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Open Logic Programming
as a Knowledge Representation Language
for Dynamic Problem Dorains

Kristof Van Belleghem
-Department of Computer Science, K.U. Leuven.
Abstract

Open logic programming {OLP) is:a recently developed knowledge rep-
reseritation language combining logic programming and first order logic,
and inheriting the advantages of both formalisms: It provides considerable
expressive power useful for representing a large class. of problem domains
in a declarative, problem-independent way. A resolution-based procedure
allows for solving a wide range of problems given such a general domain
representation. _

I a first part of this thesis we show the general applicability of OLP
by comparing it with a class of widely used knowledge representation lan-
guages, the description logics, and showing that OLP ig a generalisation of
these languages incorporating the same principles.

Further we apply OLP to domains-that change over time and in which
the evolution of the domain’is-e_sse_nt_ial. On one hand, we show how the for-
‘malismn can'deal with open fundamental problems in this research area, in
particular the different aspects of the frame problem. We analyse. the con-
structs needed fora good representation -of dynamic domains, and develop a
high-level language based on OLP and Incorporating these constructs, ‘We
also compare OLP formalisationsof the two most. widely used formalisms in
témpora,l reasoning, Situation Calculus and Event Calculus. We study the
consequernices of the differerices ‘between the two formalisms for knowledge
representation and create a new formalism which generalises both of them
and inkierits their advantages.

On the other hand, we use the QLP Event Calculus outside of jts isual
area. of application. We extend the formilism for dealing with qualitative
continuous change using the OLP machinery for dealing with incomplete

information. We use OLP Event Calcithus to represent a temporal knowl-.

‘edge base containing incomplete data and show how the functionality of
such a 'kn_o.wledge base can- be provided using the existing Procedure for
OLP. Finally, we i1se OLP Event Calculisfor protocol specification and
compare it with existing specialised languages for this task. Thege three
applications illustrate how the formalism can be easily extended for use in
a wide class of less traditional problem domains.
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Chapter 1

Introduction

1.1 Knowledge Representation and Open
Logic Programming

Over the years the growth in complexity and required flexibility of software
has given rise io new programmmg paradigms. To keep the complexity
‘under control, new progra.mmmg languages are closer to the human pro-
grammer and further from the computer hardware. To offer the required
flexibility, programming is seen to move from describing a solution to a spe-
cific problem to describing the relevant parts of the probiem dernain. The
object-oriented paradigm as well as declarative languages like functional
and logic prograrnming are- important steps in this direction.

This trend is present in the entire software domain. However, the need
for flexibility is taken to the far end in the field of artificial intelligence,
where computers need to function as more and more antohomous agents
.operaf.mg in changing environments ‘without human interaction. For appli-
cations in this field the role of programming turns into cne of representing
the available knowledge, which ‘the agent should use in various — intelli-
gent — ways. To achiéve this, two issues are of extreme importance: on
the one hand, we need. declarative languages able to represent knowledge
in a-correct, natural and concise way. On the other hand, these langiages
must incorporate flexible genera.I reasoning procedures allowing agents. to
perform a wide range of tasks. This thesis is essentially only concerned
with the issue of correct. knowledge représentation. We: do indicate. where
appropriate how reasoning tasks on the generated Tepresentations can be
soundly performed, but.the algotithms are only of theoretical importance.
We do not aim at <ficient implementations in this thesis.
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Classical logic is probably thé best-known formal knowledge. represen-
tation language. It is universally applicable and has a precise, natural se-
.mantics. This declarative nature of logic makes it. possible to check rather
easily whether particular paris of a logical representation are correct or not.
Different parts of the representation can be checked entirely independent of
each other. The development of automated theorem ‘proving and reasoning
techiniques on logic theories has given rise. to logic programming languages,
.in which problem domains can be declaratively represented and problems
quite efficiéntly solved by performing deéduction on the theory.

As a knowledge represertation’ language, logic programming is both
stronger and weaker than classical first order logic. It is stronger due t6
an implicit c¢losed world assumption: intuitively, in logic programming it is
automatically assurned that anythmg which is not mentioned, is not- true.
This is-a very common assumption in natural language: as an -example, if
it is gwen that on a particular table there are three blocks A, B and C, and
that A is on B, then one fends to assume that there are.no. other b]ocks
and that € is not on or under A or B. The closed world assumptwn allows
onie to specify only what is tiue, Without the need of adding- explicitly
everything that is not-true (which in some cases, in particular when the
domain is infinite, is not even possible). As-a result; logic programimingcan
represent.concepts that cannot be represented in first order logic. The same
closed world -assumption, however, .makes logic programming unsuitable
for'representing: incomplete mformatlon given a: closed world assumptlon,
everything is uniquely determined. In the above example, one would not
Be.able to represent that C’s position relative to A and B is unknown: if
it ig not explicitly specified that € is.on A or on B, then it is: assumed not
to be on either block.

As knowledge on any problem domain is. very rarely complete, the
-strength -of logic programming is also its most considerable weakniess, in
partlcula.r since incompletely. spemﬁed domains are by far the most interest-
:mg Given a complete specification, everything is fixed anyway; so the-only
reasoning task to be performed on such a theory is deduction; ie. checking
‘whether some statément is trie or not. Given a theory with unspecified.
parts; other reasoning paradigms are of much interest, in particular -abduc-
.4ion:and: model-generation.:Abduction for-example generates dssumptions
on the incompletely specified part of the theory. to explain certain obseiva-
tions. Model generation is-a particular application of abductive reasoning,
in ‘which a model for the entire set of data is generated. '

Open logic programming (OLP) combines -the advantages of logic pro-
gramming with those of.classical first order Iogic by essentislly integraiing
the two formalisms. This makes OLP suitahle for representing a very wide.
range of problem domains in which parts can be completely specified and
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other parts incompletely. Moreaver reasoning procedures on open logic
programs allow for performing riany different tasks, both deductive and
abductive; on a given representation, thus avoiding the need to encode the
same information in many different ways for different tasks.

1.2 Overview of the Thesis

In this thesis we study the expressive power of open logit programiming
as a general knowledge representation language; and in particular for rep-
resenting. knowledge in the important domain of temporal reasoning. This
résearch area is concerned with representing dormains that. change over time.
The major issue to be dealt with in this context is correctly relating the
statés of a problem domain a$ different time points. The temporal reason-
ing research community struggles with many open problems, to which e
hope to provide useful answers using open. logic programining. Note that
the issues in temporal reasoning are relevant in any application where an
agent mteracts with-some environment: any real problem domain is subj ject
to.change, if not by itself then at the very least by the actions of the agent
performing: its designated tasks. The dgent must know how its actions will
influence the world around it to be-able to do. anything useful, Hence, any
agent requires a notion of time and change i in some form. or other.

. In Chapter 2 we provide the necessary ‘technical background on first
order logic, nglC programming and open logic programming as declarative
langnages and on the procedure used for reasoning on open logic program-
ming, Tn Chapter 3 we show the expressive power of OLP and its suitability
for general knowledge representation by formally comparing it with De-

-scription Logics, a-class of languages specifically designed for Tepresenting’

‘knowledge in expert systems. We show that description logics correspond
‘very closely to partlcular subsets of OLP both in general structure and at.
the level of language consiructs. Moreover we show that the procedures
used for reasoning on description logics can be seen as specialised instances
of the general OLP procedure.

‘From Chaptér 4 on 'we focus on. knowledge representation in temporal.

1easoning. We start by glvmg a-brief introduction to temporal reasoning in
artificial intelligénce and we introduce the Event Galculus formalism which

we will use in the context of OLP for representmg temporal domainsg. In.

Chapter 5 we extenswely justify this choice and indicate:some of its imiplica-
tions by comparing the Event Calculus in detail with the miost widely used
Jogic-based formalism in this domain, the Situation Calculus. We show in
which contexts the differences betwaen the formalisms are 1mporta.nt and
build a new formalisin which generalises them both.
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In Chapter 6 we study thie use of OLP- Event Calcilus outside of the
classical Setting for which it was iniénded, as an indication of the general
applicability of this framework. First we extend the Event Calculus for qual-
itative reasoring on continuously changing guantities. 'We show how the
use of the first: order logic part of OLP allows for a flexible qualitative Tep-
resentation of change, and how the OLP procedure. supports a wide range
of reasoning tasks on this representation: A second contribution links OLP:
Event Calculus to temporal knowledge bases, showing how such a knowl-
edge base can be represented as an QLP theor_y and how the usual tasks.of a
knowledge base can in 'prindiple beperformed using the existing procedures
for ‘OLP.-Moreover we indicate how the OLP representation bridges the:
gap between the knowledge base and the applications using.it (for example
for planning), as the same representation is used in either. In addition,
we show: how .also more ‘knowledge base maintenance” oriented tasks, in
particular resolvmg inconsistency in the knowledge base, are supported by
a procedure like the one used for OLP. As is required from a declarative
approach, the above results are obtained using only one representation and
one general procedure. In a:third contribution we use OLP Event Calculus
in another entirely different getting for which a set of specialised Ianguages
exists: the area of protocol specification. We show hoWw a process. protocol
can be naturally represented as a dynamic entity in OLP Evert Calculus.
The representation is of the same size as one produced using specialised
‘protocol specification languages, but is more general and contains more in-
formation {and hence can also be used as:the basisfor other applications;
as we.indicate). We also show how ¢lassical specifications can be mapped
to OLP Event Calculus, so that specifications in different languages can be
comibined into one.. _

‘Where in Chapter 6. the flexibility of OLP Event Calcualus ig shown fo
allow us to tackle a véry wide range of problenis, also beyond the setting
it was originally intended for, we return in Chapter 7 to cl'assical temporal
reasoning in artificial intelligence, in an attempt-to tackle the important
open problems in that.domain. In this context the flexibility of OLP Event
Calculus must be held in check by strong guidelines and restrictions toen-
sure correct behaviour: the formalism has the needed expressive power to
déal:with the existing problems, but it leaves toosmiich'freedom in.which'the
non-expert user may get lost: The restrictions must. ensure that a theory'
represents what is intended; but may on the other hand not limit the ex-
pressive power of the formahsm For this reason we deveiop & la.nguage ER
which: contains the ‘constructs. _r_lc_ed_ed for Tepresenting temporal dormains,
but not the. full power of OLP. We show how &R deals with the. major
issiies in temporal reasoning and compate it with many existing languages
in the field. Meanwhile; we address also a lot of interesting side issues, To
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close the circle we provide & mapping of &R theories to a variant of OoLFP
Event Calculus, showmg more precisely which part of the latter formalism
is retained in £R.

Finally in Chapter 8 we summarise and conclude this thesis.

Most of the coniributions of this thesis are ada,ptecl from piiblications.
In particular Chapter 3 is based on [ 14] A short version 6f Chapter 5 has
been published as [112], and a full version as [113]. The three contributions
in: Chapter 6 are described in [110], [111] and [28]. A preliminary paper
containing the essence of the work in Chapter 7'is published as [115], and.
@ full version is being prepared for. Journal submission.
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Chapter 2

Technical Background

In this chapter we.present the syntax and semantics of first order logic,
logic programming and open logic programming, and outline the procedure
used for reasoning on open logic programs. Our presentation of first order
logic and logic programming is largely based on those in [33] and [67],
where more examples and proofs can be found. The sernantics of open
logic programming.is that of [26], though our formalisation deviates in.
some respects. A description of the proof procedure has been adapted from
[25). More on open logic programming in general can be found in [23].

2.1 First Order Logic
We first i'n_t"lfo_duce the syntax and semadtics of first-order logic.

Definition 2.1.1 (alphabet) An alpkabet consisis of the following classes
‘of symbols:

1, variables
2. Sfunciion symbols
3. predicete symbols

4. gonnei:‘_:iz'_ues}:: “m? (ﬁ_eg_aiicm), AN { co_jnjunction&)? 7 {disjunction);
“—7 (implication) and “—7.{ eguivalence)

4. guentifiers: V7 (universal guantifier) and ‘3”7 {ezisten_ﬁgi guanﬁﬁér)

6. punciuation symbols: ¥, G and “7

T
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The first three. classes are not fixed: they can have different elements in dif-
ferent alphabets. In general we assume a countably infinite set of variables.
These will be denoted by capital letters. Function and predicate- symbols
will be denot_ed by lower case letfers. As much as possible we. will take
function symbols from the first half of the Latin alphabet and predicate
'symbols from the second half. It will usually be cleéar from the context
whether a symhol i a function or predicate symbol.

Both function and predicate symbolshave an associated erity, a natural
number indicating the mimber of arguments the symbol takes. We will
sometimes-dencte a function or predicate symbol f with arity nas f/n. A
function sym_bq] with _a_nt.y 0'is also called a constant,a p_r_ec_hcate symbol
“with arity 0 a proposition.

Definition 2.1.2 (term) The set of terms over a given alphabel is defined
inductively as follows:

s 2 veriable i3 o lerm
o g constant is a lerm

o a function symbol f with arity n >0 applied to a sequence ty;...,1n
of terms, denoted . f(t1,...,3n), 15 0 lerm

Definition 2.1.3 (atorn) The set of wioms over o given alphabet is defined.
as follows:

o g proposilion is an alom

o' u.predicate symbol p with arity n' > 0 applied to o sequence ty,... by
of terms, denoled p{ty, ..., 1,), t¢ an alom

If n=0, pfty,...,ts) is a different notation:for p and f(ts,.. .-:,_tn.__) for f.

‘Definition 2.1.4 (well-formed formula) The set.of well-formed formu-
lae cver o given wlphabet i defined inductively as follows:

© an afom is a._.wen-fo'rmed_'.fdr'mulq

‘o if F and G ave well-formed formulae, then (—F), (FAG), (FVG@),
{(F « &) and (F — G) are well-formed formulde. '

‘e if X is a variable and F o well-formed formula, then (VX : F) and
(3X : F) are well-formed formilae,
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To simplify.-notation, punctuation symbols will be omitted where. possible.
In the absence of punctuation symbols, priority between connectives and
quantifiers. is as_follows, from highest to lowest: first ~, V¥, 3, then A, then
V, then «, s,

We a.dopt the followmg terminology concerning variables and quanti-
fiers:

Definition 2.1.5 (scope, free variable, groundness, closure)

The scope of YX in (¥X F) end of 3X in (X : F) 45 F.

A veriable X is free in o formula iff 5t has an occurrence not inside the
scope of any guantifier.

A sentence or closed formaula is m'wel;’-form-'edfd_rmu_fa without free variables.
A ground term {ground formuls) is o term {fomufa,) without varidbles.
The universal-closure Y(F) of ‘a formula F is VX1 : (... (YK s By
where. X1...Xm dre the free variables in F in. fmy erder. S:mzlarly the
exislential closure F) of F i AX1 : (. (3K 1 F):.0) with Xy ..

the free variables in ¥,

The semantics of first order logic is defined as follows.
Definition 2.1.6: (interpretation) 4n- tnterpretation I consists of

e A pre-interpretation Iy, consisting of & domain D and o mapping of
m-ary function symbols 1o n-ary functions DF — D,

e A truth funetion Hy, ‘mapping n-ary predicaie symbols o -ary 1e-
lattons (i.e. subsefs of D™, or equivelently n-ary functions D" —»

{t,£})*

Definition 2.1.7 (variable assignment) 4 wariable assignment o is o
function mapping all varicbles o elements of D. We white F(X/d) to
denote the formula obiained from F by assigning the domuoin element d to
the variable X, i.e. replacing all occurrences of X by d.

Given an 1nterpretat10n I =< Ip;H; > and a variable a.smgnment o, the
pre-interpretation Iy can be extended in a unique way to a.mapping I, of
terms to elements of D, and the truth function ¥y to a mapping: My, o Of
well-formed forinulae to t or f- We assume-an order t < f-on truth values.
Moreover t ! =fand ' =t.

Definition 2.1.8 (extended pre- interpretation and truth function)
The extended pre-interpretution funciion Iy is defined as.

1If the predicate =" octirs in thé alphabet,.it is always interpreted as the 1dent1ty
relation. Moreover we assume the presence of two special propositional symbols true
‘and false in-the alphabet, with 7;(tris) = 4 and Hy{false) = 1.
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o I, (X)= a(X ) for any varicble X.

° fa(f(tl, ,tn)) = I.;.(_)"/:r?,)(.l'w,x (t1), ,fa(tn)) for any functor f of

arity-n and termsty;.. o by

The exiended truth funclion Hy, deﬁned as

o Hial(plt;utn)) = Hip)(Ialh), .., La(s)) for any atom
p(tls t )
- ’Hf w{~F) = Hy, l,[(F)‘

HI_.-_@(F VA F3) = min{{H1,«(Fu, Hr, ol B2)}).
Hy,o(F1 'V F3) = maz({H1,o(Fu), Hra(F2)})

Hyw(VX 1 F) = min({Hr1,«(F(X/d))|d € DY)

Hy,o(3AX 1 F) = maa({H1,«(F(X/d))ld € D})

HywFy— Fa) =Hyp (F1V 2 F)
o Hya(F1L > Fy) = Hi,a((Fi A Fy) V.(Fy A~ F2))

Note that for closed formulae, the truth value is independent of the variable
assignment o« and we can write Hr(F Y instead of Hj, o(F). We write I = F
t6 denote Hy(F) =t. )

Definition 2.1.9 (model) 4 first order logic theory 3 is o set of closed
well-formed formulae.' An interpreiaiion I is e model’ of S, denoied I |= 5,
if and only if forall F € 5, I = F. We say a theory 5 entails a formuia
F, written S t: F, iff each model of S is also a model of F.

‘As an exaniple, assume an interpretation I -with-domain {1, 2}, in which
the predicate symbol p is mapped to the relation {(1)} and the constant
symbols a and b to 1 and 2 respectively. Then I = p (a)and I = 3X : p{X),
but I £ p(b).and I ¥ VX : p(X ) The theory {p( (b)} entails V.X ¢ p(X )
as-well as 3X < p(X) . R _

2.2 Logic Programming

Loglc programining ([56]) is'a logic-based programmmg and knowledge rep-
resenitation language, for' which rather efficient. Teasoning procedures exist.
Syntactically, logic programs are & partlcular subset of first order logic:
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Definition 2.2.1 {clanse, logic program} 4 literalis an atom A or its
negaiion —A. A is called o positive literal, A o negative lleral.
A normal clause 15 o formule A — By A .. A By, m > 0, where' A is-an

atom and. By ... By, lierals. Fm =0 we wr:te ihe clouse as A «— true or

as a shorﬂmnd stmp!y as A,
A is called. the head of ke clause, By A ... A By, the body.
A logic program i5° a set of normal clrwses

The definition of 2 predzca,te p s the set of clausés containing p in the head.

In logic programs, one. usually writes a ) rather than “A”, Moreover all
frée variables are assumed to be 1mphc1t]y universally quantified with scope
the .clause'in which they oecur ‘(i.e. aclause denotes its universal closure).
We adopt these conventions:

Some interesting classes of logic progrars. are usnally distinguished, in
particular because their semanties can be deﬁned in a relatively .'s'ir-npl_e.way.

Definition 2,2.2. (types of loglc programs) A Horn clause i5.a normal
clotise in which all B; are atoms. A definite program is a program consisiing
enly of Horn clauses..

We say a predicote p depends on o predicate q if ¢ occurs in p’s definition,

ot if there is @ predicate v which occurs in p's definition and which depends
on g. -p depends pasitively on g if there is a. dependency chain from p to
g with only positive occurrences of predicates. b depends negatively on q if
there is a dependency chatn from. p to ¢ with at least one negative predzmte
decurrence,

A hierarchical program is o pmgmm in whick no-predicate depends on Heelf.
A straiified program is ¢ program in which no predicate deperids negatively
on 1tself

The semantics of logic programs is often defined in terims of Herbrand
meodels and Herbrand interpretations ([45]): the Herbrand universe is the

set of all ground terms over the used alphabet. A Herbrand: interpretation

is an interpretation ‘with domain the Herbrand universe-and-in which the:
presinterpretation maps each ground term to itself. A Herbrand.model is
a Herbrand interpretation which is a model. In partlcular for open logic
programs the restriction to Herbrand 1nterpreta.t10ns is not.desirable; which

Is-why we will present more generally applicable semantics.

The semantics of a logic program differs from the correésponding. first
order loglc theory in its incorporation of the closed world assumption, This
closed world assumption can not be expressed in first-order. logic. (its ax-
iomatisation in classical logic requires. a second-order logic axiom, Like for
example those in [71]}.
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Roughly, the assumption is that only the atoms which are implied by
the clauses in the program are true;, and all other-atoms are false. This in-
tuition can be formalised in different ways for different classes of programs.
For hierarchical programs, all emstmg semantics coincide with the Clark:
completion semantics ([19]): the:meaning of a hierarchical logic program-is
given by the first order logic theory obtained as fellows.

1. Rewtite each clause p{ty, ..., tm) — Body, i"ntro'duciiig new variables
X Xm, B.Sp(Xl, ,X ) *—-Body,leh, Xm = Farys

2. For each predicate p, include in the theory the formula
Y(p(X1,.. oy X)) « [Body, V...V Body]), where Body .. .'Bodyn-

are the bodles of all clauses w1th head p(Xl, versiXm) U m =0,
[Bodyl‘v .V Body,] is the empty disjunction, whlch we write as the
equivalent formula False. '

3. Add Clark's Free Equality axioms FE£Q(T) ([19]) to the then obtained
th_eor.y T, These axioms are,

{a} For each functor f/n with &< n:
Y(F( Xy Xn) = f(H,. . Vo) = Xi =1 ALL A X, = Yn)

(b) For each pair of differént functors fin and g/m:
V(_‘f(Xli . = X ) - Q(YI: Ym)) .
(c) For each term t conta_lmng-a variable X: V(~t = X).

The ¥ree Equality axioms ensure that two. different ground terms always
denote different doimain €lements.

For logic programs i1 general, the definition. of the semantics is more
complex and requires a number of additional concepts. The main com-
plication. with respect to completmn semantics is that the .closed world
a.ssumptmn needs to be extended in an intultive way Yo programs in which
predicates can depesid on themselves. The most. general semantics, which
‘assigns a unigue .model to eath noithal logic program, is the well-fotnded
semantics ([116]). To avoid too many redundant formalisations, we do not
present this semantlcs in detail here, as we will present an extensmn of it
for'déaling w1th ‘oper: predlcates i the next section.’

2.3 Open Logic Programming

Open logic programming is dn extension of logic programming in which
the closed world assumption is ouly adopted for a subset of the predicates.
The idea is that this subset of predicates is defined by a logic program, thie
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other predicates are left undefined {(open), and first order logic sentences
may give partial information on these open predicates. Formally, open logic
programming is equivalent to abductive Jogic programming (for a. survey,
see [52]). However, it interprets this formalism as a krowledge representa-
tion language a.ble to deal with 1ncomplete mformatwn, father than as a
study of abduction (for example for belief revision} in the context of logic
programming., We elaborate oni this wiew on open logic programming as a
knowledge representation languagé in Chapter 3,

Definition 2.3.1 (openlogic program) Syniaciically, an open logic pro-
gram T =< P, 0, C > consists of

® P : A set of normal cliuses (& normal logic program).
® O : A set of open (abducible, undefined) predicaies.
o C : A set of gemeral first order logic sentences.

Open predicates have no definition, i.e. they can not occur inthe head of
any clouses?

‘The- different existing semantics for open logic Programs correspond
‘closely ‘to those for normal logic programs. Intultwely, the models of an
open logic: program according to a épecific semantics are obtained by tak-
ing any interpretation for the open predicates, then with this’ interpretation
fixed taking the models of the rormal logic program part according to the
corresponding normal logic programming, semantics, and finally retaining
{rom the résulting models only these in which-all sentences of the first order
logic part are true: -

For hierarchical programs this intuition " (extending the Clark comple-
tion) is formalised ‘as follows: ( [20]}: the meaning of & hierarchical open
logic program T'=< P, 0, C"> is given by the FOL theory ‘obtained in the
following way:

1. Rewrite each.clause p(#,, cevslm) — Body., i_ntrdd_ucing-.ncwv_aria.bies
X;.. -.-Xm_, as p(Xl, vy Xm) [ '_B_Ody, X3 3 DTN, SRl S

2. For each predicate p ¢ O, include in the “theory the formula.
Vip(X1peo oy X)) = (Bodyi V...V Body.)); where Body .. Bodyn
are the boches of all clauses w1th head p(Xy,..., X)) Hn = 0,

[Bodyl V., vBodyn} is-the empty disjunction, Whlch we wrife as the
equivalent formula false.

zNote. that it is also possible for a defined predicate not 6 occor in the head of any
clauses: it then has an empty definition, .
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3. Add Clark’s Free Bquality axibms to the theory.
4. Add all formulaein ' to the theory.
As an example, consider the following open logic program:

q(a, Y} -+ p(Y).
X, Y) < -q(X,Y)

with open predicate _p_/l and FOL -axiom —r(a, b)_:. The semantics of this:
program is given by the FOL theory

VX,Y i g(X,Y) @ p(Y)AX =a
VX,V i 7(X,Y) e =g(X,Y)
or{a,b)
a ;ﬁ b

The semantics of normal open logic programs _(just'iﬁca.ttion_'s_e'manti_'cs')'
can be obtained in a similar way as an extensiori of the well-founded. se-
mantics. With respect o completion sernantics for open logic programs,
the main difference is'that the formalisation of the closed world assump-
tion needs to be extended to deal with cychc dependencies between predi-
cates. Just like for well-founded semantics for normal logic PIOgrams, sev-
eral equivalent formalisations exist. Here we choose a least fixpoint char-
acterlsatlon,'whiCh is clogest to the inductive definition semantics we will
propose in Chapter 7. For the 0r1g1na1 formalisation and correspondences
with other semantics we refer to [26]. Note that the technical ‘discussions
in all but Chapter 7 of this text will be based. on the c'omplé:tibn Sernan-
tics for open logic programs-and will only require a general intuition of the
more complex semantics below. In Chapter 7 we will discuss the underlying
intuitions of this semantics in more, detail.

The followmg notions are Tequired.

Definition 2.3.2 (3-valued mterpretatlon) A 3-valued interpretaiion
I consists of

@ A pre-interpretation. Iy, copsisting of « demiain D and @ mapping of
n-ary function symbols to n-ary functions D™ — D

o A truth funciion Ky, mapping n-a7y predicate symbols to n-ary func-
tions D™ — {t;u; f}).?

3Tf the predicate "=" occurs in the alphabet, it is always interpreted as the 1denf.1ty_
relation. We.assume the presence of two. special propos:twnal symbols true, undef and
fﬂ.lae in the alphabet, with ’H}(true) =t H;fundef} = u.and 'Hj(fa.lse) =T
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The set of 3-vahied interpretations will be denoted 7. We say a 3-valued
interpretation is 2-valued in a certain predicate: iff it does not assign u to
any instance of the predicate.

Given & 3-valued interpretation I'and a variable assignment a, Ip can be
extended to.a mapping I, of terms to elements of D and H; to-a mapping
Hi,a of well-formed formulae to t, w or £ This can be done in the same
way as fora 2-valued interpretation if we assume the order & <u<fon
truth valuesand t *=fu ' =uandf *=¢:

Definition 2.3.3 (extended 3-valued interpretation functlons)
The eztended pre- mterpreta.twn Function I, ss defined as

o I.(X) = o({X) for any variable X.
® f (f(tl, ceytn) ) = Io(f/n)( T (tl a(tn)) for any funecior f of

arily n a,nd terms. iy, - . tn

The extended 3-valued truth funct;‘pn Hi,o i3 defiried as

® H; cx( (ih t.n)) = Hral )(1 (tl) fa(tn)} for any atom
p(tls _tn)
o Hrol~F) =Hy, o F)1

MraFy A Fy) = min{{Hr,a( ), Hr(Fs)})
Hp,a(F1V Fy) = man({H,o(F1), Hs o F2)})
eV 2 F) = min({Hs,o(F(X/d))ld € D})

Mo o3+ F) = mac( (M o FXJ)Id € DY)

Hi,a{Fy < Fa) = Hy o FiV ~F)

] %I df(F-l > F:!) = Hq q('(Fl' A .'Fg_) Vi ﬁFl A ﬁFz’))

For closed formiulae, the truth value's independent of the variable assign-
ment o and we write ‘H;(F) instead of Hy o{F}. Likewise for. ground terms

Iyis independert of the variable- assignment and is written as I.. We write
I k= F to denote 'H;(F) =t.

Definition 2.3.4 (3-valued model, weak model) A $-valued interpre-
tation I is ¢ model of o set: offormulae 5, denoted I |= 8, if and: only if for
all F € S, Hy(F) =t. I is a weak model of S if for a.HF €S, Hi(F)> u,
Hence, o model is elways a week model bul-not vice versa.

Next we need.the concept of a proof tree. For Herbrand interpretations,.
the. followmg definition is sufficient:
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Definition 2.3.5 (proof tree (Herbrand)) A proof tree T'r for a ground
atom:p according 1o a partscu!ar open logic program < P, 0, C. > iz o iree
of ground literals such that

e the root of Trisp

e for each no_n.-;'eaf-' n_o_de n of Tr with a set of immediq__ie_des.qemi_ants
B, n is o defined atom and either n — A, 5 b i3 a ground instance
of a program clause of P, or B = {false},

o Ty is masimal, i.¢. atoms of defined predicates do not occur in leaf
nodes. Euach leaf node thus-contains true, false, én apen atom or o
‘negalive literal?

o Tr is finite, i.e. contains no infinite branches

To allow for dealing with non-Herbrand interpretations, we must extend
this notion slightly, using the following concepts.

Definition 2.3.6 (D:ground literal/clause) Given g domain D, o D-
ground Literal is 4 ground. literel bused on F U D, where F is the sel of
funétors in the alphabet. A D-ground instance of o program. clouse Clis o
formula obtained from Cl by replacing all variables with ground térms based
on FUD. '

In other words, we add the domain elements as constants to the alphabet

and consider ground instances wir.t, the resulting alphabet. Thus we ensure
that domain elements not exphmtly mentloned in-the theory can exiss. 5

Definition 2.3.7 (evaluated atom) Given o pre-interpretation Io, the
evaluated atom of o ground atorn p(ty, - .. tm ), denoted I(p(ty, .. \tm), is
the ‘aiom p(_I (t)y .. (tm)

Definition 2.3.8 (proof tree {non-Herbrand}) 4 proof tree T7 for a
D-ground atom p aceording to a particular open logic program < P, O, C >
is a tree of D-ground literals such that

o the rootl of Tr isp

¢ for each mon- leaf node v of Tr with a sei-of imedinte. descendants
B, n'is ¢ defined aiom suchihal either I( n) = ( i) and n’ < AbeB
18 o D~ground instance of a program clavse of P, 67 B = {false}.

4(Obsérve that the symhol undef should never occur explicitly in & program, snd
therefore neither in a proof tree,

5We assume that any pre-interpretations'based. on this extended slphabet map each
domain elemhent to ftself. :
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e T'r is mazimal, i.e. aloms of defined: predicaies do not secur in leaf
nodes. Egch leaf node thus contains true, false, an open atom or a
negaitie hieral,

o Tr contains no infinile branches

Given some 3-valued mterpretatmn I which is 2-valued ir the open
predicates, for each atom p-in. the langunage, we define its supporied value
W, t. I, denoted SV;( }, as the truth value proven by its best proof tree;
Le.

o SVr(p) = t if p has'a proof tree with all leaves containing true facts
w.rit. I;

e SV;(p) = {if each proof tree of p'has a false fact wird, 7 in a leaf;-

s SVr(p) = otherwise; i.e. if.each proof tree of p contains a non-true
leaf, and some proof tree. contains only non-false leaves,

Note that an open atom has only one proci tree, consisting of only the atom
itself, hence I (p) = SV;( ) for each atom of an open predicate.

Phe models of an. open logic program. < P,0,C > are now-obtained as
follows: take any interpretation Ip which assigns t orf to, any open. atom.
Zg,1 is the inferpretation which assigns u to-all defined atoms and the sanie

value as I to all open atoms. Then construct Ig p as follows.
' For a-definite program P, Io p is the interpretation mappingeach pto
SV;G L(p), i.e. each atom is. mapped to its supported valie w.r.t. Io ..
For non-definite ‘programs, Io, p is-obtained as a fixpoint of this operation:

Definition 2.3.9 (positive induction operator) The operator PIo. p :
T =T I I s defined suech that vp: I'(p} = SVi(p )

It can be proven that this operator always has a least fixpoint PTe p 1
with respect to the specificity order on interpretations, which i is the point-
wise extension to interpretations of the partial order t > u,f > u, i.e.
I < I iff for all atoms at, Il(at) < Ig(ﬂ'.t In other words Iy < I, if the
set’ of atoms mapped fou by I; is a subset of the set of atoms mapped- to
u by I and I, coincides with 7; on the atoms mapped to & or f by I;. We.
can then define Ip p as:

Definition 2.3.10 Given < P,O,C>, Ipp = PIos1.

The least fixpoint. of this operator can be: proven to coincide with the least
fixpoint of the well-founded operator of [116]. Details can be found in [24].
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The -models of an open logic. program < P, 0, > are now all those
interpretationis Jo p obtained. from dn interpretation Iy, as above, and
for which in additien Ipp | € and Top k= }”£Q(T) f.e. ‘the models &f
the logic program in which in addition all FOL axioms are true and Clark’s
Free Equality axioms hold for the elements of the Herbrand universe.

As an example, ‘consider again the open _logl_c program

q(a.Y) < p(Y).
r(X,Y) « -ig(X,Y).

with.open predicate p/1 and FOL axiom —r(a,b). Moreover assume the
domain only contains two elements a and b Models of this theory are
found as follows. Take any interpretation Ip of p/1. Either Io (p(B)) =t
or Io(p(h)) = f and likewise for p(a). For the interpretation which assigns
t to both atoms, we find o

Irs,1{pla)) = t
I, L(P(E}) =t
VXY Ipp L (g( X, Y)) =
VX Y I, s (r(X, Y})

Applying the positive induction operator once then yields

Iroi(pla)) = ¢
I1oa(p(b)) =t

VY dron (q(a )) =t
VY i I,,1(g(8, 7)) =1£
VX, Y : I (r(X,¥)) =
and after a second iteration we find

I, a(pla)) = ¢

I10,2(p(8)) =t

VY Ir, a(g(e, YY) = t

VY i I, 2(q(b, Y)) = 1
VY rdrga(r(e,Y)) = £

W If_o.’g_(‘.’-'(b, Y)) =%

which is a fixpoint. The FOL axiom —r(a, b} is satisfied, so this interpreta-
tion is a model of the open logic program. Similarly we find interpretations
based on the ofher three interpretations of p/'l The twointerpretations in
which p(b) is false de not’ )rleld models of the opeén. logac pfogram, as the
FOL axiom is violated.
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Observe that the two moidels coincide with those of the completion (for
the given domam) This is. nécessarily so sihce the program is- hierarchical.

As an example of a non-hierarchical ‘program, assurhe

p — g.
g+ pe
with no open predicates or FOL axioms. ‘Here, both predicates depend
-negatively on each other and hence themselves. Applying the induction
operator to L yields .; hence the only model of the theory assigns u to
both p and g.
On the other hand; the completion of this program is

P g
q =+ —p.

which has two models {p, —g} and {q,p}. The difference between the two

semantics is intuitively that- justification semantics requires a definition.

to be. constructive. In the above program there is no way to assign a

truth value to either p or ¢ without making assumptions about the other
predicate. The truth value w indicates this non-constructiveness of the.

definition.

2.4 Procedural Aspects

From a procedural point .of vww, an advantage of logic programming over

fitst order logic is that due to the miore restricted structure of formulae.

efficient proof procedures can be iniplemented by incorporating specific
«control strategies in the resolution procedure of [91). For definite programs,
such an efficient procedure was given in [56]. This procedure ‘was later
called SLID- resolutlon (Selectlon rule-driven Linear resolution for Definite
__programs) Tt was further extended to deal with negative literals, resulting
in SLDNF-resolution (where the NF stands for negation .as failure, the
procedural counterpart of the closed world assumption). For details we
tefer to-[67].

-For reasoning on open logic programs:this procedure requires an addi-
tlonal extension to be able to deal with open predicates and with first-order

logic axioms: This gave rise to the procedure SLDNFA (] 25]). We outline.

the general principles of this procedure as‘we will need them i in Chapters 3
and 8.

We first need. the concept of a variable substitution, which is the basis
of unification and plays a central role in the procedure.
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Definition 2.4.1 (substitutions) 4 substilulion is ¢ findte sot
{Xy/t150 e Xa/tn} where Xy ... X, are variables, t;...1, are ferms.ond
X 7& t; fo.r all i. The empty substitution is denoted .

Applying o -substitution 8 fo u lerm or formaula F yields F8, obtained by
simultaneously replacing each free occurrence of each X; in F by 4;. We
say thet Fy is on instance of Fy if Fy = Fof for some substitution 8.
Substitutions-cen be applied to seis of expressions: {E1,..., E,}6 19 defined
as {E:6,..., En8}. Moreover substitutions can be composed as follows: if
6= {X1fte, ..., Xuftn} and.oc = {¥1/s1,..., Y /5 } then the composition
fa of 6 rmdo is defined as {X;/t:o |1 <1<nAtJ#X}U{Y/s, 1<
1 <A g {Xl, . }} Note that wilh this definttion of composition,
for any ezpression E zmd substitutions 8 and o; (E@)o = E(f0).

A substitution 8 is idempotent if 80 = 6. 8 is called relévent for a formula
or sei-of formulae F if all variables in 8. occur in 'F.

For more details, properties and examples we refer to [67].

SLDNFA takes as input an open logic program T =<' P,Q,C > and a.

formitla F' which 1s a conjunction of literals. Thé procedure then comiputes

a substitution # and & set of ground open atoms A such that

T U cornp(A) |= F6

Below we describe how this is achieved by SLDNFA.

Like SLD and SLDNF, SLDNFA is based on the ‘principles ‘of resolution.
and umﬁcatlon To prove a formula.F, SLD- llke procedures try to arrive.
at a contradiction glven that —F holds ‘This strategy is based on the

observation that T = F if and only if 77U —F is inconsistent. This “point

of view is reflected in the fact that goals in the procedure are written
as « F, a shorthand for false « F which is equivalent to ~F. The
procedure attempts to reduce the formula F to true, or more preciéél'y it
attempts to:derive the empty goal « true {which-is a contradiction) from

‘the a.ssumpt:ton — P,

To define this more precisely we need the ‘concepts of uriification and

resoliition. Unification ‘is'based on the.-concept -of variable substitution

defined abové.

Definition 2.4.2 .(.li\l]:'l'iﬁef). A substituition 0 is o unifier of o sel of expres-
sions S if §8 is a singleton. @ is a most general unifier of § iff for each
unifier. o of S there exisis a.subsiituiion v such that o = By,

Resolution is defined as follaws:
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Definition 2.4.3 (resolutlon) Given a goal G =— Liy-.., Ly and o pro-
gram clouge Cl = A «— Bi,.: <y Bp, with m > 1 and n > 0 such that
and Cl have no. variables in common (if there are common variables, they
are renamed tf one of the formulae; this- renanting 18 -called standardising
‘apart ). Then G' is derived by resolution: from & gnd Cl using 8 iff

e Ly is an alom in-G, called the selecied atom.,
® 0 is an idempotent and relevani most general anifier of {Ly, A}.
e G; i9 the go&f(i— Ll! ey Lk--—ls Bi; .- 1_Bh| Lk.+1| O Lm)e

‘Now, say G'=+« Fand @' =« F. From the construction it follows that if a
theory containing the clause Cl entails F', then it entails. 6. For definite
logic programs P ‘the SLD theorem prover tries to apply a ‘sequerice of
regolution steps (called a clerwatlon) to a goal & such that the goal « frue
is obtamecl If there is such a derivation with @ the composition of the
unifiers used in.it, then P = F@. Otherwise P E ~F.

: For normal loglc programs the procedure becomes more complex. Res-
olution can only remove defined atoms from a goal, s0 another mechanism
is required. to deal with defined negative literals, leading to SLDNF. This
mechanism is the followmg from a goal +— F =« Li,..., Ly & ground
negative literal Ly =1l can be selected.® Then one attempts to constrict
a complete derwatlon tree for — I, i;e. a maximal tree in which each node
is obtained by resolution on its parent node and a program clause. The
goals in this tree-are called negative goals. If this complete derivation tree
15 finitely failed, i.e: is finite and does not contain « érue in a node, ther.
P -l :[-Ivf:nce1 4 F o= Ly, oo Bpqy Ly, - .y Lm can be obtained
fiom « F, with Pl= Fif P |= F.

The. procedure for open logic programs, SLDNFA, needs to deal in ad-
dition with open predicates: it constructs a set A of open atoins stich
that these atornis tégether with the open logic program entail #. This
is done by abductive inference steps: in. a goal — F =« Ly, ..., L a
ground open- atom.:Lg can be selected. Then A is updated: A’ = A U Ly,
and «— F' =« Ll: Lk 1y Lk.-l-l: ,Lm If then P U A i: F" then
PUA = F,

Given. these-inference steps, two problems remain to. be solved., These.
are the treatment of non-ground open atoms and of negative open literals.
If a.non-ground open atom Iy is selected, it is skolemised: a substitution
o is applied which binds edch variable.in Lp to a separate new skolem
constant, i.e. a constant which does not yet occur in the theory or the

SIn general it-is not allowed to-select, nioh-ground sicgative literals in SLDNF; as a
result the proceduoreis not. complete.
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goal. Then Lo is a ground atom, and we define A= AU Lyo and
G = (& Ly,...; Be—1,Lgs1, - Lem)o The skolem constants introduced
above differ from “normal” constdnts in that the: Free Equality axioms
do not apply to them, i.e. a skolem constant may- dencte the same domain
element .as a different (skolem or non-skolem) constant or term. As a result,
the concepts of subsmtutlon and unification need to be extended, since we
want atoms that can be equal in an interpretation to be unifiable. The
formal details follow below.

Negative open literals pose anadditional problem, Such a literal —L
is entailed by comp(A) as long as there is-no. L' € A which unifies with
L. However, thrétghout the. derivation A tends to grow, and there 15 no
guarantee that if at & particular step in the derivation thereis no L' € A
-which unifies with I, this will also remain the casé.throughout the deriva-
tion. Hence, - Lcan. niot be safely considered entailed until Als completely
known, i.e. at the-end of the derivation. More generally, 1f andtom L occurs
in a negative goal, it is possible: that the derivation of this goal fails- given
the current A since I can not be resolved but that L unifies later with an
atomn inan eéxtended -A and the derlvatwn can be successfully coinpleted.
Thie aséurmption —.L would then be erroneois. ' '

To cure this problem, negative goals — E,..., I, containing an open
atom L, need to be remembered and checked again each time a new atom:
is added to A. If at any thme Ly upifies with an atom in A, say with unifier
#,; an additional ‘negative goal (+— Liy-.. yLget, Digay e o )T needs to
be. generated, for which all derivitions must fail.

‘This briefly summarises the issues SLDNFA needs to deal with. We now
proceed with the formal details.

Definition 2.4.4 (equality set) Assume L. 15-an alphabel and: SK o set
of shelem constants. Am equulity sel ba.sed on £ SK is the set {D} or &
finite set {31 =ty 8n = tﬂ} where s;,t; are terms based on LUSK,

An pguality set based on LU SK s in solved form if and only if it is eilher
the sel {E]} or if each s; is a variable or o skolem constant, no.s; occursin
any t; and t; is not a variable if s; is o skolem constant. The setl {D} i35
called inconsisieni, othér equalily sels in solved form are celled consistent.

A set of rewrltmg rules for rediucing an eqiality set to an equivalent
solved form can be found in [23].

U_sm_g__the aboie definition we extend the notion Qf_-s_ubsti't_ution to allow
skolém constants to appearin the substitution’s domain.
Definition 2.4.5 (extended substitution) Fach consistent eguality sel

E'= {s; =11,...,8, = 1} in solved form defines a unique substitition.
og = {51/t ..., s ftn}. Applying such a subsiitution fo o.term or formula-
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is deﬁned ms.b.‘efor'e, treating skolemn consianis like variables. To simplify no-
tation we will from now on use equality sets in solved form. as substitutions,

Based on this extended notion of snbst1tut1on, we can define extended
notions of unlﬁcatlon and resohition.

Definition 2.4.6 (skolemlsmg substitution) A skolemising substitu-
tion 8 of a term, formula, sel of terms or set of formulze wilh free variables
X3 ... X i3 o subdittution {Xl/skl, Xon/sky} where all sk; are dis-
tinet skolern consiants.

Definition 2.4.7 {positive. unlﬁcatmn) A positive unifier of o sei. S is
w substitution F8y, where Eisa unifier of S and 8, s 2 skolemwmg
substitution for the terms which are assigned to skolem constants in E. We
say-the elements of 5 positively unify with substitrution E8,;.

Definition 2.4.8 (’positive resolution) Given a goal G =
— Iny. .. Ly oy Ly with Ly an atom; end a normal clause Gl =
A+« By,..., By sharmg no varinbles with-G. &' is derwed from. Grand ci
by positive resohf.uon on Ly with unifier 8 if the following conditions hold:

o 8°is a positive unifier of Ly and A

e G’ = (+_- Li: DR} Lk—l:'Bi') . 1..-B.ﬂ'1 Lk+l) e ;Lm)e

Note that if L), does not- ¢ortain skolem constants, then positive: resolutlon_

15 just classical resolution:

Deﬁnltlon 249 (negativé unification) 4 negative unifier E- of a sel S
is a unifier of 5. Let 0 be the part of E with variables at the left and By

the part with skolems at the left. We say the elements of S negatively unify

With substituiion § ond residue E, .

Definition 2.4.10 (negative resolution) Giver & goal G =
— I, eviLiy.., Ly with Iy an atom, end & normal clawse C11 =
A« By, s.., B, sharing no varicbles with G. G is derived from G and Cl
by negative resolution on Ly if the following conditions kald:

© Ly and A negatively unify with varishle substitulion 0 and residue
{sk1 =1y,...,skhr=14}.

e G —
(*'“ Lyyooiy Lyoa, sk =14, .. ., sk = fi": By, .y By, Lk_+1:.' (EE! L‘J"ﬂ)6
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Note that if Lj, does not contain skolem constants, then negative resolution
1% just ¢lasgical resolution.. '

Using these concepts, we can define how SLDNFA works, Qur formali-
sation deviates slightly from the one in [25], in particular in that we group
several steps into one, but the result is equivalent. The procedure main-
taing three sets: -one of positive goals PG, one of negative goals NG and
one of ahduced atoms A. Initially NG and A are empty and PG contains’
the input goal «— . At each step one non-empty goal and one:literal in
this goalate selected. Ifa goal from PG is selected, there are the followxng
possibilities:

o the:selected literal is 4 defined atom T of an equality atom. In this
¢ase: positive resolution is applied with some clause of the program (in
case of an equality atom with the reflexivity clause X = X « true.).
and the new goal replaces the selected one; the tised substitufion & is
applied to PG, NG and A.

e the selected literal is a negativé literal — L. In this case the goal I is
added to N&, and —I is remaved from the positive goal.

o the sclected literal is'an. open atém L. Thé atom isskolemised using
a"skolemiSing substitution o. Lo is added to A, and for each goal G
in NG which has an atom negatively unifiable with Lo, the goal G/
obtained by negatwe resolution on @ and Lo isadded to NG. o is
applied to PG, NG and A,

If a goal frem NG is selected, the folloikring_:possibilities'e:;cist:
o the selected lit’eral_-_i_s_s- a defined atorn I or an equality atom. Negative
‘tesolution is applied. with all clauses Ch, ..., Cly, of the program of
‘which the head is unifiablé with L (in ¢ése of an equality atom with

the reflexivity clause X = X « true.} For €ach.clause, the result of
‘the resolhition is added to-NG, and the original goal is removed.

s the selected literal is & negative literal —L. There are two possibilities

to be chosen from: either +.I is-ddded to PG and the negative goal

s removed from NG, or =L is removed from the negatwe goal and

IR B ig? ‘added 16N G’ “The’ posszblhty to'chdo ariges from: the ‘two

ways in which- the_negatlv_e goal may fail: by fall_urc of its s_e__lec_t_ed

literal or by success of the selected literal and failure of the rest of'
the goal.

e the selected literal is an‘open atom L. Negative ‘resolution is applied
‘with each atorh in A whichnegatively unifies with L, and the resulting.
goals are added to NG. The original negative goal is also:retained.
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The procedure terminates successfully if PG contains: only empty goals
and each goal in NG contains an irreducible equahty atom. In that case
P Ucomp( ) E F8. A derivationfails if any goal in NG becomes empty, or
if no inore selections are possible when a-goal in PG i 18 not yet empty. Note
that, like in SLDNF, to ensure: correctness of the procedure the selection
rule needs to be safe, ike. no non-ground negative literals may: be selected.
Negative literals containing skolem constanis may be selected.-

‘Throughout this discussion we have ignored one issue, namely the treai-
‘menit of general first-order logic axioms. Nowhere does ‘the procedure take
such axioms into account. To deal with general axioms, we need to trans-
fotm them inte a form which can be used by SLDNFA. In practice this is
done by writing each axiomn A as a.general clause fnualid «— —A and by
-presenting the goal « F A —inualid to SLDNFA when trying to solve « B,
Of course invalid +— —A 15 not necessanly anormal clause'as A can be an
-arbltrary formula. However, ‘there exists a simple automated technique for
.transformmg a set of general ‘clauses like the above one into. an equivalent
set of normal clauses. Thie technique is described in [68], and we summarise
it in.Appendix A. More details can also be found.in Chapters 3.and 6, where
-we. will explicitly use the technique. From now on we will make abstraction
of this transformation step except when going into procedural. details. In
other words, whenever we use SLDNFA for reasoning, we assume that' any
FOL axioms are transformed intc a definition of: “nvalid, and that any goal
is-extended with the conjunct ~énvalid.

As an example of SLDNFA-execution, take again the open logic program

g(q!_'Y) — P(Y)'_ )
X, Y)Y «— -g(X,¥).

with open predicate p/1 and FOL axiom -—r{a, b). ‘The FOL axiom can be
written-'as a definition of invalid:

Tnvalid «— 7;(:0., b).

Assume we want to check if 3Y : p( Y),7{8,Y) is possible. We use the goal
«—p(Y r(b Y), ~invalid. Then

PGy = {sp(V}, v{8, Y}, ~invalid}
NGy = Ag = {

Abduction yields

PG = {"_ P(bs sk )_: —'_"&'ﬂ'ﬂ_ﬂ;id}
NGy = {}

8y = {p(sk)}
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‘where ¥ = sk-is used as skolemising _subs‘tit-ution.
“Then positive resolution on the first goal results in’
PG, = {— —g{b, sk), winvalid}
NG:={}
Aa ={p(sk)} L _ . o
Then we can move both conjuncts of the positive goal to NG, yielding
PGy ={—true}
NGy = {eg(b,sk) , — invalid}
Ay = {p(sk)}
Negativé resolution on-the first negative goal yields no resolvents, hence
PGy = {+ true}
NG5 = {« invalid}
s = {p(sk)} o
and two applications of negative resolution on the second geal yield
PGg= {—true} '
NGs = {+ r(a,b)}
Ae={p(sk)}
and
PGy = {+ true}
NG = { a(a,b)}
A7 = {p(sk)}
The negation of this goal can then be moved back to PG:
PGy = { g(a,b)}
NGy ={}
Bg = {p(sk)}
whernce positive resolution results in.
PGo = {— p(b)}
NGy ={}
A= {p(sh)}
Finally; a second abduction step leads to
PGyo = {—true}
NGu={}
Ao = {p(sk), p(b)}
-at-which time the procedure terminates. successfuliy We obtam the answer
that T Ucomp{{p{sk), B( B E (p(Y),r(b Y)Y =gk} '

In conclusion of this discussion of SLDNFA, we want to point out that
it.can be used to solve various. types.of problems In thls respect it differs
_from procedures for normal logic programs, which can only be used for
deductive tasks: since normal logic programis encode. complete knowledge
on & problem domain, the only interésting reasoning paradigm on them is
deduction. ‘Open logic programs can represent pa.rtlally specified - dormains,
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and on such domains also reasoning paradigms' like abduction and model
generation, which essentially try to make sensible a.nd useful assumptions
about the unknown part of the domain, are of interest,. As a result a much
wider tange of specific tasks can be tackled: SLDNFA is suited for hoth
deductive and abductive forms of reasoning, including model generation.
‘We will illustrate and discuss the suitability of SLDNFA for different forms
of reasoning further throughout the thesis, in particular in the context of
temporal reasoning.
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Chapter 3

A Formal Correspondence
between Open Logic
Programming and
Description Logics

3.1 Introduction

In this chapter we formally investigate the relation between open logic pro-
gramming ‘and a <class of specialised knowledge representation languages
called description logics-(DL) or concept languages. A first goal of this
analysis is to clarify the long-questioned - relations between these two related
areas of research: though they have been ¢ombined in major basic research
efforts to enharice the state of the art in computational logic (in the Esprit
BRA-projects-Compilog and CompulogII), the relation between them has.
always remained unclear.' In the context of this thesis, the analysis has the
additional goal to illustrate how OLP, unlike FOL or LP, is perfectly suited
as a knowledge representation langunage, fulfilling the essential requirements
of such languages. Moreover, the clear mappmg between' OLP and descrip-
tton logics allows to hlghllght the gain in knowledge repréesentation power
that OLP offers ‘over these logics.

‘We start by presenting the ideas underlying deseription logics and for-

 In [18] G - Logic, a logic for rcprcsentmg complex. objects which is sémewhat rémj-
niscent of DLs (in containing class symbols and set-valued labels), has baen mapped to
FOL. This work is.related to. some aspects of the work presented in this chapter.

29
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‘mally deﬁmng their syntax and semantics in the following two sections. In
.section 3.4 we provide & rhapping of description logic theéories into open

logic programs-and indicate to which sublanguages of OLP different de-
scription logics correspand. Section 3.5 discusses correspondences- between
algorithms used for reasoning on description logics and the SLDNFA pro-
¢edure for open logic programs. We conclude. with a .diécuss_ion in secf_i_oh
3.6.

3.2 The Ideas behind Description Logics

At the basis of research on description. logics ([47), (48], [30), [15], [17], [21],
[5]) lies the idea in {13} and [11] that an expert systern — and a knowledge
representation lariguage in general — needs to deal w1th two essentially
different kinds of information: on the one hand so-called ssserisonal infor-
mation about the world, and on the:other hand deﬁmitami or terminclogical
information. :

Assertional information consists of specific obaerva.tions about actual
objects in the world. Examples-are the. observatlons that Tom is:the father
of John or t_h_at Mary owns a blue car. This type: of ‘assertions can be
nicely represented in first~order logic, as a set of _ge‘ner_a.l_ farmulae about
predicates,

Definitional or termlnologlcal information 1s mformatmn about fixed
relations between these predicates: it defines concepts (predlcates} in‘terms
of edach other. As an example, terminological information s that a father
is a parent who is male. This kind of information is naturally represented
in semantic networks ({ 7], [9]) and frame-based languages {[78])-

The observatwn that no existing formalism was powerful enough to.rep-
resent both types-of mformatlon (frame—based systerns have severely limited
assertional power, ‘while FOL is tiot suited for représenting; definitions), led
to the development of hybrld krowledge répresentation systems like KRYP-
TON {f1 1],.[1 0, [12]) In KRYPTON the knowledge base consists of a fer-
mmologu:al part. (the T-Boz), which uses a frame-based language; and an
assert.lonal part (the A Boz), whlch uses FOL as a. representatlon language.

. : _ee: for exarple [47] [21]) ' comnsl
of a set of concept deﬁnltlons in a limited concept definition language
The A-Box contains assertions about concept membership -of ‘individual
objects. Current research (for example [48], [30], [5]) is mostly concerned
with -determining definition. languages that combine sufficient. expressive
power with limited algorithmical complexity.

The general idea behind the analysis in this ‘chapter is that an open.
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logic program < P,0,C > can be interpreted as consisting of a T-Box
(the set of clauses P) conta.lnlng definitions of concepts (predicates) and
an A-Box (the set of FOL axioms C) containing general assertional infor-
-mation. In fact, DL concept definitions can be-straightforwardly mapped
‘to clauses and A-Box formulae to FOL axioms. An interpretation of a de-
scription logic theery corresponds to exactly one interpretation .of an open
logic program. Under. a suitable semantics, the models of the DL theory
are the same as those of the corresponding cpen logic program. The logic
programs. we study in this chapter-are mainly hierarchical programs. For
this kind of programs, all semantics coincide with the completion seman-
‘tics of {20}, which is easy to handle. However, we also indicate how the
correspondence extends t6 recént, more eXpressive descnptmn logacs which
intreduce constructs going beyond first order logic.

3.3 Syntax and Semantics of Description
Logics

In a description logic, thiree types of symbols are used: concepis, roles
and varicbles. Variables range over a sef called the domain. Concepts
are interpreted as subsets of this domain, while roles are binary relations
between domain elements. We will use 4, B, ... as concept symbols,
R,S,...as role symbols and: %, Y,...as va.na.ble symbols Also, T will be
used as a speécial ¢oncept symbol- representmg the. entire domain.

A DL theory consists of a terminological {T- ~Box) and an assertional
(A-Box) compozient. We first describe the. language of the T-Box. Several
different T-Box languages- using varying sets of basic cperators (resultlng'
in different complexity results for the algonthms) have been studied in the
literature. For our formal comparison, we choose a modeérately expressive
language, ALCN, as described in [47), Along the way we indicate straight-
forward extensions of our analysis to more expressive languages.

The T-Box in a DL theory :consists of a nimber of coricept definitions
¢ == F, where C is a concept’ symbol and F a concept description, such
that no concept deperids on itself.? Given that R is a role, C 2 concept
symbol and F, G concept descriptions, valid concept descnptlons are the
terms:

C'[VR.:_FIEIR._:F__[FHGIF'LJG.']__-nF| <nR| >nR

?We say C-depends on €' if. G is in the definiticn of € ar if C depénds on some- &%
such that €’ is-in the definition of ¢"".
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For example,
malen < 3chald i [Vehild.mile Li Ychild. female]

describes the set of men with at most three children, which are either all
hoys or all girls.

The  A-Box consists of a set of .object descriptions o A and relation
descriptions allh, where a;b are objects, A is a concepf symbol and R a
tole. As anexample, @ child b asserts that b is a child of a. From now on we
will use the term (4-Boz) consirainis for object and relation descriptions.

Definition 3.3.1 (DL theory) 4 DL theory 8 consisis of ¢ T-Bog (de-
noted thox(8)) ond an A-Box (denoled aboz(f)). The T-Boz is.a set of
concept definitions C-==F sucéh that.n¢ concept symbol depends on iiself.
The A-Boz s o set of constrainis. A defined comcéptl of 8 'is any concept
symbol C such that C == F € thoz({8). Any other concept symbol is called .
primilive. '

The semantics of a DL theory is defined via the following concepts:

Definition 3.3.2 (DL interpretation) An interpretation T = (DT, ZI[])
consists'of o sei. DT (the domain of I} and a FunctionZ[.] (the interpretation
function of 7 } that maps every concept symbol to a subsel ofDI every role
symbolto a subset of DE:x D% and every abject o an element of D such
that Tla] # Z[b] if a # b (& unique nemes assumption on objects: note the
correspondence with Clark’s Frée Equality awioms). Moreover, T sutisfies:

Z[T] = D%

IR : F) ={a € D*{¥(a,b) ¢ T[R] b€ I[F|}

I[ER: Fl= {GEDIB(G b)EIR be I[F}}
1[F 1G] = TIFIN 1[G

2[F 1 6] = Z[FlUT[A]

I[-F) = (DA\LIF]) o

sl n= fec D0 < TN < )

I1> nR) = {a € D [#({bl(a, ) € TR} > n}

There are some differerices in terminology and use of semantical concepts
between DL -and other logics. In"DE; it s uncoimimoti-t6° defitie ‘the notion.
of model of a theory. Rather, the followmg definitions are provided:

Definition 3.3.3 (consistency;subsumptionequivalence) 4. concept
description F is consistent if there erisis an interpreiation T such that
ZI[F] is nonemply. A concept descripiion F subsumes concept a'.escmptwn
G if for all T: TIG) €T Z[F). F and G are eguivalent (F = G) if for all
1: I{F = I[G].
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We intend to map DL theories into OLP and will prove ‘that this is an.
equivalence pregerving operation.. To this end; we introduce the concept of
a:model of a DL theory.

Definition 3.3.4 (DL model) 4n interpretation T is o model of § ifF for
all C == F ¢ thoz(8}: I(C) = I(F) and for all constrainis F € aboz (8},
T=F. .

3.4 Mapping Description Logic Theories to
OLP

Having defined syntax and semantics of description logics, we are ready to

dévise a mapping from DL to OLP. It can be shown that each model of the
resulting open logic: program corresponds fo exactly one: model of the DI,
theory, and vice versa,

3.4.1 Mapping Function

First: of all, we establish the classical correspondence between concepts and
roles or the one hand, and predicates on the other hand. A concept ¢
corresponds to a unary predicate C'/1, a role R to a binary predicate R’ /2.
For notational convenience we will use the same symbol to dendte a concept
or reole and its (:cu:-responding'_}')re:dicai:u;-f

We now define a mapping T transforming & DI, theory into an .open

logic program. We can map A-Box constraints to FOL formulaé as follows:

T(a:C) = O(a). T(aRb) = Rfa,b).

As an example, the A-Box {Mary : woman; Mary child John} would be
mapped to FOL axionis woman( M ary) and child{Mary, J ohn).

Next we map concept definitions to pibgra.m clauses. This is“dene in
two steps. First we translate the definitions into general clauses (f671). A
genera! clause has the'form 4 « W where A° is an.atoin and W an arbitrary
FOL expression. In a second step, we use the transformation of ‘Lioyd and

Topor ({58] and see appendix A} totransform a set of general clauses into.

a set of normal clauses.
Assume we have a concept definition C'==F, T_his definition. is trans-
lated into a general cluuse T(C == FY = @(X) « T'(F, X). where
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i (F,X) s defined recursively ‘as follows:

T(C, X) — C(X) (€ = concept symbol)

TP NFX) = T(FLX)A T'(F2, X)

T{F UF,X) = T(F,X)vT'(F;X)

T'(~F, X) = =T'(F,X)

T'(VR:F,X) = VY (R(X,Y) — T'(F,Y))

T@ER:FX) = 3 (R(XY) A T(FY)

T(>nRX) = 3Xi,..Xa:RX, X)A coo A R(X, Xa)
A(X1# X)) A (Xr#EXa) Ao A (Kney # Xn)

TI(S ﬂ_R’_, X) = VX]_ - Xﬂ+1(R(X, Xl) _’f\ Y AN R(X, X‘{::—i—-l)).

— (X1 = X2) V(X1 =X3) V...V (Xn = Xng))
Note that -primitive_-cbng:jep'ts-: have no definition in the DL theory. Likewise:
they “have no defining clauses in the, general open logic program. “They
correspond to open. prediéates. '

Recently description logics have heen extended: with other, more expres-
sive constructs, in particular qualified number restrictions on.concepts and
variotis role constructors like inverse, intersection, unisn, coricatenation and
reflexive transitive closure. The function T can easily be extended to deal
with these: a quéliﬁed.num'be: restriction » nRC of <'n R.C i§ trans-
lated exactly like its -'unqu_é_l-iﬁ__:d equivalent above, with éach instance of
R(X ,'Y_)';cpiaced by R(X,Y) AT{C,Y). Asfor non-primitive roles, these

require T' to be extended explicitly to Toles instead of always mapping R
to R{X,Y):

TR, (X,Y))

= R(X,Y) (Rprimitive)
T(R™,(X,Y)) = T(R(X))
TR N Ry, (X,Y)) = T'(Bi (X,Y)) A T'(By (X,Y))
T (R U Rz, (X,¥)) = T'(Ra, (X,Y)) VTR, (X,Y))
T/(Byo Ry, (X, Y)) = T'{Hi(XZ)) A T{BE{(Z,Y))

The. reflexive transitive closure B* of a role R is & more interesting ex-
fension, as it cannot be expressed in first order logic. In OLP, it-can be
expressed _und‘t;_r justification semantics as follows: all occurrences of R* are
franslated to RY(X,Y), with'R*'a new predicate symbol which is defined
by the clauses S '

RA(A,Y) « T(R(XY))
RXY) « T(B(X ) AREY).

In recent work on description logics (see for example [17}), eliminating the
" acyclicity condition on concept definitions has been considered, though




3.4. MAPPING DESCRIPTION LOGIC THEORIES TO OLP 35

thére is no agreement yet on the preferable semantics for cycles. Given

the results discussed in this thesis and other recent work on OLP, we. argue
that the sémantics offering most expressive. power is the one which corre-
spords to the stronger OLP semantics: we suggest chodsing a forrm of least
fixpoint semanties.

As an example of the described happing, consider the following concept
theory:

C == (3child.D) N.(Yehild. E)
D == wmale ) >3 child
E == «1 child,

with primitive concepts ¢hild and miale. This théory is mapped to

a(X) « EVEE (child(X, YYAD(Y), VZ . (child(X, Z) — E(Z))
D(X) — male(X)V

child( X, Y), child(X, Z), child(X,U), Y # 2, Y £ U, 2 £ U
B(X) «— VY, Z: ([chzld(X V) Achild{X, Z)] ¥ = Z)

with open.predicates child/2 and male/1.

The rmapping turns any ALCA description into a general logic program
as defined in. ([67]) dugmented with undefined predicates. In [68] a trans-
formation is described which transforms a.general logic program into an
equivalent normal logic program. It is proven sound and complete wzth..
respect to the completion semantics of [19]. The transformation applies as
well to general logic programs augmented with undefined predicatés; with
respect. to the completion semantics for open logic programa {[20]). The
details of the transformation are included in- Appendix A.

Using this transformation the above program is mapped into-the follow-
ing open logic program (with undefined predicates child/2 and male /1)

C(X) « child(X,Y), ) D(Y), - H{X).

HX) « childX.2),~B(Z).

D(X) « male(X '

D(X) e chzld(}{ Y) chzfd(X z), chzid(X UNVY #ZY AU, Z#TU.
B(X) ~ -G(X).

G(X) & child(X,¥),child(X, Z),Y £ 7.

As the correctness of the transformation from general into normal (open)
logic program is proven in [68], it suffices to prove an equivalence between

the concept theory and the general open logic program it is mapped to.

To this end we first define a-mapping s from DL.interpretations to FOL

interpretations, as follows: given 7, s(Z) is the interpretation with domain
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D7 such that for every concept C, every role R and every X, Y € D%:

S(I)(C(X)) = irue + X e1[C] |

‘3 Then we can prove the following theorem for ALCA theories 8:

Theorem 3.4.1 For every interpreiation T of 8, T is a model of 6 if and
only if 5(T) is a model of T(8).

To help prove this-theorem, we first prove an important lemma

Lemma 3.4.1

- ¥X € DT L T(T(F X)) = true - X € I[F).
Progf:
The proof of the lemmadis by structural induction on F:

1, F'= concept symbol : Since T'(F, X) = F(X), the equivalence holds-
by definition of (7).

2 F=F tHy: )
Assume T(T'(Fy, X)) =4rue «+ X € T[Fy),
and Z(T"(Fy, X)) = true« X € I[F).
T!(Fi X)= 'T!(Fl!.x) A T"(FZ; X'),_-SO'
I;(Tf (F,X)) — true o I{(T’(F]_, X)) e AI:(TE(FmX)): true
o X e I[F) A X €IB] o X e I[FNF} « X € I[F]

Assume I'(T'{F;, X)) = true = X € I|F),

and Z'(T'(F, X)) = true + X € I[F,].

T(F,X) = T'(F;, X)VT'(F3, X); so

THT/(F, X)) = true «» T'(T'(F1, X)) = true VI'(T'(F, X)) = true
s X eI[FVvX eI[F]«X ¢I[FiUF,)+ X ¢ T[F)

4, P=—F'1 )
Assumie Z'(T'(F', X)) =true <> X € I[F).
THF, X) = ~T'(F, X), 80 '
T(T'(F, X)) = true & I'(T'(F', X)) = false = X ¢ I[F'].
Since X € D7, " '

X ¢ I[F] o X € DINI[F] & X € T[~F'] & X € Z[F)

3Note that s is a one-£p-one mapping and a~1(J) can be easily defined for any FOL
intérpretation J.
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5. F = VRF:
Assume VY & DZ : (I’(T"(F' Y))=true = Y € Z[F]).
T'(F, X) = VY : (R(X,Y) — T'(F',Y)), so
I"__(T*'('F,'X-)') =true
=YY  (T'(R(X,Y)) = true — T'(T'(F',Y)) = = true)
= VY ((X,Y) € T[R] = ¥ € Z[F"))
©V(X,Y) € T[R]: (Y € Z[F)) = X € IYR.F'] o X & T[]

6. F=dRF .
Assu_mg_--VY E DI (T(T’(F" Y)) =true Y € I[F 1
THF X)=3Y: (R(X,Y) A T" T, ),

g0 I’(T’(F X)) = {rue.:
& 3Y : (T/(R(X, Y)) =true A T(T'(F',Y)) =true)

= 3Y: {(X,Y) EF(R] A ¥ € Z[F))
X, Y) €2[R]: (Y €I[F')) «» X ¢ T[ARF'] w3 X € I(F)

7. F=> nR

TFX) =3 Xa : (R{X,X3) A ... A B(X, Xn) A (X0 £ X3)
b AKs £ Xa) A oA (Kot # X)),

so Z'(TYF, X)) = true

= 31X (TR(X, X)) = o= T(R(X, X )) =irue A
(Xlgl‘—'Xg)!\ X1¢X3) ..._ ( n-—l#X))

53X .. ((XX:[)EI[ ]/\(XX) {}/\(Xlng)/\
(X].#XB) ‘--"-A( b — I#Xﬂ))

e FHLGHX, X)) eR) 2> ne X e>nRe X I[P

8 F=<nd:
TP Xy =YXy ... Xnj1: [(R(X Xi) A A R(X Knr1))

S (X =X3) V(X1 = X3) VooV (Xn = Xnga))],
so I"(T’(F X)) =true '
+— VXl Xn-l-l (I (R X Xl) PR I}(R(X Xn-}-l)) = t'rue)
— ((Xl Xg) V X]_ Xg) VooV (X —-.ani_l_))]
S VEy L X [((X Xl) €I[R] A (X, Xn+1) € I[R]) -
0 2 Xa) V(K = TV (e = Xy}
o #{ XX, X)ER})<nHXE<nR<—>X€I[F]

We niow proceed with the proof of the theorem.

Procf; .
First, we prove the “«” part. Assume 7 is a.model of'd., We show that
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7' is.a model of T(6). We start with the FOL part; We must prove that
T(ci), ..+, T{em) hold in 7', where ¢1,...,¢m are.all constraints in the A-
Box.

We know 7 is a model of 8, so for all F € .aboz{f) : Z = F. This
means thak:

1. if-a: F € abox(8) then a ¢ I[F]
2. if aRb € aboz(8) then (a,b) € I[R]

Now, consider any FOL axiom T{¢;). I T(¢;) = €(d) then.c; = a:C €
aboz(@). Therefore, a € Z[C] and by definition 7’ (C(a)} = true. ‘Similarly,
if T(¢;) = R(a,b), then ¢; = aRb.€ abom(e) Therefore, {a,b) € I[R)] and
by definition Z'(R(a, b)) = trie, '

1t remains to be proven that Z* is a model of T(tbox(8)}: for-each defined
predicate the completion of its definition must hold in Z'.

Sinice every concept definition has been ma.pped to one general clause
and n6 other clauses weré generated, each clause _C‘(X_) — T'(F, X) in:
T(thox(8)) corresponds to one definition C == Fin thoz(8). 'We need to
prove that for each such clause, T'(C(X)) = true & I'(T{(F, X)) = true.
We know that ZT'(C(X)) = true « X € Z[C], and since € == F is in
thoz(8), X & T|C) «» X" € I{F]. Applying lemma 1, we obtain the desired

result.

We then prove the “—* part of the equivalence. Assume I is a model
of T'(f). We show that there exists an interpretation Z of thoz(6) such that
s{Iy=1, and which is a model of 8.

We can obtain 7 as follows. For every concept symbol C, for every role
symbol R and for every X, Y € 22l , We know that 7 should satisfy:

X € Z[C)ws T(C(X)) = true
(X, Y)€EI[R] + TR{X,Y)) =true

Then we apply the definitions of intetpretations to extead Z fo general
concept descriptions. We prove that I then satisfies the definitions &' == F
inthoi (6) and that Z.=.F, for all F ¢ aboxz(8)...

Given that ' is & model of T{(#), we know that Ter)y s« y Ter) hold
in 7! , where ¢1,. .., ¢ are all constraints in the A-Box. Any F < dbom(&)
is of one of the forms ¢ : C or aRb. If F' = (a : C), we can use the
knowledge T'(T(a:C)) =1'(C{a)) = true, from which we obtain using the
definition that a € IIC). T F = (aRb) we use the knowledge I"(T aRb)} =
I'{ R{a, b)) = true, from which we obtain that (a,b) € Z[R]. Tn both cases
it follows that T i: F.
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It remains to be proven that 7 satisfies 2l definitions ¢ == Fin thos (8.
For each such definition, T(thoo(8)) contains C(X) « T'(F, X), so-since T
i a.model, I’(C(X)) = true ++» T'(T'(F, X)) = true. Using the definition
of 7 and lemma 1, we find respectively 7'(C(X)) = true «+ X € T[C] and
I’(T’(F X)) = true « X € ZI[F]. From these three equivalences it follows
that X € Z[C] + X & I{F].

[

It is important to ‘observe that in DLs no domain closure assumnption
is present it is.assumed there may be unknown objects that are not men-
tioned in the theory. This is also possible in OLP, since OLP allows for.
non-Herbrand interpretations (see. [26]). Thus. Tepresenting open dormains
is possible, like in description logics.

At this point it should also be mentioned that sometimes the T-Box in_
description logics is allowed to contain other. formulae than definitions, in
particular formulae of the form €' I D, imposing as & constraint that the
concept ' is a subset of D (for example father C parent). Such formulae
are general statements about the domain and not sssertions about specific
objects. Therefore they belong in the T-Box. However their equwalent-
counterpart in OLP are FOL axioms of the form VX : (C(X) - D(X)).4
This is an exception to the general principle that the T Box is mapped
to program clatises and the A-Box to FOL axioms, If these congtricts
are allowed, the T-Box corresponds to: program clauses plus universally
quantified FOL axioms, whereas the A-Box corresponds to. ground FOL
atoma.

3.4.2 Description Logics as Sublangunages of OLP

The set of apen logic programs obtained from DL theories using a mapping
like the-above one is only a small subset of the set of all possible logic
programs. In particular, an open logic program corresponding to an ALCA
theory satisfies the foilowmg conditions (posmbly after a permutation of
literals in the body of clauses):

-« The program contains only unary and binary literals and’ mequahtles,
and there are no: functors of arity > .

¢ The head of each clause is a unary atom.

e The body of ¢ach clause is a sequence of restricted literals. of that
clause. - A restricted Literal of a clause C!is one of the following:

4 The proof is straightforward.
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~ A binary atom A of which the first parameter is equal to either
the parameter of the head of Cl.or the pararmeter of a unary
atom preceding A in Cl, and of which the second parameter
doeés not occur in any literal preceding A in CL

~ A positive or negative unary literal I of which the parameter is
equal to either the-parameter of the head of c l, or to the second
parameter of a binary literal preceding L in &1,

— An inequality of ‘which both parametéers occur as the second
parameter of a binary literal pieceding L in- CI, and do not
oceur- anywhere elsein C1.

@ No predicate depends on-itself.
» All FOL axioms are either

— ground binary or unary atoms, or

~ formulaé of the form ¥X : (C{X) — D(X)) with C and .D unary
predicates.

For other description logies; similar corresponding sublanguages of OLP
‘can‘be determined. For example, the language .ALC (ALCN without num-
ber restrictions) corresponds $o the language. described above without in-
#qualities. In ALCQ (.A.CC with qualifiéd number restnctwns), the param-
eters of an inequality in Cl may also occur in unary literals in the body
of Cl provided they both occur as. parameter of exactly the same set -of
predicates; and both with the same sign(s) for each such predicate.

‘Role constructors extend: the corresponding sublanguage in different
ways: role concatenation introduces binary -atoms .of which the first pa-
rameter'can also be the s_econ_d parameter of a preceding binary atom in
C1. Tiverse roles resilt in binaty atoms in which the conditions on the
first parameter are satisfied by the second pararheter and vice versa (con-
ditions on liferals furtheér in €1 then also refer to. the first parameter of
that atom rather than the second). We do nét go into any more details
here.. Note that the mt]:oductlon of the role constructors. nnion, intersection
and céncatenation does not enlarge the setof conicepts thatican be'defined:
thiese constructors merely allow one to write shorter definitions, using less
auxiliary concepts.

Having determined the OLP-sublanguages correspondingto several DLs,
we can.alsodefine inverse mappings from theges subiamguages into DL theo-
ries. These’ ‘mappings-are rather stralghtforward each. predicate deﬁnltlon_
can be mapped to a concept description independently. As an example,
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the sublanguage corresponding to ALCA defined above can be: mapped to
ALCA as f{jll_'ows_._

A set of clavses {C(X) — Fy, ... yC(X) « F;}ismapped tothe concept

definition ¢ == M(X, Fi)U...u M{X, F;), where M(X, F) is defined
inductively as: '
M{X,P) = M'(Cy, F)N....N M'(Cn, F) 1 M'(Dy, Fin...NnM"(Dn, F)
where (C ... C, are the-unary literals in 7 containing X as parameter, and
given that R, ... R,, are the binary ‘predicates occurring in F with X as
first parameter, each D;, i==1... m, is the conjunction of all literals of the
form Ry(X, Z) (with Z a variable)in 7. If n= m = 0 then M(X,F)="T.
M’ g itself defined as '

° M'(C(X),F}=C.
o M'(=C,F)=-M'(C,F).
o M'((RIX,Y1)A...AR(X,¥})),F) =

~ 3R(M(Y:, F)) if bk = 1.,

—2nRifk=n#tandforall 1<4,j<n:Y;# Yior Y £ ¥4
ocecur in F.

— .O!‘._:h_e_rwise., M{RX, YY) A .. A R(X, }’;)),F)H
M'{(R(X, Y1) Ao A R(X,Y)), F), where i is such that no
inequality ¥, #£ ¥, withr <i< sor s <i<risin F.

It can easily be checked that ALCN definitions obtained. from OLP
clauses using the mapping M yield the original OLP clauses again when
the mapping 7 is applied to them: T(M (theory)) = theory. The reverse,
1e. that M(T(theory) = theory for any ALEN -theory, is not true since M
maps clauses to only a particular subset of ALCN, However M (T'(theory)
is an ALCN theory equivalent to theory.

The mapping can easily be extended to ‘theories with FOL axioms.
For ground unary and binary atoms we obtain: M{C{a)) = a: C and
M(R(a, b)) = aRb. For the other FOL axioms we obtain M{VX : (C(X ) —
D{X)Y) = ¢ C D. In these cases, M is exactly the inverse of T.

3.5 Comparison of SLDNFA to a DL Algo-
rithm
The corresporidence between Dis and-QLP is also visible at the procedural

level. We describe the. cerrespondence: Bef;we;en ‘SLDNFA and the proce-
dure for consistency checking of ALCN theories described in [48]. This
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algonthm does not consider the presence of a (non-empty) A-Box, but it
can be extended rather. easﬂy to deal with one. The same holds for the
corresponding selection rules we will introduce in the SLDNFA-procedure.

Most tasks studied in DLs can be rediced to checking if a certain concept
C is satisfiable. (i.e. if there can exist eleinents satisfying the definition of

C). In a logic-based framework this corresponds to checking if 3X : C'(.X)
is consistent with. the theory. S

In ALCN, this task is solved in three steps. First, the definition of C 1s
completely unfolded, l.e. rewritten using the: deﬁmtmns as rewriting rules
{this process always ternlinates since no recursion is allowed). ‘Then, a first
conistraint '@ : F is generated, where s is a variable and F the. unfolded
definition of C‘ Finally, an algorithm using constraint propagation rules
‘is. used to- derive. new constraints from the existing ones, until no meore.
propagation rules apply or a contradiction is found. The propagation rules
and the algorithm depend on which description logic is used.

We briefly describe the algorithm for ALCA as it is presented in [48].
First we define the following concepts: assume S is a constraint system, R
is & role, and z-a variable occurring in 5. The number of constraints in 5
of the form z : IR.C is defined as

Definition 3.5.1
exf(z) = #({Clz: 3R.C € 5})

Another concept we need is the minimal “almost” constraint imposed on
z by Rin S.

Definition 3.5.2 Define N = {nlz : (< nR) € §}. Then
atmosti(z) = if N # {} then min {N)else oo

Definition 3.5.3 (clash) A constraint system 5 coniains aclash if it con-
tains ¢ subset.of one of the forms

s {m : .C',_ & : —IC}
o {z +3R.C; z:<OR}
o {z:> mR, z:<nR} uwhere m > n.

To check the satisfiability of a concept, a functional algorithm is used: € is
satisfiable if sat(z, {z : F}} holds, where F is the unfolded definition of C.

sat(z, S) =
if § contains a clash then false
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elsif 2: CrD €Sands:C ¢S ore: D¢gs
then sat(z,SU{z: C,z: D})
elsifz: CUD €¢Sande:C¢gSands: D g5
then sat(z, SU{z: C}) or sai{z, SU {= : B})
else (for a new introduced variable y)
V(z: (>nR)) € § with ezf(z) =0
sa.t(y, SU{y: Cle:VR.C € §})
and Y(z : 3R.C) € S'with eal(z) < atmost®(z)
sat(y, SU{y: C¥u{y: Djz:YR.D € SH
and V{z ; dR. C‘l, ...2:JRCICS
with 1 = ezZ(z), k= atmostR(:c) I>%:
3 a k-partition ]| of {C1,...Ci} such that
Ve ¢ sat(y, SuU{y: C]C’ entU{y: Dz :VR.D €SP

where a k-partition of X is-a set H containing k pairwise dls_]omt subsets
7 of X auch that’ U EH'JT""

‘We illustrate the use of this algorithm on an example. Assuming the
T-Box of'our previous example, i.¢.

C == (3child.D) N (Ychild.E)
D == male U > 3child

we check ths: cohsistenc_y of concept €. To this end we first unfold 1ts-
definition;
C == (3ehild.fmale 1) > 3 child]) N (Vehild.[< 1 child])
‘We apply the algorithn to constraint system Sp, with working variable u:
So-== {o : {3ehild.{male U > 3 child]) N (Vehild.[< 1 chald])}
S1 = SoU{z: (Fehild.[male s >3 child)); = Vchz!d [ 1 child])}
Then the algorithm introdices a few working variable 3
Sy = 51U {y:[maleul >:’3‘chz"1d]} U{y: [<1 child]}

Note that = chz!d Y is not explicit in the constraint system. This formula
will be true in any interpretation satisfying C. However, it is left implicit
a8 it has no further influence on the algorithm.

Now, a “U”.occurs in' the constraint system, and one. of two branches in
the aeai'ch tree has fo be chosen. We explore both branches consecutively:

Siy = 55 U{y:[>3 child]}
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At this point the system contains the subset
{y: [<1child)y: [> 3 child]}

which is a ¢lash. This constraint system is therefore unsatisfiable.
The other branch yields:

Sz = Sz U {y : male}

At thls point, no more propagation rules apply and a solution is found..
z.: C holds if 2 ‘child y and y : male hold, which does not violate any other:
constraint (male is a primitive concept) Hence .Cis satisfiable.

Let us now check how SLDNFA handles this example. We start from the'
open logic program obtained before as the translation of the above theory,
ie.

C(X) « child(X,Y )D_(Y},_ﬁ H{X).

H{X) « child(X,2),-E(Z)).

D(X)} «— male(X). '

D(X) & child(X,Y),child(X,Z),child(X,U)Y # Z,Y £ U, Z # U.
B(X) « -GX): T

G(X) « child(X,Y),child(X, 2),Y # 7.

and check if 3X : C{X ) is consistent with this.-theory. The open predicates.
are the primitive ones of the DL theory: child/2 and male/1. As is'done
with the DL definition, we unfold the definition of C'(X } first:®

C(X) — child(X,Y), [male(Y )V
child(Y; T),chﬂd (Y, 0),child(Y, V), T £ U, U # V,T # V},
~3%, A, B: [child{ X, Z), child(Z, A), child(Z, B), A # B).

We then have to find a derivation for «— 3X : C(X).

Since we start with a completely unfoclded definition, all .defined pred-
icates have been replaced and all remaining literals are instances of open
predicates or inequalities. We recall the most-important: features of SLD-
NFA, adapted to this simplified'setting. For mdre details‘we refer'to Chap-
ter 2. The procedure maintains three sets: PG:of positive goals (goals which

b practice the u_nféldmg of goals is d:la.yed until they aze selected, with little in-
Buence on the derivation. For our discussion it is more appropriate to work with the
unfolded definition, as it h.lgh].lghts the correspondcnce with the ALCN algorithm more
d.lrcctly Note that. the u.l‘lfoldcd definition never contains yniversal gquantifiers, and that
existential q‘_izantiﬁers can be left implicit as usual in a logic program. For clarity reasons
we write existential quantifiers explicitly as long as they ocour in a negated formula..
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need to succeed), NG of negatwe goals {which need to fail), and A of ab-.
duced atoms: As all literals in the unfolded definition are either instances
of open predicates or inequalities, all with only variables as arguments, all
goals in our derivation consist only of open:literals and of equalities and in-
equalities' with variables and/or skolem constants.as arguments. Moreover
equalities only occur in NG (equalities in PG are eliminated by unifying
their argnments and applying the umfymg substitution to PG NG and

A} Observe moreover that different variables andfor skolem constants can
always consistently be assumed to be different, so any equality atom not of
the form X = =X ‘can be assumed to be false.

As a result, each negative goal can be assumed to fail unless all of its
atomic conjuncts unify with abdiiced atoms or are equahtles Evn:lcntly,
the empty goal always succeeds. Initially A is empty, so -each negative goal
containing anh atom-.can be assumed to fail. Each time- a newly abduced
-atom unifies with an atom in.a negative. goal; we apply resolutlon ta ohtain
-an additional negative goal. If this goal is empty, the derivation fails.
'If we can guarantee that negative ‘goals are always geénerated before any
abduced atoms they may unify with, it suffices to check the negative goals
when new atoms are abduced (apart from checking if no equality is of the
form X = X). Then we know that at any time, given the current A, each
‘negative goal contammg an atom can’tonsistently fail, Therefore, whenever
PG is empty and all negative goals contain an atom, a solution is. found.
Failure is obtained-as scon as a:negative goal is empty.

We start with the posxtlve goal «~ C'(X) and 0o negative goals notr
abduced atoms.. Using the. definition of C(X) we'obtain

PGy= {+ c}iﬂd(x Y) mafe'(Y}V
chzld(Y ) ch‘dd(Y U) Ch‘.'.fd(Y ), T 75 UDUEV,T#V],
-3Z, A, B fchzld( X, Z),ch‘bfd(z A) Chﬂd(z B) A# B}
NGy= Ag=

A part, of the SLDNFA- derivation trée for this goal is given in Flgure 3.158

The figure shows that.the derivations by the DL a,lgorlthm and SLDNFA
in this exarnple are nearly identical. The only exception is the way number
restrictions are handled. The DL algorithm detects a clash in the number
restrictions (node 3a in the derivation tree) immediately in ‘the syntax.
SLENFA does not contain a special ‘treatment of number restrictions and
has to expand the correspondmg constraints to find a contradiction. This
involves several abduction steps and the generation of lots of negative goals,

®In the fignre, the. formula hag 3_child(Y') is tsed as & shorthand notation fer
child(Y, T), c]uld(Y U) chdd(l’ V) T#UU# VT # V. has 2 child(Y") is used in
a similar way.
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PGy = {child(X, V), [mele(Y) V has.3.child(V)),
—3Z : [chilid{X, Z}; has 2_child(:Z))}

PGy = {child(X,Y), [male(Y) v has 3. child(Y)]}
NG = {37 :[child(X, Z), has 2 _child(Z)]}

PGy ;——'{ma__lé('aEE)_\_/.ﬁaq-i}.c_hﬂd_(th)_} o
NGa = {37 : [child(ek, Z), has.2.child(2)); has.2.child(sk2)}

Ay = {child{sk, sk2)} __
AN

PGy = {has3.child(sk2)} PGy = {male(sk2)}
NGsa.= {..., kas tchild{sk2)} NGsp = ... has 2 child{ak2)}
Ass = {child(sk,sk3)} = Asy = {child(sk, sk2)}
- 'Pg;_ﬁ ={}
NGy =1...  has 2 child(sk2)}
Agp = {c_hil_d('sk, 3k2), male(sk2)}
fail
T
a

S5 = {z : (Achild.{male U > § child]) M (Vohild.[< 1 child])}

5 = 8§ U{z : {Jehild.Jmalens > 3 cha_c;}'j'}-u.{z~: (Vehild.]< 1 child])}

S:= S UW{y:melel >3 child]}U{y: [<1 child]}

 Saw = Sy Uy (>3 child)} S3b = 821l {1 male}
clash 3.

Figure 3.1: Derivation trees for SLDNFA and -the ALCAN algorithm
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which leads to a considerable efficiency loss. Except for this, there is a clear
node-per-node .correspondence between the derivation trees, _

This result can be generalised. A control strategy equivalent to the one
in- ALCA can be obtained by SLDNFA (working on the corresponding sub-
languape of OLP) by using an appropriate selection riile, More specifically,
the following- algorithm describes siich. arule:” ”

1. Choose a variable X not occurring as second parameterin any literal.

2. ¥or each disjunction in v_&.h_i_ch X oceurs, consecutively select each
disjunct _('d'eléting the other ones), and for the resulting goal do:

® While ¥ occurs.in any formula —F in P@, select one such for-.

mula, (— —F is déleted from PG and F is added to. NGL)

‘e While ¥ oceurs in'any literal in PG:,_ 'sel_'e‘_ct one such literal. (The
corregponding fact.is abduced; if it unifies with a literal of 5 goa}
in NG, negative resolution is applied yielding an additional goal
in N¥@).

o While X occurs in an inequality X # Y in NG’, select one such
goal. (X and Y are unified — this leads to faflure if « X =y
is in ‘NG)‘

e While X oécurs in'a goal X #Y .in PG, select one such goal: (If
X and ¥ are the same variable, the derivation fails,  otherwize
— X =Y is added to. N ad).

o Delete all literals containing X and goto 1.

The ALCN algorithm above as' well as our proposed selection rule as-
sume an empty A-Box. The extension to' problems with a non-empty A-Box
is straightforward: to check the consistency of a theory in ALCA" the A-

Box is the initial constraint set and constants are treated ke variables: In

SLDNFA the conjunction of unfolded POL axioms (or; if the FOL axioms

.are written in‘the form of a definition for iwuaf-'z'd,_-’tﬁhé-unfolded_ definition of

—;i?waid) s the initial goal, and in the _sélection rule constants.are treated

as separate variables.

3.6 Discussion

In this chapter we have shown a-declarative equivalence between DI, theo-
ries and open logic. programs, A mapping.frém ALCN theories into open

¥Equality atoms are never selecied: as we d;i'scuss_e__d above they only appear in nega-
tive goals and can then be assumed to.be false.
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logic programs is defined. For a number of DLs'we have identified equivalent
sublanguages. of OLP. A mapping, to. the corresponding DL is. possible for
thege sublangiages, as illustrated for one i_a.ng_uél_gc-. We have also studied
the correspondence between DL algorithms and SLDNFA. Using an appro-
priate selection rule in SLDNFA we obtain derivations in which consecutive
intermediate sets of goals correspond t6 consecutive constraint sets of a DL
algorithm. _

A strength of DLs is the use of efficient (optimal) algorithms for each
specific language.. Detailed complexity results for most languages are avail-
able, allowing $6 chivose a language for a particular application. based on
both .complexity and’ expressiveness considerations. The inefficiency of
(open} logic programming is for & large: part due to its greater expres-
sive power. As we have shown, for a particular sublanguage of OLP an
appropriate selection rule leads fo very similar derivations. and hence simi-
lar complexity resulis to those obtained in the equivalent description logic.
One noteworthy exception is formed by the- number resirictions. On the.
declarative. ]_evel'_',__"t_he OLP cquival’gnt---'of' a number restriction is a. lot.less
compact; which is a disadvantage for knowledge representation. On the
.pi‘oc'eﬂil.ral. level, h_a‘ndl_ing_-_numbcr_ restrictions is :also substantially slower
in OLP. _ _

The correspondences clarify Tong-questioned relations and open up pos-

sibilities for cross-fertilisation between these two very related. yet up to this
day completely separate areas-of research. :One interesting result could-be
the extension of OLP with a representation of mimber resbrictions, and of
SLDNFA with an efficient way of handling them. In fact an obvious way
%o achileve this is by incorporating CLP ‘techniques in open/abductive logic
programming, as in [61]. This is one major issue for fiirther research.
" A possible gain for the DL community is that-the relation we.point out
shows: directions for further upgrading the knowledge representation power
of current.languages; bringing them: closér to.the richer OLP formalism. In
fact we notice that recenfly added constructs. to: DLs, likereflexive -t’r_a_msit-i\i'e
closure. of roles, map to.:IﬁOIe-'expres'sive subsets of OLP for which stronger.
LP-semantics thar the cqmple_t-ion {for exampie the justification semantics
‘or the generalised stable model semantics of [49]) are appropriate.

The correspondence to DLs alsc shows that OLP is.a highly exptessive

knowledge representation language. Tike DLs, it distinguishes betweeri an
A-Box and a T-Box component of the represented knowledge. Alsolike DLs
it allows for reasoning on open domains and with incomplete knowledge,
t#o important issues in knowledge representation. To us this is the most
interesting result, as the use of OLP for knowledgé representation is ‘the-
central subject, of this thesis.




Chapter 4

Time in Knowledge
Representation

‘The previous chapter discussed the suitability of open logic pProgramming as
& general knowledge representation language by comparing it with existing

KR languages, and by showing how it satisfies the important knowledge:

representation _pr_in‘c_'iple of dealing with both terminological and assertional
information. In the rest of this thesis, we complement this theoretical

sultability result by applying open logic. programming to practical as well

‘as open theoretical problems in knowledge representation.

Kriowledge representation in practice is‘a very domain dependent task:
However, there also exist a number of open questions which are relevant
to very large classes of applications. One of the most important of these
questions, and apparently one of the tolghest, is how to deal with time.

4.1 Outline of the Problem

Dealing with time is necessary in all problem domains which are in some
‘way dynamic, i.e. subject to change. Roughly speaking, this is the case
for practically all (interesting) real world domains. In particular the agent
itself, which is working and solving problems in the domain, is a major
cause of change, “This makes a ‘correct representation of dynarnic problem
domains an issue of considerable importance. '

Wlhat makes dynamic-domains sp_egial is that one needs to distinguish
between the state of the domain at different-time points. There are strong
relations between these states at different times, mainly due to the law
of inertia. In general, we expect that anyihing which is not caused ta
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change at a certain time will remain in the same state. An agent should be
aware of this, but it’ should not be the task of a user representing a specific
problem domain to exhaustively énumerate everything which remains inert
at each time: . a good knowledge representation formalism should allow for
correctly deriving what changes and what remains inert, given concise and
intuitive rules for change provided by the vser. Sirice the late sixties, a lot
of tesearch in the Al community is devoted to tackling these: problems in
temporal reasoning: to find a correct formalisation of the general principles
‘underlying time and change.

McCarthy. and Hayes have identified the .central problem, called ‘the.
frame problem, in [72].. The_y distinguish three sub-problems, specified be-

low:

& The inertia problem is: the problem of automiatically determining
which parts of the world do not change as a result of a particilar
action or sequence of actions of which the effects in each partii:ul'af
context -are known. For example, if we know that a block Aisina
certain locatmn we expect that movinga different block B wﬂl not
change the location of A. An ageit should make the same assumption.
To this end its theory should codtain an appropriate formahsa._tm_n._of
the closed world assumption..

o The qualification problein is defined as the problem of determining
the effects of an action, given a not neces'sém‘rilj(' completely known
list of exceptional circumstances, which in the absence of explicit
information are assurned not togccur. -An often given example is that
-we.can normally start our car; but under exceptional circumstances,
for, example if someone has put a potato in the:tailpipe, we cannot
get the car going. We assume in general that there is no potats in
the tailpipe, unless we have good reason to believe there. might be.
We do not explicifly check for potatoes (or who knows what other
-exceptional sltua.tlons) any time we start the car, but we assume that
the car will start when we turn the key. Agam, an agent should be
able to make the same assur_nptlons by default.

o The ramification problem is the problém of determining 4l effects of
a particular action: in-other words, also possiblé indirect effects which
automatically arise as a result. of speaﬁed direct effects. These effects
form exceptions to the inertia assimption: A simple example is the
following:-assume soreone (or, to make it:more acceptable, a turkey)
gets shot, and the immediate effect is that it dies: Ifat the time it got
shot the turkey was walking around, we expect that since it dies, it
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will also stop walking. An agent . should be able to determine exactly-
‘the expected effects.

The inertia problem is in general tackled by applying some form of min-
imisation of change representmg the closed world aasumptlon The prohlem:
is to find a suitable minimisation schema, which has proven‘'to be & nontriv-
tal task: it was for example shown. in {43] and [44] that all the approaches
developed up o that tine, failed ( ie. did not entail the intended conclu-
sions) on.a number of very small examples; like the since then fa.mous Yale.
Shcoting Problem (of which the above example of a waikmg turkey is an.
extension). The qualification problem as defined in {72] is mostly a prob-
lem of default reasoning, and in that sense riot really typical for reasomng
#bout time. The ierm “quahﬁcatlon problem” in temhporal reasoning has.
often been asmgned & different meaning, nainely the problem of. determining
under what circumstances an action can or cannot occur given particular
constraints -on the ‘state of the world. The ramification problem, which
is- currently assigned the most attention, adds a lot of complemty to the
minimisation policy needed to deal with 1nert1a, since indirect effects form
comnplex exceptions to the general inertia principle.

In the area of temporal reasoning, a lot of other problematic issues
haye come up, some of which furthei complicate the frame preblem and
some of which. are’ orthogonal to it. These. issues comprise deahng with
simultaneous actions, with nondeterminisin, with incomplete information
on’ action occirrences, with an unknown' 1n1t1al state of the ‘world, with
delayed effects of actions and with continuous change.. Apart frorn that
there are also more fundamental issues, like what the topology of time
itself should be (for example linear or branching, continuous.or discrete).

Several formalisms and a lot of varidnts of these formalisms have been
proposed to ‘deal with some or all of the problems mentioned above, In
any: approach; two main choices need to be made: a choice of the basic
ontology of time and actions, and a choice of minimisation policy to deal
with the frame problem. The a.pproaches tend to be named after their basic
ontology, and variants are distinguished by the choice of minimisation. policy
-and possibly miner ontological differences.

By far the most widely used contology is that of the Situation Calculus,
introduced in [72]. It has been used as the basis of. many different attempts
at solving the frame problem, to give but some examples in [31], [4], [98],

1, [83], [90], [65]. Minimisation policies uged in Situation Caleulus are
'-often variants of circumscription ( [71]), which use a second-order logic ax-
iom. Alfernatively, implicit-or explicit predicate completion and sometimes
stronger techniques based on logic programming semanticsare used. We de-
scribe and discuss the Situation Caleulus in detail in the following chapter,
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‘where we-will indicate similarities and differences with our own formalism,;

a variant of the Event Calculus. The Event C'a_.lc_u'lus is a._no_the_r widely used
formalism, introduced in [59], which we will use throughout the rest of the
thesis. In Event Calculus, the closed world assumption is usially imposed
by some logic programmlng semantics, though circumscription is also ap-

plied in some approaches, in particular in {102], [103] and [74]. We give
‘more details on the Event Calculiis below. -Other important. formallsrns,
to whick we will refer-further on, are Allen’s interval-based theory of time-

[3 }and Sandewall’s Features and Fluents approach ([96]).

For more details on the history of the frame prob]em and the many
approaches; proposed to deal with it, we refer to [103], in which both suc=
cessful approaches (coming closer- to a complete solutlon) and failed ones:
and their lessons are discussed. The book also offers a new approach based
hke the work in this thesis on the Event Calculus, but not in an open logic
programming setting. We have not yet studied the relation between this
recent approach and our work.

4.2 The Event Calculus

The: formahsm we choose ‘to work with in this thesis is an open logic pro-
grarhming variant of the Event. Calculus. The Event Calculus was originally
defined by Kowalski and Sergat in [59]. Céntral 1p the formalism is the no-
tion of action occiirrences; or events, at certain pomts o a time line. Events
dre assimed to be instantaneous, i.e. like in most approaches @bstiaction is
made of tlie possible duration of actions. Events determine time intervals
during which certain fluenis (time dependent statements about the. state
of the world) hold. In the original Event Calculus, these time intervals are
explicitly represented, though in later simplified versions; like:the one we
use, they are only implicit. Since.the original definition a lot of variants
ha\re ‘been used, for example by Shanahan in [89, 100, 102, 103], by ‘Millex
e.a. i {73; 50}, by Montanari e.a. in {80], by Evans in [32] by Missiaen e.a.
in [77, 79].and by Kowalski.e.a. in [58, 57, 93].

4.2.1 - Formalisation

"The Event Calculus we propose is close to the one used in [28], formalised.

as an open logic program. “We first: describe the basic concepts and the
predicates representing them. First.of all we have a type predicate time/1:

't:.me(T) means T is a time point. A predicate holds/2 determines the truth.

of fluents at certain times: holds(P,T) represents. that fluent P holds at
time 7. Arn event is the occurrence of an action at a certain point.in time.
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The occurrence of an event E at time T is denoted by happens(E, T).
The atom act(F, A) denotes that F consists of the occurrence of an ac-
tion of type A. An event can initiate or ierminaie existing fluents, i.e,
cause thern to be true or false, depending on the action associated with
it. initiates(E; P) (terminates(E, P)) means that event F- initiates (ter-
minates) the fuent P.

The central axiom of the Event Calculus, the so-called frame axiom,
which captuies the law of inertia; is the following pair of clanses:

holds(P, T) = happens(E;,Th), T\ < Tyinitiates(Ei, P),
o ~élipped(Ty, P; T). _
clipped(T1, P,T) « happens(Ey,T2), Ty < Ty, Ty < T,
terminates(E,, P).

Le.. a fluent-holds at & certain time point T if (and only if) it has been
initiated by an earlier event and if it has not been terminated between that
initiation and 7.1

In addition, the Event Calculus contains a number of axioms determin-
ing the topology of time, and some general constraints on problem domains,
Time is considered to be one (usually infinite) line, hence the order on time
points must be a linear order. We impose this condition despite the fact
that in somie formalisations of Event Calculus only a partial order on time
points is imposed and argued to be sufficient. The. argumerit is usually that
in many cases the ordermg of two particular time poiits is not relevant,
so. that we should not impose any one order. However, the restriction to
a linear order does not imply that-a particular order is imposed: it only
requires that in each model every pair of different time points is ordered in
onie Way or the other; evidently the exact ‘order can vary between different.
models. In other words, the argument confuses i ignorance of the order with
its non-existence. In clasmcal logic progra.mmmg, ignorance cannot be rep-
‘resented; and i Imposmg a partial order is the. best possible approximation.
However, as it is not possible that a real time point is neither before nor
after another one, the formalisation is not entirely cortect. Hence it is not
surprising that, as shown.in [28], it is easy to devise ekamples where the
use of a part1a1 order leads to errensous conclusions. In open logic pro--
gramming, where incomplete knowledge can be correctly represented, ‘these:
problems are avoided.

The linear order condition is represented by the fo]]owmg FOIL akiems
(recall that formulae with free variables denote their universal closure in

L ‘Observe. that in the given formalisation the change in truth value determined by an
initiation or termination is v151blc immediately after the svent causing.it: at the time of
the event itself, the old vilueis still valid.
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what fo‘lldws)-;

{1y < T) A (Ty < TY))
(M < T A (T3 <Ta))— (T < T3) _
(mme Tl) /\ flﬂw(Tg)) % {(T]_ < Tg) (Tz < Tl) A% (Tg_ - Tz)]
(Tj_ < Tz) — (itm»&(Tl) Fat t'.-.me(Tg

The last axiom indicates that < can only relate time points.
Another evident axiom is that each event can oi_ﬂy occur once:

(happens(E, T} A happens{ B, T*)) -+ T =T

In some applications we will also impose t}iét ‘there can only be one event
at each time point, in which case the previous axiom is replaced with

(happens(E,T) A happens(E*,T")) —» (E=E"« T =T")

However, this i is' not strictly required in-general; Another.condition is-one
of consistency: a fluent should never be -initiated and terminated atb the.
‘same time, which we impose by

~(initiates(E; P) A terminates(E, P))

Usually we assume there is a given state to bégin Wlth A; predicate
4nitially/1 is used to determine this initial state (initially( P) denotes that
P is mztlally true) In practice, we say that at the beginning of time, say
at 1o, there is a start event which initiates all fluenis that are initially true.
This is represented by the: following FOL axioms:

time(to)
~ happens(start, to)
initiotes(start, P) — anitially (P)

No events are allowed to-occur before 15:
happens(E, T) — ((t0 < T) v (E = start))

Note that the initial event can be émitted, creating .a timie line-which is
unbounded in past and futire. In maost.applications however, an initial state
of the world ¢omes in handy. Moreover intuitively one can alsc interpret
this initial state to be the first state we are interested in: what went before
is of no importance. '

Apart from these general axioms, an Event 'Cal‘¢u1us theory should con-
tain a description of a particular problenr domain. This description -consis'_ts
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of two parts. A first part describes the general laws rulmg the domain:
most importantly this part contains a set of clauses defining the predicates
initiates and terrninates in. terms of - occurring actions -and possibly of the
current state of the world. ‘Apart from this, it can also contain FOT. axioms
describing action preconditions, i.e. conditions which need to be satisfied
for certain actions to be allowed; and general constramts on the domain,
talled. siate vonstraints, descnblng fixed relations between fluents..

As an example, take the walking turkey problem we mentioned before.
Fluents in this domain are alive (the turkey lives), walking (the turkey
is walking) and loaded (the gun is loaded). Actions are.load {loading the
gun) shoot (shootmg the turkey), wait {doing. nothing) and go (an action
of the turkey: it starts walking). For simplicity reasons we assume: that
there are no simultaneous actions:

(G.Ct(E‘ A) i act_(E, A )) — A= A*
The direct effects of actions .are described as follows:

initiates(F, loaded) - act(E,load).

terminates(E, alive) « act{E, shoot), happens(E,T),
holds{loaded, T).

initiates( E; walking) «— act(E, go).

Note that (evidently) waiting has tio effect at all, A state-constraint is that
the turkey can only be walking if it is alive:

holds(walking, T) — holds(alive, T)
-and an action precondition would be
happens(E, T} Aact{E, go) — holds{alive, -T.)

i.e. only hvmg turkeys start walkmg Finally, there is an indirect effect,
described by the following extra clause for terminates:

terminates(E, walking) «— terminates(E, alive).

In this case, both the action precondition-and the derived effect are related

‘to the state constraint. The precondition is in fact entailed by the state .
constraint given the definitions:of initiates and termindtes. We return to.

this issue in a lot more detail in Chapter 7, where we tackle the ramification
proble_m

The second part of the application-specific theory contains scenaric in-
formation: data-about specific observations in the domain in.a certain. pe-
riod of time. These data are typically a (completc or partla.l) specification
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of the initial state, assertions of observed action occurrences, and possibly
observations of fluent values at particular fimes. As an example, we can
define the initial state as

initially{walking).

indtially(alive).
which says that walking and alive are true in the beginning, but loaded is

false’ (by the closed world assumption). Further information could be that
the gun'is at some time loaded and at a later time fired:.

time(t1) time(ty) <t
happens(ei,t,) act{e, load)
happens(ea,i3) act(ey, shoot)

In this case we do mot know if there are other actions before, after, or -

between the two specified ones. Alternatively, we could make happens and

act defined predicates, in which case
timie( t'l) time(ls) iy <1z
happens(el, 1). act(er, load).
happens(es, ta). act(es, shoot).

would indicate that the given actions and events are the-only ones. Finailj_r,

‘an observation about the world might be that at timet,, the turkey is not

walking:
—holds(walking, ;)

This summarises the different types of forrmulae typically encountered in ail.

‘Event Calculus specification.

“The me_'a;nmg._of an Event Calculus theory is given by its justification

sernantics, The predicates holds, clipped, initiates and tefminates are

defined predicates. - As seen in the example, the “orimitive” predicates
initielly, happensand act.are open, or can aliernatively be defined by enu-
meration if they are completely known, thus asserting a partxcular scenario.
The other primitive predmates, time and <, are’ always open. Observe that

-if happerss-is defined; its deﬁmtlon should contain the claiise

happens(start, tp)-

which was given as a FOL axiom before. Likewise, the definition of initiates

should contain the clause

initiates(start, P) « instiolly(P).
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The corresponding FOL axioms are then. of course redundant.

This completes the formalisation of the Event Calculus. Comparing
this formalisation with other onés, in pa.rtlcula.r with the several variants
described in [93], it.is. worth observmg that our variant is closest to the New
Bueni Caleulus described in that paper. This is due t6 our.formulation.of
Event Calculus as an open logic program with FOL axioms rather than as
a classical logic program. -As a result, our variant has all the advantages of
New Event Galctlus described in [93}

4.2.2 Reasoning on Event Calculus Specifications,

Several forms of reasoning on temporal domains are usually deemed of

importance, in particular temporal projection, dlagnosm/postdlctlon and’

planning. We illustrate how these forms of reasoning are supported by an
abductive procedure like SLDNFA.
The. most straightforward form of reasoning is temporal projection:

given the specification of'an initial state and a sequence of actions, the task.

is to calculate thie evolution of the world, i.e. which fluents hold at which
times: This is essentially a deductive task. An example is the classical Yale
Shooting Problem: given is the turkey domain, without the walking fAuent
and the go action. Effect rules are

iritiates( B, loaded) «— act(E, load).

terminates(E, loaded) <« act(E, shoot).

terminaies(E, alive)  +— act(E, shoot), happens(E, T),
holds(loaded, T').

The. followmg scenario is asserfed by program clauses (deﬁnmg happens,
dct and. zmtmﬂy)

happens(start;is). initially(alive).
Kappens(er,i1). actley, Zo'ad-'] .
happens{eg, t3): act(es, load).
happens(es, t5)- act(es, shoot).

and In addition the following axioms on $he open predicates time and <
. are given:

time(ty) -
time(ts) t <1y
timne(ts) ty < iz

Any question about the truth value of fluents &t times after t5.can now be
answered. For example, the classical question which has caused so many
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problems up"'to_'-the eighties, is if the turkey can be alive after the sequence
of events, which can be answered by trying to solve the goal

— time(ts), i3 < t4, holds(alive,1s).

which in our formalisation fails; as it should.

In the context of incomplete knowledge about some of the primitive
predicates, other forma of reasoning are also of interest. One is postdiction,
which is relevant when the initial state.is not known: the goal in postdiction
is to-find an initial state which explains certain-later observations. This is
an abductive task very similar to diagnosis. An example is the Stanford
Murder Mystery, in which we are uncertain of the initial state of the gun,
but know that the turkey is 1n1t1ally alive and dead after.a shot. Definitions
for happens and act are

happens(start, to).
happens{ey,ti).
act{e, shoot).

while 2ime, < and initially dre open predicates. A FOL axiom on inétially

is :
initially(alive)

The. observation to be explainied is presented as:a goal to SLDNFA. In this

case this goal is — 1y <12, -\hofds(alwe t2), and the answer A contains for
the inittally predicate:

initially(alive).
instially(loaded).

Note that there are several other, equivalent ways of represenﬁng this prob-
lem: in partlcular, all observations could be represented .as FOL axioms,
which isin fact the “correct? representation of the problem as we defined
it
iniﬁaﬂy(ﬂ_fiﬂe)
i1 < to
“iholds{alive,1p)

The goal to be solved is then just. « true, arnd the same answers are ob-
tained. In- general it makes no difference for the solution of a.particilar
problem if FOL axioms are moved from the theory to the goal or vice versa,
as T U {F A G} is consistent if and only if. (TU {F}}U {G} is consistent.
:However, from a knowledge represéntation point of view the represented
theory ig different, and the “correct” representation depends on the precise
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wording of the problem. In particular, the specification and goal we first
provided in this example correspond to the wording “A turkey is. initially
alive. There is a shot with a gun that may or.may not be. loaded. Can the
turkey be dead after the: shot, and if so how come 7”. In the rest of thls
thegis, when the precise werdmg of & problem-is not so Important (as often
with éxample toy problems) we will allow POL axioms to be moved to the

goal as conjuncts.and vice versa.

A third typical ‘type of reasoning on temporal domains, and probably
the most interesting, Is planning. In a planning problem- typlca.lly there is
a given initial state of tle world and a desired end state, and the goal is
to derive a sequence of actions which; when executed: starting in the initial

:state, leadsto-the end: state Another way of formulating this is saying that
in a given domain the initial state is specified but the actions that occur

are unknown (happens a,nd oct Are ’open predlcates) Then one asks if the
desired end state is consistent with the theory and iinder what condifiens
(ie. the end state is the goal to be solved). This yields an-abduced sequence
of actlons which entails the desired end state. As an example, assume we
dre.again'in the Yale Shooting domain and we want a plan-io kill the turkey.
The initial state is defined by

inztially(alive).

and the goal to be solved is «— #y & ¢, —holds{alive,t). The most straight-

forward solition contains in A (we omit redundant “<” and “tjme”. facts):

‘hdppens(er,ti).  act(ey, load). 1 <t.
happens(es,ta).  act(ey,shoot). 4 < t.

These are the most commeon forms of reasoning on temporal doma.ms_

though we will also study several other formsi in this thesm In:particular, in

the following chapter-we will study counterfactual reasoning in the context
of Situation Calculus and Fvent Calculus, Alsoin Chapter 6 we will discuss.
various reasoning issues in different seftings,

4.2.3  Support for Event Calculus in SLDNFA

In the SLDNFA- procedure specialised support for reasoning on Event Cal-
culus specifications has been implemented. First of all, there is a constraint
module for efficiently reasoning with partial orders, in particular on time
points. The module delays decisions on-the order of two time points until
this order becomes relevant. When new informationis ‘added, the partial
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order is efficiently updated. It is ensured that at any. time, all linearisations
of the current partial order are consistent. with the given. information (hence
the.aforementioned ‘correctness problems with partial orders are avoided).

A second featureis that SLDNFA allows for a specialised search strategy
on Event Calculus theories: in theoties where riot all events are known one.
can impose ax upper bound on the number of eveits desired in 2 solution,
thius avoiding an infinite search space. Alternatively orin combination with
this, an iterative deepening search on the nuriber of events is possible, so
that solutions with less events are generated first.

The current 1mplementa.t10n of SLDNFA is still a prototype and overall’
not efficient. This is not fundamentally changed by the above extensions.
However, these - specm_llsed modl_lles -at least defeat the worst sources of
inefficiency of reasoning on Event Calculus theories.




Chapter 5

Comparing and
Integrating Event and
Situation Calculus

5.1 Introduction and Motivation

Aswe.indicated in the previous chapter, the Situation Caleulus ([72]) is the
most widely used formalism for representing dynamic demains. Its ontology
is.different from that of the Event Calculus in the following ways.

The notion of action -occurrences, or eventd, at certain points in time is
central to Event Calculus, and these events determine time intervals during;
which certain fluents hold In Situation Calculus the cent.ral notions are
actions and. sifnations. A situation corresponds toa sna.pshot of the world
&t an instant. of time. This has been interpreted in a number of different’
ways, e.g. in [83] situations are considered to be (hypothetlcal) periods of
time between two actions. In [57] situations are assumed to cotrespond to
time points rather than time periods. In [6] a'situation is séen as the seb
of fluents that holds at a certain instant in time. We will adopt the view
of. situations as time periods. The set of fluents that holds at-an instant
in time will be called the #tate of the world at that instant. Actions are
the cause of situation transitions: a resull functwn i3 used to map each
(action, s1tuatlon) pair to & new sifuation resulting from the execution of
that action in the old situation.

Although the original versions. o_f '.E've_nt- and Situation Caléulas do. hot.
look very much alike, later versions tend to show more and more similarities..

61




62 CHAPTER 5. EVENT vs SITUATION CALCULUS

‘As aresult, a.comparison of the two formalisms has been a topic of interest:
iTi recent years.

In {83] Situation Calculus has been compared with the original Event
Calculus. Several problems of the original Event Calculus — -caused in
particular by the notion of time intervals and by the use of predicate com-
pletion on all predicates — were pointed out, and Situation Calculus was
extended with an Event Calculus- like time- hne running through a set of ac-
tual situations, adding-a previously absent notion of real time to. Sltuatlon
Calculus.

In [67] Situation Caleulus is compared with-a more recent, simplified
version of Event Calculus which does not suffer from. the aforementioned
problems of the original Calculus. The similarities of the Situation Calculus
and the Event Calculus are highlighted by showing that their frame axioms
are equivalent under a_number of conditions.

Here we make a more detailed analysis of this relation; addressing a
number of important issues that were left unanswered in [57]. In particu-
laz, we study the assumptions made in that paper to obtain the equivalence
result. ‘We argue that though Situation Calculus and Event Calculus are
irideed very similar, this is-not the end of the story. Some of the differences
are only of a syntactic natute, it. other differences have important impli-
cations for knowledge representation and reasoning, and thetéfore require
careful-consideration.

For example, in [57] additional restrictions are imposed on Situation Cal-
culus, Certain forms of reasoning — in particular counterfactual reasoning
aboiit action occurrences — are impossible in the restricted version, where
they are possible in the original Situation. Calculus. As a‘result, where a
translation of descriptions in the high level action description lariguage A
({3?]) into Situation Calculus has been proven sound and complete in 27],
such a ‘translation into the restricted form of Situation Calculus of {57} is.
rio longer possible. This is related $o the observation that a translation -of
+A descriptions into Event. Calcilug is also impossible.

“We therefore propose a.general formalism which extends ‘both Situation.
Calculus and Event Ca.lculus ‘We establish 2: clear relation between. {ime
polnté andisitations = differént- fromthe one:in:{57)-and: extending that
in [83] — and prove that assuming this relation, both original caltuli can
be.seen as instances of the more general calculus. Hence, the new calculus
has 4ll the expressive power -of Situation Calculus as well as of Event Cal-
culus, We use this new calenlus as a tool for analysingthe possibilities and
restrictions of the original calculi.

Studying the problem of counterfactual reasoning in more detail, we
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‘observe that not only Event Calculus, but"Situa."ti'on Calculus.as well falls
short in some cases, in particular when actions with nondeterministic effects.
are present. This is due to restrictions inherent in the data structure used in
Situation Caleulis. We show hiow the new calculus can handle these cases
of counterfactual reasoning that neithér of the original calculi can handle.

For ease of comparison we consider open loglc programming formalisa-
tions -of both caleuli. For Event Calculus, we utilise the. “version presenied
in the prévious chapter, under OLP completion semantics rather than jus-
tification semantics for simplicity reasons, Sitvation Caleulus i is more often
expressed in classical logic, but can also ‘be written as an open 10g;c preé-
gram under a suitable completion semantics. Methods similar to predicate
completion have also been used in classical logic formulations of Situation
Caleulus, for example in [88] The proofs in this chapter are all performed
in. classlca.l logic, based on the completion.of the presented open legic pro-
grams,

In section 5.2, we describe. Situation Calculus.and briefly recall the cen-
tral axioms of Event Calculus. Section 5:3 motivates s detailed comparison
of the calculi by pointing out a crucial differénce between them and showing
where previous equivalence resulis fall.short. In section 5:4 we present the
new gerieral caleilus and illustrate its use with an application. Section 5.5
formally relates the new calculus to the original ones. Tn section 5. 8, we
point out a. problem with nondeterministic actions in Situation Calculus
and show how the new calculus handles them. In section 5.7 we conchide
with a number of additional issues.

5.2 Formalisation of the Calculi
5.2.1 The Situation Calculus

We present an open logic programming formalisation of the Situation Cal-
¢culus. The basic concepts are situations and.acltons. A situation is defined
as a period of time during which there are no-actions and no changes in
fluent values (the world remains in the same state throughout a 51tuat10n) .
Actions. are the cause of state transitions: if an action 4 oécurs in a situ-
ation §, a new situation resuli(4, 3) begms immediately after the action.
hofds(P 5) means that fluent P is true in situation §. nitiates(4, S, P)
(terminates(A, 5, P)) denotes that if.action A occurs in situation S, thls
inltiates (termmates) the fluent P, i.e. immediately after 4 the ﬂuent is
true (false). It is assumed that there is an initial state, <called sg.

The frame axiom of t_he Situation Calculus can be written as the fol-
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lowing definition of holds:.

holds{P, so) — initially(P).
holds( P, result(A, S)) —  initiates(4, 5. P). _
holds( P, result(4, S)) «— holds(P, .Sj,_ -terminates(A, S, P).

"The frame axiom reads as follows under completion seiriantics: a fi-
ent P ‘holds in so if it is initially true, and it holds in a later situation.
result(4, S) either if the action A leading to that situation initiated P, or
if P already held in the previous situation .and-was not terminated by the
most recent action. Othcrwme, the-fluent does pot hold.

In Situation.Calculus there are no statements about which actions ac-
tually occur: each consiruct result(4,5) denotes a hypothetical situation
which would result if 4 happened in the (also hypothetical) situation S.
Hence, it is possible in Situation:Calculus to talk at the same time about
for example result(a, §) and result(b; S). Both are hypothetical situations
which could result from S, and it. does not matier if the actions leading
to them “really” occur or mot. All situations which can. be reached from
theinitial one after any sequence of actions, exist in the tree of 51tuat10ns
For ‘this reason Situation Calculus is said to incorporate a branching time
topology.

A S1tuat10n Caleulns descnptmn in general consists of the above clanses
phisa number of domain dependent clauses deﬁmng ingtially, initiotes and
terminates. These definitions are also comipleted. If it is not completely
known, the mztm!ly predicate may be left open instead. Any number of
FOL formulae can. be; added o the theory.

In for example [89] and [83] asecond order induction axiom on situations
is added to the Situation Calculus. The axiom represents that the situations
that ¢an be reathed from the initial sifuation by executing a finite sequence
of actions are the only situations that exist. Under justification’ sernantics,
a similar a;ximm1 is implied by the following definifion of situations:

sztuatwn(sg ):
‘situation(result(4, 5 )) — situation(S), action{4).

assurning a domain aepéﬁdgm- type predicate detion/1 for actions.

We do not use justification semantics in this chapter, as completion se-
mantics provides an immediate mapping to FOL, whick facilitates theorem
proving, and as the additional power of _]ustlﬁca’f.lon semantics is not rele-
vant tothis discussion except for the fact that it entails the: 1I_1duc_i;10n axiom

IThe exact formalisation differs from the. ond'in [83] due to cur use of type predicates.
instead of a sorted logic, but the semantics is the same.
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on situations.. Hence we simply complete the above definition for situations
and represent the induction axiom explicitly by the. following second order
logic formula:

® : [(VS : (situation(S) — &(8))) ~—
| o . (Blso) A |
VA; 5 {(B(S) A action(A) A situation(85)) — S(result(4, )]

Formulations of the Situation Calculus in classical logic often use one
predicate abnormal instead of initiates and termingies, not dlstmgulshmg

positive changes in truth value from negative ones ({61, [72}). Since this

distinction is explicit in Event Calculus, we. make it E:XplIClt ih Situation
Calculvs as well to facilitate comparison. Moreover, as indicated in [57],
such distinction results in'a more ‘precise dnd therefore more “meaningful”
theory

The following axioms and clauses summarise the formalisation of the
Sitiation Calculus:
holds( P, sy} — initially( P).
holds( P, result(4,5))  +. initiates(4,5,P).
holds(P,result(A,5)) + holds(P, 8}, ~terminates(4, S, P).

situation(sa).
situation(result(A; 5)) «— situation(S); action(4).

¢ +{{(VS : (situation(S) - $())) —
. (@(30) FAl
V4,5 [(2(8) A action(A) A situation(S)) —. &( :r'esult(A SHNI

O'= {{initially)}

5.2.2 The Event Calculus

For a detailed discussion of the Event Calculus we réfer to the previous
chapter. We recall thie general axioms and add some where appropriate for
this discussion. The defined predicates are holds, iniliates and terminaies,
the open ones Zime, <, ha.ppens act and dnitially, Flrst of all we have the
frame axiom

holds(.P;, T') e happens(E:, T1); T1.< T, initiates(Ey, P),
' —elipped(Ty, P, T)
clipped(T1, P;T) + happens(Ey, Ts), Ty < Ty, T2 < T,
terminates( By, P).

S — T L 0 e A ST 48 AN TS e T
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and the restrictions on time

—|((T1 < T;:,) A (_Tg < -Ti))_
(I <TIA (T <T5)) > (T < )
(tmrw(Tl) A tzme(Tg)) — [(Tl < TQ) LY. (Tz < Tl) A (Tl = Tz)}
(T] < Tg) — (itm(Tl) A Hﬂ’w(Tg))

Since the: Situation Calculus also iiicorporates an initial situation; we as-
‘sume in Event Calculus-a first event stari at for

tzme(to)
- happens(start, to)
happens(E, T) — ((ty < T) V (B = start))

"Fhis event initiates the Auents that are initially true, as represented by the
clayse

initiates{start; P) «— initially(P).

We adopt the convention that no more than one event can occur i one
point in time, Each event can also only happen once:

(MPPEﬂS(E T) A ha‘ppens(E’ T )...> (B = E") o (T =T"))

Like in Situation Calculus, we iitroduce a domain dependen’f. predicate
action/1, and we impose the constraint

aet(E, A) — action(4)
We alsc assume there is at most one-action associated with each event:

This axiom can be-omiittéd 1o allow for simultaneous actions, but in Situ-
ation Calculus simultaneous actions are usually disallowed, so that we will
disregard-them in this chapter.

The following axioms and clauses summarise the formalisation of the
Event Calculus we will use here:
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holds( P, T" < happens(Bi,Ti), T < T, initiates(Ey, P),
' —clipped(Ty, P, T). '
clipped(T1, P,T)  «— happens(E3, Ty), T} < T, T < T,
o terminates(F,, P),

.in'éiia'i_e_sfst'ar't,P)_ — dnatially(P).

ST < YA (T < Th))
(_(Tl < _Tg:) /\{Tz < Ta)) — ('TI < TS)
(teme(Ty) Atime(Ty)) = [(Th < Ta) V(T2 < T3) V (Th = Ty)]

(happens(B,T) A happens(B*,T%)) (B = B) o (T = %))
act{F, A) — action(A)

time(to )
heppens(start,1s)
happens(B,T) — ((is < T)V (E = start))

O = {(instially), (time), (happens), (act), <}

5.2.3 An Example Problems Domain

For our examples we will use the simple and well-known' problem domain

of the Yale Shooting Problem, which we have dlready used in the previous
chapter. Recall t.h_a_i: the '_im_port;a.nt_ ﬁ_u_ents in this domain are loaded, in-
dicating that a gun is loaded, and alive, indicating that a.turkey is alive,
Basic actions are load {with the effect that the gun becomes loaded), wait’
(which has no effect), and shoot:(which unloads the gun-and kills the turkey
_if _th'e_g_u-n was lo_adeﬂ_’_). The _action predicate is then defined ag

-action’(ﬂ) «> {{A = load) V(A= w;j‘.it)':\/ (A= shobi__)]

In Situation Calculus, the effects of these actions are represented by

initiates(A, 5, logded) — A = load.
terminates(4, 5, loaded) .« A= shoot,
e A=

terminates{ 4, S, alive} : shoot, -ho_ldls_(_lod,_ded-, 5.
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The Bvent Calculus representation of the domain knowledge is

initiotes(E, loaded)  «— act(E,load).

terminateés(E, londed) a.ct_('E,_sho_ot)'.-

terminates( E, alive)  + act(E, shoot), happens(E,T),
holds(loaded; T).

‘We will. use examples in this problem -domain to llustrate and clarify our
results.

5.3 Counterfactual Reasoning in Situation
Calculus and Event Calculus

As indicated before, in [57} slightly modified versions of. Situation Calculus
and Event Calculus were shown to be equivalent. The main motivation for.
ouir tesearch on this topic was an unexpected problem encountered during
an atterpt to provide a transformation from A theories {[37]) to Event
Calculus. Where a transformation of :A to Situation Calculus was estab-
fished and proven sound and complete in [27], our proposed transformation
to Event Calculus was incorrect. A detailed analysis pointed out that the
problem could not be fixed by modifying the transformation, but was in-
herent to the Event Calculus, and in particular to its linear time structure.
‘Evidently; the question arose how this related o the equivalence tesult in
(57,

‘We first. illustrate the problem. It concerns the representation of coun-.
terfactual statements of the form “If A had happened, then’ B would have
‘held”: Such statemerits can be ¢orrectly represented in. formalisms with a
branching time structure, where ofie can. mmulta.neously talk about several
-possible evolutions of the- world. Examples of such formalisms-are A and
Situation Galculus.

At-first sight, counterfactuals ¢an be handled equally well using a form
of abductive reasoning on mcomplete knowledge in a Tinear time theoty,
but this intuition is incorrect. We clarify the point with an example.

Assume, we initially have a living turkey, and there is no mfm:rnatlon on
the initial state of the gun. In this sithation, a shoot event occurs. We also
know that if instead of shooting we had simply waited; the gun would have
been loaded afterward. The guestion is then; can the. turkey be alive after
the shoot event 7 _

The intended-answer is no: since we know that the gun would have
been loaded if we had waited instead of shot, we car conclude that it must
already have been loaded before the wait event (in the initial situation),
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since waiting cannot have loaded the gun. Therefore, a-shot in the mltlal
situation should have killed the turkey.

An OLP’ representation ‘of ‘this problem in Situation Calculus looks as
follows. The initial-situation is described by the predicate indtially. This
predicate is open .as we have no complete information on it. However, there
1s partial information represented by the FOL: axiom.

_'ini}t_iaﬂy(alive')

We represent the knowledge about the counterfactual situation by a FOL
axmrn

holds(loaded, result{wait, so})

This axicm.constrains the possible values of the open zmtmlly predicate.

The open logic program without the POL axiom has two ‘models: one;
in which initially{loaded) is true and one in which it is false. In the
latter mode!, we know that ﬁholds(!oaded o), and thereéfore also that
—rhoids(loaded result(wmt 50)). This is inconsistent with the FOL axiom,
so that rmodel of the program clauses is not a model of the entire.theary.

The only valid model is therefore the one in which- mztwﬂy( Ioa,ded) 1s true:

In that model, we find- holds(loaded, sg), from which we can obtain. the
intended result

—holds{alive, resuli(shoot, s )).
using the clauses for termination of fAluents.

In Event Calculus, the representation which springs to-mind.is the fol-
lowing: since we want to reason about different sequences of events, we as-
sumne incomplete knowledge on events and their order: We declare happens
and act as well as < open. Representing knowledge about a counterfactual
situation is done in a way similar to that in Situation Calculus, by using
an axiom of the form “f this sequence of events happens; then th:s formula
will hold afterward™. ‘To simplify notation, ‘we first define a new- predicaite
nfevents(2. int events(T,T*)} indicates that one or more intermediate
events occur between T and T, '

int_events(T,T°) « happens(E',T'), (T < T'), (T' < T").

‘Like in Sltuatlon Ca.iculus, we ha.ve an open indtially predicate, and our
knowledge on the initial situation is represented by the FOL axiom

indtially{alive)-
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Our knowledge about. the counterfactual evolution of the world is repre-
sented by

(hu.ppens(el,tl) A act{er , wait) A ﬂtnt_e:uent.s(tg,tl))
YTty < T A -:m.t_euents(tl, T}) — holds(loaded, T)

and we can express our query as

(happens(e;,t;) A act(eg,shoot) A —int euents(to,tg))
— YT (tg <A ﬁznt_e'uent.s(tg,T)) — holds{alive, T))

But this is not a correct representation: due fo the linear time constraintin
Event Calculus, the lefthandside of the axiom and the lefthandside of the.
‘query can never evaluate fo trie in the same interpretation. Either e; or
gy can follow start without. intermediate events, but not both. Therefore,
the axiorn has no influence. oni any useful answers to our query (answers in
which the query’s lefthandside is true) where it should have provided us
with additional information. In.fact, we have riot been :able to model the
counterfactual statement if we had wazled; the gun would have been loaded,

but have 01‘113.r approximated it modeling if we have’ wmied the gUR was
Ioad_gd afterward.

"The essence of the problermn is the following: for each sequerice of events,
our theory bas at least one model in which that sequence occurs, as re-
quired. However, within one model, only one sequence of events exists.
Hence,. combining information about two unrelated sequences of events is
not, possible within the formalism, because one sequence always exciudes
the other,

It should be mentioried that using meta-reasoning on the formalism it
is ‘possible to Teach the desired coriclusions. This is due to the fact that
meta-reasoning allows one to consider different objeci-level models in one
meta‘level model. As a result, 1f we restrict fime to a linear order we can
still perform counterfactual reasoning by meta—reasomng on-the formalism.

On. the other hand in Situation Caleulus:we find all different sequences
(branches) of events in one model. This allows us to. combine informa-
tion about these brariches, and herice to perform counterfactual reasonmg
without rescrting to a mieta-level,

The previous example shows that Situation Calculus can be used ‘to
model problems: that Event Calculus cannot handle. This 1s apparently in
contradiction with the equivalence result in [57].

The reason for the paradoxical results liés in thie. modifications applied to
Situation Calculus in [57] to prové the equivalerice with Event Calcitlus, To
the frame axiom of Situation Galculus, “happens(A,S)” atoms are added,
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resulting in the axiom

holds(P;result{A,S)) « happens(4 1 5), znitiatea(A, 5, P).
holds( P, result( A, S)) - happens(4,S); holds(P,S),
—terminates(4, S, P).

'This addition seerns of little consequence, but it has the important effect

that the frame axiom is now only’ applicable to. situations’ resulting ‘from

explicitly asserted sequences of actions, like in Event Calculuz. Moreover,
the FOL axiom

(happens{A:,S) A happens(Az,S)) — A1.= 4y

is added indicating that only one sequence of actions can exist. This is the
counterpart -of the linear time constraint in Event Calculus, and it leads to

the problems for counterfactual reasoning described above.
In short, the modified Situation Calculus is indeed equivalent to the.

Event Calculus under the appropriate assumptions; but it is. strictly’ less
expressive than the ungm.'-ﬂ Situation Calculis, ‘Qur goal in this chapter
is to slightly extend the Event .Calculns and 16 establish a more. general

relation Hetween the non—restncted calculi.

The approach we take differs in one other important point from the

one in [57): in the relation befween time points and situations. In (57

situations are assumed to correspond to one time point, whereas we consider
a situation fo be a set of time points, more spemﬁcally -a get of time points
between two actions, like in {83]. This point of view fits in more naturally
with the concept of instantaneous actions, which we have. adopted earlier.

5.4 A Generalised Calculus

The hew calculus. we present below extends 'bot'h Situation Calculus and

Event Calculus. Basically, we start with Event Calcalus and extend it with
branchmg time. After that, we will define situations and relate the new
calculus to Situation Calculus,

5.4.1 The New Calculus

In our new calculus; event(E,T) indicates the oécurrence of event E at

the hypothetical tirme point T. The distinction between ‘event/2 and the

-happens/2 predicate of Event Calculus is due to the branchmg time aspect

we introduce here. kolds(P; T} means P holds at T'. initially, initiates,
terminates, act, time and < have the same meaning as in Event Calculus.
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The frame axiom is identical to-that of Event Calculus with happens /2'-
renamed to event/2 :

holds(P,T) — event{E,, T1), Ty < T, initiates(E,, P),
~clipped(Ty, P,T).

clipped(Ty, P, T} «— eveni(E;;T3), Ty < T3, T2 < T,
terminates{ Ea, P).

The difference with Event Calculusliesin the time structure: instead of the
linear time constraints of Event Calciilus, we introduce weaker constraints
ensuring a branching time structure..

(T < T)A (Th, < T1))
(71 < B)A (T < Tu)) = (Ty, < T3)
(T < T)A (TG <TE) = (T < BV (G <TYV (T = T3)

(Ty < Tz} — (time(Ty) A time(T3))

Like in Event Calculus, events correspond to exactly -one fime point and
time points to at most one event. We assume a type prechca,te for actions
action/1, which is domain dependent. ‘We'i impose that at least one action
exists. Like in Event and Situation Calculus, we also exclude simultaneous
actions:

(event(E,T) A event(E", T — (B = E‘) -+ (T = T'))
d4 actzon(A)
act(E, A) - action{A)
(Gd(E 3 A.l:') A q'.ct.(E 1 AZ)) :'"_".-A_l = Ay

We introduce-an initial event at to:
time(to)
‘event(start, io)

event(E,T) — ((to <T)V (E = start))

and relate inétially to. initiates by including the following clause in the
definition of initintes:

initiates(start, P) « initially(P).

Finally, we need a notion of presence or absence of infermediate events
‘between two events. We deﬁne the predicate inf.events as

int_events(T, T* ). event(E', T"),(T < T"), (T < T).
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The following clauses and axioms summarise the given formalisation:
holds( P, T) i~ event(By, ), Ty <T, tmtmtes(El,P)
N —clipped(Ti, P, T).
clipped(Ty, P, T)  «~ eveni(l, T5), Ty < T4, Ty < T,
terminates( By, P).

initiates(start, P) - initially(P).
intevents(T,T") '« event(E',T'),(T < T"),(T" < T*).

(T <To) A (Ta < Tl))'
((Tl < Tz) (Tg < Ta)) — T1 << T3) _
((Tj_ < Tg) A (Tz < Tg)) —+ (Tl < Tg) (Tg <T1) Y (T]_ ZT;)
(T1 < Tz) — (time(Ty) A time(T3))

(event(E, T) A event(E*, T*))— ({(B'= E*).= (T = T7))
4 raction(4)
act(E, A) — action{4)
(act(E,:h) A aCt(E,Az)) - A-l =

time(ts)
event(start, o)
event{E 7). ((to < Tyv (E = start))

© = {{initially), (tim.e)' {event), (action), (ect), <}

‘The meaning of our theory is given by the completion of the above open
10g1c program, plus possibly definitions for initially, initigtes (partla,Hy
given In terms of initially above), terminates, event, time and gef, (and
any predlcates oceurring in these clauses). Some of the predicates (any
except instiates and terminates). may be declared open instead of defined.
Any FOL axioms can. of course he added to the theory.

5.4.2 Application
We illistrate how we can use the new _fbr_m‘a;ii__s_m. to represent the cournter-
factual reasoning problem we encountered earlier, and which we failed to
model in Event Calculus.

To summarise the example again: initially there is.a living turkey and

& gun which may or may ot be loaded. Then, ashoot. event occurs. We'

know that, if we had waited instead of shot, the gun would have been
loaded afterward: The guestion is if the tm:key ‘can be alive after the shot
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(it should ndt).
As before, -initiclly is open. One FOL axiom describes our knowledge
on the initial state of the world:

initially(alive)

We assume incomplete knowledge on fime and <, and express knowledge.
about these predicates by FOL axioms. We do, however, for the sake of
'51mphc1ty, assume complete knowledge on (real or counterfactual) ‘Televant
évents and. actions, so we can define these by enumeration, The following
facts assert the existence of the events we want to take into -account.

eventles,t1). actley, shioot).
event(ea,t2). act(e: ,wait).

These events occur in mutually exclusive _evo'lutions'of the world, 50 they
are on two different branches in the time structure. The axioms

ﬂ(tl -( tg) ig < tl)

représent this knqwledg"c. } _
Observations about hypothetical evolutions of the world are-in general
represented by FEQL axioms. In this case we get the axiom

YT : ({12 < T) A ~ini_events(iy, T) — holds(loaded, T'))

This axiom is only satisfied in models'in.'w'_h'ich:'ihitial!y’(l;qﬂed) holds. In
those models, holds{loaded, 1) is true, which impliesterminates(é1, alive).
Therefore,

VT ((t; < T) A =int euen.ts(tl, T) — "-lhalds(alwe )

holds in all models of our theory, which is the intended result.

This apphcatlon shows that counterfactual reasoning is possxb]e in ‘the
new formalism, where it is not in Event. Calculus. The addition of bra.nchmg'.
time is responmble for the gam in expréssive power.

5.4.3 Introducing Situations
The ‘open logic program given in section 5.4.1fotms the esserice of our new
caleilns. Now we extend this theory with & number of additionial:concepts
that correspond to the concepts in Situation Calculus.

First of all, we introduce situations. We define a.situation to be the set
of all time points that. are later than a certain event (the starting event of
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the'situation), and such that there are no-other events between the starting
event and the time point itself. We call the mltml situation sg, and use the
term-result(F, 4, 8) to denote the situation which is started by the event
E, with associated action A, occurring in situation S. Note that 4 and S
are uniquely determined by E, but not vice versa. For our discussion it is
appropriate to include all three parameters in the situation narme.

We get the following inductive definition:

Sp.= {Ti{te<T) A —int_events(ty, T)}
result(E, A, S) = {T|3r .7 €S A event(E,T') A act(E, A)
AT <T) A ﬁznt_euents(T" )}

which we express in the following clatises for the member predicate:

meimber(T, sq) — 1o < T, ~inievents(io, T))
member(T, resuli(F, 4,5)) euent(E TY), member(T", 5}, _
act(E, A), T' < T, —vint_events(T', T).

where rhember(T, -S) denotes T' € 5.

We can then inductively define a type predicate for situations : spis a
situation, and 'S = result(E, 4, S) is a situation if § is a situation, F an
evént occurring at a time point belonging te § and 4 the action associated
with that event. "This is represented by the- completion of

s_z'ii_:,a.__ﬁ_on(s;j)_._ o
situation(result(E, A, 5)) sétuation (5), actzon(A)
member(T, 5), event(E, T), act(E, A).
with in addition the induction axiom

V&.: [{(¥5 1 (situation(S) - @(5))) «
(®(s0) A VA,5,E,T:
[(®(S) A situation(§) A m.ember(T 5) A event(E,T) A act{E, A))
—i$(result(F, 4, 5))] )

Haying introduced situations, we define what it means for a fliient to hold

in & situation: we say that a fluent holds in a situation: if .and only if it
halds at all time points belonging te that situation. We use the predicate

holds_in/2 to express the truth valueof fuents in a situation,
holds.in(P,;S) < VT :(member(T,5) — holds(P,T))

In general, it is sufficienit to check only the truth value at one time point:

‘we can prove that.a fluent holds at all: fime points in a situation if it holds

at at least one. This is expressed in the following theorem:
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Theorem 5.4.1

VS : situation(S) —
([T : member(T,S) A holds(P,T)] —
T : member(T; S) — holds(P,T))

Proaf:
Assume § is'a situation, We know that

3T :member(T, 5) A kolds(P,T)

and need to prove VT : member(T, 5} — holds(P,T). To this end, we first
rewrite the above formula using:the definition of kolds :

3T, B, T wmember(T, 5) A event(E',T') A T <'T A initiates(E', P)
A =elipped(T!, P,T)

We distinguish two cases: a situation S either has the form result(E, 4, §")
as described in the definition, or is sg. First assume-S = g¢: the above
formula then reads :

[3T, BT« (8 = so A member(T,sq) A event{E,T) A T' <T A
initiates( B, P} A —clipped(T", P, T))]

We derive from member(T, s9) that o < T and —ént_evenis(to, T). Since
T «<.T and 1g < T hold, one of T¥ < tn, to < T¥ or 1o = T¥ must be true.
The first formula is-inconsistent with the axjom that there are no events
before 1o, the second formula together with 7% < T is in contradiction with

-int_events(ly, T). Therefore to.= 7", and we can derive from the above
disjunction that

[3T, B\ T': (S =50 AT =10 A E = start A to < TA
—int_events(to, T) A event(start,to) A initiates(start; P)
A —clipped(to, P, T)]

which implies _
S = sp A initiates(start, P)

PFromthis, it followsthit P holds for each fismber 6f 6. Indeed, assiime
that mmber(T+ s0): we find for each such 7'+

to < Tt A —int_events(ig, TT) A-event(start, to) A initiates(start; P)
so, because clipped(T, P, T') implies int.events(T, T, it:follows that

to <TH A ~clipped(to; P, TT) A event(start,to) A initiates(start, P)
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and therefore kolds(P, 7).

Now take the second case: assume § =-r;esu1t_('E'-* LA, S*)ls a situation.
From

3T, BT - m,embeT(T S) A event(E'\T") A T' < T'A
initiates(E', P) A —clipped(T", P;T)

we derive, using the definition of situation and ﬁhe’Free_Equalit_y’ theory :

AT, B, T', B*, T*, A, 5%
(5 = result(E*, A, S') A member(T result(E*, 4, 5*))
A sttuation(S*) A member(T*,5%) A ‘event(E*,T") A act(E*,A)
Aevent(E!, T') A T' < T A initiates(E', Py A —clipped(T’, P, T))

which we rewrite using the. definition of member to

3T, B, T, E*, T* A, §* :
{8.= result(B*, 4,5%) A T* <T A -w.nt.events(T" Ty
situation{S*) A member(T*, S} A. event(E", T*) A ack(E™, A) A
event(B \ TY AT <T A initiates(E, P) A —clipped(T!, P,TY)

We now use the knowledge that 77 < T and 7" < T, Given our FOL
axioms on the time relation this implies that either 79 & T% or T/ = T*
must hold (T* < T’ cannot hold. because of it events(T*, T)):

(3T, B, T, B*, T*, 4, 5" : |
(5= result(E*, A,8*) A T* < T A member{T*, 5}

A —intevents(T*, T) A event(E*,T*) A act{B*, A) A
event(B T AT <T" A initiotes(E', P} A ﬂclzpped(T" P, T))]
W
(3T, E*, T+, 4,8 :

(8 = result(E*, 4,5%) A T < T A —int.events(T*, T) A
ﬂwmber(T* ) A event(E‘“ T} A act{B* A) A ;mti_,a,tes(E‘,P) A
—-chpped(T’ BT i

Now, what we must prove is that for each-member of 5, P holds. So.assume
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ember{T+, 5). We add member(T+, S} to both disjuncts:-
[3T, B, T B T*, A, 5" :
(5 = result(E*, A, S‘) AT < T A member(T™, S*)
A —int. events(T* T) A event(B*,T*) A act(E*, A} A
event(E, T A T' < T* Ainitiates(E', P) A -wcfipped(.T’--,_P,_ )
A member{T+,.5)]
A%
[3T, E*, T, A, 5%
(S = result(E* 4, 5%) A T < T A =intevents(T", T) A
member (T, 5%) A event(E* T) A act(E7, A ) A initiates(E*, P) A
~clipped(T*, P,T)} A member(T+,S)]
and rewrite them using the definition of member
{37, B\ T, B, T*, A, 57, 1" :
(5 = result(E*, A, S‘) A T‘ <T.A member(T" 5%
A —int.events(T*, T A event(E*, T*).A act(E*, A) A
event(E',T') A T' <T* A initiates(B", P} A ~clipped(T’, P, T}y
A event(E*, T") A member(T",5*) A T" < T A
—int_events(TV , TT)]
v
[HT) E",;T‘,-A, S*!Tw : .
(5 = resuli(F*, A,5%) A T < T A —int_events{T*,T) A
member(T*, 5*) A event(E*,T*) A act{B", 4) A iniliates(B*, P)A
~clipped(T*, P,T)) _ '
A event(E*, T") A member(T",8%) A T < TH A
—int.events(T", T)]

As events can only be associated with one time point, T = T must hold, .
so we can simplify the formula (also omitting some conjuncts) to.
(3T, B, T, BT
{event(E*, T%). A member(T*, 5%} A act{E*, A) A
T < Tt A —intevents(T*,TF) A T* < T A —int.events(T*, T) A
eveni(E', T') A T' < T* A initiates(E’', P) A —clipped(T”, P, T))]
A"
(3T, E*, T+
(event(E*,T*) A member(T*; S") A act(E*, A) A
T* < Tt A —intevenis(T* , TH) A T < T A —\mt evenis(T*,T)A
initigtes(E* , P) A —clipped(T*, P,T))]

Now, in the first disjunct we can expand- the definition of clipped/3: ‘given
T <7, T < T and event(E*,T"), ~clipped(T’, P, T) is equivalent to

~clipped(T’, P,T") A —terminotes(E", P) A —clipped(T*, P, T)
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The first two conjuncts of thi_s-fqrmul'a. _toge_fher with ~int_evenis(T*, P, T-*'). -
imply —clipped(T’, P, 7). So from the disjunction above it follows that
[3E, T, B*,T*:
(event(E*, T*) A member(T”, §*) A act(B*; A) A
T <TH A eveni(E,T) A T < T* A initiates(E'  P) A

~clipped(T", P, T+))]
N

o [HT: E'T": _
(event(E', T") A member(T', S") A act{E', A) A _
T <TH A —int_evends(T, TH) A T' < T A initiates(E’, P)))

‘Which leads, in both disjuncts, to the conclusion that
holds(P, T)

This proves the thecrem for the case 5 = re_sult_(E" 4, 8"). Together with
‘the proof for §'= 5, above, this completes the proof of the thearem. O
5.4.4 The Application Revisited
‘The introduction of situations in the new calculus allows us to simplify
the representation of the application in section 5.4.2 a little. We recall the
clauses and axioms describing the scenarior

initiany('afifue')

eveni{ey, t1). act(-_.e;‘-,:,‘_ihoq_t].

event(ez,13). act{ez,wait),
time(t;)  time(ty)
(b <b) (k< ty)

with open time, < and instially predicates.
The observation '

VT : ((ta < T) A ﬁini_events(tz_,-T_) = holds(loaded, T))
can now be simplified to the equivalent formula.
holds.in(loaded, result(ez, wait, so))
and.sirnilarly_'fhe formula under consideration

YT : {{ty < T) A ﬁint;event_s(f.l T)— = holds(alive, T))
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can be simplified to
ﬁ-holds_in(q.li_ve, result(e, shoot, o))

‘This represéntation shows greater similarities with the one in Situation.
Calculus, and is definitely less cumbersome.

5.5 Relation to the Original Calculi

As indicated before, the new-calculus is an extension of both Situation
Calculus and Event Calculus. We. can obtain Situation Calculus or Event,
Calculus by adding specific constraints to the general calculus, as we prove
in this section. These specific constraints tepresent the essential difference
between Sitnation Calculus and Event Calculus, and we will further. study
same of their impiicat-ionsfurthe_r on.

First, we show that Event Calculus is-a special case of the new calculus
_descnbed in section 5.4.1. The only actual différence between the caleuli
— if we tename the event predicate to ha_,ppens or Vice versa, which is only
-a Triater of syntax — is in the constraints on <.

Tn Event Calculus, we have an axiom

(time(Ty) A t‘im'e(rgi)’_)_ — [(T1 <)V (Tr< )V (T =1) (1)
where the corresponding axiom in the new calculus reads
(T <T3) A (Te < T8)) > (T < D) V(B < B) VT =T)]  (2)

As either calculus contains an axiom (T3 < Tp) — (time(Ti) A time(T2)),
the lefthandside of (1) is implied by the lefthandside of (2), while their
nghtha.ndsldes ate the same. Therefore, (2} is. lmphed by (1): the Event
Calculus axiom is strictly stronger than the new axiom, Intuitively, this
corresponds- to the fact that a tirne line-is one spe_c1_al case of & branchmg
time structure:

o, to obtain Bvent Calculus, we only need to strengthen one axiom: of
our calcilis, restricting the time tree to a line.

We now show the relation of the new calculus to Sitnation Calculus.
This is less straightforward, partly because the frame axiom is formulated
1n a differenit way, bt alse because a numher of assurnptmns in Situation
Calculus are implicit in the data structure. These assumptions have to be
made explicit in the new calculus, which will also result in a clearer view on
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them. We start from the theory given in section 5:4.3, summarised below

RELATION TO THE CRIGINAL CALCULI

holds( P, T) — event{E), 1Y), Ty < T, initiates(Fy, )
ﬂcizpped(Tl, P T) o
clipped(Ty, P,T) + event(E;,T2), T < Tg,Tz <71
_ terminates(By, P).
initiates(start, P) initially(P).

int;eve_nts_('T_, Ty = event(B' T’ W T <TH (T < T%).

*"1((T1 < Tg) (Tg < Tj))
((Tl < Tz) (Tz < T3) —+ (T1 < Tg)
((Tl < T3) A (Tg << Ts)) — (T]_ < Tg) ¥ (TQ < Tl) W (Tl )
(i< Ty) — (ttme(Tl) A time(Ts))

(event(E,T) A eveni(E*, T*)_._) —-+[(E =E*) = (T =T")
34 : action{4)
act(E, A) — action{4)
(act(E, A1) A act(E, A2)) — 41 = 4,

time(t)
_ event(siart, to)
event(E,T) — ({to <T) V(B = start))

s ituc’z_,t_'io_n:( so)-.
situation(result(E, 4,8)) « situation(5), action(4),
' . member(T, §), event(E,T),
act(E, A).

member(T, s5) o+ 3o < T, ~int_events(iy; T))
member(T, resulti(E, 4, 8)) + ewent(E T'), member(T', 5),
| act(E, A), T < T,
-unt evenits(T",T).

: [(VS : (situation(S) — $(85))) —
@(so) A YA, S E,T: [($(S) A
sttuation(§) A member(T, S) A eveni(E, T) A act(E, 4))
— $(result(E, A, SN
holds in(P; §) w ¥T': (meimber(T;S) — holds(P,T))

O = {initially, time, event, action, act, <}

81
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A very important assumption inherent to Situation Calculus is the fol-
lowing. In Situation Calclus, each term result(A, 5') where A is an action
and 5’ is a situation, represents a new situation. All of these:terms exist

in the theory and therefore all of these situations are implicitly present in
‘Situation Calculus. Moréover, for each action 4 and situation 5/, there is
exactly one resuling situation result(d4, 5.

In other words, in Situation Calculus it is assumed that in each (hypo-
thetical) situation each action occurs (in some hypothetical evolution of the
world), and leads to exactly one new situation. This'is not necessarily true
in the new calculus and requires an extra axiom, Since we have defined a
situation as the set of time points'after & certain event-and before any later
everits, in our new calculus the assumption feads that for each event E and
action A, there.is exactly one event E* consisting of the occurrence of A
immediately after F:

VE, T, A:({event(B,T) A action(A ) — 38, T (ia)
.[e'uent(E‘_ Ty A (T <T") A act(E", 4 Ay A —ﬁant__eﬂents(_T-T"]__])_

VE,T;E'\T', E*,T", A: ((event(E,T) A action(4) o
/\et:en.t(E" T’) A act(E' A AT <T A —intevents(T,T')  (ib)
Aevent(E*,T*) A act(B*;A) A T < T* A —int_events(T, T)

- E" = E*})
It is easy to prove that this axiom implies that each. action occurs in each

situation in some possible evolution of the world, and leads to exactly-one
new situation:

Lemma 5.5.1
(Lemma 5.5.1:a)

VS, A : (situation(S) A action{A}) —
JE, T : member(T,5) A event(E,T) A act(E, A)

(Lemma 5.5.1.5)
VS, A, B, T, E', T" : ((situation(S) A member(T,5) A event(E,T)
A act(E 4) A mmb&r(T" S) A event(E', T') A act(E', 4))
— (B =F) .
Proofr

The lemma follows from axioms (ia) and {ik). We prove part- a-fixst: for all
S aiid A4, if sztua,tzon.(S) A actwn( )-then

| action{A) A | |
(5 =380}V (3B, B, 5" : (5 = result(B*, B, §*) A situation(S"))
Aactwn.(B) A 3T7 2 (member(T*, 8) A event(E™, T*) A act(E*, B))])
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‘With the fact event(start,to) and-axiom-'-'(:z'a)' this implies

[S. =59 A eveni(start,ty) A
AB, T (event(E,T) A 15 <T A act{E, A) A —int_events{ts, T')})
[3E,T, E*, T, B, 5"
(S = result(E", B,5%) A actwn(B) A -situalion(S*)
A mernber(T?, S} A event(E*, T") A act{E*,B)
reverd(EB,T) A T* <T A act(E, A) A ~int_events(T*, T))]

which, using the definition of member, leads to

IE, T imember(T, s0) A S='so A event(E;T) A act(E, 4)
C 2%
3E, T, B, E*, 5" : [member(T, ﬂ=:31.alt(;E‘;k B, 5%)) A event{E, TYA
. act(B, 4) A § = result(E*, B, 5*)

-and: therefore
3E, T : member(T, §) A eveni(E, T) A act{E,; A)
which is what we needed to prove. _
The proof of part & is as follows: given S, 4, B,T, E', T, assume

{situation(S) A member(T,5) A event(E,T) A act_(E A)
A member(T', §) A event{E',T") /\ act( ', A))

Again, we'use the definition of situation to obtain

[S=s, v 3B, S* B, T :

(S = result(E*, B,5*) A actwn(B) A sttuation(S*)
A member(T?, S’) A -event{E*,T*) A act(E*; B))]
A tnember(T, S] A event(E,T) A act(E, A)

A fnember(T', S) A event{E',T) A act(E!, A))

whichi can be rewritten as

[S = s A merber(T, S) A event(B,T) A act(E, A)
- Amember(T', S) A event(E!, T') A act(E', A)]
vV
(3B, S*, B*,T* : (S = result(E*, B, 5*) A action(B) A situation(5*)
/\member(T* 57) A event(E*,T*) A act(E*, B))
A member(T, 5) A e*uent(E T A act(E A) R
A member(T", 5) A event{E', T') A act(Ei A))
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and using the definition of member we get

[§= s A eveni(start, io)]
Aty < T- A —int_events(lo, T) A event(E,T) A act(E, A)A
ta < T A —int_events(io, T') A e'uent(E" T A aci{ B, 4)
W
[3B, 8%, E*, T*:{S = result(E*, B, §*) A action(B) A situation(S*)
/\member(T* StY A event(E* T*) A act(E", B))

ANT<T A —um.t_events(T’“ T) A event(E,T) A act(E, A)

AT < T A =-int events{(T*, T') A eveni(E', T} ~ act(E', 4))]

Applying axiom (ib) to-either part of the disjunction, we find
" E=F

which proves the lemma. O

This lemima also imiplies that to each (action,situation) pair there cor-
responds exactly one evént consisting of that action occutring in.that situ-
dtion. A situation-is then completely determined by the previous sifuation
and the last action. Therefore,. wé can eliminate the event parameter in
situation names and reduce the term result(E, A, S) to result(4, 5). Our
names. for situations then comade with those of Situation Calculus.

Given the above lemma, the induction axiom of section 5.4.3 can be
simplified to the Situation Calculus induction axiom

([(¥S sztuatwn(S) — ‘F(S)))
(@ (sg) N VA 5 [(%( (8) A action(A) A situation(S))
— P(result(A, S))])]

which we will use as the basis for our proof.

We are then .about ready to- prove the equivalence: -of the frame: a.xmms.
of Situation Calculus and the new calculus. Now we only need to' define
the concepts correspondmg to the Situation Calénlus predicates initiates/3
and termmates/ 3 in the new calculus. These predicates indicate when an’
-action executed in-a certain situation initiates or terminates a fluent. In
terms.of events the definitions read- as follows {choosirig-new names inst.s/3.
-and term: 5/3 1o avmd confusmn with zmtwtes/ 2 and: termzna.tes/ 2 for.
events_)

YA, S, P : (init:s(A, 5, P) 3B, T :

(member(T, S). A ewent(E T) A act(E, A) A initiates(E, P}})
VA, 8, P :(term_s{4, 5, P)HE]E T

(member(T, S} A event(E,T) A act(B, A) A terminates(E, P)))
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With all the necessary concepts defined, we can now state our equiv-
alence result: Intuitively, this resilt states that the predicate holds_in,
.defining the truth valve of a fluent in a situation, coincides with the predi-
cate holds’ defined in terms of inif.s and ferm_s by the Situation Calculus
frame axiom as follows:.

holds'{ P, 50} — mztzal!y(P)
holds'(P,result(A, §)) + init_s(A4, S, P). _
holds'{ P, résult(A, S)} +« holds' (P, S), -term._s(A, S, P).

More: forma.lly, our result is the following: assume T is the open logic
program given on page 81, with in addition the axioms

YE, T, A: ((event(E, T) A action(A)) — IE*, T*:
[event(E*, T*) A (T < T*) Aact(E", A) A —int_events(T, T*)])

VE,T,E',\T' B, T", A ((event(E,T) A action{4)
Aevent(E',T') A act(BY A) A T < T A ~iint_events{T; T")
Nevent(E*, T") A act(E*, A) A T < T* A ﬂznt_events(T T*)

~ (' = B*})

VA, S, P : (init-s(A, S, P) «3E, T :
(rnember(T S) A event(E,T) A act(E, 4) A initiates( E, P)))
VA, S, P:(term.s(4,5,P) — 3E,T:
(nwmber(T 5) A event(E, TY A act(E, A) A termmates(E P)))

and with open initiaies, fermindgtes, time, event, action, act and <
predicates. Then

Theorem 5.5.1
T [=YP; S : situation{S) — (holds 'm(P 5) < holds'(P, 5))

To- prove this theorem, we first prove a lemma which extends theorem
5.4.1: '

Lemma 5.5.2
' VS : situation(S) —
([ET mémber(T, S) A ho!ds(P ) «
[VT : member(T, §) — holds( P, T])
Proof:

‘The *— part” is theorem 5.4.1. The proof of the “e part? is straightfor-
ward: all that needs to be proven for all § is AT member(T, §), which

R 4 i s s e
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follows immediately from lemma.5.5.1.a and the axiom that at least one
action exists, O
We now: proceed with the proof of theorem 5:5.1.
Proaof: _
The proof of our theorem is by induction on situations: Using the induction
axiom on.situations we find that the theorem follows from the formulae
VP : holds'(P,sp) +> holds:in{ P, s)

VP,A,8:
{situation(S5) A action(A)) — [(holds'(F;5) « holds_ m.(P Sy —-
(holds'{ P, result(A, S)) « holds_in(P; resiilt( 4, S))]

which we prove here. _
The first forrula (the base case) can be proven as follows: using the
definition of holds.in, we write. holdsin(P, sq) as '
NT: [(_t{)_.( T A ﬂ_int+euenfs(t0-,T)) —s lolds( P, T)]
and using the definition of holds this is equivalent to

v [(_io < T A —ini_events(to, T)) — IF, T _ _
(event(E',T') A T" < T A initiates(E', F) A —clipped(T, P,T))]

Because of the precondition. ty < T A —int.events(io, T) and the axiom
that to is the first time point, we know that T = 45, The above formula
thefi reads '
VT : [(to < T A ﬁint&e'ue::nts(ig-, ) —
(event(start,io) A to < T A initiates(start, P) A —clipped(to, P, T))]

Provided that 3T : {t5 < TA=int.events(to,T)); which follows immediately
from axiom (ie), this formula implies initiates(start, P). On the othier
hand, znuzates(start P) implies the above formula, as —achpped(to, P.T)
trivially follows from —int_events(ty, T').

So we find that holds._in(P, s¢) « indtiates(start, P). Of course, wealso
know that mztmtes(start P) is equivalent to.initially(P) and therefore to
holds' {P, 39). This completes the proof of the base case.

The proof of the induction step is rather tedious. We state the result
here as a new lernma: .

Lemma 5.5.3
T
YP, 4,5
[situation(8) A action{A)]— [(helds'(P, S} — holdsin(P,5)) —
(holds'(P, result(4, S)) « holdsin(P, result{4;5))]



5.6. PROBLEMS IN SITUATION CALCULIUS 87

We refer the reader to Appendix B for the proof.

Given the base case proven above and lemma 5.5. 3, our theorem now
tollows directly: from the induction axiom. Hence, the predlcate ‘helds’ /2
defined by the Situation Calculus frame axiom coincides with holds_in [2

defined in terms of the holds predicate for time points in our new caleulus.
&)

5.6 Restr'ic-t-_ions. of Situation Calculus
in Counterfactual Reasoning

As we argued in .section 5:5, the key reason for the success of Situation
Calculus —compared to Event Calcnlus— at countérfactual reasoning was
that in each model of a Situation Caleulus theory, all relevant real and
counterfactual situations were present. On the logical level, the existence
of the necessary situations in Situation Calculus is énsured by

1. ‘the use of the functor result/2 to encode situations, combined with'
the fact that in classical logic a functor represents a total mapping, as
stated explicitly by the tautology V4,5, = 35, : resu!t(A S1) = 8,
Our definition of the type: predlcate setuatwn/ 1 ensures that S5 is'a
mtua.tlon if A is an action.and 5, & situation.

2: the presence of the Free Equality theory, which entails that.different
situation terms represent different situations.

In this section, we further investigate thiscentral’issue for counterfactual
reasoning. We do. this by introducing a class of temporal :domains and:
showing that representations of these domains in Situation Calculus do not
allow to derive intended conclusions based . on counterfactual mformatlon_
The reason for this will be shown to be that for these domains, also in
Situation Calculus, not a_ll' relevant. counterfactual situations are present in
each model.

Essential forthe class.of temporal domains under scrutiny is the presence
of nondeterministic actions: ‘actions. which, when executed in one and the.
same situation, do not a.lways have the same effects and hence can lead to-
different resulting states. _

‘There are several different ways in which nondeterministic actions can
arise in a temporal domain. The modelled action may be truly nondeter-
ministic, like the radioactive decay of ‘particles, or it ‘may be determmlstlc
but dependent on very small fluctuations in the world or in the way the
-action is performed, details which are not modelled in the theory. In somie
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cases, for example when representing the action of rolling a die, these de-
tails can not be reasonably modelled. In .other cases the domain may be
modelled at a high level of abstraction, on which the details that influence
the action are not visible. In the latier case the nondeterminism can be
eliminated by using a lower, more detailed, level of abstraction.

We start with an example illustrating the representztion of nondeter-
ministic actions in Situation Calculus.

Assumne a variant of the Yale shooting problem where the shoot action
has a nondeterministic efféct: sometimes the bullet only wounds the turkey
and does not kill it (for example because the hunter has waited a split.
second: longer, the gun has been aimed a little differently, the turkey has-
moved slightly -or for some other unknown. reason). If we perform shoot in
a situation in which both alive, an_cl loaded hold, two resulting situations
aré possible: one in which alive holds (and wounded as: well), and one in
which it does not.,

The effect of shooting could in this case be modelled by the formula

-initiates( A, S, wounded) Vv termian.es"(A_', 5, alive)
«— A = shoot A holds(loaded, S) A holds(alive, S)

plus some formulae “completing” the above one (the disjunction in the.
head, which represents the nondeterminism, cannot be handled by standard.
p]_:_edlcate completl_on)

initiotes(4, S;wounded) — A.=shoot A holds(loaded 5)
A hofds(a.’.we 8)
A-terminates(A, S,_ alive)

terminates(A, S, alive) — A= shoot A holds(loaded, 5)
A holds(alive, 5)
A —unitiates(4, 5, wounded)

A representation which fits better into our formalism and which' allows
for the use of standard completion, can be’ obtamed from the above one
by lntro_du_cmg an openr “degree of freedom” predicate. Theé use of degree
of freedom predicates for representing nondeterminism was érigitally pro-
posed in [28] in the context of Event Calculus. In ‘geneéral, specifications
of the above type using disjunctions in the head of clauses can be trans-
formed. rather: easily into pure OLP specifications with degree of freedom
predicates.
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We illustrate the method by modeling the above problem domiain in
OLP.2 The rules: for initiation and termination read:

initiates(4, S, Iba_dé_d)_ — A= loagd.

terminiates(A, S, foade&j «— A = shoot.

terminates(A, S, alive) — A ='shoot, kolds(lcaded, 3),
holds(alwe 5), Tuck(A4, S')

initiates(A, 5, wounded) — = shoot, holds(loaded, S},
_holds(alwe 85), =luck{4, 8).

where luck/2 is an open predicate indicating whether or not the hunter is
lucky (i.e. whether he kills the turkey or not) dunng a particular instance
-of the shoot actzon ~— determined by the situation in ‘which it 6ccurs —

The actual outcome of the nondeterministic action {i.e. ‘the choice of
disjunét in the original effect axiom) depends on this open predicate, on
which we have no information. The theory does not entail or exclude:either
outcome

Note that the truth value of the open predicate is.not dependent. on the

state of the world at the action’s time of occurrence: the predicate should.
be considered to represent an unknown: modlﬁer of the nondeterministic:

action. It is not a fluent. This is slightly more apparent i the Event.
Calculus / new ca.l_cul_us representation:

inatiates(E, loaded) — act(E, load)..

terminates(E, loaded) - act(E, shoot). . _

terminates(F.alive) « act(E, shoot), event(E,T), luck(E),
holds(loaded, T'), holds(alive, .

thitiates(E, wounded) « act(F, shoot), event(E, 1), ~luck(E),
holds(loaded, T'), holds{alive, T).

where luck/1 is an open predicate parameterised with. the event-it refers.

to. In-the Situation Calculus representation the (a.ctlon,mtuatmn) pairis

the eguivalent of this event.

The. following scenario illustrates some forms of reasoning with nonde-
terministic actions in Situation Calculus. leen a turkey which is initially
alive.and a gun which is initially loaded, as represented by

initially(alive).
initially(loaded).

¥For a more detailed discussion.on rendetérministic actions and the use of degreeof

freedom predicates we refer to Chapter 7.
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‘we want to determine whether the turkey is alive of not after shooting, so
Af holds(alive result{shoot, s5)) or its negation.are entailed, The only open
‘predicate is luck/2, as explained. above.

Because luck/2 is open, the theory has models in which Iuck(shoot 30)
is true as well as todels in which it is false; In the former set of- riodels,
the formula holds(alive, result(shoot, 5)) is false, in the latter it is true.
Therefore; as intended, neither this formula nor its negation are entailed.

Independent: observations may give additional information on & scenario.
If in the scenario above we had observed. that the turkey was dead afterwe
had reloaded the gun, i.e. -if —holds(alive, resuli{load; result(shoot, 55)})
had been an additional POL axiom, the theory would entail luck{shooi, ¢}
and therefore -:holds(alwe resuft(shoot 30))

This briefly illustrates that Situation Calculus is capable of certain forms
of reasomng with nondetérministic-actions.

However, problems arise when on these nondeterministic actions coun-
terfactual reasoning is performed. The reason for this is that Situation
Caléuhis cannot represent all relevant situations resulting from a nondeter-
ministic action at thé sarie time:

The following scenario illustrates this: we shoot a turkey, which is ini-
tially alive, ‘with a. gun that may or may not be. loaded. We: have the
additional information that the cutcomie of shooting under-the existing but
to us unknown circumstances could have been the.death of the turkey. Note
that no matter whether the gun was loaded or not, the: turkey could still be
alive after shooting, due to the nondeterminism mvolved in the action. The
information that the turkey could be dead after a shot given the extisting
initial situation indicates that the gun was initially loaded,

We can represent the scenario in Situation Calculus as follows, The
initially predicate is open, and one FOL axiom about it'is given:

init_}iaﬂy_(dlive) '

The hick predicate iz open as well. The information about the:counterfac-
tual outcome of shooting is represented by the-axiom

ﬂhofds(afwe 'resuit(shoot so)

which entalls 1,nztw.Hy(Ioaded) as intended. However, it a.lso 't.IlVla.lly en-
-tails the falsehood of

holds(ialive ; result({shoot; _Su_)_j

‘Se in Situation Calculus, we reach the uninfended conclusion that the
turkey would always be dead after shooting.
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In a theory correctly representing the above scenario, it is required that
more than ohe situation resultin_g from a shoot. action in the initial situa-

tion is present in one tmodel. This problem cannot be solved in Situation

C:alculus,_ although it can arguably be side-stepped by replacing the shoot
action type with two different: (deterministic) action types, for example
shoot_and kill and shoot_and_wound. The nondeterminism is then elimi-
nated; which ev-idgl_ﬁ‘.ly avoids the problem,

As opposed to Situation Calculus, the new calculus allows for a direct

representation of nondeterministic actions and for couni:_erfaci;ua.l _'.réasdning-
on them. This is due to the fact that the new calculus allows multiple

situations to result from the same sequence. of actions in the.same model.
If we can enforce the existence of these different situations, counterfactual
reasoning is no longer a‘problern,

. The existence of all possible situations can be. guaranteed by FOL ax-
ioms. If only deterministic actions are present, -daxiom {ia} of section 5.5 or
Lemma 5.5.1.a wh'i_ch is derived from it, are s'uf'ﬁci_ent. In terms of situa-
tious, this axiom can also-be written as

¥S, A (sttuation(S) A -action{d)) — 3E : .-_.:it’uqtion.__(-res.ult(E, A, 8))

When nondéterministic actions are present, this axiom must be extended
with specific axioms ensuring that for each nondeterministic action -the

situation tree. contains situations corresponding to all possible outcormes. of

that action.

As an example, we take the Yale shooting domain with n’ondeterminis't_ic
shoot- action we modélied earlier, The existence of all possible situations
resulting from shooting can be ensured by the following axiom. {note that
nondeterminism. only occurs when both alive and loaded hold i a-sitia-
tion).

VS : (situation(S) A holds_in(loaded, S) A holds_in(alive, §)) —
[3E: (_sz’tuaﬁon(result('E,__S.hogt_,_._S_) A luck{E))
ANIE (sitmtion(:reéﬂ!t{_ﬂ’, shoot, 8) A ﬁ_]',b_,‘ck(.Ef)')']

Similar axioms can be added to any domain description for each. nondeter-

‘ministic action it contains.

As an example of counterfactual Teasoning on this domain, we represént:
the above scenario in the new calculus, Undefined predicates are initially
and luck as"well as eveni, act, téme and <. There ig a. FOL axiom on
initially: -

wnitially(alive)
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The information on the counterfactual shoot event can be represented by
the axioms
3By : [situation{result(By,shoot, so)}A
—holds in(alive, result( E1, shoot, so))}

“We have to _.'che'ck; if the turkey can survive a shof unider the given circum-
stances, i.e. i

3F : situation(result(E, shooti.so_.)j A holds_in{alive, result(E, shoot, sg))

The above axioms JEy —holds_in{alive, fe‘sult(-’El,shoot,30")_') and
initially(alive) entail initially(loaded). This in turn eéntails, combined
with initially(alive) and the existence of situations axiom for the shoot
action, that '

IE : situationfresult( E, shoot, so)} A ~luck(E)

The-initiation and termination rules on the other hand guarantee that for'
each E .
situation(result(E; shoot, sp)) A ~luck{E) —
‘holds_in{alive, result(E, shoot, $g))
Aholds in{wounded, result(E, s Koot 50))

is.true. Combining these formulae we conclude that the turkey can be alive
after shooting: Moreover, the theory also entails that if the turkey survives
the shot, it will certainly be wounded, _

This-example shows how the deficiency of Situation Caleilus for coun-
terfactual reasoning can be deali with in a more general calcilus; in which
the fime tree contains more :situ_atio_hs_. '

5.7 Discussion

Tn this chapter we liave préesented & new calculus extending Situation Cal-
culus and Event Calculus, and used that calculus -as an analysis tool for
comparing the original calculi. _ ;

‘Our. approach-differs in several respects from the comparison made in
[57). Fitst of all, in [57) the similarities of the ‘caleuli were highlighted.
by reducing them to a common core. Here we complement this work, by
creating a calculus which extends rather than restricts bq’th,-origihal.célculi
and by highlighting the restrictions needed to.obtain either of them from the
general calculus.. We study the implications. of these restrictions, indicating
in what aspects the: original calculi deviate from the mew one and for which
$ypes of reasoning they fall short,
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Another difference between our comparison and the onein (67} is the way
in which time points are related to situations. In [57], there is a one-to-one
correspondence between Situation Calculus situations and Event Calculus
time points. A situation ig seen as a snapshot of the world at one instant
in time. Howevér, we favour the view in for example [83], where situations
correspond to extended periods of time. Hence our definition of sitiations
-as sets of time poilnts.

Our approach also differs fiom Pinto and Reiter's:-in [83].a time line (a.
path of actual event occurrences) is added to Situation Calculus, running
only through one “actual” seqiterice of situations. In our proposal we treat.
all situations as equal, creating a tree of (hypothe_t'ia_:al) events and time
points running. through all of the situations instead of only through one
sequence of them. The extra-expressive power obtained by this embedding
of & time line in situations {which, for example, is necessary for model-
ing continucusly ‘changing fluents) ig: thereby extended to all hypothetical
sitnations instead of to only the actual ones.?

As we indicated in the. introduction, .one of the motivations for this
tesearch was our failure to find 2 sound and, complete translation of A
descriptions into' Event Calculus. ‘The advantage of such a translation of
high-level action languages like..A into temporal reasoning formalisms, is
that a more general evaluation of these formalisms is obtained than by
only presenting a number of standard examples and handling them in the
formalism,.

Since the introduction of 4, translations of that Iangua._ge into many
formalisms have been described, for example in {54] {where the classical
logic formalisations of Situation Caleulus in [82] and [88], as well as Bak-
er’s circumscriptive approach described in (6], @re presented as translations
from A), [27] {where a translation into open logic programming Situation
Calculus-is given) and [167] which trahslates .4 into-equational logic pro-
gramming: Soundness and completeness theorems for these translations are
given.

As can be expected given theé results described in this. chapter -dnd. in
[27], a mapping of A-descriptions into the new calculus is also possible;

Informally, this follows from the following observations: a mapping of
A into open logic programming Situation Caleulus is provided in [27}, The
Situation Calculus_- used there differs in one smiall réspect from ours: a

3Related to this, it is worth mentioning that our situations de not-correspond Lo time
periods in a strict sense, due to the fact that we. are working with a branching time
structure! the sets of 't'i'n_'Lc_' points specified by our definition of situations are not short
straight lines, but rather small trees with one event for a root {this root ‘cvent js not part

of the sitnation) and with each branch either ending in an event or runminig.on forever,
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predicate noninertial/3 is used instead of initintes/3 and terminates/3.
However,-it is not hard to modify the mapping to deal with this difference.
A second slight complication is that we need to integrate the-mapping
of Situation Calculus into the new caloilus with the mapping of A inte
Situation Calculus. However, also this. problem can be dealt with rather
easily. We do not go into the details in this thesis. However, in Chapter.
7 we will present our own high-level language £R, which deals with many
more issues than A and its ‘SUCCESSOLS, and we will present a mapping of
this formalism to OLP Event Calculus. o

Regarding the new. calculiis, some other issues are of interest: For ex-
ample; in certain cases (natural language processing springs. to mindj it
may be impottant to dlstmgulsh between actual and hypothetical or coun-
térfactual events. In -our formalmm there is no distinction between them.
‘However; it is not hard to cure. this. We can select one Tine of time points to
bie the actual one, for example using the predicate dactual /1 on time points.
This predicate would havé to satisfy the following FOIL, axioms for.all T;
a.nd Tg

actuaI(Tl) — tw.me[Tl)
(actuaI(Tl) At actuaI(Tg,)) [(T]_ < Tz) (Tz <. T]_) Y (Tl )]
actua.l(to)

ihdicatiﬁg that all actual tinte points are time .p'oini;s_, that they form & line,
and that the initial titme point is actual.®:

In. [92] the issue of marraiives is addressed. Narratives are typically
what Event. Calcilus-like théoriés represent:. a narrative is a course of real
events abotit which there miight be incomplete information:® In 92 such
courses. of real events-are inttoduced in Situation Calculus. There is some
relation to the work of [83], though the approach is different. The issue
of incomplete knowledge onthe course. of events-is addressed explicitly, as
well as the issue of simultaneous or overlapping actions (which have 4 non-
EELO dura.tlon) On the other hand, like in [83] the issue.of counterfactual
Teasoning: is not addressed. We feel the paper is complemenhary to our
Work

Throughout the chapter we have stressed the 1mportance of the exis-
terice: of all relevant sithations in gach model for counterfactual reasoning.

iC)'bmm.ts.'l;.r, the actudl time line corresponds exactly to the thme structure of Event
Calcudus. Eve:nt Calculus can be seen as-a restriction of the new calculus to cm.iy teal
‘time péints.:

Ein our Eveni Calculus this would he. representcd by an open happens predicate
‘partially defined by FOL axioms.
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In particular, counterfactual reasoning on nondeferministic actions is pos-

sible when multiple situations resulting from the same action are preseit

in a situation tree. One related issue we have ot explicitly addressed is
ccounterfactual reagoning on the initial state of the world, i.e. the repre-

sentation of statemerits like “If the gun had not been loaded initially, the
turke}’- would. have been alive after shooting”. A correct representation
of such statéments requires that models contain multiple “possible” initial
situstions. '

This can be achieved in a way very similar to the one we nsed when
dealing with nondeterministic actions: an extra parameter can be included
in the initially predicate; this parameter should distinguish between.several
possible initial situations, just like the extra evenst parameter in situation
names distinguishes bietween different resilting situations from an action.
Fer exa.rnple,-'a'm't_iaﬂy'(_a'liﬂe',-32_) would represent that alive holds in one.of
the initial situations, sp. Bach initial situation then functions as the root
of one tree of situations. Counterfactual redsoning can be performed by

‘combining information on different possible initial situatios.

Alternatively, we can adopt a different representation of the initial sit-
tation — like in {57} —, assuming the initial situation is the result of a

creation action which itself occurs in a (pré-initial) situation in which ne

fluents hold. Ther the above solution is a special case of the solution for
nondeterministic actions, ‘obtained by making creation nondeterministic.
The multiple required “initial” situations for counterfactial reasoning are

then obtsined as the ‘possible outcomes of the creation action.

This concludes: our comparison of Situation and 'Evcnt Calculus. In
the following chapters we will concentrate on the Event Calculus, which is
sufficiently expressive as long as no counterfactual reasoning is required.
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Chapter 6

Knowledge
Representation in
FEvent Calculus

In this chapter, we take Event Calculus beyond its usual field of application
and show how it -can be- extended for use in various different _linowledg;;
representation settings. In this. way we hope to bridge the _g_ap between
theoretical approaches to the frame problem.in Testricted settings; and ae.-
tual knowledge representation. in real-world applications. In section 6.1,
we extend the OLP Event Calcnlus for dealing with contimiously. changing
fluents. ‘Bection 6.2 describes how OLP Event-Ca_lc_l'_ﬂ'us can be used as a
general framiework for representing ternporal knqwie‘dg_e. bases. In section
6.3 we apply the formalism in the area of protocol specification. The contri-
butjons in this:chapter illustrate how OLP Event Calculus mieets the central
requiremnent of knowledge representation: using the same representation of

& domain in different applications.

6.1 Representing Continuous Change

6.1.1 TIntroduction

In this section we extend the Event Caleulug with a framework for dealing
with continuously changing fluents. A rather profound, difference with the
discrete setting is that the.ingrtia_ assumption i no longer valid and should
be replaced with Tiore complex laws. We will show that this absence of
inertia leads to many complicationsthat are absent in the discrete case.

a7
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As an example of ‘continuous ’change we take the problem:of a tank that
can be filled with water, as introduced in [106]. Thisis a simple problem, yet.
it illustrates many of the complications that continuous change gives rise to..
The most important complication is the problem of autotermination, alse
identified in [100]: It is possible, and in fact occurs often, that the change
of a fluent ‘over time gets terminated by itself, without the occurrence of
any external evengs. This.'happens_foi' example when the rising water in
a tank reaches the tank’s rim. At that moment, the increase of the water
“level causes the event of its own termination.. '

Other complications of this foim can occur if the water triggers events
when it reaches certain levels, like the ringing: of & warning bell, In general,
a changing fluent can cause any number of events to happen at-different
time points.

There exist some approaches to dealing with continuous change in tem-
poral reasoning. One is the approach of [94, 95] in the Fesiures and Fluents
setting of [86) which is bdsed on differential equations, Another approach,
introduced in [100] and further used in {80], uses the Event Calculus in &
normal logic programming setting. In this approach the continuous fluents
are described as exactly known functions of time. Differential equations
have also been nsed in an Event Calculus setting in {74 In-all of these
-approaches it is'assumed that the changing: fluent is exactly known as a
function of time; or can be calculated from other‘data like the flow through
a certain iap. _

We argue that in the case of contindous change — even mare. than
i other cases — it is important to allow for intomplete knowledge. For
example, while it is not too hard to check-whether a turkey is dead or alive,
determining the water level in a filling tank as-an exact funciion of time
is non-trivial. Probably the only _c_ér't_a_m_inf.y is that the level is rising. For
this reason we adopt a qualitative physics point of view, :assuming that
the evolution. of the. ¢ontinuonus fluent is only roughly; qualitatively known
_(fbr example we only know it 'is increasing or.decreasing). We will show
on a number of examples how this gualitative information can be naturally
represerited and adequately used for solving the-aforementioned types of
problems in‘temporal reasoning. '

We present our proposal in two stages: in a first s_ﬁ_ép-i_nve- deal only with
elementary changes, i.e. changes which are the resilt of one independent-
‘cause, In. the second step we extend this solution, allowing fof-any num-
ber ‘of simultaneous influences to affect the changing fluent, resulting in
arbitrarily complex changes. The solution should fit in with the general
framework of the OLP Event Calculus, so that in particular the treatment
of discrete fluents is riot. changed. The various formsof reasoning supported
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in discrete Event Calculus should of course also be po_ssiB_lé when continuous
fluents-are involved.

6.1.2 Elementary Changes

‘We start with the Event Calculus axioms given. in Chapter 4. To repre-
sent continuous change, we introduce two new predicates cont_charnge and
state_in_chonge. The atom cont.chenge( P, 'S@%-t-,T-) denotes: that at. timie
point 7 the fluent . P is subject to a continuoua €hange of sort Sort. The
fbllojwirig clauses define when a continuous change is in effect;
cont_change( P, Sort, ‘4] « ‘happens(E,, Ty), Ty < T,
' wndt.change( By, P, Sort),
~change.clipped(T}, P, T, Sort).

change_clipped(T”, P, T; Sort) . happens( By, ), Ti < Ty, To < T,
term.change(Ey, P;Sort).

where the: predicates init_change, term.change and change_clipped corre:
spond to initiates, teriiinates and clipped for discrete properties.

Sort is a parameter used to distinguish between different kinds of change,.
each kind having certain unigue properties. ‘How many and which kinds of
change are to be distinguished, depends:on thie-amount of available knowl-
edge as well as on the relevance of the observed differences ‘between two
kinds, A lot of work on this topic .of making useful and adequate abstrac-
tions exists in the qualitative physics community (see for example [34] and
(60]). One simple and obvious abstraction, which.is often used in qualita-
tive physit:s_, is the di‘stinction-"'be;w:en positive and neégative change. We
will uge this. distinction in.our examples. '

We assume of course that a fluent cin ohly be subject to one change at
-any one. time, which is represented by the FOL axiom

[eont_change(P, Sort, T) A cont_change( P, Sort’, T)] — Sort = -Sort’

During periods of change, i_;ﬁhg predicate state in_changef2 determines
the precise value of the changing fluent, as expressed in the following clause:

holds(val( P, X),T) cont_change(P, Sort, T,
' state_in_change(P; X, T).
Note that we use the term val(P, X) to denote “continuous fluent P takes

on valve X”. The use of a state_in_change predicate to define the value
of a changing fluent is similar to the definition of trajectories. in [100],
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but where trajectoriés are defined as known functions of time, we make
state_in_change.an uridefined predicate. We use FOL axioms constraining
the state.in_change predicate to represent the available qualitative knowl-
edge, for example monotonicity or continuity of the change. These axiorrs
will be introduced later on.

‘When a continuous, fluent is not changing, it is subject to the normal
inertia axiom of the Event. Calculus. The foiiowing clauses ‘ensure a.correct
trarisition between periods of change and periods of rest:

terminates(E,val(P; X)) init_charige( E, P; Sort).

mztmtes(E val(P; X)) +—  event{E,T), holds(-ua.l(P x),T),
term.changé(E, P, Sort),
—init_change(E, P, Sort').

i.e. the start of a change terminates a period of rest, while termination of
the change initiates a- new period of rest.

As we have indicated before, the simple fact that a changing fluent
reaches a certain value can trigger a number of effects. In Event CGaleulus;
it is. assumed that only events can cause effects (as is obvious:in the frame
axiom, which contains & happens atom) Since-due to continuous change
effects can be triggeted at any time, we say that there is an event associabed
with each time point (though most.of these events. have nao effects):

time(T) — 3E : (happens(E, T_))'_

Giiven that there also is a one-to-one correspondence befween events and-
titne points, we find that the. distinction between events and time points
fades ard that it would be possible to retain only one-of the concepts. In
some formalisations of the Event. Calculus. this simplification. is- adopted
_a.utoma.tlcally To preserve uniformity with the formalisation given before,
we choose fo dlstmgulsh events from time points.

We illustrate the use of this formalism by describing a filling water
tank 'I‘he constraints we:define are problem specific, since. they depend on
the-actual knowledge ava.llable_ about the change.. However, most of them
tepresent quite ‘comimon properties, hke continuity of change, and can be
generalised or- adapted to other problem descriptions:

The changing fluent we-consider is level, representing the water level in
the tank. Tn this example we choose to distinguish only two kinds of change:
rising and dropping waber level, denoted by sorté + and —. Asindicated
earlier, thisis a very simple abstraction, but we will show its uses. The
tank contains a tap and a plug. An open tap results i in rising water level,
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an open plug in dropping level,

‘indt_change(E, level, +)
‘term._change(E, level, +)
-init&change('Ei..IEﬂeI,_—~-)

term_change(E, level, —)

— act(F, open_tap).

— act(F, close tap).

— act{E, open_plug).

 act{E, close-plig).

We imnpose that the tap and the plug cannot be: snnultaneously open,. as in
this first step we do not allow ‘mmulfiple influences on one fluent at the same
Inoment.

—{cont_change{level, —, Tj A cont.change(level, +,T7)

We then need to formalise what we know about this watet level, which is
‘the following:

o The water level is rising (dropping) monotenically.
e At any instant.in time, the water is at only one leyel.

o The change is continuous, i.e. if the water reaches two different, Tevels.
during one period of. change, then it will also reach all levels between
them.

e If the tap is opened, and nothing happens that stops the rising of the'.
water, then the water will eventually. reach the rim of the tank:.
other words we assume the water level will not show strange beha.kur
like converging asymptotically to a finite value. Similarly the tank will
eventually become empty if the plug is-oper.

o. When the rising“(dmpp'ing.) water reaches the rim (bobtom) of the:
tank, the change is automatically terminated.

This information is expressed in a number of FOL axioms. In these
axioms, we make use of the following concept representing that two time
points belong fo a same period of change on a certain fluent:

same_change( P, Sort, Ty, Ty) < happens(E\ T}, T< Ty, Ti < T,
' init chcmge(E P, Sort),
—[cha.nge_chpped(T BTy, Sort)

where < is défined in the usual way.

Since we are dealing with continuous fluents, which can take on a wide.
range of values, we need fo prowde some mformatlon oit these possible
valyes. In general we use the atom: zsa(X O) to denote that the value
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X belongs to the set of values: 0. ‘We also-define a linear order on each
get of values, using the predicaté less/3: Tess{O, X,Y) denotes that X is
strictly less than ¥ according to the otder on O. less/3 is an open predicate
satisfying '

-i(less(Q, X, Y) ~less(O, Y, X))
(Iess(O X, Y)Y Aless(0,Y, Z)) — less(0, X, Z)
(i5a(X,0) Adsa(Y, 0)) — [less(O, X, Y) v Iess{O Vi X)v(X = Y)]
Iess(O X, Y) — wa(X 0) Adsa(Y, O))

Moareaver, min('.O)__ and ma.m(‘O)',_ if they exist, denote the extrema of O:
~less{O, maz(0), X) A =less(0, X, min{0)))

The set- O does not need to be completely determined: 7se ¢can in general
be left open, like time.!

“We re’fer 40 the set of water levels as I #ype, and add to our water tank
examplé the constraint

holds{val(level, X), T) — isa(X, ltype).

Now we can formulate our cornistraints on changes. These FOL axioms
are written ini terms of holds, but actually — through the rules for holds
in terms of state_in.change — constrain this open predicate. We. write the.
constraints.in the form of a definition of invalid (as ¢xplained in Chapter
2) to-give a flavour of what they look like in this format. The first of the
axiorns, the ‘monetonicity axiom, ensures that for every pair of time points
during the same period of positive change, the level on the later time point
is greater than the level on'the earlier one. The opposite: holds for negative
change. '

invalid -+ same. cha.nge(leuel’ +, T]_,Tg) holds(val(level, X), T} );.
_ holds(-ual(levei Y), ), Tv < Ty, less(l-type, ¥, X).
nvalid «— same, change(fevel‘ -+,T1,T3), Folds( ‘ual(fe'uel .X) ),
_ holds(val(level, X), Ty), Ty < T, ~ X = maz(ltype).
invalid. « same.change(level, —, Ty, Ty), ‘helds(val(level, XY, Ty),
holds{val(level, ¥ ); Tz), Ty < Ty, lesa(ltype, X,Y).
invalid «— same_change(level, —, T\, Ty), holds{val(level, X}, Th),
holds(val{level, X ), Ty}, Ty < Ty, ~X = bottomn(l type)-

Y'The order < on time points is'a variant of this general linear order, with to being
the minimum of the set and no maximum defined.. Similarly ttme is a special case of
180
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We allow for the level to remain constant once the water reaches the rim.
This, together with the restriction that the rim is the maximurn exist-
ing level, captures the idea of autotermination: when the tank is full, the
level stops rising. We choose this representation rather than. introdueing a
terminating event caused by the change like Shanahan does. Such autoter-
minating event would not-distinguish the case in ‘which the ta.p is closed.
just 'when the fank is full from the case in which the tank overflows. How-
ever, there are differences (like the floor getting wet). Moreover, in our
next step we will allow for- multlple simulianeous influences on a changing
variable. In that case, the introduction of an- autoterminating event leads
to erroneous conclusions, as we will discuss later. In our representation the:
tank being full does not terminate the period of- charige, even though the
level remains constant.

The othet constraints look like this:

- no two levels at the same instant: _
invalid « holds(val(level, X'), T} ), holds(val{level, V), T1), X #7.

- continuity:

invalid- «— same.change(level, Sort, Ty, T3), Ty < T3;
holds(val(level, X), Tt ), holds(val(level,Y'), T),
isa{Z, l type), between(l type, Z; X, Y,
reach_in{level, Z, T, T2)-

reach_in(level, Z,T1,T;) + ha.ppens(Ea,Tg,) Ty < Ty, Ts < Ty,

holds(val(level, Z},T%).
between(O, Z, X, Y) « less(0, X, Z) 1833(0 Z,Y).
between(O, 2, X,Y) ~— Iess(O Y, Z )y less(0, Z, X)

- water eventually reaches the rim:

inwvalid. « happens(B,T), init_change(E, level, +),
—change_clipped-after(T, level, +),
isa(maz(I-type), Itype), ~reach_after(T, level, maz(l.type)).

invalid « happens(E,T), init_change(E, level, ),
—change_clipped_after (T, level, —), zsa(mm(f_t_ype')_, I type),
—reach_afier(T, level, min{i_type)).

reach_after(T, P, X) + happens(Eq, Ty), T < Ty, kolds(val( P, X),T;).

change_clipped. aﬁ‘.er{T P, Sort) +  happens(Ey, Ty), T < Tx,

term.change(Ey, P, Sort),

These constraints conclude the description. of the water ta-nk"proble'm
domain.
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6:1.3 Some Applications

Already in this simplified version of our proposal we ¢an study various
kirids of problem solving. We start with a very simple scenario. We: as-
sert three Televant levels: the bottém of the tank (min(ltype)), the rim
(maz(l.type)), and a Jevel halfway. The tank is initially empty; and then a
tap is opened.

Por simplicity reasons we-define the predicates isa, happens and time by
enumeration instead of leaving them open.. In this way we avoid obtaining
an infinite number of answers from SLDNFA (though from a declarative
polit-of view an infinite riumber-of answers is not problematic; it.is rather
.impracticaf_)._ln. the cufrent scenario, three events. are sufficient.

timne{tg) happens(start, o).

fim(tl) hﬂppeﬂs(ﬂhfl)

t_ih‘be(_tz').. hdppens(ez, t2).

time(is) happens(es;ia).

isa(min(l_type), ltype). indtially(val(level, min(l type)}).
isa(half, [_type). act{e1; open_iap). . |

isa{maz(ltype), ! type).
to <ty tp <ia & i3

A first question.about this partial scenario-could be “What 'ha.ppens after
we open the tap ?” In other words, we want to know if there is.a compiete
scenario consistent with the given theory, and if so which one. This is
a temporal projection problgr_n given an initial state, we compute the:
evolution of the world from that staté on. The above quéstion can be
answeréd by presenting the goal «— trie to SLDNFA and looking at the
abduced facts. We obtain the following facts:

state_in_change(level, half, t3).
state_in.change(level, maz(l_type), t3).

and a couple of facts: orderihg‘ the [_type and time seis. Both orders are
trivially determined by the given: constraints, '

This solutlon is 1ndeed the 1nténded one: because the ta.p 18 eVer closed,
the water reaches the rim of the tank. This can ha.ppen no-later than at
time i3, since i3 is the latest time point we defined. Now, sitice the water
reaches the tim; we know it also reaches all levels between botto_m and rim.
So, the water musl reach the level halfway at some time bétween t; and 5,
which can only be at ¢y, the only other time point we. provided. If we had
asserted that other time points existed or could exist between t; and %3 or
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after #3, which we should allow in -general, there would be other solutions
as well.

In a second example we add an alarm bell {hat rings. when the water
teaches the level halfway. The example shéws how evenis that are caused
by changing fluents can be handled. At the same time we add an aspeci-of
uncertainty, by saying that possibly the alarm bell is broken. The effect on
the bell is represenited by the clause

wnitiates(E, ring _bell) «— happens(E,T), holds(val{level, half), TV,
—broken_bell.

and as we have no information on the state of the bell, broken. _bell is an open
predicate. With the bell and the uncertainty: added, we can demonstrate
how diagnosis problems are handled. Assume we have the same scenario
as above, and in addition we: observe that the bell is not. ringing in the énd
(ie. att3). We want to know how this is possible; to which end we can
present the query
- - —holds(ring bell, £3).

We find the same seb of abduced facts as above, plus the additional fact,
broken_bell: the water. behaves just like before, s0: at £y the level halfway is
reached, at which point the beil should start ringing unless it is brokein. A
solutlon without broken bell does not exist.

Finally we can use the SLDNFA procedure on this representation for
planning: we generate a sequence. of actions that, after we have opened &
tap, leads £o an end-state in which the bell is no} Tinging éven though it is’
not broken. We have the general rules

init.change(E,level, 4)  +— act(E, open tap).
term_change(E, level, +) act(E, close tap).
inttiates(E, rmg_b_eﬂ_) < holds(val(level, half), E), —broken.bell.

The definitions of #imne, happen‘s, <, initially and {sc are identical to those
irr our first application (so again we simplify the problem by stating there
are three events) and state_in.change, less, act and broken_bell are open.
‘Theré is one constraint on act:

act(e;, open_tap)

If we solve the query

«— tg <i3, ~holds{ring bell,13), —~broken bell.
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we find asolution with abdiced facts

act(e1, open._tap).
act{ey, close tdp).-

‘and a second one Wwith the closeiap action on ez instead of e;. Because

the tap is now closed at a certain pdint in time, the water is no longer
guaranteed to reach the rim, or even the level halfway (this depends on
the flow through the tap). The level-at tiime t3. will be somewhere between
min{lype) and holf.

‘Note that especially in planninig one should be very careful when as-

serting the occurrerice of events. In general happens, like act, should be an

oper predicate, and-it is well possible that by asserting too few events one
will not obtain the intended solutions. On the.other hand, leaving happens
open can cause SLDNFA to go into a loop in which it keeps generating
useless events. This is of course a problem-of the procedure and not of the,

‘theory. In praciice the problem:is solved by employing an iterative deep-

ening search on events: first answers with one event aré considered, then
answers with two evenis, and so on. In the éxamples in this section, the

-answers: we have obtained by precisely enumerating the events are those

with a minimal number of events, i.¢. those that are obtained first.

6.1.4 Changes Caused by Multiple Influences

If we.want to allow. for multiple simultanecus influences on tlie same contin-

uous fluent, we need to extend our proposal: in the water tank example, up
to now we could immediately link an open tap or plug to a change of a par-
ticular-type. When multiple taps and plugs are present -which can be open
at the same time; we must distinguish between influences on the changing
fluent and the change itself. Hence we introduce the concept. of an influ-
ente; - represented by a new -';it'e'clicalté'-'-_inﬂn'en-ce_/x;:_.- : ..inﬁﬂ'eﬁéé(l’,_';l?; Sort, T)
holds if at time point T, P is subject to the influence I of sort Sort.
Changes are now defined in terms of the existing influences, while the
effect of actions is the initiation and /or termination of these influences. The
predicates .inft_change, term.change and change clipped no longer have
any meaning and they are replaced ‘with a set of new predicates init. influ,
terminflu, influ.clipped, influ_started and influ_change. The following
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new definitions apply:

influence(l, P, 5, T) «— happens(E, ), T < T,
indtanflu( B, I, P,S),

wnflu_clipped(I, Ty P, T) + happe_n_s(E'z,Ti)', T < Ty, Th < Th,
' ' ' 'tgrm_inﬁﬂ(Eg',I P, 8.

influstarted(l, T1,P,T) — happens(B,T3), Ti <Ti, Th < T,
' init_influ( By, I, P, 5).

influ_changed(Ty, P,T;) + influ.clipped(I, Ty, P, Ty).
influ_changed( T, PT3) +~ influstarted(l,Th,P,Ty).

We impose a consistency condition stating that an influence cannot at the
_same time be initiated and terminated:

~initinflu(T, 1, P, S) A terminflu(T, I, P, §))

‘We redefine cont_change in terms of influences, and leave our frame axioms
and constraints unchanged. We choose to: dlatmgulsh two kinds of influence:
‘positive and negative. This leads to three kinds of chiange: ifall influences-
on-a variable are positive, the ¢hange is positive {+). If all influences: are
negative, the change is: ~negative (—).. If there are both positive and nega-
tive influences, the change is continuous but with unknown {and possible
varying) direction (?). This is expressed in the following rules:

cont:change(P, +,T) mﬂuence(I B+, T), ~any_influ( P, —, T).
cont. change(P, —,T) + influence(l, P, -, T), —eny_influ( P, +,T).
cont_change(P,?,T) «+ influence(l, P, +, Ty, influerice(J, P,—,T).

anyinflu(P, Sort, T} — influence(J, P, Sort, T)

As in the first proposal, the types of change and influence are ¢hosen
because of ‘their generality. They can be modified if the problem domain
allows or requires this, for example when a d1stmct1on can be made between
slow change and fast change. We choose to stick with this very. general set
of types, which is already sufficiently detailed to illustrate our proposal.

The correct transition between periods of rest and periods of change is
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ensured by ‘the following rules:

terminates(E,val(P, X)) +« initanflu(E I, P, 5).

initiates(E,val(P, X))  « happens(B,T), holds(val{ P, X),T),
term influ( B, I, F, 5},
ﬂperststmg_zn)"(P ).

persisting_inf(P; T) « happens(B,T), it influ(E, I, P, 5).
persisting_inf(P, T) «~  happens(E*,T*), influence(I, E*, P, S)
' —iterm_nflu( B, I, P, Sort).

where perswtmg-mﬂ? T) denotes that there are influences on P that will
continue to exist after T (or start to exist at 7).

We. can now madel the water tank in the following way; adding the
possibility of mmultiple taps and plugs:

intt_influ( B, tap(Y), level, +)) |
indt influ(E, plug(Y), level, —})
termainflu( E, tap(Y), level, +))
term.influ{ B, plug(Y'), Ie'uel -1

act(B, open_tap(Y)).
act(E,open_plug(Y)).
act(B, close tap(Y)).
act(E close._plug(Y)).

TT17

using the nameor number of the tap to identify the influence. In this way, it
is.easy to determine which influence is initiated or terminated.-hy an action.
The monotoni¢ity, continuity and unique level constraints do not need to
be miodified. However the constraints mdzcatmg that the water. eventually
reaches the rim or the bBottom — when rising or dropping — get more.
complicated because of the posmblhty of many influences: if, at any point
in time; there are persisting positive infliences while no negative influences
remain, a.nd if after that tire point ther¢ is no change of influerice-anymore;,
then the water will eventually reach its maxishum level. Again a similar

conclusion holds for the water: reachmg its rmmmum level ‘if only negative
influences persist.

thvalid — happens(BE,T), persisting inf(T, level, +),
~persisting_inf(T, level, —),
—influ.change_after(T, Ie'ueI)
'_zsa_(ma:n_(l type), I type), —reach after(T, maz(l_type)).

invalid «+ hoppens(E,T)), persisting 'i.nf(T level, )
—persisting inf(T, level, +},
—influ_change. after(T, Ie'vel) isa(min{l_type), 1 type),
—reach after( T, min{l_type)).
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with reach_after as before, and. inﬂﬁ'_c'haﬂge_aﬁer defined. as

influ_change_after(T, P) «  happens(Bs,Ts), T < Ty,
term.influ(Ey, I, P, §).
influ_change_after(T, P} Rappens(Ey, Ty), T < T,
' init.influ( By, I, P, 5).

This completes our proposal for continuous change with multiple influences.
Baslcally it'can handle the same kinds of problems as our first proposal, but
it eliminates the unrealisiic restriction to one influerice. An exarnple that
shows how even changes With unknown direction ¢ontain possibly-valuable
information, is the following scerario: we open a tap and a plug, Tesulting
in an unknown change: We know nothing about the initial water level. We
observe the water level at ¢y and 13, and see it is below halfway at ¢y and
above halfway at ;. In this case, the bell should be: nngmg at £ if it is hot
broken. ‘Apart from the general rules given above, weé have

initiotés( B, ring bell) «— happens(E,T), holds(val(level, kalf), E),
' —broken._bell.

isa(min(l type), Liype). isa(, | _type).
zsa(mﬂm(l_type) ! type) isa(y, . type).
isa{half; I_type}. ' S

happens(start tg) to < 13

happens(ey; tl) i <t

happens(e’,1'). t < ig

happens(ez, t2). 1y <3

happens(es,ts).

act(ey, ope_n_tq;p('_tapi_}'_')'. _ act(ey, open_plig (plhgl)__).

"We add an extra event ¢’ between #; and ty. I happens were. open; this
-event would always be abduced, as the constralits can never be satisfied
otherwise. For the reasons indicated earlier we choose to simply add this:
necessary event to the scenario. Of course we-do not give any mforma.tlon
about what is going on at tine t’. Moreover we add two new- levels z and y,
‘which are the levels we observe. The observatmns “written as FQL- axioms,
are

hofds( al(level,z);t,) less(l_ type, z, half )

holds(va al(level,y),13) less(1_type, half, y)

‘The query then is
— —:‘hofds(ring-bell,--iz'),

Y N L S Y ———
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and again, we find that broken_bell is abduced. indéed, the change is not
reqiiired to be monotonic, and we do not know how the water level behaves
between 4, -and i, whether it reaches the rim or the bottom, or how many
times it passes the level halfway, Yet 'we do know, because of continuity,.
that it passes the level halfway at least once bctween t1 and t;. Therefore,
if the bell is not ringing, it has to-be broken.

We conclude this section by indicating why-introducing autotermina-.
tion events would lead to erroneous results in the extended. version of our
proposal, as we Cla.lmed above. Suppose we say an autotermination event
occurs if the water reaches the rim of the tank." H we open a. tap. emd
wait long: enough, such am event will éventually occur, Suppose thern subse-
quently we do not close the tap, but open-a plug. We could then conclude
that there is.a negative influence from the plug, but no positive one from
the tap, sincé that influence was (auto)terminated by the event. Therefore
we could conclude that the tank would empty. However, in reality the pos-
itive influence of the tap still exists. Though it has no more effects if it is
the only influence. ‘present, it is not terminated and can stﬂl show itself by
counteracting .or interacting with other influences. _

This does not meati, however, that autotermination events are a worth-
less notion: they can indeed occur in reality. As an example, there could
be a-sensor at the rim of the tank that detects the water level reaching
it. This could provoke the closing of all taps. In that case, we have a real
autotermination event (which is similar to the events triggering alarm bells
when the water reaches certain h_:v_els) and it has to be represented’as such.

6.1.5 Discussion

“We have extended the OLP Eveént Calculus with a representation of con-
tinuous change, assuming that we have only qualitative knowledge on that
change: We have used an open predicate to represent. the unknown value
of the continuous fluent during periods of change, and added FOL axioms
representing the available partial knowledge. We have made a distinction
between the influences on a changing fluent and the change itself, and il
lustrated that this distinction. i 1s necessary . if we wa:nt to model any but the
most simple problem’domains.

A few other authors have. addressed the pro_blcm_.of representing con-
tinuots change in a temporal reasoning formalism. Allen’s theory of time
{[3]) was modified in [35) to fix certain piobleins arising when continuous
change was considered in the original theory. Sandewall ({94], [95]) de-
scribes a framework that uses différential equations combmed with first
order logic and a form of chionological minimisation of change.
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In an approach based like ours'on the Event Caleulus, Shanahan ([100]).
extends the formalism with trajeciories. These trajectories. describe. periods:
of continuous change in which the fluent valueis exactly known as a function.
of time. The extension fits in nicely with the Event Caleulus, as periods.
of rest — described by the basic Event Calculus axioms — and periods
of motion — described by the axioms for trajectories — intersct without.
& problem. This solution is further refined in- [80] to make reasoning at
different levels of time. granularity possible, and to allow for the parameters-
of thie change fo he modified while the change is in effect.

This approach assumes that each trajectory is exactly known. To avoid
this; in {101} a gualitative version of trajectories ‘is proposed, based on
the naive physics theory of confluences described in [22]. Confluences are,
simply stated, a form of qualitative -differential eéquations. They. can be
used to. descnbe the world in terms of the signs of certain quantities and
the signs of their derivatives, without knowing any exact values. Shanahan
comibines theése éonfluences with trajectories.. The new trajectories do not-
need to be exactly known, but are quahtatwe

The above description indicates that Shanahan’s approach shows: simi--
larities to ours. We indicate some of the more important differences: ‘Ohe:
difference is that in Shanahan’s approach a number of landmark velues are
distinguishied through which the value of a changing fluent can pass. This
corresponds. to our definition of levels. However, where i in our proposal the
set of levels or the order on it can be incompletely specified, the set of land-
mark values is fixed. Additional fluents between(X, 4, B), meaning that
the variable X is between the landznark values 4 and B, are introduced
to deal with intermediate levels. In our approach this is accomplished by
assuriing a new unknown level L between A and B and stating that X i is
at L.

A 'second difference is that to ensure monotonicity, continuity and simi-
lar conditions Shanahan uses a set. of rules involving skolern functions that
determine the value of the changing quantity at 7" in terms -of the value
Jjust before T'. In our approach this is achieved by explicitly i 1mp051ng con-
straints.

A third difference lies in Shanahan’s treatment of autotermination using
a caused event, which we have. avoided due to the possible problems indi-
cated earlier. Finally, Shanahan’s proposal does not distinguish influences
from changes, a distinction which is necessary for dealing with simultaneous
influences on the same variable.

If we want to .use our'representation in other problem domains.than the
water tank world, we have: to substitute whatever changing quantity we
describe for level in the constraints. In other words, we have to define the
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constraints separately for each changing variable, just like Shanahan’s tra-
jectories.are defiried independently for each change. Of course each change
may satisfy a different set of constraints, since the available knowledge can
vary a lot.

The types of change we defined for the water tank problem (rising,
dropping, unknown) are very general and can be used in many applications.
However, more types can be distinguished if an application requires this,
and the constraints can be modified depending on the available information.

We. have shown how SLDNFA. supports various types. of prbble_m solv-
ing starting from our representation. This is another aspect in which. the
approach differs from existing ones, since as far as we know all representa~
tions of continuous change to date, be it qualitative or quantitative, only
'support solving temporal projection problems {if problem solving is at all
supported), Meanwhile, we hope our examples have shed some light.on how

problem solving in open logic programming is supported by a procedure like
SLDNFA.

6.2 A Framework for Temporal Knowledge
Bases

6.2.1 Introduction

In this section we use the OLP Event Calculus as a general framework’
for representmg temporal.- knowledge bases. We illustrate that open logic
‘programiming is a very suitablelanguage for representing a kriowledge base.
containing incomplete information, _a.nd how the Event Calculus deals cor-
-rectly with the temporal aspects. Moreover we show how.the basic func-
tionality of a knowledge base can in principle be 1mpiemented using the
SLDNFA. procedure and how in addltlon we could use this procedure for
task- essential to the mampula.tmn of the knowledge base as well as for
general problem.solving using the data, without resorting to a different
representation. This. 111ustrates the proclalmed adyantage of declaratlve
'kﬁowledge répresenta.tlon in practice’ the same representation can be used
for different puzposes at several levels.

Kowalski ([58]) has argued earlier that the Event Caleulus in Logic
Programming can be used o formalise the evolution. of a database system.
The work presenied here addresses different issies than Kowalski’s work,
in particular. the representation of incomplete: information in open logic
programming and the use of an abductive procedure for implementing the
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functionality of the knowledge base,
The precise aims of this work (the desired types of formu]ae in the knowl-

edge base, the fopology of time, and the knowledge base's functwnahty, as:
described below) have been inspired by the, project. proposal described in.

['39] the proposed project had as goal the building a temporal knowledge
base which could easily be used by an intelligent agent for various kinds of
problem solving. In particular this implied that the knowledge: base rep-
tesentation had to be as close as possible ‘to the. representation used by
applications using the kiowledge base. The project has not been carried
out, but we intend to show how its main goals can be accomplished by OLP
Event Calculus and SLDNEA.

In section 6.2.2 we specify the desired contents and functionality of the
knowledge base. Section 6.2.3 presents the proposed repiesentation, and in
section 6.2.4 we discuss how to provide the basic functionality, followed by
a detailed example in'section 6:2.5: More advanced functionality which can
be implemented using SLDNFA: and problem solving using the knowledge

base are discussed in section 6. 2:6, and ‘in section 6.2.7 we conclude with a.

discussion.

6.2.2 S.p'ec'iﬁc_at;i.on of the K_nowl_edge:Base
Topdlogy of time

When representing time in a knowledge base, we have a choice of several
topologies, as described in {39]. We can consider time to be an ordered
set of points, with no caiciilus defined on them, in which the only allowed
expressions are formulae = ¢’ and ¢ < #". Anoiher choice is a numerical
time line, where operations hke addition are possible. In that case we can
have expressions like t1 — t; < 3. Finally, time can be seen as a set of
intervals, with the thirteen relations proposed in (3] -as possible relations
between each pair of 1ntervals We have chosen- to combine the first and
third options, in othet words allowing for both time points and intervals
in the knowledge base, but not for mimerical constraints. We relate time
‘points and intervals by considering intervals.as periods of time started and
ended by a time point: Evidently in' the context of a knowledge.base time
is linear, not branching.

Contents of .the_"kno'wled'ge hase

The data we -aim to represent in the knowledge base are formulae repre-
senting the truth value of fluents during intervals and at time points, and
‘the chiange of truth values at certain time points. Further, formulae repre-
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senting the order on tiine points and the relations between intervals will be
used. 'We propose the following set of basic formulae; with P a fiuent:

« holds_at(P,T) i P is-trie at time point T

- holds. m(P tnt(Ty, T2)) : P is true throughout the interval mt(’I‘l, 13).
This mterval does not need to be “maximal™:
P may remain true after 75 or can be true
already before T,

- nothofds_i.n(P mt(Tl, 75)) 5 P is-false: throughout int(Ty, 15).

-on{(P,T) : P’s value changes:from false to true at time point 7.

- of f(P,T) i Pchanges from true to false at T,

The pdssib’le_ relations between tirhe points and inte'rvais ate. represented
by the following formulae, _(In the case of intervals, we distinguish thirteen -
possible relations, based on those defined in [3]; though some names may
differ.)

« Ty =Tz : Ty and T are the same time point.

Ti< Ty T is chronologically before T5.

- equal(Iy, I;) : I and I; are the same interval.

: me'ets'(Il,Tg the end point of Jj is the startmg point. of f5.

- overlaps(ly, Iz) I, starts before. I, and ends during Iz.

- StGT‘tS(I}.,IQ) " Ir-is an initial subinterval of Ip.

- ends(Il, L):f1isa terminal subinterval of Jo..

- during (I, 1) ¢ I is.a subinterval of I; that is.initial nor terminal.
- before(Iy, Ip) = the end of I lies stiictly before the start of Iy.
= aﬁ'er(Il, Ig) befoir_'e(f;;, I]_) .

- nwtby(l'l, Ig) m.eets(Ig, Il)

- overlapby( Il,Ig) overlaps(fg,fl)

- startby(Dy, I}  starts(Iz,Jh).

- endby(ly, I2) : ends(Iz, Iy).

- contains(l, I3) : during(l; ).

'We can build more complex expressions by cormbining these basic for-
mujae u’sing the classical logical connectives and quantifiers : if P and @
. are valid expressions, then (~P), (P AQ), (PV @), (P & Q) (exclusive or),
(P =»-@), and (P + Q) are valid as well,-and if P is-an. ‘expression, ‘then
g0 are (YX +P)and (AX : P).

Besired 'fi.lncti'onali'ty

The formutae defined above determine the possible contents of the temporal
knowledge base. The functionality we require of such a knowledge base is
the following:
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e checking whether a knovﬂedge base KB is consistent.

* ‘answering simple conjunctive queries as well as more complex ones.
Since the data may bhe incomplete, we must distinguish between two
types of query:

1. “Is Q necessarily true in KB 7" (does KB k= @ 7
2. “Is @ possible in KB 7”7 (is Q U KB consistent ?).

e In the case of inconsistency, proposing solutions to restore consistency.

e finally, and maybe most importantly, _usmg the. knowledge hage ‘for
problem solving in temporal. domams, in particular planning.

6.2.3 Representing the Data-in OLP Event Calculus

In the representation of the knowledge base, we found it essential to split
ihe ‘theory in two parts: basically an A-Box and & T-Box, &s discussed
in Chapter 3., The T-Box is a set of logic programmlng clauses defining
~all basic formulae used. in the knowledge base in terms of primitive Event
‘Calculus predicates. This part i¢ independent of the actual contents of the
knowledge base. The A-Box contains the actual data in the knowledge base:
‘these are considered to be a sét of FOL axioms constraining the possible
states of the knowledge base.

As-primitive predicates we choose happens, <, initigtes and termmates :
The basic formulac of the knowleclge base. are defined. in terms of these four
.open predicates, by the following T-Box clauses:?

holds_ai (P, T) — happens(Ey,Ty), indtiates(Ey, P )
' Ty < T, ~clipped(Ty, P, T).
holds in{ P, ind(Ty, T2)) — interval(Ty,Ty), holds_from(P, Ti),
—[chpped(Tl, D, T).
notholds in(P,int(T1, T5)) « intervel(Ty, Tn),
notholds_from(P,T),
ﬁst__a‘r't_ed(Tl, P, Tg) .

interval(-Tl,Tﬁ-}' «  happens(Ey,T7),T1 < Ty,
' happens(E,, Ty).

started(T', P,T) «— happens(E", T”),zmtzates(E” P,
(T <T”) (T < T).

chipped(T", PT) < happens(E", T"), terminates(E", P),
(Tf < TH (Tff < T)

2Note that the. dlffcrcnu between events and‘time points is also in this scttmg enitirely
iminaterial. ‘We- -preserve the distinction for ¢larity | Teasons,
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holds_from{P,T) « happens(E, T), initiates(E, P).
holds_from(P, T) «~ happens(E,T), holds at(P, T),
ﬂtermznaies(E,

notholds. from(P,T) +- happens(B,T), termirnates(E, P).
notholds_from{P,T) < happens{E, T) ~holds_at(P; T),
—initiates(E, P).

on(P,T) «— happens(E, T), initiates( E, P),
—holds .t P, T).
of f(P;T). — _happens(E T, holds_at(P,T),

terminates(E, P).

The definition of holds.at is exactly the Event Calculus frame axiom. It
follows from our definitions that the interval #nf(t;, 13} actually denotes
the interval ]t;, #3], containing its end point but not its-starting point. We
choose half—opcn intervals because working with closed intervals can lead
to inconsistencies (one time point can belong to two intervals with different
values for the same property), while open intervals lead to time points
where properties are undefined. A choice between the two ‘types of half-
opén intervals is easy:’ the definition of the Event Calculus naturally leads
to the form Jt;, t2]-

The chronological relations between. intervals are expressed in terms of
relations between their starting points and end peints.

equal(int(Ty, Ta), mt{Th, T%)) — interval(Ti; Ty).
meets(int(Ty, Ts), int(Ts, Ts)) o interval(Ty, Tp)yinterval(Ty, Ty).
overlaps{int(T1,T2), int(Ts, Ta)) m,te:r'ua.l(Tl, ) !.ntervaI(Ta, Is),
Ty < Ts T3 < Tp, To < T
starts(int(Ty, To), it (T1, D)) « mter'ual(Tl, T)yinterval(Ty, Ts),
. _ T; < Ts.
e_nds(.int_(Ti, ), int(Tm_Tz'))' « interval(Ty, Tp), ént_eruai(Tg,'Tg):,
) Ty < T
diuring(int(Ty, 13), int(T5, T4))  «— interval{Ty, T2), interval{Ty, Te),
' ' ' Ts < Ty, Ty < Ty -
before(int(T1, T3), nit(Ts, Ty)) e interval(Ty, Tp),interval(Ty, Ts),
Ty < Ty ' '
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after(int(T1, T3), int(Ts, Ty)) o anterval(Th, Ty), interval(Ts, Ty),
Ty < T, '
overl_by(int(Ty, Ty), ind(Ts, Ts)) intervdl_(Tl, T3), interval(Ts, 'T4'),
T3 Ty, T < Ty, To < T,
metby(int(Ty, To), int(T5, T1))  «— interval (T1,Ty), interval(Ty, Ty ).
startby(int(Ty, To), int(T1, T5)) interval(Ty, Ty), interval(Ty, Ty),
_ ' T3< Ty, _ '
endby{int(Ty, ), int(Ts,Ty)) « interval(Ty, T), interval (T5,7%),
. T L3412
contains(int(Ty, Tp), int(Ts I)Y) « interval (T1, Tp), interval (T, T4)
. T < Ty, T4 < Tg. .

To this set of definitions, we need to add a couple of general constraints
on temporal domains, like in the previous: chapters: '-ir;_ particular we irnpose
the consi's'te'ncy condition on initiation and termination and the linear time
constrainis. ' : :

~(initiates(E, P} A'terminatés_(l?__, P)}

(T < B)A (T2 < TL))
_ (M < TYAT <B)) - (11 <T)
(tirne(T1) Atime(T2)) — [(Ty < T2) V(Ty < 1) v{Ty = T3))
(Th < T2) — (time(Ty). A time(T;))
Note that these general constraints are FOL axiors, but nevertheless be-
long to. the. T-Box. They are similar to the general constraints involving
constructs like “C" in description logics, which belong to the T-Box without
being concept definitions. _
The open logic program: défined so far determines the terminology of
our knowledge base, The actual data reside in the A-Box as a set of FOL.
axioms. These can be basic formulae as well as complex expressions, Soms.
examples:

notholds in{has{john, book; ), int(t:, £2)))
holds.at(p(a), T) — holds_at{g( 5),T)
VT : (holds.at(p, T}
meets(int(ty, tz); int(ls, ts)) & metby(ini(t, v12), int(ts, t4))
holds_at(has(X, O), TYA holds.at(has(Y,0),T) - X =Y

As dsual, we. assume free varjables to be universally quantified with max-
imal scope, From a representational point of view, complex data are not
problematic. However they will require special attention in the procedure;
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-The data in the knowledge base-are-in general in_co'rnp_letc, ‘so possibly
many different models exist. For example, consider the knowledge base
containing only two simple observations:

holds in{has( 3ohn book, ), mt(tl,tz)}
notholds_in( has(mary, bookz), zmﬁ(ta, t.;))

We do niot know anything about John having the book-outside of the in-
terval int{ty,1;). He can own.it all the time, or only during the mentioned
time period, or during a period that starts at %; but confinues after iz,
and so on. Likewise for Mary’s book we have many possible models. Fi-
:na.lly we have no information at all concerning the temporal relation linking
init(ts,12) and int(ts, t4). These periods can overlap, be disjoint, be equal,
etc..

We assurne the semantics of the proposed theory to be given by the
completion semantics for open logie programs of [20] (see Chapter 2 of this
‘thesis), with one exception: we do not include Free Equality axioms for
time points, s0 time constants are treated as skolem constants. In other
‘words, different térms can denote the same time ‘point. This is necessary
in the givén setting-as the relation between different time. points, including
their possible equality, 1 is il general unknown

6.2.4 Basic Functionality

We now turn. to the: issue-of prov:dmg the required functionality of the
knowledge base using SLDNFA. We first study the special case where-only
basic formulae are.allowed in the A-Box.

‘A ‘theoretical solution

A basic task, which will return in all of the- functions we provide, is.the
generation of @ model (in terms of an interpretation for the primitive pred-
icates) of the data. Such a model can easily be found using an abductive:
procedure like SLDNFA, in one-of two equivalent ways: either by trying to
solve the goal —dnvalid:given-the open‘logic:program. (Whlch requires writ--
ing all-the data as a definition of tnvalid, as explained in. Chapter 2 and.
appendix A}, or by taking only the T-Box as. an open logic program, and
trying to solve the query KB (thé goal « KB) obtained as the conjunction
of all the data: We adopt the latter approach In this section. SLDNFA
returns a set of abduced afoms A and a substitution: # such that

T Boz. U comp(A) k= KBS.
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As the T-Box contains a set of definttisns which uniquely defines all predi-
-cates in terms of the open predicates, the set A uniguely determines a model
of KBA. Fach answer to the query (up to variable renaming} corrésponds
to one model-of the knowledge base, and vice versa.

Checking the consistency of a knowledge. base is then straighiforward;

we check whether KB is consistent by attempting to find an answer o

the query KB. The knowledge base is cansistent if we obtain an answet,

inconsistent if we find failure. '
Consider again the knowledge base containing the constraints

holds_in{ has_( john, book,), ?iﬁi(tl +12)).
notholds in(has(mary, ook, ), int (ta,ta))-

To check its consistency, we form the goal

— ho!ds_m(has (jQ'h?‘_L, bOOk]_ ) s mt(t1 f iy )),

niotholds_in( has(mary, books ), int(t, 1)),

We then find for example the abduced facts

happens(ei,11) happens(ey, t,)

happens(es,ta) happens(es, ty)

t <1y ty < 13

B3 < 1y initiates(ts, tias(john, book; })
which proves consistency of the daﬁgm,

Answering queries can be done in a similar way. If we want to know
whether Q is possible in the knowledge base KB, we try to abduce & solution
that (given the T-B’ox)'--'f;n'tails KB A Q. For example, using the same data
as above, the query “Is.it possible that Mary: owns book; at t1 7" 'will be
solved by attempting to solve the goal

+— ‘holds.in(has(john, book), int(ty, b)),
n_'qtholds'_in(.hds(mary,.;_ﬁppkz ) '_,fnt(ta t4)),
holds_at (:hqs ('_m,afr--y, baoky), t 1_.) .

-which has as a1nodel for example:

happens(encu, tney) happens(e,, 1)
happens(es, t7) happens(es, i5)
happens(es, t4) '
tnew <1 ) t <ty

't.z.': .'< i3 i3 < tg

initiates(e; , has (jokn, book, ))
: z’m”t‘iat_’e_s’(en_m , has(mary, booka)).
termindtes{es, has (ﬁzdryi'-b'ook;") ).

H
i
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The answer to the query is therefore ‘affirmative.

If the question _is--wheth'er. Q is necessarily frue given KB, we try to
abduce a model for KB A —1Q If ‘we find no iodel (T' A KB A is
inconsistent); it follows that T"A KB E Q, which is what we were trying
to find out.- Using the same query as in the previous example, we end up
trying to solve ' '

i~ Rolds.in{kds{john, booki), int(ty, t2)),
notholds_in{has{mary, books), ind (ta;t4))s
~holds_at{has(mdry, books), 11).

which has the solution

b <tg Ada <tz A 13.< ta
initiates(ey, Kas{john, book1)).

so we can conclude thai Maty does not necessarily own book, at t1.

The above functionality is also an important help when updating the
knowledge base: supposedly we would like to ensure that each-update leaves
the knowledge base in a consistent state, hence a consistency check is re-
quired with each update. If inconsistency is detected, the update should
be rejected. Alternatively, a warning could be given and the update only-
allowed after explicit user intervention. Then for éxample techniques for
restoring consistency, like those described below, can be applied.

Practical complications

The above functionality is straightforwardly provided by the existing SLD-
NFA procedure, except for the. treatment of time constants and that of
complex data. _

First' we study the problem of complex data. Just like in Chapter 3 we
can use the method of [68)] to deal with these. Recall that this transforma-
tion transforms general clauses, L.e.. clauses of the form

A — W

with A an atom and W an -arbitrary FOL formula, into sets of normal
dlaises, “This is ‘achieved by using a set of ‘rewriting fules; included in-
appendix A. A goal «— W can be transformed in the same way, as also
indicated in [68]:

‘Replace +« W.
by — .Ct.n's‘i].?éf‘(’Xl ve Xn,)
and answer(Xy:..,Xn) — W.
where Xy ..., Xn are the fres variables in W.
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The resulting rule answer(X1...X,) — W. must ke transformed further
using the rewriting rules for general clanses. The whole transformation is
easily automated.

A slightly harder problem is that of time constants: SLDNFA considers
the Free 'Eq_uality axjoms to hold for all constants in the data; but in the
current setting time constants are intended to be skolsm constants, i.e. they

are allowed: to be equal to one another. We can solve this problem in the

.foi'_lqw_'in'g way: we collect all data {jF'l_,.-Eg-,- «+-3 P} in the conjunction

FiAF A ... A Fy.

We write that c_onjuncti_cn__in the form F(-'t:l_, iy tn) where the £; are our
time point skolem constants. In short, we ¢all this expression F. We can
then deskolemise F, i.e. we replace all skolem constants with existentially
quantified variables, which results in F

3T11 :Tn . F(T],, !Tﬂ.)

Skolem’s theorem states that for all P and F, with F"ihe déskolemisation
of F' as defined above: P A F is consistent if and only if P A F is.consistent.
Therefore, replacing skolem constants by existentially quantified variables
does not chan'g_e."thé result of a consistency check or & qQuery..

We now do the following: before calling the SLDNFA procedure, we.
build a table linking every time constant to a veriable. In the data we pass
to'SLDNFA, we replace every constant by its corrésponding variable, As
indicated, this does not change the consistency resiilts.

To'find the actual model corresponding fo ‘a set A produced by SLD-
NFA, we combine the answer of the SLDNFA. procedure with the table of
time constants, where some of the variables may be: unified by now. In.
that case the time constants corresponding to these variables are equal in
the solution, which is indicated in the answer. We will discuss a detailed

example later:

At this point a small word on decidabiiity is required. Normally, an
unlimited number of events canges undecidability in QLP- Event Calculus:
if there is no model of the data, SLDNFA will never terminate but will keep

‘on generating interpretations with more. and more evénts. Luickily, we can

limit the search space to solutions with a bounded nuriber of events in a
_cOnsistency_-f i"nconsi?.;tenc_y-_pr_f_:ser\ring way, thanks to the Hollowing result:

Proposition 6.2.1 If the data in o knowledge buse KB are consisient and

‘megtion only: N different time points, then there ezists qi least one mode]

of KB containing .a number of events 7. < 2N,
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Proof:

The proposition is true because of the following: hetween every two consec-
utive time points; one event can be assurned to iake care of the necessary
initiations and terminations of &ll of the fluents that change value between
these points. For each model where two events are inserted between two
consecutive time points, there exists a corresponding model where these
two events are-contracted to.one, with the same effect overall efféct on all
fluents.

In addition, evety time point in'the data corresponds to an event: 1tse1f
this i necessary. for example when data items kolds_in(p, tﬂt(tl,tg)) dand
notholds_in(p, int(ts, t3)} are given: £y must terminate p; -and. therefore
needs to be an event. Finally we also need an:event before the first timie
point to take care of the first initiations.

“This results in 2N needed events: one for each time pomt -one between
every two time points and one in the begmmng

By counting the fime points occurring in the data" the program can
determine a safe upper bound for the number of events, ensuring that a
solution is found if one exists. Note that in the case of complex formulae.
‘with eistential quantifiers, the existentially quantified: time ‘variables are
counted as well. In some cases (e.g. when an existential quantifier ocours-
inside the scope of a universal one) this method. may fail, and no bound
can be derived.

6.2.5 A Detailed Example
Ta 1llu5trate how complex.data and time constants are dealt with, wé solve
& small example query in detail. We havea knowledge base KB containing

two-data items; namely.

holds_tn(has(john book, ), mt(tl, 12)).
holds_in(has(mary, books), int(lz, ta))-

We want to know if it is possible that, .-foi? a.rbi_i;ra‘_z_r_y_- time points a,b and c,
holds(has (john, book), int(a, b)) Vv notholds(has(mary; books), ini(a, c))
is.true. The following query is used:

+ possible( KB, {(holds_ in{has(john, booki}, int{a, b))V
' notholds in(has(mary, books ), int(a, c))




B
'
i
H
|
:

6.2 TEMPORAL KNOWLEDGE BASES 123

The program collects the data from KB and adds the query to it. All time
constants are replaced by variables, and we obtain the following”time'-tab_le:

hh - X a -~ A
i, ~ X, b — B
ta — Xz ¢ = C

The goal we want to sélve then becomes:

«— holds_in(has (; ohn, book lj)_, it (X 1, X2) ) ;
holds_inthas(mary, books, ), int(X,, X 3));
[holds_in(has( john, book, ), int(4, B Y

nothol d,s-_in(has_( mary, books), wnt(4, C))]

but the complex data still need to be transformed. In this case onlythe
disjunction is.complex. New rules

go{A,;B,C) .hold-s,in_(hqq’(j‘ahn,_bio'ok'l_),int_('A',: B)). _
90(4,B,C) «  notholds_in(has(mary, books), ink( 4, C).

are-added to the program, and we pass the following query on'to SLDNFA:

— hofds___iﬁ(.hqﬂs(jbhn, ook}, ini(Xy, X 2)); _ .
If we ask for a solution with three evénts,_.-S_LDNFA-'replaces- time variables:
with skolem. constants, determines the order on these. time constants, and
abduces the necessary initiations and terminations to prove the goal (using:
the new rules for gy together with the-general definitions of the knowledge
bhase formulae as open logic:program)._ ' 5
The solution contains three events €1, €2 and ez occurring at times : j
new 1, new.2 a_n_d' new-3, whére X; = A = newl, X; = B = new?2
and X3 = ¢ = new.3, The order on the time points is new 1 < new_2,

new 2 < new_3, The initiations are ' '

wnitiates(e;, has{john, book,)).
nitiates(es, has(mary, books ).

and: -t'erminat'ion_s are not necessary. The tiine"table:-now loaks like this:

1 — new.l ¢ — mnewl :
iz — newd b - new.2
i3 — mnew.3 c — new.d
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and we can read the following solution

happens(e1, t1), happens{ez, 12}, happens(es, ta)
11 — 2y 't_'g'ﬂ b', t3-ﬁ e,

ty <i2, t2 < ta 5

initiates{e, has(john, books)),

initiates(ez, has{mary, bookz)).

which is of course only one of the ‘many solittions found by the procedure.

6.2.6 Advanced Functionality

‘SLDNFA can be used as the basis for alot of other tasks related to the
knowledge base. 'We give two examples: a method-for resolving inconsis-
tency in the knowledge base, and @ way of ‘using the knowledge base for
gerieral problem solving, in particular planning {the latter being one of the
major goals in [39]).

Resolving inconsistency

When inconsistency is detected in the. knowledge base, SLDNFA can be
‘used to propose modifications (i.e. deletions of data items) eliminating the
inconsistency. Basically, this is dore by allowing — in a congistency’ check
— each: data item to either be satisfied or to be marked as rejected. To-this
end we only need to add to the theory an open ipredicate. reject/ 1, which
‘takes as argument a term t{P) representing a particular data item. P. Bach
data-item P can then be handled by either satisfying P or- by abducing
reject(t(P)). We illustrate the practical details in the following example.

Suppose we have three formulae P, @ and R as data. The program.
collects these dafa in a list [P, @, ], which is given — after Lloyd-Topor-
transformation — as a goal to SLDNFA. If SLDNFA returns withaselition,
the data are consistént and there is no preblem.

If no solution is found, an attempt can be made to reject. some data
such that the inconsistency: disappears. In practice, this is achieved by
allowing an alternative transformation of the definition of each data item
in the preceding transformation step: instead.of applying the Lloyd-Topor.
transformaticn, P is replaced by the atom reject{t{P)Y..

SILDNFA then solves reject(t(P)) instead -of P. Since reject/1 is an
open predicate, this is always possible. The result'is that A containg an
abduced fact reject(t(P)), plus a model for [@; B]. The constraint P is
dropped, which possibly resolves the inconsistency.

In further attempts every combination of foriulae and rejected formulae
is checked until a solution is found. Looking at the: abduced reject{t{P))
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facts, the user sees which constraints have been dropped to.restore consis-
tency. Of course more than one solution will in general éxist, and the user
can choose the “best™ one, whatever that means to him. Alternatively, or
in combination with a final decision by the user, restrictions on reject can
be addcd to ensure that particular data are retained.

As an example of the basic procedure, a knowledge base containing

holds_in{has(john, book: ), int(t1,1))).
holds_in(has(mary, book, ), int(ty,13)). _
holds_at{has(X, 0),T), holds_at(has(¥, 0),T) » X =Y.

is inconsistent, and consistency can be restored by deléting any of the three
constraints. Alfernatively, rejection of “general” constraints. (i.e. in %his
example the third one) would typically be prohibited. One of the broposed
solutions would be '

reject(t(holds(has(john, book, ) vind(ta, 2.

happens{ts ). happens(iz). =ty << 15

instiates(ty, has(mary, hook, ).
‘This methqd _i_s of course: inefficient ¢ven regardless the (in)efficiency of
SLDNFA, since data 'ar_c'-se__lect_e& for rejection in a random way, without
looking for the causes of the inconsistency. However there exist solutions
to this problem, an. issue to which we will return briefly in the discussion.

Planning

We now show how the knowledge base can bé used for planning. Given our
formalisation of the knowledge base in OLP Event Calculus, it is probably
not surprising that plenning is possible.

Of course we need. to introduce the ‘concept of an action, and define all
possible actions with their preconditions and their effects. These effects
are given in terms. of a definition of initiates and terminales, as usuval,
For planning in Fvent Calculus, the predicate aét is an open predicate.
The representation of the knowledge base can be adapted accordingly. The
difference with the o_r_igin&l representation is that initigtes and terminates.
are defined in terms_of adt, i.e. initiations and termina,tionS_ are. no longer
arbitrary but. rust be caiised by appropriate actions. This use of -actions
as & cause for every ihitiation and termination can also be extendéd to non-
planning problems and in fact form an improvement of the knowledge base
system as a whole: the actionsdefine every possible way in which properties.
can change, ensuring that this happens‘in sensible ways. Abduced “models”
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of our ¥nowledge base would then not only contain information about which
‘properties change valug when, but also about why this happens.

Given an open act predicate and definitions of initiatiom and termination
in terms of it, the setting has become identical to the usual Event Calculus
setting for pla.nmng ‘Hence, the knowledge base can be used just like any
Event Calculus theary As an éxample, assume. we want to build a véry.
simple plan: John owns a certain book, and we want Mary to have it. The
only possible action is giving the book to:someone. We add the specification
of this action’s preconditions.and effects to our basic definitions:

invalid — act(B,give(Y; B, X)), happens(E,T),
) _ -wholds,at (has(Y, B), T).
initiates{ E, has(X  B})  « (E give(Y, B, X)).
‘terminates(E, has(Y, B)) « act( give(¥; B X))
lee in usuai Event Calculus planning we -also int’foduce' a spetial 'e'vent

After th1s spec1al event only actlons can change the world
happens(start, to_-) .
invalid —  happens(E, T), T < to.
initiates(start, P) + initiallii(F).

ard we assume happens, <, initially and act to be open.
The knowledge base KB contains the formulae ’

holds_at{has(john, boo}cl) t1).
holds.at _has(X B),. ) A holds_ at(has(Y B) T) — X = Y.

and we. fry to solve the query
« possiblé(KB, [t <tz, holds_at(has(mary, book: ), t2)}.

This. yields for example the model

happens(start, tg).

happens(e, t1). to < 1
- Happens(es,ta). 1y <tg

happens(ez, ta). 13C by

instially{has(john, booky)).
act(es, give( john, booky, mary)).

which explicitly contains the plan: one action at ts.
Note that due to the incomplete, knowledge assumed in this knowledge
base, one should take care that all relevant fluent-values in some starting.
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state or possibly intermediate state are explicitly: spec1ﬁed If some part of
for example the initial state is not specified; it is consistent to assume that
the corresponding part of the desired end state was already true from' the
beginning (In the previous example, this could mean assurning that Mary
had the book all the time by abducing.the corresponding initially atom.
However in that example the coristraint that- only one pefson can own. a
‘book: at the same time eliminates this unintended solution. )

As a final remark, note that the knowledge base representation with only
initiations and: terminations isa special case of the proposal with actions,
in which for each initiation of termination there is'one action with. precisely
and only that effect.

6.2.7 .Discussion

We have demonstrated how OLP Event Calculus can be used as a gern-
eral framework for the répresentation and use of temporal know]edge bases’
containing incomplete data: Both time points and time intervals can be
represented and reasoned. with.

Abduyctive reasoning provides a straightforward way to generate models
for a'set of data. This allows us to check consistency and to answer queries,
Complex data can be handled using a preceding transformation step, and
deskolemiisation allows us to represent time points that may be equal to
ezch other.

We have indicated how more advanced types-of furictionality can be
provided hy SLDNFA, hke resolving inconsistency in the knowledge base
and planning using: the knowledge base. This'shows that the representation
1s sufficiently general for easy practical use.

In general, the proposed a.lgonthms are.not efficient, even though the
constraint module for partial orders in SLDNFA elirminates one major
source-of inefliciency. However, recall that our main goal is providing a the-
oretical framework for representing incomplete temporal knowledge bases,
and giving a number of - simple algorithrns to illustrate how such knowledge-
bases can be used and manipulated. These a,Igonthms should ‘be consid-
ered a starting point for research on more efficient implementations. For
example, incremental model construction would. be very important toavoid
building a complete model. of the knowledge base for-each quéry,

For some applications, we can enhance the efficiency by adopting ideas
found in the literature: our framework is suﬁcmntly flexible to allow for
plugging in existing techniques. As just one example, in [1L7] we find.
an algorithm for resolving inconsistency in a network of interval relations,
based on the work in [2]. There, for each pair of intervals. a list of possible

B s TP T p— T . gt T S e SR T




128 CHAPTER 6. ACTUAL KNOWLEDGE REPRESENTATION

rélations between these intervals is maintained. If ever no possible relasions
are left. between any two intervals, the data are inconsistent, Weigel and
Bleisinger have modified -and extended this:procedure to efficiently derive
solutions for the inconsistency. They present two possible approaches: one
using elemeniary reasons and one using .elemeniary solutions.

The first approach attemptis to find minimal sets of inconsistent con-
straints: etartmg from the initial inconsistent set as many constraints as
_possible are removed while: preserving inconsisiency. This res_ul_ts in an
elementary regson. One constraint from esch elementary reason is-then re-
‘moved, e]im-i'nat_ing:'or_;je cause of the inconsistency. The. process 1s repeated
until consistency resilts.

A problem with this approach is that if often requires many steps, and
too many ¢onstraints are eliminated. Therefore, another method is pro-
‘posed a8 well: This method starts with an unrestricted . set of relations,
then tries t6 add as'many constraints as possible without losing-consis-
tency. This results in an -elementary solution. The constraints that could
not be added are reported to the user.

The solutions show some similarity to our approach, but work only on
interval relations instead of general data. This allows for more efficient al-
gorithms, espeaa]]y if an incremental consistency checker is used: By using
a mapping that reduces general inconsistency to inconsistency in interval
rélations, which is possible if we use information like “intervals with incom-
patible properties must bie dlSJomt” we coiild mcqrp_orate.:these_ -techniques
in SLDNFA. We do not pursue the issue further h’ere"

An approach to the representation of temporal databases which is sim-
ilar to-ours can be found in [85]. A database is considered a collection
of maximal intervals throughout which certain properties hold. For each
property ‘a list of such intervals is maintained. Tncomplete information on-
the ‘extent. of intervals is represented by skolemising the end points of each
interval, and consiraints on these end points«can be expressed. The frame-
work shows some similarity to oiirs, though no explicit events are used and
only maximal intervals are represented The prdposal can be mapped to
ours, howaver, which would allow us to use its more efficient algorithms:.

In concluslon we want to 1nd1ca.te that the most important dspect of
our framework is that it allows. for the data in the knowledge base o be
in the same language as the applications working with them. That this is
achieved is clearly illustrated by the straightforward éxtension for planning.
"Thus: we hope to show that the QLP Event Calculus.is not only useful in
several "di_stii:lct temporal reasoning dotnains, but can also serve as a link
bridging existing unnecessary gaps betWeen‘ therm.
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6.3 Protocol Specification

6.3.1 Introduction

Tn this section we'use OLP Event Calculus for protacol specification. "This is
-a research aréa far fromi the usual Event Calculus.and artificial 1nteH1gence
applications, and one which employs-a rangeof very specialised. formal spec-
ification langiages. The most important of these are the process algebras
CSP: ([46]), CCS ([75]) and their descendants such as LOTOS ([106]), etc..
These languages are based on a mathematical abstraction of a process. as
an algebraic entity which can be constructed by combining basic processes

using a clasg of pre-deﬁned operators,

On the other hand, a distributed system of processes is Jjust one example
‘of a dynanic system, the area of application of the Event; Ca.]culus Hence,
‘using Event Calculus for protocol specification and comparing it with spe-
clalised ‘existing approaches is a challenge which cannot be ignored and an
important test-of the practical applicability of the formalism.

In.contrast to process algebras, where the concept of a process is hard-
coded in the semantics, Event Calculus has no specialised representation of
processes at all. We model & process as a dynamic entlty with an identity
(a name} and an internal state which is represented by a set of attributes
or relations. A process has a restricted ability to sense actions executed
by other entities (e.g. when receiving or- synchromsmg on messages) and
has the ability to execute actions (e.g. by sending messages). Both- sensing
and executmg actions modify its'internal state and @ restricted part of the
outer world (e.g. receiving a message deletes a message from.a channel).
In section 6.3.3, we adopt this'dynamic view 'on processes in.a specification
of-a comtunication protocol, the sliding window protocol with go-back-n
from [105].

Our study is interesting from different perspectives, First, it illustrates
the use of open logic: programming and Event Calculus in & setting they
were not initially intended for, thus ﬂlustratmg their flexibility. Second, it
shows that the classical temporal reasoning theoties developed in artificial
intelligence are growing out of their infancy and are ready for 1arger tasks.
Third, it is ‘interesting that the representation style of processes. in QU ex-
periment is strikingly different from that in a process algebra specification.
As argued in séction 6.3.5, this-is due to the differences between the alge-
braic view .on processes and the view of a process as a dynamic entity with:
an identity and an interna! state. The representation style we adopt will
be argued to be rmore. generally applicable, and therefore. more: 5u1ted for
integration with other apphca.tlons

Though the view of a process as-a dynamic entity fits in more naturally
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with the ontological primitives of Event Calculus, the Event Calculus is
sufficiently ‘general o also tepresent the algebraic view on processes. This
miakes an integration of procéss. algebra specifications in Event Calculus
feasible. Section 6:3.4 presents a general fechnique to incorporate protocol
specifications using process algebras in Event Calculus:

6.3.2 Preliminaries and Notation

Our specification basically uses the Event Calculus specified in' Chapter
4. We introduce some additional concepts and motations specific to the
protocol specification. setting, to make the representatmn more concise.

In process protocols, we can generally assume that there are no simul-
taneous actions. Hence we impose.

ac't(E,_- A A act(f_E_, Az) = Ay = As.
Many of all events in.a process protocol have important preconditions.
We use the preconditior, predicate to.represent these: precondition{A,T)
means that a sufficient precondition for the action 4 o happed at time T
-is-satisfied: We then have :
happens(E,T) A act(E, A).— precondition(4, T}
The predicate precondition will be defined by domain specific rules.

_Anocther issue is the representation of complex objects (in particular
processes) One way of modeling a complex: object in logic is by defining
a number of predicates representing the relations in"which the object may
occur.. An alternative-is the object-oriented style which. uses @féributes to
tepreseni the knowledge on an object. Attributes are suitable to represent
partial functions of complex objects and time. “We have often found it
-useful and elegant to use a mixed representation for complex objects, using
attributes for the partial functions, and using predicates for other types of
relations: _

Attribiites are described by the fluent. attribute. The atom

holds(attribute(P, PROP, VAL), T)

means that the ob_]ect P has & value V AL for attribute PROP, at time T.
This representation. allows us to formalise the law 6f destructive assignment
for all attributes; any initiatiof of & value for an atiribute deletes the old
valie.
terminatés(E,atiribute{P,PROP,OLD_ VAL))
initiates(E, attribute( P, PROP, VAL))
— | happens(E,T); holds{attribute( P, PROP,OLDVAL),T),
QLD VAL =V AL,
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‘This axiom is assumed in the. specification. below.

In our- spec1ﬁcatlon, often a particular action - occurring in a certa.m
context has several effects. To limit léngthy repetitions, we will therefore
adopt the. notation

Ay By
O Rl B
A, By,
to tepresent the set of clauses:

Ap + Bi...Bp.

6.3.3 Specification of a Sliding Window Protocel

“In this section we. give an example of a specification of a non-trivial protocsl
‘in Event Calculus ; the so-called sliding window. protocol with go-back-n.
This is a well-known communication protocol, described ‘in [105], which. is
situated in the OSI datalink-layer. The goal of the protocol is to - provide
a reliable connection to be. nsed by the higher OSI layers, in particular
the network layer, given. an unreliable physical channel. A network layer
process’ passes frames it needs to send to its underlying datalink layer pro-
cess; which makes use of the shiding window protocol to pass them overthe
physical channel to the datalink process on:the other side. This process
in turn passes the frames to the desired network layer process on'its side
of the channel. The protocol is:symmetrical {(processes -are both sender
and- recelver) -and uses. plpehmng (multiple frames' can be serf out before
one is received on the other side) and' piggybacked acknowledgements (ac-
knowledgements ate sent by the receiver encapsulated in its own messages
going the other way). Flow control is bascéd o a sending window which
stores sént una.cknowledged framies and a receiving window (in this case of
Tength 1) of frames that can be accepted. If a particular frameis lost of
corrupted, no other frames can be accepted until the lost one is resent: all
subsequently sent frames then have to be resent ds well ‘hence the name
“go-back-n”

‘We give a more detailed description of the protocol. Essentzally, a pro-
cess in the datalink layer waits for and reacts to various incorning. input
events. Three types of input events exist:

o .5 sefid event: a network layer process passes a._ﬁar_n_e to the datalink
process. The latter process puts the frame in-a slot in its sending win-




132 CHAPTER 6. ACTUAL KNOWLEDGE REPRESENTATION

.dow; initiates the timer associated with that slot, and sends d packet
including the frame and some additional information out on the phys-
‘ical channel. This. a_d__dll_;lona_l _qur_ma_t_lon_cons_l_sts of the number of
the sent framié’s slot and an acknowledgement indicating the nuriber
-6f the last frame correctly received from the other side.

e a receive event: a packet arrives over the physical channel. If it
does not coniain the expected frame {i.e. its slot number is not the
successor -of the last Teceived packet’s slot number) or if the packet
is corrupted, the packet-is rejected without further processing. Oth-
erwise, the packet is ‘accepted and. the frame it carries is passed to
the network layer. Also, the acknowledgement number carried by the
packet indicates that a1l frames up to that number have been received
by the peer process, hence all slots in ‘the sending window up to the

acknowledgement number can be.cléared and all asseciated tlmers
turned off.

o atimer event: the timer of (the cldest) frame in the sending window
is 1:1ng1ng The; process goes into a mode in which ‘it refransmits its
buffer, i.e. -the contents of all-slots in its sending window, over the
channel After this is done, the process waits again for an input-event.

Tir the following sections, this informal specification will be used as the
basis for' a formal specification in Event Calculus. In this specification
‘the predicates happens, act and < are open predicates, gince the proto-
col specifies only potential behiaviour and no actual scenario: the protocol
determines only which events can occur under which circumstances.

General concepts

We first describe and specify the environment in which the protocol oper-
ates: the main types of -objects in the domain, with their attribiites and
relations. The main types of objects are the datalink layer processes, the:
channel, the frames and of course the events which' take place. There are
two peer processes (both are sender/receiver), which are connected by a
changel. The two processes are denoted pi. and p;. pi, and p; are cach
other’s receiver process. The following clauses represent this:

process(pi).
process(ps)-
receiver(py; pz)-
receiver(ps, p1)-

The attributes of a process are listed. below:
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o rnode: 'th_i's-att]_'ibute. can take on four different values;

-~ input: the process is ready and waliting for .input

- sending(F, NR): the process is sending a frarne F stored in the

-slot NR

— 'rg_ceiv_ing(f): the process is passing a. received frame F to its
network:layer

— retransmitling(NR): after a time-out, the process is. retrans-
mitting its buffer starting from slot ntumber NR.

‘o zpf: the frame to be recetved (expecied frame) attribute: this attribute

points to the number of the next frame to.be received, i.e. the frame:

with number one Ligher than the last successfully received frame.

o w(i) (for any 0 < i < n— 1 with n the size of the window): the value
of the attribute w; of process P is the frame which is stored at.slat 4
of the window. The window is a.circular buffer of length %.. This is
represented by the predicate cnezt which is defined as follows:

)
)

cnezt{n ~ 1, 0).

- cnezit(0,
enext(l,

1
2

e zpa: the oldest frame to be acknowledged {ezpected acknowledgement)

attribute: 'fhis atiribute takes values 0 < { < n and points to the.

oldest-sent but 'unacknowledg'ed frame in the sending window,

e fis: the frameto send attribute: this attribute takes values.0 < i < n
and points to the first free slot in the-sending window.

A fluent’ on processes is. networklayer_enabled(P), meaning that the
network layer 'of process P is allowed to. Pass new frames to P.

We. distinguish between'j‘mme_s and packets: a frame'is a data item
given by a process in the network layer to the datalink process for trans-
mission. A packet is a physical unit-of data which iz sent over-the channel.
Two different frames or two different packets may carry precisely the same

information, and two- different packets may also, contain the same frame.

We need to distinguish hetween packets and frames carrying the same in-
formation but créated at different ihst'a.n_ts n time in order to. elegantly
express some of the p‘hysical_ properties of the system, Take, for example,
the property that if one-packet is received earlier than ‘another packet, then
the first packet was also sent earlier than the second. In this sentence,
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packets should clearly not be mtexpreted as the data they cortain; but as
a particular occurrence of these data.

How can wé characterise frames and packets 7 A frame is introduced
‘in the system by the event E in which.a network layer process passes the
frame to P, so we can denote the.frame by the term frame(E, P). A packet
contains ag information a frame, a slot number and an acknowledgement,
and can hence be denoted by packet(E, FRAME,NR, ACK). Here B is
the send.-event by which the packet is created and sent over the channel.
FRAME,NR, ACK are the data carried in the packet: FRAME is the
carried frame, N R the slot number in which this frame is stored and ACK
the nurmnber of the last successfully received frame.

P'ackets"-.a.p'pear in two different relations in.the specification:

e corrupt{ PACK ET):_ the packet PACKET has been corrupted by
errors of the chanmel:

o. on.channel(PACK ET,P): the packet PACKET is on its way on
the physical channel toward receiver process. P.

Next, we specify the ‘possible events in the. specification, There are 7
event types ‘The first four types model the sending and receiving actions
of datalink and network layer processes. ‘One event type models a timer
run-out. The last two types model two different errors which ¢an occur on
the channel:

» net_send(F, P): the network layer passes the frame F to its datalink
layer process P,

o net_receive(P, F): the datalink process P passes a received frame F
to the network layer;

e send(P, PACK ET) P sends packet PACK ET oyt on the channel.

o receive(P, PACK ET): P teceives packet PACKET from the chan-
nel,

° t_imer.,-ring.s_{f?, N R): the timer of slot w{N R) of process: P rings;

° dist'urba.nce;cha.nnei(PAC’.KET): a disturbance on the channel cor-
rupts packet PACKFET]

o failure-channel( PACK ET) a failure of the channel causes-the loss
of packet PACK ET. '
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‘Initial state of the $ystem.

T}__le. following clauses define the initial state, in which both processes are

‘in input-mode, have -an empty sending window, and have enabled network
layers:

initially(atiribute(pr, mode, input)).
initiall y(a,ttmbute (@2, ode, input)).
initial Iy(qttmbut_e_(_ pr, fis,0)).
initially(atéribute(p, , 2pa, 0)).
instially(attribute(p; ; 2pf, 0)).
initially{attribute(p,, fts,0}).
initially(attribute(p;, epa, 0)).
initially{attribute(pz, zpf, 0)).
initiaﬂy(networkfayer enabled(p)).
initially(networklayer .enabled(ps)).

The: i:han.nel

We start by descnbmg the channel. A fundamental assumption about the
physical channel is that it preserves the order of packets. The following
deﬁmtlon of invalid formulates this:

happens(Ey, T:), happens(Ez, T5), Ty < T,
act(Fy, send(PROCESS), PACKET;)),
act{ Bz, send(PROC ESS,, PACK BT;)),
invalid — re-:e_iuer(PROCESSl , PROCESS;);
aCt(Ea,'?;eCE?:ﬂE(PROCESS% PACKETl))
act( By, recéive( PROCESS,;, PACKETY)),
ha.ppens(Es, Ts); happens(EBy, Ty), T, < T

Two types of evenis are local to the channel. These are-the -events
which simulate errors of the channel Their precondltlons and eﬂ'ects are

descrl_bec_i below:

e A disturbance on the. cha‘n‘n‘el_c‘c')r_rupts-a-_l_:_oacke't. This-é_a_.n of course:

-o_nly happen to packets on' the channel:

precondition(disturbance_channel(PACKET), T
— .process{ P ROCY, holds(on_channeI(PACKET PROC),T).

Its effect is that the packet becomes corrupted:

initiates(E, corrupt(PACK ET))
+—act(E, disturbance_channel(PACK ETY).
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o A failure of the charinel whick causes the loss of a packet. Precondi-
tion is that the packet is on the chiannel:

precondition( failure_charinel(PACK ET), T)
~ process(PROC); holds(on-channel{ PACK ET, PROC),T).

Its effect is that the packet is removed from the channel:

terminates(E, on_channel(PACKET, PROCESS))
— act(E, failure_channel{ PACK ET)).

'Sending_ behaviour of & process

For the description of a process, we follow the structure of the informal spec--
ification of the pratocol in section 6.3.3. Assume that the process. receives
a frame from the network layer. Preconditions for this event to happen
are that the peer process is in inpui mode and that the network layer is
enabled. The passed frame is given a natne determined by the nei.send
event and the process.

precondition(net_send(frame{E, PROCESS), PROCESS), T}
process(PROCESS), happens(E,T),

— | holds(attribute( PROC ESS, mode, input),T),
| holds{networklayer enabled PROCESS),T). -

‘The effect. of a net_send(FRAME, PROCE.S'S) event is that the pro-
cess enters: sending mode, that the frame is stored in the first free slot of the
'sendmg window, as mdmated by the fts (frame to- send) attrlbute that fis
is incremented,. and that 'if the buffer is full, the network layer is dlsabled

initiates(E, attribute( P ROCESS, mode, sending(FRAM E), FT5)))
initiates(E, attrzbute(PROCESS w(FTS), FRAME))
initiates(F, attribute( PROCESS, fis, NEXTFTS)})
hoppens(E, T), act (B, net_send(FRAME, PROCESS)), '
«— | holds{attribute(PROGESS, fis, FT5), T), '
cnegt{ FTS, NEXTFTS).

As mentioned, the network layer is disabled when the process.is out of
buffer ‘space. In fact, t¢ ensure correctness of the protocs] (i.e. %o avoid:
data loss) it must be disabled even sooner, when there is only-one free buffer
slot left {see [108] for more details). There is only one buffer slot left when
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fis points to the predecessor of zpa. This is expressed by:

terminates(E, n‘eiworkI_ayer_enqb_l_ed[PROCES.Sf))
" happens(E; 17,
. indtiates(E, atiribute(PROCESS, fis, FTS)),
holds{attribute( PROCESS, opa, X PA), T),
enext( FTS, X P A).

At implicit effect of the net_send event is‘that the timer of the slot of the

frame is set. Here we simply assumne that the fimer of a slot is set as.long as

the slot is in the active part of the sending window; or, from the moment a
frame is stored in the slot until'an acknowledgement for the slot is received.

The only event that a process ¢an execute when it is in sending mode-is
sending the frame, together with ité slot number and an acknowledgement,

‘The preconditicn of the send event s that the process is in sending mode,

that the packet carries the correct data (frame, slot number and acknowl-
edgement), and. that the packet is the one uniquely corresponding to this
evernt:

precondition(send(PROCESS, packet(E, FRAM &, NR,ACK)},T)
process{PROCESS), happens(E, T, o
holds(atiribute( PROCESS, mode, sending(FRAME, NR)),T),
- holds(attribute(PROCESS, zpf, X PF), T),
cneat (ACK X PF).

An obvicus effect of seriding is that the packet. gets on the channel.
initiates(E, on channel(PACK ET, RECE] VER))

act{ B, send(PROCESS, PACKET)),
receiver(PROCESS, RECEIV ER).

Another effect of sending i this mode is that the process returns to
input mode.

initiates(B, attribute{ PROCESS, mode, input))
| -happens(E, T), act(E, send(PROCESS, PACKET)),
holds(attribute(PROCESS, niode, sending (FRAME,NR)), T).

Receiving behaviour of a process

When a process is in input mode, it may recéive packets frora the channel.
A sufficient precondition for this event to occur is that the process is in
input mode and that the packet-is on the channel:
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precondition(receive(PROCESS, PACKET),TY
process(PROCESS),

— | holds(attribute(PROCESS, mode, input), ),
| holds{on_channel( PACK BT, PROCESS) T)

The effect of this everit depends on several faciors and is spht up in
different rules. One effect of receiving is always that the frame is removed
from the channel_

terminates( B, on_channel(PACKET, PROGESS))
- \ act(E, receive{ PROCESS, PACK ET)).

‘To be accepted, a received packf:t should not be. corrupted and should
carry the expected frame nurnber given by attnbute zpf. If these conditions
are. sa.tlsﬁed the zpf attribute ig circularly. mcreased and the process enters
the receiving mode during which theé frame is passed to the network layer.

initiotes(E, attribute(PROCESS, opf, NEXTXPF))

initiates(E, attribute(PROCESS, mode, receiving( FRAME)))
happens(E, T), act(F, recewe(PROCESS_PACKET))
ﬂholds(corrupt(PACKET) 1)

«— | PACKET = packet(E" FRAME,NR, ACK),
hoids(attrzbute(PROC’ESS :cpf,XPF) T) NR=XFF,
cne:ct(XPF NEXTXPF).

A second part of the recewmg behaviour is the handling of the ac-
- knowledgement, 'When an uncorrupted packet is recewed and it carries an
acknowledgem CACH “crirren uééd slot:of
the sending window, then all slois between (and 1nc1ud1ng) the expected
acknowledgement (zpa) and the slot ACK are released by setting the zpa
attribute to the successor of AGK. Due to the nature of the protocol, this
is safe even when the received acknowledgement ACK istiot the expected
acknowledgement

In addition, if the’ network layer was. disabled, it will now be enabled
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again. This is formalised in the 'fOIIOWing'.claUSeS'.

snitiates( B, atiribute(PROCESS, zpa, NEXTX P A))
indtiates(E, networklayer_enabled( PROC ESS))
happens(E, T), act{ E, receive (PROCESS, PACKET)),

~holds(corrupt( PACKET), T),

PACKET = packel(E', FRAME, NR, ACK),

+ | -holds(attribute( PROCESS, zpa, X PA), T),
hofds(attrzbute(PROCESS fts, FTS), T,
cbetween(X PA, ACK, F'TS),
cnewt(ACK, NEXTXPA).

The predicate c_between(X,1,Y) denotes that I is circularly between
X and ¥ (including X but not ¥'):

c_between{ X, X, Y) - X2V, _
cbetween(X, I, Y)— X #£Y,cnest(X, X1),¢ between(X1,1,Y).
When a process is in' receiving mode; it passes the feceived frame to

the network layer. The precondition. of the action net.receive is that the
process is inTeceiving mode.

precondition(net_receive(PROCESS, FRAME), T)
process(PROCESS}

| -holds(attribute( P ROCESS, mode, receiving(FRAME)}, T).

e
The: eﬁ'ec’f. of net_receive is that.the- process refurns to input mode:

initiates(E, attribute{ PROCESS, mode ,input)) [
- f act( B\, net_receive( PROCESS, FRAME))

Handling of a ringing timer

Finally we show how rmgmg timers are handled. We know that whenever
a timer rings, the buffer is non-empty and, since all timers have an equal

tiring interval, the timer corresponds to the oldest frame in the sending
-window. This yzelds the followmg precondition for tirner -Tings:

precondition(timer rings{ PROCESS, X PA), T).
process(PROCESS),
holds{attribute( P ROC ESS, mode yinput), T,
«— | holds(atiribuie(PROCESS,; zpa, X P A), T),
holds(attribute(PROCESS, fts, FTS), T,
~XPA=FTS.
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When this timer rings, all unacknowledged frames hiave to be retrans-
‘mitted. The process enters retransmitting mode with as parameter the
expected acknowledgement.

initiates( B, attribute( PROCESS, mode; retransmitting( X P A)))
— | act{E,timer.rings (PROCESS, XPA)).

While a process is in retransmitting mode, it sends oiit its buffer. This
situation yields a second sufficient precondition for a send event: the process
is in retransmitting mode and. the sent frafe is the one pointed to by the
parameter of the mode:

precondition(send( PROCESS, packet(E, FRAM E, N R, ACK)),T)
‘process( PROCESS), '
holds(attribute(P ROCESS, mode retm,nsmtttang(N R}, T);
« | holds{attribute(PROCESS, w(NR) FRAME), T).
holds(attribute( P ROCESS, zpf, XPF), T)
 cnect{ ACK, X'PF).

The effects of sending in.retransmitiing mode are slightly différent from
those in sending miode. The addificnal effect is. that either the number of
the slot to be retransmitted is incremented or, when the last frame of the
buffer is retransmitted, that the process refurns to input mode:

anitiates(E, attribute( PROCESS, mode, retransmitting(N EXTN R)))
happens(E,T), act(B, send (PROCESS, PACKET),
ho}‘.’d_s(at_tmbutc(_PROC ESS, mode, retransmitting(N R)), T),

e .cne'z't'(.N R,NEXTNR),

Kolds{atiribute(PROCESS, fts, FT5),T),
~FT5—= NEXTNR. S

initiates( B, attribute( PROCESS, mode, input))
happens(E, T), act(E, send( PROCESS; PACK'ET)),
| holds(attribute{ PROCESS, mode, jretransmitting(N R)), 1),
holds(attribute( P ROCESS, fis, I"TS) T),
cnemt(NR FTS)

This concludes the- spec:ﬁcatlon of the sliding window protocol with go-
back-n. It is our task to prove that this specification is correct and meetis
the requirements of the protocol; i.e. in particular that the network layer
omi-one side will receive all frames sent out on the other side.in the carrect
order and only once (or will receive nothing at all from. @ certain moment
on. if the channel breaks down entlrely) We prove this property of the.
protocol (by hand) in Appendix C.
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6.3.4 Translating Process Algebra
Specifications to Event Calculus

In this section, we show how any specification formalism of which the se-
mantics can be defined in terms of a labeled transition system by mieans
‘of.a logic program, can easily be translated to OLP Event Calculus. In
particular, it follows that process algebras like LOTOS, CCS and CSP tan
be translated.to OLP Event Calculus,

The purpose of such a translation is twofold. First, it shows that the
Event Calculus has. at least the expressive power.of process algebras. Sec-
ond, the existence of such a straightforward translation makes the process
of .combining specifications in different la.ngua.ges easier: if one is. building
an Event Calculus specification and wants to reuse existing spec1ﬁcat10ns.
written in a process algebra, these existing specifications can: be iricorpo-
tated in the Event Calculus specification by traznslating them as explained
in this section. Of course, the translaled specifications will not be very.
well-structured froman Event Caleulus poiitt of view, but all existing tools
for reasoning on the Event Calcnlus can be used on them:

In protess algebras, a process is defined as the set of all possible se-
‘quences of attions it can consist.of. This set is written as a possible be-
haviour ezpression. Labeled tranmtlon systerns are widely used to give a
sernantics-to such possible. behaviour. expressions. A labeled transition. 8ys-
tem consists of two seis (a set S of states and a set L of transition labels),
and a telation on S x I x S, called the transition relation, Usually, E is'in-
terpréted as a set of actions, and (sy, {, s2)°is in the transition relation if the
specified system. can go from state s; to state s, by performing action i. For
example, the sernantics of LOTOS ([108]} is defined by means of a labeled
transition system, where § is the set of possible behaviour expressions and
L is the set of p0531ble actions.

A labeled transition systein can be specified in a logic program by defin-
ing a predicate tranmtwn{ 3. For example, we can define the semantics
of basic LOTOS behaviour expressions, built using the-process coristant
stop, the prefix operator “” which concatenates an action‘and a behaviour-
expression, the choice operator “[]” which denotes a choice between two’
behaviour expressions, and the parallel composition operator between be-
haviour expressions *|G|* (where G'is a list of actions which must be per-
formed synchroncusly by the component éxpressions). This definition is
given by the following logic program:

transition{ A; S, 4,.5).
transition(51(]Sz, 4, §} )« transition(S;, 4, 5}).
transition(S: |53, A, 8) — transition(5;, A, S5)
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fransition(S,|G|Sa, A, 5[G]S,) — | rensition(S, 4, 51),
' ' AgG

transition(S;|G[Sz, 4, 51|G|5y)} + transition(Sz, 4, 53),
AdG.

_ _ transition(5y, 4, 51),

transition(S;|Gl5,, A, $1|G|SS) « | transition(Ss, 4,55),
Aea.

where the € predicate needs to be defined appropriately depending on the
representation of @, It is strmghtforward to define the transition predicate
for otheér process _a.lg_ebra connéctives In the same way.

Ohee we have defined the transition predicate for a specific process alge-
‘bra, the translation to Everit Calculus is easy. Supposé we have an arbitrary
labeled transition system defined by a predicate transition({5;,:4,5;) and
‘with initial state sy, then the following clanses give a correct. Bvent Calculus.
description of the system:

happens(E, T), holds(OLDSTATE, T),
initiates(F, STATE)} transztwn(OLDSTATE A, STATE')
act(F, A).

happens(E,T), holds(STATE, T),

transition(STATE, A, NEW ST ATE),
act(E,A),

~STATE = NEWSTATE.

terminates( E, STATE) «

initially(s ).

These rules are a direct formalisation of the intended meaning of a labeled
transltlon system:. each action terminates the current state and initiates
the new state determined: by the transition. relation.

6:3.5 - -Discussion

Process algebras provide support for the representation of processes and
synchromsatlon in the sense that these notions are hard-coded in the se-
mantics of these languages. Tn contrast, OLP Event Calculus is a universal
logic for representing chariging worlds; it does not provide hard-coded con-
cepts like processes 6r-synchronisation. This observation might lead one to.
expect a high verbosity in our specification, due %o the lack of support of
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central concepts. However, t’h_e verbosity in-our specification is surprisingly
low. Our specification contains about 30 main domain dependent clauses

(nobt counting e.g. the initially clauses and the definiition of cnext) with an

average-of 3-4 literalsin the body. The specification in section.6.3.3 and the
specification of the same protocol in a process algebra in {53], kave aboui
the same Jength. : '

Comparing our specification with a specification in & process algebra,

we find an important difference. in the conceptualisation of the process con--

cept.-In a process. algebra.a process-is a static, algebraic entity built up by
combining simpler processes using pre-defined operators. In -contrast, the
Event C'é:lcu_lus specification models a process as a dynamic entity with an
identity and an internal state. A process has atiributes representing the

internal state, it has a restricted ability to sense actions executed by other

entities and has the ability to execute actions which modify its internal
state and a restricted part of the outer world. .
The differences in view lead. to extrernely different specification styles.

“The Event Cé;lc-ulu_s specification models the state of.'thc__w_orld at each mo-

ment: packets that are.on the chatnél; contents of the.slots in the sending
window, current mode. of the processes, expected frame and acknowledge-
ment humbers, and so on. It also describes the. evolution of the world as
a refult of events, and the preconditions of each event type. From this

informiation, possible sequences of events (traces) can be derived.

Process algebra specifications do not model the _evoIvi_ng_ state of the-

world; but only and immediately the set of ‘possible traces that is derived:
from it. On the one hand, this is an advantage if the traces dre the only
thing one is interested in: a lot of unnecessary information is abstracted
away. On the other hand. the loss of information severely limits the appli-
cability of process algebras. '

Another considerafion is that in our view Event: Calculus style specifica-
tions, due to the fact that they model the real-world parameters from which
traces can bé derived instead of the traces themselves, tend to be both eas-

ier to produce and easier to modify — although admittedly process:algebra

experts dis’agree-\irith-this- — : preconditions and éffects can be described
for each event type independently, whereas calculating the possible traces
requires-taking into account all possible interactions.. Moreaver, changes in
the effects of one-event can have a considerable and complicated influence
on the: set of possible traces, where it only leads to:the modification. of one
effect ‘clanse in an Event Calculus style specification.

So far, we have focused on the role of open logic programming for speci-
fication, Itis-now time for a few words on reasoning on.these specifications.
For Lotos specifications, software tools have been. developed for differ-
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ént computatlonal tasks, including testing and simulation, verification and
compilation of the. spec1ﬁca.t10n in executable programs (for an overview
see [8]). Tools performing. sinilar tasks can be developed or eXist already
for the Event Calculus. For éxample in [78], a general purpose approach to
simulation in Event Calculus.is proposed. Other tasks can be performed
on the basis of SLDNFA, as we sketch below.

Different forms of protocol verification are theoretically possible in OLP
Event Calculus For example, one requirement of the protocol specified in
this section is that it should provide a perfect channel to the. network layer,
j.e. that frames sent by the network layer on ome side arrive all exactly
once and in the right order on the other side. Pr_ow_ng_thm i5 essentially a
deductive problem. '

Another typical verification problem in the context of distributed sys-
tems is - whether a protocol is deadlock-free. A (mmphﬁed) condition which
expresses: that a deadlock arises at time T is that no event can happen at
time T, i.e. ‘that for no action its preconditions are satisfied. Thefollowing
fornula ¥y expresses this: :

3T : YA :—precondition(A, T}

A deadlock:free protocol should entail — ¥4 This is also.a deductive: prob-
jem. In case the specification does not entail =¥ 4, a third type of problem
arises: namely to explain why W, can be true, i.e how a deadlock may
arise. This is a.form of diagnosis, essentially an abductive problem. SLD-
NFA can be used to find a scenario. (descnbed in terms of the open predi-
cates happens; < and act) in which ¥4 s true.. One fnay observe that this
problem is formally equivalent 1o a. planning problem in Event Calenlus.

Proofs of the correctness and deadlock-freeness.of the protocol are in-
cludeéd in Appendlx C. These proofs have been generated by hand. Their
complexity in combination with the inefficiency of the SLDNFA procedure:
show that more research in and specialised suppdrt for automated protocol
verification are required, for exarnple support for generating proposals of
mva,nant rélations. These areissues for further work which are not handled
in this thesis.

-..The. genera.l apphcabxhty of Event: Calculus in a wide range. of tasks in-
dynamlc ‘systems. allows. for the reuse of protocol spemﬁcatlons forother
tasks. ‘For example, in this section we have specified a communication pre-
tocol. This protocol will typically be used by processes exchanging infor-
mation in a network. ‘An application in the same domain is nétwork man-
agement: and diagnosis. Obviously, both network diagnosis and protocol
specification require knowledge of low-level parameters of the network, the
comrninication channels, the states of processes and the occurring events.
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For example, network diagnosis may need information on ‘the frequency
of packet losses on 'a particular channel, the average number of frames in
unacknowledged slots, ‘orthe average number of retransmissions: informa-
tion which can be obta.med from the given specification. If different, special
purpose languages are used o deal with protocols on the one. hand (e.g.
process algebras), and the network diagnosis on the other hand (e.g. logm
programmiing), then: integration. of and: cooperation between these compo-
nents becornes extremely difficult. Tt is a-considerable advantage of QLP
‘that it provides one general description language for the entire system,
which can be uged as the underlying specification language for most (or all)
of its applications.
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Chapter 7

A High-Level Language
for Representing
Dynamic Domains

7.1 Introduction

In the previous chapters we have illustrated the exXpressive power of OLP
Event. Calculus-as a knowledge representation language useful in various
problem domains where time is an: important factor. In this chapter we.
-return tothe classical AT ternporal reasoning setting to show how a language
based on OLP Event Calculus can tackle the various aspects of the frame
problem.

In itself, the OLP Evert Calculus is not the best choice for this task:
s expressiveness and flexibility, which are a considerable advantage when
dealing with various domains, are also .2 source of risk if not handled with
care. The Event Calculus deals only correctly with the frame problem if its
theories. are constructed following a particular methoddlogy (like: the one
we have used Ehroughou_t_ t'hi_s-"ﬁhesis'). For example, if a user would add
clauses to the definition of holds, or if the definitions of initiates(e, f) and
termingtes(e, f) would contain statements about later time points than e
or would not be given as a definition but as FOL axioms, etc., theories
wonld be obtaineéd which do not at all represent. the intended knowledge.
But since the Event Calcilus is presented -as an open logic program, there
are no restrictions enforcing that the full expressive “power-of open logic
programming is not {abjuged.

147
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To cure this’ problem, we intend to develop a formalism which only
allows one to represent theories in a form that yields the intended con-
clusions. At the same time, we of course want ‘the formahsm to retain as
‘much of the expressive power of the OLP Event Calculus as possible, for
example its observed ability to deal with inc¢omplete sceriatio knowledge,
with nondetermlmsm with sirhultaneous actions and with indirect effects
of actions: In other words, we want to isolate the language iconstructs re-
sponsible-for the: Event Calculus’s expressive power and combine them in
a high-level language for temporal knowledge representahon As the most
difficult open problem in this research area is the. ramification problem
{172], [72} ,[44]; see.also. Chapter 4), tackling this problem will be the issue
recelving most attention.

Our approach follows the recently emergéd trend of using high-level
action. languages for studying the general principles underlying time and
‘change in certain well-defined seitings. The first of these’ languages to
emerge, the A language.of [37), models inertia and direct effects of actions:
in a branching time topology, with posmhle uncertainty on the initial state
of the world. Bxtensions of A tackle gradually more complex issues: for
example ARq ([55]) deals with indirect effects of actions (ramifications)
and simple forms of nondeterminism. Another formalism, the £ language
({50]) uses an event-based ontology modelled after a variant of the Event
Calculus. £ allows for modeling uncertainty on. the initial state of the world
and includes an initial idea on dealing with some ramifications, whick is
currently being developed further: The authors have also devised extensions
of £ to represent scenarios with incomplete. knowledge ox action ordering
or actlon occuirences.

The Janguage we design i in this chapter will be named £R: Though it is
based, like £, on a variant of the Event Calculus, it has little: formal corre-
'spondence WLth £. The main goal of the language is to correctly represent a
very general set of indirect eflecis (ramlﬁcatlons), both of consecutive and
‘simultaneous actions. Moreover: the language is intended to deal in a flexi-
ble way with complete.and/or incomplete knowledge on action occurrences,
action. ordering or the initial state. The language is also further extendad
to deal with, nondete inism and delayed effects. of actions.
argiie thia ént all rarmﬁca.tlons and quallﬁcatlons of actions,.
it is necessary to mclude in the language state constraints as well as effect
propagation rules (derwed’. effect rules*) and explicit. action preconditions:
these three types of formulaeare at least-in pati independent, i.e. there dre
denved effect rules that do not. correspond to any state constraint.and vice

Lsimilar te “cansal laws” or “causal-rules” in the literature; we: will use these terms
as synonyms except where otherwise indicated
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versa, and there are action. precondltlons not related to a state constraint.
We motivaje this and indicate differences between our -approach and those
in the recent literature,

‘We also argue that in many applications a clear and natural TePIesen-
tation of indirect effects of actions in general and of the effects of similta-
neous aCt]OIlS in particular can be obtained by using complex derived effect
rules, i.e. effect rules stating that a. change is triggered by the change in
truth value of a compler fluent. formula. ER includes such complex de-
rived effect rules. A compléte treatmént of simple and’ complex derived
effect rules requires reélying on a strong semantics tike that of open logic
programs. We base the semantics of £R on the pnnmple of inductive def-
initioris, on. which also the justification semantics is based. This principle
yields at the same time the requlred expressiveness to deal with the frame

and ramification problems even in the presence of negative and possibly-

cyclic dependencies between effects, while' it has the advantage that the
intuitions underlying the formal semantics {i.e. inductive definitions) are

generally well-understood. Moreover we show that for restricted classes of

defihitions {like loop-free definitions or definitions. without negations) for
which simpler sernantics have been proven adequa.te, the inductive defini-
tion semantics coincides with these semantics:

We assume in the first sections of thig chapter that actions are deter-
‘ministic, have no duration, and can be simultaneous, and that all changes’
are discrete. In this setting we intend 46 deal correctly with all immediate.

ramifications; i.e. all ramifications occurring at the time of the actlon(s
they are ram1ﬁcat10ns of. Moreover we deal correctly with action precon-
ditions {qualifications) that are entailed by the theory. We do not handle

default qualifications, as dealing with defaults is an entirely. different prob-.

lem than the inertia a.nd ramification problems and not typical for temporal
domains.? Once the basic language is established, we further extend £R
to deal with. delayed ramifications and with nondetermmlshc actions and
ramifications:

A number of the issues tackled by £R have already been addressed in one.

or more other approaches to representing actions. In £R we want to tackle
all of these issues in one coherent framework and at the same time address
some unsolved problems. Meariwhile we want to keep the formalism and
its intuitive (if not the formal) semantics simple. As we-are dealing with a
kind of “comron sense” reasoning and representation, in our view the best
way to meet these goals is'to design the language with the general principle
in mind to stay as close as possible to the-intuitions sbout “real” time,
actions, change and causality. This pr]n(:lple motivates, among others, the

?Ideas to deal with the default qualification prablem can’ be found in [108]. .
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decisions of representing a large part. of the theory-as simple first order logic:
(there is 1o reason for any more complicated- (:hmce) representmg effects of
actions as an inductive, constructive definition ( which is how we intuitively
‘interpret them) and choosing a ‘time topology of actual events occurring on
a single time line {as real time is most _né.tu_ra.l_ly seen as just one infinite
line)*, | |

.Ongce we have developed ER, we close the circle started above by pre-
viding a mapping of £R- theories to a variant of full OLP Event Calculis,
and by proving the correciness of this mapping.

We extensively compare the £R-approach to the ramification problem
with the one in [109], which shows. most. similarities to it. Finally, we
‘study the idea introduced in {108] of using influence information in a tool
for (semi-}automatically deriving causal laws from state constraints, We
- propose -an alternative approach to this problem in the setting of ER and
we illustrate the differences with Thielscher’s proposal.

In the next section, we presentthe syntax of £R and motivate the design
of the language in much detail. Section 7.3 discusses how £R tackles the
ramification problem and defines the semantics of £TR:. Section 7.4 contains
a couple of detailed examples and sheds some light on particular contribu-
tions. A mapping to OLP Event Calculus is presented and proven correct
in section 7.5. In section 7.6 we extend the language to deal with pon-
deteriministic actions and ranifications, ‘Subsequently a comparison with
Thielscher’s approach is provided in section 7.7; and a method for using in-
fluence information in section 7.8. Delayed effects of actions are intreduced
in section 7.9. In the two final sections we discuss rrore related work and
conclude,

7.2 The Syntax of £R

Basically, an £R-theory consists of a set. of effect. rules determining direct
and indirect effects of actions: (a theory of causatlon) comblned with a
general first order theory describing the. truth of fluents at certain tlmes,
the occurrence and order of actions, and general state constraints and action
preconditions. Formally we define the following syntax :
Definttion 7.2.1 (.EIRJ_SZignature_)-
A ER-signature T 43 .a tuplé <Sorts, Functotrs,Vars > with

e Sorts = {7, A, F, P}, representing the soris time, action, fluent and

dtom.

3However,, for a discussion on the choice between a linear and a branching time
topology we refer back to Chapter:5, whiere this issué has'been discussed in winch detail.
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e Funciors consisis of
~ g get T of constants of sort T, denoled 1,11, . . which includes
all real numbers;
a set A of constants of sori A, denoted a;a1;. .;
a-set F of constants of sort F, denoted f, fi,...;

|

[

four typed predicate symbols® -
Happens: Ax T — P;

< T xT 5P

Initially : F — P;

Holds: Fx T — P..

e Vars = Varsi U Varsy, disjoint. infinite sels of variables of sort A
resp, T, denoted as A;.44,... resp. T,1,..

Definition 7.2.2 (‘term_s, fluent formulae, general atoms) Terms are
constinis or variables. Terms of sort T will be denoted by T, action terms
bya. A flient literall is either o fluent constani f or its negation —f. We
define’ T as the set of fluent literals: A fluent formule F' is any ezpression
that cen be construcled using fuent constents and the operdlors —, A,V
{—, ¢+ can also be used for convenience); in addition we nssume that
true a.nd false aré special fiuent formulee. For any F, &, 7 and 7', the
atoms Holds(F ™ Happens(cx 7), 7 < 7" ond. Imtlally(.F)_ are af!owed
geneml atoms.

Definition 7.2.3 -(.S?Eéformulae_) ERforminlae based on 3 are:
o direct effect rules of the form
.a causes [ if F'

representing that I becomes true whenever a is ezecuted ot o time when
F' holds;

o derived effect rules of ihe form
initiating F causes { if F’

representm_q tha.tl becoines true whenever F changes to frue at ¢ iine
when F’ holds?

*In addition, we assime an :qua.hty predicate’for A ‘and T and we assumet,f € P
BWe will csll @ or F the body, [ the head and F’ the condition of an effect Tule,
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» any.senience consiructed in the usual way of Holds, Happens, < and

1Initially atoms tmd the conmectives and . quantsﬁers -, A, V —,
Y and 3.

Some classes of sentences are-of particular importance:

e state constraints of the form
¥T : Holds(F, T')
& action preconditions of the form
VT : Happens(a, T) — Holds(F, T

Other sentences may state complete or incomplete informatien about the.
truth of fluents at certain times, the occurtence and order of actions, or the.
initial state;

Definition 7.2.4 (£R-theory) An ER-theory is ¢ tuple < %,IL, 0, >
such that 515 an ER-signature; 11, is o set of direct or derived effect rules
based on X, I, is a set of sentences based on 2.

Now, let us explain and motivate the’ types of formulae proposed ahove..
Direct éffect rules are necéssary.constructs in even the simp]est theorles of
‘action. They Tepresent the simple immediate effects of all actions. Addi-
‘tional constructs are required when more complex issues are to be dealt
with. Action precondltlons for example are important when addressing the
qualification problem, an issue o which we return later. They represent
flecessary and suﬁiclent co;_ld1t_1c_)_ns_ that must be.sa_.tmﬁ__cd for an action to
be able to occur.

‘Most importantly, we require constructs for addressing; the. famification
problem. A straightforward examiple of a rarnification (i.e. an indirect
.eﬂ'ect) is that applying momentum. to a gear wheel, which has the direct
effect that the wheel starts turning, can also have the indirect effect that
‘other wheels connected to it start turning. We need constructs allowing to
‘correctly determine the complete set of direct.and indirect effects an action
gives rise to.

In the literature, ramifications have generally been considered strongly
related to state constraints. In fact, the ramification prablem has sometimes
been defiried as dealing with indirect effects due to state constraints, We
prefer. not to restrict: ourselves to this subset, as we will argue that other
indirect effects are just. as important in practlce A state constraint is a
fixed relation between fluents that needs to hold at all tlmes For example,
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if two gear wheels are connected, a state constraint is that ai any time
poifit they must be either both turning or-both stationary. This relates to
indirect effects as follows: if an acticn’s direct effects resultin a violation of
4 state constraint (Iike making one gear wheel turn in the above example),

this may give rise to ind-irect-eﬁ'ects.-r.est_o:ingj the validity of the constraint
(e.g. the other gear wheel will start turning as well).

Evidently, stét_e_C_ons'tréints should not always give rise to ramifications.

“Far example, $Uppose a person can be.a manager only if he/she has a PhD.
‘Presumably, we do not want a person to get & PhD a5 & side effect of
.being promoted. Rather we intend promotion to be prohibited for a person

who has nio PhD. In this case, the state constraint imposes an implicit
precondition on the promotion, Sq, state constraints play an important role
both as Preconditions of a._ciii_ons_' and as causes of indirect effecis, However,
they are not sufficient for dealing with either problem. '

It has been argued convincingly ih::forex&ﬁiple_ [?0} that staté constraints
are insufficient to convey all of the iformation required to-determina valid
sets of effects: it is unclear in general if an 'act'i_on vi"ol'_atingf a state -cons'fraint

‘will give rise to indirect effects or if this action is. simply’ impossible ([41}).

Also, as argued in [40), [64] and [84] , there can be multiple sets of indirect
effects able to restore the validity of a state. constraint, and the intended

set cannot be determined wi_th_gut. additional information. There exisis

in other words. no aubomated, domain-independent method to derive the
ramifications and. qualifications corresponding to an arbitrary set of state
constraints. To cure this problem, ceusal laws in sorme form or other have
been proposed ({70, 50, 109, 42, 65]} to represent ramifications. Causal
laws are -explicit rules describing that certain changes in, fluents cause. (or
may cause) cerbain other changes: an example would be a rule stating that
making one gear wheel turn. results in the turning of the other wheel, Thus
causal laws provide a direct characterisation of the possible ramifications,
Interestingly, in all existing approaches incorporating't_'hem, causal laws.
are still tightly coupled with state constraints: in al] aforementiored ap-

proaches they are used as a way of 'rc'storin'g integrity of some explicit or

implicit state constraint.® We argue that this is an unnecessary and -un-

desitable limitation: there is no reason why indirect effects should always

correspond. to a-state constraint, as state consiraints are not-the “cauge”
of ramifications. In our view ramifications are simply manifestations of
effect propagations. They represent some- physical or logical force causing
particular effects when certain other effects occur: for example when one
gear wheel starts turning; it will Bive rise to physical forces: making other

FWe discuss thc“ab_ovc ‘approaches in more detail'.in_ section 7.10.
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wheels are turning or both are stationary, arise often as a comsequence of
particular effect propagation patterns. This does not-in any way diminish
the importance of state constraints, as they capture ina very concise and
natural way a lot of information-about a particular - domain, ‘However, it
is wrong to assume the whole domain revolves around them: there is'a

wheels turn. as well.7 State constraints, likein the above example that both

lot going on which is not reflected in state constraints, these are.only one
high-level maniféstation of the undetlying mechahi'sms;

Consider the example of an alarmi system that detects if somehow people’
entér a: building. We assume- the bu_ilding has many possible entrances
(doors, windows, possibly unexpected. ways of getiing in). So, there are.
many actions able to bring someone in the building and these actions may
not even all be known.? We formalise the system using the fluents in
{stating that there is someone inside), active (“_che alarm system is active)
and ring (the alarm bell is ringing). While the. system is active, anyone
entering the bullding friggers the alarm: if i becomes true when active is
already true, ring becomes true..In £R this reads

initiating in causes ring 1f active

However, the corresponding state constraint ¥I' © H‘old‘s(in A-active —
ring, T) is not valid, since activating the alarm system when someone is-al
ready in the building is not supposed to cause the bell to ring: Moréover we
£an assume that the proposed. consiraint may also be violated by shitting
“down the bell, without deactivating the alarm system. So, there is no state
constraint related to this triggered effect, it is simply caused by a different
change. ' '

A maybe even more obvious example of & system incorporating, indirech
effects unrelated to-state constraints, is a gimple electronic counter. Let us
say the events it counts are represented by a transition of a certain voltage.
from low to high: This could be represented by rules like

.'.ii_li_i;i_ati_i1g_.-1.i::)lt’_;f causes count{n + 1) if:count{n)

initiating volt; causes ~courit(n) if coumnt(n)
Also this indirech: effect is in no way related to & state _conétraint._ What is.
‘going on is just & propagation of effects, one effect triggering ariother one,

"However, the propagation:is nof neeessarily s physical one: for example someme
who stops being alive alsa starts being dead, which-can be considered a “logical? effect
propagation. '

&Tence the nse of an explicit rile relating the alarm bell to'someone’s presence in the
building cannot be circumvented by adding new diréct.effect rules for each action {which
would be an undesirableapproach in any decent Jmowledge répresentation system in any
_cas_'c].
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The above kinds of indirect effects cannot br‘.:.-c'orrectly. modelled by the
existing approaches for dealing with ramifications. Therefore; we Propose
the fo'l_low'ing- approach. We use independent effect propagation tulés for
representing_"r'ar'niﬁcat'i'ons; These look like . the causal laws used in the
literature, ‘but differ essentiall_y--frcj_m them in that their semantics is inde-
pendent of any state constraints in the theory {as opposed to- the semantics

of causal rules in__[I.OQ_]), and in that they do not include an implicit state

constraint themselves (as opposed to causal lawsin [65], [70], [50], and [42]).

Thanks to this uncoupling of state constraints and derived effect rules, a
wider range of indirect effects, including those in the above examples, ‘can .

be modelied.

Given the direct and derived éﬁ'e_ct rizles in an E’R-ﬁhgo:y and a partic-
ilar action or set of actions executed in a certain state, the rcsu'ltin_g' state
after this action or set bf_.a_ctions 1is uniguely determined:. aétions produce
some changes, which may lead to rhore changes by propagation through the
detived effect rules. The role of stite constraints is then reduced to filter-
ingout models violating any. state constraint in any state, which results in
implici:t---action preconditions: ifa state constraint ‘would be violated by the
combined ditect and’ indirect effects of an-action executed in a particular
_state, any interpretation in which that action occurs is not a mode] of the
theory. Hence the action is impossible ifi that- state. % Given a particular
state constraint, whether or not ‘a state violating the constraing will arise
as a result of a particnlar dction occurrence depends on the presence or ab-
sence in the theory of derived effect rules related to the constraint {which
may restore its validity). This “restorability” can in turn be ‘dependent on
how the constraing was.violated in the first place. For example, we know a
dead turkey cannot be walking:

VI': Holds(walking — alive, T')

On the one hand, when a walking turkey dies, we know it will also stop
walking. This is modelled by thederived effect: rule :

initiating -alive causes —walking if true

On the other hand, one:cannot resurrect a dead turkey by making'it walk,
so the rule initiating walking causes dlive if true s notintended, In
the absence of this rule, an action which makes walking true violates

the state constraint if alive is false. Hence such an actior, for example

9f68] describes an automated technique which, for a given set of direct efect rules of
actions, derives from an.arbitrary state constraint an equivalerit explicit action precon-
dition: axiom. However, this technique does not take indiréct effects: into account,

|
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start_walk, is then impossible: the state constraint functiens as an implicit
precondition.™®

Apart from state constraints, £ R also includes explicit action precondi-
tions. for dealing with -qualifications. This is necessary because like indirect
effects, also action preconditions are not necessarily related to state con-
straints. For example, in a chess gamea move is 0nly;poss'ibie_'i£' the moved
piece is inittally on'the-starting position of the move. This cannot be Tepre-
sented by a state ¢onstraint, hence explicit: preconditions are Tequired. On
the other hand, it is also undesirable to omit state constraints altogether,
as they provide & very coricise and natural way of representing. information.
To take the chess example again, a ‘state constraint is-that the player who
‘has just made a move Thay not be in check. Compiling this.comngtraint into
a set of explicit move preconditions is certdinly not the way to go.

The above discussion motivates the presence of state constraints, pre-

conditions and derived effect rules in ER. ‘Now: we. gtill need to motivate the
form of the derived effect Tules, in particular why we need c_omplex- fluent

formulae it the body of these rules. The first Teason. is conciseness: as we
will illustrate, complex derived effect rules offer a very &oncise a_nd_na.tural
way of ‘representing indirect effects of actions. Strongly. related to this;is
the observation that such rules, since they are triggered by comtbinations’
of effects, are perfectly suited for dealing with simultaneous -actions. The
issue of simultaneous actions will be discussed in section 7.4. Here we show
the '.general_appligability of complex derived effect rules. '

As an example we__pr_cseﬁt the suitcase domain from [85].. A suitcase’
is equipped with. a spring miechanism which -opeéns the suitcase wien its
fwo latches are open ab the same time. This can happen in several different
ways: both latches may be opened simultaneously, or one latch may already
be open when the second oneis opened. In the latter case, we need 1o ensure
that the open latch is not just closed, as the closed: one is opened. Usinga
‘complex fluent formule, this set of possibilities can be, represented by one
derived effect rule

initiating I A Iz causes open if true
where fl,: I, represent: that latch 1 resp. 2 @re ‘oped aiid-opéri- that the

suitcase is open. Without complex fiuent formulae, at-least three rules
would be needed, and they would need: to-be able to represent explicit

10{108] describes an. automatic way of deriving the intended cansal rules related-to a
state:constraint, using additional influence information. For detived effect rules corre-
sponding to state constraints, we can use a variant of this method in £R. We discuss
‘this in section.?.8. C
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absences of initiations.!1

With action preconditions, complex effect; tules, and state constraints,
we are able to charactérise the general laws tuling a temporal domain.
Apart. from that, we need to represent scenario information in such a do-
main, like actual action occurrences, an initial state; known fiuent values at
certain time points. We choose to represent these as-a standard first order
theory, as a part of Tl first of all because this is the simplest. approach,
and second because first .order logic allows us {0 deal easily with incom-

‘plete scenario information, as we have discussed in Chapters 1 and 2. 'We

illustrate this in the setting of £ in section 7.4,

7.3 The Semantics of £R

In this section we discuss and’ define -_t_he semantics of ER. As ihdi‘cat.e‘d',_
the most imp.ar.tant.concern is solving the frame and ramification problems.
This is usually done by means of an inertia axiom stating that fuents persist
unless they are changed, in combination with a representation of the closed

world assumption, also described as a. “minimisation of ¢hange” . This can
be achieved by using a circumseription policy or techniques extending Clark
completion,

It is unclear to us if a variant of circumscriptive minimisation can yield
@ general solution to. the frame and ramification problems. - The many in-
créasingly complex variants proposed to date suggest that such a general

solution is not evident, even though' distinct. variants yield solutions for

particilar restricted classes of theories. The reason for these probiems is in
our view that the idea that change has to be minimised in some ‘way is only
an approximation of the “inertia® we observe in the real world. I} does ot
entirely correspond to our intuition.

~ Clark completion in turn formalises a. siniple and intuitive principle
(“a chahge occurs if and only if we say 'so” ), but is only applicable to.a
very restricted class of theories (i.e. theories without recursion in'the effect
r.ulés);- On t._he_ot‘he:_r -h'a.nd‘, as we 'have-discugsed__'in Chapter 2, wiore powerful
'exten'sio_ns of Glark completion are the more advanced 'ldg_i’c_pmg_rammiug
semantics like stable, well-founded or justification semantics. We will apply
such an extension of Clark completion to £R % effect ‘Tules.

The semantics we propose for a set. of effect rules is to read them as
an inductive definition of a predicate causes. Provided there are .no cycles
in the effect rules, this simply coincides with their tompletion, However,

40 alse utilises complex causal laws in [65]. However; these laws differ: from our
derived effect rules in that they incorporate a state constraiit component.

H
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‘we argue thas cyclic dependencies naturally occur in effect rules, and that
thete is a natural way to-deal with them.*? '
Consider two connecied gear wheels. Any action which makes one gear
‘turn, makes the other one turn as well, and .any action which stops one
gear; stops the other one. This can be represented by the following rules:’

initiating turning 1 causes turning.2 if irue
initiating —furping.l causes ~turning 2 1f true
initiating furning 2 causes turning 1-if true
initiating —turning_2 causes ~furning.l if true

which introduce & cyclic dependency, though the example is certainly nob
far-fetched or unnatural. Evidently, given such mutually dependent effects,
fio éffect should take place.-unless gome exterior effect causes it {e.g. in the
exarnplé a motor is started). In other words we comply with Shoham ([104])
who ingists that causation is a.nt_i—reﬂexive,.-i.e. that.causes for a fact. shoﬁ_ld

nevet-include the fact itself. However, we claim that. this condition should
10t be enforeed by ruling out cycles in the causal rules on a syniactic level:
the example shows- thiat such cycles maturally arise in quite normal prob-
lem domains: Rather; cyclic d‘ep‘cndendés_: should be given their inbuitive
mezaning, which is that if and only if one of the mutually dependent effects
has an “external cause”, both of them geeur.

Negative dependencies (in the sense that the absence. of a particular
effect is a 'prec't_mdiﬁqn for another effect to _OCcujr] do ab first sight not
oceur in effect rules, but a. closer look at the complex effect rules reveals
that this is a false impression. Take the suitcase domain presented earlier,
which contains the rule

‘initiating l; A o causes open iftrue.

‘The intended reading of this rule is that open 18 initiated if the conjunction
I, A'ly becomes true. This'can happen in three ways, intuitively

i I, is initiated and ly"is:initiated
if Iy is initiated, Iz holds.and —iz is not initiated
.if lp is initiated, J; holds.and ~ly is not initiated

Th the last two cases, the initiation of I A I; depends on the absence of a
primitive initidtion, so there are nega'tive':dependenciés. Below we will de-
fine the semantics of complex effect rules by mapping them to an eqguivalent
set of primitive rules like those above and by interpreting these primitive

12The discussion below is herice also d-motivation for the formalisations of the closed
werld assumnption in {open) logic programming semantics.
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yet giving them a natural Semantics needs not be problematic: in the ahove
éxa.mple 1t is eleat that when 1, ig initiate_d while s hojlc_lis', open is. expected
to be initisted rather than I; terminated?3. In general, the interideq se-
mantics is clear if the e fects can be ordered in Jayers ( stmizﬂ_ed) such that
each effect only depends Degatively on more Primitive effects, je. ‘effecty in
lower layers,14 -

‘tively depends on itself, i.e. i occurs provided it dgeg not-occur, .is__c'léar’]jr

Honsensical. We handle both cases of Aon-stratified definitions by agsign-
ing an “'u-n'deﬁned” truth valse. to effects that depend hegatively op effects
in the same layer. This truth valiye is interpreted "as indica.ting an error
in the definition, in -tk t the defin] n is '

dea]_i'ng_ with non-constructive definitions in the indicateq way, we avoid

The above.intuitions are formalised by the Principle of indue:_i'.'i.wj:'dt:'ﬂ'ni~

-ti_or_:_. This- principle ig well-snited for Tepresénting effect Propagations due
to itg constructivenesg: the truth of atomis Propagates ‘through definition

Tules like effécts bropagate diye 1o physical or logical forceg. Hence no atom

mWe_'_say a ﬂue_nt_ Fis terminsdied i —fis initjated.
o 11 the'exa'rhplc, opeht is in. 5 highey layer thnn_ i and 1,

T e s

AL i,
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¢an be true without a cause.and a cause for a trug atom can never depend
on the atom itaelf. '

731 Principle of nductive Definition

The semantics and expressiveness of inductive- definitions are studied in &
sub-ared of ma_thg_matical logic, the area. of Tterated induc'tive Definitions
(UD) ({16, 81, i})- We formalise this semantics in a different way and extend

it to nor_i—at'mtiﬁe_d definitions.
‘We need the following concepts.

et (ergy) G e of grnd s B U
(3-volued) saluations on P is the set of all functions B —= {t,u,f}. OnVe,
o partial order <F 18 defined as the pointwise ezlension of the order W <F
¢, u <p §; more precisely, V1, I eVp I <p I fivie® I <y I{):

Tt is easy to prove that Ve, SF 188 chain complete-_poseti's' with least
element L, the valuation which assigns 1 o -each atom.

Definition 7:3.2 (inductive definition) Given u set of ground atoms
P, we define p=PU {—\I:EI"E P} U {t,f}.15 Voluations-can be naturally
emﬁen@hed; 10 P, A deﬁnit:ion.' rule in P ié an object L= B where L € P ond.
BCP. liu called the head, B the body -o_f"ihe_':mle. A definition on P s
-any 6t of rules in P.

Given P and 2 definition D on P, we need o characterise 2 valuation
Ip which defines: the- fruth values of all atoms according to D. I 1D
i{his invelves gtratifying the definition, but it has been argued in '[24] that
techniques 'ix_l_spir_ed by logic _p_xograrn_rning ‘seinantics formalise the same
sptuitions in & More general and syntax-independent way. We present this
techniqite. '

Definition 7.3.3 (proof i‘.ree)_. A proof tree T for an alom P E P.is o iree
of elements of P such that '

™ tke-rool of T isp

s jor each non-leaf node W of T with iinm'ediat._‘e:--.descend‘dnﬁs B,
4« B €D or B = {f} (Hence, cach atom has ot least one: (false)
proof {ree.)

__J_____________..__ﬂ—-—-———--—“';
15 For moTre details on -particulsr sorts of partially ordered structures, 88 weéll as on
operators on these -structures and fixpoints, which we will-use. below, we refer to. {7}, ig]
and [61): .

16y should never ocqq.r.--c'xp]icitly ina dcﬁzﬁ'tion.
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o T gy ‘mazimal, ie. atoms occur only iy NOR-
ifze‘n-'contain. only i,

:f,eq.f--._nodés. Leaf nodey
Torg negative lifergl

ation [ EVP of P, for each lep
valuew.rt. I » denoted SVi{ 1), ast

_ = we define jtg gy
he truth value p
iree. Formally:

Prorted
Toven by jis “best” proof-

Definition. 7.3.4 (s_up_"por’teéi valne)

has a false fact 5y " & leaf;

@ SD}_(I_-)-:: u ot}ze_muis.‘s_; Te. if ech progf tree"ofa’-conta'é'm & non-trye
leaf, and some progf tree-..cani__a_ins'-onfy Ron-fi

alse fé;:z_'ves.

For a definite definition D, Ip is the valuation Mmapping each PEP ta
SV1(p), e €ach atony is-mapped. t‘o_its-su'p'ported value (w.r.4, 4). For
non-definite de_ﬁnitions, Ip is obtained ag 4 ;ﬁitpoiﬁ_t ‘of thig ‘Operation:
Definition 7.3.5 {(PIpy The.  positive induction . Operater
Plp:Vp - VoI, defined such, thaiVpec p | I'(p) = SVi(p).
It can be Proven that thig operator g monotonic ang hence always. has
a least fixpoint PIp]. This aflows us to define I, ag.

Definition 7.3.6 Giyen <SP,D>, fp=
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We reduce direct and derived effect: r_uies {0 an inductive definition of
Init and ‘Causes. These pre'dicates intuitively denote strong and Wca’k
initiation, respectively: IIlit(A,_St,'I) means that [ does tiot, hold in St but
‘holds in the guccessor state Tesulting after the application of the et of
(si_multane_ous')' actions A in St Causes(4, St [} means thiat ! holds in the
successar state of 5t after 4, but possibly also already in Si. The fluent
literals I that are true 16 the, successor state are the oti_eé'_that ar.e.in_itiate‘d

and those that are true in St-and of which the 'nega.tion { is not injtiated.

“The intended veading of an effect tule jnitiating Freanses 1 if F'is
that given F; the change in truth value of F from false to true (strong

initiation of F') causes [ to become true if it was Bot already true (L.e. weakly
‘initiates 1. To _formalise_.’this_ for complex F we introduce the concept of 2.
suppoTting set. This concept 18 ‘based on :a.-disjunctiwre_norfnél form of the
formula. Since 2 definition call have 3-valued interpr_gta_’_t.idns,.'this _norma{
form needs to “be. equivalence preserving under 3.valued FOL semantics.
The 2-valued disj.unt;tij.re normal’_.form--d'oes not-sati’sfy-thi_s property (since
for example F A ~F is nob 3.valued equ-ivalent'.to_._ﬂ, but it is easy to derive
a g.-valued: variant:

‘Definition 7.3.7 (3-valued disjunctive pormal form) The 3-valied
disjunciive normal form 3dnf(__F)_.éf o fluent forimulo F oblained by ap-
plying the following rewriting ules to F or vis constituents {if <> or —
oceur in F we. assume they are. rewritien in terms of 7 A  as wsnel) until
no Further rules apply” '

o zeplace = F by F

o replace 2(F A G) by ~F VG

o reploce ~(F v &) by—F A -G

o ‘replace F A (G vH) by (FAGIY (F AH)
o replace F AF bW F

 replice FV(FAG) by F

The3fc_'>ﬂowi_ng:properﬁ'es. can be proven. The rewTiiing progess. always termi-

nates- {since cach step moves a = _syr_gbo‘n'i'n_ward, moves 8. A symbdl'.'inwatd

without moving a — outward, of eliminates -, A OF s symbols without

moving A ot outward). The resulting normal for_denf(F) is unique’®

ie. independent of the order in which. gubformulae are processed (this is
17We assume cornmmtativity and assoc_iat'ivif)'r. are a‘_pplied. whenever needed.
18jnodule ;:or_mnuta_tivit.y and as_socla.tii.ri'ty o




tions of liters)s (since. otherwise one of the foyr first ruies applies). 3dnf, (F)
Is equivalent. to ¥ under 3-valued ag well as 2-valued semantics. (since afj
tewritinig ryleg are-equivalence Preserving under eit'he'r'seman:tiés'). Finally,
under either semantics, if ¥ ang G are equivalent-then gq are 3dnf(F) and
3dnf(@) ( this follows i_mmediat:e’ly from the previous Property).

Definition 7.3.8 (Euppor'ting_;sef:) Let B pe ‘e fueny Jermulg and P~
BA LA ) VeV A A o) its S-valued disjunctive normal form, 4

SUPPOTLing gef I, of ¥ 1s any ser {4,.., £} v LT < m,

Definition 7.3.9 (mjtat_ion's_}

In whai follgys Ha{a, 4) is the iruth yalye of ‘a g.47 Hofl, St) is the
irulk value of € 5t and Ho(F, 5%} f 43

f = =f, Af = £ T = {I I _E. Z}_fér enY sey of._'li'ﬁem’!s .E, and P —
{plpe P} for any sei of Init o7 Canses atoms P,

Definition 7.3.10 (definition induc d by effect rules)

e
The definstion induced by a rule 4 causes | jf > g 12
_{C_aujs'es'(.-A,_ 51, I} e Hafa, AJ,HO(F, ‘S’tJ A A4, 5t E"St.}.e
The d’eﬁﬂz’_t'ion. tnduced by o rule -“i.n"_it'iélting F causes Lif F'» ;g

{Causes(_A,_St,_l) «Init(4, 51, L,-_),]'__mt(A,-.St-, L),
c st o2 SO S(E, 55, 1l
lAac A, 5t c st end L; i Ly, ise Supporting. set.of B}
We define the definition indypeq by o gei of effect rules T, as Dy, = Dyly

{Init(;cl_,.St_, ) — Causes(4, it !)__,_-ﬁH'o(_j!-, St) | 4 ¢ A, 5¢ €38t e Py

where D, is the ‘dnion: of the déﬁm‘_ﬁ_ons nduced by all rules in 11, .

Y Recall thay Ha{a, 4) ang Ho(F, 1) are the ruth vafye, of Ya.€ 4" ang 1 € 57,
16t the formulag themselves, '
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Dinit. 18 2D inductive definition: on the atom domail P =
(Tnit(A, 5t,1), Couses(4, St DIACA StESLIE £, for which Iins
i the least fixpoint EPLD i '

The rules Init(4, 5t, Iy Causes(4, st 0), ~Ho(l, 1) are the only
rules for Init. Since the completion of the definition rules is entailed by
the inductive Jefimition semantics, the rules imply

¥51, A L: [Init(A, St 1)« Causes(A, St, ) A ~Ho(l,5t)}

and thereby capture the jatended relation between strongfand weak initia-
fiom. _ _

The mutual recursion. i the definitions of Init. and Causes indicates
that strong initiations may provide causes ¢or literals to become true; only
if these literals were not Already true, Le. if they were actually changed,
they can themselves give rise 0 further ramifications. We have used the
predica.tes Causes and Init 1o stress ‘_chis&mpoﬂa.x_lt distinction between
strong and weak initiation. However, given the above relation between
Canses and Init, we could get rid of the Init predicate usitig the following
theorem: '

Theorem 7.3 _
Given thot Y5t A1 ['._[I'ﬁt{_A, St 1) « Causes(4, 5t N A-H ofl, 5t} the
definition Dy = ' '
{Canses(4, 5i,1) +Toit(4, St, In ), Init(A, St, La2)s

H of La, St —~HolF, St}, Ho{F';51)

|AC A, Gie St-and LU e 15 @ supporting setof F}-

8 e_qitiua.lén’t' 1 Do =

{Can_Sgs(A', 5t, 1) —Canses(4, 5t Ll),.Ho_:(Iji_, 5t), Causes(A, St, L2),
) . HO(L'-'B) St): ﬁHO(F,Si‘.), HO(F!‘I St} .
|-ACA, 5t € S5t and Ly Ul2 18 8 supporting set of F}.

Intuitively; this s true ‘pecause-if at least one rule body for a paiticular
literal i tre in Dy In2 particular state, then at least one rule body. is true
for the same. Titeral in- Dz in. the same shate, and vice versa:

We fitst_prove: the first pari: assume a rule in Dy with a particular Ly and
Ls and which has a frue body in St IR Lyis & supporting set of F.
For the literals in I, 1t holds that Init{4, 5t 1), hence Causes(4; St oA
~Ho(l,S81), which: entails Causes(4, Gt, 1). For the literals in Ly it holds

that Ho(l,5t) A _Init(4, 5t,1), hence (Ho(l,_s__t_)'- A —1Caﬂsgs(:,_4,.'st,i)};\/'

_(_H.o(l_-,._St')_f\Hb(_T, St)), which is equivalent to (Holl, St')f\ﬁCauses(A-,-St, I))
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Causes{a, S4,1) holds, Wa ¢an partition I, inig 2 sel of literals which
are ‘trye ‘ip. St (Z1a) and 4 set of Iiterals which are false' in gy (Ly3).30
For the literals in :1'}15, CaUSes_(A_, 8¢, 1) ("\_“rHo'(l', $t) is true; which ;g
equivalérit to Init( 4, 54, D). For the literals in Ly, Causes( 4, 58,1} A
Ho(l, t) is true, which implies ﬁCanses('A__, S5t,1) AHoll, St), Fo the lit-
erals in L, Ho(l, Sty A ~Causes(4, S%,1) holds, which implieg Ho(l, St) A

b, _Co_r_ri‘bin-ihg these tesults, we fing that a Dy-rule Constructed
With L5 as the ew L’l and Ly Ll_q as the new L} has a true body, ‘With

Despite this _e'qui'valenc_e Tesult, we Prefer tp yge both the Init. ang
Causes Predicateg explicitly for Teasons of clarity,

We now give some i’nteresting Tesulis: Concerning the pProposed Semantiics,

Theorem 7.3.2 vaen-t_z state St, g ¢t of actions 4 and a gef of direct gz g
deriyed effect rules, 1he truth volyey of Init(4, St,d) for all | are uniquely

ﬁn’iquely'deferminéd. _H?n_ce, the set of rules for gy atoms of the form
Init{4, 5z, ) or Causes'(A_, SE) is unique. Moreove’r, in the entjre set
of rules for a given St and 4, the Supported values of Init{ 4, St,1) and
Causes( 4, S6,1) only depend directly or indirectly op the truth valpes

a-separate deﬁ:_n'iti'_(.)n- deter;_nining thi valies of a] _at_dms-_in the. ciom'ain
{Init(A, St, 8, Gauses(A,_-.'S't, Nile P} independent of all other states or

fers from the one in [109} Unlesg nondéterminisnﬁ;i_s:-':'exp_lit:it_’ly'introducbd,_
the theory ieaves ne room for ambiguity.

?oLu is ﬁot"emptjr: ifit wer'é, all Hi;:;r_als ini the s_u'pporting set Ly UL, would already
be trug, which ix iy contradiction with the condition in e rule body that F shotild not
d.

!
H
i
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The following results givc.sqme-." lternative characterisations of the above
gernantics 10 ceveral special cases. Moreover they ‘hed some light on the
relation to existing approaches to: the frame and ramiﬁc_a_t'icjn'pr_ob_lems.
'_Deﬁnition 7.3.11 (ﬂu‘ent'-dependency)

We 92y & fuent | occurTing % initiating ¥ causes [ W F or in
initiating F causes ~f if F/ depends on o fluent 1. of f' occurs in F,
or-if o fluent which depends on. f occurs in F.

Theorem 7.3.3 If the derived effect rules. are acyche; ;e if no fluent
depends oT #tself, TDiaie 18 always 9-yalued. Mo.reowef‘ I coincides with
the unigue ‘model of the Clark completion of the deﬁniﬁbn rules.

The rules it the definition induced by 2 rule initiating 7 causes | if Fr
¢onbain only literals Tnit{A,5t iyor ﬂInit'(A,.St,__{’.) for I which. are fluent
literals.occurting in F or n_e_g_atiohs of such Huent literals. The dependency
pelation 18 therefore {he. same: for-fluents in the effect rules as for literals
containing them in the grounding.. Hence, if the effect niles are acyclicy
then so 2T¢ the deﬁnitioh'rulész_in-the grounding: As we menﬁionedhefore,_
the positive \nduction operator has the-same fixpoints as the well-founded
operator, 0. 31 induct-ive'deﬁnitiqg is formally equivalent with a logic pro-
gram under _Well-'founded gernantics. Ynder this readinig, acyclic definitions
correspond fo acyclic logic programs; for ‘which the’ well:founded seman-
tics has been proven to e 2-vaiued and to coincide with the completion
gemantics. The theorem follows immediately. O

T.heorem.’T".'SA If the body of each dgrived'-eﬁect sile is o single literal;
Tipy,. 18 olwoys s_pilued, ond coincides with the unigue model of the par-.
allel cirgumtriptioﬁ"n of Imit arid Causes i the theory consisiing of the
definition. rules reod 48 implications:

Proof:

I_’E'the'. derived effect rules have only ‘single literals as bodies the riles 10
Dinit contain 0O negative literals: Herce, they are equivalent to a definite
logic Prograit: for which the well-founded senantics bas ‘peen proven
'tdi__ﬁt':_ide'..-m;iﬁh .-_t__he..;:Zp_g::fé_r_;_’_o,:;-_;_noc__l_elf.{s_e_m'antics of [86) Im. frie). The -perfect

'model-.‘sama.ntica ig 2-valued; 'ﬁ-}ﬁdh'-'_p:mr'es.s:_{';he;:.-:ﬁx___at.__;._;:j' il
that Ipiwt jg unigque, O there is one unique perfect model.
_ Further, in [88] it is-proven that for definite -prﬁogra.ms"the -petfect:m’o_dels
coincide with the minimal models of the program read as a.seb of implicar
tions. On_'the'.othc; hand, in [62] 1t has been shown that an in:tqupretati_on

Note moreover

21 pParatlel c_ircumscript'ion is Srcurmséription ont muitiple predicates at the same time
without _prioritigs’.
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Is a model of _
Predicates '-to'-be-circ_pmscribed' and 7 a set of Predicates. allowed tovary) i
It is minimalin the class-ofmodelsfof-A_ With respect 14 <PiZ oy, <PZ 3,

iff M, and M, differ only in the. Predicates i Puz and the extension of
each predicate of P in M isa subset . of jig extension ip M. In our case,
A is the get of tules read ag implic_at'iqns-,-g is. empty. and p containg botp
Init ang Causes, ihe only predica't_gs ‘oceurring in the: definition, Then
M, <Pz M; iff the set of true atoms in A, B a subget of bhat in jz;.
ch_ce, the minimal modeélg with réspect to <« P2 are the mininig] modejs

of the pr_ogr_arn_.réad.;ag a set of 'i_mplic'aitions;mlt follows ‘that for simple ef..
fect rules, the model [y mie Coincides with the unigue Derfect Model, which,

I8 turn cojneides With the made] of the, CircUmscriptioy. This Proves the
th'e'c:ire_m. o. ' .

“The aboye results show that for Several classes of -_déﬁnitiong. for which
other seinanticg are'known-.t'o_ass_i_gn the intendeq -'r_nga.nihg-to all Predicates,
the inductive definition sema.n_t_ics-;t_oincidcs With thege Semantics. However
the Inductive definition Semantics is mora Beneral, algy dealing with defini.
tions that cannot be degli with by the more. comop semanties,

7.3.3 Forma] _Seman;t_ics of &R

“We are now Teady to-define the semantics of &R s eMbedding the BeMmantics
~of effect ryles given above in the Specific- £ setting,

De_ﬁni'tior_l 7'.'3.12' ( tem'poral_ interpret:at-'io'.n_).' Given an g ’R‘-iheory 0=
<5, II-,,,..H,,>,_ & temporg] in’térpretation of Il 3a g Structure 7 =<P, Fun, H>

P=f1 ¢y f..'tl:s'iz_ € THy
AInitially(s) | €y
{Hap'pe'ns(a-, tlac Ate T
{Holds(7, 1) | leFrer Yu
AInit(, 1) | £ ¢ T le Py
{Causes(t, 1) | ¢ T,lc F}
Fun: T R, a.mapping of time constants ¢, reals such that eqch real

number _z';s-':mapp:_d Lo diself frecel that R ¢ p )
H:p {t.8}, o valugtion,

H. defines pelati ns interpretine Fy s, Holds, <, Initiauy,-'Init,.a.nd]
] % Causes respeciive]y, 22

Iy, P containg dlsa a]i wclI-_tjpbd equality dtoms.ang ¢ i H deﬁn_es their
-natura] .intci_-pretation; in.-'particu_lm_- =i intcrp_tgted as the identity. Moreover for all ¥,

Haf true; ) = Zni'l_!iqlly{ true) = ¢ and 'Ho(fa’lqe'. t}= Zﬁiﬁaﬂyf Ffalse) =1

‘ ireum(_A_; P;Z) (where. 4 iq the given theory, p ‘the set of
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The. predicates Init and Causes; which do.not:occul in My, denote strong
and weak initiation, respectively: Tnit(t, ) means that | does not hold at
+ but starts to hold i_mmedia;tely_ after 1. C'auSeS(t,--I)' means that 1 holds
immediately after £, but can also hold at & These-_predica.tes_ are determined
by-:I.Ie..-

A temporal interprelation needs to satisfy the Following conditions
o < 18 the classicol totol order on R.

o ng‘!-found'gi event topology’ the set B = {t}3a: Ha{e, 1)} hos @ least
' 3

element, denoted €start and Vi <t 2 [t YINEis 2 finiie set.?

. - v, ¥f: —Causes(t, v ﬂCa_;'_u_._;'.__es'(f, ~f)
o Consistency’ vy . Tnitiolly(f) L mitialiy(—o)
These. formulag "denote initiation consistency and initial state cor
gistency.. ConSistency'(Vt,Vf s Holf,t) —Ho(-=ft)) follows from
these two fcnrmula’e.an_d- the inertia @ jom given a.:wall—founded-eyant.
topology, a8 can be provenl by .induc‘t.ion'on'events-;_

© Definition of initial state: Vi < Estert ’Ho(l,t)'-fr-» Tratielly(l);

o Jnertid: ‘_c’tl-,'tg_,‘v’l :
11 -4 ta I\{"Tatg 1y =% iz -4'53 /\.Causes(ts-,_ 1))

— Ho(lita) < Causes(td) ¥ Holl t1)

A temporal interprebation Iisa miodel of an ER-theory < 3, e Tp >

s it is a model of both Tl and T,. To dc@ﬁne'w‘ne’ghe: T satisfies 1ip) W€

extend the truth funiction. H 10 all closed {ormilae F in the classical way-
For complex Holds and Initially atoms; the interpret’a.tion of Holds(F, s
1s defined ag--:the.interpr_eta.tion_ of the formula F* ohtained from F by sub--
stitufing each Guent atom f by Holds(f, Fun{r))- The interpretation of
Initially(F) is defined likewise. A Jaterpretation I satisfies Hp i all
fortriulae in II,. ar¢ true in I.

Next we focus on the semantics of the effect theoty Ia. This semantics 1S
based on the, inductive deﬁnifion-semantics“for effect: rules given sbove, Ata
particular time, if the state gt is the set.of Titerals trueat t, the truth value.
H'O(E;;-:S_t):;correqun_ds to the fruth.value Ho(F,1)- Likewise, if 4 18 the set
of actions occursing ab b, H"a_(d;_;ﬂ?iA)‘.::cor:e_sPo’n‘ds.-.__f_r,_o “Ha(a, ). Init(4, 5t ]
and Causes(4,5t 1) then cor;re_s_pbnd o Init(t; 1) and Canses(f; 1)

/

25 This condition pl& s the same Tole as: the induction axiom in Chapter . The Hrst.
part of the condition ensures ‘that there is o gequence of events -e_id;_end.ing infinitely
into the past. The second parh is _ouI-_n'on-intcr'm_inang printiple ([38}} - i.t,_d.isallows
an infinite nber of actions {aid hence, changes in truth valne of a-fluent) in & finite

'.penod"i:ii time. Together the two parts g;ua.mnt_cg_that'cadi' gime point is only preceded
- piriber of actions.




7.3 THE SEMANTIOS OF 72 169

‘Definition 7.3.13 (grounding)

The grounding of & direct effect rule “ causes ! if pr 4, 24
: {Causes(z, 1)+ Hafa, 1), Ho( F: t)te T}

g The grounding of @ derived effect rule ‘initiating F causes | if Fr g,

| {Causes(s, ) wmit(;, 1, Init(z, 7,),

j  Ho(L,, 1), ~Ho(F, t), Ho(F", 1)

i It €T and Li UL, 49 e Supporting set of F}.

? The grounding ",»,')_,-mf,. of ¢ sl of -gﬁgét rules I, éj‘s ‘D'yu

{In‘it(t, D) — Causes(t, 1}, —“Ho(l,t) | ¢ ¢ T,1¢ Py, where D, is the union
of the groundings of all ryles in1I,, '

Di_ﬂﬁ_ Is an .indu_c_t_ive dqﬁnit:ign_ . on the atom d_oma’in P =
{Init(z, 1), Causes(t, Ditere F}, for which ID;niy is defined as the
least fixpoint of Plp, ...

Taking everything together now, we obtain-the. follo.iirirl_g_ definition of a
madel of an £ R-theory.

Dgeﬁnition-?.'3.14 (-SR’-mod_el) _

Given gn 8?2 -theory 11 £R = <%, 1., Iy >, a_iempoml interpre_taﬁ_on I is

a model of Wep, denoted 1 [::'JISR_, i I = I and 7 |- ., whepe

IE= I, ifVYF ¢ I, 7:_.{\(?) =+t.

I I, iffve €T, €. _ ] ) _
Init(1,1) Ipenii( Init(2,!)) and Causes(t, 1) &y ID‘.“‘_(CalilSéS'(i-, o)

Note that when Ip,.., contains any truth valye u, 'the condition 7 }: 1, §
is. unsatisfiable since Tnst is o 2-valued relation, Recall that definitions- ;

‘with a 3-valued model are ambiguoug (_‘non-co_ns_tructiiré_) -and are considered

7.3.4 Properties of &R

The foﬂowﬁng-re&ults carty over from the. inductive definition semantics

LT N it v e,

given befora: o _

The rules Init(t, 1) « Causes(z, 1), ~Ho(l, £} are the only rules for Injt. ;

Since the completion of the definition rules ig entailed by the inductive ¢

deﬁnitio‘n- semantics, the rujeg imply

e, b [Init(.t,_i_!-) < Causes(}, 1) A ~Hol, t)] P

We then. find an immediate corolla.ry of theorem 7.3.1; }

#Obgerve that Hafa ¢} ang ’}_{'Q(_F,'t) are the truih yojye, of -"Happen_s(a, )" and i
“Holds(F, )",
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Corollary 7.3.1 Given thaet Vi1 : [Init(t; N« Causes(t, ) A —~Ho{l, 1}}+
the definition Dy =

{Causes(t,!) Tnit{t, L1), Init(t, T2k
Hol Lia, t)s ~Hol F, 1), Ho(F', 1)
lteT and Ly ULz 185 @ supporting set of F}.

s equivalent to. Do =

R —
[Causes(t: 1) —Causes(t, L), Ho(Ln, ) Causes(t, L1);
“Hol Lz, 1) —~Ho( F, 1), Ho{F', 1)
jteT gnd Ly ULz is @ supporiing set of F}.
Proof: :
‘The proof follows the same reasoning as that-of theorem 7.3.1, with truth
values determined by 1 'ipstead of by St and :A. O

Another result, adapted from -t_he_orérn."i’.S.;'Z, is the following.

Theorem 7.3.5 Given & sel of direct and deriped effect Tules, o peritculer
set of values for all fluents ot o pariiculor timet, and the set of actions
occurring at &, the truth value of Tnit(t, I) is-u:_f_té_q;‘:.ely determined for all L.

Proof:

The. gronnding of a specific set of effect rules-is a definition in W}_ﬁéh (by its
construction) the rules for Tnit(i,I) and Causes(t, 1) only depend on the
truth values Ha(4;t) and Ho(F,t). Given a1l fluents and actions at time
t, these truth values are uniquely determined; hence the set of rules for.
all atoms of the form. Imit(t,1) or Causes(t, 1) is unique. Moreover in this
set: of Tules, Init(t, I) and Causes(t; 1) only depend directly oz indirectly on
other atoms of the form Tnit{t, ) and Causes{?, /). Heiice these Tules.form
» complete definition-on the atom demain {Init (£, 1), Causes(t, ) |1 € Pl
Ip,... for this definition is unigue, which -proves the thieorem. L1

“The following statement is an immediate corollary:

-Co_rdllary 7.3.2 Given.o completely determined initial stale, & compfete-.
-liq_t;:._o'j;'_.._d._c'ti_a._ﬂ...'ocr_:uqfr_rgﬂ_c'gs and o particuler set of effect rules, the truth walue
of all fluends at all time points is uniguely determined.

Proof:

The proof follows from the above theorem by. induction on the well—founded
event $0pOlOgY; since: the truth. value of each fluent ab 4he-time of each event
is uniquely d'eterimined by the truth yalues and initiations at the time of
the preceding event. T3
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Finally, the results for acyclic rules and rules with only simple literals
in the body a._l_sgca.rry aver ir:_’;rnediat'ely from the corresponding theoremns
above, ‘with 'idcnticai.praof_'s; This illustrates how our semantics relates to

exi'sti__n_grapp:'o&chestacklin‘g the frame and ramification problems,

7.4 Examples of Various ER-contributions

chosen to illustrate t.'he.;.cl.almed expressive .p'ower of £R, in particular by

initiating (U upy} causes wet if on_table

where: upy, u’}?f.IEPreSent_that the left resp. Tight side of the table are lifted
from the foor and wet that the table ig wet. Recall that. the grou_ndi_ng of
this rule contains

Causes(t, wet] «— TInit (¢, upr), Holds( —up,, t), ~Init(t; up, ),

Holds(up; « up, 1), Holds(on_table, t).
Causes(t, wet) -« Init(t, up;), Holds(—up;, ), %I_nif(:t,-'-up';ﬂj ,
Holds(up;, < up, 1), Holds(on. table, t).
< Init(f, ~up,), Holds(up,, 1), —Init(t, —up,),
Holds(up, «+ up, ,1), Holdg(bn_id'bfe,-t)_.‘
Causes(, wet) Init(t, —upy), Holds(up,, 1), Inib(t, —up, ),
' _H’olds(up; s up,.i_t),'Hqus(onJabl_e, t).

Causes(1, wet)

Caus_e's (t, wef:-) — I.l'lit(t, ), Ini t(i, —"iup, )i
Holds{up;, < upy, ) _,_.Hdlds(on_:-tabi_e,_t):..
Causes(l, wet) « Init(z, up,), Init(t, —upy), '
HO'ldS(_up; o up;, ), Holds(_on_tab‘!é_-, t).

for each 1, where 'the _last two rulés can never have a trie. body-since Injt
denotes. strong initiation. Consider then two actions lift I and lift »:

Ll causes up; if tryue
{ifi.r causes up, if trye

T e+

i

ear e
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Assuming the table is initially on the floor, executing either one of the ac-
tions will cause the water to spill, but if they are executed at the same time:
there is ho spilling. It can be chiecked easily by evaluating the bodies of all
effect rules that the given inductive definition leads to this intended con-
clusion in all cases. In addition, the re‘presentétion by a complex d’_erived'_
effect rule is very concise and close” to the natural l_a,z_l_guage.'formulatici_n
of the effect. i also has the advantage that it avoids the explicit use of.

absences of initiations 1n the language: these only occur at- the level of
primitive niles, in certain sensible. c_o_rhbipations. Finally, the derived effect
fulé s entirely independent of the actions which can inflience the fluents.
involved. This modularity is of course’ required, in particular if there can
be multiple actions lifting a side of the table. On the basis.of ‘these obser-
vations, which can be extended to applications with simulianeous actions
in general, we argue that complex derived effect. rules provide a ¢orrect and
concise natural way o represent effects of simultaneons-actions.

7.4.2 Incomp_l_e’_te Narrative Information

Another issue in £R which is. orthogonal to the ramification issue we ..ha,v_e_
discussed in much detail up to now, is the flexible representation of both
c_omplgt_e:-and"incomplete knov&dedge on the oeccurrence and c_:r_der-of actions
and -on _i:'he'iﬁi'tia.l situation. To deal with this issue a simple first ordet logic
theory 1s most appropriate: in general & FOL-theory represents incomplete.
knowledge on all predicates. Hence; in an £R-theory know!ledge on iall
parts of the theory except on the effects of actions (which. are represented
by -an indnctive definition) is usuilly incomplete. However it 1s possible_ to
explicitly state that knowledge about any part of the scenario is .cormplete
by using explicit Clark completion s’tylé.-axioms'.125' ‘This approach offers
ma_;cimal' flexibility + if allows one to specify complete knowlédge about
yery precise parts of the scenario (for -example, about all occurrences of
& certaln action type; or about-all ackion occurrences in & particular time.
interval), while leaving other parts partially specified.

As-an -example._-cohsid'er- the well-known stolen car problem,.form_alised
_as Toliows:

park causes parked if true
 steal canses ~parked i true
VT3 Haij'f;ens("sfeal',_T)_ — Holds(parked, ™
_H_appens(park,,t,l] Aty <tz A —~Holds(parked, 2)

-25.E_:_(temi'ons of ER, in part..icular for dealing with dch_syca ramifications, will ingor-
porate strénger p_:rinciplcs than explicit cq_mp_l'e_tiqn; in particular an induétive definition
seinantics will be .applied té the then arising theory of ‘actions. We elaborate or this in
section 7.9.
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This specification represents incomplete information on action occurrences,
and entails 37" :1¢; < T <« i A.Happqn_s( steal, T). We can assert complete
knowledge on actions, i.e. that park is the only action, by addirg

'VA, T: Happen_s_(kl',-_T) S A=parkAT =1,

In that case the-speciﬁ'cati’on'is inconsistent.
Intuitively, one expeéts the zhove statements to be trize, However, let us.

work out thig example to clarify the details of the formal semantics. First
of all, the grounding of the effect rujes is

{'C_'auses(t, parked) — Ha(pork,t) |t € THu

{Causes(t, —parked) — Ha(steal, 1) It TU

{Init{}; parked) — ¢ auses(t, parked), ~Holparked, £t e T
{Init{, ~parked) « Causes(t, —:.pafked)_;.?_{_o(pqued; Hite T},

1.¢ at eaéh time point the definition of Causes consists of Just two tules.
‘The Tules depend only on the truth valueg Ha(park,t) and Ha(stedl, 1),
-and these truth values determine the value of both 'Céusesf't-,.parked)_ and
Causes(t, “parked). We find that Happens(pa:i'k-,_.tlf) is true; hence so is

Causes (t1, parked): parked is -weakly initiated. Ii then follows from the
inertla’ axiom that

(3T 14, < T <ty A {Caunses(T, ~parked)) — '?{o(’parke’d,_tg).
Since it is. given that ~Ho(parked, t2); we-find that

A4 < T <ty A Causes(T, —parked).

‘Then, Causes(T, —parked) ID...“'_(-'Cause's(:T, —parked)) by the second

-

condition in definition 7.3.14, 50 it follows that

T8 T <tg A Ip,.n‘.‘_((}-aus_es(i", ﬂpa?ked}_)_.

Since Ip,... (Causes(t, parkedy) is true if and only if Ha(steal, t) is true,
1t follows that '

Ity < T <ty A Happens(steal, T)
“_rhi'ch is what we intended to piove. Given thig 'result,. it 'is also obvious

that adding VA, T H‘app.ens(A_-, T) e~ A= park AT — 11 to the theory
leads to Inconsistency.

TSR AT Vi A i £ ey
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7.5 Mapping R to OLP Event Calculus

We now map £R theories to a variant of the OLP Event Calculus, showing
whilch sublanguage of the Event Calculus is vetained in £R and how the
congtructs in both languages are related to each other.

The mapping is not very complicated, as £R and OLP Event Calculys
are based on the same: principles (inductive definitions, first ordet logic,
and events in linear time). As semantics for open logic programs we adopt
the justification’ semantics-described in Chapter 2. _

The variant of the Event Calculus we use differs in the following respects
from the one we have used up to nowr

o The -predicatbs__in_z'ﬁally._-a.nd Fholds are defined for complex fluent for-
mulae rather than only for-simple fluents.-

o The predicate causes, which takes fluent literals as second. argument,
replaces the predicates initiates and terminates: causes(t, f) Te-
places initiates(t, f) and: causes(t, ~f) replaces. terminates(t, ).

o The distinction between, events and the time of their occurrence,
which we have used throughoit this thesis though it was .optional,
is dropped. Hence, the formulae happens{e,t) and act(e, a) can he
contracted into one formula ha.p_pen’s(a, i) Also, causes ihen takes-a
time point. as, ity first argument father than an event.

o Theinitial state is represented differently: it is now assurned that this
is the state of the world before any events. The construction of a start
event which initiates all initially true fluents, which we have used up
to-now for simplicity reasons; is dropped entirely and replaced by a
cleanier treatment.of initially. This--lcads_'ﬁo some small‘_(:and_evident_]
modifications to. the framé axiom.

It should be obvious that these are mostly syntactic modifications intro-

duced t6 simplify the mapping below. They have no impact on the essence
of the Event Calculus. '

7.5.1 Mapping P-redicafes

First of all, we establish a relation between the predicates in the two for-
malisms..In the open logic program, we use.the predicates happens, holds,
<, initéally and causes. The relation to the £R predicates is the following,
given ¢ an action constant, t,# time constauts, I a fluent literal and Fa
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fluent formula?:

happens(a,t) «— K a(a,t):
holds(Fj1) o Ho(F,1)
[ S
indtially(F) s Initid?fy(F)
causes(t, ) - ¢ afu_se's'(i',- 1)

In the-open logic prograim, the predicates causes, holds, and the initially
predicate for complex fluent. formulae are defined predicates, while the other
‘predicates are open. We deal with the complex holds and instially atorns
right away, so that in the sequel we only need to han'dl'e- holds and nitially
a_f_oms containing fluent atoms. Defining the complex atoms can easily be
d'one_ inducti.vely_, by the following clanses:

holds(Fy A Fy, T} holds(Fy, T), kolds(F,, T).

holds(Fy v 7y, T) o holds(Fy, T).

holds(Fuv Fy, T) holds(Fy, T).

holds(~Fy, T & —holds(Fy,T).
holds(true, T).

indially(Fy AFy) nitially( P ), initiolly( B ),
iﬂiﬁﬂ”y(Fl VFg) — znztzaﬁy(Fl]
witially(Fy v Fp) initiolly(Fy).

initially(~ 1) — ﬁin_iiiail.y(_F 1)..

initially(true),

For simple holds atoms a definition is given below, while instially for fluent

atoms.is an open predicate. Observe that.we need to add explicit clauses

for the Buent. fo‘rmu_la true. “This corresponds to the condition on £R-
interpretations that Holtrue;t) and Trnitzally(true) muost be true,

7.5.2 Dealing with the Domain-Independent
Conditions

. BNote that the Tnit predicate has no Event Caleulys caunterpart, bui is redundagt
since Tnie(t, I) . ¢ auses(t, 1) A Ho(l, £) .

R A e e
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points are lingarly ordéred, by the FOL axioms

'VT],_,'T;; : (T} <My A Tg _<_T1) —~ = T
VI, Ty, Ta s (T1 £ Ta AT S Ts)—»Ti<Ts
YTy, Ty Ty < Te VI < The

Evidently the real nuimbers satisfy this condition. We can assume time to
be isomorphic to them.

The well-founded event topology can be imposed as follows. We define
the predicate next as

nezt{Ty, Tz) «  happens( 41, T, hqppen_a(A'g, ), < T3,
- _ —int_events(Ty, Ts). _ '
__int_'e‘ﬂenfs('fl_,_ Tz-)' — h‘appens(A_s, Tg),_ Ty < T3, T5 < 5.

and its transitive closure before. as

befor.e(Tl,Tz') g nemi(Tl,Tg'). o
before(Ty To) e next(Ty, Ts)s be fore(Ts, Th)-

The axiom
U7y < Ty) A happens(As, To) A happens(Aa, T)] + be fore(T1, T2)

then imposes that there are only a finite tumber of events between each
two events. In addition, the -axiom

IE4iari VA:T 5-[?1“??9”5(11_: T) - '_'{T'<__E'a.tart)]

ensures that there is-a first event. Hence there is an ordei-preserving iso-
morphism between events and-a subset of the natural numbpers. This is the
desired topology on.events. In addition, we need to embed: this topolegy in
the time structure such that in case of an infinite nut"r_ibgr of everits, ‘there
are no time points after the entire infinite sequence. This is imposed by the
axiom

VT : ([34, E : (happens(A, E) A B < T A int.events(E, T)))
Vl[ewmistsA, E : (happens(4 EYAE <T)])

'Giiren.'tha.t-'time"is.isqmo_r;.phic-to-the real numb_ers,.ﬁhé well-fouinded event
__tc_a_p'olog-_y'co.n'dit'ion. defined earliet is imposed by the above theory.

“The initiation consistency condition is represented by the Event Calcu-
Tus FOL axiom '

YT, F : ~eauses(T, F)V ﬂcauscg(T,'_ﬂ-F }
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which is equivalent to VT, F . ~Causes(T, F) v “Cayses(T, ~iF). Then
we still need to-formalise the definition of the injtial state and the inertia
axiom. This is achieved by providing the: following definition for holds:

h_o_!ds(F,_T)__ = T Lypan, indtially( 1),

holds(F, T - causes(T', F), T' < i —elipped(T', F, T ).
clipped(T', F, T} « causes(T ~F), T’ </ qu oo

:T}- < T — Tf's T’-TJ # T

The: first clause for holds defines the initial state, the other clausé s the
_E_?erit- Caleiilus fram_e:agci_dni,.which will further.on he praven eguivalent to

.Evé'n't--Ca.lm_l._lﬁs" earlier.in this thesis. There is no such stari event in the
Event Calculus variant we use liere, as time is considered ‘unboiinded in the
Past (one can say the start event is infinitely far in the. past).

7.5.3 Mapping I, to FOL Axioms

The I, part of an &R theory contains general FOL formulae constructed

from Holds,. Happens, <and Initially atoms using connectives and. quan-

tifiers. We can map these formilae to POL axipms straightforwardly by
replacing holds(F,t) for Holds(F, r), happens(c, ) for Happens(a, ),
71 < 7y for itself and nitially(F) for Initially(F). Given the mapping.
of predicates above it is easy to check that this mapping preserves the
semantics,

7.5.4 'Mapping I, to Program Clauses

As a guideline for mapping the effect rules to OLP, we-can look at the

definition of grounding in the semantics of ER: as we had to doin the
grounding, we need to deal with.qqmplex.iﬁitiatipn's,. and this can be done
in the sarrie way:

A direct. effect rule g causes ! if F is mapped o the clause

causes(T, Z) +— happens(a, T}, holds(F, 7).

A derived effect rule initiating F causes ] if j ‘is‘mapped to the set of
clausges

-{'cause's(_T,_ ) — AIELu -cauﬁses(_fl';,- B |
Aver, (holds(L,T), wcauses(T, )

holds(F, T), holds(F, ).
| Ly L;is a-supporting set of Fi

{
H
i
e
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Both. resulis of the mapping correspond to the respective groundings of
the rules, but conipacted to.a finite number of clauses by using universal
quantification over time points instead -of different Causes for each & A
minor difference is that the predicates happens and holds oecur explicitly
in the clauses instead of their truth values. A more noteworthy difference
is that in the body of the OLP clauses, we use the causes predicate which
denotes weak initiation, whereas in &R Init, 1.e. sbrong initiation, is used
in the inductive definition. rules. However we ‘have proven the equivalence
of the two corresponding ways of defining Causes in £R before.

Note that. there 1s no predicate denoting strofg’ initiation in the OLY
theory. Therefore. the £R-rules defining Init in terms of Clauses have
1o equivalent OLP clauses. They have been compiled-into’ the clauses for
couses. '

Tinally, observe that we can consider all fluents and time points in the
demain to be Known, 80 that we only need o consider'Herbrand interpre-
tations. Hence we can use the definition of proof tree for Herbrand inter-
pretations in the justification semantics, which shows a more immediate
corfespondence with the inductive definiition concept of proof tree.

7.5.5 A Detailled Example and some Remarks

Taking everything. tog_ei_:her., we now show the mapping of ‘the stolen car
problem prese’nted earlier:

park causes parked if irue
steal causes —parked. if true
YT : Happens{steal, T) — 'Holds(parked, T)
‘Happens(park, 1) Aty <tz A —~Holds(parked, t2)

First of all, we have the general formulae; i.¢. the Event Calculus frame
axiom

holds(F,T)

— T '<ﬁe,:a_,-_t,-.iniﬁally(f').
holds(F, T) — causes(T', F),T' < T, ~clipped(T’, F, T)-
clipped.(T", F,T) & 'c_a_.‘*u._ses:(_T-”, -, T" < ™, 7" < T\

and the constraints on iime

VTi,Tg : (T1 ng AT < Tl) Ty :Tg
vy, o, Tt (T <13 A €Ty Ti < T
vIy, Ty T <V £T
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The effect rules are mapped to clauses

causes(T, parked) happens(park, TY.
causes(T, ~parked) .+ happens(steal, T).

The other formulae are simply mapped to. FOL formulae

YT . (happens(steal, T — 'ho'f&s(pa?"ked_i_.T'))
happens(park, L)AL <dg A ~holds(parked, ta)

13 A happens(steal, T). Of course it is €asy to check thaf this formula, is.
entailed, following the same Teasoning as-in the &7 formalisation,

In ER we also added an explicit completicn on actio‘n,dcr_:urrénces to
this fO'rmalisai;ibn, which.led to inconaisten_cy. We-can do the. same in the
OLP f‘cirma.lisa.tion,- but note that another. and simpler. option-is to make
happens a defined 'piedicate_, defined by the fact _hqppen's{park,_tl). In gen-
eral, if thel_'.e_is_-:_complet_e'knowle_dge' on"happens-pr initially in any scenario,
‘we can choose to make- these predicates defined instead. o_f'__adding explicit’
comnpietions, This is only important for conciseness of ‘Tepresentation and

will prove that _this_-'y_i?alds the same tesults in both formaliémsi which leaves
us with the same models.of I, of each .th'eory. Finally, the FOL axiomsand.

‘the corresponding t‘heory II; and gederal akxioms of £ will be checked in

all of those H.-models, retaining only those interpretations that satisfy al
of the axioms, Givef the trivial correspondence between I, formulae and

e s et i
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truth value for all other atoms in both formalisms. For complex initially
and Znitially atoms this is trivial since-we use thje_s'aarrie-in_dudﬁve-d’eﬁniti’on
in terms of simple atorns in both formalisms. This leaves us with simple
and complex holds atoms and causes atoms.

The clauses of holds and causes are mutually recursive. holds(f,t)
depends on the truth values of causes(f,t') and causes(~f, ') for ¥ <
t.. holds{F1) depends on atoms holds(f,1). causes(l,t) may depend on
holds(F, t) (and: causes(l’, 1)) for a_ny' F and ¥. Given a well-founded
event topology, We can prove equivalence. of holds(f,t) with Ho(J, t), of
holds(F,t) with Ho(F,t).and of causes(t, 1) with Causes(t, I} by induction
on evetits: fitst we prove that holds( F',t) coincides with Ho( F, t) forall time
points before the first event, then for each eveni e we pr’o&re"consecuti\'fely
that causes(e, l) Causes(e, 1), that for all time points  betweep e and
the next event (including. it), holds(f;1) <« Holf,t), and that for all these
time points holds{F, t) «»Ho{F,1): By induction on:the well-founded event:
topology it then follows that holds(F,t) « Ho(F, t) for-all time points .and
that causes{t,l) Causes(t, 1) for all events {at non-event ‘time points it
is easy to see that causes(t, I) as well as C-d‘u#és{'i_.--,_I-]}'are'_falsg from their
definitions: mno proof tree. exists without happens atoms in one or Imore
leaves). '

We.now _p'r‘o‘ce_ed with the inductive pro‘o'f;

1, Induction base:

For all F and for all £ < ejrart; in £R it holds that Initiqlf.y(l" Y
HolF,1). Likewise in OLP we Ynow from the definition of holds that
if f is a-fluent atom and t < estort, then Rolds(f,t) « inittally(f)
gince the seconid clause can neves have-a tiue body and the first clause
simplifies to holds(fit) « initially( f). Hence, for all fluent atoms f,
we know that holds{f,t) — Ho(f,t) for t < €4sars. ‘The definition of
complex holds atoms in ‘terms of simple ones is the same in OLP and
£R, so the result generalises to kolds(F,t) - Ho(F,t) for all fluent
formulaé F and all t < estare: -

o, Assiime holds(F;t) « Ho(F, t) for all F and-a'pa;rticnlar t. The def-

inition of causes(t,1) for a certain .dep'_e_l_ld_s: only on '-happe_n's('a;'t_)
e Raa(.2) and on. itself (causes(t, 1)), just like the definition

of Cauéés(fg._'.l')' in £R depends only onm truth vlues'?'ia.(a,f.) and

Ho(F,t). Moreover; the definitions are the same, as we have shown
above. Hence we find that causes(L, ) ++ Ipm-{_('_Ca'uses(i_,- .

3. Assume ca.use’s(_f,-j) «» Couses(t, 1) for a particular event 1. We need
to prove that for all ' after ¢ and before or equal to the next event
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1, halds(f, ')« Ho(f,1'). Take an arbitrary f and.#. The mertm

axiom in £R yields for £ the formula

t ' A3ty (t <13 < t' A Causes(is, - f))
— Ho(f,t/) + Causes(t, f) v Ho(f,t)

which can be simplified to
~Causes(t, =f) — (Ho(f,t') — Causes(t, f) vHo(f, t))
and then to

[Ho(f, ')A ﬂCauses(t ~f)]
& [(Causes(t, f) V' Ho(F 1)) A ~Causes(t, ~f)]

It follows that

Hof,¢) — |
([Causes(t, f) A ~Causes(t,~ 1)) V [Ho(f, 1) A <Causes(t, ~ f)])

'Sim'ilarl:}f,.-'we find for —f that

Ho(~ft!) « _
([Causes(t; —f) A —Causes(t, v Ho(—tf, t) A ~Causes(t, £)])

hence because Ho(—f,t) — —Ho(f,1), that

“Ho(f,#) « __ |
([Causes(t, 7 f) A ~Causes(t, F)]V [=Ho( f, ). A ~Causes(t, f)])

Contraposition of this formula yields
Ho(f,) —{[~Causes(t, =f)VCauses(t, F)]A[Ho(f,1)VCauses(t, f)])
which can be simplified $o

Ho(£,2') = ([nCauses(t, ~f) A Ho(f,4)] v Causes(t, £))

Together with the formula obtained in: the previous: ‘paragraph, which.
can be simplified to

Ho(f,1') « ([-Causes(t, ~f) A Ho(f,1)] v Causes(t; F))

we obtain the equivalence

Ho(f,t') + (Causes(t; ) V [Ho(f,1) A =Causes(t, ~f)])
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which Is equivalent to (given the assumption of the inductive step)
Ho('f,it_‘) —+ _(['ca;uses(:t-, H V._[_?_wld.s(_f_, YA (~eauses(t, — f))
On the. other hand, the definition of kolds entails.

holds( f,t') ++ 3t*  [causes(t™, ) AL* < HfA
3t o {causes(t’, ) AL AL < )]

since completion sermantics is strictly weaker than justification seman-
tics. A possiblet* in that formula can either be before 1. ot equal tof,
taking into account the fact that ¢ < ¢, that there is no event between
t and't’ anid that time is a linear-order: In the first case, the condition

) .ca_usgs(f.",f)_ At* < A
-3 : {causes(t’, f) ALH <AV <)

can be written as:

causes(t*, fyAL* < At <A
3" : (causes(t”; = f) AT <AL <) A ~causes(t,  f)

which is equivalent to holds(f, 1} A —causes(t, 1 f); in the second case
that same condition .simply reads causes(t, f) "We obtain-

holds(f,t') «+ [Rolds(f,1) A ~causes(t, ~f)] V causes(t, f)
and.this formula combined with the result for Ho yields

holds(f, 1) 'Ho(_f-, 1)

. 'The definition of complex Holds atoms in terms of simple ‘ones is'the.
same in OLP and £R, so if holds(f,1) < Ho(f,t) for all filvent atoms

f and the above deﬁned time points ¢, then holds(F,1} « Ho(F,t)

for-all fluent formulae F and all those, 1.

This completes the proof by induction, and thereby the entire equiva-
lence proof of the OLP Event Calculus theory and the £R theory:

7.6 Dealing with Nondeterminism in £€R

We now turn our attention to the representation of nondeterministic effects
of actions. ‘We assume in this discussion that the mitcome of a nondeter-
ministic action is.one of a number-of possible effects (possibly the empty
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effect), that the set of possible effecéts can be dependent on.:t-ﬁ'e-s_t’ate of the.

world, and that the actual effect can be different for different instances of
‘the action..

As an -examyple, consider z variant of the. Yale Shooting Problem in
which firing a loaded gun may nondeterministically hit a turkey in the
head. (k_i]ling:_it‘)_ or.in the wing (.breaking.-‘that_:-win'g). A representation of
this effect could be a rule

shoot catises ~alive' v broken_wing if loaded

which ‘Is a generalisation of a direct effect rule ‘with a disjunction in the
head. In general, we choose the following syntax for nondeterministic effect
rules: '

‘@ causes D if F

where a is an action, . F a fluent formula, and D a disjunction. of fluent
Irierals.*” For reasons that will be explained below we. will use the symbol
| instead of V to denote disjunction in D.

The semantics of such a nondeterministic effect rule is that when the
action e is executed while F holds, one of ‘the disj_t_ln‘cts in D is: (weakly)
initiated, Let us try to define this more precisely for the zhove example:
we can say that when.a loaded gun is fired, broken_wing or ~alive should
be_i-ni't_iat_ed. But should this “or” ‘be inclusive of exclusive? We will show

‘that neither option is sat'isfa.ctory;

Clearly an inclusive or is unintended: the bullet should hit the turkey

only in one place, not hoth. This seems to leave the exclusive or. as only

‘plausible tfeading. However, the following examples show that this reading-

is also unintended.. First, consider the ramification that a turkey dies when

its wing gets broken while it is flying?®', as represented by'tlhie derived effect

ule
initiating broken_wing causes —alive. if flying

The intuitive resilt of sh(')otin_g'a__ﬁy'ingf’tu_r.key' is that it always dies, either
by the shot in the head or.as a result of its broken wing. However, reading
“or™ in. the nondeterministic effect rule as exclusive, we would reach the
unintended. conclusion that its wing can never get broken since it éifcady
dies.

A similar problem arises in the presence of simultaneous actions: assume

‘that apart from the original hunter, there isnow also an expert hurter who
-always kills the turkey when shooting. Then assume both hunters shoot at

21 Below we: further generalise the formulae allowed as D, _ N
28We ignore for now other evident relations between Flying, alive and broken_wing
as’ they are not relevant in this discussion.

;
!
:
4
!
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the same time, We expect the nondeterministic shot, to either break the
turkey’s wing or to kill it, while the expert shot definitely kills the turkey:
Yet reading “or” as exclusive leads to the conclusion that, since alive is
already terminated by the expert shot, the nondeterministic shot cannot
break the turkey’s wing at the same time.

How should we read nondeterministic rules then? In the above exam-
ples, the intuitive reading is that the shoot action has-exactly one effect,
either killing the turkey or breaking its wing. However, other sources (ei-
ther ramifications or effects of other simultaneous actions) may cause the
second effect as well, so that it is not guaranteed that: there is only one
effect, even if only one may be: caused hy the given direct effect rule. In-
general, recall that we view effect rules as describing the. propagation of
effects. due-to some physical or logical force. The ided undezlying nondeter-
ministic actions is that this force may act in one of several possible ways.
This hoils down to saying that a rule

a causes fi | fzif F
ig-equivalent to:
a causes fi if F ¢ a causes foif F

or in other words a nondeterministic effect Tule has at all times exactly the
same effect as one.rule obtained from it by retaining only one of its disjuncts.
The thus obtained rules will be called the disjunctivé components of the
nondeterministic effect rules. Geperalising this, we say an interprefation.
satisfies a definition D at a particular time point iff it satisfies any definition
obtained from P by replacing each nondetérministic. efect rule by one of
its disjunctivé components. _

‘As an example, consider ‘the rules .fbr_ma_lising the effect of shooting a
flying turkey: '

shoot causes. —alive | broken. wing if loaded

initiating broken_wing causes. —alive if flying

This nondeterministic: definition is. satisfied if at each time point at least
‘one. of the deterministic deﬁnitions.

shoot canses —alive if loaded o
initiating broken_wing causes —alive if flying

or .
shoot causes broken_wing if loaded
initiating broken.wing causes —alive if flying
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is satisfied. In the first case, we gel the effect that the turkey is killed by the
shot, in the second case. that its wing gets broken and it dies as a result.??

Before formaii'sing--th_e- above intuitive semantics, we. want to extend the
syntax of nondeterministic effect fules. In particular, we want to allowfora
nondeterministic choice of sets of effects, rather than of single effects: This
is achiéved by defining hondeterministic effect rules as formulae

¢ causes D if F

where a'is an action, F a fluent formula, and D a disjunction of conjunctions
of fluent literals. Note that “true” can be used to denote the empty effect,
since true is always weakly initiated. '

One. may-wonder why we.do not allow D'to be any propdsitional fluent
formula F/, since any F' can be written'in disjunctive normal form, The
reason is that equivalént FOL forinulae may lead to non-equivalent effect
rules: for example p is equivalent to (pA g}V (p A —g), but there is an im-
-partant difference between the Tules a-causes pif true and o causes {p A
) | (B A .—g) if true: according to the first rule g initiates p and leaves g
alone, while according to the second rule a initiates p and can nondeter-
ministically initiate: or terminate g. This is the reason why | should not
be read as classical disjunction, and why we should not.rely on reducing
general propositional formulae to some normal form. ' _

We are now réady to define the semantics of ~nondeterministic effect
rules. To this end we extend the notion of grounding as follows : a ground-
ing of a nondeterministic effect rule is obtained from the groundings of
its disjunctive components by collecting, for each time point ¢, from the.
grounding of one arbitrary-disjunctive. component, all the rules containing
‘t. Formally:

D.gﬁnit_ion 7.6.1 (nondeterministic grounding (direct))
The restriction. G* of a set of primitive definition rules. G o g time pointt
15 the. set of Gl rulés of G tn which t cccurs..
The grounding of a conjunclive direct effect rule
a causes /\ LR
i=l..n

ts.the set_'U.,zl_"nG,; ; where each G; is the grounding of the direct effect.
rule a causes. I; if F.

221f is essentia] that at different time points, différent deterministic definitions can be
satisfied: thé nondeterministic action can have a different outcome each time, It can
also eccur by coincidence that both definitions are satisfied al a particular moment {if
their effects happen to be the same). This s for exampie trivially the cas¢ when the gun
is not loaded. '
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A grounding of o nondeterminisiic direct effect rule
‘o causes Oy | ... |Cp if F

is any getJ,op GF,) wherel <y <m for each t € T, Gy, is the grounding
of the comjunctive effect rule o causes Cj, if F; and G}, s the restriction
of Gy, tot. '

A grounding of U, = {re. | 1 < k. < I} is any definition Pipnsy = DU
{Init(t, 1) — Causes(t, ), ~Ho(l,t) |t eT,i¢ P}, where. Dy i3 any sel
Upy 1 Gr with each Gy wgrounalmg of Tk, '

I E 1L, iff for any grounding Ding of I, YVt €T, 1 € F
Tnit(t, 1) o Ip, ., (Init(t, 1)) and Couses(t, 1) « Ipmi(Causes(t n).

The groundings of the above example definition are sets containing for
each- time point.t € T, either '
Causes(t, nalive) - 'Ha_(_s,hoot,.t’)_,-_.?{o_('{oadéd,t;)'.
Causes(t; —alive) « Init(t, broken wing), Ho(flying, t).
.o
Causes(t, broken wing) « Ha(shoot,1), Holloaded, t).
Causes(t,—alive) « Init(t, brokenawing), Ho( flying, t):
~ The syntax of derived effect rules can be extended i the same way as
that of direct effect. rules, which leads to rules
initiating F causes D-if F'
representmg nondeterministic ramifications, The semantics of such rules
is defined by extending the definition of grounding in the same way as: for
direct effect Tules. Formally:
Definition 7.6.2- (nondeterrﬁinistic groundi'ng (derived))
The grounding of a conjunctive derived effect rule
initiating F causes. /\ 1y, il F
Al
is the set | )0y G, where each G is the grounding of the derived effect
ritle mltlatmg F causes Iy, if F.

A groundmg of o nondetermzmstzc derived effect rule
initiating F causes Cy | ... | Cn if

is any set Uex G},» where Vi = 1 £ ji £ m, Gy, 15 the grounding of the
conjunclive derwed effect rule 1n1t1at1.ng F causes C;, il F', and G}: 18
the restriciion of Gy, to %,
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As an.example, consider. again the effect of shooting a flying turkey in.

the wing. Maybe it is u‘npr.edictablg i the turkey will die as & tesult oF not:
it may for example depend on how high the turkey is flying. This can be
-Tepresented by replacing the derived effect rile in the above example by

initi_afing_broken_wén_g_ causes —alive | trie if Flying

where j-'th_e_disjuni:t true indicates the absence of any 'addi_tional..eﬁ’ect. The
grouridings-of the resulting definition are now sets containing for each time

point t & T, one of the four definitions

Causes(t, —alive) Ha{shoot, ), Ho(loaded, 1).

Causes(t, ~alive) +—  Init{ bé!oken.tqz_'ng), ;’Ho(ﬂying,ﬁt_).

_C_ﬂ_uses(_f,_,.broken__-wiqgf)_ — '.’;'{a(-s'hoot_,_ t), Holloaded, #).
Causes(t, —alive) — Init(i-,'broken.win‘g), Ho( flying, 1).

Causes(t, alive)
Causes(t, trug).

HQ(ShOOti t] 17-'{000“‘1& d, t)
Inis{z, broken.uing), Ho(flying, ).

Causes(t, broken wing) ’Hq,_"(_.'s_hoc)t,_tj),’Ho__(loaded,- ),

Causes(t, true) . = Init(t, broken.wing), Ho( flying, 1)

in which the rules for Ca_.uses(-t', true} evidently have no effect.

The above definitions show that a syntax and heman_t_i_c_s_ for nondeter-

our existing constructs. At first sight it may not be clear if nondeterminis-
tic-ramifications are of great practical importance, but it should be noted
that they occur at least im__pli_citly in some approaches to the ramification
prob’le'm_, as we will discuss below.

7.6.1 Mapping Nondeterministic Effect Rules to OLP’

Dealing with ‘nondeterministic éffect Trules can ‘essentially be dope in the
same way as dealing with deterministic rules, basing the mapping on the
groundings of the ruies. A complication is that OLP does not contain.
disjunctive rules. We could of course extend the syntax.of OLP with dis
Junctive rules, in which case the mapping weould be straightforward, But
this extension of the OLP syntax is not necessary: ap OLP theory with the
same models as the nondeterministic £R ‘theory can be cleaﬁl?-c’dns’t_ructed
by introducing a number of auxiliary “degree :of freedom” predicates. The
té_'chni_q_ue haz been discuss‘e_d_'brie’ﬂy in Chapter5 in the context of non-
de’térm'izii'é:tic_-ac_t_i_ons in Event and Situation Calculus, We here show how.
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it, applies to géneral effect. Tules, thereby also showing the precise seman-
tics of theories containing such predicates {i.e; exactly the above defined
semantics for nondeterministic effect rulesy.

As defined before, & nondeterministic rule has multiple groundings cof-
responding to its multiple possible outcomes. An interpretation is a model
of a set of effect Tules if at each time peoint it satisfies any set of definition
riles. containing exactly one grounding of each effect rule. The idea now
s the following: for each effect rule, all of its groundings are converted to
OLP like in section 7_._5, but-an additional literal is inserted in ‘the body of
each clause such that for any interpretation of the additional literals only
one clanse body is not trivially false. Moreover this one clavse body then
heeds 1o be equivalent: to the corresponding original clause (without the
added literal). Which of the clause bodies is not trivially false, depends on
the truth values of the additional literals. These literals'should of course
take on exactly those combinations of values needed to “select” all clanses
once. '

As an example, assume & simple nondeterministic action with two pos-
sible oubtcomes, described by a causes fi | fa if true. Tts two disjunctive
components would yield mappings

causes{T, f1) happens(a, ).
causes(T, f) - happens(a,T)-

Wé.a&d-li’tgt&}s-fo the rules siich that only one rule bedy can be true in one
interpretation:

causes(T, fi} happens{a, T), choice(cr, 1,7).
causes(T, f2) happens(a, T), choice(cr, 2, T}.

with. FOL. axioms

VT : choice(c:, l,_-T_) v choic;e'(cr !-.2,.T).
VT, I, : (choice(ce, I, T} A choice(c., L,T)) = I =J.

De_pendin_g on the values of the choice atoms, the definition at a particular
‘time 1 is equivalent to. either

causes(t, i) — happens{oit).

or _
causes(t, f2) « -happe'ﬁ-s_(q,\t],-

Note that: choice has three parameters: the first is to distinguish between
-rules (for each . nondeterministic rule separate choices are required), the
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second to distinguish between choices for one tule, and the third is a time
Darameter '_'(a,s ‘the-effect of a nondet'erminisjti_c action may vary at -different
time points}. Alsg of Importance is that choice is an open predicate for

‘Which no definition and only the above FOL -axioms exist. Thusa choice

atoms can take on all possible values such that for each ¢, and T, exactly one

atom choice(c, , I, T) s true. For each (Ith) disjunct in a nondeterministie.

rule 7, one separate atom choice(c, 1,T) is used, ¥a disjurict is itself a
conjunchion, clauses with equal hodies are generated for each conjunct.

We can formalise the above method as follows: & rule T =

a callses /\ 2'1.‘;,». [ /\ .’;nl-__.;.-'if F

L 'j:l...nm

18 mapped to.the set of tlauses

U;’:l...m;i:la..n.‘ {ca,usES(T,_fglj-) &= :h_appens(a, T)’ hozdS(F’ T)’
' choice(e, i, T).} |

and the FOL axioms

VT : choice(c,, 1, T)v. -« Vchoice (e, m, 1.
YT,.1,7 t (choice(c, , I, TYA cho;’ée(c,,J,_-T)) —=TI=7

with ¢, -a congtant not occurring elsewhere in the theory. A rule ' =

islan, F=Lin,,

ini"tiéitiz_:lg F"'.cau'ses /\ Lyl /\ fm,j if B

i Mmapped to the get of clauses

Uit 5z, m e {auses(T, [ ) Neer, causes(T,1), N
AI.‘ £k (hol d_'s_(_l",_T)', —causes(T, F).} 7
~holds(F!, T}, holds(F, ,
_c’hm‘ce(i:i. 2 1:-,_ T.).
[ L1 ULy 'is supporting set of F'}

and the FOL axiorns

YT - choice(cp L, Tyv... V-choz’ce(c,.;, m, T)

VT, 1,7 {choice(c,, T, T)'A.ckoice(c,.:,J;.T)_) —I=J

with ¢, a constant not occurring_ elsewhere in the theory,

The interaction hetween the different forms of complexity ma.kes for a
harder to read notation, so lét us give another example,

3
i
;

S b g
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Consider-the rule
initiating f1V f2 canses (g1 1 ga) | b | true if true

This rule 15 mapped to the clanses

causes(T; g1) w  couses(T, fi), —~holds{f1V f2), choice(c, 1, T)-
causes(T, g1).  * causes(T, f2), —holds{ fi V f2), choice(¢, 1, ).
causes{T,g1) causes(T, f1), ~holds(fi V f2), choice(c, 1, T)-
causes{T,ga) causes{T, fa), ~holds(f1 V' f2), choice(c, 1, T).
canses{Tyh} — causes{T, f1); —holds{fi v f2), choice(c, 2, T).
causes{T, k) —  causes(T, fa); —holds{ f1 V fa), choice (¢, 2, .
causes(T; true} causes{T, f1), ~holds{fy V. f2),choice(c, 3, T).
causes{T,true} causes(T, f2); —holds{f1 V fz }, choice(c; 3, 1.

and the FOL axioms

YT : choicé (¢, 1, Tyv choice(c, 2, T) V choice(c, 3, T).
VT, I, J : {cheice(c, 1,T) A choicel(e, J, TY) = I= L

where the last two clauses can in fact be omitted. (which is not done in the
formalisation for s’implicity--reasons). The numbe_r. of g_enerated’ clauses is
equal to the number of literals in the head times the number of gupporting.
sets, of the bod_y':of“th'e derived effect rle. '

We now prove that the extended fnapping is correct, which is a-élighﬂ-y
‘more complicated task than in the deterministic case: ‘First, observe that
with each ER-interpretation I corresponds a class of OLP-interpretations
which. assigns the same valué as I to all instances of predicates occurring
in the £R-theory, and an arbitrary value: to each instance of the choice
predicate: The correctness criterion we need to prove is then the following:
an £R-interpretation is a model of the £R-theory if and only if at.._l_eas_t
one of its ¢corresponding OLP-interpretations is.a model of the OLP theory:
M_ore-p'r'e;:isely- this reads: '

Theorein 7.6.1 An £R-interpretation;is & model of I, and ¢ model of at
Iea.si-_ one r;ij_" the groundings of Tl i_f-an_d_. only if _ai_!east-. one of tle corre
sponding OLP-interpretations is e model of the OLP theory.

We.first prove an important lemma.

Pefinition 7.6.3 Given . an ER-interpretation-l and an interprelation Jg
.of the choice predicate. which sotisfies the FOL. azioma for that predicate.
Jy g is the "OL P-interpretation which corresponds to I (i:e. assigns ihe
value corresponiding 10 I io eack atom corresponding 1o an ER-atom) end
which: cotncides with Jg on ihe_.chbice predicate.
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Proof:
To prove the lemma, we determine an interpretat-io_r.__l of the choice predicate
which allows us to use the proof of the deterministic case given in section
7.5. For a particular J 1,¢, it is easy to see that all steps of the proof apply

without modification, except for.one of the inductive steps, i.e. the proof

that at any time 1; causes(t, 1) « Causes(t; 1) follows. from. holds(F,t) «
Ho(F,t). For this to be valid it is-required ‘that G s equivalent to the
definition of causes. Hence, if we can find an interprda‘.’fidn_ Jo which
makes the OLP-definition of cavses equivalent to the given grounding & of
1L, it follows that 7 is a model of G Ul if and only if J; ¢ is & miodel of
the QLP ‘theory,

Determining an appropriate interprefation: of choice is not difficult: it
follows from the, definition of groundings and the <construction of the map-
ping that, for each nondeterministic rule » and each time poing ¢, the set
of clauses in the mapping .of r is equivalent to the: kth grounding of r

{(i.e. the grounding corresponding to r's kih disjunctive component), if

choice(e,  k,1) 'is true and all other choice(c, , 5,1} are false. Indeed, as
indicated before, given these valyes for choice(ey 4 1), all clauses corre-
sponding to oj't'_her_ groundings than the kth one Have a trivially faise_ body
at't whereas the clauges corresponding to the kth grounding are the clauses
in the grounding of the kth disjunctive component with an additional true
atom in the body.

So, givena gr.oundingG-cdrresponding at ¢ach time point ¢ and for each
Tule r to the k. ;th disjunct of r,.if we choose Je such that choice(c,, 1,)
is false if £ o b+ and true if 5 = ki, then 7 is a model of G U IO, if and
only if J7, is a mode! of the OLP theory. Moreover this choice satisfies
the given FOL axioms on choice. This proves the lemima. 0

Proof:

(of the theorem) The theorem follows immediately from the lemma if each
interpretation J of the choice predicate corresponds to g gro‘unding . This
is indeed the case: in each J exactly one atom, say _ch‘qice_(c,.-, It _i), is true
for each » and t, due to the FOI, axioms. By the construction of Ja, T
then corresponds fo ‘r.he.gr'oundin'gG"dbtaj_ined by taking the % :th digjunct,
of each 7 at each t. O ' -

The above reasoning proves the correctness of the proposed ‘mapping.
We can then turn our attention o the relation between hOndétefmi_riis'tic.

.1ules in £R and the causal rules introduced in [109),

B TS
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7.7 ER Compared with the Approach of
Thielscher

In this section we make a detailed comparison of £R. derived effect rules
with Thielscher’s approach to the ramification problem ([109}). The-reason
for thisis twofold: first of all Thielscher’s approach is. one. of the most
fecent ones, has been compared by Thielscher with a good deal of other
recernt approaches, and looks reasonably similar to ours. “Therefore we think
it is worth analysing the corresponderice ‘in detail. ‘A second reason is
that Thielscher has introduced the use of influenice information for deriving’
certain. causal Tules from state constraints, which- has struck us as a very
interesting idea. Further in this.chapter-we will propose & different appma‘ch
in £R.-and show how it relates to Thielscher’s. _

In what follows we will distingnish between cousal raules {the constructs.
used by Thielscher) and deréved effect Tules (thieir counterpart in £R). We
-will'show a close correspondence betweenl Thielscher’s causal rules and non-
Jeterministic-derived effect rules.

In [109}, causal rules have the form

e causes [ if F

where e a._nd [ are fluent litgra;is and F a fluent formula. Intuitively, ihe se-
mantics of such a rule is that strong initiation of e may cause weak initiation
of LIf F 'l_iol'ds:.so “More precisely:

Definition 7.7.1 {concepts related to causal-rules)

Given a state S and @ set of effects E (1.3 a set of fluent Literals knoun to
be strongly initicted); the rule

¢ causes | if F

i applicable in (S,B) iff e € B and 5 k= F Ae A3t

Applying this rule resulls in o new state (S \ {€})u {e} and a new set of
effects B U {e}.* '

The successor states after the ezecuiton of an gction A in a sloie § dare
obtained by applying sequences of applicable causal rulesto the puwr (5, E),
where B is-the sct of direct:effectsof & and §° = (S\E)UE; ie. the loie
obtained ofter applying the direct effects E t0S. §'"is @ $uecessor state
of S after action A iff a pair (8', B') is obtuined from (5*, E) after eny

 30Weszy. “may caunse” rather than Yeatisés” sirice Tules never need to be sppliedin
Thielscher's approach..
31 The condition 5 | -l guarantees that &ll computed.effects are strong initiations.
32 0bserve that B may contain a subset of the form {e,—e}.
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sequence of rule qp;}ficatians and §' satisfies all of the state consirainis. In
the sequel, we call the. gbove B' the justifying sei of effects of 5.

1tis important to note that any sequence of applicable rules which leads
to a state satisfying the state constraints, is valid. In particular, such a se.
quence does not need to contain ¢l applicable tules; hence the intuitive
teading that Tules “may® cause effects. As & result, nondeterministic ram-
ifications are obtained, as will be apparent in the comparisor below.

Thereis a partial correspondence between -Thielscher’s causal rules and

nondeterministic derived effect rules in £R. Let usfirst look only at caisal
tules of the form
@ causes.

with a and b fluent literals. Such -a rule states that a strong initiation of
a justifies the injtiation of b, Le. it may result in the initiation .of b, but
does not necessarily do so (since a rule is never forced to be applied). This
‘corresponds af first sight to our nondeterministic derived effect. rule

initiating a causes & | trueif true.

The rules are indeed equivalent under the condition of initietion consistency
(2 fluent cannot at the same time be initiated and terminated).3? To make
this miore precise, we introduce the following notation.

Definition 7.7.2 (initiation consistency) 4 set of effects E is.initiation
consistent iff i does not contain o subsel of the form {f,~f}.

Definition 7.7.3 (Qapplicab’ilityfjustiﬁca't'ion_ for causal rules)

A fient literal a. is strongly initiated in (5, E) iff a € E and F is tniti-
-ation consistent. Then, if follows. from the above definition that o causal
rule & causes b iz applicable in (5, E) iff a is sirgngly initinied in (S, E).

We suy the rule then justifies initiation of b, and moreover jusiifies strong f
wnitiation of b iff b .
Definition 7,7.4 (applicability/ justification/ (barididate_) successor f

state:in £R) . _
A derived effect rule initiating o causes b if frue or o nondelerministic

®3This condition is not imposed by Thielscher since in his approach change propaga- i
tions. are assumed-to happen consecutively and to take a very small amount of time. i
Therefore there is no problem with initiations and termitiations of fluents in Ehe's_ame 3
batch of effects. However, we prefer-not to adpp'i, such a treatment of very small de_]eiys i
and for now we consider all propagationsio be sitnultansons and instantaneous, in which H
case initiation consistency is an egsentia) dondition. We return: to the issde of delays in. ;
much detail in section 7.8, *

;
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derived -effect rile initiating e causes b | true if irue 15 applicable ot
iff o is strongly initiated af i. The rile. then justifies initiation of b, end
justifies strong inttigiion of b aﬁ'b does not hold ot . Applying this rule o
o set B of strongly initiated literals ot t yields the set Eu{b}

A sel of fluent literals 57 is o candidate successor state of § after A accord-
ing to a set of effect rulesIl, iff there is o grotinding Dinp of ;. for which it
foiloius-ffom_Hu(A_,-i)/_\-VI.G' S : Ho(l,8) that S\S = {I | Ip,.., (Init(, Ny =
t and 'S ={l"e S| Ip... (Init(2, 7)) = 1. Intuitively o candidate suc-
cessor state is a set df _lite_m'l's_thqi_ ca_.n_'be.ime_- immediat'efy afler the action
according to the effect rules:

A candidate successor state S is o successor state iff it satisfies all the stute
congirainis.

Nobe that thé above definitions of applicability deviate from Thielscher’s
in that we don’t impose S F=.a A.—b. However, from the construciion of
(S, B) pairs, it follows that' B C S if F is initiation consistent.- Hence Sl=a
is trivially satisfied if & € E. As for b, we say a rule js applicable:even if
b aliready holds. However, ‘the tule then only justifies weak, rather than
strong initlation of b,

We then have the following results:

Lemma. 7.7.1 Given. a siate. 5 at itme © an:d an. initiation consisient sét
E of strongly initiated literals ot t, the cauzal rule

a canses b

justifies strong initiation of o literal b ¢ (EUE) in (S\F)UE,E) if and
only if the derived effect rule

initiating e causes b if frue
'.j_ustiﬁes ike same sirong initiation aii.
Proof: _ _ .
Either rule is applicable if and only if @ is strongly initiated. In that case,
the causal rule justifies strong initiation of b iff b € ((S\ E) U E). Since
b ¢ (BUE), thisis equivalent to the condition'd. & S. On the other hand,

the derived effect rule justifies strong initiation.of b at:t iff.b.does not hold
at £. Since 515 the state at ¢, this is-also equivalent to b g 5. O '

Lemma 7.7.2 Given o stafe S at'tiime t and an initiation consistent sel
E 1'03‘.strb.nglj;*'iniiiaimf'-Iit_era_;f_s: att, applying the cousel rule

& causes b
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yields an inttistion comsistent set of strong nitiations E' if end only if

applying the derived effect rule
initiating a causes b if true
to E at t yields the same iniliation consistent sef B,

Proof:
There are three cases. If b o B then B = E'. If b € F then F' is not
initiation consjstent. If b'¢ {(BUE), either both rules Justify strong initiation
of B, in which case B = EU{b}, or neither justifies b, in which case B/ = F,
i}

Lemma 7.7.3 Given a staie S and sel _of-_-eﬂfects E, and -a cm_.f.sal’._ rule
mapping (8, E) to (§', B ). IfE' {5 initiglion consistent, iny causal rule
applicable in (5, F) 4s dlso epplicable in (5, B, Litkewise, any nondeter-

‘ministic derived effect rule applicoble af given F is also applicable ai t
given E' if B is initiation consistent,

Proof: :
The lemma follows immediately from. the observation that .E"g E'. O

Lemma 7.7.4 Given a stale 5 a,i_ time t, an action A with direct effects B
occurring af t, a sét of causal rules {Cy, .. 4 Ch) and g corresponding sel
of derived effect rules {Dy, . D}
L If(S,B) s obiained '_an_"apply'ing- a Qsegue_nce- of rules ('C,_l, vy O}
to (S\E)U-E, E) and S’ satisfies the siate consiraints, then

(a) If B is initiation consisient, then 5 is the successor state of S

according to the sel of derived effect rules {D,,,.. D}
( b) If B is not z'n;s’ﬁaté_'on consistent, § has no successor state afier
A aceording to {D;,,..., D, }

2 If & is the successor astate of S after A according to o subset of the
derived. effect rules {Dy,..., Dn}, it is o successor state according to.
the corresponding subset of causal rules and s Justifying set of effects
E' is wmitiation consistent,

Piroof:

1., From the previous lemmas i_t' follows that applying the sequence of
3 Ch ) to _(Sg-,.ED) =({(S\E)u g, E) yields a sequence

rules (C;,, ..

H
i
i
i
:
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of (state,effect) pairs {(Sg, Fo), - - (S Bw)) such that Dy, is appli-

cable to (Si_1, Ei-1) and yields(S;, E;). Since each derived effect rule

remains applicable in all (85, By), i < jif it is applicable in { 5 B,

all derived effect rules aré applicable in (Sm, Em), T their condi-

tions are’ sat;-_isﬁe_d, Since 'a,ll derived éffect rules are Iap_plied_"'in the
construction and the set of effects grows mionotonically, the heads of

all rules are also satisfied in (Sm, Bwm).

Now, assume 5" is the candidate successor state of & according to-the
derived effect Tules, Note that these rules form a definite definition,
and there exists gxactly one such §'. This & is a successor state
of & Hf the initiation consistency condition in £R-is satisfied and gt
satisfies the state constraints.

(a) Assume Ey, is imitiation ¢onsistent.. We then show that S = 8.
Since only the heédds of applicable rules are added to ¥ and the
number of rule applications is finite, each initiation of a literal
in.Ey, has a true finite proof tree, hence. al] literals in. By, are
true in &'. The initiation of any literal not in By US only has
a false proof tree, since if it had been the head of any applicable
rule; it would have been- added o E. Therefore all literals not
in EnUS, ie. allliteralsin §\ B are false in §'. Sinte S isa

‘state, one of each pair (f, ~f) is fruein S. Hence the true:literals

in §' are exactly those in (S\Bm) U Em, which Is equal to Sm

since By, is initiation consistent. By the construction Sm = 5
satisfies all the state constraints, so 57 is a successor state of 5.
(b) Assume En is not initiation consistent. Then 5’ is not a succes-
" sorstate of § as the initiations leading to it violate theinitiation
consistency condition in £R. Since §' is the unique candidate
successor state for S, .S has no successor state.

5. Assume-§' is the successor state of S after 4 according to the di-

rect effect rules for A and the derived .effect. rules: {Dy,, vevy Pk
Starting from (So, Eo) = ({(8\E)U E, E), we can build a sequence
{(Sos Bo)y -y (Sms E,)) by randomly applying one applicable ‘causal.
rule fror-the set {C4,, ..., Ci, } in éach step until no-more rules apply.
Agsume we order the Cy, and Dy such that C; is the rule applied in
step i. Bn, may now be initiation corisistent of not.

‘Assime then Eh, is initiation consistent. Sm is the successor state
according t0 {Diyy. - Dis s Therules & pyynves Cj, are not ap-
plicable in {S, Frm), 50 neither are Dy s Dy Consider. then

adding these rules to the definition {D,,,..:, Ds,}. Since the rules
Dippyrre 1Dy, are not applicable given Em, their bodies are not in




7.7. COMPARISON WITH THIELSCHER 197

Eim, so.the additional proof trees they give rise to can not contain
‘true leaves, 'He_nce_, only finitely failed or infinite proof trees are
ddded to the set «of proof trees. Since such proof trees vield false
as. a truth valie, the valie of the best proof tree of each literal is
unchanged. So Sm is.also the successor state of § after 4 according
to {Dy,..., D), ie S, = &,

O the other hand, if Fm . 15 initiation inconsistent, the candidate.
sucéessor state §' = S, violates the-initiation consistency c_oii"ditioﬁ._.
The addition of {.'D:gm +i1-++; D } to the definition re_sult's‘ ‘only in ad-
ditional proof trees for some effects, so any effect with a true proof
tree also has this trie proof iree according. to the exterded defini-.
tion. Hence, the set of effects certainly contains B, and therefore
is initiation inconsistent. So according to. {D,,,..., Dy, } there is-no
guccessor state to 5. ' '

d

Theorem 7.7.1 ‘Given o state S ot time i, on aclion A with direct ef-
fects: B occurring ot t, 4 sei of causal rules {Chy .., O} 1here & =
a; causes b; .and o corresponding set of nondeterminisiic. derived effect
rules { NDi, ooy ND b where ND; = i_nit-iat_i_ng 2; causes b; | true if true.
S ds.a successor-state for 5. after A according to {ND,, ... yNDL Y iF 5 s
2 successor stale of S afler A aecording to {C1,. .., Cr) end the Justifying
set of effects B! of S? ia initiation consistent:

Proof:
§isa candidate successor state of § according to {C,.. o Ch} ifit.is
obtained after _a.pplying_-..a.'riy sequence of applicable causal rules. This is
equivalent: to'the cordition that-§' is obtained after application of a max-
imal sequence of causal riles of any subset of {Csy .o, O} (since each

sequence is a maximal sequence in any subset of {Cy,.. -» Cin} containing

all the applied rules and none of the applicable unapplied rules, and since

Vice: vérsa any maximal sequence in a subset is also a sequence in that sub-

set and hence a sequence in the entire set). An §" satisfying the above
condifion is.a successor state for S iff it satisfies all of the state constraints.

In £R the candidate successor states of S ‘according'to {NDy,..., NDn}
are.those obtained by any grounding of this definition. Consider such a
grounding: by definition, for a rule initiating a; causes b, | true if true,
for each particular time poirit ¢ the grounding of this rule is equivalent to the

grounding of D;. = initiating a; cavses b; if true or to the grounding of

the.trivié.lly.éatisﬁed rule 7, = in'itia'ti'n_g i causes true if trie. Hence,
5" is & successor state of § according to {NDy,..., ND,} if and.onlyifitisa

T T T AT g
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candidate successor state.of S according to any definition {Di ;- -, Di } 1
{Tjyy~- Tj} such that ({iy.e. .z}, {d1...21}) is a-partition of {1...n}.
Since the rules-T; only tesult in-proof trees for irue, omitting them from
the definition does not. influence the candidate stccessor state, Hence 57
is a candiddte successor state of § according to {NDy,...,NDp} iff it is
the candidate successor stabe according -to any subset {Dj,, e D} of
{D1,..., Da}. 1t is asuccessor state of -§ iff in addition it satisfies the state
constraints and the set of effects leading to-it s initiation ¢onsistent.

From the previous lemma it follows that the conditions on 5" and 5"
are equivalent. if B/ is initiation consistent, which proves the theorem. D

The above comparison, shows that Thielscher’s. causal rules a causes b
have the same semantics: _as- &R rules initiating o causes b | true if true:
under the condition of initiation consistency.

The situation is more complicated for causal rules of the form
d causes b if F

which, roughly speaking, say that strong initiation.of a causes strong iri-
fiation of b provided that F ‘holds. Such rules do ‘not correspond to our
rules. _ _
initiating o causes b | true if F.

We will show that in £R there is no-cquivalent fot this complex type of
causal rule. Closest t6 it is ‘the combination of the two derived effect rules

initiating a causes b | true if F

initiating ¢ A F causes b | true if —a

The first tule-states that b may be initiated if @ is strongly initiated, pro-
vided that F holdsin the starting state 5 for-this set of effects. The second.
rule states the same rel:aﬁon'be_twcen changes in @-and b, but now under
the condition that F holds in the _:esulti_ng\s'fate' 57 ratlier than the starting
state (initiating aAF given that a was false, is equivalent to strongly initiat-
ing @ while making sure that-F becomes or stays true). Yet these two miles
do an-'cover allthe cases-in which Thielscher’s causal roje is applicable.
This is due to the fact that in ‘Thielscher’s ‘approach, rules are ap-
phied consecutively, giving rise to a set of interimediate states. A rule
o causes b.if F c_@pg.bg:._:qpp_l_ied at a-certain point. in such a sequence if
7 holds in the appropriate intermediate state. Thielschet shows sorie ex-
amples in which a fluent holds in one of the infermediate states, buit neft'h'e:_
in the starting nor the resulting state. In such a case, none of.our derived
effect rules would be.applicable, but Thielscher’s causal rile- would. ¥ F
s a fiuent, this difference is eliminated by the initiation consistency con-
dition, which prevents fluents from being initiated and terminated in the




7.8, INFLUENCE INFORMATION 169

same hatch of effects. .However, as F can be a general formula, to obtain
equivalence the initiation consistency condition would have to be extended
in a way which is no longer reasonable: if no formula can be initiated and
terminated in one batc_l}' of effects, we cannot allow even two consecutive
effects. Indeed, assume we initiate ¢ and b-consecutively, then for example
@A —band -@Ab are initiated and terminated in the same batch of effects,
which is in no way problematic or counterintuitive..

For causal fules of this more conplex form, we have no exact equivalent
in £R. The best approximation is given by two rules, as. indicated above.
One consequenice is that any approach to using influence informationin £
will certainly deviate from Thielscher’s. In the next section we present such
a method and compare it to Thielscher’s. approach.

7.8 Influence Information

As we have extensively argued, i our approach ramifications are seen as
manifestations of effect propagations. In other words, we assume that. an,
expert modeling a-dynamic domain models the effects existing in that do-.
‘main and describes: how these effects propagate. In £R these propagations
are.represented. by derived effect rules. However, in the literature state
constraints have always been used iin a high level description of dynamiic
domains: these state constraints are-easily observable, and as they can arise
as a result of particular combinations.of effect propagations, they are often.
strongly related to these propagations.

For this reason, Thielscher ([109}} proposes a method for automatically
deriving cansal rules representing ramifications {from state constraints, using
influence information. The idea is that if ‘two fluents f and g occur in
the same state constraint, and f influences g, then a change in f which
results id a violation of the constraint Inay cause an appropriate ¢hange in
g which restoresthe validity of the constraint. The appropriate causal riles
describing these change propagations are then derived.

~ Thielscher’s causal rules thus have. the explicit task of restoring the:
validity of state constraints when they are violated. Hence they are not
descriptions of krown effect propagations like de_r'wed cﬁ'ecf-_ rules in £R:.
caisal rules only neéd to be. applied if there are violated state constraints.
and if they can solve that problem. This is reflected in the fact that they
map o nondeterministic derived effect rules in £R: they describe poteritial
efféct::propaggtiqn‘s that may ocqur if they are ‘required.

Despite the different point of view on ramiﬁ'ca.tions,_ téhe__:_ idea o_f a__utc_.—
matically deriving ramification rules from state constraints-and influence
information also deserves consideration in £R. A _f_or_rn'al characterisation
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of the relation between state comstraints, influence information and derived
effect rules can be useful to help an expert derive the precise effect propa-
gation rules sta.rtmg from-a high-level descrlptlon consisting only of state
constraints: and vague influence. information.

Of course such an approach has limitations. First of all, as we have
showh in section 7.2, not all effect propagations ate related to state con-
straints. Hence it is not possible in geneéral to generate all effect propagation
rules using state coustraints and-influence information. Second, even in the
case of state constraint related ramifications the addition of influence in-
formation may still leave the ramifications underspecified; as we will show.
Finally, determining whether a:set of rules is the intended set for given
constraints and influence 1nformatlon is. not trivial: the problem at hand
shows some similarities:to the tasks of machine learning and intentional
database updating.

Despite. these limitations; the above argument still stands, "Therefore
‘we provide in this section a method for generabing a set of derived effect
rules corresponding to given state constraints and inflience information.
In_addition, the rule sets we generate give an-indication of when the effect
propagations are underspecified, thus warning the user that the generated
rules-are based-on insufficient. information and may require: further atten-
tion. In this respect the method shiould be seen as:a tool helping the user
and not as a fully indeperident answer to the ramification problem. More-
‘over the examples should show that such an independent  answer is not-
feasible, despite approximations by both Thielscher and ourselves;

7.8.1 Generating Effect Propagation Rules

Qur goal is to generate derived effect rules from a given set of state con-
straints ‘and a given inflience relation Infl which is a binary relation on
fluents: ( fr9) € InfLif f can influence g. These derived effect rules should
guarantee that whenever f is- modified such that = particular state con-
straint containing f and ¢ would be violated, an appropriate modification
of g can occur which restores or helps o restore the validity of the con-
straint. On the other hand; indirect effects should alse erily be allowed if
“they satisfy the above condition:

W -assume that the set of state constraints is written in con}unctwe
el forir, 1.6. a conjnction of constraints vhare" gach’ constraint is-a
dlsgunctmn of fluent. liferals. We use the convention that in a censtraint,
I1V...Vig, each l; is either fi or —1f_, for a particular fluent. _fJ

Since the state constramts and influence information imay not provide
sufficient information to determine the intended effect rules, it is not pos-
sible in general to give necessary and sufficient conditions for a set of effect
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rules to be cotrecs. However, based on the intuitions about:influence in-
formation sketched above, we propose the following. correctness criterion,
which is :a necessary condition on the sets of effects that can be generated
by the effect rules.

Definition 7.8.1 (weak correctness criterion)
A correct set of effects B with Tespect-to given state constraints and tnflu-

ence information end & given starting state S, mist satisfy the fé{la‘wing
conditions;

o For any state consiraint C, (.5' \ —E_)UEf: o)
© Each effect in E is either
- o direct effect, or
— an tndirect effect I, such that for B = EN\{l} there exists
seme C =\, . L and some i (1 <5,k < n) suck that
(S fu) € Infl, I € B, and for some B CE withl; € B",
S\E B ¢ :

In other words, resulting states raust satisfy all state co_nstrainﬁs, and each
effect generated by the effect rules must be justified by some state. con-
straint which would be viglated due fo other occurring effects and by the
appropriate influence information. A stronger variant of the correctness
criterion is obtained by imposing in addition that E' — B/

Definition 7.8.2 (strong correctness critérion})

o For dny siote constraini C,S\BUEEC
e Bach effect in E is either

- o direct effect, or

—~ an-indirect effect I, such thai for B! = E\ {Ek} there exisis
some O = Vo, b and some I {1 < 4,k < 1) such that

‘This variant requires that each effect only takes place if the state constrain

it intends to restore would be violated by the combination of el other
effects. ‘This adds a strong minimality condition to the weak correctness
criterion: if there are two ways to restore the validity of a state constraint,
only one of thern should be adopted, never both. It can be argued that
the strong version of the correctiiess criterion is.to be preferred, and in fact
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the rulés generated by our approach satisfy the strong criteriori. However
we will show below that due: o -possible underspecification a violation of
the strong criterion (which for example occurs in Thielscher’s approach) is
sometimes acceptable:

Our approach is. modular, in, thaﬁ the derived: effect rules are g'en"erate&
for each state constraint independently. First we study the case in which
effect propagations follow unambiguously from a state constraint C and
the 'inﬁue_n(;:c information. It is easy to see that this is a.lwaysfhe- case
when in C only one of the fluents, say f, can be influenced:. then the only
possible indirect effect is & modification of f. Hence, if such a modification
is;allowed by the infiuence information (i.e. if ore 'of the fluents influencing
f is changed) and if'if would restore the-constraint’s validity, then f 's_'h'_o_uld
always be changed: otherwise the state constraint-would remiain violated.

This propagation can be enforced as follows: for each state constraint
V.. Vi (with eachi Iy either f; or = f; for 2 particular fiuent f;), which
contains at'most one I sueh that fi can be influenced by any other fluent
in the language, generate the derived effect rule

Anitiating A -I: caluses Ik if V L
t=1.m,tAk si€f

where I is the set of fluents inl the constraint-that can influence. fz.

In this rule, the body. Ap=q..m izk L is the negation of the state con-
straint with Ii left out: the formula denotes that a necessary condition for
i tobe caused is that in __t'he____::esu_ltin g state, the state constraint is violated
unless I is true. The condition of the.rule, \/, ., %, denotes that -at least
one of the ;. which can influence I is true in the sfarting state, and ‘hence
is changed, so that its effect can propagate. :

This.case covers a very large class of applications, including the suitcase,
table and fiying turkey examples:_pr'eseﬂtéd in earliet sections and nearly all
examples studied in the [iterature: For example in the suitcase domain the
inflizence information is that I, and Iy may influence open, 50 certainly in.
any state constraint at most one fluent (open) can be infhiericed. The state:
constraint in disjunctive form in this example is =i V -l V opén, which.
jeads to the-derived effect rule '

ini'ti'at:ihg Iy Al causes open if ~ly V-l

Note that this Tule is syn_tacti_call'y-"different_ from %he one we used when
modeling the exarple earlier. Indeed, theabove rule can be-simplified to

initiating I3 Aly causes open if true
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since 11 AL can be initiated only if its negation is trie. This simplification
can be generalised: if the one Auent in 2 constraint whic_h can be influenced
is influenced by all other fluents in the constraint, we can generate the
derived effect rule

initiating I; causes Iy if true
g L.
t:l..,m,t#ﬁ--

‘which is equivalent with j;he_i'cme-generai;ed using the general method.

Next we consider the case of constraints in which multiple fluents can
be influenced. In general there is no unique set of indirect effects which can
resfore’ the constraint’s validity in this case: the problem is underspecified
and/ot involves nondeterminism.

This is very clear in the following-example; consider the state constrain
a'— (b'V €}, in disjunctive form —q V'b Ve, with the influence information
{(a, ), (a,¢)}. Assuming that we start with a state in which ail three fluents
are false, and then initiate ‘@, the constraint’s validity can be restored by
initiating either b or ¢, or both. Since there is no reason to prefer eithet
b 61 ¢, the rules we generate must be nondeterministic. However it ig not
clear if only. the minimal changés (initiating only & or only ¢) are to be:
considered, or also 't:he_--_éhangﬁa'i'n both .4 and e. Ad:h'er.'ing to the strong
version of the correctness criterion given above, only the minimal solutions
would be acceptable: if b is initiated there is 1o justification for e and vice:
versa. The weaker version of the correctness criterion allows for a change
in both b and ¢, since both ‘are justified by the .change in a. Here we can
argue there is a problem of underspecification,

To make the diséussion more concrete, assume a, b and ¢ are courses
taught at a university, The constraint represents that % and & are pre-
requisites- for a, and the influence information that if a student wants to
follow course ¢ but has not followed b or ¢, his /her subscription for acan be ;
allowed by subseribing him/her in-addition to course b or ¢, The ‘given in- f
formation _dge's-n‘ot specify which of b or ¢ 'is to be preferred. Real students :
would probably not be-happy with two additiong] subscriptions and prefer :
the m_inimal"adaptatiqns,. but there may be exceptions to this rule. Also,
usually one would talk to the student to d'etermine-_which additional course

(s)he prefers, and not -assign one tionideterministically, In other words, more ;
information is clearly required to deterniine the best course of action. 5

Given the above considerations, in our view the preferabie general solu-
tion is to Propose only minimal sets of changes but to clearly indicate that ‘

there is a problem of underspecification. _ _ ;
“This is achieved by the following formalisation: if multiple fluerits, say :
F...fs, in ote state constraint I, v ... Vi, can be influenced. by other ﬁ
H
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fluents in the theory, the. nondeterministic derived effect rules

initiating /\ I, causes 1 | trueif V L
Ci=lamgek fieln

are generated for 1 <k < s, where Jj is the set of fluents: inthe constraint-
that can influence fi. In other words, for each i, we obtain a rule like the:
one we obtained in the previous case, except for the fact that the effect of
the rule is now optional: the rule is nondeterministic. Of course since state

constraints need to be satisfied at all times, it is required that if the state

constraint is. violated by a. set of direct effects at least one of the rules is
applied. In the above example; the. obtalned effect rules are

initiating a A ~b causes ¢ | true if —a-
initiating-a A —c causes b | true if -a

At any parficular timeé. point; the semantics of the rules is given by one of
four possible grourdings, corresponding o the gréundings of the following:
pairs of deterministic Tules.

initiating a A b causes true if ~a
initiating @ A ~c causes trueif —a

initiating oA b causes c if —a.
injtiating @ A ~c causes true if —e

initiating a A —b causes true if —a
initiating o A ¢ causes b if —o-

initiating a A —b causes ¢ if ~a
initiating a A ~c causes b if —a

In the case where a is initiated while b and c are false, the first pair of
rules.does not lead to a state -satisf_ying the state cbn’str_aint_, and can be
disregarded. The second and third pairs of rules.yield minimal changes
restoring the validity of the constraint, initiating either b ot < The fourth

pair les, yields a truth value “u” for the initiations of both b and ¢; so
this is not.a correct constructive definition. e T T T T e
Recall that a set. of initiations satisfies a nondeterministic definition if
it i a model of one of the definition’s groundings. Hence we find two sets
of initiations consistent with both the definition and the state constraint:
one in which b is initiated and one in which ¢ is. These are precisely the
-minimal changes able to Testore the state const_;aint?'s“va.lidity; However,
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as we indicated we cannot be entirely certain if only the minimal changes
shouid be considered: whether or not this is the cage may be domain depen-
dent, and the answer can in general fiol be: giver by state constraints and
influence information alone. So we are not certain if the generated set of
rules is the intended one, due to underspecification. Luckily, our proposa}
naturally incorporates a. warning when such a problem of underspecifica-
tioh dceours: ‘this warning is the presence of a bad defirition in one of the
groundings. Though. this bad definition has no- impact on the Semantics
(i't is- a.n'additi_onal.gmundin_'g-_ which yields no valid set of ini_tiat_iOns_), its
Presence warns the user that the problem may require further-analysis. In
t‘hi_s'.ca.s_e. the: user rmay look info the details of th’é'do_main at hand, check
which effect propagations are intended and. decide to modify the generated
rules if needed. By default the minimal.charnige policy is maintained.

In the above example we had one _ﬁuent__inﬂuencing,_ two: othg_r_ fluents
‘in the same ‘constraint. The case in which two different fivents influence
2 third resp. fourth fluent in the same constraint, as in —a v 3 Voevd

with influence .'information_{_(a_, b), (e;d)}, 'is_-'e'ntirely similar: if ¢ and ¢ are

initiated when b and d are fzlse, the constraint may be restored by initiating -

either b or d. We again obtain two nondeterministic effect rules of which

groundings yield the minimal changes, and one grounding is a bad definition
indicating a problematic specification.

A third possibili ty is'that two fluents in a constraint ' can be influericed, .
but-only one of them by another fluent in ¢ and the. second one by a fluent.
outside &' For example, assume the constraints.

;!'a} Vb Vime
—dve

with. influence '-i'nformation.-{(a,_b’),_‘(d, ¢)}- For the first constraint, due to
the influence of ¢ on 5, we obtain a rile

initiating g A ¢ causes b | true if —g

As should be expected, __fhe influence of d on ¢ does not lead to effect:
rules for the first constraint, It does hoWever_genera.te‘ an — in this case.

deterministic, as only ¢ can be influenced — rule for the second constraint;

initiating d causes ¢ if —d

Assuming a state in which all fluents are false and a and 4 are initiated,
the second rule will cause ¢ to be initiated and as a result, since now aA¢ is
initiated, the first rule may or miay not initiate & depending on ‘which. of the
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two groundings is. considered. However, the case in which b is not initiated
leads to a state violating the first constraint, so-only the other grounding:
yields & model. Hence there is 710 nondeterminism in this case; even though
the nondeterministic derived effect rule suggests there is.®* Also, there is
no grounding which yields a bad definition. Indeed there is no problem: of
undetspecification in this example: ihe effect rulés determine a unidque set
of effects which restores all state constraints.

We are now ready to prove that. the proposed method generates riles
that satisfy the correctness criterion givén at the beginning of this section:
Theorem 7.8.1 Asiy set of effecis B obtained by epplying to o particy-
lar valid ER-state S ‘o given set of direci effect riles ‘and a set of derived
effect rules generated from-stale constrainis and influence information by
the. abive method, ond which yields.a valid ER -state S, sqtisﬁés the irong
corpectness crilerion, i.e.

1. For any state constraint C, $ \FUEkC
2. Each 3ﬂf6t_-?:_n- 7 is either

(&} a d_‘f,?_'._gct Bﬁcﬁbtl or

(b) an indirect effect L such fhat for B'

gome O = V;I'::L:--n i “ﬂd--mmf._lj (1 S j,
(fi-m fk) € .Iﬂ_ﬁ, '_fj c B and S \ R bb o

Praoof:

E\ {iu} there exists
k< n) such thal

1. Since §' = S\EUE'is avalid £R-state, it entails all state constraints.

9. Any occurring effect I must occur in the head of a'rule with a true
body. This can either be.a direct effect Tule;j or a derived effect rule’
obtained fromi the state constraints and influence information by our-
method. In the former case condition 2({a) is satisfied. In the latter
case, the derived effect rule is of the form

initiating /\ 1, causes Dy if V i
t:l...rﬁ',‘ﬂ:ﬁ.k fiedn
“where Dk is exther :I';;':'i':i'r.lk_ | true. This tu_ie is. necessarily obtained
from the state constraint C" = Iy V...V iy and the influence: in-
formation that all fiuents: in Iy can influénce fi. For this.rule to be

3% One may wonder why we do hot generate deterministic rules in this case. 'We show
the difference 1n. the next section when comparing deterministic and. fiondeterministic
rules. '
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applicable it is required_--ﬁhaiz sore I; that can influence f; % 15 truein § ;
and that A't:’l..‘;m,t#k I (s false in §'. Since_(S\_EF)UE' = (S"'\lk_)_uf;,_
the second of these conditions implies that $\ B £ K C. Also, the.
iwo conditions together imply that i € B, Hence, condition 2(b) is
satisfied.

O

7.8.2 A More Uniform Notation

The above method for dEa__ling_ with influence information__g_ener&t_es déter-

‘which can be influenced in each particular constrain, In this 'Wa_.y. we obtain

clear deterministic rules when possible, and nondeterministic.rules if there

are multiple options, Moreover we.obtain only one rule for each constraing

{state const;raint_;'-,-_inﬂuence- item) pair is handleq in éxactly the same way.
We achieve this by applying two simplifications,.

Our first simpliﬁc_ati_qn-consists' of handling each (state constraint;infiu-
ence item) pair indépendently: for each state. constraint & V... v Ly and
for each influence information item 1, fr), we generate the derived effect
rale '

-'init'iating /\ I causes Loif
t=1..m ik

il is the only fluent in the constraint which can be.i'nﬂuence_d,_-a.nd

initiating A I causes I | true if i
t=lam Ak

otherwige,
The set of Tules obtained in this way is equivalent to the one obtaired
by our above method:

Theorem 7.8.2 For g particular state constraint Iy ., Vi, and o set of
ﬂgenis I = {f; | (f”fk) £ Inff}, the derived effect rule

initiating /\ I, causes i if v i
t=l.om,iZE ficl,
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is equivalent to the sel of derived. effect rules

{initiating A T causes L if L1fieLl)
t=1..miFk
Likewise, the nondeterministic derived effect rule

initiating /\ T, causes I | true if V i
t=1..:m, 1k highe

is equivalent to the set of derived. effect riles’

{initiating A T causes | trueif L | fr € In}.
d==1.. m,t;ﬁk

"The. __p'r_o‘of is as follows. First consider -the deterministic case: the

grounding of a derived effect rule

initiating F causes | if 7

is
{'Gaﬂses(_t, )] «—Inii?('t,.:_S,;),'.Iriit('t,._S';), o
| " Ho(S,,t), ~Ho(F, 1), Ho(F's1),
jteTand S USp is & supporting set of F}.

Gince the derived -effect rules mentioned in the-.tﬁebrem differ only in their
condition, each yields a set of clauses of the form

‘Causes(t, I Y « BuH ol F',1).

Causes(t; ) Bi,, Ho(F',1)-
with 7/ the condition of the. particular rule. Hence, the theorem follows if
we can prove that ‘each ¢lanse.

Cause.s(.t's.lk) = BJ!HO( V Ii:t.)-.
fiele

‘is _e'Qui?al'gnt to the set of clauses

{Causes(t, r} « Bj, Ho(li,1). | f: € T}

Now, the first clause 1s equivalent to

Causes(t, y) «— Bj.
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o(V s cr, kvt is-true, and 4o
Causes(t, 1) false,

otherwise. On the.-.p__the_r--hand, the set of “p'rimitive”- clauses is equivalent
16
Causes(t; L) « B;.

if one of the Ho(; t), and hence Viier, Holl;, 1}, is true, and to
Causes(t, ;) « false.

‘Gtherwise, Th'e.-_e_qui'_vaiena':e-"then':f'ollows from the fact that ’Ho('\/'f‘_ eI, Ay ty=
Visier, Holl, 2). L _ _

The: proof for nondeterministic rileg is obtained by applying the ahove
réasoning to each grounding independently, 3

A second simplification eliminates-the distinction ‘between constraints
in which only one-fluent is influenced and ‘the other constraints, We can

the number of in’fluenccd-._-ﬂ uents: for egch state constraint Lv.. Vi, andfor
each influence information item. (Fis i), we generate the nondeterministic
derived effect rule

always use the following unique rule for deriving effect, rules, regardless of

initiating /\ & causes & | trueif 7.
b=Loarn, ik '

" In other words, we can always -_gener_ate_-nondetermi_n_isfi.c rules, The re-
sulfing definition is eguivalent with the one using deterministic rules for
constraints in which only one fluent is 'inﬂuen_l_:ed.

Theorem 7.8.3 Giuen & state constfdinﬂ i .0, in wkz"c?z-only It can be

inflienced. The deriyed &ffect rule
D="initiating A T causes I if L.
!:1_.._im,f#k )

13 equivalent to, ie. leads to the same succesior #tales g5, the nondeler-
manistic derived effect rule

ND = initiating /\ I causes Iy | true if I;.
I=1..m,tk

R e
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-one which only: contains a rule: for true (ﬂwhich c__orresponds_.to-'a.n_ oImission.
of D' from the rule set). Hence, it suffices to prove that this second ground-
ing does not yield successor states not generated by the first grounding..
Turhing this- around, it is sufficient to prove that any successor. state of the
rule seb without B is also a’successor state of the rule set with D.

Now, assume &' is a-successor state of the rule set without B. Hin
the -3harting-state_:5 the fluent J; is false, then bodiés of tules derived from
D are always false, so P has no effect. Otherwise, first observe that Vs
addition cannot lntroduce new proof trees for any of the I,, due:to the fact
that none of the b can be influenced. In other words, D cannot introduce:
cycles. (in particular over negation), so the truth value of Ayz1.mit #‘T;
remains invariable with ‘or without D. We then have the following ‘cases.
If /\__tjl__.,'n.,_t#.k_ﬂ i¢ false in S, then I} is not applicable so its addition has
no 'eﬁ‘e_(_:_t.' Otherwise, Misi.m sk T; is true (Zun_dgﬁne& triith values are not
possible in a. state), In that case, i I, is true’in §', D has 1o additional
effect, and if T Is false in 57, then §" is no successor state since the state
constraint is violated. Hence, we find that the addition of D does not.
elimindte any successor. states of t_hg:r_uie set withdut-D, which due to the
above: reasoning ensures that D and ND are equivalent.: O

One might expect that also for rules generated from constraints in which
only one fluent can be influenced from within the constraint (but in-which
other fluents can be influenced from without the constraint, as in the last
example of section 7.8.1), we would obtain asimilar eqnivalence'r.e"su_l_’_r; be-
tween deterministic -and -non_deter_r_ninistic rules. However, the following
example shows: that there is no eguivalence in that case: take two cofi-
straints

avevd bvevd

and. influence information {(a,c), (b d)}. In both constraints, one fluent
_can be influenced from within and one from without the constraint. The
rules generated fromm these data would be

jmitiating —aA-d causes e} true it a
initiating - A —c causes d | true if b
which for a starting state {a, b, e, ~d} and direct effects —a, b would gen-
erate two valid successor states obtained by minimal changes, {~a, —b; ¢, d}
and {—a, b, -, d}, and in addition a bad grounditg indicating that there-
is insufficient irformation. On the other hand, the corresponding determin-
istic rules _ .
initidting o A—d canses ¢ if ¢
initiating —b A —c causes dif b

would only yield.a bad definition and no successor states at all.
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mation, which by the above theorems is equivalent 1o our original proposal,
This original proposal can be seen as a more intuitive approach, in whick

gle constraints, and in ‘which, apparent but n_bn«exist'ing 'npn_determ'inism
has been 'el_in__l_inat_ed. One ad_vantage _o_f the uniferm m_e't-}::;od 18 that it will
help. us establish-a carrespondence with the approach in {10g].

7.8.3 Comparing our Method with Thielscher’s

We study the relation between our approach and the one in [10g). Formally,
the causal rules in Thielscher’s approach are computed as follows: ‘assume
D1 AL AD, is the: corjunctive nerinal form of the conjunction of all state.
constraints, and each [); = WV Vi, with all I; fluerit literals fi-or =f;.

Tht_:n..fcr each D; and for each. (fs fi)in the influence relation with I and
& in Dy, the causal rule

fj_ causes l, if /\ _ I
E=boang, b 10k
is generated. .

For the same constraint and influence. information, we generate the rule

initlating A 7 causes 4, | trae if I

t':'l.:.m.-,-_:t_#'k
Recall from the previous section that this deriw_.red effect Tule, together with
initiating I; causes I | true if /\ I
t=Lmg tth, i

is-the clogest approximation in. £R of the above cansal rule. In other words,

there is an immediately clear correspondence between the generated rules
in both approa_ch_es_,_.._Wii_;h"our derived effect rules. being strictly and consid.
erably weaker than Thielscher’s causal rules,

Consider a state constraint eV'hVV, L with j(a, b) in the influence
relation. This gives rise to the causal rule

—¢ causes b if /\ f;
and to the derived effect rule

i__r_tifiating —a A /'\E.w causes b|irue if o
i
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The derived effect rulé is applicable. if —a A /\tf becomes true and a is
strongly terminated. Inthat case b should be initiated for the constraint to
remain satisfied. The corresponding causal rule is applicable in a sequence
of causal rules if @ is strongly terminated and AlLis truein some appropriate
intermediate state. So the causal rule ia applicable in a number of cases
where the del_:iyed effect ule isnot. In these cases however, the a.ppl'ic'ation'
of thé rule is not required in order to restore t_he-validity ‘of the constraint it
is derived from: the state constraint is only violated if all of its literals are
false in the generated successor state, so if AT; holds in some ititermediate
(or the initial) state but not in ‘the genera't_ed successor state,- there 1s no
need forbto be initiated. Tn other words, Thielscher’s rules do not satisfy
the-strong correctness criterion: fhe'y_'sometime's.ge_qgr_a_te fnnecessary, non-
minimal ramifications. ' '

As an example, assume we have state coristraints @ Veid, bV —d and.
¢V bV —a. The influence relation is {(d, ), (&, &), (@)} We then get the
causal rules : ' '

d causes @
d causes b
a causes ¢ if —b

Assuine then we have a state {~a, mb, ¢, -d} and an ‘action with direct
effect. d: U'_si_ng-f.he first two rules we find the successor state {a, b, ¢, d},
which satisfies all of the state constraints. Also, using the first, third and
second Tule in that order we obtain a state {a,b,¢; d}, which also satisfies
the state constraints. Using the derived effect r_iiles obtained'-frorn the state
constraints,

initiating d causes a |irué if ~d

initiating d causes b | true if ~d

initiating a A b ca_usés c|true if —a

we only find the resulting state {a,b;=c,d}: the first two rules must be
applied to restore the first. two .C'onstréinﬁs, and then the condition of the
third Tule is not satisfied. _

S0 in this case the causal rules give rise toan additional successor state
which is reached by 2 non-minimal set of changes (the change in eis un-
necessary). This is to be expected in general given the fact that the causal
rules are applicableunder weaker conditions than derived effect rules. More
precisely we can prove that the et of valid siiccessor states according to
the £R theory is-a subset of the set according to Thielscher’s corresponding
theory:

Theorem 7.8:4 A successor staie §' of & state. S ond action A with direct
effects E ‘gecording to the nondeterministic derived effect riles obtained
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Frgof:
It is' sufficient. to prove that in .a particular successor state {which we will
aco:nsf_._tu_gt) S” of 8 according to the causal rules, each literal true in § is
&lso true. Since no'causal rule is ever _fbr_cejd to _be-'appliec_l-,__assume- we will
Hot apply any rules leading to the initiation of the negation of -any literal
in §. So any literal glready true in Of. an intermediate state and. stil]
true'in 5 can be assumed 1o be true in 7, Likewige, we can assume any

‘initiation atom false in the transition betvieen Sand 5 to be false in the

eﬂ'ects"leading'tp 5", Tt remains to be proven that strongly initiated. literals.

in & can be made true in E" and 8", This can-be proven by induction on
the depth of the best Proof tree: of each such strong initiation:

2. Assume all ihitiat-ion_s with a true, proof tree of depith & have been
derived by cansal rules, lgading_. to (.'S_’-m',_EM_)_, afid.I'has a proof tree
of depth & + 1, Then there is a. rule

initiat_'ing' r /\/\ ki causes ! |irue it 7
;

at. most k, and ¥ alsp has a proof tree of depth at most- k. -_Thefe--is’
also & corresponding causal ruje

! causes [ if Ak

By the induction hypothesis, ¥ and each & which was not already
true in 5 is true in, Sn; and by the assumptions made above also the
other I are still true Sny: Hence the causal ruleis applicable and
! can be derived.. Moreover by the above asswnpiions this will not
‘cause any other applicabje rule 10 hecorne inapplicable, Assuming
then Iy ...L are all of the literals with 5 best proof tree of depth
k+ 1, their éorrespo_nding.causal- ritles:can be applied In.any sequence

e e
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starting from. (Smyy By ), leading to {Snyes Banea): This proves the.
inductive step. '

The theoremn follows from this inductive argument. O

Related to this, we should rmention that in some cases'the derived effect
rules generated by our .method only lead to states in which' some of the
state constraints are still violated, whereas Thielscher’s rules yield sets ‘of
sindirect effects leading to a'v Jid state. In other words, in:some cases our
rules lead to an action qualification whete Thielscher’s lead to ramifications..
This occurs inituitively speaking when parti_cu_l__é.r constraint is.restored in
a non-minimal way, which has the side effect of restoring another viclated
c__onst_raint. ‘An example is the following: agsume.the constraints'

~kva  bve dve
—aVe —aV-dve

‘and the influence information

{(bya), (), (), (64 )}
From these data, we can derive the causal rules

1. b causes a

2. b causes €

3, @ causes —d if —e
4, —d causes ¢

and on the other hand the nondeterministic derived effect rules

1. initiating b causes a|tirue if —b
9. initiating b causes ¢ | trué if —b
3. initiating a A e causes —d | true if @
4. initiating —d causes ¢ | true if d

Assuine then a state S in’ which —a,~b;~c,d and e are frue, and an ac-.
tion A which initiates b. Using the causal Tules, we can .6btain a candidate
successor state by applying riles 1 and 2 in any order (none: of the in-
termediate states satisfies the state congbraints), which Jjeads to the state
{q;;'b_,-:)c_,-_d_;'e}._,N.o.-._qthgr-_; rules are applicable in that state, but it still vie-
lates. fhe state constraint —aV c. A second - candidate successor state can.
be obtained by consecutively applying rules 1 and 3, followed by 2 and .4
in any .order_; Again, 10 intermediate state satisfies the constraints; but the
final state {a, b,¢c,~d, e} does, and. therefore is & successor state.

Using the derived effect rules to compute a-successor state, we need to
apply the first two rules to satisfy the state constraints —bvaand ~bve,and

+
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the other rules are not-applicable as a result. Hence, we obtajn Thielséhe_r’s_
first candidate successor state {q, b, ~c,d, e}, which violates —g V.c.sq ig
rejected. Noother candidate successor state satisfies both “bvg and —hye,
0. we: obtain no valid successor. state: the action ;s impossible under the

rdather than generating a get of ramifications which. “by accident” ‘testores

‘soine constraint’s validity: after all, 'we have to keep in mind that our goal
I§°'not generatitig ramifications restoring the state constraints ag ali costs,

Rather we want to derive exactly those ramifications that are justified by

the domain knowledge. Unjustified ramifications are to be avoided, as in-

ertia is still the most fundamental |aw gov_erni'ng temporal _do_ni__a‘.ins.
On the other hand, if ‘the rules are seen as effect propagation rules only
roughly related to state tonstraints, the hon-minimal so]utiq'ns offered. by

_'tht?ée state constraints. In our approach this issue is dealt: -wit'h_"b'y an indi~

cation of possible underspecification (i.e. the presence of a bad grounding

in the semantics of the effect rules), in addition to the generation of rules

iﬁrescribi?ng minimal changes. _ _
One way to deal with the problem of underspeciﬁcati_on could he mak-

ing influence informa;tion-r_ncre fine-grained. For example, dne can-imagine

Dueé to the fach that Thiglscher wag the first and up to now only re-

searcher to use influence information, we have. extensively compared our

approach. to his; even though our viewpoints on Tamifications show some

fundamental of thege differences: the different views on delays in change
Propagations..

fundamental differences. In the next section, we address one of the most

e e Rt Py

R vt
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7.9 Delayed Causation

Effect prbp‘agations,_especialljr in physical systems, usually incorporate very
small delays. For all practical purposes thiese delays can usually be ab-
stracted away and the effects assumed to be simultaneous and instahta-
neous. This abstraction yieldsa siguificant simplification and is adopted in
most temporal reasoning approaches, including the ore presented here.

Evidently, this abstraction is no longer valid if the presence of delays has
macroscopic effects. In this case. they must be represerted explicitly. The:
approach of Thielscher we have disciissed above is a kind of mixed approach’
ip this respect: on the one hand, delays are..gbsiﬁr_agt_ed away in the sense:
that the successor states of each state are obtained by applying a complete
batch of effects to-this starting state, and nothing can interrupt this batch
of effects. On the other hand, the delays are assumed.to really exist and e
have possible macroescopic effects. In particular contradictory effects, like
initiating and terminating a particular fluent in the same batch of effects,
are allowed in Thielscher’s approach, and between these two changes the.
momentary value of the fluent may have effects that remain vigible, like in.
'T-hi:lsc_her’s light detector _exa._r_nple-which‘ we will discuss later.

‘We prefer _é_.d_iﬂ'ei:eht approach for two reasons: first. of all, the assump-
tion that ramifications incorporate.a small delay-is not -always valid. This
assumption implies for example that all state constraints which are restored
by ramifications, are viqld’ted.fdr‘ very small periods of time. While for some
_staf.é_ constraints this is acceptable, in other-cages it:leads to counterintuitive
results, As an example, assume we have fluents on. and off. representing
the states of a switch. Assume on.++ 70 ff is a state qonst’raint, then we
expect that rules stating that any effect is caused by the switch being on
and off at-the same time, would never have any effect. However if we as-
sume "that-t'he state constraints are violated for sthall periods of time; these.
counterintuitive effects. can occur any time-the switch is- toggled.

A second problem is in our-view that if there are actual delays that are
50 prongounced as t6 have macroscopic effects, the assumption that they can
nevertheless be abstracted away is not necessarily valid. For example, it
is not clear why no other actions would be allowed to occur during these
delays.

For these reasons, we adopt £he following approach:: usually we-assume
ramifications to be ins’tanta-neo'us,-éithe_r because they really are, or be-
cause the: delays involved are entirely irrelevant. Of course then we assume
I_.gal.insta;ntaneity,--_and disallow contradictory effects or effects gererated by
hypothetical intermediate states: This has been our approach up to now.

On the other hand, if délays are relevant and have macroscopic. effects,
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we model them explicitly in a theory of delayed causation. There are plenty
of options for such a t:heory! Which_::wg_study’_iﬁ' this section,

The basicidea is that an action or event g at a certain time ¢ Imay cause
ancther ac'tio_n..o:.' event b at a later time ¢ +d. Possibly this'depends on
some conditions ' at the time of g, This could be represented as

a deauses b after d if F.

Another ‘option is-to let & particular combination of fluents be the trigger
of'a later event, as in

initiating ' dcauses b after 4 if F.

with F afluent forrnula. Similarly, the delayed effect may not be an. event
but a fiuent change:

e ecauses ! after d if fr,

ot
initiating F' ecauses I after 4 if F.

with  a fluent literal (which in turn might be extended to a disjunction of

conjunctions to.represent nondeterrninism},

Another issueis that a delayed effect may be cancelled if some conditions

are changed before if actually occiirs. To Tepresent this, we would need to

distinguish conditions that need to hold at the' time of initial “causat_ion_”
of the delayed effect and conditions that need t6 persist, until it takes place.

For example:

¢ if ' deauses. b if f persists after 4,
In all the above cases,.it ig some action or the initiation of some fluent for-
mula which cauges the delayed effect,. Related to this bt sligh_t.l__-jr differenit is
the issue of natural events, discussed for example in [90], where events may
be (i'mmedia.t'el_y) triggered as soon as some fluent formula holds (rather
than as soon as it is initiat'ed). Clearly in the language £R presented here,
this would not make sense ag formulae hold-only 'irhmediate_ly after their

1initiation, all changes are discrete and in the rea] numbers there is no fime
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events further here; though & treatment of them would be very similar to
that of delayed effects:

Whatever the exact form of delayed effect rules, {t.seerns natural io us
to read them as a definition of the piedicate Happens, or as part of the
inductive definition of Causes. In the former case, it might also be wise to
distinguish between “primitive” events (actions petformed by some agent)
and. “delayed effect” events, if only for the reason. that the fermer may be
arbitrary while the latter are uniquely determined by what preceded them..

It is not easy to keep the syntax of delayed effect theories simple while
‘having the needed expressive power. The. rules are quite complex, Tequiring
many parameters representing different conditions. One thing we can dein
the interest of simplicity is restricting the syntax to only one type of rule.
To achieve this we need to decide whether the rule body will hre an event

or an initiation and whether its head will ‘be an event or an ‘initiation.
Since in £R up to now initiations. follow from. actions at the same time -
point, the most flexible approach is to have initiations be the cause of
latér events: the other three cases can then be dealt with by combining,

immediate event — initiation propagations with ‘delayed initiation —
event propagations. Hence we propose. rules of the form

initiating F if F'-ecauses e if F" persists after d

with the intended reading that if at any-time point ¢, F is strongly initiated
while F holds, and if 7' remains frue throughout Jt,t + 4}, then event &
occurs at.time E4-d.

As far as the formal semantics 1 concerned; the ideajs o read these rules.
as part of a (definite) inductive definition on the predicate Happens. These
rules describe the “cansed” events, and an additional set of Tules which we
will introduce further on defines: the occurrence in terms of Happens of
p_r-imitive events. '

Note that in theé definition of Happens no:cycles can occur: & delayed
event occurrence is uniquely determined by what happened before and what
holds-at the time of occirrence ; which can be evaluated without referring
'to any occurrences ab 't or later time points. )

We now- define the proposed extension, which. we will call E£RD, miore
-pré{:}s’g}y;‘-...Fi]:st_-:'of'fall',_'wq}jpﬁrgduéée-a- new sort P.A of primitive actions,
which is a subsel of A, and a gt PA g'-A"i6'f-=z-c'6ﬁ§'taﬁt’s--*df‘-sb:‘t-"PSA;.-' We
replace the predicate Happens : Ax 7T — P by P.Happens 2 PART —=
P.

Definition 7.8.1 ("SRﬂ-sign'aturé)
An ERD-signature T15°0 tuple < Sorts, Tunctors, Vars > with
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o Sorts = {7, 4, PA,F s P}, representing the soris time, action, prim-
iive action, fluent and alom. ;

¢. Functors congists of

— e%et’T of constants ‘of sort T, dencpied 4L, .., which includes
all real numbers;

— asel A of constanis of sore A, denoted"a, ay,...; PA is g subset
of A of consiants of sorl. P A

— a 3¢l F of constants of sort F, denoted F3% P

= four iyped predicote symbols <7 . T P; P_Happens :
PAXT = P; Initially: F —'P; Holds : FxT P,

e Vars = Vars AU Varsy, digjoint _z'?;,ﬁ.niie' sets.of varisbles of sort A
resp. 7, denoted gs A, Av, ... oresp. TV Ty, .

Definition 7.9.2 '(SRijfformulae)
Given 3, fhe formulae of ERD gre:

o direct effect rules of the form
a causes D if
¢ derived effect rules of the form
initiating F causes if B
o delayed effect rules. of the form

initiating ¥ if 7' dcauses ¢ If F" persists after g

where d is g posttive réal number 0<d} a an aciion, D g disjunction of
conjunclions of fluent literals, and E,F', F” general fluent formulae.
Definition 7,9.8 (ERD-theory)

An ERD-theory is o tuple < 3,11, 11, Uy > such that ¥ is an ERD-
signature, 11, is o set of direct or derived effect rules based on 3, Oy s .4
set of delayed effect: rules based on. 33, W, is a set of sentences ‘based on T,

The semantics of ERD can be defined as folloiws.

5
£
i
i
i
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"D_eﬁn_'ition"'{.g.i& (8R®Ainterpretation) N
Given an.ERD-signature %, ¢ temporal (ERD-)interprelation of T is &
structure I =< P, Fun, H> with:

P ={t; <talty,t2 € T}V
{Initially(D)}l € F}U
{Happens(a,t)le € A, 1 € THU
{P Happens(pa, t}|pa €PAteTHY
{Holds(l, 1)1 € ¥,t.€ T}V
{Init(t, Bt € Ty1 € Fu
{Causes(t, [t € T, 1e ¥}
Fun T — R, a mapping of time consiants to reals
such that each real number is mapped 1o tlself
H P —{t,f}, 2 iruth.assignment funclion.

‘H defines relations ’i_nterpretiﬁg-H'appe‘ns;_'P-_Happens,_HoldS,In_itial_ly,
£, Causes and Init; we denote. them Ha, PHa, F o, Tnitially, <, Couses
and Init respectively. An £RD-interpretation needs to. satisfy the samie
general conditions as an £R-interpretation (see section 7.3.3). An ERD-
interpretation I is & madel of an £RD-thedry <%, 10, g0, > iff it is a
model of 1L, 4 and IL,. Whether 7 is'a model of II; and Ti, of not’is
defined like in £R, extended with nondeterministic fules as in the previous
section. The only thing left to be defined is when I is a model of ITg. This
is done as follows:

Definition 7.9.5 (g;‘ouhdingﬂ_of'ﬂg)

The grounding of a: delayed effect rule

initiating F if #' dcauses ¢ if I persists after d
35 the setl

{Happens(e,t) < Ho{F', Funl(t) - d},T nit{ T un(t} —d, F),
Persists(F", Fun{i)— d, Funit)) |t € T}
where Hol:F, 1‘.) is defined as before, T nii_(t,-F_) is the truth value of
HAF, 1) A (o, ) ATl T Aol L)
LMLy =5Upp- set.of F

a_na‘._'_‘Per_.sis_ts_(‘F,-._t", 1) is the truth value of
VTI ::.(t;- <T;) A (T-' __'_<t) — HO(F’T!)

The grounding Ddelay of T4 is the union of the: grqundings of all rules
Of::_]:[d.-_
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81 53,

) light

Figure 7.1; Schema’ of the :e'lay_example

_F_inally‘, we com_binc-_dela.yed effect events with Primitive actions in one

definition, ag follows:

Definition 7.9.6 '('eﬂ'ec_t- de_ﬁl_';it'ion)

The effert definition Deiyeni of Iy is. )
Dietay L;_J_.{Happens(pa,__t__) - P_Happens_(pa, [t e T,pa € PA}.

.~ Devenyt is a definite inductive deﬁnifi'cjjn dn the atom domain A =
{Happens(a, )}t ¢ T, ¢ € A}, for which Ip.,,... s defined as PIp,,... T

We can then complete the definition of ‘model of an _SR-’D—theory:.

D’eﬁnition 7.9.7 ('SR-‘-D-model)
Given an ER-theory Oep = <3, H,,HE,H},_}, e temporal interpretation
1 i5.a model of Mgp, denoted T = e, f I = O, 7 Ny and I =11,
where _
{ =1, iffVF c 11, P H(E) =1,
IET; ifYte T,a € A:Hala,t) o Ip, (Happens(a, t)).
TEL, ifYeTic B
Inil(t,1) o Ip, , (Fnit(s, 1) and Causes(t, 1) «» Ipy,(Causes(t, 7)),

Asan example, we present the relay example from [109], which is in that
Paper represeiited without explicit delays as an exarple of Thielscher's view
on-and approack to indirect effects.. As we indicated before, in our -approach
this example should be modelled with explicit- delays; The example is ap

electric circuit with a.light, several switches and & relay, as shown in: Figirre
-7';_1_.

One switch s, is serially connected to & system of two. parallel wires.
On one of these wires we find a switch 5, and light, on the .other we

find a switch s3 and & relay which operates $2. The state constraints

i

H

H
H
i
H
H
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are (51 A sz) +3 light and (s1 A &3) ++-relay, with influence inférmatibn
{(s1, Iég'ht],-:(_s;_{;ﬁght),_(_31, relay), (s3,melamh leading o a set of derived
effect rules o

initiating si A §3 causes light | true if true
‘initiating sy ¥ -9z causes ~light if true
“initiating s1 A 53 canses.relay | true if true
initiating —g; V g3 causes —relay | true if true

In addition, we need to model the effect of the relay. The reldy. operates

59, .and we assume there is some delay involved between the activation of

the relay and its effect. So we write '(omitting the “if true” conditions. and
assumning the state of the relay. needs to persist until theeffect occurs):

initiating relay dcauses —sz if relay persists after d
initiating —relay decauses sy if srelay persists after d

"Then, in case $2 and sa are closed (i true) but $1 is open {false), the
closing of 51 will bave the effect of turning-on the light and activating the.
relay. Then, after a time period of length d and unless sther actions occur
which inffuence the relevant fluents, the relay will catise §; to open and the
light to dim agald.

Phielscher has extended this example 5o incorporate a detector, assumed
to turn (and ther Temain) on as soon as- light shines-on it. We can model
the behavionr of this detector by the rule )

initiating light dcauses detect if light persists after &'

assuming that- there is a threshold duration d* for light te be detected.
Thielscher uses this example to illustrate nondeterminism arising from the
causal tiles. Indeed, whetlier-or not the detectar will: detect light in the
above situation, depends. on-which of d or-d" s greater, whiich is left implicit
in Thielscher’s approach. If we assume d-and d to bé unknown positive
_time-cons’t"a.nts', we also -obtdin nondeterminis. On the other hand, if d
and d' are known {(which we assume), the outcome of closing 31 18 uniguely
determined. ' '

Finally, we need to map delayed effect rules to OLP. This can be done as
follows, First of all, as the’ introduction. of delayed effect. Tules required a
iodification to the syntax of '_'SR.__(.infr_oducing anew predicate P _Happens
which teplaces ‘Happens in I,), we need to modify the ‘mapping accord-
ingly. Thisis done by treating P Happens exactly as we treated Happens
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before, ie. by mapping each atom P..Happen_s(a,-%) in I, formulae t6.
phappen_.s(a_,- 7} in the corresponding FOI, axiom and declaring. phappens

a1 open predicate. happens now no longer occurs in FOL axioms (since-

Happens does not occur in I, ). It is.a defined predicate of which the def.

Then, recal] that the effect __d'eﬁ_ri-it_ion Dorens of a set of '-delayed_ effect
rules ITy4 is Dietuy U.{Happens(pa,, 1} e P..Hap_p‘en_s(p’a, t)ite T,pa c
PA}. Henge, the mapping.of Iz t6 OLP is a definition of happens which

happens(4,T) phappens(4, ).
The other clauses are obfained as follows: .a rule

initi'ating_ F if F' deauses g if F! persists after d
is mapped to

{happens{a,T) T=T+d, N, causes(T", 1),
Peci (holds(1, ), ~canses(T", ), |
~holds(F, T ), holds(F', T, persists(TY, F* T,
I In ULz isa supp'o;:ti_l:_lg_- set of F'}

whiere. persists-is defined ag

persists(T", F, T) — holds(F,T), “clipped(T”, F, T).
-persists(T VBT — couses(T', F), ﬂcliﬁped{.T’,.F,_ 7).

and clipped as defiied before.

and the POL axiéms in OLP are equivalent. Foll'oi{r’ihg_'th‘efzsa.m'e Teasoning

‘as in section 7.5, we find _i;h_aff it suffices to prove that, given initially. for
fluent atomns, p}iappefg_s and <, and theéir exact counterparts in ER, we find

simple. and complex kolds atoms, causes atoms and ':hapj)ens_ atormns,
We 'c_an_.a_;gain-use_inducbi_on on events. First of all, note that if the set
of primitive evénts satisfies the wel{-founded topology requi'rement'-,fthen 5O.

Gt g



224 CHAPTER 7. £R

does the set of al] time points that possibly giveTise io an‘event, provided
that all delays are finite positive constants and that thereis-a finite number
of delayed effect rules. This set of possible events contains all ¢’ of the form
b4 Sy kidsy where t is a primitive event, the d; are the delay comstants
OCCUrTIng in delayed eﬂ'e:;t rules and the k; are natural numbers. No.event
can occur at any gther time. _
That this set has-a well-founded. topology follows from the following
observations, First, there 14 a first element, which is the first primitive event
as there are no negative delays. Second, the number of possible events in-a
finité time interval is finite, which we prove by induction on time intervals
of letigth dimin, With @min the minimal delay constant in the theory, as
follows. There is only one event in legtaris @stere+ dimin|, and if there s

.a finite number of events in [€sart; t[_then there is-only & finite number of
events in {t, 1+ denin[- The latter staterent follows from the fact: that each-
non-ptimitive event in[t, t+dmin [ must be caused by an event in le ctartrtly
which is a finite sét in ‘which each event can only catse.g finite number of
new events. In addition, [t t-+ driin| MaY contain _primii'i_ve events; but
since these forma well-founded topology theit number is also finite. Hence,
the set of all time points that.are possible events is well-founded.

Using this well-founded topology we prove. the equivalence of holds(fit).

with Ho(f,t), of holds(F, t) with Ho(F,2), of happens(a;t) with Ha(a,1),
and of causes(t, 1} with Causes(t,1) by induction on possible events. ‘The
equivalence .of holds(F,t) with “Ho(F,t) for fimme points before ‘the first
event 1s proven exacily like in section 7.5. ‘We-then prove consechtively tor
each possible event e that happens(a,e) ++ Hala,e), that causes(e; i) <
Causes(e, 1) and that for all {ime points t between € afid the next possible
event holds(f,t) > Ho(f; 1) and holds(F, t) +» Ho(F,1).

If we can prove the first step for a particular event; the proof of the
other three steps is-exactly the same as in section 7.5, 6o we-only need
to. prove that: happens(a, ) « Hal(a, e} if all predicates in OLP and &R
coincide for all't <‘e. ' ' _

This result 1g.obtained as follows. It follows from the inertia axiom and
the initiation consistency condition that

[Ho(F; T)V Causes(T, F)) A -3T" [Causes{T",~F) A T < T A T < ¢
s dqivalent to L
VI (T < T AT <8) — Ho(F T

Since all predicates in OLP and £R coincide for all time poir_l_ts_before ey the
former formula is equivalent to.persists(T; F, &), while the truth value of
the latter is Persists(Ts F, e): Hence, the truth value of persists(T, F, e) is.
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‘Persists(T, F,e).for all F and all T <e In addition, the entire definitions

of happerns and Happens only Tefer o time points before. ¢, so it follows

that they are equivalent. The correctness of the rna-pp_ing‘_.is"t_h'tereby proven.

7.10 Related work

We have already compared our work in detail with the approach in {169},
which is most similar to ours. For this reason we can refer to [108] for &

Compdrison with approaches not based on causal laws (e.g: categoiisation

baged dpproaches like {63], 164], [14]): with respect to those approaches £R

-and Thielscher’s proposal have. the same advantages. The most important

difféerences between Thielscher’s approach and ours' are that Thielscher’s
causal rules are strongly coupled with (derived from and used in combina-
tion with) st'ate-c:dnst'ra'ints-,_.__-a,nd that Thielscher abstracts away all delays
at a macroscopic level but retains them at a microscopic level, whereas we

-either abstract delays away entirely or represent them explicitly. Due to-the

formmier diﬂ'erenccrthg:_full effect of syntactically uncoupling causal laws from
state constraints (’wh'i'ch.is"onl_-y achieved in Thielscher’s approach. and ours).

is partially lost. For €xample, no state ccnstraint-ind_epgnd'ent effect prop-
agations can be fepresented. Nevertheless; the fact that influénce informa-

approach very appropriate for ana._lj;sing:_ other pr_opo'sals_-'usihg__-causal_law.s
which we will do. o

The approach to ramificationg in the & Ia’ng’uage ([50]) can be inter-
breted as a more coarse-grained variant of Thielscher’s: it uses. formulae
A whenever C, with A & fluént and ¢ 2 set of fluent literals to be read as
a conjunction. Such a formula corresponds to a combination of the state
constraint 4 e Acecc with influence information stating that each fluent
in C influences the fluent 4. As a result of bhis tight coupling of influ-
ence information and state constraint, it is nog possible to Tepresent some
of the more fine-grained influences that can be. represented in Thielscher’s

view on LP rather than the definitional view we prefer. ‘One consequence
of this.is that the mapping of £R {to OLP) is sound and complete; whereag
the mapping of £ (to LP) is sound but not compléte;

Returning to the issue of - ramifications, ‘we should also consider the

P L A i
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approach in [70], where the need for causal laws is clearly motivated and
where causal laws are presented as go-called §:conditionals, i.e. formulae
¢ =% with ¢ and ¥ propesitional formulae, in-an extension of §5 modal
logic. The reading of such a law is that ¢ determines the truth of ¥t it
entails the state constraint —¢ V B, plus in case 4 is a literal the infiuence
information that fiterals in ¢-influence 3. If 1 is not a literal, the. picture
pets more-i’;omplicated_:' t'h_enja'll literals in ¢ can influence all literals in ¥
and all literals in ¥ can influence each other. In this respect the proposal
is more general. than the £ approach. In any case, it is clear that like in
£ the cansal laws eritail the corresponding state constraints, which is the.
most essential difference with our a‘pproaéh. _

Another similar. _approa.ch.is the proposal_ in [65] based on the situ-
ation calculus. Lin introduces a new predicate cansed(p, v, 5) meaning
that proposition P is coused to have truth value v in state s. This predi-
cate.js circumscribed to minimise change. Ramifications are represented.
by formula¢ using the caused predicate, e.g. for the suitcase éxample
up(ly, s) A up(la, s} — caused|{open, true; s) représents that if both latches
are-open, then the suitcase is caused to be open. The above formula-en-
tails the state constraint up(fi, s) ~up(ly; §) — open(s), and incorporates
mareover thie influence information that I+ and Iy may influence open. Note
that the condition of the rule is a-'cor'nple'xformuia,_'_making'-:it similar to a
complex derived effect rule in £R.. However, the causal Tulés differ from the
ones in £R in that they also entail the correspeonding state constraint and in
the fact that the minimisation policy does not allow for cyclic dependencies.
~ The approach in [42] is based on the Features and Fluents framework
([96]), and in that sense differs _qdnaidera.bly from ours as far as basic con-
cepts are concerned. However, there are some intére’sting_t;orr'esponden‘ées
at 2 higher level. As an example, the circumscription pélicy consisting of
a combination of minimising and filtering corresponds to our use of indue-
tive definitions for effect rules (minimising changes) and first order logic
for-absetvatiohs,-'-acti_on'prc_co_ndi'ti'ons and state constraints (used to filter
interpretations). .An important difference with our approach is (apart from
the formal details of syntax and. semantics) the fact that actjons are consid-
sred to have duration. Another difference is that timeis considered to be

- jsornorphic $o the natural ndmbers. In'a sense this corresponds to our-con--
diti_org.Qf_-wg]l-fo_uj_lﬁd'qd__;g,vent_'tqp_ology, ie. euvenis in ER could be mapped
to the natural numbers in an: order-preserving way, ‘But we corisiderit-more
‘natural to see fime itself as afull real line. For dealing with rarnifications,
[42] contains expressions {and formulae. incorporating these) of the form
[{)§ >> [sly where §.and 4 are fluent formulae and t and s temporal ex-
pjres_s'idn's. such that t < s This. allows for dealing _wi't'-h both immediate
{if t = s) and delayed ramifications. The formula [(}§ >> [s]y is defined
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o Tmean ({118 — [519) AUl — 116 A [16) — (sLX(3)], which basically

says that Holds(s,¢) — Holds({v, s} and that if § is strongly initiated: at ¢
‘then « is allowed to change value at s, This is similar fo a state constraint
plus the influence. information that 6 may influence +, ‘with of course the

impo_rt_ant_ generalisation that t and s need not be egizal, so that one .do:eg
not.only cbtain state constraints but also constraints rélating fluents at dif:

ferent time points. Hence, the rules represent not only immediate but also.

delayed ramifications. This is a considerable advantage of [42s approach
with-respect: to nearly all other Tecent proposals.®® Agin the previcusly dis-

cussed approaches, however, we find that the formulae [¢]5. 5> [3}_7'al§vays

-entail the co_rr:e_sponding general constraint HOId's(_g'S,__t) —a _Ho_lds(_’y_, ), and
hence in the case of immediate ramifications (¢ = s} they also entail the

corresponding state constraint. Change pr-c}pagaﬁ__i'on ‘unrelated to a state or
general constraint is also in t_'h'is approdch excluded, unlike in £72. Finally,
a disadvantage of the -approach in [42] with respect to £R is. that cyclic
dependencies in cansal laws are not dealt with correctly, -as indicated by
the authors.

In [97] it is argued that approaches to ihe ramification problem should

be able to deal with so-called dotumtre_gm-i_nc_li);ect effects. 'Sa.n_dcwa.ll_gi_vcs

specify the main effect of an action. (fér'e;ﬁample of tul_'n_ir_lg on-the famp)

without specifying the operational details of how thjg is' accomplished (by
closing either of the switches). An approach to the ramification pr_ob'lem

As stated, the issue is. indeed problematic. Clearly:we cannot write the
action law as a direct effect. rule, since it would then imply that the lamp is
turned on while the switches are untouched. And in £R, direct efiect, rules
ar_e_'tjhe'-o_nl_}r-cbns’tr-u‘cts_ representing action laws, However, we. argue that
the indirect effect should not be explicitly specified by some action law. We
agree with Sandewall’s argument. that it is often interesting to Wprr-y--.ox_'lly
about the main effect of an action and not about how it is achieved, but this
issue deserves. closer ‘altention. Given Sandewall’s problem. specification,
we-see two possibilities: on the one hand, the switches may be considered
nothing but operational details, In that case they can be abstracted away
altogether, and the turning on of the lamp can be modelled as an action

'S_SB“‘?' note that bofh“t_h_:_: more general cansiraiuts_Betwecn-ﬂgents at d.ifferent_ti.me
points and explicit delayad r'axni_ﬁcation-rl_.des"_can he Tepresented in £R.
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with the plain direct effect that the lamp is on. Oz the other hand, it
may occur that the position of the switches is relevant in fhe domain, bub
that in a particular _application-one__is only interested in the state of the
lamp. This can happen when one gives.an agent the task to tirn on the
lamp, or when turning on the lamp is a necessary step in a plan. But in
that case, one can simply model the domain using the usual direct and
derived effect rules, and impose in the application at hand that the lamp
should be on after-a particular action or after a particular plan (imposing
this can be done with a simple FOL axiom}. Then the agent can find the
primitive actions yielding the intended effect on the lamp (closing either of
the. switches) simply by sbductive planning 3® This approach. adequately
tackles the given problem, and we find there is no need to modify the
domain représentation. In gener: 1, we argue that there is no neéd for the
representation to-deal with deriving causes from their effects, nor is it éven
desirable that it should do'so: this is'a typical (-abjduc’ti-v_g:pr. —- if the action
law needs to be derived explicitly — inductive) reasoning task and not'a
representation issue.

7.11 Conclusion

We have presented an event-based language able to deal —— in a setting
of instaritaneous actions and discrete ¢hange — with all immediate. rami’
fications and known action qu_a_mliﬁt’:a’t‘.io'ns-,-and with delayed ramifications,
possibly in the presence -of nondeterministic and simultancous actions and
of incomplete knowledge on action occurrences; action ordering or the ini-
tial state of the world. The language allows for change propagations not
related to state (or more general) constraints between fluents, and for re-
cursion and cycles in the riles describing change propagation. ‘We have
disciigsed and motivated the types- of constructs uged in the language to
reich all of those goals, and presented a semantics based on first order logic
and the principle of inductive definitions. This semantics: was chosen due. to
ifs closeness to the intuitions underlying in particular effect propagations.
We have mapped the language to. OLP Event Calculus and proven the

correctness of this mapping. The language provides constructs offering the

expressive power of the O ¢ Galculus for representing temporal do-
fains, while restricting th : formialism in-such & way that & correct

representation methodoelogy is imposed, avoiding urintended and counter-

56 4n alternabive but equivalent view is that the turning on of the lamp is a macro-
-action (as defined in [32]) which can consist of either of the primitive actions. Deriving
a priﬁﬁtivc-action.whi'cﬁ sat._isﬁe_:_s-'the-ccnd.it.ions of the macro-action is also a typical
abductive task. '
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intuitive models, _

The presented language has been compared with recent Proposals for
dealing with ramifications. Tt is intended to deal with the various prob-
lems tackled by previous proposals in one ‘coherent la_nguagp, and to deal
in addition with some unaddressad problems, like cycles in derived effect
‘rules and. change propagation unrelated to. constraints. The extensions for
--n‘ondeferrr:jnis_tic- actions and delayed ramifications. deal with some. other
less basic issues.in novel ways, Finally we have illustrated how influence -
information can be used to help derive some of the constructs in gur lan.
guage (a subset of the derived ‘effect Tules) directly from state constraints,
adapting and improving the 'met‘hod._introduced by Thielscher,
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Chapter 8
Condusizon

The goal of this thesis. has been to study. and apply the possibilities. of

open logic Programming for. knowiedge representation, in Particular in a

wide range of domains that change over time, both in the fundamental A7
setting and in more immediate applications.

To base our work on.a strong theoretica] argument we have first: estah.
lished a, correspondence with description logics, a-¢lags of general knowledge
representation languages which currently receives a lot of attention in the Al
cormmunity. We have. shown that OLP partitions infori‘na.t’ibn'in the zame
way as a description logic in an A-Box and a T-Box, thus addressing the
problem of separating assertional from definitional information. We have

shown that the various: existing description logics correspond to particular

subsets of open logic progra:rnm'in_g;-a.nd"that current research. on extending
des‘cription logics gradually-b'ring_s them closer to the more general open
logic programming formalism. From a2 procedural point of view we have

on open logit programs.. With these corresponderices we have shown the
theoretical suitability of open logic Programming as a gene:al.knoWledge_
representation language.

In the rest.of the thesis we have complemented this, focussing on tiine.
dependent domains, by showing on the one hand how QOLP Event Caleulus
deals with fundamental theoretical problems in artificial ihtell'ig'ence,:a_nd' on
the other hand how it applies in more diréctly application-oriented domains
where time plays an important role, '

Inthe AT setting we havefirst shown the precise correspondence between
two widely used formalisms for temporal .-r'_ea.-s'qhin_g_, the Situation Calculus
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.and the Event Calculus. ‘We have indicated the practical implications of
the differenices between the two formalisms, in particular for counterfactual
reasoning, showing that either or both formalisms fall ghort in some. cases:.
‘We have proposed a new formalism which generalises both original calculi
and deals with ail aforementioned counterfactual reasoning cases, including
some that are bandled by neither of the original calculi. Moreover we have.
_preéiseiy shown which restrictions each of the original calculj imiposes.on the
‘general formalism. Apart of providing a clear. relation between- situations in
Situation Calculus-and time:'pqint's-in'E\fent Calculus, this analysis mainly
addresses the relevance of the choice between time topologies. (in particular
lineat vs branching time). The main- a.dvan'tag_e.of':br_anching. time-is that
it allows for _counterfactua.l-réa:’;oning within the forraalism. When coun-

terfactual reasoning is not or not much_ of importance, o1 if it can be left
to meta-reasoning, the gimpler and more natural linear timie structure is 3o
‘be preferred. _For this reason, we have worked -with the linear time BEvent

Calculus throughout the Test of the thesis.

Also 1n the Al setting we have developed a very ‘expressive: s'pecia.lised'
high-level language for representing temporal domains, in the style of A.
We have analysed in detail the constructs needed to deal with the frame:
problemin a very general setbing, and brought them together in & coherent
framework. The language deals with inertia, known qualifications, immedi-
ste and delayed ‘ramifications caused by changes.in simple ot complexfluent
formulae, _.n_qndetermi_niatic actions and ramifications; simultaneous actions,
general domain constraints-'(includ'i_ng state cc_inst_r_é.in’ds .and observations at
arbitrary time. points), and complete or incomplete scenario information
in & linear time setting: The language extracts: central constrocts from the
Event Calculus (sometimes in & slightly modified or extended form) but has
‘& much more restricted syniax efforcing a correct. rethodology for writ-
ing specifications. The language has been designed to have all the useful
expressive power of the Event Calculus, without the risks of abuse of too
mhuch freedom. The exact relation has-been clarified by 2 mapping of the
language__t_o-O-L-P Event Calcnlus, of which-we have proved the correctness.
We have compared -the Janguage with recent work, in particular with re-:
cent approaches to the ramification problem, and shown that it deals with.
a-wider class .of ramifications than any of these. Moreover it deals at the

same time’ with all of the issiies listed above. “Pinally ‘we-have’ studied:the
issue’ of ising influence informiation to derive patt of the domain theory
-semi‘-—.automa’ﬁically in the context of this language. “We have adapted and
improved a method introduced by “Thielscher - for automatically: deriving
derived effect rules from given state constraints. and influence information.
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‘On the more app]ica.tion-orignted side ‘we have presented three contri-
butions in this thesis. A first contribution is an extension of the OLP Event

ing fluents. By distinguishing between continuous changes and tontinuons
influences on these changes, we were able to model complex behaviour of
fhients in a.concise way, The axloms rep_re'Sentin_'g.:coni;-in:uous"c'h'a.nge- in the
extension have been written in-a form very similar to the fr'ame_-axiom__s of
the discrete Bvent Calculus, and & smooth integration of continuous -and
discrete change has been estahlished.. Moreaver we have shown how the
usual_'_forms_ of redsoning on Event Calculus _spec‘iﬁbatibns €xtend naturally
and without modification to domains incor.porat'in'g:-continuous.'ﬂ'uents', as
should o_f-c_o'urse‘-"bg-inten_'cied._ :

In a second contribution we have ‘used the OLP Fvent Caleutus as the

represented. The Tepresentation of the kno'ﬁvledg_e base has been split yp.
according to. the déScri_ption_ logit:'s'me’thodology,fin a T-Box defining. basic
formniae in terms of Event Caleuilus primitives, and an A-Box containing
the actual data. We have shown how the basi'c'functional'ity ofa knowledge
base.can in principle be: pro_._\'r‘_id'e'd by SLDNFA, and how the knowledge base
can be used in general applications, in parl_:icular.-planni-ng,- in‘the same way
as usnal Event Calculug theories. We have also indicated how SLDNFA can

‘thesis:

A third contribution has been the use of OLP Bvent Calculus in the

area of protocol spécification. We have shown how a typical communica-.

i;ion-.prot_oc'ol can be specified in QOLP Eveni Calculys. D'esp_i_t_q'the fact that
Event Calculus js a much more general formalism, our specification is of a
length comparable to that.of sp‘e'c-iﬁ_cations--in.'.'s_pec’ia@lised Process algebras.
The specification. style ig “Very différen@;; however: where process algebras
specify processes as static algebraic objects represeniing séts of possible

TR
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event sequences, in OLP Event. Calculus a process is @ dynamic entity of
which the internal state (and its cha_n_g_e. over time), the conditions tnder
which actions are possible and the effects of these actions on the_-woﬂd‘_are
rmodélled: The latter specification is more general -and containg a lot more
information: the possible sequences of events can be derived from the ac-
‘tion effects 'an'd'prcconditions, which are abstracted away in process algebra.
specifications. As a result an Event Galeulus specification has the advan-
‘tage that it can. also be used in other applications, for example network
management, A related disadvantage is that using Event Calculus specifi-
cations for protocol verification is very 'inef'ﬁcient} We have included somée
proofs of properties of the Event Calculus specification in an appendix; but
‘these have not been generaied automatically. Specialised support for such
proofs should be _ac_l_ded_fo SLTINFA to keep the complexity under control.
To. allow for an integration of specifications in classical process algebras-
and-in our formalism, wé have indicated how process algebra specifications
can be mapped to a form which can be embedded in the Bvent Calculus,
althiough the then resulting specification of course lacks the advantages of
a usual Bvent Calculus specification:

With the coritributions in this thesis we-hope to establish open logic
programming in combination with Event Calculus as 3 powerful general
knowledge representation framework, which is both theoretically sound (as
shown by our coritributions in the Al setting) and sufficiently expressive to-
represent a wide range of pra.qticai-problcm ‘domains.{as shown by the more
general and applica;tioﬂ‘oriented contributions).. i -

The inefficiency of the SLDNFA procedure, of which only a prototype
implementation exists, is at this time still a disadvantage for the practical
use -of the 'tepres_enﬁatio_nsll The cfficiency issue falls outside the scope
of this thesis, which is concerned with knowledge Tepresentation, but new
-projects will in “the nedi fubute work on efficient’ implementations.

1 Even though +the fremework has been siccessfully used it several practical applica-
tioms by other. researchers -a,_t-‘_t_hc._dt:pa.rtmcritj_‘ in pariicular the scheduling of power plant
maintepances of an electricity company.
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Appendix A

The Lloyd-Topor

Transfor mation

In this appendix. we present the _detai'l__s: of the. transformation described in

- [68].. This transformation maps general logic programs; i.e. sets of general

clauses 4 «— W ‘Wwith A an atom and W an ‘arbitrary FOL formula, to
equivalent normal logic programs, The ‘equivalence is proven in [68].

following transformation rules are used.

.a.j -Re_'p_lac_e A — WI,WQ,.f.-,j('V A W), . W,

by A= W, W, .. =V W,
a.nd_ A e Wl; Wz',-..._, "TH':.W,,_
b) Repia.ce A — Wi}Wz!.' v ,'(_VE] sewl o W).!" ' -ZWﬁ‘
by A— W, W,,.. (3w . ey, “!W)-,.. L
c) Replace A — Wl-, Wai..., =(Vz, ... T 1 W), . . ]?'Vn
by A W‘l,Wg,...,_EJ_z;...:._wm WL W,
d) Replace 4 =W, Wy, (Ve W),...W,.
by A 'Wi,-'Wg, P NN
and. A = Wi, Ws,. .., —IW; W,..

1'"I‘ht_:_rulc:a'fpr et md-_-.s@:"' do nat occur in [68], but. their addition iz not problematic.
in any way.

245
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E‘.) Repla_ce A = Wl.,:.Wg, Ve —1(V e W), N A
© by A - Wl,.Wg-,...,.W, ﬂV,W.,.,_
) Replace: A *‘“"Wi:W21--'Q(VVW_)H-.-'W_n-
by R Wi,Wg,-..‘,-V,...Wﬂ..
and A~ Wl,Wg,...,_W,.‘.Wﬁ.
g) Replace A= Wy, Wae.o (Vv W).. W
- by A= W, Wa,. '_‘Vr_‘Wi"-'Wﬁ.‘
1) Replace A = Wi, Way.ooy =)y W
- by A «—-Wl,W'g,...,W,....Wﬂ_.

i) Replace A e WI,WQ,.-.-.,__(EEI...ET“ SWY, . W
by A — Wl',Wz,..-..,W,..,Wn.
j_] Replace A « Wl,Wj,_-..,ﬂ{Hml ey 2 Wy W
. by A 4‘-—-'W1_,_ Wz,.:. ._,“p(yx...yk)_,...w,i,
and plyr - g} e e Bm =T

where p 1s'a new predicate symbol not occurring in the program, and
Y, Yk the free variables in (Foy.. B W)

m) Heplace A Wy, Wi, (VO W, - W

k) Replace A — Wi, Way. - (Ve W)yoo . Wae
by 4 e Wi, Way oy Vi W, W
and A e Wl,W;,‘._.,.-wV,—quT_f,'...'Wn..
I) Replace A = W, Wayooy (Vo W), W
by A — Wi,Wg-,..._,__V, ﬂW,...W_,-_l.
and A e Wy, Way.o WV W
A
by A = Wl,Wg,, Vi'_-‘Wv--Wn-_
ax_ld A - W},._,Wg,..‘_. ,_W, "IV,Wn
n) Replace A Wi, Way.o (VO W),.. . Wn.

and A — Wl;Wzg...,"IV,'"ﬂW,..:.Wn.

As ap example, the general clause

p(X) e g(X)VY (r(X,Y) (Y. X))
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is rewrittén to
P(X) « g(x),-3v P(r(X,Y) o r(Y, X)),
and in subsequent steps to

LX) — g(X),~h(X),

X)) « 3y (X, ¥ ) (Y, X))
and .
p(X) q9(X), ~h(X). _
ME) « ~((X,¥) o r(¥, ).
PX) — g(X),-h(X).
WX) o r(E,¥), (¥,
h'(_X_) — -ﬂr_(X,_Y),-r_(_Y,X).

which is a normal logic program. More examples can be found in Chapters,
3'and 6,

and finally to

F
3
¥
3
i
;
H
b

i
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Appendix B
Proof of Lemma 5.5.3

Lemma 5.5.3 states that, given the theory T defined in section 5.5;
7L |
YP A,5: [sttuation(S) & action(4)] —
 [(holds'(P, S). holds.in(P, SP—
(holds'(P, result(4,5)) s holds sin(P, result(4, 5))

_ Prpof:
We need to prove for all 4,P and § that, given situation(S) and action(4),
and given holds'(P, 5) e holds'_in(P_,- 5), it follows that

hold s/ (P, result(4, S )} holds_in(P, resuit(4, § )

To this end, we rewrite holds'(P;resuli(4, § }).and 'hol_d_'shin_(P_, result(A4,.9))

first. holds'(P, result(4, 5)) is by definition equivalent to
(holds'(P,S) A ~term_s(4 5, P)] V init_s(4, S, P)

which ig the same as (using the inducticn hypothesis)

[holds.in(P, S} A —term_s(4, S, P} v it _s(4, S, P)

and using the definitions -of holds interm.s and init_s, this is equivalent

to

(YT’ : (member(T", S) = holds(P,T")) A ~3E* T :
(member(T™, §) A event(E*, T*) A act{E*,.A) A terminates(B*, P))]
/ v .
IE", T (member(T", §) A event(E", T} A act(E", 4) A
instiates( B, P))]

248
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We will call this formula F.
On the other hand, holds_in(P, _result(-A-,'S)_) is equivalent to

VT : member(T, result(4, S)) — holds(P, T)

This formula will be called G.

We need to prove that F « &. TFirst we prove that F — G. We
assume F given and prove that holds(P,T) is true for any T for ‘which
member(T, result(4, S)) holds: We can write. member (T, result( A, 5)) as

AE, T < (event (B, T) A T < T A act{B'5 4) A member(T", 5)
A —int_events{(T”, )

We add thie disjunction F io this formula-and apply distributivity (i.e. we
add this formula to both disjuncts of F):

[VT' : (member(T", 5) — holds(P, T')} A
o 3BT R
(member(T", S} A event(E',T') A act{E', A) A terminates(B’, P}) A
. _ A, T '
(event(E',T") A T < T A act(E LAY A member(T'; 5}
' A —int_events(T', T})] '
A
(38, T, B, T : (event(B!, T) AT <T A act( By A) A
member(T’, 5) A ~int_events(T',T)} A event( B, T") A
member(T",S) A act{E", 4) A initiates(E"; F})]

Working on the first 'di’fﬁjunc{:-; we find that for the B' and T" of its third:
conjunct it holds on the one hand that holds( P, T') (due to:the first con-~

junct) and on the other hand that —terminates(E’, P) {due to the second

-eo_nj_unct’}. We add these two literals and omit the first two conjuncts. This
yields

(38, T -(ev_c_n.t(E-’_,:T'\) AT T A act{E', A) A nwmber(T-’_"}S)-/\
o egngevents(T . T) A —terminates(E', P) A holds(P,T'))]
W
(3B, T, E" T : (event(E,\ T') AT <T A act{E', 4) A
member(T', 8} A —int.events(T',T)) A event(E", ) A
member(T", ) A act{B", A) N initiates( B, P}

Applying lemma 5.5.1.b to the second disjunct, we find that E' = B and
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T =77,

[3E, 7. (event(E' T A T < T A act(B', A} A member(T',S) A
ﬁ'in_t_,éi:ents(T’ yT) A —derminates(E’, F) A holds(P, ']
v .
NE:ET N
(event(B' Ty A T' <T A act(E', &) A member(TV, Sy A
—int_events(T', T)) A wnitiates( B, P))]

Then we use the definition of holds in. t-h_e'-ﬁrst disjunct, and derive in
both disjuncts. the formula ~clipped{T’, P, T) from the strictly stronger
statement —ini_events(T’, T):

[3E, T, E" 7
(eveni(E", T') A T' < T A act(F', 4) A member(T", §) A
~eclipped(T’, P, T) A ~terminates(E’, P) A event( £, T") A
™ < T A nstiates(B", P) A ~elipped(T", P, )]
vV
- [3E, T
(event(E', T') A T' < T A act(B', A) A
—elipped(T'; P, T)) A initites(E', P))]

Now, in the first disjunct, from

~clipped(T, P, T)Aevent(E', T))A ~terminates(E', P) ~=elipped(T”, P, T)

and the time relations, we can derive —clipped(T", P, T), since there is no
termination of P between 7 and. T, none between T and 7' and ‘none
at T/, As a result we find that both disjuncts in¢lude all literals of the
definition of ho’!_ds? 50 we immediately obtain:

holds( P, T
which proves G,

Now the only thing left for us to prove is that § — F. This can be
proven as follows: G is, because of lemma 5.6.2; equivalent to

3T member (T, result(4, 5}) A holds(P, T)

or, using the definitions of member and. holds.

3T, E, T, B, T7 : (T" <'T A event (B", 7"y A initiates(E", Py A
—iehipped(T", PyT) A Th< T A event(EL T A act{E’', A) A
member(T", §) A —int_events(T”, T) '
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Here wesee T < T and T’ < T, which-implies either 7/ < 7" or T = T

(T" < T is impossible because of 'ﬁint;ﬂvent’.'s_(ﬂ"f +TY). So we find

(3T, B, T, BT+ (T < T A event(B", T") A-initiates(E"; P)A
—clipped(T", P,T) A T <T A event{ B, T') A act(E' Ay A
member(T", §) A —int.events(T”,T))]

k%

[3T, B/, T (event(E,T') A initiates(E', P) A ~clipped(T', P, T) A
T < T A act(E', A} A member(T',5) A —int. events(T', T))]

From the first disjunct, we can derive on the one hand

ar, g, T BT (T <T A event( B ,_T'-'"'j A indtiates(E", P)A
T T A member(T, Sy A
~AE*, T ¢ [event(B*, T*) ATV <T" A T < T A terminates(E", P)})

and on the othet hand.

I, B, T, BT (T < T A evend( B! [T A act(E',A) A
_ T < T A member(T', S} A
~3E* T : [event(E*,T7) A T <« T* A T* < T A terminates(E", F)})

The second disjunct can be simplified, so- that we obtain from the above

disjunction

(37, B, T BT (T < T A event(E",T") A initiates(E", P} A
o T! < T A imember(T", S} A _
~3E*, T [event(E*,T7) A TV <T° A T* < T A terminates(E*, P)])
' A
37, BT BT (T < T A event(EY, T) A act(B', A) A
T < T A member(TV,.5) A
3B, T : [event(E*, T%) A T T* AT < T A terminates(E*, P)])]
(event(E',T") A initiates(E, P) A act(E', A) ‘A member(T’,S))

wh’_i’crh in-its burn implies, using the information T < T in the first conjunct
of tie first-disjunct, and instantiating B and T” to F" and T" in the second
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conjunct of that disjunct, that

[BT’, E-_H:’ .TH s .
(T” < ' A event(B”, 7 p initiates(E", PY A member(T", )
A-IE, T
[event(E”, T*) AT < T* A e <T" A termiinates(E”, Pi])
A
JeoT
(event(E, TY A act(B', AY A mempber (T4, S) A “terminates(E', P))j
v

(3B, 7"
(event( B, ') A initiates(B', P} A act(E', 4) A member(T", 5))]

Using in the first disjunct the definition of kolds (on its fitst conjunct) and
lemnma 5.5.1.h {on its second conjunct), we firid ' '

(3T (memben(T", ) A holds(P, 7))

A
VE T . (-_'(_'eﬂent(E’,.T") A act{F', AY A nier ber(T",.8)) —
Tierminates( B, P))]
W

[H.E_u:. T .
(event(E', T) A wnitiates(&', P} A act(E';-A) A member(T”, 5))]

Pinally, we use lemma 5.5.2, and some rewriting 6h the first disjunct to
obtain’

[¥I": {member(T", §) — holds{ P, T"))
A

~3E, T P ;

(event(E', Py A act(E!, 4) A member(T', §) A terminates(E', P))] %
v

. o [AE . _ _

(event( B’ T A initiates(E', P) A act(E', A) A member(T", 8] .

which is exactly the formula 7 (with some renamed variables).

This completes the proof that in our theory T, for all A, P and §, ‘
situation(S) A action({d) A (holds'(P, S)-«s holds_in{ P, ) :
implies _ - _
holds' (P, résult(4, 5)) s holds_in( P, result (4,5)}
£l
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Appendix C

Correctness Proof of the
Sliding Window Protocol
Specification

In this appendix we prove that the specification of the sliding- windiow pro-
tocol in Chapter 6 isicorrect, i.e. that it meets the Tequirement that frames
‘sent out by the network layer on one side arrive. on the other side exdctly
once and in the correct order, unless. no packets arrive there at all (in case

tablishing an’ ihva.ridnt, -r‘ela;tion__,_. le: a set of statements that are true at
each time point. From this invariant relation: we will deduce the . desired
properties,

invarian_t_relations by induction on events.
We adopt the following.-convgntions:

g
i
i
!
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mode for F.

We assume the '.nunibcl_" of si_o_ts n in each sen_ding_-window-‘is at least
2 (which 1s necessary for the protocol to: be correct). The protocol
gtarts at T = 0, We assume that virtual framies —7 ... . — L-are stored
i1 the slots 0...7¢ — 1 initially, and we say that these have already
arrived om the other side. Hence "

holds(arrived{F),T)
— 3T T <TA holds{{attribute, mode, receiving(F)) )
v(F e {-n...—1h

o The notations 4 < B C, 4 <B<C, A<BZ £ mean that
the number B is circularly between Aand € {possibly equal to A or
(¢ depending on the use of < .or <), and A 1s not -equal to C except
‘possibly in the case.A < B-< O provided'that A= B =C. Likewise,
notations like A < B<C<D are used to denote-that both B and
C‘ are circularly between A and IJ, and B is encountered before T
when going from A to D. ' -

We prove - the correctness in two steps: first we determine ‘and prove
an invariant relation which is-true-at all time points. Using this invariant
relation we tfhen prove the property given above:

C.1 An Invariant Relation
C.1.1 Specification

We determine an invariant relation which holds at:any time T for any
process P. I what follows; any time- or procéss—depe‘ndgn’s parameter A
is assurned.to denote the valiie of that parameter of process F at time-T.
The nofation peer(A) genotes the value of paratveter A of the peer process:
of P. Note -thalt-_p_a;ré;metgrs may be nested. "Thep for e'xaﬁiple-pc,er(A)(B)
denotes the value of fanction A of the peexr process of P, with parameter
the value B of P itself. '

1. m'eﬁ_(-fts,-mpﬂf)- +4 —met_encbled

-
(fts < SL1 < SL2 = SIi+1< fts—1) —
w(SL1) < w(SL2) <T (2a)
A-3F:w{SLY) < F < w(5L2) (28)

A-3F:w(fts=1) < F<T (2¢)
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3. eneat(X, epa) — [VF': (F/ < w(X ) = peer(arrived)(F'))}

4. V' F' < peer{w)(epf — 1) — qr.ﬁi}ed(_F")

o. zpa < peer(zpf) < fts.

6.
on-channel(packet(E, F, NE, ACK), peer(P)) —
F = w(NR) V peer(arrived)(F) ' (6)
Apeer(zpa — 1) <ack < zpf.— 1 (68)

A [(On;ch_annel(pqcket(E", F', NR', ACK"),peer(Pj)
NE < B) — peer(vpa— 1) < ACK < ACK' < apf ~ 1] (6c)
A [peer(zpf) = fis — NR # fts] (6d)

7. mode = sending(F, NR)——» NR = fts— 1

C.1.2 Proof

We prove this invariant by induction onevents: by the Event Calculus frarme
axiom, we kitow that all fluents retain their valye between events, and that

the value at each event is the same as the value at all times between that.

event and the Previous one, Moreover-;siniultaneo_us-even't_s ‘are disaliowed.
Hence, if we prove that the invariant js initially true and that each event
type ﬁfeserv_es the invariant, we'can conclude that the invariani is true at
all times. ‘We prove that the invariant is preserved for a-particular process

both after itg -own-acticns and after_-'t-hose of its peer process.

Inthe proof , we-use the notation il to denote part 1 of ‘the-.invari'ant valid
_in'.'t.he previous time:interval. E always denotes the event under discussiop.
We call oldfts, oldepf, oldzpa resp. oldw the values of fts, zpf, Tpa
and w at the time of (and in the interval before) the event. Observe that

attributes always have e)_;a,cﬁ_ly one value, since-they are all initialised and an.
attribite value can only be terminated through the destructive assignment

rule, which is always applicable when -a,_d-i_ﬁ'ejre_nt value is initiated. Thig
unique value property is used implicitly thtcughout the proof;

Initial state.

We first prove that the invariant is. true after initialisation:

1. follows from. ftés = 2pa=.0 and net.enabled

2, a)_ follows from w(U) =l K ~l=ylh— 1_) <0< T
b) and ¢) are trivially true as there are no other frames
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5.

6.

7.
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. from cnext{ X, zpa) it follows that X =n— 1 and
yF P < wn-1)=—-1— peer(arrived)(F') is true because of the

initial assumption

. VFt: P < peer(w){n—1) e arrived{F") is true because of the initial

assumption for the peer process.
0 <0< 0 istrue
on.chanmel is false for all packets’

mode # sending

Next, we prove that the invariant is preserved after an event of each
type: :

Net .send event

cnext{oldfts, pa) is false (&= 31)]

1.

3

follows fromi-the fact that net.enabled is terminated if -and only if
enext(fts, zpa) Is initiated

already holds for fts < SL% < §12 = SL1+1 <. fte -2 (<=[2)

a) w(fts —2) < w(fts —1)=E <T

b) -3F vw(fts —2) <F < w(fts — 1) = B (& [2¢))

(_;) =AF i w(fts— 1)< F<T because no other events Happened

as zpa does not change, neither does X: w(X) does not change because
the only change in w is in w(oldfts) while oldfts # X because of
cnest(X, X'PA) and {1]; therefore the invariant foliows from 3}

. follows from: [4]

. zpa & peer{zpf) < ft's—-'_l.and fts # zpa (<= [1] ), hence the item

follows

. a) only w(oldfts) has changed, so for F # w{oldfts) the formula fol-

lows from [6a]; if ori.‘chdnﬁel(packet_(E,_F, NR, ACK),peer(P)) and
F = w(oldfts) were both true, then peer(arrived)(F) is true (<
[24,3)) o

b) follows from [65]

c) follow from [6¢]

3 ope < peer(epf) < fis = 1 (= [5)) and fts # zpa (= [1]) 50
peer(spf) # fts, hence the item follows

. mode = sending(F, fts— 1) is initiated so the itemn follows
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Send evernt
1. foliows from [1]
2. follows from [2]
3. follows from [3]
)
5. follows from. 5]

4. follows fiom

6. on.c’hdnnef(packet_(ﬂ‘, F,NR, ACK), peer(P)) is initjated;

a)-for this packet is F'— w(NR) by the event’s brecondition, for other
packets it follows from [6a]
b) peer(zpa) - 1.< AC K < apf -1 follows from cnest( ACK, zpf)

<) YE' . on-channel(paéket(lﬁ"__, F' NR" ACx I, peer(P))y o B/ « g
50.for these we must prove peer(zpa) — SACE'< ACKk < zpf-1
which follows from cnezt(ACK, zpf) and [68] applied to the other
packets s :

d) for this packet js. N '— fts~1 by [7], for other packets the itern
follows from [6d}

7. follows from mode sending

Receive event

_ » ACK). Severa) items in-the
proof for this event use the results of other_item_s: (4} uses (6),(3) uses. (2)

i
-and (5}, This is no problerny ag there are no cycles. §

L if net_enabled i initiated, then oldzpa < ACK < fts, so oldepn &
epa < fis, f]:o_m_whi_ch the item quIows’;.otherwi_se, zpa is not changed
and the item follows from [1],

2. follows from 2] : 4

3. using item (5) proven below- from zpa < peer(zpf) < fts it follows i
that zpq — 1< peer(zpfy ~ 1 < fis 1,80 a plying (2a) it follows
that w(zpg:-. 1) < 'w(peer(zpf) —1); also, from peer(4) proven below
1t follows that VE/ , pr < w(peer(zp )~ 1) - _peér(aﬁ'rivéd)(_ﬁ”),

therefore VF . < wlzpa - 1) —».peer(ar'r'iﬁed)(}?"-)

4. it suffices to Prove’ _arriyed(peer(w(oldzpf))). Because of yp —
oldep f (p_re_condit'i'on) and (6a), this ig trivially trme..
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5. from oldepa — 1 < ACK < peer(zpf) — 1 (& [6B]) it follows that
oldwpa < ACK + 1 = zpd < peer(zpf) which combined with
oldepa < peer(epf) < fis (< [5)) sields oldzpa < 2pa £ peer(zpf)

fts, which implies zpa < peer(zpf) £ fis -

g. a) follows from [6a) _ _

b) for all on_c__a_nﬁ.el packets packet(E’,‘F’,_NR’ , ACK") sent by the
peer process, it helds that B < B’ by the order, preservé.'tion constraint
on packets, and therefore ACK =apa—12% ACK' < peer{apf — 1)
(< [Be]) ' |

c) follows from [6¢]
d) follows from l6d}

7. follows from mode #-sending

Net_receive event
1, follows from 3!
9. follows from {2}
3. follows from [3]
4, follows from (4]
5. follows from {5}
g. follows from 16]
7. follows from mode # sending
Timer event
1. follows from {1}
9. follows from [2]
3., follows from i3
4. follows from 41
5. follows from. [5]
§. follows from 3}

7. follows from {7}
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. Disturbance eveit
! 1. follows from [1]
2. follows fron; [2]

3. follows from [3]

4. follows from 4]

3. follows from 5]

J

[
6. follows -Ifl;om 16

7. follows from 7]
Failure event:
1. follows from 1]

2. follows from [2]

[

- follows from [3]
4. follows from [4]

]
. follows from [5)
]

o

6. follows from [§

7. follows from _[7 §

Peer net_send event :
1. follows from [1]
2. follows from [2]

+3. follows from [3]

L VF P < peer(oldw)(zpf — 1) arrived(F') (« [4]) 50 it suffices

to prove that peer(oldw)(zpf — 1) = peer(w)(zpf 1). Now, as
only peeri(vér)_(peer_(oldfts)) is modified, this amounts to proving that
peer (oldfis) £ opf — 1. _ '
From peer(zpa) < zpf < peer(oldfts) {<= peer(5)) and the fact that
peer{fis)+1 = peer(zpa) (e peer[l]and brecondition) it followsthat
peer(zpa)~ 1< epf—-1< 'peer(oldfts)' Which implies: peer(oldftsy £
epf —1 '

N A e, S apg iy
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5. follows from [5] °
. follows from [6]

7. follows from [7]

Peer send event:
1. follows from {1}
2. follows from 2
3. follows from [3]
4. follows from 14]
5. follows from [5]

6. follows from [6]
1

7. follows from [T

Peer receive event
1. follows from [1]
2. follows from [2]

[

3. Tollows from 3]

4. follows from {4}

5. say the arrived packet is packet(E-‘ y NR,ACK ),
from zpe < peer (oldzpf) < fts (<= [5]) it follows that

o if NR = peer{oldepf) then zpa < NE= peer(zpf)— 1 < fts
‘but since NR # fts (<= [6d]ANR = peer{oldzp F)) it follows that
o < peer{zp H—-1< fts, and therefore. zpa <.peer(zpf) <
fts- S '

o if NR ;fﬁ'pee'r‘(:oldxpf) the item follows from opf = oldzpf

&. followsfrom (8]

7. follows from 7]
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Peer TRetreceive event

[

. follows from’[l_]'
2. follows from [2)
3. follows from i3]
4. Tollows fror, {4
3. follows from [5]
- Tollows from f6]

(4]
7. foHowS from [7]

C.2 Proof of the Prot'oc.ol’_s_ C-orrectn'ess_

From the inva'riant_, we can Prove that frames arrive in the corréct. order
(more. Precisely: the arrival of'a;-'fra.me-implies that afl pr_evibus'fra.m_es have

.arri_vgd-j, that they arrive ouly once, and that each aived frame hag been

sent by the other process. We keep Usitg the shorter notation of this ap:

: peer(receim?)(}f-', T) s yp <F: 37 o : peeﬁ'(r_ecéive’)(ﬁ", ™.

Proof-
Becauge of (8a) and the Leceive precondi'tio_n_s-,

P w{NR) = w(pe'er(mpf)_)..
Using (5) we fing
Zpa— 1 Spgerf'mpf) -1 L fls— g

Then .we uge (23) 2Af fEs = pe'er_(mpf-) then -5z . w(p_eer(z:pf)—- g <
T sa no receive event i Possible; therefore. '
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and using peer(d) we: know that-
wF s B! < wipeer(zpf)— 1) H-peer(@rribed}(__ﬁ")

The last two lines amount to {after T)

YF F & F(pee'r(_'zpf-)) H.-peer(arrived)(F’)

which proves the. formula. 0

The se_coﬁd-'forrnula to be prove
only once: 1n other words, whenever 4 proces
frame, this frame mnay nob have arrived beforer

ach frame arrives

n roust ensure that e
eiving mode for a

s enbers Tec

iwing(F))) = —arrived(F)

mitiates(E, attribute( P, mode; Tece

Proof:
Using the comipletion of
wre find that from initiat
that _ _
act(E, 'r'e'céz'be('P,_pqcket_(E’ , F,zpfs ACKN)

the only clause for initiation of a tecg’_w_'_mg_ mode,.
es(E, af,tri_ﬁute(_.P',__mode_, recei*uiﬂ'g_(_F__)))_ it follows

pre‘con'ditions of this action raust be satisfied:
_ mode = nput
on;channe'l(packet(E’ , F,zph
Using peer(6d) we then. find that zpf # peer(
from -peer__(?.a,)' 14, follows that

hence also the
ACK),P)
'fts_'). On the-other hand,

(W)X 1< peen(w)(X) - X #peer(fie)

peer

hence _
peer(w)(zpf — 1)< peer{w)(zpf)

Using (4) we then immediately-;o_btain

) 'ﬂqrrmd(_?eer(_w)(ﬁpf))j

which proves the second “formula. B
Fipally, we frame ‘received on one side was

_gen_erated_ on the©

need to prove that each

ther side. O

inttiates( attribute( P, mode, receiv ing(F))) =
At < T peér(fie_t-send)(f", .
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that 377 « : peer(ﬁet_ﬂse'nd)( K€ In-the previoyg Proof, we fing

We assume. that z'm'i_z‘ates'(E, ai trz'b_ut_e_(}?, -mc_:df'-,_.rece_afm‘ng(F))) and proye
B 1), Like
that

and -henc_e.

mode = jppyy _ _
on_c'hqnnié!(packet(f}”_, F zpf, AC’X), P)

Emm-'_peer_(;SaJ it follows that then p _peer(_w)('w'pf) V-arrz’t’;ed(F_)._ We.

alsq kﬁow-'from the Prévioug Proof that in i".'hlfs' Case ﬁarr'z'ved(f‘-')_, hence it

follows tha F= pcer{'w)_[zpf)‘ "This is only Possible it g Was the injija]

value of peer{(w)( epf) orif at'same carlier time 77 4}, valie of Peer(w)(zp f)
Was initigteqd to. F. In the former ase, we know that —p F<og by

the injtjaj a.ssumptions, _which_ is —. an_o by the initig) assu_;ip't'ions — in
'c'ontra;dic.tion.-with Tarrived(F), The latter cage can only he achieved by

an event pee_r(net‘send)(__ﬁ_’,' 7), 80 397 <7 peer’(net;aend)(ﬁ', 7Y follows

imme_diatefy._ 0

® If the Process jg iy mode 3e_nd§ng(E,_NR), ‘the precondi_tion of send
shows that a send event of a packet packet('.E',_ E,NR, vy f~ 1) is
Possible.

® Ifthe Process is in moda rece,i-bz'ng'( F), the: Precondition of net receiyg
of frame F ig satisfied,

o If the Process is in mogde retransmitting(NR)_, & send event for a

Packet packét( g, w(NR),NR, Zpf — 1} ig satisfied,

H
i
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o Tf the process ie i wnput ‘mode, always at least one of & net'_,seﬁ;d'

or A t_z':_mer:ni.ngs event ia'possible;: 'a tirner.rings gvent is p’o‘ssi_ble if

zpa F fs: a'net_send event if net__emblcd.; The latier cdndiﬁjonf is
equivalent 10 —eneet{fts: zpa) DY (1), herice at least one of the events
can oceur unless. PG = fts and fis = 2pe— 1, which- is irmpossible.

Note thab w}h_enev'c;_r- a timer_rings gvent OCCUFS, the. process enters
retransmitting mode and only senid, events are possible! Vence there 18
algo 1O risk that alla -pro‘cgss.-wﬂl do is hrave 118 tifnexrs TiNG

Despite all of the _pIOP_éIt-i’E_:S" we hiave prove'n,_.-there_ is no guarantee that
eventuailly frames Wikl successiully reach the other side: indeed, ap ever-
fa.iling'channel defeats even the mosh s._ecute-_'an_d ropust prot._oc'dls in that
respech.




Appendix S

Samenvatting

S.1 Inleiding

matige intelligentie, Waar computers moetep functioneren alg steeds au-
tonomere agenten in een veranderende omgeving zonder menselijke tussen-
komst. Voor toepassingen in dit domein verandert, de taak van de “program-

te voeren. Dit Proefschrift Concentreert zich op het aspect vap correcte
kennisrepresentatie. Te gepasten tijde worden algoritmische aspecten kort



il SAMENVATTING

besproken, maar deze algoritmen moeten slechts gezien worden als theo-
retische modellen, niet als efficiente implementaties.

Klassieke logica is vermoedelijk de best gekende kennisrepresentatietaal.
Ze is algemeen toepasbaar en heeft een precieze, natuurlijke semantiek.
Deze declaratieve aard van logica maakt het mogelijk op een vrij een-
voudige manier na te gaan of bepaalde delen van een logische voorstelling
correct zijn of mniet. Verschillende gedeelten kunnen volledig onafhanke-
lijk van elkaar worden gecontroleerd. De ontwikkeling van automatische
stellingenbewijzers en meer uitgebreide procedures voor het redeneren OVer
logische theorieén heeft aanleiding gegeven tot logische programmeertalen,
waarin probleemdomeinen declaratief kunnen worden voorgesteld en spe-
cifieke problemen op een vrij efficiénte wijze opgelost door deductie op de
logische theorie.

Als kennisrepresentatietaal is een logische progra.mrneertaal zowel ster-
ker als zwakker dan klassieke eerste-orde logica. Logisch programmeren is
sterker door de aanwezigheid van een impliciete “gesloten wereld”-aanname:
{ntuitief uitgedrukt gaat men €T in logisch programmeren van uit dat al wat
niet vermeld wordt, niet waar is. In de gewone omgangstaal 1s dit een heel
normale veronderstelling: bijvoorbeeld, als men vertelt dat zich op een
bepaalde tafel drie blokken 4, B en C bevinden en dat A op B staat, dan
neemt de luisteraar in het algemeen aan dat er geen andere blokken op
de tafel staan en dat C zich niet op of onder A of B bevindt. De gesloten
wereld-aanname laat toe enkel aan te geven wat waar is, zonder ook nog eens
expliciet toe te voegen wat allemaal niet waar is (wat in het bijzonder bij een
oneindig domein 00k vaak volstrekt onmogelijk kan zijn). Door deze aan-
name kunnen in logisch programmeren concepten worden voorgesteld die
in eerste-orde logica niet voor te stellen zijn. Anderzijds maakt diezelfde
aanname logisch programimeren ongeschikt voor het voorstellen van gedeel-
telijke, onvolledige informatie: door de gesloten wereld-aanname is het
domein noodzakelijk eenduidig bepaald. In het bovenstaande voorbeeld
zou men zo niet kunnen voorstellen dat de positie van C ten opzichte van
die van A en B onbekend is: als niet expliciet is gezegd dat C op Aof op B
staat, wordt aangenomen dat het zeker niet op een van deze blokken staat.

Aangezien men slechts zelden over echt volledige kennis over een bepaald
probleemdomein beschikt, is de kracht van logisch programmeren ook zijn
grootste nadeel, in het bijzonder omdat onvolledig gekende domeinen veruit
de meest interessante zijn. Als een volledige specificatie is gegeven, ligt alles
vast, zodat de enige interessante vorm van redeneren OVer €en degelijke the-
orie deductie is, m.a.W. controleren of een bepaalde uitspraak waar is of
niet. Voor een theorie met ongespeciﬁceerde gedeelten zijn ook andere rede-
neerparadigma’s interessant, in het bijzonder abductie en modelgeneratie.
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Zo genereert een abductieve redeneervorm hypothesen over het ongespeci-
ficeerde deel van de theorie om bepaalde observaties te verklaren. Model-
generatie is een bijzondere vorm van abductief redeneren, waarin een mode]
voor de volledige verzameling van gegevens wordt gegenereerd.

Open logisch programmeren (OLP) combineert de voordelen van logisch
programmeren met die van klassieke eerste-orde logica door deze twee for-
malismen te integreren. Dit maakt OLP geschikt voor het voorstellen van
een heel brede klasse van probleemdomeinen waarin gedeelten volledig ge-
kend en andere gedeelten onvolledig gekend mogen worden verondersteld,

op een bepaalde theorie, op die manier vermijdend dat dezelfde informatie
oP een aantal verschillende manieren moet worden gecodeerd voor verschil-
lende taken.

Syntactisch bestaat een open logisch programma uit twee delen. Een
eerste deel heeft de vorm van een logisch programma: een verzameling
pProgrammaregels van de vorm

A+—Bl,...,Bm.

waarbij A een atomaire logische formule (een atoom) is en alle B; lite-
rals, i.e. atomen of negaties van atomen. Het tweede deel is een algemene
eerste-orde logische theorie. De betekenis van een logisch programma wordt
gegeven door een semantiek die de gesloten wereld-aanname formaliseert
voor het gedeelte bestaande uit de programmaregels maar niet voor het
eerste-orde logica deel (meer precies: alleen voor de predikaten die als
gedefinieerd gedeclareerd zijn, niet voor de andere, “open” of ongedefinieer-

de predikaten). Deze formalisatie kan op verschillende manieren gebeuren,

A?——B],...,Bm.

de enige definitieregel is voor A, komt zijn betekenis volgens deze semantiek
overeen met die van de eerste-orde formule

AHBl_,...,Bm

inductieve definitie.
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Voor het redeneren over OLP-theorieen bestaat een algemene procedure,
genaamd SLDNFA, die verschillende redeneervormen (deductieve, abduc-
tieve of combinaties van beide) ondersteunt.

§.2 Verband van OLP met Terminologische
Talen

In een eerste bijdrage in dit proefschrift tonen we een sterk verband aan
tussen OLP en terminologische talen (tegenwoordig bekend onder de naam
“Description Logics”). Terminologische talen krijgen veel aandacht in het
onderzoek naar kennisrepresentatie en worden gebruikt in nogal wat expert-
systemen. Aan de basis van deze talen ligt de observatie in [13] en [1 1] dat
een expertsysteem (en een kennisrepresentatietaal in het algemeen) in staat
moet zijn twee essentieel verschillende soorten informatie te beschrijven:
enerzijds terminologische, definitionele informatie, bestaande uit definities
van een aantal centrale begrippen in termen van meer primitieve begrip-
pen (bijvoorbeeld “Een vader is een ouder die mannelijk is”) en anderzijds
assertionele informatie over actuele objecten in het probleemdomein (zoals
“Jan is de vader van Mia”). Geen van de in 1980 bestaande kennisrepresen-
tatietalen bleek in staat deze twee soorten informatie op de juiste manier
te behandelen, wat aanleiding gaf tot de hybride taal KRYPTON en zijn
latere opvolgers, de terminologische talen.

In terminologische talen zijn de belangrijkste concepten klassen (con-
cepis) en relaties (roles). De informatie in een terminologische taal is opge-
splitst in twee modules, die elk in een afzonderlijke taal worden weergegeven.
Deze modules zijn de T-Box of terminologische component en de A-Box of
assertionele component. De A-Box bevat formules van de vorm a : C of
aRb, met als betekenis respectievelijk dat a een object is van klasse C' en
dat b in relatie R staat tot a. De T-Box bevat klassendefinities van de
vorm C == F, met C een klassensymbool en F een klassenbeschrijving.
Afhankelijk van de specifieke terminologische taal zijn verschillende con-
structies toegelaten als beschrijving van een klasse in de T-Box. De meest
eenvoudige constructoren zijn U (unie), M (doorsnede), — (complement).
Verder bestaan bijvoorbeeld constructoren als 3 (3R.C is de klasse van
objecten = waarvoor minstens één y bestaat zodat zRy en y : C), V en nu-
merieke beperkingen als < nR (de klasse van objecten waartoe hoogstens n
objecten in relatie R staan) en > nR. De jongste jaren worden geleidelijk
meer geavanceerde constructoren toegevoegd, onder andere constructoren
die de expressiviteit van eerste-orde logica overstijgen.

Een sterk punt van terminologische talen, naast het feit dat ze met
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zowel terminologische als assertionele informatie overweg kunnen, is dat
efficiéente procedures zijn ontworpen voor elke taal. Complexiteitsanalyse
en ontwerp van optimale procedures vormen tegenwoordig het belangrijkste
onderzoeksdomein binnen terminologische talen.

We hebben aangetoond dat de bestaande terminologische talen kunnen
worden geinterpreteerd als deeltalen van OLP: voor een aantal terminolo-
gische talen hebben we de overeenkomstige OLP-deeltaal precies vastgelegd
en de equivalentie bewezen. De overeenkomst is duidelijk op verschillende
vlakken: klassen in een terminologische taal komen overeen met unaire
predikaten, relaties met binaire predikaten. De A-Box komt overeen met het
eerste-orde logica gedeelte van OLP. Zo komt bijvoorbeeld de A-Box formule
a : C' overeen met de logische formule C(a).-De T-Box komt overeen met de
logische programmaregels: zo wordt de definitie C == JR.D vertaald naar
de regel C(X) « R(X,Y), D(Y). Voor een aantal andere constructoren is
de vertaling iets complexer, maar ze kan steeds worden opgesplitst in voor
de hand liggende stappen.

Naast deze declaratieve overeenkomst hebben we ook aangetoond dat
de procedures die gebruikt worden voor het redeneren over terminologische
talen, gezien kunnen worden als gespecialiseerde instanties van de SLDNFA-
procedure die voor OLP gebruikt wordt. We hebben voor een voorbeeld-
taal aangegeven welke selectieregel in SLDNFA een equivalente procedure
oplevert voor de overeenkomstige deeltaal. Deze zou meteen een optimale
procedure opleveren, overeenkomstig de resultaten in terminologische talen.

De overeenkomsten tonen aan dat OLP voldoet aan de belangrijke eis
zowel terminologische als assertionele informatie te kunnen voorstellen, en
dus een volwaardige kennisrepresentatietaal is. Bovendien blijkt dat de
expressiviteit van OLP veel groter is dan die van de bestaande terminolo-
gische talen, die slechts overeenkomen met heel beperkte deeltaaltjes van
OLP. Ook merken we dat de recente uitbreidingen aan terminologische talen
geleidelijk naar grotere deeltalen van OLP evolueren. Op een aantal vlakken
1s nog onduidelijk welke semantiek voor bepaalde constructies zal worden
gedefinieerd. Met het werk in dit proefschrift hopen we een sterk argument
te geven voor semantieken die gebaseerd zijn op OLP. Belangrijk voor lo-
gisch programmeren is anderzijds de mogelijkheid om tot meer efficiénte
procedures te komen, eventueel via een integratie met terminologische talen
of door het overnemen van de belangrijkste technieken.
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S.3 De Rol van Tijd in K_ennisrepresentatie

De voorgaande studie toont de theoretische mogelijkheden van OLP voor
kennisrepresentatie aan. In de rest van dit proefschrift complementeren
we dit door OLP aan te wenden in zowel praktische als open theoretische
problemen op het vlak van kennisrepresentatie.

Het spreekt vanzelf dat kennisrepresentatie in de praktijk een erg pro-
bleemdomein-afhankelijke taak is. Desondanks bestaan er ook nog steeds
een aantal algemene open vragen, relevant voor grote klassen van toepassin-
gen. Een van de belangrijkste van deze vragen, en zoals blijkt een van de
moeilijkste, is hoe men correct rekening kan houden met tijd. Dit is van
belang in elk probleemdomein dat in zekere zin dynamisch is, dat m.a.w.
veranderingen ondergaat of kan ondergaan. Dat hierin zowat alle inter-
essante reéle probleemdomeinen zijn vervat, is duidelijk als men bedenkt
dat in het bijzonder de agent zelf, die in het domein zijn taken uitvoert, al
een belangrijke oorzaak van veranderingen is. Dit maakt dat een correcte
voorstelling van dynamische probleemdomeinen van uitzonderlijk belang is.

Het typische aan dynamische domeinen is dat een onderscheid gemaakt
moet worden tussen de toestand van het domein op verschillende tijdstip-
pen. Er zijn meestal sterke verbanden tussen toestanden op verschillende
dicht bij elkaar gelegen tijdstippen, in het bijzonder door de wet van de
inertie: in het algemeen verwachten we dat iets dat geen reden heeft om te
veranderen op een bepaald moment, in een zelfde toestand zal blijven. Een
agent moet dit “weten”, maar het mag niet de taak zijn van een gebruiker
die een bepaald domein formaliseert om voor elk tijdstip exhaustief op te
sommen wat allemaal onveranderd blijft: een goed representatiesysteem
moet toelaten correct af te leiden wat wel en wat niet verandert uit een
aantal bondige en intuitieve regels zoals die typisch door een mens wor-
den gegeven. Met andere woorden, een gespecialiseerde vorm van gesloten
wereld-aanname, die de wetten van de tijd in rekening brengt, 1s vereist.
Sinds de jaren '60 wordt een aanzienlijk deel van het onderzoek naar kunst-
matige intelligentie besteed aan het goeken naar een oplossing voor dit
centrale probleem, het zogenaamde “frame-probleem”.

Het frame-probleem, geidentificeerd door McCarthy en Hayes in [72],
wordt beschouwd als bestaande uit drie deelproblemen. Ten eerste is dat
het hoger beschreven inertieprobleem, of het precies bepalen van wat wel en
niet verandert ten gevolge van een actie met gegeven bondige effectregels.
Een tweede deelprobleem is het kwalificatieprobleem, dat we hier definiéren
als het bepalen van de voorwaarden waaronder een actie kan optreden en
met welke eventuele gevolgen, eventueel in uitzonderlijke toestanden. Het
derde probleem is het ramificatieprobleem, of het bepalen van eventuele
onrechtstreekse effecten van een actie.
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aan te pakken. Het meest courante formalisme is de Situation Calculus,
geintroduceerd in [72]. Een ander vaak gebruikt formalisme is de Event
Calculus, oorspronkelijk ontworpen door Kowalski en Sergot in [59]. In dit
proefschrift hebben we geopteerd voor een variant van de Event Calculus,
die we formaliseren als een OLP-theorie. Voor een korte motivatie en een
vergelijking met de Situation Calculus verwijzen we naar de volgende sectie.

Centraal in de Event Calculus is de notie van events of gebeurtenisgen.

holds(P, T) “ happens(E;, 5 < T initiates( By, B
—clipped(Ty, P, .

Chpped(Tl, P, T) +— happens(Eg, Tz), T] < Tg, TQ <= T,
terminates(E,, P).

getermineerd.

Naast dit zogenaamde “frame-axioma” bevat de Event Calculus axio-
ma’s die qpleggen dat tijd een totaal geordende verzameling is, dat een
fluent nooit op hetzelfde moment geinitieerd en getermineerd kan worden,
meestal dat er een begin-event start bestaat dat alles initieert wat waar is
in de begintoestand (die weergegeven wordt door het predikaat initially)

axioma’s worden in het algemeen aangevuld met domein-specifieke regels
die de effecten van acties beschrijven (in een aantal Programmaregels voor
iniliates en terminates), en met scenario-informatije (axioma’s in eerste-
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orde logica of pmgrammategels die de begintoestand en de optredende ac-
ties in een specifiek scenario beschrijven). Een beroemd voorbeeld is het
«Yale Shooting Problem”, waarmee in het midden van de jaren 80 het
falen van zowat alle tot dan toe voorgestelde oplossingen voor het frame-
probleem werd aangetoond. In dit eenvoudige probleemdomein zijn drie
acties gedefinieerd, met name wachten (wait), een geweer laden (load) en
schieten (shoot). De effecten van deze acties worden weergegeven door de
regels

initiates( E, loaded) — act(E,load).

terminates(E, loaded) act(E, shoot).

terminates(E,alive)  — act(E, shoot), happens(E,T),
holds(loaded, T).

Er zijn geen regels waarin wait voorkomt: wachten heeft geen enkel effect. '
Het typische Yale Shooting scenario bestaat uit een opeenvolging van de
acties load, wait en shoot, gegeven een begintoestand waarin het mogelijke
slachtoffer in leven is. Dit wordt weergegeven door de programmaregels

happens(start, to). initially(alive).
happens(e1,t1)- act(ey, load).
happens(ez, 13). act(ez, load).
happens(es, t3). act(es, shoot).

en de eerste-orde logica axioma’s
11 < t2 ip < i3

In dit scenario is alleen het predikaat < ongedefinieerd (open), alle andere
predikaten zijn eenduidig gedefinieerd door programmaregels. In eventuele
andere scenario’s kan onvolledige informatie over optredende events of de
begintoestand voorgesteld worden door de predikaten happens of indtially
open te laten. De gedeeltelijke informatie erover kan dan worden weerge-
geven in het eerste-orde logica gedeelte van de theorie.

Verschillende redeneertaken kunnen van belang zijn op Event Calculus-
theorieén. De meest courante zijn projectie, i.e. het bepalen van de volledige
evolutie van de wereld gegeven een begintoestand en een sequentie van ac-
ties, postdictie of diagnose, i.e. het bepalen van een begintoestand die een
gekende eindtoestand kan verklaren, en planning, i.e. het bepalen van een
sequentie van acties die van een gegeven begintoestand naar een gewenste
eindtoestand leidt. Projectie is essentieel een deductieve taak, terwijl post-
dictie en planning abductieve taken zijn. Al deze redeneervormen worden
ondersteund door de SLDNFA-procedure.
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S.4 Een Integratie van Event en Situation
Calculus

Zoals eerder aangehaald zijn Event Calculus en Situation Calculus twee van
de meest gebruikte formalismen voor het voorstellen van tijdsafhankelijke
domeinen. De oorspronkelijke doelstellingen en onderliggende basisideesn
van beide formalismen lagen ver uit elkaar, maar latere versies bleken stilaan
meer overeenkomsten te vertonen. De jongste jaren werd een analyse van de
verschillen en gelijkenissen van beide formalismen dan ook een onderwerp
waar nogal wat aandacht aan werd besteed, zoals in [83] en [57]. In deze
sectie presenteren we een meer diepgaande analyse die verder bouwt op de
hierboven vermelde, en een aantal nog onbeantwoorde vragen aanpakt. Op
basis van deze analyse presenteren we een nieuwe calculus die zowel Event
als Situation Calculus veralgemeent, en die een aantal problemen aankan
die in geen van beide oorspronkelijke calculi behandeld kunnen worden.

Het basisidee in Situation Calculus is dat hypothetische acties aanlei-
ding geven tot toestandsveranderingen of situatie-overgangen. Dit wordt
weergegeven in het volgende frame-axioma:

holds_in(P, so) — nitially(P).
holds_in( P, result(A, 5)) & init_s(4, S, P).
holds_in( P, result(A, 5)) holds_in( P, §), —term_s(A, S, P).

dat uitdrukt dat in de beginsituatie s, alles waar is dat is opgesomd in
wnitially, en dat iets waar is in de situatie result(4, S) (die ontstaat na het
uitvoeren van actie A in situatie S) als het werd geinitieerd door A of als
het al waar was in S en niet door A getermineerd werd. In het algemeen
wordt aan dit basisaxioma een inductie-axioma toegevoegd dat voorstelt
dat de enige bestaande situaties diegene zijn die bereikt kunnen worden uit
de begintoestand door het uitvoeren van een eindige sequentie van acties,

Het is in de gegeven formalisatie duidelijk dat wat voorgesteld wordt
door het Situation Calculus frame-axioma sterk lijkt op wat in de Event
Calculus geformaliseerd wordt. Dit wordt onder andere aangetoond in [57].

Zo blijkt dat in Situation Calculus problemen kunnen worden voorgesteld
waarin hypothetische (counterfactuele) uitspraken van de vorm “Was 4
gebeurd, dan zou B waar geworden zijn (maar A is niet gebeurd).” van
belang zijn. Deze soort van uitspraken kan niet worden voorgesteld in
Event Calculus. De reden hiervoor ligt in het feit dat in Situation Calculus
tijd een vertakkende structuur is (elke hypothetische sequentie van acties
bestaat in elk model van de Situation Calculus-theorie). In Event Calculus
sluiten verschillende sequenties van events elkaar uit, waardoor redeneren
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over niet-actuele sequenties onmogelijk 1s. Anderzijds blijken bepaalde vor-
men van hypothetisch redeneren van deze soort ook in Situation Calculus
onmogelijk, in het bijzonder wanneer acties niet deterministisch zijn. De
Event Calculus op zijn beurt heeft voordelen wat betreft het voorstellen
van gelijktijdige acties en continue verandering, doordat het met een reele
tijdlijn werkt in plaats van met discrete situaties.

Om de voordelen van beide calculi te verenigen en de verbanden zeer
precies aan te tonen, ontwerpen we een nieuwe calculus die aan Event Cal-
culus het vertakkende tijdsaspect van Situation Calculus toe te voegen. Dit
gebeurt door de axioma’s voor lineaire tijd in Event Calculus te vervangen
door

-((Ty < TR)A (T2 < T1))
(Ty < T2) A (T2 < T3)) = (Ta < T5)
(Ty < Ts) A (To < T3)) = (Ta < Ta) V(T < T) V (Th = b))

die een vertakkende tijdsstructuur opleggen. Daarnaast definiéren we ook
het equivalent van een situatie in Event Calculus, op de volgende manier:

80 = {T|(to <T) A —int_events(to, T)}
result(A,S)= {T|3T":T' €S A event(E,T') A act(E, A)
AT A —int_events(T', T)}

of met andere woorden, een situatie is een verzameling van tijdstippen
met een gemeenschappelijk laatste voorafgaand event. We definiéren het
volgende verband tussen holds en holds_in

holds_in(P,S) « VT :(T €S — holds(P,T))

en een overeenkomstig verband tussen initiates (terminates) en init_s
(term._s):

VA, S, P: (init_s(A, S, P) <> 3E,T:
(T €S A event(E,T) A act(E, A) A initiates(E, P)))
VA,S, P : (term.s(A, S, P) < 3E,T:
(T €S A event(E,T) A act(E, A) A terminates(E, P)))

Zowel Event Calculus als Situation Calculus zijn speciale gevallen van de
op deze manier verkregen nieuwe calculus. De Event Calculus kan verkre-
gen worden door de tijdsstructuur-axioma’s te versterken. De Situation
Calculus wordt verkregen als we opleggen dat in elke situatie elke actie
optreedt in precies één hypothetische vertakking. Onder die voorwaarde
kunnen we immers bewijzen dat het frame-axioma van de Event Calculus
(dat ook dat van de nieuwe calculus is) equivalent is met dat van Situation
Calculus onder de gegeven definities voor situaties.
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Deze resultaten tonen het precieze verband aan tussen Event en Situ-
ation Calculus, en tussen tijdstippen in het ene formalisme en situaties
in het andere. Bovendien tonen ze aan voor welke soort toepassingen
beide calculi tekort schieten. Het nieuwe formalisme maakt zowel hypo-
thetisch redeneren mogelijk voor deterministische acties, wat niet kan in
Event Calculus, als voor niet-deterministische acties, wat in geen van beide
oorspronkelijke calculi kan. Het blijkt anderzijds dat de mogelijkheid tot
redeneren over hypothetische acties het enige voordeel vormt van Situation
Calculus ten opzichte van Event Calculus, dat anderzijds gemakkelijker kan
worden uitgebreid voor toepassingen met continue verandering en gelijktij-
dige acties. Om deze reden verkiezen we Event Calculus te gebruiken als
algemeen formalisme in de rest van dit proefschrift.

S.5 Kennisrepresentatie in OLP Event Cal-
culus

In deze sectie breiden we de OLP Event Calculus uit of passen het for-
malisme toe in gebieden die niet tot het oorspronkelijk toepassingsdomein
binnen de kunstmatige intelligentie behoren. Op die manier illustreren we
de flexibiliteit van het formalisme en de bruikbaarheid ervan voor algemene
reéle toepassingen die de uiterst kleine voorbeeld-applicaties in het meer
fundamentele onderzoek overstijgen.

S.5.1 Voorstellen van Continue Verandering

In deze bijdrage formaliseren we een uitbreiding van OLP Event Calculus
om continue verandering voor te stellen. In tegenstelling tot de meeste
benaderingen tot dit probleem eisen we niet dat deze veranderingen exact
gekend zijn of kunnen berekend worden in functie van de tijd. We gaan er
immers van uit dat in de praktijk vaak de enige kennis die aanwezig is over
een veranderende variabele (b.v. het waterniveau in een vollopende tank), is
dat zijn waarde toeneemt, eventueel dat die snel of traag toeneemt. Slechts
heel zelden zal men in een reéel probleem een precieze functie kennen die
de variabele beschrijft. Toch kan vaak ook uit de heel vage informatie dat
bijvoorbeeld een waarde aan het toenemen is, al heel wat worden afgeleid.
Gebruik makend van de mogelijkheden van OLP om onvolledige kennis voor
te stellen, ontwerpen we een uitbreiding voor de Event Calculus die met dit
soort informatie kan werken.

Een belangrijk aandachtspunt hierbij is dat een onderscheid gemaakt
moet worden tussen de verandering zelf en eventuele verschillende invloe-
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den die samen de verandering veroorzaken. Zo zullen bijvoorbeeld drie
geopende kranen een positieve invioed hebben op een veranderend water-
niveau, terwijl twee open afvoergaten een negatieve invloed hebben. De
reéle verandering van het waterpeil ontstaat door combinatie van deze vijf
invloeden.

We stellen de volgende axioma's voor, in een stijl die sterk lijkt op die
van het Event Calculus frame-axioma, om de invloeden te beschrijven:

influence(I, P, S, T) — happens(E,,T1), Ty < T,
init_influ(E, I, P, S),
—influ_clipped(I, Ty, P, T).

influ_clipped(I,T1,P,T) +« happens(E2,T3), Ty < T3, T2 < Ty,
term_influ(E;, I, P, S).

énﬂu_started(f, T]_,P, T) — }WPPGRS(E;;, Tg), Tl <= Tz, Tz < le
init_influ( Eq, I, P, S).

influ_changed(Ty, P,T3) «— influclipped(I, Ty, P,T3).
influ_changed(Ty, P,T;) +«— influ_started(I, Ty, P, Ts).

Hierin stelt influence(I, P, S,T) voor dat een bepaalde invlced I op flu-
ent P aanwezig is op tijdstip T, en dat dit een invloed is van soort S.
Verschillende soorten invloeden kunnen gedefinieerd worden, elk met hun
eigen karakteristieke eigenschappen. Als eenvoudig voorbeeld maken we
hier alleen onderscheid tussen positieve en negatieve invloeden, aangeduid
door de soorten + en —. We stellen dat deze invloeden ook aanleiding kun-
nen geven tot drie soorten verandering: een positieve (aangeduid door +),
een negatieve (—) en een waarvan de richting onbepaald en mogelijk variabel
is (?). Dit wordt weergegeven door de volgende definitie voor cont_change:

cont_change(P,+,T) <« influence(I, P,+,T), ~any_influ(P, -, T).
cont_change(P,—,T) « influence(I, P,—,T), ~any_influ(P,+,T).
cont_change(P,7,T) <« influence(I, P,+,T), influence(J, P,—,T).

any_influ( P, Sort,T) « influence(J, P, Sort,T).

waarbij cont_change(P, S, T') betekent dat fluent P op tijdstip T onderhevig
is aan een verandering van soort S. De specifieke waarde van een fluent
wordt tijdens een periode van verandering bepaald door het ongedefinieerde
predikaat state_in_change: state_in_change(P, X, T) zegt dat P de waarde
X heeft op tijdstip T. Dit wordt weergegeven door

holds(val(P,X),T) « cont_change(P, Sort,T),
state_in_change(P, X, T).
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Het feit dat state_in_change een ongedefinieerd predikaat jg geeft aan dat
We er geen volledige informatie over hebben. Desondanks kunnen we er
wel iets over zeggen afhankelijk van het type van de verandering: zo weten

soort informatie stellen we voor door axioma’sin eerste-orde logica, bijvoor-
beeld:

[same_change(level, by Ty T5), holds(val(level, X), 1),
ho!ds(va!(a’euel, Y1) Tue Bl X<y

voor de bovenstaande uitspraak, waarbij same_change aangeeft dat twee
tijdstippen in eenzelfde periode van continue verandering liggen. Op ge-
lijkaardige manier kan andere informatie, zoals continuiteit, uniciteit van
de waarde op een bepaald tijdstip en dergelijke worden weergegeven. De

Het is eenvoudig aan te tonen dat ons voorstel verenigbaar is met de
bestaande toepassingen van Event Calculus, en dat alle redeneervormen
die in Event Calculus ondersteund worden, ook mogelijk zijn in onze ujt-
breiding. We hebben voorbeelden uitgewerkt van projectie-, diagnose- en
planningsapplicaties. De voorbeelden tonen onder andere aan dat zelfs uit

afgeleid, zodat we een kwalitatieve benadering van deze soort zeker niet
moeten onderschatten, zelfs niet indien we alleen heel primitieve soorten
verandering definiéren.

S.5.2 Een Algemene Voorstelling voor
Temporele Kennisbanken

Hier illustreren we hoe de OLP Event Calculus gebruikt kan worden als
algemeen kader om temporele kennisbanken voor te stellen op een manier

van maken. Om de precieze doelstellingen te formuleren hebben we ons
gebaseerd op het projectvoorste] in [39]. We wensen een kennisbank waarin
we zowel uitspraken kunnen doen over de waarheidswaarden van fluents
op afzonderlijke tijdstippen als gedurende tijdsintervallen, en waarin we
in het algemeen veronderstellen dat de aanwezige informatie onvolledig is.

In onze formalisatie beschouwen we de kennisbank als bestaande uit twee
modules, essentieel een A-Box en een T-Box zoals in terminologische talen.
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De T-Box bevat definities voor de formules die we als gegevens aannemen,
in termen van Event Calculus primitieven. Deze definities zien eruit als
volgt:

holds_at(P,T) — happens(Ey, Th), initiates(Eq, P),
T, < T, ~clipped(Ts, P, T).
holds_in( P, int(Ty, T2)) — interval(T1, T2), holds_from(P,Ty),
ﬁclzpped(Tl, P, Tz).
notholds_in( P, int(Ti, T2)) interval(Ty, Tz2),
notholds_from(P, T1),
ﬁstaried(Tl, F; Tz).

started(T”, P,T) «— happens(E",T"), initiates(E", P),
(T < T"),(T" < T).
clipped(T', P, T) — happens(E",T"), terminates(E", P),

(V< T (" £T):
holds_from(P, T) « happens(E, T), initiates(E, 2.
holds_from(P,T) — happens(E,T), holds_at(P,T),
~terminates(E, P).
notholds_from(P,T) «— happens(E,T), terminates(E, P).
notholds_from(P,T) + happens(E,T), —holds_at(P,T),
—initiates(E, P).

on Db e happens(E,T), initiates(E, P),
—holds_at(P,T).

(BT — happens(E,T), holds_at(P, T,
terminates(E, P).

aangevuld met definities die de onderlinge ligging van intervallen bepalen,
overeenkomstig de relaties voorgesteld in [3], bijvoorbeeld

overlaps(int(Th, T2), int(Ts,Ts)) « interval(T1, T2), interval(Ts, T1),
Ty < T5, Ta < Ty, T2 < Ts:

during(int(Ty, T2), int(Ts,Ts)) — interval(Ty, T2), interval(Ts, Ty),
Ts < T, Ta < Tj. '

interval(Ty, Tz) « happens(B1,Th), 1 < T,
happens(Ea, T2)-

De A-Box bevat de eigenlijke gegevens in een actuele toestand van de ken-
nisbank, als een verzameling eerste-orde logische formules opgebouwd uit
de hierboven gedefinieerde basisformules met behulp van de klassieke ope-



S.5. KENNISREPRESENTATIE IN OLP EVENT CALCULUS xv

ratoren, bijvoorbeeld

notholds_in(has(john, book, ), int(ty,1,)))

holds_at(p(a), T) — holds_at(g(b), T)

VT : (holds_at(p, T))

holds_at(has(X, O), T) A holds_at(has(Y, 0),T)-X=Y

Gegeven de hierboven gedefinieerde kennisbank, kan de SLDN FA-pro-
cedure in principe gebruikt worden om de noodzakelijke functionaliteit van
zo’n kennisbank te implementeren. Zo is het eenvoudig om de consisten.
tie van de gegevens te controleren en om vragen te beantwoorden, zowel
van het type “Is Q consistent met de gegevens 77 als “Volgt Q uit de
gegevens ?”. Dit onderscheid moet gemaakt worden gezien de kennisbank
onvolledige informatie voorstelt, zodat deze twee vragen niet equivalent
z1jn. Complexe vragen kunnen beantwoord worden door een voorafgaande
transformatiestap te gebruiken waarvan de correctheid bewezen is in [68].
Naast deze basisfunctionaliteit ondersteunt SLDNFA ook rechtstreeks het
gebruik van de kennisbank voor bijvoorbeeld planning. Dit kan mits een
kleine wijziging (het invoeren van acties, die normaal niet voorzien zijn in
de kennisbank) op dezelfde manier gebeuren als gebruikelijk in Event Cal-
culus. Daarenboven biedt SLDNFA ondersteuning voor het herstellen van
de consistentie van een inconsistente kennisbank.

Belangrijk is in deze bijdrage dat eenzelfde formalisme gebruikt wordt
voor een kennisbank en de eventuele toepassingen die er gebruik van maken.
Op deze manier voorkomen we nodeloge spraakverwarring bij de interactie
van verschillende componenten in een systeem. De voorgestelde algoritmen
moeten wel slechts beschouwd worden als theoretische modellen. Ze zijn op
zich niet bruikbaar als efficiénte implementaties.

S.5.3 OLP Event Calculus als Protocolspecificatietaal

In de hier beschreven bijdrage gebruiken we de OLP Event Calculus voor
protocolspecificatie. Hiervoor worden in het algemeen heel gespecialiseerde
talen, zogenaamde procesalgebra’s, gebruikt. Deze modelleren €en proces
als een algebraische structuur, opgebouwd uit primitieve deelprocessen met
behulp van een aantal sequentie-, keuze- en synchronisatie-operatoren: een
proces wordt gemodelleerd als de verzameling van mogelijke opeenvolgingen
(sporen) van gebeurtenissen die door het proces kunnen worden uitgevoerd
of waaraan het kan deelnemen.

Anderzijds is een natuurlijke visie op een proces die van een dynami-
sche structuur, met een inwendige toestand die verandert met de tijd, en
met de mogelijkheid tot het uitvoeren van acties en het opmerken van
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acties die door andere processen worden uitgevoerd. Vanuit dit perspec-
tief mag verwacht worden dat de OLP Event Calculus heel geschikt is
voor het specificeren van procesprotocollen. Dit hebben we concreet on-
derzocht met als voorbeeld het “sliding window protocol with go-back-
n,” een communicatieprotocol gesitueerd in de datalink-laag van de OSI-
netwerkarchitectuur. Dit protocol heeft als doel een betrouwbare commu-
nicatie tussen twee processen te verzekeren gegeven een onbetrouwbare fy-
sische verbinding. Voor een informele specificatie verwijzen we naar [105].

In Event Calculus stellen we een proces voor als een entiteit waaraan een
aantal fAluent-attributen zijn gekoppeld die zijn interne toestand weergeven.
Voor een proces in een communicatieprotocol zijn deze attributen bijvoor-
beeld de mode, die aangeeft of een proces wacht op invoer of bezig is met het
zenden of ontvangen van berichten, en een reeks parameters die helpen bij
de boekhouding, bijvoorbeeld de identificatienummers van verzonden maar
onbevestigde berichten, het nummer van het volgende verwachte bericht,
en parameters die aangeven of nieuwe te verzenden informatie aangenomen
kan worden. Vervolgens bepalen we welke soorten events door de processen
in een bepaald protocol kunnen worden uitgevoerd of spontaan kunnen op-
treden (zoals een storing op het kanaal). Voor elk van deze event-types
schrijven we de precieze precondities en de effecten van zo’n event op de
toestand van het proces en de buitenwereld uit, in de gebruikelijke Event
Calculus-stijl als een definitie voor de predikaten initiates en terminates.
Als voorbeeld geven we hier de preconditie en een van de effecten van de
aankomst van een nieuw pakket gegevens over het kanaal. De preconditie
is dat het pakket dat ontvangen wordt, zich op het kanaal bevindt, en dat
het ontvangende proces in invoermode staat.

precondition(receive(PROCESS, PACKET),T)
holds(attribute(PROCESS, mode, input), T'),
holds(on_channel(PACK ET, PRO CESS),T)

—

Effecten zijn bijvoorbeeld dat het proces overgaat in ontvangstmode en
dat het nummer van het verwachte pakket met één wordt verhoogd, op
voorwaarde tenminste dat het pakket datgene is dat verwacht werd en dat
het niet door storingen is gewijzigd (indien een onverwacht of gewijzigd
pakket aankomt, wordt het gewoon genegeerd). Dat wordt uitgedrukt door
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de regel

initiates(F, attribute(PROCESS, zpf, NEXTXPF))

inatiates(E, attribute(P ROCESS, mode, receiving(FRAM E)))
happens(E,T), act(E, receive(PROCESS, PACKET)),
ﬁholds(corrupt(PACKET), )

| PACKET = packet(F', FRAME, NR, ACK),
holds(attribute(PROCESS, zpf, XPF),T), NR = XPF,
cnext(X PF, NEXTXPF).

Op deze manier wordt de volledige specificatie van het protocol opgebouwd.

Deze wijze van specificeren vertoont verrassend grote verschillen met de
gebruikelijke stijl in procesalgebra’s: wat wordt gespecificeerd zijn algemene
eigenschappen van een proces, toestandsvariabelen, en de evolutie daarvan.
Hieruit kunnen dan, bijvoorbeeld met SLDNFA, de mogelijke opeenvolgin-
gen van events worden berekend. In Procesalgebra’s zijn het rechtstreeks dje
event-sequenties die worden gemodelleerd, en niet de onderliggende eigen-
schappen. Een gevolg is dat een Event Calculus-specificatie meteen ook
bruikbaar is voor andere toepassingen in het gegeven probleemdomein, zoals
bijvoorbeeld netwerkbeheer, omdat ze alle gegevens die daarvoor van belang
zijn modelleert, In Procesalgebra’s zijn al deze gegevens wegvereenvoudigd
en blijft alleen de strikt noodzakelijke informatie voor protocolspecificatie
over. Voor andere toepassingen moet het domein hierdoor opnieuw en op
een volstrekt andere manier worden gespecificeerd. Ondanks degze grotere
algemeenheid blijkt een Event Calculus-specificatie (in elk geval al voor het
bovenstaande protocol) slechts van dezelfde lengte als een overeenkomstige
specificatie in een procesalgebra. Aan de andere kant verloopt het automa-
tisch redeneren over een Event Calculus-speciﬁcatie, bijvoorbeeld voor het
verifiéren van protocoleigenschappen zoals de onmogelijkheid van deadlock-
situaties, heel wat minder efficiént, al is dit ook ten dele te wijten aan de
voorlopig nog verre van optimale implementatie van SLDNFA.

S.6 Een Hoog-niveau Representatietaal voor
Dynamische Probleemdomeinen

De vorige secties beschreven uitbreidingen van OLP Event Calculus voor
gebruik in minder traditionele toepassingsdomeinen van het formalisme.
In deze sectie keren we terug naar het klassieke toepassingsgebied van de
fundamentele kunstmatige intelligentie: we tonen aan hoe OLP Event Cal-
culus een grote stap voorwaarts kan opleveren in het aanpakken van het
frameprobleem, in het bijzonder het ramificatieprobleem.
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In dit kader heeft de expressiviteit van OLP minstens evenveel nadelen
als voordelen: omdat informatie heel genuanceerd voorgesteld kan worden,
is een goede kennis van de precieze nuances van verschillende voorstellings-
wijzen nodig om te garanderen dat de bedoelde informatie weergegeven
wordt. Het is niet realistisch om zo’n gedetailleerde kennis te verwachten
van elke gebruiker. Er is een methodologie vereist die precies aangeeft hoe
elke bepaalde soort informatie voorgesteld moet worden opdat deze correct
wordt geinterpreteerd door het systeem.

Om die reden ontwerpen we een hoog-niveau taal om dynamische pro-
bleemdomeinen voor te stellen, waarin precies wordt vastgelegd hoe welke
informatie kan worden weergegeven. Tegelijkertijd dragen we er zorg voor
dat alle taalconstructies die verantwoordelijk zijn voor de “goede” expres-
siviteit van OLP Event Calculus, ook in de nieuwe taal aanwezig zijn. Dit
vereist een diepgaande analyse van de soorten probleemdomeinen die we
willen voorstellen, gevolgd door een keuze van gewenste taalconstructies.

Doelstellingen voor de taal die we ontwerpen zijn dat we correct de
gevolgen van optredende acties kunnen weergeven, zowel directe als in het
bijzonder indirecte gevolgen, zowel onmiddellijke als uitgestelde effecten,
zowel van opeenvolgende als gelijktijdige acties, zowel van deterministische
acties als van acties met indeterministische effecten. Daarnaast willen we
ook correct kunnen weergeven onder welke voorwaarden welke acties kun-
nen optreden. Bovendien willen we dit op een flexibele manier realiseren
voor domeinen waarin de begintoestand en de optredende acties en hun
volgorde al dan niet volledig gegeven zijn. We noemen onze taal £R, wat
ruwweg staat voor “Event-gebaseerde taal voor Ramificaties”, vermits in-
directe effecten, m.a.w. het ramificatieprobleem, veruit onze belangrijkste
zorg zijo.

Een analyse van bestaande voorstellen in de literatuur toont aan dat
ramificaties in het algemeen worden beschouwd als sterk verwant aan toe-
standsbeperkingen (state constraints). Dit zijn altijd-geldende verbanden
tussen fAuents in het domein, bijvoorbeeld voor twee verbonden tandwie-
len dat ze ofwel allebei draaien ofwel allebei in rust zijn: turningl <
turning_2. Het verband met ramificaties is in het voorbeeld het volgende:
als op &én van de tandwielen een kracht wordt uitgeoefend zodat het begint
te draaien, zal door de verbinding een krachtpropagatie plaatsvinden zo-
dat ook het andere tandwiel aan het draaien gaat. Omgekeerd zal ook het
stilleggen van een tandwiel het stoppen van het andere voor gevolg hebben.

In de literatuur is aangetoond dat toestandsbeperkingen op zich niet
voldoende zijn om precies de bedoelde ramificaties te voorspellen: zo geven
beperkingen ook vaak aanleiding tot impliciete precondities voor acties.
Bijvoorbeeld, men kan opleggen dat iemand die geen diploma heeft in een
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bepaald bedrijf geen manager kan worden: manager(X) — diploma(X 1
Hier is het uiteraard niet de bedoeling dat iemand tot manager wordt ge-
promoveerd en als neveneffect meteen een diploma krijgt.

Om preciezer aan te geven waar toestandsbeperkingen aanleiding geven
tot precondities en waar tot indirecte effecten, zijn zogenaamde causale
wetten ingevoerd: een soort toestandsbeperking met impliciete indicatie
van de richting waarin effecten kunnen Propageren.

Een van de belangrijke bijdragen in dit proefschrift is dat we aantonen
dat dit onvoldoende s, in de zin dat indirecte effecten niet altijd afhangen
van toestandsbeperkingen, maar eigenlijk manifestaties zijn van fysische
of eventueel logische “krachtpropaga,ties”‘ Toestandsbeperkingen kunnen
uit specifieke patronen van dergelijke Propagaties ontstaan, zoals in het

Om deze reden voorzien we constructies die indirecte effecten weergeven
als onafhankelijke manifestaties van eﬁ'ectpropaga.ties. We laten toe dat

bondige beschrijvingen en een eenvoudige behandeling van gelijktijdige ac-
ties mogelijk maakt. Daarnaast maken we nog steeds gebruik van toe-
standsbeperkingen, omdat deze een gemakkelijke hoog—niveau—beschrijving
van een domein toelaten, en van de noodzakelijke basisconstructies, zijnde

van scenario-informatie,

Syntactisch zien de voorziene constructies eruit als volgt:
° diréct-eﬁ'ectregels van de vorm
a causes | if p'
met a een actie, I een fluent of negatie van een fluent, en F’ een

complexe fluentformule. Deze regels geven weer dat ! waar wordt
telkens a wordt uitgevoerd terwijl B waar is;
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o afgeleid-effectregels van de vorm
initiating F causes [ if F

met | een fluent of negatie van een fluent, en F en F ! complexe flu-
entformules. Deze regels geven weer dat | waar wordt telkens F' van
onwaar naar waar verandert op een moment waarop F' waar is;

o elke formule op de klassieke manier geconstrueerd uit de predikaten
Holds, Happens, < en Initially met behulp van =iy My =
en ¥, 3. :

In de laatste klasse onderscheiden we in het bijzonder

o toestandsbeperkingen geschreven in de vorm

VT : Holds(F,T)
e precondities in de vorm

VT : Happens(a,T) — Holds(F, T)

terwijl andere formules volledige of onvolledige informatie kunnen VvooI-
stellen over de waarheidswaarde van fluents op bepaalde tijdstippen, het
optreden en de volgorde van acties, en de begintoestand.

De semantiek van een £R-theorie wordt gedefinieerd door de effectregels
te lezen als een inductieve definitie voor predikaten Init en Causes, en de
andere formules als in klassieke cerste-orde logica. We laten de wiskundige
details hier achterwege. Onze formalisatie laat toe op een correcte manier
recursie en lussen in effectregels te behandelen: de inductieve-definitie-
semantiek is constructief, zoals effectpropagaties in de realiteit verwacht
worden te zijn. Zo zal een effect nooit “veroorzaakt” worden door zichzelf,
en worden ook effecten die afhangen van de afwezigheid van andere ef-
fecten correct afgeleid. Aan de andere kant laat het eerste-orde logisch
gedeelte toe op een fexibele manier volledige of onvolledige informatie voor
te stellen over scenario’s. Door de wisselwerking van eerste-orde logica voor
scenario-informatie en inductieve definities voor effectregels krijgen we een
expressieve taal die alle mogelijkheden van OLP Event Calculus biedt.

De hierboven beschreven basistaal is uitgebreid met constructies om ook
acties met indeterministische effecten en uitgestelde ramificaties te kunnen
voorstellen. Voor het voorstellen van ‘ndeterminisme worden regels van de
volgende vormen gebruikt:
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e direct-effectregels van de vorm
a causes D if F'
waarbij D nu een disjunctie van conjuncties van fluent literals is;
e afgeleid-effectregels van de vorm
initiating F causes D if F'
met D ook hier een disjunctie van conjuncties van fluent literals

De semantiek van deze regels wordt gedefinieerd door te eisen dat voor elke
indeterministische effectregel, minstens één van de regels verkregen door de
disjunctie D te vervangen door een van zijn disjuncten, geldig moet zijn op
elk ogenblik. We hebben aangetoond dat dit de meest precieze manier is
om indeterminisme voor te stellen.

Voor het voorstellen van uitgestelde effecten hebben we geopteerd voor
regels van de vorm

initiating F if F' ecauses e if F" persists after d

wat betekent dat het initiéren van F op een moment waarop F' waar is,
aanleiding geeft tot het event e, een tijd d na deze gebeurtenis, op voor-
waarde dat F'/ waar blijft tot op het moment waarop e zou gebeuren. Deze
regels definiéren dus dat een initiatie van een complexe formule aanleiding
geeft tot een later event, maar laten onrechtstreeks ook toe te definiéren
dat een event aanleiding geeft tot een later event of een latere initiatie, of
een initiatie tot een latere initiatie: dit kan door de regels te combineren
met de gewone effectregels. De semantiek van uitgesteld-effect-regels wordt
gedefinieerd door ze te lezen als een inductieve definitie voor Happens.

Om de cirkel rond te maken, hebben we een eenduidige vertaling van
ER-theorieén naar OLP Event Calculus gedefinieerd, en bewezen dat de re-
sulterende theorie equivalent is met de oorspronkelijke. De vertaling beeldt
effectregels af op programmaregels die een definitie vormen voor initiates
en terminates, en andere formules op eerste-orde logische formules. Niet-
deterministische regels worden vertaald naar programmaregels met vrij-
heidsgraad-predikaten, wat onze gebruikelijke aanpak voor indeterminisme
is in OLP Event Calculus. Regels voor uitgestelde effecten worden vertaald
naar een definitie voor happens in termen van vroegere effecten.

In de hierboven gedefinieerde taal £R hebben we ook onderzocht hoe
het onlangs door Thielscher ([109]) geopperde idee kan uitgewerkt wor-
den om zogenaamde invloedsinformatie te gebruiken om automatisch ef-
fectregels af te leiden uit toestandsbeperkingen. Invloedsinformatie geeft

"
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aan welke fluents een invloed op andere fluents kunnen uitoefenen en dus
onrechtstreeks in welke richting effecten kunnen propageren. We hebben
Thielscher’s voorstel bestudeerd en verbeteringen aangebracht, en grondig
de verschillen tussen beide voorstellen besproken. Al bij al blijkt dat in-
vloedsinformatie vaak onvoldoende nauwkeurig is om tot duidelijke juiste
resultaten te komen. In onze methode worden dergelijke probleemgevallen
automatisch ontdekt en aangegeven. Los daarvan hebben we bewezen dat
onze methode voldoet aan een streng correctheidscriterium, dat oplegt dat
toestandsbeperkingen alleen hersteld mogen worden met minimale effecten,
die allemaal verantwoord moeten zijn door de invloedsinformatie. Wel
spreekt het vanzelf dat elke methode die gebruik maakt van invloedsin-
formatie beperkt is door het feit dat niet alle effectregels voortkomen uit
toestandsbeperkingen.

De belangrijkste bijdrage van deze sectie is dat een nieuwe taal is ont-
worpen waarin de nodige constructies worden aangeboden om het ramifi-
catieprobleem op te lossen in een voor het overige heel algemene context.
We behandelen een heleboel hete hangijzers, zoals gelijktijdige acties, in-
determinisme, onvolledige informatie en complexe causale wetten, in één
coherent raamwerk. Hierin zijn we geslaagd door taalconstructies en se-
mantiek zo te kiezen dat ze zo nauw mogelijk aansluiten bij de menselijke
intuitie, eerder dan bij gebruikelijke aanpakken. Ten gevolge hiervan kun-
nen we ook een aantal tot nu toe onbehandelde problemen oplossen in
hetzelfde kader, zoals lussen in effectregels en ramificaties die los staan van
toestandsbeperkingen. We hebben de overeenkomsten en verschillen van
onze aanpak aangetoond met uiteenlopende recente voorstellen, waaronder
dat van Thielscher ([109]) dat het meest op het onze lijkt en dat we in detail
hebben bestudeerd. Voor een aantal andere aanpakken kunnen we dezelfde
verschilpunten aanhalen als Thielscher.

S.7 Besluit

De doelstellingen in dit proefschrift waren het bestuderen en toepassen van
de mogelijkheden van open logisch programmeren voor kennisrepresentatie,
in het bijzonder in een brede klasse van probleemdomeinen die veranderlijk
zijn in de tijd, en dit zowel op het vlak van de fundamentele kunstmatige
intelligentie als in meer directe toepassingen.

Op taal-theoretisch vlak hebben we aangetoond hoe OLP een veralge-
mening is van de bestaande terminologische talen, dezelfde basisprincipes
hanterend voor kennisrepresentatie maar in een veel expressievere taal.

In de rest van dit proefschrift gebruiken we het formalisme in tijdsaf-
hankelijke probleemdomeinen. Op het vlak van de fundamentele kunstma-
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tige intelligentie analyseren we OLP-formalisaties van Situation Calculus
en Event Calculus en construeren een nieuw formalisme dat beide veral-
gemeent. Verder ontwerpen we een expressieve hoog-niveau taal voor dy-
namische probleemdomeinen, die constructies aanbiedt om het frame- en
in het bijzonder het ramificatieprobleem op te lossen, ook in aanwezigheid
van mogelijk gelijktijdige en niet-deterministische acties met eventueel uit-
gestelde effecten, van algemene effectpropagaties, en van mogelijk onvolle-
dige scenario-informatie.

Verder tonen we aan hoe OLP Event Calculus uitgebreid kan worden
voor het voorstellen van kwalitatief gekende continue verandering, hoe het
een algemeen kader biedt voor het voorstellen van temporele kennisbanken,
zowel wat betreft voorstelling als functionaliteit, en hoe het een nieuwe
manier aanbiedt om aan protocolspecificatie te doen.

Een belangrijke opdracht voor de toekomst, die nog niet aan de orde
was in dit proefschrift, is het werken aan efficiéntere implementaties van de
procedures voor OLP. Op dit moment is het gebrek aan efficiéntie immers
nog steeds een nadeel ten opzichte van meer gespecialiseerde technieken,
bijvoorbeeld in temporele kennisbanken of protocolverificatie, een nadeel
dat opweegt tegen de geboden voordelen. Nieuwe projecten die deze ef-
ficiéntieproblemen zullen aanpakken, gaan rond de tijd van dit schrijven
van start.






