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Abstract

A novel family of multivariate robust smoothers based on the thin-plate (Sobolev) penalty that is

particularly suitable for the analysis of spatial data is proposed. The proposed family of estimators

can be expediently computed even in high dimensions, is invariant with respect to rigid transforma-

tions of the coordinate axes and can be shown to possess optimal theoretical properties under mild

assumptions. The competitive performance of the proposed thin-plate spline estimators relative to

their non-robust counterpart is illustrated in a simulation study and a real data example involving

two-dimensional geographical data on ozone concentration.
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1. Introduction

Consider the problem of estimating the regression function f0 : Rd → R from n observations

(xi, Yi) ∈ Rd ×R, i = 1, . . . , n, following the model

Yi = f0(xi) + ϵi, (i = 1, . . . , n), (1)

where the ϵi are random errors that are commonly assumed to be independent and identically

distributed (i.i.d.) with mean zero and finite variance, but we will be able to considerably relax these

assumptions over the course of this paper. Models of this general type arise naturally throughout

the sciences, as very often empirical data cast doubt on parametric regression assumptions (Wood,

2017, Chapter 5).

A popular method of estimation of f0 that is expounded by Wahba (1990) and Green & Sil-

verman (1994) involves restricting f0 to the multivariate Sobolev space of functions of order m,

Hm(Rd), i.e., the space of all functions whose partial derivatives of total order m for some m ∈ N+
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are in L2(Rd). Mathematically, the space Hm(Rd) is defined as

Hm(Rd) =

{
f : Rd → R,

∂mf(x1, . . . , xd)

∂xm1
1 . . . ∂xmd

d

exists for all m1 + . . .+md = m and I2m(f) < ∞
}
,

where the semi-norm Im : Hm(Rd) → R+ is given by

I2m(f) =
∑

m1+...+md=m

(
m

m1, . . . ,md

)∫
R

. . .

∫
R

(
∂mf(x1, . . . , xd)

∂xm1
1 . . . ∂xmd

d

)2

dx1 . . . dxd. (2)

Classical least squares thin-plate spline estimators are defined as minimizers of

1

2n

n∑
i=1

(Yi − f(xi))
2 + λI2m(f),

over Hm(Rd), for some λ > 0 that governs the trade-off between smoothness and goodness of fit

to the data. It is easy to see that for d = 1 the penalty I2m(f) reduces to
∫
R
|f (m)(x)|2dx and

with standard arguments this may be simplified further to
∫ maxxi

minxi
|f (m)(x)|2dx, which gives rise to

classical smoothing spline estimators, see, e.g., Wahba (1990). Such simplifications are not valid

for d > 1, but the problem still admits an elegant solution provided only that 2m > d. In fact,

for 2m > d, the solution to this variational problem may be written in terms of n + M radial

and polynomial basis functions with M =
(
m+d−1

d

)
, see Wood (2017, p. 216) for more details.

The resulting least squares thin-plate spline can be shown to converge at a fast rate under the

aforementioned assumptions on the error term (Cox, 1984; Györfi et al., 2010) with the result

that least squares thin-plate estimators combine computational efficiency with good theoretical

properties.

An important drawback of least squares based estimators is their lack of resistance towards

atypical observations. That is, these estimators tend to be overly attracted towards observations

that do not follow the bulk of the data, which often leads to poor explanatory or predictive perfor-

mance. In order to remedy this deficiency, this paper introduces and studies a family of generalized

(M-type) thin-plate spline estimators defined as minimizers of

Ln(f) =
1

n

n∑
i=1

ρ(Yi − f(xi)) + λI2m(f), (3)

over Hm(Rd), for some convex loss function ρ : R → R+. The square loss ρ(x) = x2/2 is a

typical example of such a loss function, but the generality of the above formulation also permits

loss functions that increase less sharply as |x| → ∞ thereby providing better protection against

outliers. Notable examples include Huber, quantile and Lq loss functions. As we discuss below, a

minimizer of (3) in Hm(Rd) exists under fairly general conditions and, as a result, to identify this
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minimizer it suffices to restrict attention to an (n + M)-dimensional subspace spanned by radial

and polynomial functions. Furthermore, we show that, for well-chosen loss functions, optimal rates

of convergence may be attained without placing any moment conditions on the errors, thereby

allowing for very heavy tailed error distributions within our theoretical analysis.

Thin-plate splines possess a number of notable advantages over their more popular tensor prod-

uct counterparts. First, the objective function in (3) only involves one smoothing parameter irre-

spective of the dimension of the predictor space. By contrast, tensor product penalties require as

many smoothing parameters as the number of predictors. Since smoothing parameters are usually

selected from the data, tensor product smoothers entail a considerable computational burden which

becomes prohibitive for higher dimensions. Another attractive property of thin-plate splines is the

invariance of the penalty I2m(f) to rotations or reflections of the coordinate axes. This fact implies

that thin-plate splines are ideal for spatial/geographic smoothing as in these cases the amount of

smoothing does not depend on which axes represent the relative positions, e.g., latitude and longi-

tude. To these advantages we may add that tensor product smooths often rely on the subjective

choice of the number of knots and their position, whereas with thin-plate splines the user is absolved

from this responsibility, as both of these aspects emerge naturally from the mathematical problem

that thin-plate splines solve.

In view of these advantages it comes as a surprise that thin-plate splines, with the exception of

univariate splines with d = 1, have not received enough attention in the literature. In fact, both

available treatments of thin-plate spline estimators of arbitrary dimensions (Cox, 1984; Györfi et al.,

2010) concern the narrow class of least squares thin-plate estimators and as a result the larger and

more versatile class of M-type thin-plate estimators has been overlooked. To address this gap in the

literature, the present paper establishes optimal rates of convergence for a wide variety of thin-plate

estimators under a mild set of conditions considerably extending our theoretical understanding.

Furthermore, while the main emphasis of this work is on outlier-resistant loss functions, we also

demonstrate how our methodology can be used to improve upon the results of Györfi et al. (2010)

by sharpening the rate of convergence obtained by these authors for the least squares thin-plate

estimator.

2. Main results: existence of solutions and rates of convergence

We begin our study of generalized M-type thin-plate estimators by providing sufficient condi-

tions for the existence of a minimizer in Hm(Rd) for the objective function Ln(f), as given in (3).

For the special least squares case with ρ(x) = x2/2 such conditions have already been presented

in the literature (see, e.g., p. 31, Wahba, 1990) and involve the uniqueness of the least squares

estimator on the null-space of the penalty functional Im. This null-space is M -dimensional with

M =
(
m+d−1

d

)
and consists of all polynomials of total degree at most m. Let ϕ1, . . . , ϕM denote any

basis for this space of polynomials. Proposition 1 below shows that the least squares requirement

3



for existence generalizes nicely to arbitrary convex losses.

Proposition 1. Assume that ρ is a convex loss function, 2m > d and the covariates xi ∈ Rd are

such that the corresponding unpenalized M-estimator on ϕ1, . . . , ϕM restricted to the xi is unique.

Then, Ln(f) has a minimizer in Hm(Rd).

The uniqueness requirement of Proposition 1 is very mild. For example, for d = 2 and m = 2

we may take ϕ1(x1, x2) = 1, ϕ2(x1, x2) = x1 and ϕ3(x1, x2) = x2, so that if the estimated plane

is unique then the existence of a minimizer is guaranteed. The condition 2m > d is satisfied for

all m ≥ 1 when d = 1, i.e., univariate data, but precludes small values of m in higher dimensions.

Unfortunately, this condition cannot be weakened as it is both necessary and sufficient for Hm(Rd)

to be a reproducing kernel Hilbert space and consequently for point evaluation maps Hm(Rd) →
R : f 7→ f(x), x ∈ Rd, to be well defined. Proposition 1 is of primary importance not only as a

first step towards the theoretical analysis of M-type thin-plate estimators but also for their efficient

computation; Section 3 provides the details.

Having established that the problem is well-defined, we now investigate the rate of convergence

of the minimizer of Ln(f) in Hm(Rd), which we denote by f̂n, to the true function f0. The distance

metric to be used is the L2(Qn)-distance given by

∥f − g∥L2(Qn) =

{∫
Rd

|f(x)− g(x)|2dQn(x)

}1/2

where Qn is the empirical measure placing mass n−1 at each xi ∈ Rd. As we shall see, under very

mild conditions on the covariates, rates of convergence in terms of the empirical norm ∥ · ∥L2(Qn)

also translate to rates of convergence in the classical L2-distance. It is worth noting that, while

here and in the sequel we treat the covariates as non-random, all subsequent results also hold for

random covariates provided that we condition on them. Our theoretical development relies on the

following regularity conditions.

A1. The loss function ρ : R → R+ is convex and satisfies a Lipschitz condition, i.e., there exists

a C > 0 such that

|ρ(x)− ρ(y)| ≤ C|x− y|, ∀(x, y) ∈ R2.

A2. The errors ϵi, i = 1, . . . , n are independent random variables and there exists a constant κ > 0

such that for all |t| ≤ κ,

inf
n

min
1≤i≤n

E{ρ(ϵi + t)− ρ(ϵi)} ≥ κt2

A3. The covariates xi, i = 1, . . . , n are contained in a bounded open set O ⊂ Rd whose boundary,
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∂O, satisfies the uniform cone condition of Adams & Fournier (2003, p. 83). That is, there

exists a locally finite open cover {Uj} of ∂O and a corresponding sequence of finite cones

{Cj}, each congruent to some fixed cone C, such that

(i) There exists an M < ∞ such that every Uj has diameter less than M .

(ii) {x ∈ O : infy∈∂O ∥x− y∥ < δ} ⊂
⋃∞

j=1 Uj for some δ > 0.

(iii) Qj ≡
⋃

x∈O∩Uj
(x+ Cj) ⊂ O for every j.

(iv) For some finite R, every collection of R+ 1 of the sets Qj has an empty intersection.

A4. Define the quantities

hmax,n = sup
x∈O

min
1≤i≤n

∥x− xi∥

hmin,n = min
i ̸=j

∥xi − xj∥.

For all large n, there exist finite positive constants B1, B2 such that hmax,n ≤ B1 and

hmax,n/hmin,n ≤ B2.

Assumption A1 is very general and a large number of loss functions fulfils these conditions. The

convexity requirement implies that ρ is minimally continuous, but, importantly, differentiability

is not needed for Theorem 1 below to hold. Thus, this assumption also covers non-smooth loss

functions, such as the quantile loss ρα(x) = x(α − I(x < 0)), α ∈ (0, 1). Assumption A2 requires

the local quadratic behaviour of mi(t) := E{ρ(ϵi + t)}, i = 1, . . . , n about zero. Assumptions of

this type have been extensively used in the asymptotics of M-estimators (see, e.g., van der Vaart

& Wellner, 1996, Theorem 3.2.5, p. 289). It is similarly a weak condition that is satisfied quite

generally. To see this, observe that by Fubini’s theorem

mi(t)−mi(0) =

∫ t

0
E{ρ′(ϵi + x)}dx,

where ρ′ is any subgradient of ρ, so that all examples of loss functions given by Kalogridis (2021)

also satisfy our A2 under the conditions given by that author. Our assumptions do not entail

identically distributed errors, as in our experience this is too strong of an assumption for many

practical settings.

Conditions A3 and A4 concerning the design points (knots) and their positions have been

previously used in the asymptotics of least squares thin-plate spline estimators, see Utreras (1988).

The uniform cone condition precludes sets with very irregular boundaries, but is satisfied quite

generally otherwise; it is satisfied, e.g., by balls and rectangles. Condition A4 is also very modest,

as it essentially requires the design points to be distinct and dense within the domain of interest,

at least for large n. Both of these requirements follow from the fact that the ratio hmax,n/hmin,n
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remains bounded for all large n, as if either the observations are not unique or dense enough as

n → ∞, hmax,n/hmin,n could become unbounded.

With these assumptions we can now state our first asymptotic result. It is worth noting that

in Theorem 1 below we treat the smoothing parameter λ as a random variable possibly depending

on our sample (x1, Y1), . . . , (xn, Yn). We place no restrictions on the way that λ may depend on

the sample and instead merely require that λ is a measurable function of our sample so that λ is a

properly defined random variable. Our treatment of λ needs to be contrasted with the treatment

of the smoothing parameter by other authors, e.g., Cox (1984); Utreras (1988), who regard it as a

deterministic sequence. In our view, our treatment constitutes an important extension of existing

results as λ is most often selected from the data and is thus random rather than fixed, see, e.g.,

the data-driven method of selecting λ presented in Section 3.

Theorem 1. Assume that the conditions of Proposition 1 are met, A1–A4 hold and further that

λ = OP (n
−2m/(2m+d)) as well as λ−1 = OP (n

2m/(2m+d)). Then, there exists a sequence, f̂n, of

M-type thin-plate splines minimizing (3) such that

∥f̂n − f0∥2L2(Qn)
= OP (n

−2m/(2m+d)) and Im(f̂n) = OP (1),

as n → ∞.

The limit conditions involving the smoothing parameter require that λ tends to zero in probability as

n → ∞, but not too fast. The rate of decay n−2m/(2m+d) for λ ensures that the asymptotic variance

and bias of the estimator are balanced and this leads to the rate of convergence n−2m/(2m+d)

for thin-plate estimators. It is worth noting that n−2m/(2m+d) is the optimal (squared) rate of

convergence for functions in Hm(O) (Stone, 1982) and therefore it cannot be improved, except

in trivial cases. For d = 1 our rate of convergence is in agreement with the rate obtained by

Kalogridis (2021) for univariate smoothing spline estimators, but for d > 1 the result in Theorem 1

constitutes an important generalization. The obtained rate of convergence suggests that thin-plate

spline estimators, like most nonparametric estimators, suffer from the curse of dimensionality and

consequently, for given sample size n, estimation becomes less and less precise for larger predictor

dimension d.

Theorem 1 establishes not only a rate of convergence in the empirical norm ∥ · ∥L2(Qn), but also

the boundedness of the semi-norm Im(f̂n). The latter is crucial in extending this rate of convergence

to the L2-norm as well as in establishing optimal rates of convergence of certain useful derivatives.

These extensions are given in Corollary 1 below.

Corollary 1. Suppose that the assumptions of Theorem 1 hold and that hmax,n = O(n−1/(2m+d)).

Then, the sequence of minimizers of (3), f̂n, satisfies∫
O
|f̂n(x)− f0(x)|2dx = OP (n

−2m/(2m+d)),
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and for every (j1, . . . , jd) ∈ Rd such that j1 + . . .+ jd = j ≤ m

∫
O

∣∣∣∣∣ ∂f̂ j
n(x)

∂xj11 . . . ∂xjdd
− ∂f j

0 (x)

∂xj11 . . . ∂xjdd

∣∣∣∣∣
2

dx = OP (n
−2(m−j)/(2m+d)).

The above rates of convergence are again optimal according to the results of Stone (1982). To the

best of our knowledge, these are the first convergence results for derivatives of thin-plate estimators

even in the relatively simple least squares case.

It is interesting to compare the rate of convergence n−2m/(2m+d) obtained herein with the rate

log(n)n−2m/(2m+d) for the least squares thin-plate spline estimator emerging from the results of

Györfi et al. (2010, Chapter 21). The square loss ρ(x) = x2/2 is not covered by our previous set of

assumptions (it is not Lipschitz), but least squares estimators may be easily treated on a separate

basis. In particular, letting f̂n now denote the least squares estimator, one may easily verify the

inequality

∥f̂n − f0∥2L2(Qn)
+ λI2m(f̂n) ≤ 2⟨ϵ, f̂n − f0⟩L2(Qn) + λI2m(f0), (4)

where ⟨ϵ, f̂n− f0⟩L2(Qn) stands for n
−1
∑n

i=1 ϵi(f̂n(xi)− f0(xi)). This inequality combined with our

sharper estimate for the local entropy (compare our Lemma 1 below with Lemma 20.6 in Györfi et

al. (2010)) and the modulus of continuity of the empirical process derived in van de Geer (2000,

Chapter 10) now leads to Theorem 2.

Theorem 2. Assume that the conditions of Proposition 1 are met, A3 holds and that the errors ϵi

are uniformly sub-Gaussian, i.e., there exist finite constants K1 and K2 > 0 such that

sup
n

max
1≤i≤n

K2
1E{e|ϵi|

2/K2
1 − 1} ≤ K2.

If λ = OP (n
−2m/(2m+d)) and λ−1 = OP (n

2m/(2m+d)), then there exists a sequence of least squares

thin-plate spline estimators, f̂n, satisfying

∥f̂n − f0∥2L2(Qn)
= OP (n

−2m/(2m+d)) and Im(f̂n) = OP (1),

as n → ∞.

It is important to emphasize that the sub-Gaussian requirement in Theorem 2 is used exclusively

for the treatment of the least-squares thin-plate estimator and not for the robust estimators for the

treatment of which we rely solely on assumptions A1–A4. The sub-Gaussian requirement is met

in practice, e.g., whenever the errors follow a Gaussian distribution or, more generally, whenever

they possess a squared exponential moment. As noted previously, Theorem 2 improves upon the

corresponding result of Györfi et al. (2010). Rates of convergence for the least squares estimator in
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the L2(O)-norm as well as rates of convergence for the derivatives may now be established exactly

as in the proof of Corollary 1; we omit the details.

3. Computation and smoothing parameter selection

As hinted previously, Proposition 1 is crucial not only from a theoretical, but also from a

practical standpoint. In fact, with the help of Proposition 1 and reasoning along the same lines as

in the proof of Green & Silverman (1994, Theorem 7.3), it can be shown that in order to identify

the minimizer of Ln(f) in (3) it suffices to restrict attention to functions of the form

f(x) =
n∑

i=1

γiηm,d(∥x− xi∥) +
M∑
j=1

δjϕj(x), (5)

where ηm,d : R+ → R is given by

ηm,d(x) =


(−1)m+1+d/2

22m−1πd/2(m−1)!(m−d/2)!
x2m−d log(x) d even

Γ(d/2−m)

22mπd/2(m−1)!
x2m−d d odd,

with Γ(·) denoting Euler’s gamma function. The coefficient vector γ is subject to the set of linear

constraints Φ⊤γ = 0, where the n × M matrix Φ has (i, j)th entry ϕj(xi). In other words, the

coefficient vector γ ∈ Rn needs to be perpendicular to the M -dimensional space spanned by the

restriction of the polynomial functions ϕ1, . . . , ϕM to the design points.

The representation in (5) as well as the set of linear constraints are derived from reproducing

kernel Hilbert space arguments that split the space Hm(Rd) into the closed finite-dimensional null

space of Im(f) and its orthogonal complement. It follows from these arguments that plugging (5)

into (3) yields the quadratic form I2m(f) = γ⊤Ωγ where the n × n matrix Ω has (i, j)th entry

ηm,d(∥xi − xj∥) and the minimization problem becomes

min
(γ,δ)∈Rn×RM

[
1

n

n∑
i=1

ρ(Yi − ω⊤
i γ − ϕ⊤

i δ) + λγ⊤Ωγ

]
s.t. Φ⊤γ = 0,

(6)

with ωi ∈ Rn and ϕi ∈ RM denoting row vectors of Ω and Φ, respectively. It can be shown that

for all γ ∈ Rn satisfying Φ⊤γ = 0 we have γ⊤Ωγ > 0, see Wahba (1990, pp. 32–33) and the

references therein. We may automatically incorporate the linear constraints and further simplify

the problem by putting γ = Qβ for a matrix Q whose columns span the null space of Φ⊤ and

β ∈ Rn−M . The matrix Q can be easily obtained through the QR or singular value decompositions

of Φ. With this simplification, the solution to (6) may be identified using, for example, the variant
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of the iteratively reweighted least squares (IRLS) algorithm employed by Kalogridis (2021) with

the radial basis functions and polynomials in (5) taking the place of B-spline basis functions there.

To determine the penalty parameter λ in a data-driven way, we propose a suitable adaptation

of the strategy of Maronna (2011). Let r− = (r−1, . . . , r−n)
⊤ denote an approximation to the

leave-one out residuals, as obtained, for example, from the last step of the IRLS algorithm. We

propose to select the value of λ that minimizes the robust cross-validation (RCV) criterion

RCV(λ) = |τ(r−)|2,

where τ denotes the robust and efficient τ -scale introduced by Yohai and Zamar (1988) with tuning

constants equal to c1 = 3 and c2 = 5, corresponding to the biweighting of the mean and standard

deviation respectively. This criterion may be viewed as a robustification of the celebrated leave-

one-out criterion (see, e.g., Wahba, 1990, pp. 47–52) in which the τ -scale is replaced by the mean

of squares of the r−i. Thus, while in the classical leave-one-out criterion all the |r−i|2 contribute

equally (with weight n−1 each), the use of the robust τ -scale employed herein reduces the effect of

large |r−i|2 on the selection of λ thereby leading to a robust automatic selection procedure.

4. A Monte Carlo study

We now examine the practical performance of several thin-plate spline estimators by means of

a simulation study. We are interested in the performance of the competing estimators not only in

completely regular data, but also in data that may contain a number of outlying observations. The

estimators to be considered are

• The classical least squares thin-plate spline estimator, abbreviated as LS.

• The least absolute deviations type thin-plate spline estimator with loss function ρ(x) = |x|
abbreviated as LAD.

• The Huber type thin-plate spline estimator with loss function

ρ(x) =

x2/2 |x| < 1.345

1.345|x| − 1.3452/2 |x| ≥ 1.345
,

abbreviated as Huber.

• The logistic type thin-plate spline estimator with loss function

ρ(x) = 2x+ 4 log(1 + e−x),

abbreviated as Logistic.
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To compare the above estimators we generate observations from the model

Yi = f0(xi) + ϵi, (i = 1, . . . , n),

where the regression function f0(x) is either given by f1(x1, x2) = exp[−8|x1− 0.5|2− 8|x2− 0.5|2],
f2(x1, x2) = sin(2πx1) cos(2πx2) or f3(x1, x2, x3) = x21 + x22 + x23, (xi1, xi2, xi3) are uniformly dis-

tributed random variables in the unit square (0, 1)3 and the errors ϵi are generated according to the

following distributions: (i) the standard Gaussian distribution, (ii) the t-distribution with 3 degrees

of freedom, (iii) the skewed t-distribution with 3 degrees of freedom and non-centrality parameter

equal to 1 leading to right-skewed data, (iv) a mixture Gaussian distribution with weights means

equal to 1 and 10, variances equal to 1 and 0.01 and weights equal to 0.85 and 0.15 respectively and

(v) Tukey’s Slash distribution defined as the distribution of the quotient of independent standard

normal and uniform random variables. We assess the performance of the competing estimators

through the mean-squared error (MSE) given by

MSE =
1

n

n∑
i=1

|f̂n(xi)− f0(xi)|2,

which is an approximation to the squared L2-error. Table 1 below reports average MSEs and their

standard errors obtained from 1000 replications with datasets of size n = 100.
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LS Huber Logistic LAD

f0 Dist. Mean SE Mean SE Mean SE Mean SE

f1

Gaussian 7.17 0.11 7.34 0.10 7.39 0.10 11.76 0.14

t3 15.11 0.36 9.52 0.13 9.89 0.15 13.01 0.19

st3,1 74.04 0.87 52.26 0.49 56.92 0.55 48.76 0.52

M. Gaussian 292.2 4.22 21.49 0.40 36.41 0.68 21.06 0.39

Slash 9e+07 3e+06 25.09 0.48 27.16 0.56 27.80 0.56

f2

Gaussian 14.20 0.16 14.17 0.17 13.88 0.17 21.04 0.23

t3 28.25 0.45 21.98 0.37 22.02 0.30 24.44 0.27

st3,1 84.83 0.90 62.13 0.55 66.81 0.58 59.13 0.57

M. Gaussian 311.1 4.18 39.12 1.23 57.14 1.50 34.94 0.89

Slash 4e+07 2e+06 72.19 2.63 56.70 1.38 57.29 0.95

f3

Gaussian 7.72 0.27 7.77 0.26 7.73 0.25 15.07 0.28

t3 18.19 0.75 11.52 0.43 12.01 0.43 18.43 0.33

st3,1 74.37 1.05 53.10 0.57 57.45 0.60 52.47 0.56

M. Gaussian 321.90 6.35 25.89 0.72 43.02 1.47 25.09 0.50

Slash 4e+07 5e+06 45.83 1.40 48.63 1.73 43.66 0.87

Table 1: Means and standard errors of 1000 MSEs (×100) with n = 100 of the least squares, Huber, logistic and least
absolute deviations type thin-plate spline estimators.

The results in Table 1 indicate the sensitivity of least squares estimator to departures from

the (sub-)Gaussian assumption. In particular, even with t3 errors that lead to a few mild outliers,

the least squares estimator significantly loses ground compared to the Huber, Logistic and LAD

estimators. The former two estimators almost match the performance of the least squares estimator

in regular data but also exhibit a high degree of resistance towards gross errors. The LAD estimator

is inefficient relative to its competitors in the situation of light-tailed Gaussian errors, but exhibits

superior performance to the Huber and Logistic thin-plate spline estimators in situations of heavy-

tailed asymmetric contamination, such as contamination incurred by st3,1 and mixture Gaussian

errors.

To illustrate the key practical differences between the least squares thin-plate spline and its

robust counterparts, Figures 1 and 2 present two examples of estimated surfaces by the least squares

and least absolute deviations estimators under Gaussian and mixture Gaussian errors, respectively.

The regression function f1 has a unit-sized bump at (0.5, 0.5), which both estimators get right in

the absence of outliers, as evidenced in Figure 1. Figure 2, however, indicates that least squares

estimates can be heavily distorted by the presence of outlying observations to the extent that the

estimated surface bears no resemblance to the true surface. Despite the heavy contamination, the
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bump is still visible in the right panel of Figure 2, which depicts the LAD estimated surface.

Figure 1: Typical estimated surfaces for f1(x1, x2) = exp[−8|x1 − 0.5|2 − 8|x2 − 0.5|2] under Gaussian errors by the
least squares and least absolute deviations estimators on the left and right panels, respectively.

5. Application: Ozone Levels in Midwestern USA

While stratospheric ozone protects living organisms from ultraviolet radiation from the sun,

high ground-level concentrations of ozone can trigger a variety of health problems, particularly

for people with breathing difficulties, children and the elderly. In this example we examine the

concentration of ground-level in the midwestern US as a function of geographical longitude and

latitude. That is, we consider the model

Ozonei = f0(Longitudei,Latitudei) + ϵi, (i = 1, . . . , n).

The data for this analysis consists of 8-hour average surface ozone from 9am to 4pm in parts per

billion (PPB) from 147 sites in midwestern US on July 3, 1987. The geographical coordinates of

these sites constitute the predictor variables. The present dataset is part of a much larger dataset

which is freely available as part of the fields package (Nychka et al., 2017) in CRAN (R Core

Team, 2022).
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Figure 2: Typical estimated surfaces for f1(x1, x2) = exp[−8|x1 − 0.5|2 − 8|x2 − 0.5|2] under mixture Gaussian errors
by the least squares and least absolute deviations estimators on the left and right panels, respectively.

Since ozone concentration tends to be a skewed random variable with several potentially outlying

values, we have estimated the regression function f0 with both the least squares (LS) and least

absolute deviations (LAD) thin-plate spline estimators. The contours of the estimated surfaces on

the convex hull of the data are depicted in the left and right panels of Figure 3, respectively. The

panels of the figure suggest that while there is broad agreement between these estimated surfaces

around Indianapolis, the surfaces are noticeably different on the central and western part of the

data. In particular, in the areas west and south of Milwaukee and St. Louis, LS estimates tend

to underestimate ozone concentrations relative to LAD estimates. These differences are probably

more consequential when it comes to concentrations in the excess of 60 PPB as these are more

detrimental to one’s health.

In view of the lack of resistance of LS estimators, it may be conjectured that the large differences

between the estimates depicted in Figure 3 are attributable to the presence of atypical observations

within the data. Since robust regression estimators are less attracted to outlying observations, such

observations result in large absolute residuals which we may then use for their detection. A popular

rule of thumb in that respect involves flagging the ith observation as an outlier if its standardized

absolute LAD residual ri/MAD(r) is larger than 2.5. This rule results in the detection of 14

outlying observations for the LAD estimator, but only 7 for the non-robust LS estimator.

13



Figure 3: Contours of the estimated surfaces. Left: contours of the least squares thin-plate spline estimator. Right:
contours of the least absolute deviations thin-plate spline estimator. Darker colors indicate higher ozone concen-
trations. The observation sites are depicted with solid black dots and green rhombuses depending on whether the
observation is classified as an outlier or not.

Figure 4: Contours of the estimated surfaces after removing outlying observations from the data. Left: contours
of the least squares thin-plate spline estimator. Right: contours of the least absolute deviations thin-plate spline
estimator. Darker colors indicate higher ozone concentrations. The observation sites are depicted with solid black
dots.

To demonstrate precisely how sensitive the LS estimator is towards outlying observations, we

have removed the LAD-detected outliers from the dataset and recomputed the estimates. This

results in the left and right panels in Figure 4 for the LS and LAD estimates, respectively. It is

interesting to observe that without these outliers the LAD and LS estimates are much closer to one
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another. Moreover, comparing the right panels of Figure 3 and Figure 4 reveals that, contrary to

LS estimates, LAD estimates have undergone minimal change after removing the outliers from the

data. LAD estimates are thus better able to describe the bulk of the data than their sensitive LS

counterparts.

6. Conclusion

The present paper introduces robust estimators for multivariate nonparametric regression mod-

els based on the highly advantageous thin-plate penalty. The proposed class of estimators enjoys

optimal theoretical properties under mild assumptions and can be expediently computed even in

high dimensions. There are several research directions worth exploring from here. Our theoretical

treatment relies on a specific rate of decay of λ and it is not known whether λ attains this rate of

decay when determined by our robust cross validation procedure. In order to ascertain whether

this is the case, a close investigation of robust model selection procedures can be worthwhile. Addi-

tionally, our treatment rests upon the convexity of the loss function and hence the important class

of redescending thin-plate estimators is left out. Future effort can therefore be directed towards a

dedicated treatment of these estimators.

An important generalization of our ideas would involve robust estimation of multivariate non-

parametric generalized linear models, where the distribution of the response variable can be any

member of the exponential family, thus significantly extending the range of applications. Such an

estimator may be based on, for example, the thin-plate penalty proposed herein and the density

power divergence, as used by Kalogridis et al. (2023) in the univariate setting.

Another important area of research where thin-plate splines are likely to be successful is func-

tional data analysis and, in particular, location and dispersion estimation from discretely sampled

functional data. For the location case, thin-plate splines may be used to extend the robust estima-

tor of Kalogridis and Van Aelst (2022) for discretely sampled functional data on a bounded interval

to discretely sampled functional data on much more complicated multivariate domains, such as a

sphere. For dispersion estimation, thin-plate splines can be combined with resistant loss functions

and provide a potent alternative to estimators based on tensor product penalties, see, e.g., (Hsing

& Eubank, 2015, Chapter 8). We aim to study these important generalizations as part of our future

work.

Appendix: Proofs of the theoretical results

Proof of Proposition 1. The result would follow by direct application of Theorem 3.2 of Cox &

O’Sullivan (1985) provided that we can check the conditions of that theorem. Since I2m is a squared

semi-norm on Hm(Rd) and Im has a finite M -dimensional null space, these conditions entail the
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convexity and weak lower semicontinuity of the map

Hm(Rd) → R+ : f 7→ n−1
n∑

i=1

ρ(Yi − f(xi)).

We only need to check weak lower continuity, because convexity follows easily from the convexity

of ρ. Convexity also implies that we only need to establish the lower semicontinuity of the map,

as by the Hahn-Banach theorem (Rynne & Youngston, 2008) convexity and lower semicontinuity

imply weak lower semicontinuity. To that end, let {fk}k denote a sequence in Hm(Rd) converging

to some f⋆. By the Sobolev embedding theorem (Adams & Fournier, 2003, Theorem 4.12), we have

max
1≤i≤n

|fk(xi)− f⋆(xi)| ≤ c0∥fk − f⋆∥Hm(Bd
rn

(0)) ≤ c0∥fk − f⋆∥Hm(Rd),

for some c0 > 0 not depending on k, where Bd
rn(0) denotes the smallest ball in Rd containing all the

xi and ∥·∥Hm(Bd
rn

(0)), ∥·∥Hm(Rd) denote the standard Sobolev norms on Bd
rn(0) and R

d, respectively.

Letting k → ∞, we find that max1≤i≤n |fk(xi) − f⋆(xi)| → 0. The continuity of ρ concludes the

proof.

We now introduce some useful notation that will be used in the proof of Theorem 1 and Theo-

rem 2. Let Qn denote the probability measure on (Rd,B(Rd)) given by

Qn(A) =
1

n

n∑
i=1

I(xi ∈ A), A ∈ B(Rd),

where I(·) denotes the indicator function. Let F denote a class of real-valued functions on some

domain X ⊂ Rd. The δ-entropy for F in the L2(Qn)-norm, H(δ,F ,L2(Qn)), is defined as the

logarithm of the smallest number N for which there exists a collection of functions f1, . . . , fN such

that for every f ∈ F there exists a j = j(f) ∈ {1, . . . , N} with the property{∫
X
|f(x)− fj(x)|2dQn(x)

}1/2

≤ δ.

Similarly, we define the δ-entropy with respect to the supremum norm, H∞(δ,F), as the logarithm

of the smallest N for which there exists f1, . . . , fN such that for every f ∈ F there is a j = j(f)

with the property

sup
x∈X

|f(x)− fj(x)| ≤ δ.

It is clear that H(δ,F ,L2(Qn)) ≤ H∞(δ,F) for all δ > 0. To lighten the notation in all our proofs

below we will use c0 to denote generic constants. Thus, the value of c0 may change from appearance
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to appearance.

Lemma 1. Assume A3 and A4 and that 2m > d. Then, there exists a universal constant c0,

independent of n, such that

H(δ, {f ∈ Hm(Rd), ∥f∥L2(Qn) ≤ 1, Im(f) ≤ M},L2(Qn)} ≤ c0

(
M

δ

)d/m

, δ > 0, M ≥ 1.

Proof. Observe that by A3, Qn is restricted to the open set O and for any A ∈ B(Rd) we have

Qn(A) = Qn(A ∩ O). Therefore, for any (f, g) ∈ Hm(Rd)×Hm(Rd) we find∫
Rd

|f(x)− g(x)|2dQn(x) =

∫
O
|f(x)− g(x)|2dQn(x)

≤ sup
x∈O

|f(x)− g(x)|2.

Hence, to bound H(δ,F ,L2(Qn)} it suffices to obtain a bound on

H∞(δ, {f ∈ Hm(O), ∥f∥L2(Qn) ≤ 1, Im(f) ≤ M}), δ > 0, M ≥ 1. (7)

To bound (7) we start by showing the following inclusion

{f ∈ Hm(O), ∥f∥L2(Qn) ≤ 1, Im(f) ≤ M} ⊂ {f ∈ Hm(O) : ∥f∥Hm(O) ≤ c0M}

for some c0 > 0 and all M ≥ 1, where ∥ · ∥Hm(O) is the Sobolev norm given by

∥f∥Hm(O) =

{∫
O
|f(x)|2dx+

∑
m1+...+md=m

(
m

m1, . . . ,md

)∫
O

∣∣∣∣ ∂mf(x)

∂xm1
1 . . . ∂xmd

d

∣∣∣∣2 dx
}1/2

.

To establish this inclusion, take an f ∈ Hm(O) such that ∥f∥L2(Qn) ≤ 1 and Im(f) ≤ M for some

M ≥ 1. Our assumptions imply those of Theorem 3.4 in Utreras (1988), hence an application of

that theorem reveals the existence of a constant c0 such that∫
O
|f(x)|2dx ≤ c0

∫
O
|f(x)|2dQn(x)

+ c0
∑

m1+...+md=m

(
m

m1, . . . ,md

)∫
O

∣∣∣∣ ∂mf(x)

∂xm1
1 . . . ∂xmd

d

∣∣∣∣2 dx
≤ c0

{
1 + I2m(f)

}
≤ c0M

2,

17



where the last inequality follows from our assumption that M ≥ 1. With this bound we now obtain

∥f∥Hm(O) ≤
{
c0M

2 + I2m(f)
}1/2 ≤ c0M,

as claimed.

The final step of the proof is a bound on

H∞
(
δ, {f ∈ Hm(O) : ∥f∥Hm(O) ≤ c0M}

)
, δ > 0,M ≥ 1.

But this is the entropy of the closed c0M -ball and Proposition 6 of Cucker & Smale (2001) implies

the existence of a universal c0 such that

H∞
(
δ, {f ∈ Hm(O) : ∥f∥Hm(O) ≤ c0M}

)
≤ c0

(
M

δ

)d/m

, δ > 0,M ≥ 1.

The proof is complete.

Proof of Theorem 1. The proof of the theorem employs the convexity argument of van de Geer

(2002) combined with the Sobolev embedding theorem in order to localize the behaviour of the

objective function around f0. A tight bound on the asymptotic variance is established with the

help of an exponential inequality based on the improved entropy estimates obtained in Lemma 1.

Write Ln(f) = Mn(f) + λI2m(f) where Mn(f) = n−1
∑n

i=1 ρ(Yi − f(xi)). Observe that Ln(f)

is the sum of two convex functions and as such it is itself convex. By Proposition 1 there exists a

minimizer of Ln(f) in Hm(Rd), which we denote with f̂n. Put

f̃n = αf̂n + (1− α)f0,

for some α ∈ (0, 1) to be chosen. As f0 ∈ Hm(Rd) we have

Ln(f̃n) ≤ αLn(f̂n) + (1− α)Ln(f0) ≤ Ln(f0),

from where, after adding E{Mn(f̃n)−Mn(f0)} on both sides, we get

E{Mn(f̃n)−Mn(f0)}+ I2m(f̃n) ≤
[
Mn(f0)− E{Mn(f0)} −Mn(f̃n) + E{Mn(f̃n)}

]
+ I2m(f0). (8)

We choose α = 1/(1 + ∥f̂n − f0∥L2(Qn)). Clearly, α ∈ (0, 1) and

∥f̃n − f0∥L2(Qn) = α∥f̂n − f0∥L2(Qn) ≤ 1.

Our proof consists of deriving a lower bound on the left-hand side of (8) and an upper bound on
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the right-hand side of (8), both in terms of ∥f̃n − f0∥L2(Qn).

We begin with the lower bound. By assumption 2m > d and O is a bounded set satisfying the

uniform cone condition. Therefore, by Sobolev’s theorem (Adams & Fournier, 2003, Theorem 4.12)

we have the (compact) embedding

Hm(O) → C(O),

which implies the existence of a universal c0 > 0 such that for any f ∈ Hm(O) ⊂ C(O),

sup
x∈O

|f(x)| ≤ c0

{∫
O
|f(x)|2dx+ I2m(f)

}1/2

.

Approximating
∫
O |f(x)|2dx with

∫
O |f(x)|2dQn(x), as in the proof of Lemma 1, yields

sup
x∈O

|f(x)| ≤ c0

{∫
O
|f(x)|2dQn(x) + I2m(f)

}1/2

.

Now, since I2m is a squared semi-norm and I2m(f0) is bounded, I2m(f0) ≤ 1, say, this inequality

reveals that for all f ∈ Hm(Rd) satisfying ∥f − f0∥L2(Qn) ≤ 1 we have

sup
x∈O

|f(x)− f0(x)| ≤ c0
{
1 + I2m(f − f0)

}1/2 ≤ c0{1 + I2m(f)}1/2.

It follows that we can choose a large enough Dκ > 1, not depending on f , such that

sup
x∈O

|f(x)− f0(x)|
Dκ{1 + I2m(f)}1/2

≤ κ,

where κ is the constant in assumption A2. Therefore, for all f ∈ Hm(Rd) satisfying ∥f−f0∥L2(Qn) ≤
1, by A2, we find

E{Mn(f)−Mn(f0)} =
1

n

n∑
i=1

E {ρ (ϵi + f0(xi)− f(xi))− ρ (ϵi)}

≥ 1

n

n∑
i=1

E

{
ρ

(
ϵi +

f0(xi)− f(xi)

Dk {1 + I2m(f)}1/2

)
− ρ (ϵi)

}

≥ κ
∥f − f0∥2L2(Qn)

D2
k {1 + I2m(f)}
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It follows that

inf
f∈Hm(Rd):∥f−f0∥L2(Qn)≤1

E{Mn(f)−Mn(f0)}

κ
∥f−f0∥2L2(Qn)

D2
κ{1+I2m(f)}

 ≥ 1

and from this, since, by construction, f̃n ∈ Hm(Rd) and ∥f̃n − f0∥L2(Qn) ≤ 1, we see that

E{Mn(f̃n)−Mn(f0)} =
E{Mn(f̃n)−Mn(f0)}

κ
∥f̃n−f0∥2L2(Qn)

D2
κ{1+I2m(f̃n)}

κ
∥f̃n − f0∥2L2(Qn)

D2
κ{1 + I2m(f̃n)}

≥ κ
∥f̃n − f0∥2L2(Qn)

D2
κ{1 + I2m(f̃n)}

inf
f∈Hm(Rd):∥f−f0∥L2(Qn)≤1

E{Mn(f)−Mn(f0)}

κ
∥f−f0∥2L2(Qn)

D2
κ{1+I2m(f)}


≥ κ

∥f̃n − f0∥2L2(Qn)

D2
κ{1 + I2m(f̃n)}

(9)

This provides a lower bound for the left-hand side of (8) and completes the first part of our

derivation.

Next, we derive an upper bound for the right-hand side of (8). To accomplish this, we need

to derive the modulus of continuity of the mean-centered process Mn(f) − E{Mn(f)}. We will

apply Lemma 8.5 of van de Geer (2000) to this process. First, observe that by A1 for all (f, g) ∈
Hm(Rd)×Hm(Rd) we have

|ρ(Yi − f(xi))− ρ(Yi − g(xi))| ≤ c0|f(xi)− g(xi)|,

so that the lemma is applicable with di(f, g) = |f(xi)−g(xi)| in the notation of van de Geer (2000).

In combination with Lemma 1 we thus have

sup
f∈Hm(Rd):∥f−f0∥L2(Qn)≤1

∣∣∣∣∣∣Mn(f0)−Mn(f)− E{Mn(f0)−Mn(f)}
n−1/2∥f − f0∥1−d/2m

L2(Qn)
{1 + Im(f)}d/2m

∣∣∣∣∣∣ = OP (1),

so that

Mn(f0)−Mn(f̃n)− E{Mn(f0)−Mn(f̃n)} = OP (n
−1/2)∥f̃n − f0∥1−d/2m

L2(Qn)
{1 + Im(f̃n)}d/2m, (10)

which provides the desired upper bound for the right-hand side of (8).
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Plugging the lower bound in (9) and the upper bound in (10) into (8), we finally obtain

c0
∥f̃n − f0∥2L2(Qn)

1 + I2m(f̃n)
+ λI2m(f̃n) ≤ OP (n

−1/2)∥f̃n − f0∥1−d/2m
L2(Qn)

{1 + Im(f̃n)}d/2m + λI2m(f0). (11)

This inequality implies that

∥f̃n − f0∥2L2(Qn)
= OP (n

−2m/(2m+d)) and Im(f̃n) = OP (1). (12)

To see this implication, note that if for real numbers a, b, c we have a ≤ b+ c then either a ≤ 2b or

a ≤ 2c. Applying this on (11) leads to either

c0
∥f̃n − f0∥2L2(Qn)

1 + I2m(f̃n)
+ λI2m(f̃n) ≤ OP (n

−1/2)∥f̃n − f0∥1−d/2m
L2(Qn)

{1 + Im(f̃n)}d/2m, (13)

or

c0
∥f̃n − f0∥2L2(Qn)

1 + I2m(f̃n)
+ λI2m(f̃n) ≤ 2λI2m(f0). (14)

If (14) holds, (12) is easily verified. On the other hand, if (13) holds, solving it we get

∥f̃n − f0∥L2(Qn) = OP (n
−m/(2m+d)){1 + Im(f̃n)}

d
2m+d {1 + I2m(f̃n)}

2m
2m+d ,

as well as

I2m(f̃n){
1 + Im(f̃n)

} 2d
2m+d

{
1 + I2m(f̃n)

} 2m−d
2m+d

= OP (n
−2m/(2m+d))λ−1.

By our assumptions on λ, the latter implies that Im(f̃n) = OP (1). Hence, ∥f̃n − f0∥L2(Qn) =

OP (n
−m/(2m+d)) verifying (12) again.

The last step in our proof involves passage from f̃n to f̂n. For this, first note that by definition

of the convex combination f̃n and (12),

∥f̃n − f0∥L2(Qn) =
∥f̂n − f0∥L2(Qn)

1 + ∥f̂n − f0∥L2(Qn)

= OP (n
−m/(2m+d)),

whence also ∥f̂n − f0∥L2(Qn) = OP (n
−m/(2m+d)). Finally, since again by (12) Im(f̃n) = OP (1), by

the triangle inequality we get

Im(α(f̂n − f0)) ≤ Im(f̃n) + Im(f0) = OP (1).
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But then also Im(f̂n − f0) = OP (1), which implies the result. The proof is complete.

Proof of Corollary 1. The first part of the Corollary follows from Theorem 3.4 of Utreras (1988)

which in our case reads∫
O
|f̂n(x)− f0(x)|2dx ≤ c0

∫
O
|f̂n(x)− f0(x)|2dQn(x)

+ c0h
2m
max,n

∑
m1+...+md=m

(
m

m1, . . . ,md

)∫
O

∣∣∣∣∣∂m(f̂n(x)− f0(x))

∂xm1
1 . . . ∂xmd

d

∣∣∣∣∣
2

dx,

for some constant c0 that does not depend on either f̂n or f0. Applying now Theorem 1 and our

assumption hmax,n = O(n−1/(2m+d)) yields∫
O
|f̂n(x)− f0(x)|2dx = OP (n

−2m/(2m+d)) + c0h
2m
max,nOP (1)

= OP (n
−2m/(2m+d)) +OP (n

−2m/(2m+d))

= OP (n
−2m/(2m+d)),

as asserted.

For the second part of the Corollary we apply an interpolation inequality due to Nirenberg

(1959), a simplified version of which states

∫
O

∣∣∣∣∣ ∂f j(x)

∂xj11 . . . ∂xjdd

∣∣∣∣∣
2

dx ≤ c0

{∫
O

∣∣∣∣ ∂fm(x)

∂xm1
1 . . . ∂xmd

d

∣∣∣∣2 dx
}j/m{∫

O
|f(x)|2dx

}1−j/m

+ c0

∫
O
|f(x)|2dx,

for every f ∈ Hm(O), where c0 is a universal constant and the inequality holds for all tuples

(j1, . . . , jd) and (m1, . . . ,md) such that j1 + . . . + jd = j and m1 + . . . + md = m, respectively.

Now apply this inequality with f replaced by f̂n − f0 and use the first part of the corollary and

Theorem 1 to get

∫
O

∣∣∣∣∣ ∂f̂ j
n(x)

∂xj11 . . . ∂xjdd
− ∂f j

0 (x)

∂xj11 . . . ∂xjdd

∣∣∣∣∣
2

dx = OP (1)OP (n
−2(m−j)/(2m+d)) +OP (n

−2m/(2m+d))

= OP (n
−2(m−j)/(2m+d)),

which completes the proof.

Proof of Theorem 2. For uniformly sub-Gaussian errors ϵi and under Lemma 1, the derivation on
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van de Geer (2000, p. 168) shows that

1

n

n∑
i=1

ϵi(f̂n(xi)− f0(xi)) = OP (n
−1/2)∥f̂n − f0∥1−d/2m

L2(Qn)
{1 + Im(f̂n)}d/2m.

Plug this into (4) to obtain

∥f̂n − f0∥2L2(Qn)
+ λI2m(f̂n) ≤ OP (n

−1/2)∥f̂n − f0∥1−d/2m
L2(Qn)

{1 + Im(f̂n)}d/2m + λI2m(f0).

Now argue as in the proof of Theorem 1 to complete the proof.
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