzameling atomen in de lichamen van regels in P, g5
Voor elk predikaatsymbool ¢ dat voorkomt in een atoom in A g
Zij msv, een msv van alle atomen in A en A met predikaatsymbool g
Indien er in A een atoom bestaat met predikaatsymbool ¢
en minder algemeen dan msv,,
Dan verwijder dit atoom uit A
Indien er nu in A geen atoom is met predikaatsymbool ¢
Dan voeg msv, toe aan A and label het niet gemerkt
Einde
Einde
Stel tenslotte de partiéle deductie P,’ van P, met betrekking tot A samen
uit de parti€le deducties voor de elementen van A in P..

Algoritme 4.6 bezit volgende formele eigenschappen:

Stelling 4.7 Algoritme 4.6 eindigt.

Stelling 4.8 Zij P een positief programma, «p(%,,...,%,) een doel en p’ een
predikaatsymbool, invoer voor algoritme 4.6. Zij A de verzameling atomen en
P,' het programma door algoritme 4.6 geproduceerd als uitvoer. Dan gelden:

e A is onafhankelijk.

e Voor elk doel G = + A;,..., 4,, dat bestaat uit instanties van atomen in
A, is P.' U{G} A-gedekt.

4.3 Experimenten xix

De voorwaarden voor het toepassen van stelling 4.5 zijn dus vervuld.

Gevolg 4.9 Zij P een positief programma, «p(t1,...,t,) een doel en p’ een
predikaatsymbool, invoer voor algoritme 4.6. Zij A de (eindige) verzameling
atomen en P,’ het programma door algoritme 4.6 geproduceerd als uitvoer. Zij
G = «— Ai,..., A, een doel dat bestaat uit instanties van atomen in A. Dan
gelden:

e P' U {G} heeft een SLD-refutatie met berekend antwoord # asa zulks het
geval is voor P U {G}.

e P’ U {G} heeft een eindig falende SLD-boom asa zulks het geval is voor
PU{G}.

Stelling 4.10 Zij P een positief programma en «—A een atomair doel, gebruikt
als invoer voor algoritme 4.6. Zij A de verzameling atomen geproduceerd door
algoritme 4.6. Dan A € A.

In het bijzonder geldt gevolg 4.9 dus voor instanties van A.

4.3 Experimenten

Horvath ([83]) heeft een systeem geimplementeerd dat toelaat diverse methoden
voor partiéle deductie met elkaar te vergelijken. De twee centrale parameters
daarbij zijn het beheersen van ontvouwen en de strategie gevolgd bij de opbouw
van de verzameling A. We hebben een aantal experimenten uitgevoerd op vijf
testprogramma’s genomen uit [104]. Telkens werden partiéle deducties berekend
volgens verschillende recepten. Vervolgens werd de efficiéntie van de verkregen
programma’s vergeleken. Met het nodige voorbehoud kunnen aan de resultaten
enkele opmerkingen vastgeknoopt worden.

Ten eerste lijkt ontvouwen met maten en hiérarchische pregronden een solide
basis te verschaffen voor partiéle deductie. Men verkrijgt eindige SLD-bomen
die de inherente eigenschappen van het gegeven probleem goed weerspiegelen.
Een alternatieve techniek die ontvouwt indien niet eerder een variant van het
geselecteerde atoom ontvouwd werd, lijkt dikwijls te diepe bomen te bouwen.
Ook het concept van een dekkende voorouder blijkt van primordiaal belang.

Algoritme 4.3 zelf blijkt echter niet in staat altijd behoorlijk te functioneren.
Een combinatie met “niet variant” ontvouwen blijkt een aanzienlijke verbete-
ring. Complexe meta-programma’s worden eveneens niet behoorlijk behandeld.
Deze en andere beperkingen van algoritme 4.3, en vooral technieken om ze te
overwinnen, genieten onze anndacht in het volgende hoofdstuk.

Enkel deterministische oproepen ontvouwen is, althans in zijn meest elemen-
taire vorm, te beperkt. Een “kijk dieper en zie of er slechts één tak slaagt” ver-
fijning lijkt noodzakelijk. In het algemeen is het niet duidelijk wanneer bepaalde

xx 5 MEER OVER EINDIG ONTVOUWEN

stukken van een eindige SLD-boom, verkregen door veilig ontvouwen, best alsnog
weggeknipt worden. Dit lijkt een boeiend onderwerp voor verder onderzoek.
Algoritme 4.6 gebruikt een zeer eenvoudige methode om de grootte van A
te beheersen: één enkel atoom per predikaatsymbool wordt toegelaten. Op die
manier is, bij veilig ontvouwen, eindigheid verzekerd. Bovendien zijn ook de
praktische resultaten interessant wanneer er krachtig (redelijk diep) ontvouwd
wordt. Toch bleek duidelijk dat een soepeler beheer van A gewenst is. Methoden
die meer dan één atoom per predikaatsymbool toelaten en eventueel dynamisch
nieuwe predikaten invoeren, leverden dikwijls goede resultaten. Het is echter
nog niet duidelijk hoe A in het algemeen voldoende precies en steeds eindig kan
gehouden worden. Misschien bieden ook hier maatfuncties een nitkomst.

4.4 Besluit

In dit hoofdstuk hebben we, binnen het raamwerk opgebouwd in hoofdstuk 3, een
eerste volledig automatisch algoritme voor eindig ontvouwen van positieve pro-
gramma’s en vragen voorgesteld. Dit maakte het mogelijk een altijd eindigende
methode voor partiéle deductie te formuleren. Bovendien zijn correctheid en vol-
ledigheid in de zin van [114] vervuld. Tenslotte hebben we enkele opmerkingen
geformuleerd naar aanleiding van een beperkte proefondervindelijke studie.

Ontvouwen met maten zoals voorgesteld in hoofdstuk 3 blijkt een veelbelo-
vende aanpak, ook in de praktijk. Nochtans vragen verscheidene onderwerpen
verdere studie, betreffende het beheersen van automatisch eindig ontvouwen zo-
wel als het geleiden van het partigle deductieproces in zijn geheel. Deze laatste
blijven hier verder onbehandeld, maar verfijningen betreffende ontvouwen komen
aan bod in het volgende hoofdstuk.

5 Meer over eindig ontvouwen

Tenslotte bekijken we automatisch eindig ontvouwen van naderbij. Vooral het
construeren en verfijnen van maatfuncties geniet onze aandacht. Algoritme 4.3
gebruikt functornormen en de daarop gebaseerde maten zoals geintroduceerd in
respectievelijk definities 4.1 en 4.2. De eerste zullen we ook hierna aanhouden als
basis voor onze beschouwingen, maar het louter handelen met deelverzamelingen
van argumentposities zoals in definitie 4.2 blijkt in het algemeen te beperkt.

In dit hoofdstuk bestuderen we enkele meer gevorderde ontvouwingstechnie-
ken. We voorzien de mogelijkheid lexicografische prioriteiten tussen verschillende
deelverzamelingen van argumentposities aan te brengen in sectie 5.1. In diezelfde
sectie stippen we een optimalisering aan die ook kan toegepast worden op algo-
ritme 4.3. Daarna, in sectie 5.2, bespreken we mogelijkheden en moeilijkheden
bij ontvouwen waarbij niet enkel de maat van het in een doel geselecteerde atoom

5.1 Lexicografische prioriteiten xxi

beschouwd wordt, maar ook (sommige) andere atomen in hetzelfde doel bijdragen
tot de beslissing over al dan niet verdergaan. Dit alles leidt tot een beter begrip
van meer fundamentele aspecten in de zoektocht naar optimale maten. Enkele
algemene inzichten in dit verband komen aan bod in sectie 5.3. Vervolgens stelt
sectie 5.4 een praktisch belangrijke uitbreiding van de basismethoden voor waar-
bij ontvouwen met maten en met “niet variant” tests worden in elkaar gepast tot
één globale aanpak. Sectie 5.5, tenslotte, vermeldt de mogelijkheid ontvouwen
niet enkel te gronden op het gedrag van hele argumenten, maar ook afzondelijke
delen van dergelijke argumenten hiervoor in aanmerking te nemen. Aldus zetten
we een eerste stap naar automatisch en krachtig ontvouwen van meta-vertolkers.

5.1 Lexicografische prioriteiten
Krachtiger maten

Ter herinnering: P(V') is de verzameling van deelverzamelingen (machtsverzame-
ling) van V en V™ het n-voudig Cartesisch produkt van V. We definiéren:

Definitie 5.1 Zij V een verzameling en Si,..., Sk k wederzijds disjuncte, niet
ledige deelverzamelingen van V', samen een partitie van V. Dan noemen we het
k-tal (S51,...,5:) € ’D(V]k een geordende k-partitie van V.

Wij zullen het verder vooral hebben over geordende partities van de verzameling
van argumentposities van een predikaat p, en spreken dan kortweg over een met
p verbonden geordende partitie.

Definitie 5.2 Zij p een predikaat met ariteit n en een verbonden geordende k-
partitie O = ({11, ..., 315}, .., {#k1,.. ., 41}). We definiéren |.|, 0 : {4]4 is een
atoom met predikaatsymbool p} — IV k als volgt:

|p(tg, D '?tﬂ)lP.o = (ltini"" et |t't'1;'i! =ity |t'ih1| B Itihll)
waarbij |.| de functornorm is zoals in definitie 4.1.

Als we IN* ordenen via >, de voor de hand liggende lexicografische uitbreiding
voor k-tallen van > op IV, kunnen we dergelijke functies als maat aanwenden.

Stelling 5.3 Zij O een geordende k-partitie verbonden met een predikaat p. Zij

7 een SLD-boom en S; een deelverzameling van G, zodanig dat alle doelen in

Sr een geselecteerd atoom met predikaat p bezitten. Definiéer F, als volgt:
Fp:8:,>,— Wks >~k :(G,i) € S, — |R(G, 3")|P,(‘-’

Dan is F, een welgegronde maat op S,, >, asa F, monotoon is.

xxii 5 MEER OVER EINDIG ONTVOUWEN

Automatisering

Het is nu mogelijk algoritme 4.3 te herformuleren, deze keer gebruikmakend van
|.|p,o~ in plaats van |.|,, s-functies. Daartoe dient een nieuw recept bedacht voor
het automatisch zoeken naar optimale maten of, met andere woorden, optimale
geordende partities. We zullen hier noch de formele opbouw van de vereiste
concepten, noch het resulterende algoritme reproduceren. Wel trachten we de
maatverfijningssirategie in woorden te beschrijven.

Initiéel nemen we voor elk recursief predikaat p in het gegeven programma
een l-partitie, alle argumentposities van p in één enkele verzameling bevattend.
Neem nu aan dat G een doel is waarin we een atoom ter ontvouwing wensen
te selecteren. Veronderstel bovendien dat G’s maat niet daalt ten opzichte van
de directe dekkende voorouder van G als we een atoom 4 = p(ts,...,1,) ver-
kiezen. Dan kunnen we A desalniettemin selecteren indien de mogelijkheid zich
voordoet Op op gepaste wijze te verfijnen. (Voorheen werden eenvoudig één of
meer argumentposities verwijderd indien de aldus verkregen kleinere S, leidde
tot dalende maten.) Welnu, O, kan nuttig verfijnd worden als een geschikte
component zodanig kan opgesplitst worden in twee nievwe componenten dat de
eerste van deze twee (de lexicaal prioritaire) nadien overeenstemt met een da-
lend gewicht (de in definitie 5.2 vermelde som van zijn |t;;|’s moet kleiner zijn in
G dan in diens directe dekkende voorouder). Geen “stijgende” component mag
de gesplitste voorafgaan; zulks zou vanzelfsprekend het gewenste effect teniet-
doen. Tenslotte is het voordelig een component te splitsen met zo laag mogelijke
prioriteit. Een dergelijke keuze houdt de globale gewichtsafname van doelen on-
der de nieuwe maat en de daarmee gepaard gaande vermindering van het totale
ontvouwingspotentiéel namelijk zo gering mogelijk.

Bemerk dat voor elk predikaat p, net zoals S, in algoritme 4.3, O, slechts
een eindig aantal keren verfijnd kan worden. Het resulterende algoritme eindigt
daarom weer voor alle mogelijke (positieve) programma’s en doelen en levert een
eindige SLD-boom af. Deze laatste is in een aantal gevallen op gepaste wijze
groter dan de door algoritme 4.3 onder gelijke omstandigheden geproduceerde en
(wellicht) nooit kleiner.

Een meer efficiénte variant

Tenslotte stippen we aan dat het niet strikt noodzakelijk is de in opbouw zijnde
SLD-boom globaal gedeeld gegrond te houden. In het bijzonder kunnen maat-
functies verfijnd worden zonder te testen of de tot dan reeds gebouwde deelboom
gedeeld gegrond blijft.

In een aantal (eerder zeldzame) gevallen leidt zulks tot dieper ontvouwen.
Belangrijker is dat het potentieel kostbare hertesten van hele bomen uitgeschakeld
wordt. Ontvouwen vergt nu nog enkel gewichtsvergelijkingen tussen een doel en

5.2 De context beschouwen xxdil

zijn directe dekkende voorouder. Dit is mogelijk zonder enig zoeken in de SLD-
boom. De rekenkost verbonden aan (bijvoorbeeld) een aldus gewijzigde versie
van algoritme 4.3 gedraagt zich derhalve lineair in functie van de grootte van de
geconstrueerde SLD-boom.

5.2 De context beschouwen
Een verdere stap wordt nu denkbaar.
= prod([1,2IX],Y), cons(Y))]
Y=[11Y"]
= prod([2IX],Y"), cons([11Y']) (1,1)

== prod([21X],Y"), cons(Y") (1)
Y'=[21Y"]
= prod(X,Y"), cons([21Y"]) ©.1)

= prod(X,Y"), cons(Y™") ()]

X=[X"IX"], Y'=[X"IZ]
= cons((D (-0)

= prod(X".Z), cons([X"IZ])
O

Figuur 1: Niet geselecteerde atomen verrekenen bij het ontvouwen.

Voorbeeld 5.4 Beschouw het volgende schematische programmas:
produce([], []) —
produce([X|Xs], [X|Ys]) — produce(Xs,Ys)
consume([]) «
consume([X|Xs]) «— consume(Xs)
en het doel:
«— produce([1, 2|X],Y), consume(Y')
We passen nu algoritme 3.15 toe. Daarbij leggen we een wisselwerkende (corou-

tining) computatieregel op en kiezen we het koppel ((Ro, Ry, Ry), (F, F2)) als
volgt:

xxiv 5 MEER OVER EINDIG ONTVOUWEN

Ro=10
R; = {R(G, 1) met produce}

R; = {R(G, i) met consume}
o F = |'lproduce,({1,2}]

e Fp = (l-1producs,{1,2}: I'lcmsume,{l})

De resulterende SLD-boom is afgebeeld in figuur 1. Geselecteerde atomen zijn
onderlijnd en knopen zijn gemerkt met hun gewicht volgens F; of Fj.

Bemerk dat de tweede consume-ontvouwing niet toegelaten zou zijn onder een
maatfunctie die enkel rekening houdt met het argument van consume.

Cruciaal in voorbeeld 5.4 is de mogelijkheid informatie in aanmerking te nemen
die buiten het geselecteerde atoom in de ruimere context van het hele doel te
vinden valt.

Wisselwerking behandelen
‘We veralgemenen definitie 5.1:

Definitie 5.5 Zij P be een programma en p een (recursief) predikaatsymbool
in P. Een contezt beschouwende geordende k-partitie (cbo-k-partitie) vebonden
met p in P is een k-tal O = ({711,...,%15}, .-, {1, -, ixt}) dat voldoet aan de
volgende voorwaarden:

1. Er zijn twee scorien componenien in O. Sommige, die we p-componenten
zullen heten, bestaan uit argumentposities van p. De andere bevatten ar-
gumentposities van recursieve predikaatsymbolen in P, en zullen bij gele-
genheid niet-p-componenien genoemd worden.

2. De p-componenten vormen samen een geordende partitie van p’s vezameling
argumentposities.

3. Argumentposities van recursieve predikaten in P (met inbegrip van p) kun-
nen in ten hoogste één niet-p-component voorkomen.

Als we nu IV uitbreiden tot IV, door toevoeging van een bijkomend “kleinste”
element 1, opslorpend voor +, en stellen dat maz(@) =L, dan kunnen we op
zinvolle wijze definiéren:

Definitie 5.6 Zij G een doel bestaand uit een aantal atomen waarvan er één is
geselecteerd voor verder ontvouwen, p een n-air predikaat en 1 < i < n. Dan:
M(G, p, i) = maz({|t;||t: is de term die voorkomt als i-de argument
in een niet geselecteerd atoom p(iy,...,1,) in G})

5.2 De context beschouwen XXV

Definitie 5.7 Zij P een programma en p een n-air (recursief) predikaatsymbool
dat voorkomt in P. Zij O een cbo-k-partitie verbonden met pin P. Dan definiéren
we ||.||p,0 : {G|G is een doel in P’s inherente taal waarvan het geselecteerde atoom
predikaatsymbool p heeft } — IV, G — (v1,-..,vx) als volgt:

e Indien O[r] = {ir1,...,%,} een p-component is en p(ty,...,t,) is G’s gese-
lecteerde atoom, dan v, = [£; | +--- + |t |.

e Indien O[r] = {ér1,p,,,---,%rj,p,;} (de pri-annotaties verwijzen naar recur-
sieve predikaatsymbolen in P), dan v, = M(G, py1,%r1)+- - -+ M (G, Pristei):

Dergelijke ||.||,,0-functies leveren de benodigde maten voor het soort ontvou-
wen in voorbeeld 5.4. Bemerk dat L de eventuele afwezigheid in het gemeten
doel van één of meer argumentposities in de gegeven cbo-partitie opvangt.

Automatisering verloopt weer min of meer volgens de in sectie 5.1 geschetste
lijnen, maar is vanzelfsprekend een stuk complexer. Het resulterende algoritme
aanvaardt voorkeursrichtlijnen in verband met het selecteren van atomen. Zo
kan bijvoorbeeld wisselwerking tussen twee predikaten (zie voorbeeld 5.4) door
de gebruiker opgelegd worden.

Achterwaartse specialisaties

Ook zonder exotische computatieregels kan het gebruik van cbo-partities vruchten
afwerpen. Inderdaad, ook achterwaarts (tegen de zoekrichting van de computa-
tieregel in) informatie doorgeven kan nu beter behandeld worden. We bekijken
weer een schematisch voorbeeld.

Voorbeeld 5.8

bp(X,Y) — a(X, 2),b(2,Y)

a([l,Y) —

a([X|Xs],Y) — doa(X,Y),a(Xs,Y)

o([l, 1) —

b([X|Xs], [Y]Ys]) — dob(X,Y),b(Xs,Ys)
(De definities van do_a en do_b zijn hier verder niet van belang. We nemen enkel
aan dat we dergelijke atomen volledig kunnen behandelen tijdens het ontvouwen.)
We wensen het volgende doel te ontvouwen:

— bp(X, [1]Y s])
Een gedeelte van een nu mogelijke SLD-boom vindt men in figuur 2.
Het a-atoom ontvouwen in (*x) kan als gewichtsprioriteit wordt verleend aan b’s
tweede argument: [|(x)|[q,({2,},{1,2}) = (1, 0) terwijl ||(x*)la,(12,3,41,2}) = (0, 1).

xxvi 5 MEER OVER EINDIG ONTVOUWEN

== bpX,[11Ys])

|

= a(X.Z), b(Z,[11Ys]) (%)

~ bEZ[11Ys]) AR]

- == do_a(X’,Z), a(Xs",Z), bZ,[11Ys])

= a(Xs",Z), b(Z,[11Ys])
Z=[Z71Zs"]
= a(Xs',[Z'1Zs’]), do_b(Z",1}, b(Zs',Ys)

L Z=(1)
= a(Xs',[f(1)Zs']), bZs',Ys) (**)

Figuur 2: Achterwaartse specialisaties behandelen.

Atomen enkel vergelijken met echte voorouders

Het tweede deel van definitie 5.7 maakt geen onderscheid tussen atomen in ver-
schillende ketens van voorouders en afstammelingen. Het blijkt dat zulks soms
aanleiding geeft tot minder dan optimaal ontvouwen. Men kan cbo-partities en
de erop gebaseerde maten natuurlijk aanpassen: vergelijk (maximale) argument-
gewichten van contextatomen in een doel met de argumentgewichten van het
overeenkomstige atoom in de relevante voorouder dat op dezelfde tak van de
bewijsboom te vinden is. Het zonder verdere beperkingen doorvoeren van deze
wijziging maakt echter oneindig ontvouwen mogelijk.

5.3 Automatisch maten verfijnen

Een zeer belangrijke component van automatische ontvouwingsalgoritmen vor-
men technieken om maten dynamisch te verfijnen. We hebben een eerste een-
voudige, concrete strategie ingebouwd in algoritme 4.3. En in sectie 5.1 hebben
we kort besproken hoe de aldaar voorgestelde maten kunnen verfijnd worden.
In deze sectie bekijken we het genoemde aspect van nabij en formuleren we een
soort mal voor concrete algoritmen.

5.3 Automatisch maten verfijnen xxvii

Definitie 5.9 Zij P een positief programma, dan noemen we Atomp de vezame-
ling van atomen die kunnen gevormd worden in de taal inherent aan P.

Definitie 5.10 Zij P een positief programma met inherente taal £Lp. Veronder-
stel dat Ro, Ry,..., Ry een partitie is van Atomp. Zij W, >w een welgegronde
verzameling. Dan noemen we een functie

F : {G|G is een positief doel in Lp met geselecteerd atoom € R} = W, >w
een (Ry, P)-toepasbare maat met doelverzameling W.

Definitie 5.11 Een verzameling {F|F is een (R;, P)-toepasbare maat} wordt
cen (Ry, P)-toepasbare maatruimie genoemd.

Als P (of Lp) duidelijk zijn uit de context zullen we een (Rj, P)-toepasbare
maatruimte noteren als 7. Tenslotte wensen we op F een (partiéle) orderelatie,
genoteerd als >>;.

We kunnen nu een generisch ontvouwingsalgoritme formuleren.

Algoritme 5.12

Invoer
een positief programma P
een positief doel «—A

Uitvoer
een SLD-boom 7 voor P U {«—A4}
Initialisatie
7 wordt geinitialiseerd als een SLD-boom met 1 tak,
bestaande uit het doel « A, zonder geselecteerd atoom.
Initiéle maten Fy,..., Fy worden gekozen.

Zolang er een niet beéindigde tak D in T bestaat doe

Indien D succesvol is, Dan beéindig D
Anders indien D’s blad geen selecteerbaar atoom bevat, Dan begindig D
Anders
Selecteer een selecteerbaar atoom
Indien geen afleidingsstappen mogelijk zijn, Dan begindig en faal D
Anders breid D uit
Waarbij een atoom p(ty,...,%,) € R; in een doel G selecteerbaar is
indien één van de volgende (elkaar uitsluitende) voorwaarden vervuld is,
indien het werkelijk geselecteerd wordt:
e G heeft geen directe dekkende voorouder

e G’ is de directe dekkende voorouder van G en
Fk(G!) >k Fk(G)

xxviil 5 MEER OVER EINDIG ONTVOUWEN

e &' is de directe dekkende voorouder van G en
niet(Fi(G') >¢ Fir(G)) en
3F € Fi: (1) Fip > F
(2) F(G') >: F(G)
Indien een atoom p(t1,...,t,) geselecieerd werd via de derde voorwaarde,
Dan vervang Fy, in het stel actueel gebruikte maten,
door een F{ die voldoet aan (1) en (2).
Einde

Een werkbare specialisatie van algoritme 5.12 vereist concrete keuzes voor de
computatieregel R (gedeeltelijk), de partitie Rp, R1, ..., Ry (met een veilige Ryp),
Fi1,>1,...,FnN, >N en initiéle waarden voor Fy,..., Fy.

De volgende stelling is waar:

Stelling 5.13 Een concrete specialisatie van algoritme 5.12 eindigt voor een
positief programma P en doel «A4, een eindige SLD-boom 7 voor P U {«—A}
producerend, indien Vk,1 < k < N : Fi, > een welgegronde verzameling is.

De tot hiertoe beschouwde concrete maatruimten zijn allemaal geordend via de
respektievelijke verfijningsnoties. Ze zijn bovendien eindig en derhalve triviaal
welgegrond, behalve in één geval: bij het rechtstreekse gebruik van cbo-partities
van het gevorderde type dat kort beschreven werd onder het laatste punt van de
vorige sectie.

5.4 Een gecombineerde aanpak

Alle tot hiertoe behandelde concrete methoden voor ontvouwen maken gebruik
van definitie 4.1. Op die manier peilen de geconstrueerde maatfuncties structurele
complexiteit. Een redelijke keuze in vele gevallen, maar duidelijk ongeschikt voor
het behandelen van programma’s waar de manipulatie van constanten een grote
rol speelt.

Het is misschien mogelijk om zinvolle maten te bedenken die niet enkel voor
structuur gevoelig zijn. In deze sectie volgen we echter een andere weg. Inder-
daad, een bekende (maar niet geheel veilige) heuristiek bepaalt dat ontvouwen
mag indien het beschouwde atoom geen variant is van een al eerder in dezelfde
afleiding (derivaiion) geselecteerd atoom. Nu blijkt een combinatie mogelijk van
deze regel met diverse methoden voor ontvouwen steunend op structuurmaten.
Zoals in sectie 4.3 reeds aangestipt werd, leverde een dergelijke gecombineerde
aanpak trouwens goede resultaten op in een beperkte proefondervindelijke studie.

Het raamwerk vertimmeren

We willen algoritme 3.15 aanpassen als volgt: ontvouwen is toegelaten, ook wan-
neer de maat gelijk blijft, op voorwaarde dat de “niet variant” test positief uitvalt.

5.4 Een gecombineerde aanpak XXix

Daartoe voeren we vooreerst (informeel) volgende noties in:

e Het deel van een doel G dat beschouwd wordt bij het berekenen van G's
gewicht onder een maatfunctie F noemen we het F-gemeten deel van G.

e Indien G en G’ twee doelen zijn zodanig dat hun F-gemeten delen varianien
zijn van elkaar, dan noteren we dat als G ~p G'.

De hoofdlus in algoritme 3.15 wordt dan:
Algoritme 5.14

Zolang er een tak D in T bestaat zodanig dat D ¢ Gedaan doe
Zijj (G, 1) het blad van D
Laat Afstam(G, 1) alle directe >, -afstammelingen van (G, i) bevatten
Indien Afstam(G,i) = 0
Dan voeg D toe aan Gedaan
Anders indien er een directe dekkende voorouder (G, §) van (G, 1) is
met R(G',j), R(G,i) € R,
zodanig dat geen van de volgende gevallen geldt:
1) Fa(G',5) >n Fa(G1)
2) Fn(G',3) = Fa(G,3) A
=3(G", k) € D: (G", k) dekt (G,1i) A
F.(G",k) = F.(G,i) A
(G, k) ~p. (G,1)
Dan voeg D toe aan Gedaan
Anders
Vervang 7 door 7\ DU {DU{(G*,D)}|(G"*,1) € Afstam(G,1)}
Einde

Een belangrijke vraag is nu natuurlijk of het aldus gewijzigde basisalgoritme
nog steeds eindig ontvouwen garandeert. Het blijkt dat de aard van de gebruikte
maten in deze kwestie een cruciale rol speelt. Noem een maat F eindig metend
voor een taal £ indien slechts een eindig aantal doelen in £ met een niet variant
F-gemeten deel hetzelfde gewicht hebben onder F. Dan geldt volgende stelling:

Stelling 5.15 Algoritme 5.14 eindigt voor een positief programma P en doel «—A4,
gebruik makend van een vooropgestelde computatieregel R en een gegeven koppel
((Ro, R1,..., RN), (F1,..., Fx)), indien Fy,..., Fy eindig meten voor Lp.

Maatfuncties gebaseerd op verzamelingen (definitie 4.2) of op partities (defi-
nitie 5.2) zijn eindig metend. Maatfuncties die gebruik maken van cbo-partities
(definitie 5.7) daarentegen in het algemeen niet.

XXX 5 MEER OVER FINDIG ONTVOUWEN

Automatisering

Volledig automatische algoritmen kunnen redelijk gemakkelijk aangepast worden;
details laten we hier achterwege. Eén merkwaardig punt is echter een nadere
beschouwing waard.

Voorbeeld 5.16
P(X,Y) — o(X, Z), (2, [X|Y])
‘J(Gs b) it
Enkele afleidingsstappen voor «— p(a,Y’) ziet men in figuur 3.

= pla.Y) (%)

- q(a,2), p(Z.[aY])

|

= 20D ()

= q(b.Z"), p(Z’.[balY])

Figuur 3: Gecombineerd ontvouwen.

In (*) zouden we graag de aangegeven ontvouwing uitvoeren. Zulks is mogelijk
via gecombineerd ontvouwen en de maat |.|, (13. Om deze functie af te leiden uit
de initi€le |.|, 1,2} moeten we echter verfijnen ook toelaten in gevallen waar de
nieuwe maat niet kleiner wordt (maar ook niet groter) ten opzichte van de directe
dekkende voorouder (hier (*#)). Dergelijke maatregel kan tot gevolg hebben dat
gecombineerd ontvouwen met maatfuncties gebaseerd op verzamelingen dieper
doorgaat dan bij het gebruik van maatfuncties gebaseerd op partities. Natuurlijk
kan men een tussenvorm beschouwen en een deelverzameling van de verzameling
argumentposities in een partitie opdelen.

5.5 Subtermen

Tenslotte hebben we ook ontvouwen verkend duidelijk buiten het in sectie 5.3 ge-
schetste kader. We hebben namelijk een formeel apparaat ontwikkeld dat toelaat
maatfuncties te definiéren die in plaats van hele argumenten eventueel enkel delen
van dergelijke argumenten wegen. Automatisch dergelijke maten gebruiken, met
de nodige mogelijkheden tot verfijning, houdt echter het dynamisch aanpassen
van de Ry, ..., Ry partitie (zie definitie 3.11) in: nieuwe klassen met een fijnere
structuur worden gecre€erd waar nodig.

5.6 Besluit xxd

Meer onderzoek is vereist om de praktische waarde van aldus verkregen ont-
vouwingsalgoritmen in te schatten. Bovendien stelt in het bijzonder de behan-
deling van meta-vertolkers nog onvolledig opgeloste problemen. Enkele verdere
uitbreidingen van de bestaande aanpak lijken echter veelbelovend.

5.6 Besluit

In het huidige hoofdstuk werd een verdere studie van verschillende automatische
methoden voor eindig ontvouwen besproken. We hebben diverse, meer gevor-
derde maatfuncties voorgesteld, werkend met lexicale prioriteiten tussen veschil-
lende componenten, en laten zien hoe ontvouwen erdoor verbeterd wordt. In het
bijzonder hebben we bestudeerd hoe contextinformatie uit het beschouwde doel
kan in aanmerking genomen worden. We hebben kort besproken welke aspecten
betrokken zijn bij het automatisch zoeken naar optimale maatfuncties in deze
omstandigheden. In sectie 5.3 hebben we trouwens expliciet aandacht besteed
aan onderliggende wetmatigheden in dit verband. We hebben aangegeven hoe
ontvouwen met maatfuncties kan gecombineerd worden met de welbekende “geen
variant” regel. Een praktisch vruchtbaar samengaan, zo blijkt. Tenslotte werd
zeer kort de mogelijkheid vermeld de structuur van deeltermen apart te beschou-
wen. Technieken van deze laatste soort vormen wellicht een goede basis voor het
volstrekt automatisch effectief ontvouwen van meta-vertolkers.

6 Besluit

In dit proefschrift hebben we de semantiek van meta-programma’s en het be-
heersen van parti€le deductie in logisch programmeren bestudeerd. Beide onder-
werpen zijn verwant via hun belang voor het efficiénte gebruik van praktische
meta-vertolkers.

Berst kwam de Herbrand semantiek van “vanille-achtige” meta-programma’s
aan bod. Verbonden met een gelaagd object-programma blijken dergelijke meta-
programma’s zelf zwak gelaagd. Hiermee wordt een interessant toepassingsgebied
voor dat laatste concept geidentificeerd. Zwakke gelaagdheid lijkt ons trouwens,
in veel grotere mate dan lokale gelaagdheid, een krachtige en natuurlijke uitbrei-
ding van gelaagdheid.

Verder hebben we het concept taalonafhankelijkheid ingevoerd. We hebben
aangetoond dat het een sleutelrol speelt in de semantiek van de beschouwde
categorie meta-programma’s en in veel gevallen een mooie overeenstemming ga-
randeert tussen object- en meta-model.

Tenslotte stippen we nog eens aan dat de beschreven aanpak de mogelijkheid
biedt een aantal versmolien programma’s zinvol te behandelen. Het is echter
duidelijk dat verder werk wacht, ook hier.

xxxii 6 BESLUIT

Een tweede deel van het onderzoek betreft het beheersen van partiéle deductie
en ontvouwen. Het in hoofdstuk 3 beschreven raamwerk voor eindig ontvouwen
vormt een eerste bijdrage in die context. In het bijzonder blijkt de notie van een
hiérarchische pregrond een zeer geschikte basis voor automatische ontvouwings-
algoritmes.

Een eerste dergelijk algoritme hebben we aangewend als bouwsteen voor cor-
recte, volledige en immer eindigende pariiéle deduciie (van positieve logische pro-
gramma’s). Zowel met de beschreven als met een stel aanverwante methoden
werden ezperimenten uitgevoerd. Enkele voorlopige gevolgtrekkingen zijn opge-
nomen in sectie 4.3.

Hoofdstuk 5, tenslotte, beschrijft verschillende verdere concreie manieren om
te ontvouwen met hiérarchische pregronden en maatfuncties. Onder andere me-
thoden die ook informatie buiten het geselecteerde atoom verrekenen via lexicale
prioriteiten, een combinatie met de bekende heuristiek het herhaaldelijk ontvou-
wen van varianten te vermijden, en een verkennende studie in verband met het
beschouwen van deeltermen werden voorgesteld. Aldus kwamen zowel algemeen-
heid als praktische bruikbaarheid van het in hoofdstuk 3 opgestelde raamwerk
scherper in beeld.

Er zijn echter ook inherente beperkingen. Met name de afwezigheid van enige
substantiéle programma-analyse vooraf doet zich soms als een tekort gevoelen.
Verder onderzoek moet uitmaken wat hier mogelijk en wenselijk is. Ook en vooral
het gedeeltelijk herdenken en verder uitwerken van methoden geschikt voor een
doeltreffende behandeling van meta-vertolkers lijkt boeiend en belangrijk.

Das ist dem Menschen erlaubt und gegeben, da8 er sich
der Wirklichkeit bediene sur Anschauung der Wahrheit,
und es ist das Wort “Poesie”; ¥relches die Sprache
fur diese Gegebenheit und Erlaubnis geprigt hat.

Thomas Mann, Die vertauschten Kopfe

