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Abstract

This thesis consists of two parts: in the first part we develop a language-indepen-
dent framework for efficiently solving concept learning problems; in the second part
we apply this framework to Inductive Logic Programming.

We view congept learning as a seaich problem. In the well'known framework of
'Ver's‘i(_)'n_spa.c_es a bi:directional depth-first séarch algorithm that learns a maximally
general and maximally specific concept representation is presented, and ¢ontrastedto
the breadth:first approach of Mellish’s Description. Identification algorithm. In this
‘context, we identify redundant information elements; iri ordert6 reduce tke memory’
needed for storing information elements. We dESC‘[ibE how automa.t:cally generated

‘informatien elements can replace less informative ‘ones.

Next, we._extend_-th_ls framework {0 descnbe_- the more complex versi'onspa.ces that
originate from introducing disjunctions. To be practically useful, we gradually restrict
these disjunc’five .versionép_a._ces by iuip‘os_ing preference criteria, based on notions
of minimality. This leads to extensions of“the non-disjunctive algorithms to the
disjunctive case.

In the second part. of the thesis we show in detail how this ‘general framework
_can be mstantia.ted to Inductive Logi¢c Programming. In this respect. we also discuss
the integration of machine learning in'a planning system based en Horn '¢clause logic:
This illustrates. that the use of a logical representation allows & smooth integration
of Machine Learning-and Problem Solving.

In summary, the:thesis contributes to the understanding and the devélopment of
‘search algorithms for concept learning in general, by developing a language indepen-
‘dent framework, and by introducing several novel and generally applicable concept
learning technigues. ‘The application in the second part of the thesis shows that the
framevork is practically tseful; and that it ‘contributes to the field of Inductive: Logic -
Programming.. '
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Chapter 1

Introduction

Machine Learning (ML) originated in the context of Artificial Intelligence. (AI), mainly.
motivated by the observation that no intelligence is possible without learning (e.g., [Rich
and Knight, 1991]) Consequently, machines that are to behave intelligently must be
able to learn. Many researchers have tried to give a definition for learning. The kéy
point in ell definitions is that learning systems adapt themselves. The stimulus for the
adaptation can beexternal (e.g., the observation of changes inthe environment ), or internal
(e.g., a reasoning process that leads to new insights). [Michalski, 1986] distinguishes-two

eletrients that can be adapted: knowlédge and skills, Hence, two forms ‘of learning can be
distinguished: knowledge acquisition and skill acquisition. _The term “knowledge refers to;
pieces of information that the intelligent system uses to infer solutions for the problems it
has to solve: The term “skills” refers to perceptive, motoric and cognitive abilities that are
to be #rained in order to improve them. Knowledge is used for reasoning; skills are used
for ‘acting and reacting. Classical AI has been concerned with knowledge-based probleri
solving, e.g., in the development of rule-based systems, planning, theorem proving, game-
playing, ...Recent research areas such as reinforcement learning and reactive plagring
show that automated skill acquisition also belongs to the domain of A1, In.this thesis we
are concerned with Machine, Learnmg in the knowledge acquisition sense.

A knowledge-based system or problem solver uses its knowledge to solve problems using
one or inore inferefice mechanisms. From our initial point of view we can say that such
a system can only be considered intelligent if it also contains ca.pabxhtles to acquire new
knowledge or to update its current knowledge. A knowledge-based system can contain
several types of knowledge: domain-specific knowledge, knowledge about how to solve
-particular (types of ) problems, knowledge about how to solve particular (types of ) problems
e)fﬁ'czentfy, kngwledge about solutions to previous problems, knowledge about itself; etc.
To acquire this kind of knowledge the knowledge-based system could apply several learning
techniques: learning by induction on several problem solutions, learning by analogy. with
Previous problem sclutions, learning - 'from experience from previous problem sohitions, etc.
.In general a knowledge based system can thus use several kisids of problem solvmg inference
‘mechanisms, it could contain several types of knowledgeé and it could acquire knowledge by
means of several different learning mechanisms. This gives rise to-a problem of- infegration:
bow to let.problem solving and learning cooperate on several types of knowledge? Or,if one
views learning.as just another problem solving task: how to let several kinds of mference
mechanisms cooperate in general?
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Figure 1.1 Leéarning in between solving problems

1.1 Integrating Machine Learning and Problem
Solving

In the field of machine learning, integrating several kinds of learning mechanisms gave rise
to a.new. area of research called Multistrategqy Learning [Michalski and Tecum 1994]. In
this thesis we will rather focus on the problem-of integrating ode type of problem solvmg
mechanism with one type of learning mechanism. We will start from the point of view of
havinga prob]ern solving system that acquires new knowledge in between solving problems.
The knowledge it acquires must- be processed (1 e., must be learned), such that it can be
used. later for solving more problems. The s_ystern learns ingrementally in the sense that
new information is processed as it comes, and énée processed, it can imrmediately be used
by the problem solver. At the same time, we let the system be curious: it can invent new
_problems for which a solution would be relevant in the léarning process, and thus for futare
problem solving. This means that the system learns interactively: an-interactive process
between the learner and the. prohlem solver provides new relevant-information.

The basic cycle of a system of this kind is represesited in Figure 1.1, This diagram
originated in the context of LEX [Mitchell et al, 1983]. Problems are solved by the
problem solver, The solutions are evaluated by the critic. During the evaluation of a
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proposed sohition the solution might turn out to be incorrect, due to erroneous knowledge
in the system; or, the solution might at the same time solve some other problems, an effect
that was unexpected. The result of the evaluation is used by the learner to update the -
knowledg&, in- order to find better solutions for fiiture problems. The problém generator
generates new problems; the feedback of solving and evaluating these problems. can give
relevant information to learn from.

To focus on an example, suppose the problem solver is a planning system, Given
a certain goal, the planner makes a plan, To evaluate the plan, the plan is execiited.
‘The execution of certain actions in-the plan- might fail, or might not have the desired
cutcome, Others might have unexpected effects. Yét others have exactly the expected.
‘outcorie. Given this feedback, the learner updates the knowledge, if necessary, 1o improve
the planning process on fitture problems, Then the problem generator: designs a new-
planning problem, the solution of which will be executed, and so on. In LEX, this-design
was. used o learn heuristics for solvmg symibalic mtegratlon problems.

The learning system assimilates all knowledge it receives from the critic, knowledge’
about particular solutions (or even parts of solutions) tegéther with their evalua.tion The.
learned knowledge then ought to be useful, not only for solving the same problem again, but.
also for solving other, more or less similar, problemns. [Michalski, 1986] distinguishes- three'
criteria.for’ eva.luatmg the quality of the learned knowledge w.r.t. the problem solver: the-
knowledge’s validity (i.e,, its degree with which it corresponds to reality), its effectiveness

—-{}eits-degree-of usefulness-of- the knowledge inackieving thegoals of the "Probler §6) ver)_,""""" '

and its abstraction level (i.e., its scope and degree of detail). ‘The quality of the learned
know_ledgc__along_ these three dxmensmns in'a sense also determines the quality of the learner.

1.2 Integration in a logical representation

Whereas the previous section describes the problem of integrating a problem solver and a
learner in terms of knowledge in general, we will now take a look at.a lower, miore: symbolic,
level, on whlch we are concerned with representation. formalisims.

 In this thesis we will concentrate on one particular’ type of learning: learning of concepts
from examples. In the context of the previous section, exa,mples are particular selutions
to problems. These solutions could have been correct solutzons, or-not; this is to be
determined by the critic. Concepts are sets of correct solutions in which corhrdon general
rules for solving. the problem are applied. The idea behind concept -learning is fo induce
these general rules, from the particular solutions, together with their evaluation class:

The three criteria- validity, eﬁectweness and abstraction can also be évaluated on this
level. First, it 1s important for the- validity of the learned knowledge that the learner and
the prob]em solver interpret the representation in the same way. Second, it is 1mportant-
that both mechanisms can use the chosen representation. This- ‘supposes that for both
components the representation can at least be- transformed to a representation that can be
used by the.component. Third, it is necessary that both systeins use the samie abstraction
level of symbols, or again can transform their. knowledge to a'cotnimon level of abstraction.

We drgue that on éach of these points the use of a logical representation formalism
cotnimon to the problem solver and the learner is a natural way of integration. Because:
of its' mathematical well-foundedness, a logical representation allows a élear view on the
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semanti¢s of the used representation. Furthermore logic provides a well-defined framework
to describe the relations between problems and their solitions: The éxpression of these
relations in a logical representation formalism can be used for solving problems in many
problem.domains. One such .domain is, for- instance, planning where ‘the combined use of
deduction and abduction proves to be useful (see Cha.pter 6) Tf we.view the learner as a
problem solver itself; another such domiain is Inductive Logic Programmmg, which solves:
the learning task in'a logical framework (see Chapter 5). Finally, by using a common logical
language, the problem solver and the learner can use knowledge of the same abstraction
level.

Another important feature of a logical representation formalism is its expressiveness,
and theréfore its applicability in a wide number of domains. A logical representation also
allows a-declarative view on knowledge: knowledge can be seen independent of the way or
the system it is going to be used in, it is modular, and it allows a declarative reading by
humans (see {Omar, 1994})

Some people. criticize the use of logical representation formalisms, arguing that it is.
not feasible {0 implement logic-based systems on a large scale. _Anothe_r critique is that
the nature of knowledge is not logical and declarative, but procedural, and that it miist
be compiled to be effective. We will not -argue this might not be so, but even if the
latter critiques would turn out fo be fundamental in implementing Al-systems, we believe
it is still useful to use logical representations to study these systems, and to study the
fundamental problems with these systems. In particular, on the problem of integrating
problem solving and learning; if the use of logic allows a straightforward: representation for
problem solving and for learning, effort can be put in the study of other problems of the
integrated architecture, such as the problem of controlling when to solve problems, when
to learn, when to generate new problems, etc.

In this we want to take the same viewpoint as (Buntine, 1987] takes on the use of Horn
Clause representations in machine learning:

“We believe that having a good understanding of inductive learning and its ap-
plications in the context of Horn Clauses, we can improve our understanding
‘of comparable problems in-more extensive knowledge representations, for in-
stance, ones incorporating uncertainty or using a different subset of first-order
logic - as often found in knowledge-based systems.

We argue that, even if there are technical difficulties in using logical. representation: for-
rhalisms eﬁ'ectlvely iti knowledge-based systems, it is still useful to deseribe the problem. of
integration and possible solutions in a logical representation, because of the clear maths-
matical framework logic provides.

1.3 Integrating MI and Problem Solving in
practice

Let us take a lock at how the integration of ore problem solving strategy and one learring
strategy is realized in existing systems.

Adapting the knowledge base of knowledge-based systems in dynamic domains.is a
tedious task if it must be done by hand. In the above sense such a system would not be
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called intelligent. A more advanced solution is to build up and change the knowledge base
using intelligent knowledge acquisition and knowledge base validation and verification tools.
‘These tools can be seen as a part of the knowledge-based system, which would therefore
become intelligent. Moreover, the more intelligent the behavior of the tocl, the more the
whole systemn could be considered untelligent, and the less effort is required from the user of
‘the system. At the extreme, one wold like.to just tell the new knowledge to the system, or
even bettér, the intelligent tool would know how-and ‘where to dcquire new knowledge by
itself. In general, this kind of systems could be called learning apprentice systems [Smith et
al., 1985], [Mitchell et al., 1985], [Tecuci and Kodratoff, 1990).
Mote specific examples’ are the applications in tools for

# acquiring expert systems knowledge [Bratko et al., 1989),
o -in__dixc_:fiv.c‘-cng'ineerin_g. [Bratko et al._, ;1-989}'_,
e planning and scheduling [Minton, 1993),

knowledge elicitation and knowledge acquisition [Morik et al., 1993),

o knowledge base validation and verification [De Raedt et al., 1991],

o program testing [Bergadano et al., 1993},

o program construction and-verification [Bratko and Grobelnik, 1993],
¢ analyzing large databases [Van Laer ef ol., 1994],

By investigating more applications of machine learning in other areas, the problem of inte-
gration has become rmore apparent. The.inteégration is often not straightforward: machine
learning tocls may be'too general (i.e., not domain-specific enough) to be applied in re-
alistic. applications.. On the other hand, domain-specific approaches are often not easily
transferable to other domains. Therefore there is‘a need for research on the infegration
aspect itself, to find the requirements and the properties of & good integration.

Example

In this context we introduce the example that is going to be used throughout the thesis.
Recently software tocls for personal assistance also tend to integrate machine learning
techniques, e.g., smart mailboxes or search engines [Etzioni, 1993b], [ledermaur, 189%], A
smart mailbox is an autonomous agent that manages the user’s electronic communication.
At first it observes how the user p_rbccSSES'_all types of electronic information, and after a
while offers to create some standard rulesfor handling future incoming information. These
applications are assisting the computer user in mahaging his or her Cdm-puter system, and
are therefore (still) relying on the user for confirmation of the rules they learn and of the
decisions they have nio-evidence for yet. For these systems an interactive concept learning
system such as' CLINT [De Raedt, 1992} would be well-suitéd. On the other hand; in the
future there will also be aneed for tools that can work autonomiously, i.4., non-interacting.
with & user, in case there is no person available that can answer these questions. These

1This list i's-or_ily:illilst_ra‘ci_ve, andln no way to be interpreted exhaustively.
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autonomous agents will have to collect the evidence for their knowledge by themselves. One
could think of a tutoring program for a windowing systemn that can automatically adapt.
to newer versions of the windowing system, or of WWW-indexing-agents that search and
index information found on the World Wide ‘Web, and meanwhile find regularities-in the
huge amount of Web pages.

We will elaborate on the examplé of an autenomous tutor. ‘Suppose a movice has to
learn how to'use a certain computer program. For this reason computer producers include
tutorials, in the early days on paper, nowadays more and more as separa.te programs, called
tutors, A tutor typically explains how fo perform certain tasks iu the dornain, gives the
novice somie analogous tasks, evaluates the solutions; explains questions of the studeut,_ and
/50 On. Ihcrement’aily the tutor féackes the novice how to:use the program. -More and miore
tutoring systems behave intelligently in their strategy to guide the learning process of the
novice, by learning the behavior of the novice (see Intelligent Tutoring Systems [Sleeman.
and Brown, 1982] [Clancey, 198?]) Now the question we want to address is:' how did the
‘tutor acquire the knowledge about the-computer progmm"’ Most probably, somebsdy who.
knows the program very well has programmed his or her knowledge.into the tutor. Buit
then, each: time new versions of the program or similar programs are released, the tutor
‘has to be adapted by humans. In the future intelligent tutors will proba.bly have learning
_ca.pa.blhtles thermselves.

To focus attention on a particular example, suppose we. are usmg an operatmg system.
with a graphical user interface. Graphical user interfaces for operating systems in general
‘tend to look alike, but then again have very different functionalities for, e.g., opening and
clesing” docurne:nts by double-clicking, or moving them towards another folder and so on.
Although there are emerging common features, differences remain. Moreover, in futire
wversions of $he graphical user interface some fea.tures may have been changed or added.
This motivates the extension of this tutor with autonomous learning. capabilities, so-that
it can adapt to future-versions without heving o be reprogrammed. .

On the other hand, using a graphical user interface requirés some planning capabilities.
In order to open a document, one typically has to go to the folder (or: directory) the
docurnent is in, and, for instance, double elick the icon of ‘the document. To remove a
‘document from = di sk_, again one has to finid the jcon of the document, and drag it into the
trash. In order fo recover a document from the trash, one has to.open the trash, and select
the “Put Back™ command in one of the menus. These are planning problems the tutor must
be able to solve, for if it asks the novice to perform a certain task in a particular situation,
the tutor must be able to solve the task itself. Furthermore, it must be able to evaluate.
the novice’s solution. If-the novice, for instance, needed to remove a certain ﬁle, and had
to open ten or. more folders before finding the file, the tutor might advisé the novice to
first use the menu-command “Find File”, which will help to search for the particular file.
Te conclude, this motivates the need for the tutor to have planning capabilities.

How would the tutor then:automatically acquire its knowledge? Given.a new (release
of a) graphical user interface, the antonomous tutor can try to find out whether or not
some features, necessary for its tutoring, have changed. It-could for instance try to solve
't_h_e_ta.s_ks it wo_uld give to a novice in several s__ltua.tl_ons.ltself It could try and set Hp sommie-
experiments, and try to fitd out how the graphical user interface behaves in well-chosen.
‘situations.. In-short, the tufor gets to play with a graphical user interface, just as most
‘humans familiar with similar environments would try out new programs. Of course this
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does. not exclude any additional capability of the autonomous tutor to be told some things
by humians. Neither does it exclude the possibility that the autonomous tutor would not
be able to capture some of the new features and that it would report this.

To summarize:. in-this éxample the autonomous tutor basically has two states: a state in
which it is tutoring a hovice, anda state in which:it is- acquiring its own domain knowledge
It is on the learning process in the latter state that we will focus in our examples.

1.4 Overview of the thesis and Main contributions

In the previous sections, we have outlined the context of the learniinig problems we want

to solve; we-aim at an autonomous learning system that is suitable-for an interactive in-

‘tegration with a problem solver. Therefore, we will need an. mcremenial lea.rnmg system,

adapting its- knowledge in between problem solving. Furthermiore, we want to use ‘the.
learning system on logical representations (in particular on-first order logic-language rep-
resentations), because this facilitates the integration with problem solving. In the learning

task, we will from the start adopt two major restrictions: we learn only one concept at a

tlrne assuming the.other ‘concepts are completely known, Furthermore, we assume there

are no-errors in the examples from which the concepts have to be induced.

Although we are mainly interested in-applying Induétive Logic Programming (i.e.,learn-

~itig first-order logic Tepresenitations ), the first three chapiers do not specifically concentrate-

on Inductive Logic Programming. Inductive Logic Programming is one. possible instantia-
tion' of more general frameworks for concept learning (e.g., Versionspaces [Mitchell, 1952]
and GenCol [De Raedt and Bruynooghe, 1992b}). Therefore Chapter 2 46 Chapter 4 adopt

a language independent point of view in descrlbmg solution spaceés and general algorithms

for concept learning.

In Chapter 2 we briefly introduce the 'major themes of concept. learningto put-the rest
of the thesisin the right perspective. Some of these themes will not be. discussed in the rest
of thethesis. They will be touched: tpon when relevant, though. In Chapter 2 we also set
up a basic formalization .of concept learning based on the notion of coverage. We describie
when it is sound to represent concepts and instances of concepts in a copeept’ representatwn
language L¢, tesp. an instance representation language £;. As such, we.can reason about
concepts and instances by means of their representation in Lg, resp. .Lr.

In Chapter 3, the notion of coverage is used to define the notion of generality. This
allows to structure L¢, and to view concéept learning as a search problem. In the framework
of Versicnspaces {Mitchell, 1982], which was extended by [Mellish, 1991}, we describe the.
Iterative Versionspaces algorithm. The Iterative Versionspaces algorithm has an efficient
worst case space and worst case time complexity. The algorithm implements an efficient
check for ma.)umahty, and implements optimal search. The algorithm’s bi-directionality

allowst6 use the concept in a maximally specific or a maximally general way, and. allows
interaction with the user or the environment by generating relevant questions. Within the

same framework, we also develep a theory to 1dent1fy redundant information elements-in
concept learning, and to generate new information elements which make others redundant,
We: apply these extensions to the Iterative Versionspace: algorithm; One of the major
contributions of this chapter, -is that all these a.chjevements are language independent.

‘Moreover, theideas and. representations are general and flexible enough to be applicable
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in other concept learning algorithms as well. _ :

In- Chapter 4 we allow concepts £6 be represented by disjunctions of concept repre-
sentations of L¢. This increases the expressivity of the language, but on: the cther hand.
also the computational complexity of the problem. We identify a sufficient condition for
reducmg the search for-disjunctions to a search for individual disjuncts in L£¢. Based on
this reduction, we-develop a framework that describes disjunctive versionspaces. Because
unrestiicted disjunctive versionspaces contain too much undesired disjunctions, we enhance
this framework by adopting-additional préference criteria. Preference criteria express-which
solutions are most p:efér:_éd,';e.-g._, solutions with a minimal nummber of disjuncts. In a next
step, we apply some of these criteria to disjunctive versionspaces _t.o_._pbta.iﬁ. the version-
spaces ‘of riiost preferred solutions. These ideas are implemented in two algoritlims: a
disjunctive éxtension of the Description Identification. algorithm of [Mellish, 1981]; and a
disjunctive extension of the Iterative Versionspaces algorithm. As in Chapter 3 all these
notions and the algorithms are formalized in a language independent way. The main com-
tribution of this chapter is that it describes disjunctive versionspaces, with and without
preference criteria, in terms of the elemerits of L¢, and.all this.independently of the choice
of ﬁc. .

In Chapter 5 we show how the frameworks developed in Chapter 3 and Chapter 4 can
be applied to Inductive Logic Programming. On the one hand, this shows that the results
obtained i Chapter 3 and Chapter 4 are applicable to. partlcula.r concept representation
langua.ges On the other hatid, it formally sheows low Inductive Logic: Programming fits
in the framework of Versionspaces and Tterative Versionspaces. As such, this chapter also
contributes to the understanding of the search problems in'Inductive Logic Programming.
Moreover, the language independent notions and methods can be-applied to ILP..

In Chapter 6 we present an autonomous agent architecture, in which Machine Learning
and Planning are integrated. Planning is considered as typlce_d Al prob]ern_ solving. The
agent’s knowledgeis represented in the Event Calculus, a formalistd which allows to express
temporal knowledge in Horn clause logic. Chapter 6 shows that the logical approach of
the Event Calculus is suitable for integrating planning and learmng in the autonomous-
agent: an «existing planning: technique that uses abduction is combined. with Induciive
Logi¢ Programmiing as described in Chapter 5. The use of ad interdétive Inductive Logic
Programming mettiod allows the system to learn from experiments.

Chapter 7 concludes the 'thesis, and describes some directions for future research.

All algorithms described in -t’his thesis, except.the ones of Section 3.9, are currently
implemented in Proliog by BIM..

A brief guide for the reader

The sections that contain rather technical material are marked [T] and printed in a slightly
smialler font than . the other text. Technical sections contain, for instance, algorithms,
correctness proofs, complexity analyses. Fach technical section begins with a paragraph
that summarizes the most important results of the section.. Having read the suimmary, the
reader who is not interested in technical details, can skip the section.

Note that Page vi and following contain a list of figures, a list of algorithms, a list of
definitions, and a list of symbols and algoritkim notations.



Chapter 2

Concept Learning

2.1 Introduction

In Chapter 1 we have presented the context-of the learning problems we want to consider,
Essentially these problems are concept learning problems. The basi¢idea of concept learning
is to ifiduce general rules from specific-examples,

In this chapter we describe and discuss the essence of coricept. learning. - We also intro-

duce the basic notions and assumptions needed for this description. The chapter is merely

meant to.pit the following chapt.ers in perspective. ‘Starting from an example in Section 2.2,

we identify the distinct components of the problem in Section 2 3. In Section 2.4 wé build
up-a framework to describe the problem, which results in a formal preblem description. In

Section 2.5 we discuss several aspects of concept learning in more detail.

2.2 A Concept Learning Problem

Example 2.1 Let us first give an example of a concept learning problem, in the context
of the: autonomous tutor introduced in Section 1.3, The probleim solving task of the
tutor-is to-instrict novices how to use a graphical windowing system. However, in
order to instruet humans, the tufor must first acquire knowledge of the: funct:onahtles
of the graphical user. mterface itself. If the tutoris not to be: {re)programmed it should
be able to learn these functionalities autonomously This is the learning task of the
tutor we focus on in this example.

If the tutor is to-act properly, 1t will need to have an idea of when it is able to perform
particular actions in the graphical user interface, and when ‘it is not, and what the
effects of these actions are. Possible actions are, e.g. .,-dragging a certain document
from one folder to another, double clicking a- doeument clicking on the close-box of
a window, and so on. Iis learning fask consists of forrmng itself an idea of successful.
actions and their -effects in genemf by reviewing perticular instances of successful
and failing dragging actions. The tutor might try to drag a particular docoment D
from a folder 7} to another folder Fy,-in a particular situation where both folders are
open, and it might succeed in dou',tg so. It.might try to drag a particular document:
D from a folder Fy to another folder £y, in a particular situation where Fy’s parent is
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Figure 2.1 Successfully dragging Dy from. 7y fo Kz

open (see Figure 2,1), and also succeed in doing so'. It might try to drag a particular
document D from a folder Fj to another folder 1, in a particular situation where
5 1s not vmble, and fail in doing so?. It mxght try to drag documents of different
types® from one:folder to another, or documents that are opened and others that
are closed, and each time observe the result. From these successes and failures of
dragging. documents, it. might induce the concept of “dragging a document from one
folder to-another is successful”, e.g.,

dragging a decument Dj from one folder F; to another folder Fj i is successful,
iff at the time of the acticn D) residesin Fy, Fy is.open, and Fy is visible.

The concept is expressed. by means of a coridition on particular situations for being
an instance of the concept. ‘This condition is expressed as a relation between the
objects that are part of that situation. The particular successful trials of dragging a
document from one folder to another are instances belonging. to-that concept. The
unsuccessful trials are instances which do not belong to the concept. Actually, the

1A documeni’s parent folder is the folder the documert resides in.
AWe-call a folder visible if it is open, or if its parent folder is-open.
3Types of documents are, ¢.g; o text files or exccutable files.
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concept-encldses all possible situationis in which it is possible to: drag the document.
from one folder to. another, and none of the situations in which it is not. possible.

Once the tutor has learned the concept, it can use it fo predict for future instances-
whether or not they will be successful.

The' effect of a successful dragging action is that the document no. longer resides.in
the first folder but now resides in the second folder. Similarly as the tutor must kagw
the concept of a successful dragging action, it must know the concept of the.effect of
a successful dragging action. In this case; successfully dragging the document from
the first {oldér to the second one, will alivays have the effect of the document residing
i the second folder afterwards, and not residing in the first folder. I rorn. these-
successful trials the tutor’s concept of “a successful action of draggitig a document
from one folder o another has the effect of the document: residing in the second folder
afterwards, -and no longer residing in the firit folder” might be

the effect of successfully dragging a document D; from a folder F to dnother
folder Fy, is always that D, resides in F,, angd D, does not reside in Fj..

This concept encloses all instances of successfully dragging 2 doc¢ument: from one
folder 10 another.

In gcncral it 1s not- sai:d w}iere 'the‘ particular in'stanccs from which & concept lcarner

as wc]l come £rom an mstructor, “telling™ the tutor tha.t in thls pa.rtlcular s1tua.t10n a
drag action would fail, and in that particular situation a drag action would ‘succeed;
and have a partzcular effect. A concept learning program would just, given thc
instances and non-instances of the concept, try o find the cornmon features and
relationships between the instances, and generalize this info a general concept. This
general concept can be used to predict for future actions whether or not they will be
successful, and what their effect will be.

<

‘We will now identify the components of a concept learning problem moré.generally,

2.3 A description of concept learning

The goal of concept learning is to find concept representations for paiticular concepts.
Concepts are groups of instances. In the previous example these instances were sitiations.
Other examples are for instance the concepts. bird, ostrich and ‘penguin, In talking about
penguins the concept allows us fo make abstraction of the complete set of penguins. The:
concept representalion sums- up features that are common to all instarces. that’ belong to

the concept, and that are not common to.the other instances. Tn other words, the concept

representation presents conditions: characterlzmg instanices belonging to the concept. These
iconditions describe the instances in a way which is typical for the instances of the concept
Thie conditions can be expressed on several levels of abstraction, determined by the choice
of a-particular concepl language. Birds might be described by the way they look. (they have
feathers, or they have wings), or by the way they biehave (they fly, or they lay egys). In order
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to describe birds by means of their behavior, one needs to possess knowledge about what
flying and laying eggs is, i.e., the concepts: flying and laging eggs must already be known.

These representation buﬁdmg -blocks are actually in turn concepts, and could as well be
described using more detailed concepts: To describe the concept bird in terms of those
building-blocks, these building-blocks should. have been learned in advance. Therefore
kuowledge about the concepts flying and laying eggs are said to belong to the background
knowledge needéd for.learning the concept bird,

A representation of a concept can:then be used to classify urseen instances as belonging:
to the concept or-not. In this sense. the concept representation could carry: much more
information than the original instances it was derived from. Cl_a_ss_if-y_i-ng all animals that-
have feathers and wings as birds, allows to recognize animals one has never seen. before as
birds. In Examiple 2.1, it is impossible for the tutor t6 observe every situation in-which the:
drag action is successful, yet it should find a general 1ule for this concept. Representing
coneepts by a descriptionin.a certain language (i.e., representing the concept mtensmnaﬂy)
rathier than as a set ‘of all its instances (i.e. eztenswnaﬂy}, is therefore a way of compacting
information and knowledge.

In the next. section we formalize this basic description of the concept learning problem.

2.4 A formalization of concept learning

We ‘will now formalize the problem setting for learning a concept given some instances
belongmg to the concept and some instances not belongmg to the concept. We will start
from the set. of all instances.

Notation 2.2 The set of all instances is denoted by 7.

In Example 2.1 an instance is, e.g., the situation in which document D, and folder F} both
are in the open folder Fy. In the exa.mp]e of the birds, instances are: particular birds. In the
autonomous tutor example, instances: are:p__artlcula.r states of the windowing environinient.

Definition 2.'_3-'(C-onc_ep‘ts] A concept is a set-of instances.
Notation 2.4 The set of all.concepts is denoted by C.

By definition, C C P(Z) *. Concepts will be: pamed: examples of concept names are. bird,
flying, and “draggmg a document D from a folder Fi.to another folder Fy'is successful”,

To reason and talk about instances and concepts, we represent them in a certain laz-
guage. Actually, instead of reasoning about instarices and concepts, we will be reasoning
about instance representations and concept. represeniations. Concept representatlons can
in turn be built up from other concept representations, which are supposed o be in the.
bachround knowledge. We will now set up ‘a framework in which it is soiind to focus on
representations only.

Notation 2.5 The larguage of instance representations. is denoted by £;; the language
of concept representations is represented by Lg. The background knowledge is rep-
resented by B.

4P(5) denotes the pewersel of 5, i.e., the set of all subsets of §.



%:4. A FORMALIZATION OF CONCEPT LEARNING 13

Figure 2.2 cover, Ry, Re; and-'Rc_E

Deﬁniti_on..2.6 _(Represe'nt-ing_ instances and objects) The function Ry : £; — I’
maps an. instance representation to the instance it represents. Similarly the furc-
tion -Hg': £ — C maps a concept representation to the concept it represents.

Requiring that R; is a function means that no two. distinct instances can have the same
representation. Similarly, requiring that R¢ is a.function means that no two distinet
concepts ¢an have the same representation. Intuitively it-is even acceptable to assume Rp
and Hj are both mappings, i.e,, Rg is defined for every element -of L¢, and Ry is defined
for every element of £;. However, n general they are not necessarily injective (1 €;, one
concept can have several representations; see further), nor surjective (i.e., some concepts'
might have no representation).

Concepts are related to instances by the membership relation. This membership rela-
tion must be'projected in a sound way to a relation between concept representations and
.mstance representations: We will call this relation covers. Tatuitively a concept represen-
‘tation. ¢ should cover an instance representation 7, iff the instance represented by-tis &
meimber of the- concept represented by c. Whether ¢ covers 4 could depend an the coiéept
representations ¢ is builf up with, and consequently on the background knowledge. When-
ever we want to represent this dependency explicitly we will write coversy.- However, most.
often we shall omit. the index B. We will define covers in terms of the related mapping:
eover . Lo — 'P(ﬁ;) The mapping cover( ¢’} defines for each concept representation ¢
the cover in Ly, i.e., intuitively it defines, on the representation side, the set of instances
that belong to the concept (see Figure 2. 2) The mapping cover depends on the chosen
languages Lr and £¢,and can therefore not be defined hére.
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Definition 2.7 (covers in terms of cover) covers; LoxLr — {irue, false} isdefined
by: covers( ¢ , %) iff 1 € cover( ¢ ).

‘Although cover is language dependent, we can specify a soundness constramnt on it
which reflects our intuitive idea of its meantng.

Constraint 2.8 (Soundness and completeness of cover)

Vi€ Li,c€ Lo:i€cover(c) il Ri( 7)€ Re(c)

“This.constraint expresses that if a concept representation covers an instance representation,
the corresponding instance must belong to the correspondmg concept (soundness), and. if
‘an instance belongs to a concept then everyrepresentation of that instance must bé.covered.
by every representation of the toncept (completeness). Under this constraint, it is safe to
reason only about representations of instances and concepts instead of reasoning about the-
Jinstances.and concepts themselves.

2.4.1 Unique concept and instance representations [T]

SuMMARY: having multiple concept representations fof one concept is inconvenjent because
‘there is no way to discriminate between them. Under Constraint 2.8 one can parfition Lo
Anto equivalence classes, based on the cover.” Then we can fepresent concepts by equivalence
classes; and assume there is only one representation for each concept. A similar approach
applles for instance représentations. In the remainder of the thesis we assume that each
instance hkas at most one instance representation, and ¢ach concept has at most one concept
representation. How this is. accomplished. i Inductwe.Loglc..Programmmg i5 discussed in
Chapter 5.

It is often inconvenient to have several representations for one concept®, The main. reason
will become clear in Chapter 3, where L¢ will be searched in a-systematic way. Having multiple
representations for one concept may lead tomever-terminating processes; because there is no way
to discriminate between them. In order to avoid mult:ple representations one can divide Lo into
equivalence classes; such that all élements of one class represent the same concept. If one can
identify exactly one element per eqmva.lence class, thls ‘element: can serve as-a representant or a
canonical form of the whole class, and therefore as a- representation of the correspending concept:
We will now work-out this idea, a.nd show that, under Constraint 2.8, this is a sound approach.

Lemma 2.9 Yer,e2€ Lo ¢
Ro{ ¢y )= Re( ¢ ) implies cover( ¢ ) = cover( ez ).

Proof Takei € cover{c; ), Then Ry( i) € Re{ ¢1 ) by Constraint 2.8. Now if Re( ey ) =
Re( ¢z ), we have that Ry( i) € Ref ez ) Consequently 1€ cover{ ¢z ). 0O

Given ‘this result, we can define-an equivalence relation on L'c
Definition 2.10 (= on L¢) =: Lo X Lo — { true, false } is defined as follows:

c; = ¢z iff Re( & ) = Ref 23 )

5Distinct representations for one concept are called syntactic variants.
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The relation = is'an equivalence relation® on ¢ , because = is:an equivalence relation on €. Lét
Le¢/ = denote the set of all equivalence classes” of . Lo wirt. =, and {c]z the equivalence class
of ¢ € Lc. Then {¢)= can be used to represent Bg( ¢ ), with the mapping Re® : Lof == C.
{see Figure 2.2}. R¢= is well-defined, since every element of an equivalence class represents the
same concept. Every concept has at most one representa’clon in Ec/ =; because there is at
most one équivalence class whose elements represent. (w;th RC) a given concept. Now define
«covers : Lo/ =-+ P(L1) as cover=({ [z ) = cover(.c ). covers is well-defined because each two
elements of ene class have the same cover (Lemma 2: 9). By definition cover and- cover= ther map
Tepresentdtions of the same concept to the same set of instance representations. Consequently,
we can represent concepts by elements of L¢/ =, and assume that each conceps. has at most one
representation in Lg.
We can define a similar equivalence relation on Lj.

Definition 2:11 (= on L) =" L7 % L1~ { true; false'} is defined as follows:

i & 6 iff Re( iy ) =Ry( s ).

By following the saime process as above ‘the équivalencé classes according to =’ can be nsed to
tepresent instances. To ea.ch_"i:'nstance then corresponds at most one representation.

For the remainder of the thesis Wwe. assume that each instance has at most one instance
representation, and .eath concept has at most one concepl representation. In general this is
not a trivial a.ssumptmn In Inductive. Loglc Programming, for instance,. determmmg eqmvalence

L7 geneml-undecxdable {see ‘Cha.pter"ﬁ)’ """"""" -

2.4.2 The single represéntation trick [T]
SuMMARY: in soine application areas it is useful to consider. concept representations cover-
ing only one instance. This allows instance representations to be represented by concepts_

such that £; C Le. This is called the single representalion trick [Cohen and Feigenbaum,
1981]. In general we will not assume the single representation trick,

We first introduce concept representations that cover only one.instance representation.

‘Definition 2.12 (Umt. concept represéentation) ¢ € ,Cc is 2 umt concept -representation
lheLlr:cover(c)={i}.

‘Notation 2.13 Let I denote the set ofall unit concept representations in Lgo.

Under Constraint 2.14 the single representation trick can be applied, because each instance cor-
responds to a uniit concept.

Constraint .2_.14--(5ingle cover corstraint) For each instance represenfation i € £; there
exists a unit concept.representation ¢.€ L¢ such that cover{ ¢ } = {1 }.

Note that the assumption of having nmque concept representations sée Section 2/4.1) implies that
for a given i, there can be. ai most one unit concept representation ¢ such that cover{ ¢ ) ={i}

Under Constra.mt 2.14 }{ can be chosen as instance representation language instead of Ly
itself. First let SET : £7 — I be the mapping from an instance represéntation to the corre-
sponding unit concept representation. SRT is.a bljectmn {0 every unit concept representation.

SAn equivalence relation is: reﬁe::we, symmetric and frensitive.
"The equivalence class of ¢ € L is the set of all & €Ly such that ¢ = ¢/. Bach element of Lo belengs
toexactly one equivalence class: The set of-all equivalence classes is denoted Lo/ =
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corresponds an instance répresentation such that c¢over{ ¢ )= {4 } (by Definition 2.12); to every
instance representation correspords a nnit concept répresentation such that cove‘r( ) = {4}
(by Constraint 2.14). The mapping R;': i = I, defined as By’ = Ry o SRT ™}, maps each unit’
concept representation to the instance it represents. The mapping cover’ : Lo — PU), defined.

covér'{ ¢ J={wel | SRT " (u ) ccover(c) },

maps each concept represeritation to the unit concept representations it covers.
In general we-will not assume-the single representation trick. Where we _d'_o, we will mention

it explicitly.

2.5 Problem specification

Given:
o a language Ly of instance representations;

» & language L¢ of concept representations;
& background knowledge B;
‘& arelation coversg : Lo X Ly — { true, false };

» a-set P C.L; of positive examples w.r.t. an unknown target concept t, and a'sét
N C.Lr of negative examples w.r:t. t; the elements of PUN are called examples,

Find: h € L¢ (called a hy'pothesis) such that:
o Yp& Picoversg( h,p ) =true
o V& N :coversg( h,n )= false

The two conditions are called the consistency requirement.

Problem 2.1 The Concept Learning problem

Formally, the concept learning problem can now be formulated -as in Problem. 2.1.
Given a la.nguage to represent 1nstances and a language to represent concepts, gwen the
background knowledge, and given & set of positive examples and a set of negative examples,
the aim is to find & representation for an unknown target concept. In order to-do so, we have
to seek a hypothesis in the language of concept representations which covers. all positive’
examples: and which covers nene of the negative-examples. We will now highlight some
aspects of Problem 2.1 in. more. detail.

Sufficient and perfect data

Problem 2.1 is an idealized problém in two respects: it assumes-sufficient data and perfect
data.
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Problem 2.1 assumes sufficient data: in practice P and N will not always contain a
'sufﬁcmnt number of elements t6 identify the target concept t. In case the number of exam-
ples is not sufficient, the resulting hypothesis h can be any concept representation fulfilling «
the consistency requirement. In general one could define a success. ciiterion [Lavrat and
Dzeroski, 1994]; and accept any element of Lg that fulfills this criterion as a solution. In
this thesm we will always adopt the consistency requirément as a criterion for success. If
miore than one concept representation fulfills the success criterion, an additional preference
criterion cah specify which of them is preferred as a solution. In this thesis we will have
to specify particular preference criteria for disjunctive versionspaces in Chapter 4.

Problem 2.1 assumes perfect data: in practice P and N .could contain noise. This
means that P might contain some examples that belong to N, or vice versa. It also means
theré is a certain degree of unreliability in the elements of P and N, so that we cannot
require full consistency (if we would, we would not find £). In case noige is expected
among the examples, the consistency requlrement for k will have to be relaxed, in order
to avold overfitling. An alternative success criterion would for instance admit a certain
percéntage of elements of P for which covers( ki, p ) = false and elements of N for which
covers( kK, m ) = true, or would take into account classification accuracy, i.c., the accuracy
n cla.smfymg unseen exa.mples as positive or negative. In this thesis, we wﬂl not handle
the problem, of imperfect data (see [Hirsh, 1990} [Lavrag arid Dzero.v,kl 1994]) This thesis.
is"merely meant as a theoretical basis for describing and searching sets of solutions for

-—concept learning, and. largely-independent-of-the-chosen-success-criterion:-

Bias

The conceptlearning problem is often viewed as a search problem. Also in this thesis; we
try to'find b by means of search algorithms. The search is specified by the chosen bias.
Bias determines which- parts of the language will be searched, which parts will be. prunecl
what will be searched first, etc. A very strong bias will lead to a solution in an' almost
‘straightforward manner. On the contrary, a bias that is too 'weak will underconstrain the
search problem and will become. computationally unfeasible.

There are several ways to specify bias (see also Chapter 5 for a discussion in the context
of Inductive Logic Progra.rnmmg) Language bias determines which part of the language
will be searched. Most often language bias is chosen at the start and cannot change
during the concept learning process. In these caseés one can actually view the concept
learning problem constrained by a language bias as a concept learning problem within
the sublenguage defined by the bias. Extensions of this schieme have been proposed. to
dynamically adjust-language bias, called shift of bias [Utgoff, 1986} (see Section 3. 10).
Therefore it is still usefill to make a distinction between the concept representation language
and a language bias. We will denote the chojee of a particular language bias * within the
concept representation language Lo as £g. Tn the Inductive Lagic Programming context
of Cha.pte:: 5, {for instance, Le would be the set.of all Horn Clauses that can be constructed
with & given set of predicates, a given set of functors, and a given set of variables. A
language bias  on L¢ could, e.g,, restrict the search to clauses with 0, 1 or 2 ekistential
variables only, or to clauses not containing a certain predicate pfn (see Chapter 5).

The way how the la.ngua.ge is searched is called the search bias. Search bias includes
for instance the choice of a search strategy, the choice of pazticular heuristics and pruning
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strategzes Search bias is also closely related to the preference criterion, because it might
search the most preferred parts of L first. The preference criterion is sometimes called
preferenice bias.

Iricremental vs. batch

An important distinction must be made bétween bafch and incremental concept Iearning
problems. The former assume P and N are completely known in advance. The latter
however do not assume P and N to be completely known, and theérefore ini fact basically
Amplement an updating procedure. This procedure starts from a current hypothesis, which
is.'a solution for the problem w.r.t. the known examples. Then it updates the current
hypothesis each time the concept learning problem chariges because more examples become
available. Our statting point outlined in Section 1.1 is an inherent incremental one. Tt is
very important to realize that af each moment the current hypothesis can be used as' a
working hypothesis for the problem solver. Whenever new examples, inconsistent with the-
current hypothesis bécome available, the latter is-to be updated.

Interactive concept learning

Interactive concept learning systems antomatically generate relevant questions, i.e., ele-
ments-of £y for which a classification as positive or negative example is relevant in their
search prof:ess This kind of feedback is provided by a eritic, in' this context called an
oracle, In most-cases the oracle is-2 human, but the answers to these questions could also
be obtained by observation (see Chapter 6).

Multiple concept learning

So far we limited the discussion to learning a single concept, given a concept learning lan-
guage. Elements of this language are based on other concepts, the representation of which
isin the ba.ckground knowledge: For our problems we assume the background knowledge
to be correct. However, the concept representa.tlons in the background knowledge could
have been learned as well. If this learning process. is not completely finished, the- fact.that
an example is not consistent with the current concept répresentation might have its cause
in an inconsistent concept répresentation in the. background knowledge. This suggests
that the background knowledge should be updated, rather than the current hypothesis.
Also the learning system first has o deci de which concept representation is to be adapted.
This decision ¢ould be made by incorporating an intelligent debugger. In [Shaplro, 1983
and [De Raedt, 1992} such an intelligent debugger; relies on the presence of an oracle, In
[De Raedt et.af., 1993] the decision is based on the notions of local and global inconsistency.
In general the problem of learning multiple concepts at the same time is;solved by theory
revision systems [De Raedt and Bruynooghe, 1992a], [Wrobel, 1993], [Ad¢ et dl, 1094).
No preference is given to the concept representation of the.inconsisterit example w.r.b.
the concept. representations of the background knowledge: the whole set of -all concept.
representations is considered as. one. theory ‘For each inconsistent example of any of the
concepts in the theory, a theory revision system typically selects a concept representa.tion.
that is to blame, and updates it. During the update, the other concept representations
are considered to be correct. This means that from cur point of view -_the.‘y_ are considered.
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as the background knowledge at that moment. It is very well possible that the update
leads to an inconsistency for another concept representation depending on the updated
one. Consequently, the theory revision loop might start- again from the beginning.

2.6 Conclusien

In this. chapter we have introduced the concept- learning problem, and briefly touched
upon several important aspects. The basic notion of the introduced framework is the
<cover relation. In the next chapter we will extend the basic framework of this chapter by
introducing versionspaces. The framework of versionspaces is built 6n the structure of the
search space induced by the cover relation. The extended framhework therefore allows us
to' formally describe the search space of the concept'learning problem, and to formulate
algorithms that systematically search this'space. '
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Chapter 3

Iterative Versionspaces

3.1 Introduction

In this chapter we will give & theoretical description of the concept learning problem and
basic algorithms for solving it. On the one hand; the concept learning problem of Chapter 2
will be extended towards handling other types of information. On the other hand, the
concept learning problem will be seen 45 a search prablem. With the Candidadte Ehmmahon
algorithm (CE) Mitchell did not only present an algorithm for concept learning, but, more

important; introduced. the-theoretical-framework-of- Versionspaces-{Mitchell;-1 978} This——

framework has proven to'be-very useful in reasoning about the concept learning problein.
The framework allows to represent Versionspaces by means of their boundaries. CE, and
its successor, the Description Identification algorithm DI) of [Mellish, 1991], represent the
versiopspace.of all solitions by means of its maximally spemﬁc and its maximally general
elements. They effectively compute these sets, ‘basically in a bi-directional breadth-first:
way. They ate theérefore criticized, because the boundary representationis not-always useful
in practice: its size can be exponential i in the number of information elements presented to
the algorithm. [Ha.usslerl 1988]

Therefore [Hirsh, 19925], among others, explicitly uses alternative. tepresentations,
which . are more efficient in language-specific contexts. We -wani to -continue this line of
reseéarch, but in a language-independent direction: within the’ fra.mework -of Versmnspaces,
‘we develop an alternative representation that tuins out to be very efficient w.r.t. CE for
its space complexity. We present the Tterative Versionspaces?® algorithm (ITVS), based on
this representation [Sablon et'al, 1994]. We prové the correctness.and the completeness:of
this approach, and analyze its. cornplemty We dlso characterize redundancy in the input
data and extend TTVS to discard redundant data. Finally, we show that for incremertal
ase ITVS can generate relevant mformatlon elements

One of the major contributions ‘of this work is its independency from. any specific’
concept or.instance representation ]anguage The general framework therefore has a wide
application potential. In Chapter 5 we will for instance apply the framework in ah Inductive
Logic Programming context. The language - independence character also makes the work
fundamental as a study of the nature and the complex.lty of cencept. ledrning in general.

This chapteris structured as follows: first we reformulate the concept learning problem

1[Cohen and Felgenbaum 1981] also mentlons an “terative Versiohspace”, which is however not directly
telated to our approach.

21
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as a search problem, and extend it. by'introducing new forms of information (Section 3.2).
Having reformulated and extended the problem, we then investigate how we can describe
the versionspace. of all solutions (Section 3.3). In Section 3.4 we introduce the setting for
constructing this versionspace by searching L¢ through the discussion of search operators.
and search strategies. Taking a bi-directional breadth-first strategy leads us to the De-
scription Identification algorithm (Section 3.5). As opposed to this breadth-first approach,
we present the depth:first approach-of the Iterative Versionspaces algorithm in Section 3.6.
Section 3.7 describes some examples of this a.lgonthm and Section 3.8 discusses its proper-
ties. The riext three sections describe some usefiil extensions in the context-of the Iterative
Versionspaces framework. First Section 3.9 discusses the problem.of avoiding storage of
redundant mformatmn elements. Section 3.10 briefly touches: upen the problem of shift of
bias-in’relation. to redundant information elements, Section 3.11 discusses the generation
of relevant information elements in the context of a bi-directional search strategy. Finally,
Section 3.12 concludes this chapter.

3.2 Reformulation of the Concept Learning
problem

Mitchell was one of the first to formulate the Concept Learning problem as-a search prob-
lem [Mitckell, 1978] [Mitchell, 1982} The. search space is the set of all-possible concept:
representtations of L¢ that are allowed. by the chosen language bias. 'We denote this by £
(see Chapter 2). Most-of the time we work with a fixed language bias within £¢. Therefore
we will omit the superscript-» when no confusion is possible.

To search L in an organized way; we have to structure £g. Because concept learning is.
conicerned with ﬁndmg a.concept representatlon that covers a given set of positive.examples
and that does-not cover a given set of negative.examples (cf. Problem 2.1};:it-is natural to
order L¢ according to the instances covered. Therefore the C relation on P(Lr) is'used to
induce an order-on Lg. In Chapter 2-we introduced the notation cover 5( ¢ ) to denote the
set of instances covered by the concept c. The subscript B points to the fact that the cover
might-depend on the background knowledge; However, when no confusion is:possible about
which background knowledge is meant, the index B from coverB will often be omitted.

‘We will now relate concept representatlons by comparing their cover.

Definition 3.1 (_More specific than) <5 Lo % Le —{ true, false } is defined by
-<B( ¢, cp ) iff coverg( & ) cC co'uerg( )
Notation 3.2 %B( ¢y 5 Ca ) is denoted by ¢1. <3z oF cz >-3 . It rea.ds ‘as ¢y 18 more
specific than ¢,”, resp. “c, is more. general than ¢;”. ¢ -<B £z, OF €3 > £1, denotes-
tha.t €1 Xp ¢ and ¢ # ¢, and Iea.ds as “cy is strictly more spec1ﬁc than ¢;”, resp.

“cy is strictly more general than ¢,”. As for cover the. index B will be omitted when
no confusion is possible.

The relation = is illustrated in Figare 3.1.

Proposition 3.3 If the relation covers is sound, = is a partial order?,

2 A partial order is reflexive, anti-symrnetsic and trafsitivé. .
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Figure 3.1 ¢ is more specific than ¢,

Proof This follows from Lemma 2.9 and from C being a partial order on P(Ly). ]
Note that, since it is not necessarily a total order®, ¢; < ¢, does not imply ¢, < ¢;.

Example 3.4 Consider the following conicept-of Example 2.1, which we will call C

C:

dragging a document D from a folder Fy to another folder F is successful,
iff at the time of the action D resides in F,

Fiis opeén, and .F is visible..

Possible specializations of € are for instance:

. dragging a document IJ from a folder F} to-another folder F} is successful
HE at the time'of ‘the action. D resides in Fy,
F 1s dpen, K, i visible,
and F} is unlocked.

s dragging a decument D from a folder F} fo another folder Fy is successful
at the'time of the action 2 resides in F,
iff Fy is open, F, is visible,
and F is unlocked.

H

na total arder we have ¢3 £ g5 6r ;7 = ¢y -for all ¢y, 02 € L0,
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- dragging a document P from a folder F} to another folder F; is successful,
iff at the time of the action D resides in Fy;
Fi is-open, Fy is-visible,
Fy is a high-priority folder, and . is unlocked,

"These are specializations:because by adding more conditions, less instance représen-
tations are covered..
A possible generalization. of ‘C-is:for instance:

dragging a document [} from a folder Fy to another folder F} is successful,
iff at- the time of the action D resides in Fy,
and F, is visible.

‘This is a generalization because by dropping conditiens, more instance representa-
tions will be covered: <&

Further on we will discuss how to derive specializations and generalizations of a concept
representation by means of refinement dperators (Section 3.4.1). In Chapter: 5 we will.
describe specialization and genéralization in the context of Inductive Logic Programming.

Lernma 3.5 If the single representation trick holds, then
Ye € Lo, i€ Lrcovers(c,i) HE i ¢
Proof This follows from the definition of covers and <. =]

If the single representation trick does not hold, then i ¢ is not. defined for ¢ € .L; and
¢ € L¢. Therefore we introduce the following notation.

Notation 3.6 Vi€ L, c€ Lg: let i 5 ¢ denote covers( ¢, ). Instead -ofisa;){ing- that
covers 1, we can-also say: that “i is more specific than ¢". '

Because of Lemma 3.5, in case the single representation trick does hold, this notation
does not introduce cpx_)ﬂic{:s

Using this notation, Problem 2.1 can be reformulated, stating that all positive examples
have to be more specific than a solution #, and no negative examples must be more specific
than k.

The problem can be extended, in that there are not:only eléements of £; which are
related to the target concept, but also that there can be elementsof L¢ that are related to
the target concept. Requiring-that ¢, & Lg is more specific than ¢y, then means that all
instance representations covered by ¢y must be covered by ¢; (see Figure 3.2.a;:¢; is called a
positive lowerbourd for. c;) Requiring that ¢ is'not: more specific than ¢y, then means that
at léast one instance representation covered by ¢ 1s not ¢overed by ¢y (see Figure 3.2.b; ¢
is called a negative lowerbound for ¢;). Other relationships can be considered: there can be
elements of Le.that are more general than:the target concept or are-not more general than
the target concept (s_ee [Mellish, 1991].) Requiring that ¢; is more general than ¢;, then
means that all insidnce representations covered by ¢; are covered by .¢6; (see Figure 3.2.¢;
¢y is called a positive upperbound for ¢;}: Requiring that c; is not more general than
¢o, means that af least ane instance representdtion covered by ¢; must not be covered by
¢ (see Flgure 3.2.d; ¢; is called a negative upperbound for ¢;). That the latter kind of
information is mea.mn_g_ful is llustrated in the next example,
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a, Positive Lowerbound ‘b. Negative Lowerbound

-¢. Posifive Upperbound d. Negative Upperbound

Fi’gure 3.2 Information elements; ¢, is 2 bound for <y

Example 3.7 In the example of Example 2.1 we assumed the tutor’s only source of in-

formation was observation. There.could be other information sources, e.g:, a human
teacher. A human could tell the tutor for instance that dragging a document to 2
folder will erase the. document if that folderis the trash. Tt might be. important the
‘tutor does-not have to dlscover this condition by itself, because it might have erased
some important.documents before it discovers the exact condition. Instead.of having
to “reprogram” the tutor, taking into-account the tutor's current hypothesis for a
successful drag action, the human could tell the tufor that the concept.representation.

successfully dragging a document D to folder T' will erase D,
iff T' is the trash.

is an upperbound of the target concept, ie., every possible hypothesis has to be a
specialization of this concept. The concspt. representation’

successfully dragging a document D to folder 7 will erase D,
iff T is the trash, and I is unlocked.

is for instance such a specialization. This illustrates that positive upperbounds can be
used to avoid overly. general conicepls; because they introduce conditions that always
have to be present-in the concept representation.
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Similarly overly specific concept representations can be dvoided by giving negative

upperbounds to the learning system. Consider for instance a very cautious tufor,
applying the drag action only under the too restricted condition that the document

to be dragged miist be. a text file: A hurian could tell the' tutor that the target-

concept is not-more specaﬁc than the concept representation

dragging a document D from a folder Fy to another folder Fy is successful,
iff at. the timie of the action I is a text file,

1.6, that the condition that 1 is a textfile does not appear :;in-'t'he; target concept. In-

this.case the tutor’s current hypothesis should be general enough as not to include
this condition, and, e.g., also-allow executable files'to be dragged.

'0.

We will iow. formally define these information elements.. Using ﬁh_e extended notion of

information elements, information elements can conie from £; as well as from Lg.

Definition 3.8 (Lowerbounds and upperbounds) Given aconcept representation c &

Le¢, an information element 1 € £ U L¢ is called a

% positive lowerbound for ¢ iffi= e
o ‘negative lowerbound for ¢ iff =( i < ¢ );
e positive upperbound for ¢ iff ¢ <4

e négative upperbound for ¢ iff = ¢ 4 ).

Positive lowerbounds and negative upperbounds will be called s-bounds as they con-

strain the specificity .of candidate hypotheses; negative lowerbounds and positive
upperbounds_. will be called g-bounds as they constrain the generality of candidate
hypotheses.

As will become clear throughout this Chapter and Chapter 4, the notion of an s-bound is
in fact.a generahzatlon of the notion of a positive example; similarly, provxdmg g<bounds’
to the learning system is a more general way of providing it with negative examiples. As
positive examples, s-bounds will be used to search specific-to-general (through generaliza-
tion); as negative examples, g-bounds will be used to search general-to-specific. (through
specialization).

From the above properties of upper- and lowerbounds, other possibly useful types of

information eléments can be derived. They are shown in Figure 3.3

1. All instances covered by & are not covered by c; {i.e., ¢cr and ¢, are disjoint; see:
Figute 3.3.4). '

9. At least one instance covered by ¢ is covered by ¢z (1 e., ¢; and. &, are not disjoint:

see Figure 3.3 b)

3. All instances not covered by ¢; .are covered by ¢; (i.e., ¢, and ¢, are complementary;

see Figure 3.3.¢).
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a. Positive Disjoint b, Negative Disjoint

c-Positive-Complerient 8. Negative Complement

Figure 3.3 More information elements

4. . At least-one instance not covered: by ¢ is not covered by ¢ {i. €., 61 ‘and c¢; are not
‘complemientary; see Figure 3.3. r:I)

Usilike the earlier kinds of information elements; the latter cannot be implemented with.a
% test between ¢ and c;. However, if for each ¢ € Lo there exists € € L¢ {the riegation.
of ¢), such that cover( €)= Ly \ cm)er( ), then they can be implemented tising < tests.
We would then have the following four teésts:

1. “ and ¢, aredisjoint” is expressed by ¢ < &,
2. “c; and ¢, are not disjoint” is expressed by —-( € X ).
3. “ and & are complementary” is expressed by ¢ = €;.

4. “e; and ¢, are not complementary” is expressed by ~( & < ¢ ).

I L¢ does not contain negations, these four types of information elerments require tests
on an instance-by-instance basis (in & Logic Programming context one would call this.
“extensionally” ), which would be a costly operation.

Clearly these kind of information elements give information about the negation of a
coricept. Therefore, if we assume :ail negations are in. Lg, the negation of the. target
concept is also in Ly, so we can use this information to ledrn the negation of the target
coneept. DlS_]OIHtS and complements for  the target concept can then be considered as a
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lowerbounds and upperbounds for the negation of the target concept. That this kind of
information would be useful for the target concept as well (because of the tertium non
datur p_r;_ncxpl__e t 'V 1) is shown in the following example:

Example 3.9 We will again take the example of “the tutor. Suppose the concept of a
successful action of dragging a document is to be learned.

. Nega.twe disjoint: suppose-the tutor is: not able to observe all important prop-
erties. In that case, it would for instance only know, that it was able fo drag a
low-priority text file from one folder to another, but not whether or not these
folders were open. On the one hand this will not allow to find the relévarnt
conditions for a successful action (in this casethe condition that the first folder-
must be open), but on the other hand it will allow to reject hypotheses such as

01!

dragging a document.D from- a folder Fy to another folder .5 is successful,

iff at the time-of the action D resides in. Fy,

Fy'is visible, D} is a high-priority document, and D is an executable file.
because this hypothesis has no ifistance in common with the partial observation.
Consequently, a negative disjoirit behaves as positive lowerbounds and negative
upperbounds, in that it avoids overly specific hypotheses.

 Positive disjoint: this is the opposite case of a negative disjoint. The tutor
observes: sorne properties which hold at the time that a drag action does not
succeed. Positive disjoints behave as negative lowerbounds and positive upper-
bounds, in that they avoid overly general hypotheses.

o Positive complement: when the tutor observes-that dragging-a document which
is riot an executable file is successful, it has another source for generalization.
Forinstance, C1 would have o be genera.lzzed in order to cover thls (again only
partially descnbed) instance..

® Negative complement: this is the opposite case of a positive complement. The
tutor observes some properties do not hold at the time a drag action does not
siicceed. Negative complemients can be used for specialization.

<

The example shows that these information 'e#léme]:its also seem to be useful for handling
incomplete observations. Néver‘c‘helcs'_s, we will not include them in the description of the
extended concept learning problem, but dssurme they can be uséd to learn the negation
«of the target concept. Some Inductive Logic Programmiing systems can explicitly-handle
the: representatlon of a certain concept together with a representation of the negation of
that comncept, by 1ntr0duc1ng a multi-valued logic (see e.g., CLINT" [De. Raedt, 1992}, or
MO.BAL_ [Morik et al., 1993]).

So far < is:only defiried between two concept Tepresentations (V. . .is more specific than

) (see Definition 3.1) and between a concept representation and an information elerment.
( .covers ..."} {see Notation 3.6). As we have illustrated, the elements of L¢ as well as
elements of E 1 can be used as information elements. For. the sake of simplicity of some-def:
initions (a.0., Definition 3.29 to Definition 3.32, and in Section 3.9) and of the formulation
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of Problem 3.1, we will trivially extend the definition of = towards instance represeitations
-mutually, and. towarcls concept representations and iastance. representdtions.:

Definition 3.10 {Extension of < to £; U £ x £ U Led
¢ For all "i:y,‘i:z-E Ly = 19 iff 3'1 = ?.2
o For allzi € £ and for allceﬁc e ifc=1i.

In case the single representation trick is applied and Constraint 2.14 holds, < was al-
ready defined, because £; © L. Becausé of Constraint 2:14 Definition 3.10 i is defined
consistently.

The extended concept learning problem.can now be formulated as in Problem 3.1.  In

Given:
o -alanguage L¢ of concept representations !

e a language L of instance representations;

background knowledge B;

a relation X 1 {LrU LoX Ly U Lg) — { true, folse};

four sets of -'infbr;;;';t'ion elements:
PLB,NLB,PUB,NUB C £L; U £,

which are, respectively, positive lowerbounds, negative lowerbounds, positive up-
perbounds and negative upperbsunds for an unknovm target concept represeritation.
i

Find: an element &€ Lg, if there exists one; such that
o Vi€ PLB i X h,lie.,1isapositive lowerbound for h;
o Vi€ NLB:—{i<p h),ie,isa negative lowerbound for 4;
o Vi PUB :k <g i, ie.,iisa positive upperbound for h:
e Vic NUB: =( h <g 1), lie., 7'is a negative upperbound-for A.

hiis'called a hypothesis.

Problem 3.1 The Extended Ideal Concept' Learning problem

the rest of the thesis we will always shorten "4 is a positive lowerbound for £* to % is &
‘positive lowerbound”, and similarly for the other types of information elements.

Notation 8.11 For a given set I of information elements, we will denote the set of all
5- bounds in T by I,, and the set of all g-bounds in I'by I We also assume that each
information element I is implicitly qualified as positive/negative lower- / upperbound.
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In short; four sets of information elements w.r4. an unknown target concept ¢ are
given. The 1dea is o identify ¢ by searching L¢ for an element.c that is consistent with all
information eléments,

Definition 3.12 (Consistency) ¢ € L is consistent with

1. apositive lowerbound 7 € Ly U Lg, iff i X ¢

2. a negative lowerbound 7 € £y U £g; iff: —|( i)y
3 a p_osi.tiv_e'-up.perbound-z' €Ly U Lg,iff c

4; d negative upperbound 1 € L3 U Lg, iff -{ c:.ﬁz ).

¢ € £¢15 consistent. with [ C £ U Le if ¢ is. vonsistent with all elements of I. e
is mot consistent with 7, resp. I, we call ¢ ificonsistent with 3 ¢, resp. [.

Notation 3.13 ¢ € Le is consistent with ¢ € Ly U Leis denoted by ¢ ~ 1. ¢ € L¢ is
consistent with J € 1:_; U Lg is dencted by c ~ L.

The followirig theorem describes how < is Telated to ~.

Theorem '3.14 _ _
If 7 is a.g-bound, and w;4 € Lo such that z X'y, theny ~¢ implies & ~.7,
If ¢ is an s-bound, and'z;y € L¢ such that z < ¥, then x ~ 7 impliesy ~ i.

Proof This follows immediately from the definition of consistency and the transitivity of
< =

By contraposition, this theorem will be used to prune the search for a consistent concept
representation (see further) ifiis a g-bound-andz Xy, then~( & ~ 4 ) implies 5( .y ~ 4 ).
Similarly if 4 15 ani s-bound and = < y, then —(y ~ %} implies:—( z ~1 ).

3.3 Versionspaces

We will first investigate some characteristics of the search space and the set of solutions,
before disciissing search algorithms.

In céncept Jearning the set of all consistent concept representations is often described
by means of the set of its mazimally general elements w.r.t. «§ and the set of its mazimally
specific elements w.r.t. <.

Definition 3,15 (Maximal Generality and Maximal Specificness) VS C Lg :
1. m g § is maximally-generalin § iff ~Is &€ 5 :1m < 55
2. m € §'is maximally specificin § Hf -Hs € §:5 < m;
3. Maz §={meS|mis maximally general in § };
4 MinS={me§ | m is maximally specific in 5 }.
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Figure 3.4 .5 is not convex.

When no.confusion is possible, we will shorten “maximally general (resp. specific) in "
to “maximally general (resp. specific)”. Note that maximal specificity corresponds. to
minimality for X (see Notation 3.2}

Describing a set by means of its maximal and minimal elemerits 15 not possible for
arbitrary sets. We will'need to restrict curselves to.convex and bounded sets.

T Definition 3.16 (Convex set) A sét CC L¢ is convex Iiff for all ¢1, ¢z, 65 With or, ¢5 €
C, a1 = ¢3 = ¢z implies that ¢; € C:

The set S n F1gure 3.4 is ot convex because 1 <27 % Za; where z; and %3 are in §
and T, is not. However, given a-set I of information elements, the set of all concept
representations consistent with J must be convex because of Theorem 3.14: ife <00 %3
and ¢; and ¢3 are conswtenf with I, then ¢; = ¢; implies that ¢, is consistent w1th all
s-bounds, and cz. < c3’ 1mphes that ¢, is consistent with all g-bounds.

Definition 3.17 (Bounded set) A set ¢ C L is bounded iff for all ¢ €.C there exists
a g maximally general in'C"and an s maximally specific in G such.that s < ¢ < g¢.

If there exists in C,+¢ an infinite chain which is not closed above or not closed below,
then C is not bounded. Figure:3.5 shows an infinite chain ¢ = {er, e3yes,. ..} of concept
representations, such that ¢ = & = €3.% ... which is not closed above: € is convex but
€ &’ C, so there is no element in ¢ which is ma.:{lmally general.

[Hu‘sh 1990] proves that bounded convex sets can dlways be represented by means of
their maximal and minimal elements. Consequently all bounded infinite chains are closed
above and closed below. Furthermore, if we wadt to describe the set of all consistent concept
representations by means of its maximally general and maximally specific elements we-have.
to impose Constraing 3.18 on Le.

Constraint 3.18 (Boundedness Constralnt) For every possible set of information el-
-ements I, the set of concepl représentations consistent with 7 is bounded.

The admissibility constraint of {Mitchell, 1978] is- stronger'in the sense that it requires
every subset of Lc to be bounded. [Hirsh, 1990] argues that this requirement can be
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-]
¢y

Figure 3.5 (' is an infinite chain not closed above

weakened: .only those subsets t0.be described by the learning system have to be bounded.
This is also the requirement used in [Mellish, 1991].

On the other hand for a.lgonthrns that compute the sets of ma_.:vt'i'mally general and
maximally specific elemeénts completely, these sets need to be finite.

Constraint 3;19 (Finiteness Constraint) For every possible set of information ele:
ments: I, the'set of maximally general, resp. maximally specific, concept representa-
tions consistent with 7 is finite.

[Mellish, 1991] discusses several approaches to fulfill this constraint. One could restrict the
types of information elementsin J, or, in some cases, choose a particular order of providing
the information-elements of I. Or one could restrict £¢ and Ly in some way. If Lo were
enumerable, the latter approach could lead to a kind of Mterative Broadening [Ginsberg and
Harvey, 1992] in'the construction of the sets of maximally general and maximally-specific.
concept representations consistent with [. Tterative broadening would introducé a breadth
cutoff!. As long as no-solution is found with the given cutoff, the value of the cutoff could
be increased, thus allowing more and.more parts of the search space to be included. In this:
case, if there is no solution, termination cannét be. guaranteed In CLINT this approach
leacls to a series of finite languages with an mcreasmg expressiveness [De Raedt; 1992]. To.
guarantee termination CLINT uses a finite series of languages. '

For the rest of the thesis we will assume that Constraint 3.18 and Constraint, 3.19 are.
fulﬁlled : o SIS -
We will also assume the existence.of a. top element T and a bottom e]ement .L in Lg.

Constraint 3.20 {(Top and bottom)

BT,_.L €Lg:Veele:l=xe < T.

Exambple 3.21 In the tutor example of Example 2.1 the maximally general concept of
“dragging a document D from folder Fy to another folder F} is successful” would be

*By analogy to-the miore widely Known iteralive deepening which is 2 depth-first search with a depth
cutoff [Korf; 1985].
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Figure 3.6 Overly general, overly specific and consistent parts of L¢

dragging document D from folder Fy to ancther folder F is always successful,

.-The maximally-specific cancept:-would.be:
dragging document D from folder F} to another folder %, is never successful.

<

Now that we have determined the conditions for describing sets by means of their
‘béundary sets in general, we will investigate-how we can describe the set of all consistent
concept representations by means of its boundary sets.

Usmg <, Lo can be divided in' three parts {see Figure 3.6) : the first part (OGY
contalmng the concept representations inconsistent with some: g-bounds, the second part
(O8) containing those inconsistent with some s-bounds, and the third part. (VS) those
consistent with all g-bounds and all s-bounds. Clearly, the third part is disjoint. fiom the
other two, and must contain the target concept, if the latter is in £g. Part OG contains
all concept representations that are overly general; part O contains those that are overly
spectfic. The'interesting part is the border of the third part VS, Any concept representatlon
1. strictly more general than an element on the border-of VS at O(s side (called @) is
overly genera.l any concept representation sy strictly more specific than an elemient on the.
border of VS at 08's side {called S yis overly specific: Only those concept representations
c; more specific than an element.of G and more geueral than an element of §, are consistent.

We will now formalize these notions, which were introduced by [Mxtcheﬂ 1978]:

Definition 3.22 (G and §) For a given set { of information:elements,

L] S{ = Min { 3 El:c 1 § o I}’ a,nd
o Gr=Maz{geLle|g~T}.
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S; determiites a “lowerbound” on the set of all concept representations cohsistent with J.
Analogously G is an “npperbound”. Together, Sy and G; détermine a versionspace V5.

Definition 3.23 (Versionspace) VSr={¢c€Lc | g€ G, Is € Sris e g}
When 1o confusion is possible, the index I will be omitted from VS;, S; and Gy,
Theorem 3.24 (Adapted from [Mitchell, 1978]) V& is the set of all concept:
representations consistent with 7.

Proof ( C ) Take ¢ € VSr. Then there exist g € §; and s € & such that s ¢ <'g.
Since s € &; is consistent with all s-bounds; and ¢ is. more general tha.n 5, ¢ is
consistent with all s-bounds (Theorem 3.14); sm‘nlarly ¢ is.more specific than g € G,
and.therefore consistent with all g-bounds.

(2} Suppose ¢ is consistent with 1. Take s a maximally specific element of ¢ =
{z€Le]|z=<¢and &~ T} Sich s exists, because C is riot empty {c belongs to
it) and because of Constraint 3.18 (the. Boundedness Constraint). s is maximally
specific in € and therefore also an element of §;. A similar argument holds for
choosing an-element of Gr. m]

If the target concept representation t.is in Lg, we can correctly classify some tlements
of L; U L¢ as positive or negative lower- or upperbounds, even if we have not yet fully.
identified . The idea is that if all consistent. concept representations of Lg- classify a certain
‘instance representation inthe'same way, then the target concept representation, whlch_ever_.
it-is, must also classify it that way.
Theorem 3.25 {Adapted from [Mitchell, 1978]) An elementi € £; U Lo is a

1. positive lowerbound HVs €811 X 35

2. negative lowerbound if YoeG:-(ixg )

3. positive .upper_b”oi.lnd ifVgeG: g <1

4. negative upperbound if Vs.€ 85 %.2.).
‘Proof This follows immediately from Theorem 3.14. m]

It should be noted that in practice this classification method is riot tised. by the problem
solver for solving problems. As described in’ Chapter 2 the current hypothesis (i.e:, a
.maximally preferred element of V) is ‘used for that purpose. S

Apart from. correctly classifying elements of £; U Le, [Hirsh, 1992b] also identifies other
'useful ‘operations on versionspaces, some: of which are already discussed above: checking
whethet a versionspace is empty, checkmg_ whethera versionspace has. converged to a single-
‘ton, updating a versionspace with a new inférmation element, checkinig whether & concept
.representation belongs to a: versionspace, checking whether one versionspace s a subset
of another versionspace, making the union of two versionspaces, and making the intersec-
tion of two versionspaces.. The last opera.tlon gave rise to the Incremental Verstonspace
Mer_'g_mg algorithm [Hirsh, .1990] All but the last two operations were alieady described.
by [Mitchell; 1878]. [Hirsh, 1992b] calls the versionspace representation epistemologically
adeguale for a set of operations and a class of concept representation languages if all the
operations can be implemented using the representation.
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3.4 Searching the Search Space

3.4.1 Search Operators

Now that we have defined a structure on L¢ by means of =, we can define search op-
erators on. Lo, We employ two kinds of search operators: specialization operators (also
called downward refinement operators) and generalization operators (also called upward
refinement operators). The term. refinement operator refers to specialization operators as
well-as-generalization operators..

Definition 3,26 (Specialization operator)
g:ifle— %%¢ isa 5pecia.liza.tioﬁ dperator it Vd€ o(c):d e
The elements of o ¢ ) are called direct specializgtions of ¢ w.r.t, o,

Definition 3.27 (Generalization operator)
v:Lg —+ 25 jsa- generalization operator if Yd € 4{¢):d = c.
The elements of ¥( ¢ ) are calied direct generalizations of e wrt, .

'Usually réﬁnem’ent operators are deﬁned on Lg only, and not necessa.rily on J.C'.;, except

-< towards msta.nce representatlons mutua.lly in Deﬁmtlon 3 lU the reﬁnement opera.tors.

we will introduce in. Definition 3.29 to. Definition -3.32 can be deﬁned on Ly WU Lg. This

will be especially useful for a-uniform treatment of instance representations and concept
representations when anfomatically generating new information elerments in Section 3.9.

Example 3.28 In Example 2.1, given a certain concept tepresentation, a specialization
operator could return the set of 2ll possible specializations obtained by adding one
exira condition. Similarly, a generalization operator could return all possible gener:
alizations of a given concept representation obtained by dropping a condition.

In Chapter 5 we will describe particular operators for Inductive Logic Programming:

<

With a specialization operator one can search L¢ in'a general- to-specific way: starfing
from{T } as initial queue, iterafively one or more elements of the quete are selected to be
specialized (dependmg on the search strategy - see further) Then the selected element(s)
are-replaced by their direct specializations; and the queue is pruned. This process continues
‘until an element of the queue s 2 solution, i.e., is consistent with-all information €lements:
The pruning step typically removes those: elements of the queue that are not maximally
general.in the queue or inconsistent with some givén s-bounds (using the contraposition of
Theorem 3.14). Dually, using & generalization operator, one can search Lg.in a specific-to-
general way.

In an incremental learning system, information elements are provided to the. learning
system one by one. In this case the queue is updated as above (through generalization or
spema.hzatlon) for each information element 1 separately. In a general-tosspecific search,
and in case 1 is a negative lswerbound, for istance, the candidate hypothesis selected from
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the queue will have to be specialized so-that it does not tover 4. Dually, in a specific-to-
general search, and in case 7 is a positive lowerbound, for instance, the selected candidate
hypothesis will have to be generalized so that it covers .. This gives rise to-the four following
operations.

De‘ﬁni_ti‘on-_S;.29 {Minimal Upperbounds) For'ci,c; € £rU.Lg, the set of minimal
upperbounds of ¢; and c; is

mubler, ¢ )= Min{ce€Le|ascand ez 5c}

Definition 3,30 (Maxnnal Lowerbotinds) For ¢,c; € £ U ﬁc, the set of miaxiral
lowerbounds of ¢y and ¢;.1s8

mib(e1, ¢ )=Maz {c€Llc]|cxe and cX 6 }.

Definition 3.31 (_-M05t Specific Generalizations) For ¢,c; € LU Lg, the set of
most specific generalizations of ¢; not covered by ¢; is

msg( ey, e ) =Min{c€Lcla fcand ~(cxe)}

Definition 3.32 (Most General Sp.ecializat'io'ns"). For e1,502 € £5 U L, theset 6f most
general specializations of ¢; not covering ¢, is

mgs(e e )=Mez{c€lolecfca and «(cz5¢) }.

Thése operations. refine a. given informiation element ¢, relative io.another: given infor-
mation element ¢, and therefore dépend on the information elements presented to.the-
concept learning algorithm. Given ¢; we can’ consider the mappings ¢ v mgs( ¢, ¢2 ),
crs>mag{ ¢,z ); c—mub( ¢, c;) and.c— mib{ ¢ ; ¢ ) as refinement operators, There-
fore we will often also call mgs, misg, mub and milb reﬁnement operators.

‘The result of searching £¢ can only be guaranteed to be successful if the ‘search op-
erators used are of a certain quality. In the rest of the thesis we. will always work with
refinément operators that are cornplete®,

‘Definition 3.33 {Completeness of a search opérator)

o A specialization operator p is complete, iff forall ¢1,e2 € Lg; ¢ < ¢ implies-
that ¢ € p*{ ¢ )%

e A generalization operator p is complete, iff for all ¢y, 62 € Lo, ¢ < ¢; implies.
that c; € p( &1 ).

SSometimes this kind: of completeness is calléd local completeness..
§5t¢ denptes the. transitive closire of p.
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Note that mub; mlb, msg and mgs are complete: they return all concept representations
in Le fulfilling the specified condition. The completeness ‘of the search algorithmis of the
following sections ‘will be based on the completeness of the. operators:

We also introduce the following definition for refinement operatars. It will be used in
Chapter 5 when introducing refinement- operators. for Inductive Logic Programming.

Definition 3.34 {Locally finite) A refinement operator g is locally finite ifffor all ¢ €
Le, p( ¢} is finite.

As noted, refinement 'operators:r_:qulcl_. l?e_deﬁned on L5 U Le instead of £¢. Tn that case.
Definition 3.33.and Definition 3.34 ought to be extended towards ¢; & ﬁ;U Lo-as well,

3.4.2 Search Strategies

Concerning search strategies, two-aspects can be distinguished when developing concept
learning algorithms. On the cue hand one can choose the direction of the search: searching:
general-to-specific, searching specific-to-general or bi-directionally,. On the éther hand
within a chosen direction, one can still apply several strategies; e.g., depth-first [Mitchell,
1982], [Sablon et al., 1994} breadth-first [Mltchell 1982], beam search. {Mlchalskl 1983] or
other heuristic sea.rch strategles

In incremental concept learning the goal is usually to have orie current consistent con-

~ cept representation. This coricept representation is used during problem solving to deter-
‘mine whether certairn instance representations belong to the concept or not: The choice
of. a search strategy is.in the first place determined by the way the resultmg goncept rep-
resentation is-going to be used. The more specific the resulting concept representation. is,
the less instance representations it will cover. This means that few errors in clagsifying
non-instances as a member will be made, (also called errors of commission.[Bundy et al.,
1985]), but proba.hly also many errors in classifying instances as non-members {also callecl
errors .of omission [Bu.ndy et al., 1985]) Dually, the more general the resulting: concept
representation is; the more errors of commission and the less errors of omission will be
made; Tn order to.reduce the number of errors, mazimally specsﬁc or mazimally general
concept, representations are preferred.

Preferring specific concept fepresentations will lead ‘to using a specific-to-general strat-
egy; preferring general concept tepresentations will lead to.a general-to- specific strategy.
However, there are several advantages in having a bi- directional strategy. On'the one hand,
this allows to make a choice between using a general concept tepresentation g or a spec;ﬁc
concept representation s dyna.mlcally, Le., at the time the concept representation is ‘going
to be used, instead of at the timethe concept learning is initiated. A bi-directional strategy
can also allow to use'some middle strategy, by using a-concept representa,tlon in between
s and g. On the other hand, a bi-directional . approach- allows to generate new relevant
upper- and lowerbounds automatically. A lowerbound 7 more specific than g, but not more
specific than sis relevant, because if its truthvalue (pesitive or negative) is known; either g
or s are inconsistent with.i, and should be updated. Dually an upperbound ¢ more general
than s but not more general than.g is also relevant. For more details on generating relevant
upper- and lowerbounds. we refer to Section 3.11.

Determining whether a concept representation g is mazimelly general requirés in prin-
ciple that ¢ is compared to all otlier candidates for maximal generality. Candidates can:
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be pruned using Theorem 3.14, leaving g to be compared only to all elements of G- This
‘means that all maximally general concept. representations have to be stored, which would
suggest some kind of breadth-first search, or else recomputed. Dually, t'esting’ for maxi-
mal specificity of 2.concept representation s would in principle require comparison to all
‘elements of S. Searching breadth-first bi-directionally is done in the Description Identifi-
cation algorithm.([Mellish, 1991]). We will present the Description Identification algorithm
in Section 3.5. ' '

As opposed to this breadth-first strategy, we propose an alternative representa.tlon
for S and G in. the ITVS. framework ([Sablon et al., 1994]). ITVS will be presented in
Section 3.6.3. This représentation allows to search depth -first-bidirectionally and to identify
2 maximeally general and maximally specific concept representations without having to
compute or store §and G.

3.5 The Description Identification algorithm

‘In this section we describe and discuss the Description Identification algorithm (DI) [Mel-
lish, 1991].

3.5.1 'The algorithm [T
SuMMARY: we first describe: the algorithm.

The Description Identification algorithm. (DI} ([Méllish 1991); see’ Algorithm 3.1 and Algo-
rithm 3.2} is axi extension of the Candidate Elimination algorithm (CE) in the:sense-that it also
accepts upperbounds apart-from lowerbounds. There is one pa.rameter to.DI: the stream of infor-
mation élements Tnf. The stream of information’elements is. 2 sequence of information elements,
with a pointer to the current element in the stream. A read operation reads the current element
in the stream, and sets the pointér to the next élement in the stréam. If the pointer points to
the element eos (end of stream), a read operation on the stream will fail.

Algorithm 3.1 is incremental: for each information element ¢ read from In f it updates the
sets G-(which represents G ) and § (which represents S ). Since G as well as & are computed,
a bi-directional breadth-first search is nsed. Initially G only contains T, and S only contains
1. Tf Ec is known. to-contain the target concept representa.tmn, the. sea.rch procedure may stop
‘whenever G =-§ = { ¢ }(i.e., when §-and & have converged to a singleton). Then ¢ must be the
target concept. In that _ca;se'-it is also not necessary to test for & collapse of either .S or G (sée
-further). ' '

" We will first discuss the case of the information element read (7) being an s-bound. First G is
pruned (see Step.3i1): if an element of G is not consistent with i, then none of its specializations
can be. conmstent with £ (because of 'Ehe contraposition of Theorem 3.14). Whenever G is empty;
‘the search has collapsed, meaning that the concept representatlon cannot be in. £¢. In that case
the a.lgorlthm fails and stops (see’ Step 3.2). Otherwise all elements of §are generalized if necessary
{see Algorithm 3. 2) The generalizations are gathered in 5" Ifiisa pomtwe lowerbound and 5 an
element of S, all minimal upperbounds {mub) of s and { have to be added to 5 (see Step 3.9). In
case 5 is consistent with 4, the only minimal upperbound is s itself. Tf # is a negative uppertiound,
all most specific genera.hzatlons (msg) of s and ¢ are added to 5" (see Step 3.10). Not all elements
in §' are necessarily consistent with all g-bounds, or are necessarily maximally specific, however.
'-:The_refqre after the result of generalize has been a.smgned to § (see Step 3.3), only those elements
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procedure DI{Tnf: stream.of info ) returns set of concept, set of concept
S={ 1L} G:={T} ' '
while Znf is.not empty
do i:= read( Inf )
if ¢'is an s-bound
then G:= select all ¢ from G with g ~ i {3.1}
HG=¢ '
then fail {3.2}
5§ := generalizeall{ §,1) {3.3}

H-t==select-all-s-from-§-——-

with 3g € G s<{g and ~3s' € 5 : s'xs {34}
else {iis a g-bound } '
S = select-all s from § with s ~ i {3.5}
ifsS=gp
then fail {3.6}
G'i= specialize all{ G, i) {3.7}
G := select all g from G-
with 35 € 5.:s<g and -3¢' € G:g<g" {38}
endwhile
return &, §
endproe

Algorithm 3.1 Description Idcnfiﬁca_.iﬁi'on.[DI)
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procedure generalize.all ( S: set of concept;: s-bound }
' returns set of concept '
I
if i is a positive lowerbound
then for all s ¢ 5
do § =8 Umub(s,i) {3.9)
endfor
else {1 is a negative upperbound}
for all s €9
do §':= 5§ Umsg(s,i) {3.10}
endfor
return 5’
endproc _
procedure specialize.all ( G::set of concept;i: g-bound )
returns set of concept
G =g
if 1 is a positive upperbound
then forall g € G
do G = G"Umib(g,i) {311}
endior
else { i is.a negative lower;b_oumjf_'}'
forallg e @
do G':= G Umgs(g,1} {3.12}
endfor.
return &'
endproc

Algorithm 3.2 Gerneralization and Specialization in DI
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in § more specific than some g & G (and therefore consistent with all g- bcunds) and not more.
general than some other s’ € § are retained in § (see Step 3. 4}.

The:case of i being a.g- -bound is dial. First § is pruned (see Step-3.5): if an element of §
is not consistent with 7, then none of its gederalizations can be consistent with ¢ {because of the
contraposition ‘of Theorem 3.14). Whenever § is: empty, the search has collapsed also, and the
algorithm fails and stops (see Step 3. 6). Otherwise all elements of G are specialized if necessa.ry
{see Algorithm 3.2), The specializations ‘are gathered in G'..If i is a positive upperbound -and g
an elemeiit of G, all maximal fowerbounds (mib) of ¢ and 7 have to be added to G' (see Step 3.11},
otherwise all most general specializations (mgs) of g and i are added to &' (see Step 3. 12). After
the result of specialize Has been assigned to & (sée Step 3.7), only those elements in G more
general than some s.€ § (and ‘therefore consistent with all s-bounds) and not more specific than
some other element of G are retained in G {see Stép 3. 8).

This concludes the discussion of Algorithm 3.1 and Algorithm 3.2..

3.5.2 Discussion

To prune G and S and for checkmg maximal generality and maximal specificity, DI and
CE make use of § and S, and ‘do not need to store previous information elements. Because
of Theorem 3.25 DI and CE can correctly classify some unseen infermation elements.
However, storing G and & is often Very . expensive, because the size of these sets can

" grow exponentially in the number of examples (see {Haussler, 1988}, [Korf, 1085] argues
that exponential breadth-first search often exhausts the available memory long before an
appreciable amount of time is used. When. using very expressive descriptive languages
{as in Inductive Logic Programm;ng), memory. efficiercy-becomes extremely important.
Therefore many concept learning programs do not compute S and § completely, but
rather only one maximally general element and/or one maxirmally specific element of £g.
In general the question is then how o test for maximal specificity or maximal generality,
when the other elements of S and G dre not known.

Depth-first search (see [Mitchell, 1982]) does not.have the same memory shortcoming:
the main advantage of depth-first algorithms is their linear space complexity. However,
without searching the complete.search space (1 e., without recomputing S and G) depth-
first algorithms are: in general unable to chieck rna.xnnal specificity and maximal generality,
‘they can neither detect convergence, nor classify unseen information elements correctly.
[Korf, 1985] discusses depth-first search versus breadth-first search in general and presents
‘depth-first iterative deepening as a search sirategy with linear space complexity, and, in
an exponential search space, the same worst case time complexity as breadth-first search :
The underlying idea is that depth- first search avoids the memory problems of breadth-first
search at the expensé of recomputation.

Motivated by this general result, we. developed the Tierative Versionspace algorithm
(ITVS) As DI algonthm TTVS can handle upperbounds as well as lowerbounds. TTVS is
an incremental algorithm to compute one maximally specific and one maximally general
concept represéntation using an adaptation of bi-directional depth-first search. Apart from
backiracking, the backtrack information will also allow o check maximal specificity and.
maximal generality without having to recompute the complete search space. Convergence
still ‘cannot be detected and no. unseen information elefnents can be classified correctly
without searching the complete search space.
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3.6 The Iterative Versionspaces algorithm

In this section we describe the Ilferative Versionspaces framework and the Iterative Ver-
sionspaces algorithm. We start by introducing an alternative representation for S and
G which does tiot stote these sets, but yet allows to compute them completély if necessary.
This representation is described by the datastructires used in the Iterative Versionspaces
algorithm (Section 3.6.1), and by the invariants on these datastructures (Section 3:6:2). In
Section 3.6.3 'we then descrihe the Iterative Versionspaces a.lgonthm, and prove its correct-
ness,

3.6.1 The datastructures

The Iterative Versionspace algorithm combines general-to-specific and specific-to-general
depth-first search.
We use the following datastructures:

& sis the current inaximally specific concept representation, ¢-is the current maximally:
general concept representation.

» the array I, containing all s-bounds, and I, containing all g-bourds. Lower- and
up_perbo'u'nds are needed for checking consistency while backtracking. n, 15 the total
number of elementsin 1, g is the total number.of elementsin I,.

o the stack B, contalmug triplets { ind , sind altimg ), called chioicepoints, where ind is
an index in I,, 8inq 152 Concept representa.tlon and altigis a non: empty list.of con-
cept representations. Thesé friplets are used to organize the search for s and to test
maximal specificity of candidates for s. Similarly, the stack B, contains choicepoints
(ind , Gina , @lting ), Where- ind is an index ; in I, ging 1s a concept representation,
and alf;g is a non-empty list of concept representations. These triplets are used to
organize the:search for g and to test maximal generality of candidates for g.

In [Sablon etal, 1994] s;na was not -used, because it is not necessary for the basic algorithms.
of ITVS. It is only needed for the algorithms'of Section 3.9. Howevér, to prove the invariants.
Sind 15 in¥olved.in, we will already introduce s;ng here. This will have no- Major COnsequences

for the complexity analysis of Section 3.8.2.

3.6.2 Invariants on the datastructures
e have the following invariants on the comporerits of each versionspace:

¢ Invariant 3.6.1. (The maximal specificity invariant for .s) s € Sr, with. [ =
Ig{lung}UL[L.n,] . )

o Invariant 3.6.2. (The maximal generality invariant for g) g € Gr, with I =
L[ ngUL[L.n,). '

s Invariant 3.6.3. (The soundness invariant for, B,)
For all chomepomts {indy , 81, aliy; ) on B,:
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- &1 % 4, E.Dd _'('q-l #.3 ) fOl' all-ql = Glth

~ sy and all elements of alt, are consistent with the ‘clements of J and are max-
imally specific in-5;, where J = I[l.n,] U L{l..ind;}, i.e.,-J contains ell ¢-°
bounids and the first ¢ndy s-bounds;

— for every chaicepoint ( indy |55 , alty ) closer to the top of B,: ind), < ind,,
81 = &g, 51 <-az and = a; < ap ) for every g, in dlt, and for-every ap in alty.

o Invariant 3.6.4. (The soundness invariant for B,)
For all choicepeints (ind, , g1 , aliy ) on By:

— 9 = giyand 2 g0y ) for all ey € alty;

— o and all elements of alt; are consistent with the elements of J and. are -max-
imally general in G;, where J = L[1. 7] U L[l.dndy); ie., J contains ol 5-
bounds and the. first ind, g-bounds;

~ for every choicepoint ( ind; , g; , alty } closer to the top of B,: ind; < inds,

g2 < g1, 6y < -¢; and —;_(_-a_ < o ) for every a1 in ity and for every a, in dlt,.

o Invariant 3.6.5. (The completeness invariant for B,} Forall c.€ Lg, consistent with
;s or an alternative for s on ‘B,” is more specific than «.

o Invariant 3.6.6. (The compléteness invariant for By ) For'all ¢ € Le, consmtent
with I, g or an alternative for g on B, is more general than ¢,

1In the following we will shorten “x is consistent with the elements of J and is maximally
specific in S, where J = Lfl.ngl U L[1..ind]” to “x is maximaily specific and consistent
with-J,[1.47d]", and “x.is consistent with the elements of J and is ma.mma.lly general in G,
whete J = 1,[1..n,] U I[1..4nd]” to-“x is maximally general and consistent with 7, Sf1.ind)”.
In Figure 3.7 some of the invariants on B, are illustrated. On the figure, dashed arrows:
are in the relation =. Dashed arrows Wlth a cross aré not in the relation . s and all
élements of alt; are maximally specific and consistent with L[I]. s, and all elements of
alt; are more general than s;, and maximally specific and consistent with I, [1] and Z,{2].
sz-and all élements of alty are more general than -8z, and ma.xlmally specific and consistent.
with  7,[1} to 1,[3]. "Bach of the consistent concepb representations ¢1, ¢z and ¢ is miore-
general than s or more general than some alternative on B,. Elements of alt; are not more
general than elements of alt, or alt,.

It is-important to keep in mind that the: alternatives on B, are actually the roots of the
search subtrées that. are still to be. searched. Consequently checkmg gy = a for the toots
a; and a, of two search subtrees ti and i; correspords: to checking whether t; is-a subtree
of 15, From this point of view ;g is “the root? of .}l alternatives on B, with.index larger
than ind,

This also means that the conditions ~( ey % s ) and = a1 < ag.) of Invariant 3.6.3
guarantee that each ¢ € L¢ will not.be generalized more than once. This restriction there-
fore implements an optimnal, but still complete (because of Invariant 3.6. 5}, genéralization

TWith “an altematlvc for s on B,” we mean “an element of alf;,, ; for a Choicepoint { ind 2 Sind ; alting )]
on B,”. Alse, with “ali alternatives.for s on B_. we mean “all elements of alt;,y for all choicepoints
(-ind, sing, altina } on B,”,
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Figure 3.7 Datastructures and Invariants of ITVS

Gperator, By .déﬁl_ﬁti'ou', a generalization operator is optimal' if each ¢ € L¢ will not be
genetalized more than once, Therefore optimal refinement operators avoid searching parts
of the search space more than.once.

Apart, from implementing an optimal refinement operator, a second advantage of these
invariants is the-fact that if s is consistent with I, s is maximally specific and ‘consistent
with I. This is because all consistent ¢ € L ate more general than s or than an alternative
for s on B, (Invanaut 3.6. 5) Becanse of the invariant ={ a1 % s ), all ¢ consistent with.
I and more specific than s, are not more specific than an aliernative for s on B,, which
means that s is. -maximally spec1ﬁc As a consequence there is.no need for s to be compared
with all other elements of S7. The advantage lies in the fact that the computational cost
of keeping these ‘invariants invariant is- linéar 1n the__number of information elements (see'
Theorem 3.40). _ _ _ o

Dually, the conditions —{ g =¢ a; }and —( @z <0y ) of Trvariant 3.6:4 guarantee that
each ¢ € Lo will not be specialized more than once. This restriction therefore implements
‘an optimal, but still complete (because of Invariant.3.6.6), specialization operator.

The. second admtag'i_s can also be dualized: if g is consistent with I, g maximally
general and. consistent with I. In this case there is no need to compare g with all ot:héf
elements of G7. Again the computational cost of keeping the invariants satisfied is linear
in the numbeér of information elements:

As a drawback of implementing optimal refinement operators, solutions can only be
reached through one path inthe search tree. By implementing optimal refinement operators
dynamically, solutions will only be found when no other path in the search tree to the
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Figure 3.9 ITVS’s represéntation with depth-first search

solution is left over. This means that the price to pay for ha.vmg an optimal refinément
operator, and for obta.mmg a maximally specific or a maximally general solution without
having to search the compleie search space, is that all paths to a selution ¢ will have to be
explored befare ¢ will be recognized as a solution,

In Section 3.8.2 we will consider using: ITVS to generate G and & completely by means
of backtracking, in order to compare it to DI. When backiracking is used. o find more so-.
lutions, testing for maximal specificity and maximal generality will still include comparing
ca,nchdate solutions to ihe solittions already found.

The application of these invariants is not restricted 10 ITVS. The whole spectrumi. of
classical search methods from depth-first search (ITVS) to breadth-first search | (DDI) can:
be described in the ITVS framework: the versionspace is represented by a collection of
maximally specific representations together with an indication with which. s-bounds they
are consistent; and a collection of maximally general representations together with an
indication with which g-bounds, they are consistent, and this together with all inférmation
elements. In our algorithm these collecticns are represented by stacks to implement a
depth-first search. All con cept representa.tzons consistent with all information elements are
maore specific than some element in each collection, so that Sand ¢ can be (re)computed
whenever necéssary. Testing maximal specificity mll range from linear in the nurnber of
information elements (as in TTVS)-to linear in the number of elements in S'or § (as in
the Disjunctive version of DI; see further), In Figure 3.8, Figure 3.9 and Figure 3.10 these
collections of maximally specific elernents are represented for three different kinds of search
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Figure 3.10 ITVS's representation with another search method

(resp. breadth-first search, .dépth- first. search, and 2 search method in betwee:n) These
ﬁgures illustrate that in this framework orie cannot have ¢ € alt; and & € alty, such that
j <k and-¢ ¢ (see Invariant 3.6.3 and Invariant 3.6.4).

For. severa.l search stra.tegxes the worst case space complexity can be kept linear in the
number of information elements: Theorern 3.38 proves this for ITVS, which uses a depth=
first strategy. However, a hill-climbing strategy, retaining the ability to backtrack to retain
completeness, can use the same backtrackstack as ITVS, Only the order the search space is
searched will be altered. Similarly this can be extended to beam:search (again retaining the
ability to backtrack), keeping m current hypotheses g and s instead of one. This approach
would still iave a worst case space complexity linearin the. number of inforination elements.

At this point one can wonder whether this representation is epistemologically adequate
for the operations on versionspaces listed at the end-of Section 3.3. Since the representation
of 2 versionspace by means of jts § and G is epistemologically adequate for all these
operations.under Constrait 3:18 (thie Boundedness Constraint) [Hirshi, 1992b];, and since.
our datastructures allow to reconstruct § and G'through backtracking, our representation
is epistemologically adequate for all these operations under Constraint 3.18.

3.6.3 The Iterative Versionspaces algorithm [T

SUMMARY: in this sectlon we descnbe ITVS, and prove the invariants of Section 3.6.2 are
‘satisfied.’

The main algorithm

Consider Algorithm 3.3. The input to the algorithm is, as in DI, tlie stream Tnf :of iiforma-
tion elements. First-sis initialized to .4, g to' T, B, and B, to the empty stack, and n, and n, to
0. These initializations make all invariants valid. The main loop of the algorithm processes the.
information elements one by one in the given order. The way i is processed: depends on i being
an.s-bound or & g-B_ound. '

‘We will first explain the.case where i is an s-bound, First ¢ is stored in I,. Then all alter-
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procedire ITVS.{ Tnf: stream of info )
returns concept,stack,array,index,concept stack,array,index
s:=L;9:=T; B, == @; By := &; #, 1= 0; ng5= 0
while Znf is.not empty
do 1 := read{ Inf )
if i s an s-bound )
then n, i=n, +1; Lin,) =1
By = prune_stack( BE w7 )
if-{g~1) {3.13} '
ihen g, By, ind = select.aliérnativel §, B, . n, }

g, By = specialize( g , By ;ind ) {3.14}
8, B, 1= generalize{ s, B, ,n, —1) {3.15}
else {iiga g-bound } _ '
g =g +1; Iy[""?*g]_. =1
H,y 1= prune_stack( B, , 1)
M= s i) {3.16) .
then s, B,, ind = selec__t;_q:l\i_e?ﬁa_tive( @,8,,n,)
s, B,.:= generalize( s , B, ;ind ) {3.17}
g, By := specialize{ g , B, »g—1} {3.18}
endwhile
return s, B,, I,, n,, g,-.Bé, Iy, mg
endproc '

Algorithm 3.3 The Iterative Versionspaces algorithm(ITVS)
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natives for g on-H, not consistent with'{ are removed ffom By with the procedure prune st ack®
(Algorithm 3.6). Indeed if an alternative ¢ on Hg'is not. consistent with ¢, then certainly nene of
its specializations will be comsistent with i (beca.nse ‘of Theorem 3.14); so0 ¢ can be deleted from.
B, without affecting Invariant 3.6.6. This pruning step ensures that all- alternatives on By are.
consistent with I,[1..n,).

Tf g is not consistent with i (see Step: 3.13),-an alternative for g is’ popped from B, usmg the
procedure-select.alternative® (A.lgonthm 3.8). Becaise ¢ was not. consistent with 7 anyway,
and because an alternative for g ont B; is removed from By and assigned to gy Invariant 3.6.5 is
not affected.

In. general:select alternative( alt , B, ., ng '} (with alt a list of elements in L¢, B, fulfilling
Invariant 3:6.4 and Invariant 3.6.6, and ny an index in I, retuins N

¢ a maximally general g, consistent with all s-bounds and the.elements of I,[1:.ind),
» a B, which fulfills Tnvariant 3.6.4 and Invariant 3.6.6, and
» the index ¢ind up to where g is consistent with the g-bounds.

The. procedure call select_alternative( ait | By ,mg ) fails if no such g, By and’ ind exist..

Theén, all information elements on I, from. ind up to n, are reprocessed (see Step. 3. 14).

Given that g is already maximally genera.l and consistent with the first .ind information -ele-
meiits in Sy and with all information eléments in 1,, and given that B, fulfills Tnvariant 3.6:4,
.spe.:mhze( g , By ,-ind ) returns a maximally general ¢ consistent with I, and a'stack Hy Tulfill-
ing Invafiant 3.6.4 and Invariant 3.6.6, or fails if-no such g and B, exist. Since 18 ma.)nma.lly-
general and consistent with 7 , 8 € G (Invariant 3.6. 2)
" In-the next step, givén that s is maximally specific and consistent with the first n, — 1
information elements of 7, and with all mforma.tlon elemnents in I, and given that B, Tulfills
Invariant 3.6.3 and Invariant 3.6.5, generalzze( ®y By, my — 1 ) returns. a-maximally specific s
consistent with T, and a stack B, fulfilling Invariant 3.6.3 and Invariant 3.6.5, or-fails when no.
such § and B, exist. Therefore s € &t (Invariant 3.6. 1) Consequently, all invariants will hold
after Step 3.15. _

In case £ is a.g-bound, it is stored in I;. Then all alternatives for s ¢n. B, not consistent with
i are removed from’ B,, because if an alternative cén B, is not consistent with 4, then certainly
none of its.generalizations will be consistent with': (because of Theorem 3. 14), 50 ¢ cax be deleted.
from B, without affecting Invariant 3.6.5. This pruning stép ensures that all alternatives on B;
are consistent with {1 ng]

H sis not. con51stent with 7 {see Stép 3. 16) an alternative for 5 is popped from B, using the
procedure select.alternative. Becaise s wis not consistent with 4 anyway, and because an
alternative for s on B, is removed from B, and assigned to s, Invariant 3.6.5 is not affected. In
general select.alternative( alt , B, , ng) (with alt 2 list. of elements in Lg, B, fulfilling Invari-.
ant'3.6.3 and Invariant 3.6.5, and n. anindex in F, such-that all elements of alt;.g are.consistent
with I,{l..n.]} returns

¢ ‘2 maximally specific s, consistent with all g-bounds and the elements of I,{l..ind],

o & B, which fulfills Invariant 3.6.3 and Invariant 3.6.5,-and

3We use the opera.tlon push{ ind | sing , albing; B: ) to pud the chioicepoint ( ind , sing y.alting} on
top of stack B,, pop( B. ) to rerhove the top cheicepoint from B, and is.empiy({ B, ) to test whether B,
is empty.

9The assigninent. g, By, ind 1= seleci.aliernative( @ , B, , ny } assigns the first returned valug of
select alternative( @ , B, |, n, ) to'g, the second one to B,, and the third one to ind.
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o the index ind; up to where s.is consistent with s-bounds,

or fails if no such s, B, and ind eJust The s reéturned by select._alternative is an-element of
alt, if alt is not. empty, or else an alternative of the top choicepoint of B,, if B, is not empty.

Then all information elements on I, from ind up-to n, still have to be Teprocessed (see
Step 3 1?) Given that s is already ma.xlma.lly specific and consistent with the first ind infor-
mation elements in: I, and with all information elemients in I,, and given that B, fulfills Invari-
ant 3.6.3; generalzze( s, B, ,ind ) returns a s € 8p- (Inva.rlant 3.6.1}, and a stack B, fulfilling
Invariant 3.6.3 and Inmrla.nt 3.6.5.

In the next step, given that g is ma.mmal]y general and consisterit with the frst ng—1
information éléments of I, and with all information elements in I,, and given that By fulfills
Invariant 3.6.4 and Inva.na.nt 3.6.8, .specmhze( g, B mg—1)returns y € G, and 2 stack By
fulfitling Invariant. 3.6.4 and Imrarlzmt 3.6.6. Consequently, all. invariants will also hald after
Step 3.18.

Since. all invariants hold affer Step :3.15 and Step 3.18, th‘_ey_ will alsoc hold at the end of the
while loop.

Note that backtracking on s:and g is completely iridependent, in. the sefise that returning to
the last choicepoint for s unddes-all. consequences for s, but not those for g:-¢. g, when réturning
to a choicepoint. for s, values for g that were tejected after the choicepoint for s was ‘created, are
still rejected when other choices for s are made.

After-processing an information element, convergeuce can gnly be detécted by -exhaustive
backtracking on B, and Bg, i.e., by checkmg ‘that § = s and that there are no consistent al-

~-ternatives-on—B; or-By: - Sinre flns might e tinte consurming (see the: complexity "analysis i
Section: 3.8.2), Algorithm 3:3 does not detect corvergence. A less time consuming, but only
sufficient, condition for convergerice is testmg whether ¢ = s'and B, = B, = @.

Generalization in TT'VS

In this section we will explain how the procedure generalize works (see Algorithm 3.4).

We have to show that, given that s is maximally specific and consistent with the first n.
information elements of I, and with all information -elements in I, and given that B, fulfills
Invariant 3 6.3 and Invariant’3.6.5, generalzze( s,B,,n ) returns a maximally specific & con-
sistent with I, and a stack B, fulfilling Invariant 3 6.3 and Invariant 3.6.5.

‘When n, = n,, §is maximally specific and consistent with all elements of I,, 50 the procedure
ends. Otherwise, after having incremented n. with 1, s is géneéralized such tha.t it is consis-
‘tent with I, qnc] (1f it was not consistent already). The generalizations of 5 w.i.t. the s-bound
I[nc] are computed in gemeralizatioms. X the s-bound is a positive lowerbound, consistent
generahza.tmns are all minimal upperbounds of 5 and the .s-bound (see Step 3.21}. Otherwise
‘the s-bound is a' negative upperbound, and the ‘consistent geteralizations are all most specific
generahza.hons of s that are not more specific than the s-bonund (see Step 3.22). Note that all
consistent genera.]_tza.twns of 5 are alsa consistent with I, [1..71; — 1] because of Theorem 3.14. In
Step 3.19 only those generalizations ¢ also consistent with all g- bounds, maximally specific and
ot more general than an alternative on B, are selected {for all.consistent see Algorithm 3.6).
This does not affect :the completeness for B,. {Invariant 3.6.5):

o if there exists 4 ¢/ on. B; such that ¢ = c, then ¢ will be considered for generalization on
backtracking, This is guararteed by the completeness of msg and -mub. Consequently, there
is nio'need to consider the generalizations of ¢ at this point, without affecting cnmpleteness.
In terms‘of search subtrees: if the subiree Tocted by c is.a subtree of the tree. rooted by ¢,
the tree of ¢ will be explored when ¢/ 'is being explored, 56.it does not have to be explored
at this point.
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procedur.e 'general_iza(_ s concept;- B,: stack; n.: index ) returns concept, stack
while n. # n,
dons:=n:+1
i (s ~ Iy [n} )
then gens := generalizations( s ,.1,[ng] )
gens := select all ¢ from gens
with all:consistent{ ¢ ,-I, , ng.)
and maz_specific{ ¢, B, ) {3:19}
s, By, ne = 3e'fecf_alternai£1:e( gens-; B, ,yne ) {3.20}
endwhile
return s, By
endproc.

procedure generalizations{ ¢: concept; 4 s-bound. ) returns list of concept
if 1 is positive lowerbound
then gens := mub( ¢, ) {3:21}
else {i is negative upperbound}
gens.:= msg(c,i) {3.22}
return gens
endproc

procedure max_specific{ ¢ concept; B,: stack ) returns boolean
B, = copy( Ba)
maz_specific i= true
while ~ is_empty{ B. ) and maz._specific
do ind, sind, alfing, Bei= pop( B, )
maz_specific 1= (~3c/ € alting 1 & < €)
endwhile
return maz.spectfic
endproc

Algorithm 3,4 Generalization in ITVS
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o if no ¢ exists-on B, such that ¢ % ¢, then, because of transitivity of <, consistent gener-
alizations of any of the alternatives-on B, can neither be strictly more spec1ﬁc than ¢ (and
thus ¢ belongs to § ) nor be equal to ¢ (and thus the generalization. operator is optimal for

c)-

From this and from Invariant 3:6.3 follows that every ¢ € [, consistent with I, is more
general than one of the selected genera.hzatmns or than an alernative for s on A,. Then
select _alternative: (see Step 3.20 and Algomthm 3.8) selects a. next candidate 3, the corre-
sponding H,, and the index up to where & is maximally specific. and consistent ‘with I

‘The call maz._specific( ¢ , B, ) checks whether ¢ is' maximally specific and not more general
than an alternative on B,. First max.specific {see Algorithm 3. ¢) copies the parameter B; to.
‘B; in order not to change B,- Then maz._spectfic is initialized to true. In the while: loop all
choicepoints are popped from B, until B, is empty, or until a choicepoint has been faund con-.
taining an alternative which is more. specific than c. X such a choicepoint is found, maz_speci fic
becomes felse. Flna.]iy mam.spem.fzc is returned.

Specialization in ITVS
The procedure specialize (see Algorithm 3.5) is dial to generalize, When e =N, g
is maximally general and consistent with all elements of Iy, so the procedure -ends; (Hherwise,

after having incremented n. with 1, ¢ is specialized. such tha.t it is consistent: with Tg[n.) (if it
was not consistent already). The specializations of ¢ w.rt. the g-bound I [n.] are computed

N i specializations, Tthe g-bound 158 riegativé 1oWerbound; consistent specizlizations are all
most general specializations of g not covering the g-bound (see Step 3.25}. Otherwise-the g-bound
is.a positive upperbound, and the consistent specializations are all maximal lowerbounds of 4 and
the g-bound (see Step 3. 26). Again all consistent. specializations of g are also consistent with
I,[1..n.— 1} because of Theorem. 3.14. In Step 3.23-only those specializations also consistent, with
all s-bounds and maximally general are selected. This does.not affect the completeness for B,

{Invariant 3.6.6):

w if there exists a. ¢’ on By such that ¢ < ¢, then ¢ will 'be considered for specialization on
backtracking. This is guaranteed by the completeness of mgs and mlb. Consequently, there
is no need 16 consider the generalizations of ¢ at this point, without affecting completeness.

s if no ¢ exists on B, such that ¢ < ¢, then, because of transitivity of ={, consistent special.
izations of any of the a.lterna,tlves on H; can neither be strictly moze. general than ¢ (and
thus ¢ belongs to § ) nor be equal to e (and thus is the specialization aperator optimal for

c)-

From this and from Invariant 3.6.4 follows that every ¢ € Lg, consistent with I, is more.
specific thait one of the selected spec1a.hzat10ns or than an alternative for ¢ on B,. Then
select alternative (sée Step 3:24 and Algorithm 3.6) selects ‘a .next candidate g, the corre-.
sponding B, arid the index up to where gis ma.)uma.]ly general and consistent with I,

The call max_general is dual to max.specific. maz general( g, By ) checks whether g.is
maximally general,-and niot. more general than an alternative on By,

Auxiliary procedures in TTVS

The procedure call all_conszstent( ¢, I, , ny.} checks whether ¢ ~ Ij[1..mp] and is straiglit-
forward, If B, is empt:y, this test can be replaced by the test ¢ = g- This is more efficient for
languages in which | Glis always equal to 1.
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procedure specialize( g: concept; By stack; ne: integer ) returns. concept, stack
while n. # n, ' '
do n; = ma .1
(g~ Iy{ﬂ’c]' )
then specs := specializations( s , Ip[ne] )
specs ;= select all ¢ from specs
with- all_consistent{ ¢, I, ,n, )
-and mam._q_eﬂera!('c ;. By ) {3:23}
9,.By, nc 7= select_alternative( specs , By ,me ) {3.24}
endwhile
return g, B,
endproe

procedure specializations( e: concept; 4 g-bound ) returns list of conceépt
if 4 is positive upperbound
‘then specs := mib{ ¢, i) {3.25}
else {i is.-negative lowerbound}
specs := mgs{ ¢ 1) {3.26}
‘return, specs
endproe.

procedure max.general( c: concept; By: stack ) returns boolean
Bii= copy( By )
maxz_general 1= irue
while - is_empty( B.) and maz general

do ind, Sind; alting; Be 1= pop( B )
maz_general 1= (~dc! € alting: ¢ K€f)

endwhile .
return maz_ general

endproc

Algorithm 3.5 Specialization in ITVS
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&3

procedure all.consistent{ ¢: concept; I.: array; 7. index }returns hoolean
return Yind, 1 € ind € ne 1 ¢ ~ Lfind]
endproe

procedure prune stack{ B stack; i: info ) returns stack
if is.empty( B, }
then return @ _
else ind, sina, alting; Bo:= pop( B, )
alijng = select all ¢ from alting with ¢~ i
B, := prune_stack{ B; ,1)
if altyng £ B
then B, = pu.s_h_'( ind |, Sind , clting , B, )

return B,
-endproc:

_proc_edu;‘.e'-_-selqct,altern‘at-ive_( ali: list; Be: stack; mo: iridex )
returns concept, stack, index
ifalt =9
then if is_empty( B. )
then failure {3.27}
else ng, s, alt, B, := pop( B. } {3.28}
¢ o= head( alt ) {3.39)
if tail{ alt Y £ @
then B, := push{ n. , ¢, tail{ alt ) , B. ) {3.30}
return.c, Be, n, ' '
endproc

Algorithm 3.6 Auxiliary procedures in ITVS
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The procedure prune:stack is written recursively. If the given stack is empty, the procedure.
retirné. an empty stack. Otlerwise, it pops the top.choicepoint of the stick and removes those
elements. that are inconsistent.. After prunirig the:test of the stack, the prunéd choicepoint is
pushed batk onto'the stack, if it Has'not become empty:

. Given. a hst alt.of concept representa.tmns a stack By and an mdex e in I, the procedure
select altefnative works as follows: it selects an element ¢ of alt, (see Step 3. 29), if alt is ini-
tially empty, it first pops a choicepoint frofn B, {see Step 3.28). If alt and B, are empty, no ¢ con-
sistent with I' can exist {because of Invaridnt 3.6.5.and Invariant 3.6.6), s0 select.alternative
announces failure and halts ITVS (see Step. 3.27). Otherwise, the ch01cep01nt (me,c,alt)is
pushed onto B, (see.Step 3.30), and it returns ¢, B; and n; such. that ¢ is: maximally genera.l and
consigtent with the elements of I, {1..n.]. Therefore; initially n, must be such that all elements
of alt are maximally general and consistent with the elements of I{1..n.], in cise B, is B, and
maximally sp ecific-and consistent with the‘elemenss of I.[1. nc] in case B, is B,. Also, depending:
on B, being. Bg, tesp. By, it will fulﬁll Invariant 3.6:4 and Invariant 3.6:6; or resp. Invariant 3.6:3
and Trivariant 3.6.5. If B. is By, weshould therefore have initially that Invariant 3.6.4 holds, and
that for every ¢ € L¢; consistent with I, ai element of alt or an alternatwe for g on. B, is more
general than e. Similarly, if B, is 5,, we should have initially that Invariant 3.6.3 hold_s_ and
that for every ¢ € L, consistent with-J, an element of alt or an alternative for s on 8, is more
specific-than ¢, '

3.7 Examples

In this. section we will give some examples of the Iterative Versionspaces algorithm.

Example 1

The first example is based on the lattice M (see Figure 3.11) of [Mellish, 1991]. Fig-
ure 3.12 shows the consecutive stages of .the example session with ITVS *°. The target
‘concept is represented as £. Initially g is T, and s is L. The first information element is-
a negative upperbound .and is stored in JI,[1}]. Witk respect to this negative upperbound
s is generalized to inanimate; and the allernatives female.and'male are put on. B,. The:
second information element is a positive lowerbound, and therefore stored in I,[2: It is
not consistent with inanimate, so inanimate should be generalized. The. concept repre-
sentation inanimate can only be generalized to T. The concept representation T is inore.
general than fernale’on B,, so'il can be skipped -at th:s point.. The most recent. alter-
native on B, (i.e. female) is assigned to s, and only male remains on. B,. The concept
representation fi emal e is'consistent with I, [2] The thizd information element is a negative
lowerbound that forces ¢ to be specialized to animate, whlch is maximally general, since
there are no alternatives on B,. The fourth inférmation element i is a positive upperbound,

according to which male should be pruned from B, and ¢ should be specialized. The only
consistent maximally gérieral specialization is ferale, which is also consistent with the
other information elements. The resulting s and g is female. Since ¢ =5 and By and B,
are empty, female must be the target concept.

10In {he tables we have ehortened “animate” to “anim® and “inanimate” to “inanim®.
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-animate inanimate

male human female 7 '

L

Figure 3.11 Taxonomy M

| New Information | Storedin [ g B, | s | B. |
_ T % 1L 2]
| ={t=thuman) L1 T @ | wnanim | [(1,ingnim, [female, male] )]
woman=t I[2 T @ | female | [(1, female, [male])
=(inanim=t) AL anim. |8 | fernale | [{1, female, [male])
t=female Il2 female | @ | female | &

Figure 3.12 Example 1
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Examniple 2
New Infermation Stored In
1 | —(tgclhuman, T)) 1,(1]
2 g T, anim) M1
3 | ~(c{woman, woman)=<i) | 14{2]
| 4 | txclanim, anim) I3
|8 | ~(Z=g¢{woman; T)) L[2
6 | clwoman, L)<t 1,{3]
T | ={elman, L)=t) I[4]
8 | c(woman, man)=<t L4
19 | ~(xe(T, human)) L[5
18 | =(c(man, man)=t) I,[5
Figure 3.13 Information elements of Example 2
g By
s B,
T, T) B
_ oL, L} @
1T, Ty B
c(znanim, 1) [(1, e(inanim, L); [¢( female, L), c(male, L}])]
2| (T, anam) g
c(mamm L) (, _.c[inanim,l),{c(fema.le 1),elmale, L)])]
3 | e{znanim, anim) | [(2, c(inanim, anim), [c(male, anim), o T, male)])]
c(inanim, L) {1, c(inanim, L), |¢( fermale, 1), c(male, 1)])|

| 4.1 efmale, anim)

(2, c[male, anamy, [¢( T, male)])]

e female, J—) (1.3' e f.ema'le;__L),_ [c[‘fndfe, J-)])]
5 | e(male, anim) (2, c{male, anim), o T, male)] )]

o forale, 1) | (1, lfemale, L), [cfrale, L))
6 | clanim, male)

c fernale, 1)

§ l,c(female L) c(:ma'le,iﬁ)]._)]

|7 [ female;male) |

o female, 1)

o Fermale, man)

9 | cl fermale, male)

¢ fernale male)

(
(
8 | < female, male) |
(
{
(

ala &r&'ﬁiﬁ:*&'

Figure 3.14 States of g, By, s and B, in Example 2

In the second example L¢ is the direct product of the lattice M with itself. Concepts
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are couples ¢{ X | Y ) with XY € M. In the direct product the relation < is defined by
o Xy, XY=L, 1) if (1 Y and X < ).

The top element of L is then ¢ T, 7 ) and the bottom element is el L, L ).

The concept representation ¢ X , ¥ ) can be interpreted as a-cougle of creatures X on
the left, ¥ on the right. The target concept 1s & particular subset of the set of all couples
of creatures The latter set is represesited by ¢{ T, T ). ¢ X , L ) represents a creature
X on the left, with nothing at the right. Dually ¢ J_ Y) represents a creature Y on the
right; with nothing.at the left. The aim is to find a representatlon of the target. concept,
i.e,, to find which creature. must be on the right; and which creature must be on the left.
'§F1gure 3.13 shows the consecutive information elements given to ITVS, and Figure 3.14
‘shows the respective stages of the example session with ITVS. Nete that some of the infor-
mation elements actually do not change s, g, B, or B,, e.g.; ~(t=gc(woman, T)), the fifth
information element. Alse note that if the order of the information elements were different,
still other information.elements would not change s, g, B; or By, e.g., t<¢(T, ammate)
(the second information - element) and t%c(anzmate anirnate) (the seventh inforination el-
ement). In these particular cases, this'is a consequence of a particular relation between
the Information elements themselves "This will be discussed in Section 3.9. There we w;]l
also discuss how, after transformation of s, g, B; and Bj, the second and fifth information:
__€element can even be omitted.

¥

After the ninth information element search has/converged to s = g= c( f emale ,nale)

apnd B;. B-—Q

Exarnple 3
Neéew Information Stored In-
1 | ~(tgc{human, T)) L
2 | ~{c{woman, woman)xt) | I[1
3.1 c(woman, man )=t L2
4 | c{man, woman)<t L3

Figure 3.15 Information elements of Example 3

In this examiple (see Figure 3.15 and Figure 3.16), the target concept is not in L¢. The
resulting s after processing the third information element is ¢ fernale, y-L.}. This 3 ¢annot
be generalized to cover c(mfm 'wo-ma,n) without. covering c{woman, wmnan) In Chapter 4
we will discuss how $o exténd the concept representation’ language in-order to.be able to
represent the target corcept of this example, by introducing disjunctions.

3.8 Properties of ITVS

3.8.1 Completeness, soundness and finiteness

Theorem 3.35 ITVS fails iff there exists no ¢ € L¢ consistent with T.
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g .'Bg
|s ‘B,
C(T:T) N
1117, T) o3
c(inanim, L) | |(1,c(znanim, L), e fernale, 1), c(male, L)}
2 C(T,_i'nanim) - (1,;_(T,.i'n.a.n£m_) ef T,male), c{male, T), c(snanim, T)])]
c(inanim, L) | (1, c(znanem, L), [e(femnale, L), c(male, 1)})]
31 ¢(T,male) | ¢
o female, 1) | [(1, c( fernale, 1), '_[c(_male, L)
4 | FAILURE

Figure 3.16 Staies of g, B,, s.and B, in Example 3

Proof TTVS only fails (see Step 3.27) when s is inconsistent with-7, and no alternatives
for s o0 B, exist, and also fails when g is inconsistent with I, and-no alternatives for
g on By exist. From Invariant 3.6.5 and Invariant 3.6.6 follows that this only happens’
when there exists no ¢ € L¢ consistent:with I. ' =

Theorem 3.36 If ITVS does not fail, s € Sy and g € Gr.
Proof This follows from Invariant 3.6.1 and Invariant 3.6.2. O

Theorem 3.37 For every given finite set [ of information elements, ITVS halts in finite
time.

Proof From Constraint 3.19 (the finiteness constraint) follows that the search spaces for’
the specific-to-géneral search and the general-to-specific search are both finite for a
finite number of information elements. ITVS implements a depth-first search in both
'search spaces, and is therefore finite. (i

3.8.2 Complexity Analysis [T]

SUMMARY:-in this section we.analyze the computational complexity of ITVS. The main
result of this section is. that the worst case space complexity of ITVS is- linear iri the.
number of information elements. Tésting maximal specificity and maximal generality of
candidate hypotheses is in the worst case also linear in the number of information elements.
If ITVS is used to compute:& and G completely, its worst casé time complexity is & linear
factor worse than the worst case time complexity of DI. However, if the size of S or the size
of G-is-exponential in the number of information elements, ITVS realizes an exponeritial
improvement in space requirements w.r.t. DL

We analyze'the worst case time and: space: complexity as in [Hirsh, 1892al. For the time com-
plex.\ty analysis we count the number of =-tests and the number of applications of the. refinement
operators (mub, msg, mlb and mgs), as a flInCtIOI'l of the number of information elements. For
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the space complexity we count the number of elements of L¢ stored. Other factors that play a
role (such as the chosen concept representation language, the branching of < i in £¢ and the order
of the information elements) will be averaged, assuming a uniform djstnbutxon of positive and
negative lower- and upperbounds -over [, _

The space complexity. of the elements of £ and the time complexity of <{-fests and gen-
eralization and specialization operations are language dependent. As in {H:rsh 19924] we will
assume they are constant. The space complexity of instance representations: {i.e., elements of
Lr) is denoted. by ¢;; the space complexity of concept representations (ie., elements of L) is
denoted by.c:. The time complexity of ={’is denoted by. t; the time complex:ty of the general-
ization operators.is denoted by Cgen,. and of the spec:a.hza.tmu apera.tors by capec: Note that w.r.t,
[Mitchell, 1982] and [Sablon et al., 1994] we a.dd;tlonal.ly count the number of specialization and’
genera.hza.tmn operations, beca.use these operations might have a complexity of the same order
as testmg =

Let 5 be the size. of the specific-to-general search space, and g the size of the general to-
specific search space. Also let &, be the average npward branching factor i in &, and by the
average downward branching factor in Gr. The average upward branching factor is the’ average
number of generalizations (i.e., most specific generalizations and minimal upperbounds} that pass
the'test Step 3.19 in algorithm. 3 4. The average downward branching factor is the average niimber
of specializations (i.e., most general spe(:iahza.tlons and maximal lowerbounds) that pass the test
Step 3.23'in. a.lgonthm 3.5. Thén b, and b, are finite because of Constraint 3.19 (’she finiteness
constraint). The search spaces (and therefore also b, and bg ) are completely determined by the

__clements of 7 and their order. Because we implement-an: Qphmal_genera.hzatmn and.specialization. ...

operator (see Section 3.6.2), we can use the same branching factor as in DI (instead of the edge
bmnchmg Jacter of [Korf, 1985]): in DI searching parts of the search space miore than once
is avoided. by using =2 set. representation for & and & and hence lmphmtly remioving doibles
(see Algorithm 3.1 and Algorithm 3.2). The resulting complexity analysis shows that optimal
operators are useful; and can be implemented: efficiently {w.r.t. time and spa.ce) ir the context of
versionspaces.

Worst case space complexity
Theorem 3.38 ITVS has a worst case space complexity of
o( (n,—i-ny)xc;{-(ﬂ,xb + ng X bg) X ¢ ).

Proof ITVS stores-all 2, s-bounds in 1, (thls yields the term n, % ¢;). Furthermore B, contains
in the worst case one concept representation s;ng and a list alt;,; of b, — 1 altérnatives per
s-bound (thls yields the term n, % b, x €z

Dually I, contains all n, g-bounds (this yields the term ng % ¢;); aid By contains in the

worst case ging and a list altyg of by — 1 alternatives per g-bound (t}us yields the term

g X by X €o). =}
This means that the worst case space complexity of ITVS is linear in the number of information
elements. o

‘We can compare this to the worst case space complexity of DI.
Theorem 3.39 (Adapted from {Mitchell_?- 1982_])\_ DI has a worst case space complen_ﬁt_y of
C)( (‘Sﬁ‘ +§) X:€ J.

Proof DI stores the sets & and ¢ completely, but does-not store any information elements, O
In case the size of G or & is exponent:a.l in the number- of g-bounds or.s-bounds, ITVS realizes:
.an exponential improvement w.r.t. DL
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‘Worst case _ti'm_e c’dmplexity
“Theorem .3.40

o F&r éach s-bound, vpdating s, B,, gand. By in case nio backtracking is neéeded, has a
worst case time comiplexity of

O (g X (B + by = 1)+ X B ) K e 1 X Gyan )

» For each g-bound, updating -5, B, ¢ and By in case no backtracking is needed, has a
vorst case time complexity of

of ( ny X {(bet by — 1) + 1y X b;) X €g +1 X Capee )»

Proof In case no backtracking is needed, the update w.r.t. an s-bound (the: then part in
‘Algorithm 3:3) requires one generahza.tlon operation. ‘W.r.t. a g-bound an update without
backtracking {the else part in Algorithm 3.3) requires ore specialization cperation.

We will now ;o_unt-'the.-numbe_r_ of =-tests. In caseof an s-bm_m& i, d_ur'ing the pruning step
consistency of ¢ has to be checked w.r.t. :all alternatives on Bg . This gives ng > (bg— 1) tests
in the worst case. Then, for each of the b, generalizations of s we have ng tests to check
consistency with I, (yielding the term 0( ngX b, )), and. n; X b, tests to check maximal
specificity: (yleldmg the term O( n, x 52 )).

Tn case of an g-bound, i has to be che_:cked w.r.t. all alternatives on B,. This gives n,x(b,—1)
tests ifi thé worst case. Then, for each of the b, specializations of g we have n, tests to
¢heck consisténcy with I,, and Tg. X by tests to check maximal generality. ]

The' importance of this theorem lies in the fact that we can update each element of G and Sin
‘a time fnearin n, and 7,. The main time comple:nty factor will therefore be the computatlon
of an alternative element of G, resp. S, in case the current g, resp. s, is not consistent with I
‘Backiracking could be.reduced by changing the depth-first algorithm into 2 hill-climbing strategy,
retaining the ability to backtrack, and therefore retaining the completeness property:; Step 3.29
in selact.alternative (see Algorithm 3.6) would then not just return an element of the list
alting, but rather select. the best element of alting according to the heuristic. The worst case
‘space complexity would still be linear in the nimber of information elements. Similarly we could
extend this to a kiid of beam-seaich (again retaining the ability to 'ba'.ck’s'ra.ck'), in which we keep
m current hypotheses. ¢ and s insfead of one, This spproach would, still have a worst case space
complexity linear in the number of information elements: The worst case time complexity i is also
linear, when no backtra.ckmg is' rieeded. The use of the. optlmal fefinement ‘operator will-make
‘sure no parts of the search space are searched more than once, and that.the solution found is
tnaximally specific or maximally general.

Theorem §.41. To compute a maximally specific concept representation s and a maximally
general concept representation g, ITVS has-a worst case time complexity of

0( 5 X Egen + § X. Capect
(5% (ng + n, X ;) + § X (7y+ 1y X bg) + s X ng X {6y + bg)) X e )

Proof In the worst case the specific-to-general and general-to-specific search spaces have to'be
searched completely.
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W.r.t. the number of specialization operations, all 5 elements s of the specific-to-general
search space have to be generalized once. This gives the terrm 3 X Cgen. Similarly, ¢l
g elements g of the general-to-specific search space have to be specialized once. This gives
the term § X €,ppe-

We will now count the number of x-tests, In the specific-to-general case; for all 5 elements
s of the search space, all n, g-bounds may have to be reexamired for consistency. Guaran-
teeing maximal specificity of s requites s°to be compared to all alternatives on B,. There
-afe at ‘most n, x (b, - 1) alternatives on B,. This gives a number of =:tests in the order
of 5 X (ng +ny X by}, Guaranteeing consistency and maximal generality of g gives another
§X {ne+ mg x by) < tests.

The pruning steps are done only once for 'each information element. For B, this results in
mgX (by — T) =¢-tests for each.of the n, s-bounds.. Similarly pruning of B, will give another
Ng. X My X by =-tests. ' O

To compare ITVS with DI, we will also compite the worst case time complexity for ITVS to
recompute & and § completely. As noted in Section 3.6.3 this does require the elements of § and
G-to be stored {albeit temporarily) to:check maximal specificity and maximal generality for.the
-consecutive elements, The worst case'time complexity will therefore depend on the sizes of & and:
G, We will denote the size of § by &, and the size of ¢ by G.

Theorem_:3.4_2 To compute § and G for each new information element, or to detect

~ convergence, ITVS has a worst case time complexity of

o( {ng +mg)x
(8 X egen + g X Copec + (§ X (ng + 1y X by §) 47 X (4 1y X by + §)) % )+
Ty X fig X {b, + bg) X - )

. Proof Tocompute.S fromsand B, and § from g and B,, the parts of the specific:to-general and
general-to-specific séarch spaces that are not yet pruned, have tobe .reéompu_ted completely.
Hence, the worst case time comiplexity of Theorem 3.41 must be multiplied by =, +ng, the
total nimber of information elements. Additionally, each element-of the. specific-ta-general
search space might have {o be compared‘to each element.of S collected so far, which yields
.an extra term (7, + ny) X % 8 X £ Dually an extra term (n, + ng) X § 5§ % cig must
be added because eich element of the general-to-specific search space might have 1o be
compared to.each elément of G collected 56 far. '

Note that the terfms. originating from pruning B, and -B, sre not multiplied by n, + Tig;
since pruning still happens only once for éach information -element,

After having computed § and G , detecting convergence is-just checking whetlier S and
¢ are equal and singletons. u|

Note that to classify an unseen information element ¢ correctly, each element of & and § will also
have to be computed, and compared to i.

Theorem 3.43 (Adapted from [Mitchell, 1982] and [Hirsh, 1892a)).
DI has a worst case time complexity of

O( X Cgen +F X Copec+ (5 + 5) % (5 + §) X o ).
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Proof FEach element of thé specific-to-general search space will be generalized once. This.gives
a term (O § %X Cgen ). -Dually; each element of the general-to:specific search. space will he
.specm.hzed once, which gives a term (9( § X Capec. ).

W.r.t. =%-tests;each element s in the specific-to- geuera.l sea.rch space, has to be’ compared
to.all & elements in G to check consistency, and to all § eléments in & to check maximal
spetificity. Also each element g'in the general-to-specific search-space, lias fobe compared to
all elementsin 8 to check consistency,-and to all eléments in G to check maximal generality:

-

We can now compare DI to the version of recomputing & and G foi gach-information element
(Theorem:3.42).

Discussion

When. b, > 1 and b, > 1, ITVS basically is a linear factor worse than DI in time to compute:
& and § completely, because in the exponential case

F= bbb b B = T g

and & = b7*. Dually §j = %= G. The terms O{ 5% G ) and O( gx & ) of the worst case time
complexity.of Theorem 3.43 can be considered of the same orderas O xS J and O( % G ).
The linear factor appears as well in the number of ={-tests, as in the number of generalization
and specialization operations, Tn.that sense this résult extends the result. of [Sa.blon ét al., 1994},
where only the' number of ={-tests were counted. Basically the linear factor arises beca.use ITVS
needs to'recompute the search space once for:each information element. On the other hand, ITVS
is not intended to compute $ and G completely, but rather only one maximally general element
and one maximally specific element of it. To do so, its space reqgilirements are linear, whereas
DI is still exponential as soon as b,'> 1 ordy > 1. As {Korf, 1885] we argue that this is an
important improvement for conce__pt learning, since combinatorial explosion of space requirements
is much more critical than explosion in time. To conclude we could say that, in case the learning:
system needs to-find only one maximally- specific or maximally general concept representation,
TTVS.shows an exponential time jimprovement over DI; for correct classification however, time is
a linear factor worse.

Moré related work

Under strong restrictions, earlier incremental approaches already presented better complexity
results than DI. In par’clcula.r, [Snnth and Rosenbloom, 1090] and [lesh 19921)] work “with
conjunctive atiribute-value languages with k features. In this case, &, =1 and by =k, s0 ITVS'
is still exponential in time when backtracking is needed to update s or g.

Incremental Non—Ba.cktra.ckmg Focusmg (INEF).of [Smlth and Rosenbloom, 1990 does not
have an exponentla.l behavior by avoiding. ba.cktra.ckmg (a.s [Bundy et al,, 1985] d_ld non-incremen-
tally). INBF employs only one maximally general concept representa.tlon (uppe-r) It SPECIELL{ZGS'
upper only when there exists a single consistent spectalization, l.e., in case of specialization w.r.t.
a near-miss (see [Winston, 1975]) INBF rélies on havinga sufficient number of positive examples
to identify near: misses. As long as a negafive example'is not. identified as a near-miss, it could
be covered by upper, which therefore is not necessarily cons:stent INBF can be. extended to be
consistent at-any point by processing the remaining far-misses in the way CE .does. This could
also lead to a G -set exponentlal in size.- The advantage over CE is, however, that the- positive
examples and the near-misses were processed first; in-this way G is kept as small as. possible.
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[Hirsh, 1992b] only represents S and the set of all negative examples, thus avoiding éxponential
explosion for computation or storage of § in case of a tree-structured conjunctive lanighage. Hirsh
notes that the explosion is very much language dependent. For disjunctive langiages for instance,
& could be exponential as well. Hirsh also notes that in certain applications maximally general
representations are preferred-over maximally specific ones, Indeed, in the application of ITVS for
‘the integration of Planning and Learning (see. Ghapter 6), taking an element of & as précondition
could restrict the application of the action so. much, that the agent would almost never apply it.

Hence, a general approach should be symmetric in § and ..

So the reason why [Smith. and Rosenbloom, 1990] and [lesh 1992b] are not exponential,
is- basically because. they do not compute a consistent element of G. K a maximally general
consistent concept representation is needed, their- algorithms: will have to be ‘extended, anid will
show an exponential behavior as well,

3.9 Compacting information elements in I'TVS.

3.9.1 Motivation

One of the-major drawbacks of ITVS w.r.t. DI, is the fact that ITVS has to store all
information elements, also wher theé sizes-of § and ‘G are smaller than the size of 7. In
this case DI would still have a better memory usage because the mforma.tlon given by all

information” eléments ¢an "be ¢ompressed without any loss of nformation. In this section
we will investi gate how, in general, to reduce the memory needed by ITVS, The particular
case when the size of & and G are smaller than the size of I, will be a special case. Because
ITVS’s worst case space complexity is linear in the number of information clements, we
will reduce the number of information elements. In this section we will therefore on the
one. hand characterize redundant information elements and on the other hand introduce
. automatically generated information elements. These will replace two or more information

‘elements without loss of information content, and thus reduce the.aumber of information
elements.

In general, incremental concept learning algorithms maintaining consistency with all
mforma.twn elements have to store all previous information elemerits as soon ag any back-
tracking is involved. Exceptions are, forinstance, DI because it searches breadth-first, and
algorithms sea.rchlng specific-to, general in a conjunctive tree-structure language, as Incre-
mental Non-Backtrackirig Focusing [Sinith and Rosenbloom, 1990). Bundy et.al. argue
that for learning, disjunctive concepts, all data will have to be stored anyway [Bundy et
.al’, 1985]. Hirsh even- prefers a representation storing all negative examples together with
S over storing §.and G in case § ¢can grow. exponentlally or can be infinite {Hirsh, 1992h],

One of the goals of concept learning is compaction of the information provided to
the algorithm. Therefore, in all cases where all information elements have to be kept,
preferably no redundant mformatlon should be stored. As [Sebag, 1994] and [Sebag and
Rouveirol, 1694] do for negative examples in a conjunctive treesstructure, resp. first order
logic: Ianguage ‘we will remove redundant information. élemients in a language independent
way by partially ordering them. using =, according to their information contents, We only
have to store information elements rna.xm:lal wr.b. =, while forgetting those with less
information content. However, we will have to take care that ITVS does not lose any
solutions, does not search previously dssca.rded parts of the search space again, and keeps
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its most interesting properties. Ordering information elements using = will be possible
because we éxtended < towards instance representations mutually in Definition 3.10.

Although we will develop this idea in the framework of the ITVS algorithm; we nev-
ertheless argue that it has a much wider application potential. The theory is formulated .
'mdependently from any ‘concept learning algorithm or search strategy and independently
from the chosen concept representation language. Ideatifying and removing redundant
information elements could be used in any ircremental algorithm that stores all informa-
tion elements, and even in a pre‘procéi;sihg phase of a non-incremental concept learning
algorithm, to reduce its actual processing time. '

We will make sure that the main properties of ITVS will be maintained: the worst
case space ¢complexity, and the worst case timé complexity of testing canchdate solutions
for maximal generality or maximal specificity should remain linear in the mimber-of in-
formation elements. The global cost of extending the ITVS algorithm will be an increase
in:time complexity quadratic in the number of inférmation elements. The gain is twofold:
on the-one hand storing less information elements will reduce the memory needed by the
algorithm. Onthe other hand, if a search with a branching factor & is exponential in
the number of information elements, reducing the number of information elements with &
factor k, would reduce the time complexity with a factor 8.

3.9.2 Redundant Information Elements

We first define the information elements we are going tofocus on. Then we prove they are
redundant.

Definition 3.44 (s-prunable-and _g-prunable )

e iy € I, i5 s-prunable wrt 4, € I, iff
— #; and i are both positive lowerbounds such that 4, <45, or.
— i, and 4, are both negative upperbounds such that 2; =< 23,01
— 4, is a negative upperbound and #; is a positive Jowerbound such that
=( 42 <% ).
e iy €1, is s-prunable in I, iff i, €7, such that 41 1s s-pruriable w.r.t. 1a.
o 4y €1, is'g-prunable w.r.t iz € I, iff
— %y and 3, 4re positive upperbounds such that 15 < ¢;, or
— 1, ‘and 4, are negative lowerbounds such that i, < 4y, or
— 1, is a negative lowerbound and 4, is a’ positive upperbound such’ that
s, : Pl
o 1 € Iy is-‘g-prunabk in Ig\ iff 343 € I, such that 4y is g-prunable w.r:t. iy.

Theorem 3.45 For any 11,42 € Ig such that %y'is g-prunable w.r.t iz, or for any
11,22°€ I, such that 1, is s-prunable w.r.t ?::2'? ‘and for any ¢ € Lg, 43 ~ ¢ implies i3 ~ ¢,

Proof Actually, the proof is a straightforward application of the -t‘rans.iti_\ri_'ty' of ={ and
the definition of ~.. First suppose iy,12 € I, and 73 ~ ¢. In all three cases of i; being
s-prunable w.r.t. 4, this-implies ) ~
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° i = i3 and 4, < ¢ implies 7, e
® i3 < iz and ~{ ¢ < 1y )_Jmphes ﬁ( ¢ )
<

iy ).

T2y, € I, and 43 ~ ¢, in all three cases of 4, being g-prunable w.r.t. 2z, this implies
?.1 e o

s ~{ i, X 4y ) and 13 < ¢ implies ~( ¢

° 13 <1 and ¢ =f 2, implies-c <4
o iy < 1, and {4y g c ) implies —-( IESDN

o (41 =< 13 Yand ¢ < 7, implies ~{-4; = ¢
-

Note that the six cases in the proof of Theorem 3.45 are the only six possibilities of
instantiating { 4., B , &' } with a permutation of { 41 , 45, ¢ }in the transitivity rule

A<B and B < ClmpllesA

and the equivalent rules

S(ARCY and B'<'Cimplies 5( A5 B

and

A=xB and 2(AxC)implies~( B ),
such that i3 does not appear inthe consequence of the rule (i.e., such that the rulé céncludes
something about 41 }:

As a consequence of Theorem 3.45, we do not have to store all information elements,
'but rather only the non s-prunable ones and the non g-prunable ones, Whenever we detect
that a previously stored s-bound 4, is s-prunable w.r.t. a newly provided one iz, we will
replace-1; by i27in 1.

In' ITVS, a naive method to update B, would be to reprocess ll s-bounds with an index-
in I; larger tha.n t1's. However, this could lead to computing and generalizing ‘previously
discarded elements of Le. Therefore, we will try to update all alternatives on B;, instead
of recomputing them, while respecting B,’s invariants.

A dual argument holds for 5.

So far we:assumed all information. elements involved were provided to the: concept learn-
ing algorithm. However, under certain conditions new information elemments: with an infor-
mation content equivalent to the provided onies can be aulomatically created: Moreove.r the
automatically created information elements will enforce that earlier provided information
elements will become s-prunable or .g-prunable, so that less. information elements have to
be stored. We will now describe.some conditions under which siich information elements
can be _a.utomatl_cally generated.

Lemma 3.46 Given ¢ € Le, and:

s two positive lowerbounds 1; and is such that -mﬂ;b(' i, ) = {1.}, or
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p_ow;r -steering’
e . '
engine pedals sails handlebars ruddcr wheel
AT ¥ T F s 72
ey e3 ty €5 P3 hy r3 Iy Wa Wy

Figure 3.17 Two free-structure taxonomies.

o two positive upperbounds i; and i3 such that mib( i, , 42 )= {1 },
then ¢~ 4 iff (¢ ~11and ¢ ~ 23 }.

Proof First consider two positive lowerbounds with mud( 41,142 )= {: }. On the one
hand each ¢ € £o more general than 1 will also be more general than 1, .and mmore
general than 3. On the other hand, éach element of { ¢ € Lo |4 c and 2, % ¢ }
‘{s more general than a minimal element of this set, which is exactly mub{ 4 , % )=

{+}

‘Nowcénsider two positive upperbounds-with mlb( 3y , iz )= { i } On the one hand:
each ¢ € L mhore spécific than 4 will also be more specific than ¢; and miore specific
than 4p. Of the other hand, each ‘elernent of {.¢ € £¢ | ¢ < 4, and ¢ < (12 } is more
specific than a maximal element of this set, which is exactly mib( ¢, , 43 ) = {7 }.

This means that whenéver two positive lowerbounds have only one minimalipperbound
they may be. replaced by this one minimal upperbound without l6ss of inférmation, and.
whenever two positive upperbounds have only one maximal lowerbound, they may. be
replaced by this one maximal lowerbound. Tn a conjunctive tree-structure: a.ttr1bute~va.1ue
language [Smlth and. Rosenbloom 1990], where each tree-is augmented ‘with a bottom.
element (because of Constraint 3. 20) the minimal upperbound of two positive lowerbounds,
and the maximal lowerbound of two positive upperbounds are uniqie. This is because the
tree-structure augmented with a bottom element forms a lattice, and the direct product of
all these lattices is also a lattice [Birkhoff, 1979].

Example-3.47 -F-igu_r.e B:17 shows two tree-structure taxonomies; adapted from the vehicle
‘example of [Murray, 1987a]. The set of concept repres¢rtations is the direct product:
of the first taxonomy with the second one {cf: Section 3.7). A concept representation
consists of a non-leaf of each taxonomy, e.g., [engine, steermg] represents the concept
-of-all vehicles with an engine, and with any steering mechanism, Instance represen-
tations.consist of one leaf of each taxonomy with the same index, e.g., [e1, 1.] is the
instaice consisting of enpine e; and handlebars ;. To introduce a bottom element
we assuthe in both trees a bottom element L more specific than each romn-leaf of the
taxonomy'. The bottom concept representation of the direct product is then [1,.L].

P These bottom eler_nen;s_;_are not shown in Figure 317 i_n'order_ not to overioad the 'ﬁgul_‘é.
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Figure 3.18 Taking minimal upperbounds is order-dependent

% is defined as in Section 3.7
[Xi, Xo] < [¥3,Y2] iff (X1 < Y3 and X, < Va).

Suppose [e1, by] and fea,wa] afe positive lowerbounds. Then the unique mini-
mal upperbound of both ‘is [engine,stéering]. Suppose [power, handlebars] and
[pedals, handlebars) are both positive upperbounds; then [pedals, handlebars) istheir
unique maximal lewerbound. '

S

In Chapter 5 we will show that also in In&uctive:LOg_i’c Programming using #-subsump-
tion the minimal upperbound and the maximal lowerbound are always unique.

Theorem 3.48

o Given two positive lowerbounds 4; and 4, such that .mub(:' i1, )= { z} Then i;
is s-prunable w.r.t: 4,

o Given. two, positive upperbounds 1y and iy such that mib( 41,42 ) = {7 }. Then 3
is g-prunable w.r.t. <. '

In both cases we also have that: given a set I of information elements such that 7; € 7,
the set of concept representations consistent with TU{ 1 } is the set. of concept
representations consistent with JU{ 4, }.

Proof This is an immedjate consequence of Lemma 3.46, and of the definition of s-
prunable-and-g-prunable. o

In particular, in the case of a positive lowerbound 2, for instance, ¢ can be provided to
ITVS instead of 45 without losing any solutions. Then, because 7; is s-prunable w.rit. 3,
%1 becomes redundant. Whenever a minimal upperbound 1 replaces a positive lowerbound
11, all other. s-bounds will have to be checked whether they are not s-prunable, or whether
‘they have more than one minimal upperbound with 4. Unfortunately, the result depends
‘on the order-in which the information élements are provided. ’

‘Example 3.49 Suppose 71, i and i3 are p‘oai;t'i've.-lowatbdunds (see Figure 3.18), Suppose
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o mub( 4y 4, )= { i4; 95
o mubl iz ,%3 ) ={%s; i },and

L mub( ii , iy )= '.{.'%‘5 }

If the positive lowerbonirids are provided in the order iy, %5, 43, then 7y and 73 have
a unigue minimal upperbound ¢5. Thus, 75.can be provided to ITVS instead .of 43.
Then 4, is.s-prunable, and can be replaced by 15. But then 12 is also -s»p_runa_ble and
can be removed from I. However, suppose instead that mub( ¢ ,4; ) = { ty } and
mub( 13,16 ) = { ig }. If the order of the positive 10werb0unds is 1y, 1z, 33, then i4
and. iz will remain i J. I the order of the positive lowerbounds. is 43, 23, 11; then g
and 4, will remain in I. This shows the resulting set of irnformation elements is order
dependent.

&

Nega.t.ive information eléments cannot be generdlized or. specia]iz‘ed in the same way,
Héwever, there is a special kind -of negative information elements that can be trahsformed
to positive information elements,

Definition 3.50 (Lower and upper near-miss)

o Alower near-miss w.r.t. ¢ € Ly U L¢ is a negative lowerbound 1, such that
{zemgs( T ix )| c <z} isa singleton {-i, }.

e An upper near-miss w.r.t. ¢ € Ly U L¢ 15 & negative upperbound. 7, such thaf
{zemsg( L4, } |2 < ¢}isasingleton{d }.

By definition
{z€mgs(T,in)|lexge}t=Mazx{z€Leg|~(in<z) and cx =z}
and
{2 emsg{ L,in ) [z c}= Min { @€ Lo | ~( - <1, ) and = X ¢}

Given a lower néar-iniss ¢, w.r:. a positive lowerbound iy the t_%_n:ge"c concept-_must be mote
general than i, to be consistent with iy, but also more specific than the corresponding %,
to be consistent with 4,. In other words; 4. is & positive upperbound consiraining the
search space in the same way as i, does.. If we replace. each lower near-miss w.r.t. a
p051t1ve lowerbound by 1I;s equwa.lent p051t1ve upperbound we can a.pply Theorem 3:48
when appropriate. This situation is illustrated in Figure 3.19. T'wo of the three clements
in the upper half of the ﬁgure that are more- general than 2, are also- more genera.l than
in. This is not the case for Z,; consequently i, is a lower near-miss and <, is & positive
upperbound.

Similarly; given an upper near-miss i, w.r.i. a positive upperbound 1 1o With. correspond-
ing 4, the target concept must.be more specific than 4, and inore general than 4. In this
case 1j is a positive lowerbound conshra.lnlng the séarch space in the-jame way as i, does.
If we replace each 1 upper near-miss w.r.t. 2 positive:upperbound by its equivilent positive
lowerbound, we can again apply Theorem 3:48 when appropriate,
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Figure 3.19 Replacing a lower near-miss by a positive.‘_t_zpperbound

Example 3.51 Considér again the taxonomies of Figure 3:17, and the concept represen-
tation language introduced in Example 3.49. Given two negative lowerbounds [ps, 7s]
and [es, wy], and a positive lowerbound {es,rs). Then both [ps, s} and [es, w4] .are
near-misses w.r:t. [es,75). The positive upperbound [engine, steering] corresponds
to [ps, 73], and the positive upperbound [power, rudder] corresponds to les,ws). Their
unique ‘maximal lowerbound is lengine, rudder]. Consequently, the two negative
ldwerbounds can he replaced by the ‘one positive upperbourd [engine, rudder]. ©

The definition of 2 lower near-miss is consistent' with the usual definition of a near
miss*?in a conjuictive -tr.ee-s_ﬁru'cture-language, sinc€ mgs{ T , i, } will only be a singleton
if ¢, and s differ in only one atiribute. Theorem 3.48 explains that providing the only
consistent maximally specific concept representation s as positive lowerbound is equivalent
to providing all actual positive_'lowerbouu__ds. ‘In this case all lower near-misses can be
replaced by exactly one positive upperbound, since the corresporiding positive upperbounds
‘have only one maximal lowerbotnd (talb). This corresponds to the result of [Smith and
Risenbloom, 1990]. '

In Section 3.9.3, we will also need the Lemma 3.52 to Lemma 3.55 to pProve correctness
of the given algorithms. These lemmas express that the generalization operators mub and
msg, and the specialization operators mib and ™gs in a sense preserve the relation =.
Readers that wish to- skip technical sections, can also skip these lemmas. Pigure 3.20

*2The notion pf_'-a.pcar-miss was introduced by {Winston, 1975].
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Figure 3.20 Preservation of < by mub

illustrates Lemma 3.52. ¢; and c, are repréesented by boxes; their minimal upperbounds
w.r.t. £ are represented by circles.

Lemma 3.52 Given ¢, ¢:.€ Lo with 6; % ¢; and 2. positive lowerbound i:
Yoy € mub{ ey, 4 )3z € mubl o , 1) 21 X2
Proof Assume the conclusion is false, i.e.,
Jzp € mub{ ez, 4 Vo emubl a4 ) o T 23 ).

Since -tz % =g, we also have. c1 = @y, Because of Constraint 3.18 (the Boundediiess

Constra.mt), the. set V = {x]e < <z and iz } is bounded. Moreover, z, €
V. Consequently, there exlsts a z' € V such that o/ < zy and &' is rmmmal in'V.
Consequently 2’ € mub{ ¢ ,+¢.), which contra.dlcts the assumption. !

Lemma 3.53 Given ¢, ¢z € Lo with ¢; < ¢; and a negative upperbound %
Vg € msgl ci, i ): Iz € msg(y , i)ie X @
Proof Assume the conclusion is false, i.e;
iz € msg{ ¢z, i):Vzi€ m's'gt C1,1 ) (@ X ws ).

Since ¢; 5 #p, we also have ¢ < x5 Because of Constraint 3.18, the set V =
{z]a <z and ~(z<1) } is bounded. Moreover, z;. € V. Consequently, there
exists'a @’ € V such that z''< z, and z' is minimal in V. Consequently z' €
msy( ¢ , i), which contradicts the assumption. 0

Lemma 3.54 Given cj, ¢, € L¢ with &1 < ¢ and a-positive upperbound &

Yoy emib( i) Tzg Emib( e, 1) @ < wma.
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Proof Assume the conclusion is false, ie.,
oy emib{ c1, i) Vos€mib( ey 2 )~ 2 <23 ).

Since 1 =% €, we also have 1 % ¢;. Because of Constraint 3. 18, the set V =

{n: lz < ¢ and = <1 }is bounded Moreover, zy € V. Cousequently, there exists
a ' € V such that z, < &’ and z' is maximal in V. Consequently ' € mib{ ¢;., 4 ),
which contradicts the assumption. 0

Lemma 3.55 Given ¢;,¢; € L with 6; < ¢ and a negative lowerbound-4:
Vo, € mgs( e, i) : ez €mgs(er, i )iz < 2.
Proof Assume the conclusion is false, i.e.,
31 Emgs{ a1, ¢ )V €mgs{ e i ) (S 33 ).

Since z; < ¢;, we al‘s_o_ have 2y = '¢;. Bécause of Constraint 3. 18, the set V =
{2]%<x ex and ~( i %@ )} is bounded. Moreover, z, € V. Consequently, therc._
exists a ' € V such that 2% &’ and %’ is maximal in V. Consequently zf €
mgs( ¢; 1 ), which.contradicts the assumption. D

3.9.3 The algorithm [T]

SummaRy: thissection.describes how to adapt ITVS ot handhng s-prunable and g-prunable
information elements. In particular this approach imposes two extra invariants on TTVS’s
datastructures: I, does not contain s-prunable elements, and I, does niot contain g- pru.na.ble
elements,

In the previous section we:have detérmined which . information elements are s-prunable or
g-prunable, and hence redindant. We will 20w modify the ITVS algorithm (Algarlthm 3.3) such
that no redunddnt information elements aie stored. We will only discuss the case of adding an
s-bound; as usual the case'of a g-bound is diial.

The fo].lowmg two extra invariants will enforce that no redundant information elemerits are
stored:

. Invaifiant- 3.9.1. (Unprunability of I_,.) No element in I, is s-prunable, and
» Invariant 3.9.2. (Unprunability of I, ) No element in I, is g-prunable.

Note that Invariant 3:9,1 and Invariant 3.9.2 aie expresséd solely in terms of 1, resp. I, and
are therefore independent of any search strategy or concept: language: they only constrain the set
of information elements that is stored, and can therefore be used in' any system that sfores all
information elements.

Given:these invariants, the guestion is how to update TTVS’s datastructures cnce a redundant
information element is detected?

‘Adding an s-bound could only imply other s-bounds to be discardéd, and this affects the
way B, is built. up. Thereforé we only have to replace the parts of the algorithm where 1,
and H, are adapted. In. order not to intérfere with the call to specialize (see Step 3.14 in
Algorithm 3.3) 1, is updated as before, Replacing the call in: Step 3.15.in Algorithm 3.3 by a ca.ll:
manage_s bound{ s, B,., ¢ ) will be the only change.




72- CHAPTER 3. ITERATIVE VERSIONSPACES.

procedure. manage.s bound({ i concept; B,:."sta'tk;__.i__: info ) returns concept, stack
if { is an upper near-miss with cotfesponding positive lowerbound 4

then i:= 4 {3.31}
o= 1
while n. <n, and then .I,[#.] is not s-pronable w.r.t. 4 and
1is not s-prunable wirt. L[r.] {3.32}
do if ¢ and J,{n.] are positive lowerbounds and mub{ i , I,[nd] ) = { iz } {3.33}
then i :=1; {3.34} k S '
ne =1 {3.35}
else 7..:==n,+ 1 {3.36}
endwhile
if ng = 1y {3.37} _
then s, B; i= generalize( s y B, ,n, — I ) {3.38}
else n, :==n,-1 {3.39}
it Is_[ﬂb} %4
then J,[n.] =i {3.40}
s, B,, ind := generalizé stack{ n, , 5, B, ,i) {3.41}
5, By := generalize( 5 , B, , ind ) o
return s, B,
endproc.

Algorithm 3.7 Managing s-bounds in'ITVS
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Mgonthm 3.7 first checks whether is an upper near-miss with correspond_mg positive lower:
bound 4, i.e., it checks. whether there exists a positive upperbound ip in g, such that the set
{ = € msg( .L ,i) | @ =c}is asingleton {'#; }. If this is the case, the pos1i::ve lowerbound 4
constrains the search in the same way as 7 does. Therefore 3t is processed instead of & DY assigning
i to 4 (Step 3.31).

Then Algorithm: 3.7 checks whether Invariant 3.9.1 on I, i5-still fulfilled. This is- done by
checking for each of the existing s-bounds I,[n;] whether I[m;] is s-prunable w.rt. 1 or i is
s-prunable w.r.t. L[nc] (Step 3. 32). Also, if © and I,[n] are positive lowerbounds, Step-3.33
checks whether they have a unique minimal upperbound i,. If they have, Theorem 3.48 allows to
process i, instead of i.- Therefore 1y s assigned to ¢ (Step 3.34). Atleast one.s-bound will now be
s-prunable w.r.t. i, namely I,[n.]. However, other s-bounds in J, might be s- -prunable w.r.t. i
as-well, therefore the. check for s-prunable elerients is restarted: fromm the fromt of I, (Step 3.35).
If nome- of the existing s-bounds is s-prunable; i itself'is not s- -prunable, and Theorem 3.48 coilld
not be applied (see Step 3.37), ITVS continues-as before (ie., with the call to generalizatien
i1 Step 3.15'in Algorithm 3.3). If i.is found to be s- pruna.ble w.r.t. Ii{n.], it is removed from

(Step 3.39)-and no ¢all to generalization is needed. Ctherwise, I, [rc] is s-prunable w.r.t.

. In that case i is-also removed from I,, and then replaces I,{n] (Step-3.40). Then B, must
be updated to fulﬁ]l Invariant 3.6.3 and Inva.na.nt 3.6.5 {soundness and completeness of B,, see

Step 3:41). This'is explained in Algoritkm 3.8. The result is a new aximally specific. cancept-

tepresentation s, the updated B,,and ap index ind such that s is consistent with all- -g-bounds and
with the first #2d s-bounds. Fma.lly, 2 new maximally specific concept representation con51stent
__with_all information elements must be- coinputed-using-the procedure-generalize.-This- call-will

fulfill Invariant 3.6.1 (ma.mma.l]y specificity . of 5), énd keep Invariant 3.6.3 and Invariant 3, 6.5

unchanged. Tn. Algonthm 3.7 and A_lgonthm 3.8 neither g, nor By, nor Iy, rior n, are changed, so
‘that Invariant 3.6.4 and Invariant '3.6.6 (soundness and completeness of Bg) and the maximality
of g (Inva.na.nt 3.6.2) are preserved all the time.

In general terms géneralize_stack works as follows: it first pops the choicepoints of B, that
are-to be generalized from B, snd pushes them onto a2 temporary stack :Bx. It then generalizes
these choicepoints one by one w.r.t. thenew information element i. The result is a new B, fulfilling:

Inva.rla.ut 3.6.3 and Invariant 3.6.5. Simultaneously, all information elements # s- prunable w.r.t.

1 are removed from 7, (by shifting the information elements following +' towatds the front). We
will now discuss generalize stack in more'detail.

Let us first discuss.thé meaning of the local variables used i in generalize_stack, and the way
they. are nitialized.

s By and By: since.J, hias been changed in position 7, the alternatives to be generalized are
the ones with index greater than or equal to n.. Therefore the stack B, is first split in two
stacks, assigned to B, and Bj. The former injtially contains all chmcepomts ‘of. B, with
index less than 7. and in the same order as on .B,. The latter contains. all choicepoints
‘of B, with index greater than or equaJ to n, and in reversed order wr.t. B,. ‘Alsg, the
bottom elemnent. of By, must have s as Sindy in order to- handle s as any other s;4. This
implies that By initially is niot empty. The initialization of these variables is actually done
in pracedure init.gen.stack (see Algorithm 3. 9).

® new sma: Jor each md NEW_3ing will Teplace sing on the generalized B,. At the end,
NEW Sind will ‘also be returned as the resulting 5. Note that new._s; g will always be more
general than s of the top choicepoint of B,:

® MeWing: HeWing is the index in J, up to where the s-bounds of the original J, are checked
for being s-prunable, and up to where new Sing is consistent with all s-bounds,
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proged_‘_ure gener_aliz__e_stadk ( me index; s:-concept; B,: stack; i info )
returns concept,stack,index '
B, By, new Sind; new_ind := _init;g_en-s’ia_ék(,.Bg, 2T )
nl = ng
new ind 1= e
prune_By = false
‘repesnt
ind, Sind, altind; By :=-pop( By )
gensy = generalizations( sing., 1} {3.42}
gens;y = select all ¢ from gensl{:} 43}
with ail_conszstent( ¢, ny } and ‘maz_specific( ¢, B, } and
(-3¢ ealtipg e < ¢ ) a.nd emsts _more.general{ ¢, s, By )
gensy = U“Euumdgenerahzatwns( a;i) {3.44}
gens, := select all e from gens3{3. 45}
with a.ZLconszstent( 6y dg, g } and maz_.specz_fzc( ¢, B, ) and
(—Eic € gens; ¢ -<c) and { -~3c"€ gemsa : ¢’ %c)
if gen51 #a
then n!, I, := shifi( n} , newind ,ind,i,I, ) {3.46}
else: pT?._Lﬂﬂ_B}l = irue
qaf I, 1= shift( w) , new_ind , n, , 1,1, ) {3.4T}
new ind, new-sing, By 1= select_alternativé( gens, U genss , B, , ind} {3.48}
until By = @ or prune By {3.49}
1, 1= W, {350}

return new siyd, By, newns

A_lg_t_:_-__r.i_t;'hm 3.8 Genetalizin_g t-he"p_a.z_'-t of B, w-iﬁh_-indcx' larger than -or equal to n,
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Figure 3.21 Generalizing_ B,

» nl: @) is the index up to where I, confains the non s- prunable information elements of
I, l nc] Tnitially, ! = n., since fy[n.] was the first information element in I, s:prunable
w.r.t. i. Elements with index larger than n; aré not yet checked,

s prune By: prune By will be true iff the rest of Bj ‘cannot be generalized consistently, It
s initidlized to false.

s gensj and geniss: thése variables are used to contain the generalizations of Sind, Tesp. aliting.

‘We will now explain what happens inside’ the’ repeat-loop. As'always we explain the algo-
rithm in general, but to fix the attention, one can take a lock at what happeiis on Figure 3.21.
Figure 3.91 shows two consecutive choicepoints ( ndy , 51 ,alfy ) and { indy , $2 , alty ) of B,:
As for any two consecutive choicepoints we have that ind; < ind,, s; and the elements of altg
are more general than &, maximally specific and consistent with all g-hiounds and with I,{1 {1} to
I [mdg] The squares in Figure 3.21 represent the state of the two choicepoints before the call
to genarallze,stack The dashed arrows represent %. The citcles-on the figure are general-
izations. of the square they are connected to. The numbers inside the circles are:labels. During
the explanation of the repeat-loop, suppose. that choicepoint. { ind; , sy , alt; )} lias already. been
generalized: the new sy is labeled 1, the elements of the new &l are labeled 2 and- 3, and suppose
that thoicepoint ( indy , 5, , alty ) i popped from By,

If the procedure generalize stack fails to generalize B,, it halts ITVS. We will prove that
in case generalize stack does not fail to generalize B, the following. three invariants hold after
each cycle in the repeat-loop;

A. mew._sing is more general than each sing on B,;
B. Invariant 3.6.3 {the soundness of B,};

C.if By, is not empty, and prune_By i is false; each ¢ € L consistent w1th I is more general
than s, of more generzal than some alternative on B,; or more gerieral than some alternative
on B;,, otherwise, each ¢ € Lo consistent- with I is. more general than new_s;.4, or more
general than some alternative on By,

Invariant B holds before the repeat-loop because-init _gen.stack left ajl choicepoints: with index
_sma.ller than #, on B, in the same order. Invariant € also holds before the repeat-loop: By
-is not empty, and prune By is false. Moreover, from Invariant 3. 8.5 before' B, is split in two
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parts follows that each concept representation consistent. with the originalset I'(i.e:, without 4)
is more general than s or more general than some alternative ¢ on the.-OfiSiIlal B; with index
ind,. Consequently, each concept representation consistent with thewnein J (i.e,, where ¢ replaces
I[nc}) is:also-more géneral than s or than'some alternative on the original B,. Thetsfore, after
splitting the original B, in two parts, invariant € is fulfilled. -Also; by construction of By, and
because By is only popped inside the tepeat- -loop, the relations. between the choicepoints on By
induced by Invariant 3.6.3 remain valid.

First sy s generalized (Step 3.42): gensy should contain all maximally specific consistent.
generalizations of 53, not reachable from an alternative on B, and not yet explored or discarded
before.. To compute gens; all minimal generalizations of 5y are computed if % is a positive
lowerbound it is the set mub( sz , #);if'i is 4 negative upperbound it is the et msg( sz ,% ). On
Figure 3.21 these generalizations arélabeled 4 and 5. Of this set of generalizations, generalizations
that-are

1. ot consistent, or

2. more general than some- dlternative on B,, or

3. ‘mote general than some alternative in alfz, or

4. not more general than s 6r than an altérnative on By

are removed. (Step 3.43). Condition 2 and Condition 3 implement; as:in ITVS, a check for
maximal specificity as well as an optimal generalization operator.. This shows the use of an
optimal generalization operator js still possible in the extended ITVS. Condition 4 is needed for
_the"fo'llowing'-rea.son: first note that all elements in. gens, are gerieralizations of 52, Also note’that
all alternatives more general than s3- and: still to be explored are the alternatives on By; together
with s. Therefore Condition 4 rejects those genera.hza.tlons not more general than s or than some
alternative on By. Further on we prove that'Invariant 3.6.5 is established,i.e., that this step does
not.remove any solutions,

The remaining elements are assigned to gens;. In gens; 2ll elements are more general than
NeW Singd, SINCe REW.Sind 15 3 generalization of 5, (see invariant A of the repeat-loop}, since each
‘minimal generalization of s5'is more general than some. genera.hzation of s, (see Lemma 3.52 and:
Lemma 3.53) and since the minimal generalizations more general than the elements labeled 2
(whlch are on: B, already) are not selected for gens;.

Then all elements -of alty are genera.hzed (Step 3. 44): gensy should contain all maximally.
specific consistent generalizations of the elements of alty, not reachable from -another alternative
on B,. To compute gens; all minimal generahzatlons are computed: if 515 pomtzve lowerbound’
it is- the union of all sets mub( a , i ), with a € alip; if ¢ is a negative upperbound it is the union
of all sets - msg{ a , i), with a _E_.a!?t:z. On Figure 3.21:this union consists of the circles labeled 6.
Of this union, generalizations $hat are

1. not consistent, or

2. more general than some other alternative on B,, or
3. more general than some otlier alternativein géns;; or
4, more general than another generalization in gensy

are removed '{:St'ep_ 3.45). Condition 4 removes the elements of genss not. maximally specific:
w.r.t. gemsy. Condition 2 and Condition 3 again implement maximal specificity and an optimal



3.9. COMPACTING INFORMATION ELEMENTS IN ITVS 77

generalization operator. The remaining elements are a.smgned to genss. Like for gens;, all
elements of gens,. are more general than new.spy.

If gens, is empty, no generalization of s, consistent with -éxists that is not more general than
an alternative on B,. Therefore.it s not necessary to generalize the other alternatives on By,
since they are-all generalizations: of 53, S0 prune_By is set to frue. Of all information elements
L[new_ind+ 1] up to I,[n,] only the ones not s-prunable are shifted.in I, towards the front, thus
removing the s-prunable ones (Step 3. 47)

Otherw1se, if gens; is notempty, only all non s- -prunable information elements of I, [rew ind+
1] up to.1, [mdz] are shifted in 7, towards the front (Step 3. 46). Then select.alternative (see
Algorithm 3.6) selects few_sing:

s {rom gens,, if_-yen's; is not empty;
» from. genss, if gens; is empty, and gens, is n0f1-3_;
e -from the top choicepoint of By, if gensi and gens; areboth empty, dnd B, is not.

Otherw1se, if gensi, gensy-and B, are empty, selactdlternative fails, and halts TTVS. This
‘means there exists neither a generalization of s mior of ‘any alternative on B, consistent with i.
Together with new _sig select alternative retuins the number of s-bounds new._s ind 15 consis-

tent with, new;ny, and the updated. B,, fulfilling invariant B of the repéat-loop: if a clicicepoint:

has been added to B,, its index ind, is the same as the old choicepoint; new. s,z Is consistent
with all_g-hounds and. ind,. 5 bounds; all elements.. of.gensi U gensi-are mere-general-than-sm-—
and not more general than some alternative on B,. Invariant A of the repeat-loog dlso remains
fulfilled. We will now show that invariant € of the repeat-loop is alse preserved, ie., that no
solutions are Jost during the update of B,,

‘We will first consider the case Where 4 concept. representation ¢ consistent with the new Iis
more general than some-alternative on B,. Since B, is only changed by pushing somethmg on
{op, this case is trivial The same is true when c¢ is more general than some alterna.tlve on Bj
_ w}uch is not in the top choicepoint of By, since only one choicepoint is. popped from. By during

one cydle of the repeat-loap.

Otherwise, suppose ¢ is more general than s. Since the bottom choicepoint on- By always has
§ 85 S¢ng, & 15 generalized. as 1n Step 3.43, after poppmg the last. choicepoint from B, Now ¢
must be more general that a minimal generahzatzon ¢" of 5 w.rit. i, because of Constraint 318"
(the Boundedness constraint}. However, ¢/ could be-discarded frem gen.s;, because of Step 3.43.
Even then, ¢ will still'be inore general than somie alternative on B, (see Figure 3.32: the boxes
represent concept representations not yet generalized w.r.t. 1, the circles represent those: aiready
generalized );

« if ¢/ is'not consistent with all y-bounds, then ¢ would not have been consistent with. all
g-bounds;

o if ¢’ is more general than another alternative a, on.B,, ¢is-also more general than a,;

« if ¢ is more general than an. element ay of alting, ¢ Is- midre . genera.l than Gg, how elements
of alting are handled is discussed hereafter:

+ the Jast case is. not applicable, since ¢ {s more general thax s.

131t is important to: se]ect from gensy first, hecause if gens; is not émpty, the generalizations.on B, stil}
have to be generalized w.r.t. i. They will be generalizations of an element of gens;. This is not the case
for.gensy. With the implementation of select.alternitive. as in A]gorlthm 3.6, this order is presérved.
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Figure 3.22 Proving completeness when s < ¢

I_f ¢’ is not discarded, eis more general than an element of gens; {of which-2ll elements are put on
B, by se'lect_alternatlve) except when ¢ is chosen as new_sima. However, then By i is empty,
so that invariant C of the repeat-loop is- still fulﬁlled

Now assume ¢ does not fif any of the above cases, but ¢ is more general than some a in the
top choicepoint of By. In-that case ¢ must be more general tha.n a minimal generahzatlon ¢ of
ain Step 3.44 (beca.nse of Constraint 3.18; the: Boundedness Constra.mt) ¢! could be: discarded:
from gens, for four reasons (Step 3. 45), but in any case ¢ is more general than some ¢lement in
gensy,in genss or on B, (see_Fxgure LE 23)__

o if ¢’ is not consistent with all g-bounds, then ¢ would nol have been consistént with all
g-bounds;

o if ¢"is more general than another alternative 2, on By, c is also more generzl than gj;

o if ¢! is more general than an element ap in gensy not discarded from gens,, ¢’is also more
general than ay. Since all elements in gens; are more gén‘ei‘a.l‘ than s-or than an alternative
on Bh, this would ‘imply that ¢ is more general than s, or than an alternative on Bg.
However, we assumed that this was not the casej

» if ¢’ is more general than a minimal g_enera.li'za.tibn aa of anotlier element of alt; 4 which is
mot, discarded, ¢is more general than ag.

If ¢’ i& not discarded; cis more general than‘an element of gens, (of which. all elements are put on
B, by select_alternatlve) e:{cept when.c’ is chosen as new._sing. In thelatter case, prune By
is false, so that mvariant-C of the. repeat-loop is still fulfiled.

After the Toop n} is assigned to n, (Step 3.50), since it is the index up to where I, contains all
non s-prunable s-bounds. Finally, new_sins, consistent with new {nd s-bounds, the updated B,
and new_ind are returned. Because of their assignment to s, B, and ind, Invariant 3.6.3 follows
from invariant B, and Invariant 3.6.5 follows from invariant C.

The auxiliary procedures for managing s:bounds are grouped in Algorithm 3.9. The.procedure
init_gen stack just initializes B, and B;, as discussed above. Given a concept repre_senta.t_ion ¢, a
conicept representation s and a stack B,, existsmoreé_general checks whether ¢ is more gerieral
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procedure init gen stack(B,: stack; n: index } returns stack, stack

ind = ne
Bpi=g
ifB,=¢
then. By, := push{n, ,s,8 , By )
else ind,_ .sg,,d,-aft;,,d, B, »=pop( B, )
ifind # n, '
then By ;= push( n, , s , @8 -Br’)
while B, # ¢ and n: < ind
do By :=push{ ind , sind , alling , B )
ind, Sing, Aling, By = pop( B, )
endwhile -
if n; > ind then B, := push( ind ; s;a., alting, B, )
return H,, By
endproc

returns boolean
H-_:.Z= c'opy_(: B, ) _
etists_more_general ;=5 < c.
‘while ~is_empty( B, ) and —ezists_more_general
do ivd, 544, alf,'_“-,_g_,__ B.‘: t=pap{ _Bq.:'_)
existsmore general = (3" € altjna ¢’ K ¢
.endwhile '
return exists_more.general
endproc -

returns index,array
while fromn £ upto
do frem = from -1
if I[from] is not é-prunablew.r.t. i
then fo i="fo+ 1
if from.# to then IL[to] := I|from]
endwhile
return te, I,
endproc.

-+ procedure - existemore-general{-c:-concept; s concept; By rstack

procedure shift ( fo: index; from: index; upto:. index; i: info; I.: array ¥

Algorithm 3.9 Auxiliary precedures for managinig s-bounds
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Figure 3:23 Proving completeness when a < ¢

than s, or more general than some alternative on A,. Finally, given three-indexes to, from: and
‘upte, an information element 7 -and an array I. -(which is I, or 1), such that 2o < from < upte,
‘the procediire shift shifts all elements. from I.[from+ l..upto] not c-prunable w.r.t. fi._' to I.lte +
1), L[to+2];.. . c-prunable in this context medns s-prunable if I; = I, and g-pranableif I = T,.

3.9.4 Example
We' will show on the example of Section 3.7 what is the result of the integration of
‘manage.s. bonnd in ITVS.

The set of information elements is repeated in Figure 3.24. The fitst three information

New Information Stored In

1 | ~(tgc(human, T}) L[1]

2} igc(T, anim) i

3_ | ~{clwoman, woman)=t) | Iy[2]

4 | igclanim, anurn) dg[1]

5 | ={tgc{woman, T))
K c(wmﬂﬂ}'-lif)%“\'i el L[2 R
7 ~(dlrmam, 1)=0) AR

8 | c(woman;man)<it 1[2

8 | ~{ixe(T, humnan)) L[

10 | ~(c{man, man)=<t) L3

'Fig__ur_e 3.24 Information elements

elements are neither s-prunable nor g-prunable, Therefore B, and B, are constructed as
before. When the positive upperbound c{animate, animate) e]ement is: provaded to ITVS,
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g By

3 -Bs_

T, T) @

C(T} T) - @

o{inantm, L) [(1, c(inanim, 1), [c( female, L], c(male, LY])]
o T, anam). & '
C(inﬂﬂima J—) : .(11 C(iﬂ@nim: J_,), [c_(fe_mal_e_, _L),.c(m'afe,- J—)D]

c(inanim, angm)

[(2, c(snanim, anim), [c(male, anim), c( T, mmale)])]

—feelsnanimg )

(L elananim; L) el female L) efmale; TN

t=<c(anim, anim) replaces txc(T,anim)

c(male, anim)

(2,c(male, anim), [e(anim, male]])]

_effemale, L) (1, < fernale, L), [elmiale, L]
~(ic{woman, T)) is s-prunable w.r:t. ={¢gc(hAuman, T))
c{aniny, male) 4]
o female, 1) [(1,6{female, L), [c{male, 1)])]
o female, male) | & ' '
o femnale, L) 7]
c(woman, man)=<t replaces c(woman, L)t
o female, male) | &
o female,man) | @
o fernale, male) | &
cf female, male) | &

Figure 3.25 States.of g, By, s and B,
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‘the pesitive upperbound (T, anirmate).in J,{1] is g-prunable add is therefore- replaced by

¢{animate, animate). In the same step g and By are to be specialized to be consistent with
the new I,[1]: g cannot be specialized conmstently, and 1s replaced by thefirst alternative
‘on.the stack, i.e., c(male, animate). Note that (male -animate) is consistent with T, [1]
Furtheimiore the other alternative e(T,male) on B, 1s specialized to c(amma.te, male) to
be consistent with ;[1}. The fifth information: element ~(t%c(woman; T)) is s-prunable
w.r.t. ~{t<gc(human; T)) and is therefore.not included in J,. The sixth and seventh
mformatlon elements are included in I, and I, respectively. However, then the positive
lowerbound ¢(woman;. L) is s- -prunable w.r.t, the positive lowerbound ¢(inoman, man);
the latter therefore replaces the former in J,[2]. Since B, is empty, ‘it does not have o
be generalized. Howéver; 5 has to be generalized w.r.b. the new L[2]. Finally with the
_nmth information element the search converges again to ¢ fernale, male), Note that the
last-information €lement; the negative lowerbound ¢(man;man), can still replace 7,(3].
Oonsequently, 4 of the 10 original information elements were s-prunable or g-prunable and
have been discarded.

3.9.5 Complexity analysis [T]

SuMMARY: in this section we discuss what are the costs of extending ITVS with Algo-
rithm 3.7: the worst case space complexlty of ITVS remains linear in the number of infor-
mation elements. The worst case time complexity has increased with a teri quadratic in
the number of information elements.

Lemma. 3.56 Civen are the s-bounds i'l-,.iz_,- « oy i, isuch tha.t iy is s-prunable w.r. t. tand
iz, i+, %n and 1 are not s-prunable. The two -seguences 5 =idy,%2,~ - i and §' = iig, 00y Ony 2
will be presented to the extended ITVS. Suppose that:

a the initial value of s and B, before any of these s-bounds is presented to ITVS is s and
Bs,(];

o there exists ¢ € L¢ consistent with I with 55 < ¢;

o for all1 € k < n,; B, denotés the value of B, after the sequerice i1,43, - - -, 4 has been
presented to the extended ITVS, starting from s and B, . Let s denote the
corresponding value of 5 (see Figure 3. 27). The choicepoirnts of the final stack B,n are
denﬂted ( k., sy, alty ) Similarly, B!, denotes the velue of B, after the sequeuce
T, a0, Bk has ‘been presented to the extended ITVS, starting from sc and- B, 0. s} is the
correspondmg value of 5. The chmcepomts 0{ B n ATE. denoted (k, s, ali )

.e for each choicepoint on H;, .smd has been chosen snch tha.t Singd S €

Assuming that the index of 4¢'in I, is &, let new B, i denote the valie of B, in
_genéra'l'i'z”e_stack after generalizing up to choicepoint {k ; si , alty ).

Then we have the following result: when the. sequence §'is presented tothe extended ITVS,
there exists for each &k, 1<k < n} a.choicé for .sk such that B s = new B, .

Proof We will prove the.lemma by induction on n. First we prove.the lemmaforn =1 (see Fig-
ure 3.26: the boxes depict ‘concept representa.tmns of B;, the circles depict generalizations
of the boxes w.r.t. ). When presenting §- (canta.lmng only 1.1) there are two possibilities:
5p could be _consi:stenj: Wlt_h_ i; or.mot:
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Figure 3.26 Casen = 1

° Jf it'is not, the choicepoint { 1, 51 , alty ) will be'on B,

s ifit is, B,_g = H,y.and 51 = s In .th.is case, init_gen stack will make sure that

choicepoint ( 1, 8¢y [} 1is_on_By

In both cases generalize stack will generalize s, minimally to geitsy, ali; to gens,. Then
gens; U gensg contains the minimal generalizations of sp w.r.t. 4 that are not discardahle.
w.r.t. B,p. Then new_s; is chosen ds one of those (smce there exists one consistent with all
elements of 1), new_alt; contains the othérs. Consequently when presenting §" {contammg'
.only £), ITVS will compute exactly the minimal genera.hzatlons of so w.rt, 1, select one of
‘them to be new_.sl, the rest being new.alt;. Consequently, new.s) could be chosen equal
‘t0 new sy, and new_alt; would then be new alt;, and thus B, =mnew B,,.

Now suppose-the lemma holds for all £ from 1 tpto n—1. Wewill prave it holds for n (see
Figure 3:27). Since generaliza_stack incrémentally generalizes B, with i increasing mdex
ind, and becanse of the induction hypothesxs there exists for each k from1upton—1,a
_chozce for sx, such that B" k= e ok

Again there are two cases:

+ First, suppose there exists a- chmcepomt on 8, with index n. Then all elements in
{ sn } U alt, are'minimal generalizations of 5n—1 consistent with i, and not discarded
w.r.t. H,n-1. The procedure generalize.stack generalizes s, minimally to gensi,
alt, to gensz. Note that all elements of gens; and of gemsy are more specific than
NeW. Sp{ (see Section 3.9.3). Thus gens, U gensy contains the maximally specific
generalizations of new. s, _; consistent with 7 and 4,, and not discardable w. .t Bypnog.
Then new._s, s chosen as one of those (smce there exists one consistent -with all
elements of I,),’ new.alt,, contains the others. Now, since new B, _ 1 ='B;,n_.1, we
have that new_sy_1 = 5,_,. So the minimal generalizations of sty wantl 4y is the
sameé set gensy U. gensz So new.s), can’be chosen equal to- ne'w_.s,,, and new.alt!, i
‘then Tiew.alty.

o Now suppose there is no c.hcncepomt ofi B, with index: n, l.e., B, = B, On the
one hand, there is. no choicepoint {o generalize, 56 new B, s = new_B, -1 On the
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other hand, s,—; must be consistent with: in, s0 its generalization new.s,_1 Is also
consistent with in. Consequently B}, = B, ,_;

Theorem 8.57 The original H‘VS and the extended TTVS have the same: worst case space
complexity: they are linear in the.number of information elements.

Proof The previous lemma shows. that the sequence S presented to the extended ITVS results.
in the same B, ds the sequence S, in case there is no backtracking irivolved. The latter
seqitence. does not contain any s-prunable information elements; and is therefore liandled
exactly the same @sin the criginal ITVS. Involving backtracking would only remove eleraents
fromn- By Therefore the worst case-space.complexity of t'hé:.-'éxt‘éndedf ITVS: cannot be worse
than, and is thus egizal to, the worst case spdce complexity of'the original ITVS. 0

We can néw explain the reason for the. change in representation of B, and B, w.r.t. [Sablon et
al., 1994] (see.Section 3.6.1). During the update of B, we will have to be able to generalize each
Sind in order to put thesé generalizations all but one in-a list of alternatives on By, If sz were
not known, all altérnatives on B, with index larger than ind would be generalized: instead, which
could lead to a combinatorial exploswn of the size of B,.

For the worst case time complexity, we will again tourt the number of =-tests, the number
of generalization operations and the number of specialization eperations (see Section 3:8.2).
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Theorem 3.58 Th’e-'worsf case time compléexity of the extended ITVS has an extra term of
O( ( (g + mg)? + (624 B2) X m, Xomg + 85 X024 63 x n2) xeyg ),
'i.¢;, quadratic in the number of information elements.

Proof On- the one hand, no parts of the search space are explored more than once in the extended
ITVS, because of Inva.ria.nt 3.6.3, and becaise no information elements are. 1eprocessed
durmg the generalization of B,. On the other hard, as a consequence of Theorem 3.57,
the worst case time complexxty of the tests.for ma.:umal generality and maximal specificity
remain linear in the number. of information elements. Consequently, we only have to add
the overhead of testing information eleménts for being .é-prunable or g- prunable, and the
overhead of updating 5, and B,,

There is no overhead in .speuah_za.tjqn- or generalization operations, since all elements of the
specific-to-general search space are still specialized only once: if an element is. generalized
during the update of B, in generalize stack,.it is removed from B, (for being overly
specific), and it will never be considered again, Dually all eléménts of the géneral-to-
‘specific search space are still generalized only once. The only overhead to be counfed is
‘therefore an overhead in the number of ={-tests.

In case no s-prunable information elements are provided to the :extended ITVS it will
have an overhead w.r.t. the original ITVS of comparing each néw. s-bound to all previdus
5- bounds and compa.rmg each new g-bound to a.].l prevmus gr-bmmds Furthermore for

bounds, and vice versa._ This gi_ves an extl:a. I_:o_e_rm of O_( (T_La_+ ng) _x__ c:_# )
Then, if an information element is found to be s-prunable, for all m, choicepoints
( ind , Sina s alting ) Oon B,_? Sing Tust be compared io:

o all ng g-bounds;

¢ all alternatives in each, already gener_a.]jzeé, choicepoint on B,;

e s and all alternatives in each element in alting;

‘o all alfernatives in each remaining choicepoint on By
Together the latter three cases give b, %7, (the worst case size.of B, ) <-tests. Consequently,
this is an operatiot of Of (s X mg +b; x 02 Y X exg ).
Similarly for all n, c¢hoicepoints (ind , sing , alting ) on B,, all b, generalizations of each
of the {b, —1) ¥ n, eléments in alt;ng mustbe compared to::

+ all n-g__q_-hounds;

¢-all b, alternatives in each of the b, X1, already generalized cheicepoints on B,;

a ‘each of the b, elements of gens;;

o each of the b, x b, elements of _a;en.sg.
The major term is O( ( 62 X n, X1y + b3 %02 } x e )
In total an s-prunable element: gives in the worst case an overhead of

O (b3 X7y X g+ B2 x.m X e ).

Dually, if an element is g:—p'riuna.bl'e',_ we have a term of

O(( b xmg X mg +83 x0d ) X6 ).
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Although the worst case time complexity has increased w.r.t.. ITVS%, it Has only increased
with a quadratic term, while, if the size of & or § is exponential, reducing the number of s-bounds,
resp. g-bounds, will also reduce search time with an expenential factor.

3.9.6 Related Work

The work presented in this section élaborates: the ideas of [Sablon and De Raedt, 1995].
These ideas extend the work of [Sebag, 1994], [Sebag and Rouveirol, 1994] ard [Smith
and Rosenbloorn, 1990]. In [Sebag, 1994], which is restricted to conJunctlve tree-structure
languages, negative lowerbounds are converted into positive upperbounds, and only those
‘nearest to the target concept (i.e., the most specific ones) are stored. In [Sebag and
Rouveirol, 1994] this is extended to negative lowerbounds in ILP, which are represented by
integrity constraints and ordered by 8- subsumption. In our framework we have generalized
the notion of a nearest miss (which is introduced in [Sebag, 1994] and defined as a negative
lowerbound which is-not s-prunable) to all negative information elements not s-prunable
nor g-prunable. We also introduce a.notion of nearest maich for all positive information
elemerits niot s-prunable for ‘g-prunable.

Two aspects of the INBF algorithm [Smith and Rosenbloom, 1990] can. be compared
to ours. In the specific-to-general search INBF drops all positive examples, because no
backiracking is iavolved in searching specific-to- general in a conjunctive tree-structure
language. Usmg Theorem 3.48 our approach would also. drop all positive lowerbounds,
except one {which would then ¢oincide with 5), because any two positive examples will
‘have only ore minimal upperbound. In the general-to-specific search INBF processes and
then forgets all near-misses w.r.t. s. Its maximally general hypothesis upper is only kept
consistent with all positive examplesand all near-misses, so no backtracking is needed. Our
notion of & near-miss generalizes- this approach, by convertmg all negative lowerbounds t6
positive upperbounds, and considering their maximallowerbound (i.e., upper) as a positive
upperbound. ' "

[lesh 1990] informally describes a technique of “skipping data that do not change the
vetsionspace” in ke context of the Incremental Versmnspace Merglng algonthm Intersect-
ing a versionspace V51 with V52, and then with a subset V52’ of V52 will always yield
the latter intefsection. Consequently the first intersection operation was not necessary, In
-our framework, we more formally describe the approach using the notions s-prunable and
g-prunable, we relate these notions to the concept of near-misses.and to: INBF, and provide
a framework to automatically generate new information elements. ' '

3.10 Shifting Language Bias with ITVS

[De Raedt, 1992] describes a generic algorithm for shifting the language bias for predicate
learning, by using a series of language biases. We briefly discuss the incorporation of shift
of bias in the ITVS framework: because it is very important in concept learning to have
mechanisms for antomatically determining a suitable language bias. A suitable Janguage
bias is on the one hand.expressive enough to. represent the target concept, and on the
other hand restrictive enough to make the search. process feasible. Yet this rmechanism
kas some implications on the management of information elements, which have to be
con_sx_d_ered Algorithm 3.10 is an instantiation of Algorlbhrn 41 on p. 113.0f IDe___Ra.edt
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procedure biased ITVS { Inf: stream of info )
returns concept,stack,array,index,concept;stack arra.y,mdex

=1 {3.51} _
success ‘= false {3.52}
repeat

Inf =reset( Inf ) {3.53} _
3, Ba; Iy 70as, 8y -B.yl Ig: g = ITVS( "CIC 1 Inf ) {354}
if ITVS failed '
then I =141 {3.35}
else success = tiue
until success
return s, B,, I,, n,, g, B, Ig', g

Algorithm '3.10 Shift of bias in ITVS

1992). It shows that shift of bias can be applied in ITVS. The series of language biases
is represented with numbers 1,2,3,.... Initially I = I (Step 3.51), and success = false
(Step 3.52). Fach time ITVS (1 e. Algorlthm 3.3) fails with bias [, the algorithm shifts

“"to the next language bias T4 1 (Step 3.59), and ITVS is restarted. from the beginning in
the. newly selected bias {Step 3.54), l.e., ¢ is again initialized to T, and s to L, and all
information elements have to be reprocessed Therefore we mtroduce an operation reset
(Step 3.53) which resets the pointer to Inf 's current element to its first. element. The
question Is whether it is.necessary to reprocess all information. elements, and whether I,

and I, could not be used for that purpose. In other words, can this shift of bias. algorithm .
be. combmed with techniques to discard and automatxcally geterate information elements
as discussed in Section'3.97 The answer is that as long as I, and I, do not depend on the
chosen langiiage bias, they can be. reused, instead of resetting In f Let us, briefly review
the possible dlternatives:

o if no elemen_fs are discarded by ITVS, I, and I, contain all information elements of
I"anyway. Consequently, I, U I, can bé reprocessed, instead of resetting Inf;

e if s-prunable and g-prunable information elements are discarded in. ITVS, but no in-
formation elements are automatically generated, 1, U I, could contain less elements
than 7. However, whether or not an information element 15 discarded does not de-
pend on the chosen language bias, but solely on the relation < between information
elements. Therefore, s-prunable, resp. g- prunable information elements will remain
.s-prunable, or p- prunable when caﬂing ITVS with another language bias. Conse-
quently, also in this case only the elements.of J, U J, should be reprocessed; instead
of resetting Inf;

o if information elements are automatically generated, they depend on the vsed lan-
guage bias, since they are computed using mub, mib, rsg and mgs. These refinement
operators depend on the chosen language bzas Consequently, the information con-
tained in I, U I, depends on the language ‘bias, and .can not necessarily be reused
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in combination with ansther language bias. This does nol mean there:is no advan-
tage in combining shift of bias with automatically generating information elements:
although there will be no advantage in space requirements; the time complexity of
ITVS also depends on the size of I, and I, (i.e., or n, and n,), and can therefore
benefit of discarding a$ many information €lements as possible:

3.11 Instance Generation

In _thi's:sec;ﬁiop we will.elaborate on extending ITVS towards automatic i:_ts'tance-generation.
We first derive some genexal results, then integrate these results in ITVS, and. finally
describe some related work. '

3.11.1 ‘Theory

In‘an interactive concept learning setting convergencecan be accelerated by generating new
releyant instancé reépresentations antomatically; preferably @ minimal sequence of them, and
having them classified by an oracle. We will first define- relevant lower- and upperbounds,
and then discuss how their classification can be'used by the concept léarning algorithm. -

Definition 3.59 (Relevant lower- and upperbounds) Given s,g € L¢, and i €
Lrt) f.:c:

o i is a relevant lowerbound w.r't. s and g iff
oy, cr € Lo s K¢ < <g and ~{ig ¢ ) and 1 X .

e iis a relevent lowerbound iff 3s € §,g € G such that 1 is a relevant lowerbound
w.r.t. s.and g.

¢ % is a relevant -uppe'_rbcund' wrt. sand g iff
Jej, € Logrs Koy <ep$g and ¢ x4 and (e 1)

e i is arelevant upperbound iff Js € §,¢ € § such that ¢ is a relevant upperbound
w.r.t. s and g.

Given a relevant upper- or lowerbound, and the fact that it is positive or ‘negative, .at
least one element of S or one element of Q is mconsmtent and must be adapted

o Suppose 1 15 a relevait 1owerbound w.r.t. .5 a.nd q.. Then there exist ¢; and ¢y suck
thats <1 < ey g, ~(i< e ),ands 5 o

‘— If i is known to be a positive lowerbound, i.e., 7 = ¢ (where¢ is the target con-
cept), then - 5 ~i ). Inthiscase cyisa nega.tlve upperbound (e, ~(t < 1)),
because £ = ci would lmply 1% &. In other words, ¢; 15 a negative upperbound
because there is.an instance representation covered by ¢ which is not covered by
¢1. Indeed, if i € £y, then % is an instance representation covered by i but rot
by ¢i. And i1 € Lg, then there must be at least one instance representation
covered by i and not covered by ¢y, because —( ¢ < ¢ ). ' '
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-~ If 1 is known to be a negalive lowerbound, i.e., (i =< ¢ ); then = g ~4 ). In
this case c; is a negative lowerbound {ice., ~{ ¢ < ¢ )) because ¢ =<t would
imply 3 < t. In other words, ¢, is & negatlve lowerbound because there is an
instance representatmn covered by ¢, which is-not covered by t. Note however
that ¢, is s-prunable w.r.t. 7, and does therefore not. contain more information
than 1.

s Suppose % is a relevant upperbound wir.t. 5 and g. Then there exist c; and ¢ such
that s < ¢1 <z ¢, €1 <%, and ~{ oy g3 ).

— If ¢ is known to be a.-po_siti‘_tg_e-'uppefbound i.e., ¢ =7, then ~{'s ~ 1 ] In this.case
¢z 15 a.negative lowerbound ( ( o=t )) because ¢z %'t would imply ¢ = 4.

— H 7is known to be a negative upperbound, i.e., ={ ¢t < i ), then —|( g i) In
this case ¢; is.a negative upperhound (~{ £ < ¢; M, because 1. ¢1 would imply
t < 1. Néte also that.¢; is g-prunable w.r.t. 1,

In all four cases, at least one element in § or G is inconsistent with the relevant
upperbound, and should be modified. In each case where s must be generalized, ¢, is a
negative upperbound. This means that if 5 is .generalized in the direction of g it will have

--to.be more.general than c;.-In-each-case-wheré-g-rmust-be- -specialized; cy-is-a-negative
lowerbound. This means that if g is:specialized in the direction of s it will have to be more
specific than ¢;. Consequently, it is a.dvanta.geous to choose ¢ as close ag posslble ta g,
and. cg. as close as possible to s. However, since.c; < € mtultwely the ideal is that ¢; and
¢z -ate “in the middle™ between s and g. A middle point could be defined based on the
number of elements between s and g.

Definition 3.60 {Middle Point) Given s,4;¢. € L¢, ¢ is a middle ‘point between s
and g, iff 5 < ¢n < gand

[{clsgexendi=l{c]cnstcxgg]}].

The closer ¢; and ¢; are to a‘middie point between 5. and g, the less lower- or upperbounds
would be needed on average to converge, since the number of elements between s and g
would each time be halved, This strategy halves the part-of the search space between s and
9, i.e., it locally searches fora minimal number of instance representations for s and ¢ to
converge. This does not necessarily lead to a minimal number of instance representations
for the complete versionspace between § and G to converge, which would be a. globaf
strategy. A global strategy should find an instance representation’ covered by half of the
complete versionspace, and therefore assumes S and § to be available,

In the local strategy as well as in the global strategy, it would be an expensive oper-
ation to compute each time the number of elements between one or all couples s-and g.
Therefore middle points will only be epprorimated, most often by using domain depen-
dent heUIISthS In Section 5.11 we will elaborate on this in the context of Inductive Logic
Programming. In Chapter 6 we will use relevant lowerbounds in the context of experiment
genergtion for an autonomous agent.
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8.11.2 Instance generation in ITVS [T]

SUMMARY? augm’entin’g ITVS with an instance generation. method, requires.s < g, which is
not always the case in IT'VS. This section. describes an algoritlim with linear time complex-
ity to compute an alternative for g more general than 5. A dual approach could compute
an alternative for s more specifi¢ than g.

Since ITVS only computes.one maximally specific s and one- maximally general g consistent
with all information elements, we have to:choose for a loeal strategy for generating instance
representations. The problem in ITVS is, however, that s =% g -will not always hold. In caseit
does not, we have to find 2 consistent a.lterna.twe s"of s or a consistent a.lterna.tlve g’ of g such
tha.t s < g’ and &' < g. Requiring that 5’ €'§ and g€ G as:well would require backiracking,
and storing all maximally specific lements: not more specific than g and all maximally general
elements ot more gene:ral than s (see Chagpter 6}. ‘This would be in the worst:case .exponential
in time and space. Without those requirements it can be done in linear time and linear spa.ce
Notethat if iis a relevant upper- or lowerbound w,r.t. s-and g’ or-w.r Ty and'g, where ¢’ and &'
are consistent with I, it is-also & relevant upper- or lowerbound: because of Constra.mt 3.18 (the
Boundedness Constra.lnt) there will still exist g” € ¢ and s"-€ § such that ¢’ < ¢" and " = 5",

procedure above{ s: concept; By: stack ) returns concept
B, = copy{ By } {3.56}
repesdt
Ticy. Sind, @ltind, Be 1= pop( Be )
until 3¢ € altpgts K¢ {387}
select one¢ from altyy with s < ¢ {3:58}
while n. # n,
do.n. = n.+ 1 {3.59}
if = Ty[ng) ~ ¢ )
then specs := specializations( c , 'y[nc']")
¢ := select one ¢ from specs with s 5 ¢’ {3.60}
‘endwhile
return ¢
endproc

Algorithm 3.11 Searching an element more general than s, in case ~{ 5. g )

Algonthm 311 presents an a.lgorlthm to compute ¢’ more general than s, in case -( s < g ).
First B, is copiéd to. B (Step 3. 56). Since s is consistent with all exa.mples there must be at
least one alternative ¢ on By such that s <.c. Therefore choicepoints are pnpped from B, ‘until
such .c is found (Step 3. 5?) Becanse & < ¢, ¢is consistent with all s-bounds. Then e¢'must be.
specialized to be consistent with all g-bounds. This is done in the while-loop. Over the while-
loop we have that s < ¢ and ¢ ~{ L1] ..., L[n] ). Before the while: loop ‘these invariants
hold, because of Step 3.58 and Invariant 3. 6 4 of ‘B, (the Soundness invariant for B,). As long:
as the index m, up to where c is consistent with elements from: I, is not n, (i.e., as long as ¢
is not consistent with all g-bounds) n. is incremented with 1 (Step 3. 59) and .c is compared to
I[n). ¥ L[n] is. consistent with ¢, nothmg happens. Otherwise, speciolizations({ ¢., Ij[n.] )
must contain zn element ¢ such that s -< ¢!, because s is'consistent with 1 [nc] and s = ¢. This
element ¢’ is assigned to ¢ in Step 3.60. We could guarantee _tha.t_c_ is in & by adding the test
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maz.general( ¢ , B, ) at Step 3.60. However, this would introduce ba.ck_tracking’if_‘ the test wauld
fail,

This algorithm shows how the depth-first bi-directional approach-of ITVS allows the genera:
tion of couples- ( s, Jor{ &, g Y by mieans of which instances can be generated The instance
generation depends on the choics for ¢y and ¢z2. This ‘choice then depends on the.chosen notion
of middle point, and on a domain dependent stra.tegy to approximate middle points.

3.11.83 Related work

[Subramanian and Feigenbaum, 1986] has shown that generating a minimal sequence of
instances’is.in general a NP-hard problem. A minimal seqience wold each- time halve the
number of elements in'the versionspace: In the worst case this would require to compare
sach concept representation of the versionspace with each instance representation, to check
whether or not the concept representation covers the inistance representation, Factoriza-
tion of the versionspace [Subramanian and Feigenbaum, 1986] can make the problem less
compléx and domain dependent heuristics can guide this search.

With respect to instance generation' bi-directional approaches are much more apipropri-
ate than solely specific-to-general strategies and solely general- to-specific strategies, such
as, ‘e.g., Marvin [Sarnmut and Banerji, 1986] or CLINT [De Ra.edt 1992] Uni-directional
'approaches cannot define a middle point, and therefore alsé not approximate it. Typ-

--ically, these. systems take 6r-=-s-and-e;-a-rnost-specifie- generalization-of-s— covering -at;

least one instance representation not covered by s, in order not to overgeneralize s. In the

‘bi-directional approach, even a random choice of ¢; and ¢; between s and ¢ could not be
worse.

3.12 Conclusion

I this chapter we first introduced the language independent framework of versicnspaces
to” déscribe concept learning problems and their solutions. Within this framiework we
infroduced an alternative representation for & and & which led o the framework of Tterative
Versionspaces, The latter frameworkis also language independent, and has therefore a wide
application potential in the field of Machine Learning. Within this. framework we found
that the breadth-first strategy of the Description Identification algorithm and the -depth-
first strategy of the Iterative Versionspaces algorithm can be seen as two extremes that-can
be described in the same framework. We therefore: suggested that several search strategies
in between depth-first and breadth-first can be described in-and can benefit from the same
framework.

In this chapter we. have also presented the Iterative Versionspaces algorithm (ITVS)
which is a depth-first algorithm in the Iierative Versionspaces framework. The main contri.
bution of ITVS 1s that-its worst case space complexityis linéar it the number of- information
elements, which is an exponential gain.w.r.t. DI for certain languages. At the same time
ITVS is a.ble to determine maximal generality and maximal specificity in linear time. The
test for maximality and consistency is coupled to the use of optimal refineriént operq.
tors. Optimal refinemént operators avoid searching parts ‘of the search space more than
once, Because:in the worst case we gain an. exponertial factor in space while still com-
puling a maximally general and a maximally specific concept representation, we believe
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our approach contributes to making the use of versionspaces’ (a.nd concept l'earning)' more
practical.

~ We have also described redundancy in storing information elements in concept learning
in 2 language independent way. We have extended ITVS towards detecting and remov-
ing redundant information elements. At the same {ime we have introduced a method for
geneérating new information elements autornatically, which make several other information
elements redundant. We also géner&lized the notion of near-miss, and, as in [Smith-and
Rosenbloorn, 1990}, shown that near-misses {and their dual counterpart) play a very im-
portant role in converging towards. the target concept. Finally, we have also shown that.
storing both maximally _.spemﬁc and maximally general concept representdtiois is useful in
instance generation, ' '



Chapter 4

Disjunctive Iterative Versionspaces

4.1 Introduction

In Chapter 3, we assumed the target-concept representation was in the Ia.nguage L. In
this chapter, we will relax this assimption.. If the assumiption is false, one could try %o
-approximate the concept representation as well as possible within the. language Lé, thereby
dropping the requirement of complete consistency with 7. Another possibility would be.
to provide a series of language biases, and’ shift from one language bias to another as

“in " Chapter 4. The solution of this chapter i3 to introduce a new concept representation
laniguage which is, hopefully, rich enough to represént the targét concept. This language is
defined by means of L¢, and at the same time a superset of L¢: niew concept representations
will be introduced by constructing disjunctions of elements of Lg. Intuitively disjunctions.
of concept representations-can be seen as sets of concept representations. The cover of a
disjunction of two: concepts of L is then the union of the covers of both concepts. The
idea is then that in a disjunction one of the disjuncts covers one part of the instances to
be covered, and the other disjuncts cover the other instances to be covered. As such, the
union will cover all instances to be covered. ‘At the same time; none of the disjuncts should
.cover any of the instances that should not be covered, because then the union would cover
these instances as well.

The introduction of dlS_]u‘l].CthﬂS Increases expressiveness of the concept representation
language, but.at the same time also increases computational complexity. Actually, ex-
pressiveness is increased too much to be practically useful. This is shown by describing
the set of consistent disjunctions. (i.e., the disjunctive versionspace) by means of the set of
maxlrnaliy general and the set of ma.xlmally specific disjurictions. Therefore we have to
impose a preference criterion (see Chapter 2), which introduces some notion of minimality,
and . prefers minimal disjunctions. First, we éxtend the Multiple - Convergence approach
of [Murray, 1987a) to our 1angua.ge—mdependent framework: we reduce the p0531b1y huge
nmumber of maximally specific disjunctions by approximating them by almost mammaﬁy
specific disjunctions. In this framework we describe the Disjunctive Description: Identifica-
tion algorithm. Second we introduce two specific minimality criteria: the minimal length
¢riterion and the minimal set criterion, and how. they can be combined with almost max-
imal specificity. In each step; we gradually restrict the disjunctive versionspace to the
remalnmg elements according to the preference criterion, This finally leads to a depth-first
version of the Disjunctive Description Identification algorithm; in which the minimal set

93
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criterion is adopted, called ‘the Disjunctive Iterative Versionspaces algorithm. Within the
framework of Dis’j_un_cti've Iterative Versionspaces ‘we can- also desctibe how to adopt the
minimal length criferion. '

As in Chapter 3 we describe incremental and complefe algorithms, and discuss their
compiitational cd_rnp'lex'iﬁt_y. Altho'ugh it will be ¢léar from these complexities that a practical
application will-have to introduce extra pruning, we claim this theoretical study is.again
very useful and enlightening in the sense that it can'serve as a basis for the development of
such practical algorithms. Moreover it can. give further indications about: where and how
(mauch) to prune.

Asin Chapter 3 the results of this chapter-are again language independent;, although we
will have to impose some constraint on the language.. This constraint allows to reduce the
dlS]unctwe cover relation, and the derived <, relation, to cover and % on £g: Otherwise,
the disjunctive problem cannot be solved by reducing it-to Ec, in-that case it has o be
solved using ITVS or DI by considering the set of disjunctions as a Ia.ngu_a.ge independent.
from L¢.-

This chapter is structured as follows: in Section 4.2' we describe the language DLc
of disjunctive concept representations we want to consider, and we describe the version-
space of consistent elements in PL¢. ‘Because of a possible combinatorial explosion in
the number of maxifhally specific elements, we introduce almost. rnaxlrnally specific con-
cept representations, and we describe the Disjunctive Description Identification. algorithm
in Section 4.3.1. In Section 4.4 we discuss additional preference criteria for disjunctive
concept representations. This leads to Section 45, in which we describe the Disjunctive
Iterative Versionspaces algonthm Finally, we: conclude in Section 4.6.

4.2 Disjunctive versionspaces

Let us first define a disjunction of concept representations.in Le.

Definition 4.1 (Disjunctions of concept representatmns in Ec) Givency ;.. Gy
=3 ﬁc, n > 1, the set- {c1, . .3 GA } is the disjunction of ¢ , ..., ¢,. We call
€1, ---;.Cathe disjuncts of{e,...,e}

Notation 4.2 The disjunction { ¢ , ..., ¢, } is denoted. as ¢V +-- V ¢, oF V;‘:l o

Ve ¢ denotes Vg6, ley the disjunciion of all elements of G.

By definition a disjunction is a non-empty finite element.of P(Lc), the powerset' of Lo. As
a 5pec1a1 case, each element of Le can'be regarded as a disjunction with only one disjunct.-
Not all disjunctions are interesting;: further on we 1de1_1t_1fy the interesting ones, and restrict
ourselves to these. However, we will first ‘extend cover and =< towards disjunctions.

If 2 disjunction of concept representations is to be interpreted as a new concept repre-
sentation, we have to define'its cover.

Definition 4.3 (covery) Foralle , ..., ca € Le:

coverd(ic1 V v- Vg ) = cover( ¢ ) U -++ U cover{ ¢, ).

IThe powerset of & set 5 is the se_t":':qf ‘all subsets of 5,
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This means that' e; V -+ V ¢, covers all instances covered by -one of the concept represen-
tations.gy , ..., c,. The function cover is.an.extension of cover, in that for all ¢ € Le; we
have co‘ucrd( ) = cover( ).

We will also immediately extend < on L¢ to =<, on disjunctions-of elements of L.

Definition 4.4 (%4) Foralld=cr V- Ve, and d = ViV &,
where ey , ..., a6y, ..., ¢ € Lo

d-<q.d ff cover(d) C cover(.d" ).

d <4 d' denotes that d =<y d' and d # d'. Similarly as for covery, <4 is-an extension of <
‘in that ¢ <4 ¢z iff €1 < ¢ for all &y, c; € L. Nevertheless, we will always write the 1ndex
d for covery and =, to avoid confusion with. cover and <.

Definition 4.3 gives us immediately the following result.

'P'ropos'itibn 4.5
Ve, 0 € Lot S ep iff coverg{ ¢y V €2 ) = qover(_.cz.).

Proof covera( 1 V ¢; ) = cover{ ¢z ) iff
coverg( €1 ) U covery( ey ) © cover( ¢z ) iff
cover( ¢ ) C cover( ¢; ).

By definition this is equivalent to ¢; < . (m)

‘This result already shows that not all disjunctions are useful: some disjunctions will rep-
resent concepts that already have a representation in £¢. As in Chapter 2 and Chapter 3
we-argue it is not interesting to have multiple representations for one concept. To exclude.
multiple representations of this kind, we will work with reduced. dzsjunctlons only.

Definition 4.6 (Reduced form of a disjunction)

» A disjunct ¢; in a disjunction ¢; V -+ V &, is redundant iff there exists a k,
Mith.1 < k <% and k # 7, such that ¢; < ¢

s The reduced form of a disjunction d'is the. disjunction of all non redundant
disjuncts of'd.

¢ A disjunction.d is. reduced if it does not contain redundant dis':j_unctsf.
Notation 4.7 The reduced form of a disjunction d is denoted by [d),.

Bécause of Proposition 4.5 cover( [d], ) is equal to cover{ d ). Reducedness can make the
boundary sets of the versionspaces of disjunctive concept Tepresenfations finite, e.g,, in
case of grammars [Vanlehn and Ball, 1987]. [Vanlehn and Ball, 1987] also conjecture that
a reduced versienspace for d1s_]unct1ve normal form in first. order logic is finite:

‘We also impose a more fundamertal constraint on the disjuncfions allowed in this
Chapter. The- idea of introducing disjunctions of elements of L¢ is to- provide a way
to solve concept learning problems that cannot. be solved in Lg. Ta.kmg the set of all
(finite) disjunctions of elements.of £c as & new concept representation language; and
covery as the corresponding couver-funciion, éne can, in general, -apply the algorithms DI
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(see Section 3.5) and TTVS (sée Section 3.6). This means one has to: search P(L¢), by
means of 4. However, under Constraint 4.8 we can express <{zin terms of < on L. This
allows to reduce searching P(£¢) using %, to searching L¢ using <. _

Constraint 4.8 at the same time excludes some concepts for which ‘there might ex-
ist multiple representations. B.g., it will excludé disjunctions:¢; V¢, which are actually
tepresented by an element ¢3 of L¢, iie., c’mm‘f'._d.( Gt Ve )= cov'er(_.tg._"').

Constraint 4.8 {The Disjunctions Constraint) For all ¢, ¢, and-c3 in L, we restrict
ourselves to disjuncticns ¢; V' .¢z such that

cover(cs )G covera{ ¢y V c; )

implies _ o
cover( c3 ) C.cover( ¢; ) or cover( ¢z ) C.cover( ¢z ).

This: constraint restricts Definition 4.3, but does'not contradict jt. The reverse of the
constraint is trivially true, Tn Chapter 5 we show that this constraint is certainly-satisfied in
an Inductive Logic Programming context without recursion. _A_'fort-iqr'i it is satisfied in the
context of attribute-value langnages, sinice these are actually propositional representations.

Corollary 4.9 expresses that under Constraint 4.8 no reduced disjunctive conceépt. rep-
resentation ¢; V' ¢z can at the same time represent -another element ¢z € Lo

Cordllary 4.9 If covery( ¢; V & ) = cover( ¢3 )-then ¢y = ¢z or.c; = ca.

Through Proposition 4.10 and Proposition 4.11 we now express dy %y da by means of
<4 between the disjunéts of d; ‘and dp. In Propesition 4.10 we split up the left-hand side
of dy <4 da; in Proposition 4.11 we split up the right-hand side. For the first opcr_a.tion we
do not .need Constraint 4.8, For the latter, however, we do.

Proposition 4.10 For-all ¢i,¢; € L¢ and a finite disjunction d € P(Le):
61V62=\<d lﬂ:(clﬁddaﬂdcjﬁgd)
Proot” &V a2y d--_i_ﬂ: ' _
coverg( c1 V ¢z ) € covery( d') iff
cover( ¢; ) U cover( ¢z ) € covery( d') iff
cover( ¢ } C covera( d ) and cover{ ¢z ) € coverq( d } iff
e g d and ¢z <4 d.

Note that we did not need to use Constraint 4.8 in this proof.
Proposition 4.11 For all ¢i,¢3,¢ € Le-
=g Ve iff (c=core= = € )..

cover( ¢ ) C coverg( ¢ Viop ) iff
cover( ¢ ) € cover( ¢; ) or cover(:c):C cover( c; ) (by Constraint 4.8) iff
e Or €= e
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Figure 4.1 ¢, ¢z,¢; do-not fulfill the Disjunctions Constraint

By definition of <, Propositien 4.11 s equivalent to Constraint 4.8.

“"Cotollary 412 Forall'ey, . e, e E L
VY en S VeV, V1S <n: T 1<k <m: g < dhe

Corollary 4.12 allows to reduce =4 on "'I’Ec to =« on EC-. 'If: Constraint 4.8 does not
hold, this reduction is not possibler ¢; V+-- V e, <z gL ViV el would allow each set
cover( ¢; ) to be “distributed” over miore than one cover( ¢ c; )

In F1gure 4.1, for instance, all instances covered by c3 are covered by ¢ V &, i,
ty Ky 01 V Ca However neither ¢z < ¢;, nor 3 X ¢, hold. Because ¢; is related to neither
¢ nor c; by means of =, we cannot express =a in terms of . In which respéct Con-
straint 4.8 limits the a,pphcatzon of the results in this. chapter in the context of Inductive
Logic Programmiing, is discussed in Chapter 5.

From Corollary 4.12 and the fact that' = is a partial order on o follows fhat the
reduced form of a disjunction ¢; V' -+- V ¢, contams only the ma.:ﬂmally general ¢lements
of { &, ..+, &u }. Consequently, it is unigue.

‘We can now define the set DLy of disjunctive concept representations we want to.
consider in this chapter.

Definition 4.13 (DLe) Given a concept representation language Lg, the language of
disjunctive concept representations DLg CP(Le) 1s-defined by

Dle={cle=aV---Vae,n>1, € ,-ev; €n € Lg, &is reduced , and
Veele: € Xcimplies3k, 1 <k<n:¢ e }.

Note that, although DLg is just. ancther representation language, we introdiuce a new
symbol (Dﬁc) for it, because DLe is built upon. L¢, and because 'we will still use properties
and operations of the underlying Ly as well.




98 CHAPTER 4. DISJUNCTIVE ITERATIVE VERSIONSPACES
Proposition 4.14 The relation <4 is. a partial order on DLc.

Prcp'of Reflexivity and transitivity follow from the reflexivity and transitivity of

‘and  of Corollary 4, 12 To prove that =y is anti-symmetric, suppose
€3 V- Ve, q V- -V & € DLc, such that CRA “Ven=aceg V-V, and
€V V c:n g Voo V ¢n. We provethat ¢ V \_/ o =6 Ve V.

Foreach j;, 1 < ji € n, thereexists by, 1 <&y <, suchthat ey, x c}tl ‘Bt for this
Chys there exists 73, 1< 73 < n, such that ¢}, =< c;. Consequently C:: = ¢;,. Because
G VoV, s reduced, ¢j, = ;. Consequently, Cy = Cyy = ckl, because = is a
_pa.rtlal order on L¢. This means that each dlSJLlIlCt cJPI of e; V -i- V¢, also appears
in & V --~V ¢ . By reversing the roles 6f ¢, V --- V ca. a_.nd & Vv, each
disjunct cf"c'; V... V ol also appearsinc; V -+ V c,. Consequently e V- - V.=
G V-V e ' ' -0

Now that we have defined disjunctive concept representations, one can wonder whether
it is useful to extend the. concept learning problem by allowing information elements to
contain disjunctions as well. Allowing information elements to be disjunctions of elements
of £; U Lo conld be more informative than (a series of} s_mgle elements-of £; U £o: Sup-

POSe i1y ... Iy are disjunctive information elements, i.e., it =% 'V -+ V i, for all
1 <1< m. Also, _l_'et d=cy Vo Vey, with ¢; € Lg; for all 1 < 7 < n. We will now. in-
vestigate what is the relation between requiring that'z; , ..., 4, arepositive lowerbounds:

(resp. negative lowerbounds, positive upperbounds, nega.twe upperbounds), and requiring
that ‘all 4, (with 1 <1< m and 1 < k < my) are positive lowerbounds (resp. negatwe
lowerbounds, positive’ upperbounds or negative upperbounds) Requiring that 4; , ..., i,
are positive lowerbounds (resp. megative lowerbounds, positive upperbounds, . or negatwe-
upperbounds) amounts fo the following respective conditions {by Corollary 4.12):

1. positive lowerbounds: VIVEk 37 : 4 < ¢

2. negative lowerbounds: VI - (Vk 37 v < 6
or equivalently: VI 3kVs : = i1p X ¢ )

3. positive upperbounds: VIV 3k : 5K e

4. negative upperbounds: VI -(V7 3k : ¢; < drk),
or equivalently: V{37 Vk: = ¢; < d1e )-

where 1 €/ <m, 1 <k <mpand 1< j <. o |

This means that for positive lowerbounds (case 1), there is no need to introduce dis-.
junctive information elements: Tequiring that all 13, are positive lowerbounds is equivalent-
to requiring that all 4y are positive lowerbounds. For negative upperbounds (case 4}, requir-:
ing-that all 7; are negative upperbounds is stronger than requiring that all 4% are negative
upperbounds, since Vi 37 Yk (g5 < ie ) implies VI Vk 351 ¢5 %2k ). The question
is, whether there are cases where this: dlﬁerence is uséful. If there are no. such cases; we can
coinclude from case-1 and case 4 that there is no need tc introduce disjunctive mformatlon
elements for s-bounds.

For.g-bounds (i.e., case 2 and case 3}, the index % is only exlstentlally quantified. For
positive upperhounds (ca.se 3), this means that of the set { 411, ..., tsym, } only one element.
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must be consistent with all ¢;. For negative lowerbounds (case 2}, V! 3k Vit e <)
implies VIV 3k r = i1x < ¢; ). The guestion again 15, whether there are-cases where this
difference is'useful. If there are no such cages, wé can conclude that for g-bounds, only one
element of the set {z“ 2oy Hog } has to be consistent with all ¢; in order for 1-to be
consistent with 4, o

‘We argue that allowing disjunctive information elements makes the disjunctive: problem
more complex, without fundamentally changing the way it will be handled in this chapter.
However, this should be iivestigated further: studying disjunciive information elements
could fitina global study of more general sorts of information elements {see also Chapter 3
concerning inforination elements for negations of concept. representatmns) This study is’
beyond the scope of this thesis. Future work could’ try to find-out how to extend the results
of this chapter w.r.t. disjunctive information elements. For the moment we will restrict
otirselves to.the original problem specification, in that we allow ton- -disjunctive information
elements only.

Constraint 4.15 ('Restr;i_ction' of information elements) Information elements are in
Ly L.

Now that we have determined what kind of information elements we deal with, we can
extend the definition of consisténcy to DLe.

Definition 4.16 (’Go_nsist_ency) d € DL is consistent with
a positive lowerbound 1 £ ﬁ';_-U Loy it 1 54 d;

a negative lowerbound i € £1 U Lo, il ~( 1 =44 );
2 positive upperbound 1 € £; U Lo, it d =474

TSN FC R - R

a negative upperbound i€ £; U Le, iff =( d %41 ).

d € DL is consistent with ] € Ly U Lg iff dis consistent with all eleéments of J. If
d is not consistent with 1, resp. I, we call d inconsistent with: 4, ord.

As in Chapter 3 we will denote the set of all s-bounds of .a given set I of information
elements by J,. Similarly the set of all g-bounds in 7 is densted by I,. Consequently,
I=1I,ul,
Using Corollary 4, 12, we can alsc reduce: consistency of a disjunction to consistency of
its disjuncts.
Proposition 4.17
® Vcl,_,-..,c}. € Lo, ViE Li(aV Vg )~iif (ar~4and ... and e, ~% )
o \e’cl,__....,-'c_,,1 ELVIEL i (g V oe- Vie, ) i iff ('-cl ~G OO0 ... O €, 1 3

Proof The proof consists of four cases:

» For.a positive lowerbound, 4:
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a V- Ve 7. iff

iV Ve, iff

A 1<i<n: io if

€ ~1 OF ... OF Cp ~ L.
¢ For a negative lowerbound &

GV Ve o~ iff

(TR Vi Ve ) iff

-"El_;,lSJSn 1= g iff

Vi, 1<ign: ~(ig¢)iff

¢ ~1 and ... and ¢, ~ 2.
e« For-a positive upperbound

aVi--Veg, ~1 i

Ve Ve, %14 iff

Y3 .1 _5 i Enr g4 iff

¢ ~% and ..: and ¢; ~ .
o- For a negative upperbound 4:

a V- V C, ~'t iff

(e Ve Vi, 1) iff

Wii<i<n:g<iif

i, 1<jSne (¢ ge)iff

€ ~1 Of ... OF Cpoi.

n

It is also straightforward to extend Theorem 3.14 4o <{;. This will allow us to prune in
DLg in a similar way as we did in L¢:

‘Theorem 4.18
Ifiisag- bound and ;'€ DLe such that & <49, then y ~ 1. implies z ~ i
Kiisan s- bound and .z, y € PLe such that = ={z y, then z ~ 1.implies ¥ ~ <.

Proof Sﬁppose = V- Ve andy=c V- Since = <4 ¥ there exists for
every k; 1 <k <, af,1<i<m, such tha.t ck -< c’ (because of - Corolla.ry 4, 12)

For a given g-bound :
y~i iff Vi, 1<i<me &~

Consequently, ¥k, 1 <k <n: ¢ ~ ¢ (by Theorem 3.14), and theréfore z ~ 1.

For a gi’va’ﬁ._S»b‘ound i
zes ff 3k 1<ELSn: ¢~

Consequently, 37, 1 <j < m.: ¢} ~ ¢ (by Theorern 3.14), and thereforey ~ 3. O
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Se. far we have defined the set DLc of disjunctive concept representations, and the
relation %4 on DLs. We have reduced =4 to. < on Lo. The next. step i5 to identify the
set of all disjunctive concept representations consistent with a given set-of information -
elements, i.e., the versionspace of all disjunctive concept representations. As in Chapter 3
‘we.can .also rcpresent this set. by means of its boundary sets,

Definition 4.19 ('D_i'sjunct_iye v_er'sicjnsp'ac'e) Let I = I, U I; be a set of informati’on‘
elements. The set I, = {21, ..., in } contains all s-bounds of I; the set I, contains
all g-bounds of I.

o let G be the set of all maximally general elements of £ consistént with I;
o forall k,1 < k< 7, let S5 be the set of all ‘maximally specific elements of Lo
consistent with { 4 } W I
Then we can define DGy, DSt and DYS; as follows:
o IfVig I, 3c€ Gicn~i, then
1. DG; = { Vgeh B
2.DSi=Min{ sy Vi Vs, | Vk, 1<bk<n: s, €8 };
. DVE; = {dE’Dﬁgfﬂge’Dg;,EsEDS; 5*<dd-<dg}

—-o-Otherwiser-PGr=-DS1="BVSr=19:
With the notations of Chapter 3 we can reformulate some of the-elernents of Definition 4.19:
o G =Gy
¢ Forevery k, 1<k <n, S = Sruginky ie.,

= if iy is a positive lowerbound: Sy = { ¢ € mub{ L, i ) ] ¢~ I }, and
~ if i is a negative upperbotind: Sy = {eemsg( L, )le~1, ).

When no corifusion is possible; the index I will again be-omitted from DVSj, DSyand
DG;. '

The idea behind these definitions is'similar as in Chapter 3: DF is supposed to be the
set of maximally genéral €lements in DLy that are consistent with I, DS is the sef of
maximally specific elements in DL consistent with I. All elements more specific than the.
clement'in DG and more general than an element in DS form the disjunctive. versionspace
of elements consistent with 7.

Example 4.20 Figure 4.2 illustrates the idea schematically. A concept representation is
depicted by a wedge. All wedges have the same base line. The top of the wedge
is labeled with the concept representation it depicts. The information elerients are:
depicted as dots on’ the baseline of the wedges. A concept representation is consis-
tent with an s-bound if the s-bound is under the correspondmg wedge. A concept
representation is consistent with-a g-bound if the g-bound is not under the Wedge
If the wedge of ¢ is underneath the wedge of ¢!, then ¢ is more specific than ¢ . The
advantage of this kind of figure over a <- dlagra.m is that it expresses consistency of
information elements with concept representations, rather than the relation =.
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Figure 4.2 The idea bekind the Disjunctive versionspaces

In Figure 4.2 4,3 to 1,5 are s-bounds, i, and iy are g-bounds, Suppose g and g,
dre maximally general concepl representations in L consistent with ;. They are
not cofisistent with {, because g, is not consistent with 7,4 and g, is not consistent
with 7,1. However g; V g; is consistent with ., and ma.x-i'm'a.l'ly-_'geher'a.l. On the other
side, each s; is-an element of some S;. Some s; are consistent with more than one
s-bound, The disjunction sV s; V 83 is maximally specific, Teduced and consistent-
with. 7. <

‘Now ‘that we have defined DG, PS and DVS, we prove that they are extensions of &,
S-and V& of Chapter 3; in that DG is the set of all maximally general consistent disjunc-
tive concept representations, DS is the sef-of all maximally specific consistent disjunctive
concept reépresentations, and DVS. is the set of all consistent concept representations. First
wé prove the {ollowing lemma.

Lemma 4.21 Ve, 63,63 € Loz 01 5 €2 i;.'_n_pl_'ies-cl <z €2 Vs
Proof W&:.hax_{e that ¢ % 2 i cover( a1 ) C cover{ c; ). This implies
cover?_(' ¢ )} € cover( ¢z ) U cover{ ¢z ); which is equivalent to

cover( ¢y ) C covera{ €3 V ez ), and to er <4 ¢ V s, o

In particular, ¢; <4 ¢1 V €2. Therefore this' lemma shows that adding a disjunct to a
concept representation s a way of gengrelizing the concept representation.

Theborem 4.22

o DG is the set of maximally general elements.in DL consistent. with T.
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Figure 4.3 Minimality is needed in DS

o. DS is the set. of maximally specific_elements. in T2 é-consistenbsetb R oo o oo _

Proof First note that, since adding more disjuncts makes a concept representation in.

DL more genera} (see Lemma 4.21), the maximally general concept representations
should contain as much as possible disjuncts, while the -maximally specific concept
representations should only contain as few as possible.

Every concept representation consistent with I, whether there is an s-bound consis-
terit with it or not, can be included in the ma.}:lrna.lly general concept représentations
inDLe. Consequently, the disjunction of all elements of G'is the only. maximally gen-
eral dlsjunctwe congept, tepreséntation, at least if it is consistent with all s- bounds,
i.e. , for cach s-bound ther is an element of @ such that ¢ ~ 1. If not, then DG =4g.

In a maximally specific concept representation in PLg only as much dxs_}uncts 88
strictly necessary to be consistent with all s-bounds have to be included. ‘First note
that for each s-bound i, concept representations consistent with i must contain -a
disjunct ¢, consistent W1th t. H no such ¢ exists for each i, DG = DS = @, Otherwise,
the set of all disjunctions ¢; V -+ V ¢, where ¢p ~ 4y for all %, 1 <.k < n, {and
where there might exist { £ m: such that o = c;), certainly contains all maxlmally
specific concept. representations, But if e ~ i and ‘¢, is not maximally specific in
L, thereis d5; & Sy such that sp =< ¢y (bccause of Constraint 3.18; the Boundedness
Constraint) and thus

aVe Vo g Vs Ve Vo Ve, g Vo Ve

Therefore we ¢an restrict ourselves te all combinations of elements of Si: for all others
there exists a consistént disjunction which is. more specific. Furthermore SOME. .54
might be more specific than some sz, i.e., not all combinations are. nece:ssa.nly Teduced.
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‘QOnly the reduced onés are'to be included in DS. It could alsc.happen that sy, s; € Sk,
that 51, 5] € 51, sx <5} and 5; < 54 (see.Figure 4.3). In that case the combinations of
these.four elémen_ts-ar_e: sg V sty sy Vosp se V. osfand s), V s). The disjunctions s, V s
and sy Vs are not reduced. The disjunction s; V s} is reduced but not minimal. Of
the four combinations s, V sy is the only maximally specific disjunction. This shows
that reduction only does riot necessarily yield minimal elements w.r.t. =4, and that
the extra Min-operatién is necessary. a

Actually this specification of DS is.mot completely constructive: it does not give an algo-
rithm that ‘can generate the elements of DS one by ‘one: It rather generates candidates
and then selects the most specific ones. However, it does exclude ih a cornstructive way
a lot of candidates which would fail the maximally specificity test anyway, by enly ¢om-
bining elements of S;. Further on we will try to-alleviate this non-constructive aspect by
approzimating maximally specific elements by almost maximally specific elernents,

Theorem 4.23 DVS Js the set:of all concept 'represent'a.ti.ons:'i_n..DEC consistent with f,

Proof ( C } Fizst we prove that D is a subset of the set of all consistent concept
_representatlons If DG is empty, this is trivial. Otherwise; we first prove that Vg c
is consistent with I. Since every ¢in G is consistent with all elements of I, Vg ¢ is
consistent with all efements of I,. For each s-bound i at least one elcmcnt of & 1s
consistent with 1, atid therefore Ve ls consistent with s.

Next we prove that DS is a subset of all consistent concept representations. This is
trivial if DS is empty. Otherwise, it suffices to prove that 5; V-V s, with sp. € S
for all k, 1< k< n, isconsistent WJth I, as reduction and mlmmlza.tlon do not. affect
consistence. For each s-bound 4, we Have thit sz is consistent with i, a.nd with 1,
Comnsequently; the disjunction $; V -~ V s, is consistenit with i; , ..., ¢, and with Ig_,
Le., with 7, .

Now suppose. s <4 d <u.4, then d is consistent with 7, because it is more general.
than s; and d is consistent with J, because it is more specific than g

( 2 ) We will first discuss the case where there exists an s-bound 7 such that there is
no ¢ € G which is consistent withZ. In thiscase DVS = D§ = DG = @. Nod € DLy
can be consistent with I: every: disjunction will be. inconsigtent either with a g-bound
or with the s-bound 7. So PVS and.the set of all consisteit concept representations
are: both empty. '

Otherwise, suppose.d = ¢; V ++ V- ¢, is-consistent with T. We first prove-d =y Vg c..
For every j, 1 < § < n, take ¢ a maximally general element of

C={ze&lec|cs=zand z~1I}.

Such-g e:-_c:i_s_ts_ because £ 1s not empty (:c_j & ) and because Qf C'on_str_a,iilt 3.18 (the
Boundedness Constraint). Because g is maximally generalin C, 1t is also an'element
of (. Consequently ¢; <4 Ve o and d g Vge.

Then we have to prove that for d = ¢; V -+ V¢, consistent with I, there exists
an 5 € DS more specific than d. For every s-bound 4 &€ I, there exists a 7,
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1 €7 <mn; with¢; ~i Then theset Cp = {2 € Lo |z <xc; and z~1ip}is
not empty (c, € Ci). Let s be a minimal element of ‘C) (which exists because.
of Constraint 3.18; the Boundedness Constra.mﬁ) Consequently, si is in Sp and -
is consistent with 1. Now let s be [s; V -+~ V 5,),. Then s < 4. Furthermore;-
s € DS, ory if it s not, there is.an element s E DS which is more specific:than s and
minimal by definition of DS (and again because of Constraint 3.18 ~ the Boundedness
Constraint). This completes the proof. m

We can now presént.a genéral solution to the concept learning problem in DL by defining
muby, mibs, mgsq and msgy as in Definition 3.29 to Definition 3.32, where L¢ is replaced
by DL¢. This allows us in principle to solve the problem by means of DI (see Section 3, 5)
or ITVS (see Section 3.6).

Definition 4.24 (Disjunctive refinement operators for TIVS) For di,ds € PLcH
mubd( dl ,_dg') M’!.?'L { d'e ‘Dﬁc [ d‘l =g d a.nd GIZ =z d}

mlbd(dl ' dg ) Mﬂ.ﬂ: { d & IDKC ] d '<d d}_ and d _<d dg },

msga( i, dp )= Min{deDlc | d <8 and ~(d=ydp )}
mgsa( dy ,ds )= Mazc {d€DLe | d<ads and =( dy <44 ) }.

mlb mg.s and msg n Ec

Theorem 4.25 Given:cl,_cg c ﬁc,'a,nd"'i: € Ly, let MGS =mygs( e ,1) Urngs( cp .1 ),
and MLB =mib{ e, ,t ) U mib(er,2).

Lomgsa( ey Vo2 13 ) = { Vugs gl 5
2. mlba( &1 Ve, 1 ) ={ Vminal };

3. eV e <44, thenmsga(er Vo i) ={[a Ve Vsl |semsg( L,i)}
otherwise 'm.sgd( aVie,t)={a Ve };

dif(igsa Ve) thenmubd(clch,z)——{[c1\fr:2\f.s],.|56mub(J_ i}}
otherwise muby{ ¢ Ver,i)={ea Ve }.

Proof The proof will mnake extensive nse ca'_}‘."Co'rolla.:y 4.12.

LLet MGS'={g€Lc|(gxc or gsca ) and (<= g')'}. We first prove
that each element d of mgsd( a Ve ,t) must be more speclﬁc than [Viresr gl
Then we prove that [Viiee gl € mgsa{ & V.cz,2 ). Consequently, we have.
that mgsa{ &1 V ez, 1) = { [Varos gl }. Tinally we prove that Vs gk =
[Vargsr gl '

© The sef mgsa{ ¢; V.cz , 1) is the set of all maximally general disjunctions
d, more specific than ¢, V ¢, and not more general than 7. Fér each.such d,
a.H disjuncts of d are in MG, because:
— if there were a disjunct c-of d'that is not more specific than ¢; and’not
more specific than ¢z, then d would not. be more specific than ¢; V s,
and
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— if there were.a disjunct c'of d that is more-general than ¢, then d'is more
‘genieral than 7. '

M@GS’ is finite because of Constraint 3.19 (’fh‘e Finiteness Constraint). Con-

seqitently, each d € migsa{ €1 V ¢z , 4 ) is more specific than Vs 9, and
therefore also more specific than V59,

 Since each element of MGS' is more specific than ¢, or miore specific than

2y Vipresr g 1 more specifie than ¢; V ¢;. And since nonie of the elements of
MGS'is more general than 1, Vygerg is not more general than 7. Conse-
quently, [Vases gl is the only element in mgsg{ & Ve , 2 ).

 Finally, mgs{ ¢y ,7 ) € MGS and mgs{ ¢; ,1 ) C MGS". Consequently.

MGS € MGS'. By -deﬁni't_ion of mgs, there exists for every g€ MGS a
§gE MGS such that g’ < g This medns that g” will not be included in the
reduction of Vs g, if g & mgs(c ,i)uU mgs(ca i ) Consequently,
only the elements of MGS can beincluded in the reduction of Vigs gy ey
the reduction-of Vyrgs ¢ is [Vpsas 9)--

2. Let MLB'={ g€ Lc|(g=<cior g<c) and g5t} Wefirst prove that
cach element d of miby ex V 2,1 ) must be miore specific than [V p 4l
Then we prove that [V p gl € mibid ¢t V.o, 3 ). Consequently, we have
that miby{ 1 V ¢p , 2} = { Ve g} Finally we. prove that Varps - =
(Varzp 9l

» Theset mibs e V cx i ) is the:set of all maximally general disjunctions d,

more specific than ¢ V ¢z and 7. For each such d; all disjuncts.of d are in
MLB', becduse
— if there were a di_sjﬁu-nct ¢-of d that is not more sp’eCiﬁc. than ¢; and not
more specific than ¢,, theén d would not be more specific. than ¢ V- c2,
-and ' '
- if there were a disjunct ¢ of d that is not mére specific thaz 4 i, then d.is
not more specific than s.
M LB'is -agaln finite because of Constraint 3.19 (the:Finiteness Constraiﬁt'_)]
Consequently, each d € miby( 61 V'ea, t ) is more specific that Vg9,
and therefore also more specific than [VMLB_, s "
Since each element of M LB’ is more specific than ¢, of rnore specific than
¢2, Varzp g Is more specific than ¢, V'¢;. And since'each element of M LB

is more specific than i, Vs rprg is more specific than 4. Consequently,

Vairgrg)s is the only- element in mib( cp V ezt

Finally, mib{ ¢; ,2) € MLB' and mib{ ¢, ,i ) C MLB'. Cbnsequently,

MLB C MLB'. By definition of mib, there exists for every ¢’ € MLB'a
g€ MLB such that g’ = g. This means that ¢' will not be included in
the reduction of Vyp5rg, i g* @ mlb( €1, ) U mfb( ¢z ;'3 ). Consequently,

‘only the eleménts of ML B can be iniclided in the réduction of VarLei §yi-e,
‘the reduction of Varrg: g 15 [Vazs gl

3. We assume ¢; V ¢; =g 1+ We will'label this (3.1), The other case is trivial.

(2

) Firstly, from Lemma 4.21 follows that ¢; V ¢; V s is more general than

¢1 V ¢y Therefore [¢; V ¢; V s, is also more general than ¢y V T3
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Secondly, assume there is some [ey V ¢ V ], such that

o ~{c1 Vea Vs <41 ), and

o [ey' Ve Vs Ersga o Ve, v )
The latter means that there exists d € DL¢ such that

. c; Voop <4 4 (3.2), and

o =( d =<y4)(3.3), and

o d <y [e1 Ve V&) (3.4).
Because of (3.4) each disjunct ¢’ of d is more: 5pec1ﬁc than ¢ Y €z, OT mofe
specific than 5. Because of (3.1), we then have that each disjunict ¢ of di¢ more
specific than 7 or more spemﬁc thari' s. Becausé of (3:2) and (3.3), there must:

be at least one disjunct ¢’ which is sbrictly more spec1ﬁc tha,z_l s and nof more
specific than . This contradicts the fact that.s €msg( L ,1 ).

(<)
Suppose d € msgs{ @ V ¢, ) such that d'cannot be written ds ¢, V ¢, V s},
Then we have:

8 0y V ey <q.d (3.5), and

o o d=yi) (3.6),

Because of (3,6);-there-exists-a-disjunet-¢"in-d-which-is-not-more-specific than 4,

le,c" < dand ={ ¢ <1). Then [c1 V.¢y'V ¢'], Is more specific than d beca.use_.
_-of 3 5). Since d'€ msgd( €1V ¢, 1 ), wehave [c1 v cz V &, =.d. But.sinée d
is not of the.form [ V ¢ v s} with s € msg( A,i), ¢ Emsg{ Lt ). On'the
other hand ~( ¢ < 1 ), so there miust exist'e” € ms_g( 1,4 ) such that ¢’ < ¢
But then we have:

o c1 Ve Ve <dyand thus e, Vo V &), < d;

e G Ve xagVeaVd andthus o Ve <o VeV

o (e Ve ve <.1'); and thus -( [e1 Viea V&' 24 )
This contradicts the assumption that d € msgs( ¢ V &, ).

4. We assume —{ i <4 &1 V ¢z } (4.1), the other case is trivial.

(.2 ) Fizstly, from Lemma 4.21 follows that c Ve V's, and therefore also
[c1 V 2V &, is'more general than ¢; V ¢,
Secondly, assume there is some [e; V. &3 V 5]y such that

8 { g0 Vea Vs, and

o [c1 V ez Vsl @mubsf ¢ Vo2l
The latter means that there exists d € DLg such that

o c1 Ve g d(4.2) and
o % <y d (4.3), and
o.d <41 VoV s)y (4.4).
Because of (4 4) each disjunct. ¢ of d is. more specific than ¢; V ¢, or more

specific than 5. For each disjunct ¢ of 4 that is more specific than ¢ V ¢y, we.
have (1 < ¢ ), because of (4 1). Because of (4 2) and (4 3) , there must be at
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least éne disjunct ¢ of d which is strictly more specific than s and more general
than 7. This contradicts the fact that s € mud( L, 7).
<y | |
‘Suppose d € muby{ 1.V ¢ , 7) such that d cannot be written.as [e; V ex'V s,

L+ | Y 2 %d d (4.5),&1‘1(31

o i<q d (4.6).
Because of (4.6}, there exists a disjunct ¢ in d which is more general than 1, i.e,
¢ < dand i <¢. Then [cl VgV ¢'], is.more specific than d. because of (4 5)
Since'd € mubs & Ve .7 ), we have [cl Veavcd=d But since d is not. of
‘the form [e; V & V &), with s € mub( L 1 i ), we then hive &g mub( ) 1 )
On the other hand @ < ¢, 50 there must exmt ¢ ¢ mub( L ;¢ )such thatc” —( e
‘But then we have:

o ci Vi Ve <d and thus [e Ve V &', < d;

» oV Ve vV and thus e Ve = [an Ve Vel

e ¢ Ve Ve and thus 1 [ VeV

This contradicts the-assumption that d € muba ¢ V €y %)

O

This result can be extended to disjuncis of moréthan two elements.of Lo as well, Conse-
.quently, DI or ITVS.can be applied with the refinement operaters muby, mgsq, mibs and
misga to compute PS and DE.

The importance of Theorem 4.23'is that it deséribes the set of all consistent disjufictive

concept representations by means of its-boundary setsin tetms of L anid <. The relevance
of Theorem 4.25 is that it implements the operations msga, mgsa, mlby and muby of DI
and ITVS, such that-these algorithms can be applied to find a solution for the concept
learning problem in the language DEe. However, there are some practical limitations and
conceptual objections-to this approach:

° as argued in Chapter 3 the size of G = gr, might be exponentlal in.the number :of:
elements in I,.. Consequent]y, the number of disjuncts in Veels exponentla.l in the

finmber ‘of elements in I;. Therefore it is-often impractical fo compute DG. On the.
other hand;-a lot of these d1s_|uncts are consistent with information elements that are

also consistent with other disjuncts. So from a. .practical point of view, one can.argue

that it is not necessary to compute G completely to obiain one consistent solution;

disjuncts in elementsof DS will néver be generalized w.r.t: =. The onlyway eleiments

in DS are generalized is by adding more disjuncts (see Theorem 4.25). In-this way,
it- will only be possible to correctly’ classify very few unseen information elements as
s-bounds, because DS contains the disjunction of maxlmally specific. concept repre-

-sentatmns in £¢ wh:ch are consistent. with probably only otnie s-bound. If the single

représentation trick holds, for instance; and I, contains only positive IQWerbounds,

b L i) ={4} foreachie I, Th}s means that D& contains only one.element:
the reduct:en of the disjunction of all positive lowerbounds.
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s also, if the target concept were non-disjunctive (i.e., consisting of only one disjunct),
:a-representation with one disjunct would never be found because of the introduction
of disjuncts.

On the other hand, Theorem 4.23 'and Theorem 4.25 will form the basis for more practical
solutions. Two methods to come to a more feasible approach will be used, Iia first step
(Section 4.3) we only approvimate DS by relaxing the “maximally specific” requirement
to an “almost ‘maximally specific” requirement. In-a sccond step (Section 4. 4) we im-
pose additional preference criteria (see Chapter 2) on DL¢ to-select the preferred ‘coneept
descriptions ﬁrst

4.3 Disjunctive Description Identification algorithm

4.3.1  Almeost maximally specific concept representations

Regarding the feasibility of computing DS and DG, we could argue that the problem at.
the DG -side is less complex than at the DS-side, The problem.on both sides is-that there
are much more disjuncts in the concept representations than desired. On the one hand,
if the disjuinction on PG confains too many disjuncts, it is easy 10 specialize i, while

_Temaining consistent with I, by removing some of the disjuncts.. As long as for. ea.ch TS

bousid i:-one.of the dls_}uncts is consistent with i, consistency s guaranteed. On the other
‘hand, removing disjuncts of the elements of DS would also specialize them. However, since
'they are already maximally specific in D¢, removing disjuncts. will therefore riake them
inconsistent with some s-bound. The only way to remove disjuncts of DS. consistently is to
Teplace two or more by their minimal upperbound. However, the question then arises which
of the disjuncts to combine. If'a maximum of n disjuncts per concept representation were.
allowed, one could think of partitiening I, in'n partitions. On the one hand, this would
reqm_re_com_pl_l_tatlon of all passible part;izons of n elements, since there is rio imméediate
reason to prefer one partition over another. On' the other hand, the resulting concept
representation would not necessarily be maximally specific (among the dls;Junctwns of-n
dls]uncts) because the minimal upperbound might be consistent with s-bounds that were
not ass:gned to-it,

Example 4.26 In Figure 4.4, e.g., if 7, = {i1,13, 13,24,35} is partitioned into
{{31,12} {23,14,%5}}, the rnmlmal upperbound of 4; and 7, (i-e., &) is also consistent
“with 3. Consequently, €1 V ¢, where ¢y is the minimal upperbound of 13 and 1 14, 18
mére general than another disjusiction with two disjuncts: ¢, V c3. <

The difference with the. proof of Theorem 4.25 (where we alzo ass1gned an element of Lo to
each s-bound} is that we now have to generalize these concept representations in order to
be consistent with more than one s- -bound, thereby allowing consistency with yet other s-
bounds. In.order to obtain a maximally specxﬁc concept representation-we could require the
minimal upperbound to be consistent with only those s-bounds assigned to it. The problem
would then be that not all maximally specific digjunctions would be found, in particular
those where two minimal upperbounds both are consistent with a certain s-bound 4 {while
4 would- only be assigned to one-of them).
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e 13 ® i.4 @ i.5

Figure 4.4 Problems with maximally specific concept tepresentations.

Example 4.27 Consider again Figure 4.4. If we require that the minimal upperbound of
1, and 45 must only be consistent w1th 11 and ¢, and must be inconsistent with: the.
s:bounds that ate not. _asmgned to. it (l.c. 13) the dmunctlon 61 V ¢ would indeed
ot be allowed. '

However, if there would be no cy, consistent with iy and ¢5 only, every minimal
upperbound of 14 and 15 (i.c., ¢z) would.be consistent with i3 as well. Therefore the-
disjunction ¢; V ¢z would not be allowed (because i3 1s always consistent with both
dlsjuncts) although it would be maximally spetific and consistent. with I, &

In surnmary, it is impossible to constructively find all maximally specific concept rep-
-resentatmns with n disjuncts. The problem of assigning s-bounds to-disjnncts is- typical
for specific-to-general approaches. It also makes their result dependent on the order of the
presénted information elements, because they usually do not consider all possible parti-
tions of F,. Because of these difficulties we will approzimate maximally specific concept
representé.tions For each disjunct ¢; in the maximally general concept representation; we.
will quulre that ¢; is'a maximally specific concept representation consistent with all s-
bounds ¢;.is cons;stent with. This liberateés us from the problem of having to. “distribute”
the's-hounds-over the available ¢;, by computing all possible: partitions .of I,. Dropping
disjuncts-is then possible by removing corrcspondlng disjuncts ¢; and. c", since both-are.
consistent with the same set of s-bounds. However, whenever ¢; turns out to be- overly
general, ¢ might be overly general as well, and will have to be: recomputed (see further)

Te formalize: the idea of couples ( €, c_T ) of disjuncts, we introdice. the following
‘definitions. '

Definition: 4.28 (Almost ma:xlmally spet:lﬁc concept. representatlon) Given a
disjunction d =6, V -+ V ¢, and a set. I, of s-bounds, Cl *V ¢, 1s called-almost
maximally specific under dwrt, I, itV 1.<7<ns e {stS;r EEY
where. S; is the set of all maximally specific dlements in Ec c0n51stent with the set
{ie L~ z.}_,.for all1.< 7 €m,

Because the set 7, will ustally be the set of all s-bounds known, we will very often drap
*word, 1" Note that if s1is almost maxithally specific under d, then 5-hasthe same number
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of disjuncts as d: Also note that. the definition applies in particular to a disjunction with
one dismnct given ¢ € Lg and [,, ¢ € L¢ is almost maximally specific under ¢ (w.r..
]) if ¢’ is consistent with all elements of I, ¢ is consistent with. In this case We have a .
pair consisting of a rna.xlma.lly general concept fepresentation c-and of maximally specific
.concept representation ¢’ both consistent with 7. This' means the resiriction to almost
miaximally specxﬁc concept representations is still an extension of the non-disjunctive case;
ie., ¢€ Gy, and ¢ € 8y

Definition 4.29 {Subdisjunction) Ve, , ..., ¢q, ¢, ..., ¢, € Le:
61V «++'Ven is a subdisjunction.of ¢ V -~ V o, iff
{ay e} Cia, ... d}
Notation 4.30 ¢ V --- V¢, isa 'subdi'sj_Unc_t_iOn of c; Voo W c:,, 15 denoted as

Ve Ve eV v
di C d, denotes d) T d; and d; # ds.

Through its definition, T inherits all its properties from C.

In the above dlscussmn we explamed why we will restrict outselves to almost maximally
* specificdisjunctive concept representations under a subdisjunction of the maxlmally general
disjunctive concept representation. Therefore we will introduce the. following terminology.

Definition 4.31 (Almost all consistent disjunctions)

s The set of all subdisjunctions of the: maximally general disjunction is denoted
by PG :

DGe ={d€PLec |GC Gy, and d=Vzc and d~ I, }.

s The set of all almost maximally specific concept representations under an ele-
ment of DG is denoted by ADSE :

ADS: ={de DLc | 3g € DGt  d is almost maximally specific.under g }.

» Finally the set of all disjunctions between an slement.of DG c and an element
of ADSE 1s. denoted by ADVSE :

ADVSeE ={ dE’DL’c | 3g € DG A8 € ADSE :s <y d <y g and
s is almost maximally specific under d and g } .

Figure 4.5 illustrates this situation. The upper half of the ﬁgure shows. the top of
L¢ and the concept representations just below the top: Each leaf of the upper part is &
maximally general element in £¢ consistent with I;. The disjunction of all leaves is the
maximally general disjunctive concept representation consistent with I. One particular
subdisjunction is illustrated by the large bullet points. For each of the disjuncts. c; in this
subdisjunction, the lower part of the figure shows the lower part of Lo more specific than
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Figure 4.5 The idea behind the Disjunctive DI algorithm

32 One partmular alrnost maximally specific dls_]unctmn under g is shown; the disjunction
¢} V &'V ¢ V ¢f: Each of the couples { ¢; , ¢} ) is consistent with a particular subset of
I,. ‘The set of s-bounds consistent with ¢, for mstance, is {21,123 }. Furthermore, <}
5 Tmore. specxﬁc than ¢; and consistent with 1, and 5, but not consistent with the other
s-hounds, since ¢; is not consistent with other s-bounds. All c; (and therefore: also; dll ¢ )
are consistent w1th all g- bounds c1 V.ey V 3 V gy 15 an element of DG ;. cons_equently
¢V chV c.h,,‘.f‘c,1 is'in AfDSE o o '

The set ADVSc contains less elements than DVS, bécause its lowerbound -is the
set of all almost maximally specific concept representations under an element of DG .
In this sense, some solutiéns of the original problem are lost. On the other hand, this
does not mean that. these solutions ca.rinot-"b:e found when the set [ is extended with a
newly provided g<bound i. Consider, for instance, Figure 4.6. Suppose Jg = {i5,i3} and
I, = {i1;is,is}. Also suppose ¢; is maximally gencral and consistent with 7 (i.e, ¢ is
a consistent subdisjuriction ¢ontaining only one disjunct). The concept representation ¢

[

*We made four separate drawihgs-to-avdi_d overloading the figure.
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Figure 4.6 ADVSL ; 18 non-monotonic w.rt. €

is almost maximally specific under ¢;. Now sippose a hew -g-bound 1. is kriown, .and
"ﬂ( & ~-1ig ). Therefore ¢j & Grufisy- Supposc ¢z and ¢ are specializations of ¢, such that
2,3 € g,}u{,s}, ey ~ {11 ,14 },and ¢z ~ { i1 4 %5 }. The disjunction ¢,V ¢ is- maximally
specific under ¢, V ¢3. Consequently ¢; V ¢} & ADVSC ripigy » but (as drawn in the figure}
¢V ¢z & ADVSE p. In this way all disjunctions consistent with I U { i } can still be
found, buf they are not necessarily-included i A’DVS;: 7y 1.e. ADVSC dufy & ADVS ;.
In a sense, computing A’DVSE 1 15 ‘non-monotonic w.r.t. 'C when adding information
-cléements to I.

A bidirectional method ta compute all possible couples ( ¢; , ¢; ) can then be outlined
-as follows: since maximally general disjunctions are easier to descrlbe than maxzma.lly spet
cific ones, we start from maximally general disjunctions. Max1ma.lly general disjunctions
consist -of maximally general disjuncts (see Theorem 4. 22) In order not to lose possible
disjuncts, we are not. allowed to prune any maximally general disjuncts as in ITVS. In
ITVS maximally general disjunets hot consistent with 7, could be pruned, because none of
their specializations would be consistent with I, {see Section 3.6 3). In'the disjurctive case,
even if a maximally general concept fepresentation isinconsistent with all known - bounds,
it might still be consistent with future, and thus unknown s-bounds, Almost maximally
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specific disjunttions consist of maximally specific disjuncts, one for each maximially gen-
eral disjunct. These maximally specific disjuncts ‘will be consistent with all s-bounds the
corresponding maximally general disjunct is consistent. with.

The Disjunciive Des.:'mptwn Identification - algorzthm (DDI) is-a breadth- first imple-
mentation of this method, and. therefore a disjunctive version of the DI algorithm. In
Section ¢.5 we present the Disjunctive [terative: Versionspace algotithm {DITVS), which
is a depth:first implementation of this method (iie,, a disjunctive version of the ITVS
algorithm).

Related work

The'idea of how to compute maximally specific concept representations is inspired by the
Multiple Convergence method of the system HYDRA [Murray, 19872}, Our approach: is-a
generalization of Multiple Convergence in the sense that Multiple Convergence is a disjunc-
tive extension of the Candidate Elimination algorithm, while we will extend DI ([Mellish,

1991], see Chapter 3). This medns our algoiithm allows: upperbounds as Information ele:
ments, while Multiple Convergence only allows examples (i.e., lowerbounds). Furthermore
Multiple Convergenee only works for conjunctive attribute-valuelanguages with k features,
while we will extend it to arbitrary languages: Some of the advantages of Multiple Conver-.
gence will be preserved: since we assume our: a'lgo;i_t_'hm to work incrementally, it is possible
to use partially learned knowledge for problem solving. When partially learned khowledge’
must be updated, we preserve the integrity of the partially learned knowledge as much
as pessible, by only minimal generalization or specialization. steps. Furthermore, storing
couples ( ¢; , ¢; ) of disjuncts, allows disjuncts to be handled independently as sepa.ra.te;
and distinct toncepts in.Lg. Ne\eertheless our a.pproa.ch suffers from one big disadvan-
tage: while an ovérly general ¢ can be specialized in the Multiple Convergence méthod,.
because of the restriction.on the language Le, we will have to. récompiite ¢}, because of
the independence of the choice of L.

An important as_pr_a;:-t-'Qf_‘_'H_ij_RA,'ba_sed-on:t;he solution disjunction, is the introduction.
of new concepts represénted by one of the resulting disjuncts. Theintroduction of these new
concepts'in HYDRA is motivated by the fact that concept representations that maximize
inclusiveniess while remaining conjunctive, often represent basic concepts in the domain
of the target concept [Murray, 1987b]. In an Inductive Logic Programming context, the
introduction of new concepts is called predicate invention: Related to the approach of
[Murray, 1987a] is the intra-construction operator of {Muggleton and Buntine, 1988]. It
would be intresting for future work to investigate how these approaches are related, and
whether they could be described in a language-independent way.

[Hirsh, 1890] 1nforma,11y describes some ideas to learn several disjunctions in the context.
of the Incremental Versionspace Merging algorithim also. In his approach ke considers a
disjunctive versionspace as a set of versionspaces (as we will also do further on). However,
he requires these veérsicnspaces to bé-consistént with disjoint sets of s-bounds (as in Ex-
ample 4.26). Because of the problem described in Example 4.26, this will not always be
possible; However, Hirsh does not mention that this could be a problem.
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4.3.2 The Disjunctive Description Identification algorithm

We will now present the Disjunctive Description Identification algorithm.

Datastrictures
We introduce the _fbl-lOWi'n:g' -datastructures:
e DV 5 is a set of (conjunctive) versionspaces vs;

o each {conjunctive) versionspace vs conisists of three parts; a maximally. general cor-
cept représentation g € L, the set. J, of indexes in I, of s-bounds consistent with
g, and the set. 5 of almost maximally specific concept representations under g. A
versionspace 1s represented by a term vs{ ¢, J,, §);

e all s-bounds are stored in I,; the number of s-bounds is n,.

An important difference with DI is the fact that all s-bounds will have to be stored,

because specializing overly general maximally specific concept répresentations will involve
reprocessing s-bounds {see. farther). As in HYDRA ([Murray, 1987a; see above) we use

an indexing mechanism (the set J;) te store which.s- bounds are consistent with each g.
‘Whenever we spc::]ahze g, the specializations can only be consistent with s-bounds whose
mdex 1§ in J,, the other elements of 7, do not have to be reprocessed. No g bounds have

We say that a versxonspace v.s( g 758 )is c0n51stent with 7, resp. 7, iff g ~-1, Tesp.
g ~ 1. Alsos is almost maximally specific in a versionspace vs( g,J4,,5) iffse .S'
Invariants
To expréss the invariants we introduce some exira notation.
Notation 4.32 I, | J, is'the set of all s-bounds in 7, whose index is in J:
Notation 4.33 We denate ( UUS( PR AN )EDVS_I,_jJ,_,) by Upys Js-

‘We impose the following invariants on the datastructures:

o Invariant 4.3.1. {glws(g, /., S YeEDVS} = (";g.

o Invariant 4.3.2. Forallws(.g ,J, , S )in DVS, § is the set of all almost maximally
specific concept representations under g.

» Invariant 4.3.3. Forallws( g, J,, § Yin DVS, J,={i€ ], |Ig ~1}
o Invariant 4.3.4. UpysL|Je = L.

For each maximally general concept representations in L¢ consistent with I, ¢, there exists

a versionspace in DV §. In each versionspace. vs(g,Jy, 5 ) theset S contams all almost

maximally specific concept representatioris under g, and the set J, contains an index to
‘¢ach s-boinds consistent. with g- Finally; all 5- bounds are consistent with at least one
versionspace of DV'S.

After having computed DV §; PGg and ADSC can be computed from DV5, according
to'their definition {Definition 4. 31)
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The main algorithm [T
Summary: in this section we destribe the main dlgorithm of DD,

We' will first discuss piocedure DDI itself (see Algorithm 4.1). The'input is, as usual; the
stream ‘of information elements Taf . Initially the set DVS contains’ only one element, namely
'u.s( T,8.4 J_} ). This mitialization  fulfills all invariants. As DI, DDI is. incremental; i.e., it
reads unprocéssed information elements from Inf and processesthem dne by one. Again we will
split up the discussion, deperiding on the information element read (i.e., i) being an s-bound or
a g-bound,

If 1-is an s-bound, it has to be stored in I, first (see Step 4.1). Ther DV § will he split up
in a set DV 8oy, of versionspices consistent with iy and DV 5,c0n, of versionspaces incomsistent.
with 4. Initialy DV S on,. 804 DV Sincons aT€ both empty (see Step 4. 2). Bach vs( g ; 7, , 8 )
consistent with 7 must be added to DV Sgp,. Before adding it, ‘however, it will be updated,
such that it fulfills the invariants. Therefore tie index of £ in [,, which is n,, is added ta J,
(see Step 4.3; ef. Invariant 4.3.3). Then, if ¢ is a positive lowerbound, generalizeé all{ §,1)
(see Algonthm 3.2} returns the union of mub( s ,4 ) forall s'& § (see Step 4.4}, Otherwise,
if ¢ Is a negative: upperbound, generalizeall( S , 1) returns the union of msg( 5,7 ) for all
5 €5, Not all elements Tefurned by generallze .21l ‘aré almost maximally specific under g,
which is. required by Invariant 4.3.2. Therefore only those more specific than ¢ and’ maxinally:
specific are selected (see Step 4.5). Then vs( ¢, J,, 5 )is added o DV Seons (see Step 4.6).
Bachws(g, e, 8 ) inconsistent with { is just-added t& DV Sicons {(see Stepd.7). Consequently
Invariant 4.3.3 and Invariant 4.3.2 still hold for these vérsionspaces. If at this point DV S.one
is empty, no versionspace of DV S was comsistent with 4, and because of Invariant-4.3.4 this
mheans no disjunction’'of PLe can bé consistent with I. Theréfore DDI will fail in ‘this case (see
Step 4.8). Qtherwise the union of DV Seon, and DV 8 cons 18, dssigned to DV S (see Step 4.9),
and Invariant 4.3.4 is fulfilled. Since all elements of the previous:valie DV § were'added to either
DV 8 opns 0f DV Sincons, Invariant 4.3.1 still Holds. Therefore all invariants will alse-hold at the
end- of the while loop.

If ¢ is @ g-bound, all versionspates not consistént with < must be specialized. This:is done’in
d-specialize ali{ DV S-, i ). The procedure d_specialize all {see Algorithm 4.2) returns, for
a:piven set.. DV'S of versionspaces and an information element i,_: two sets of versionspaces. The
first set is‘the subset of DV'§ consistént. with . The second set is derived from all other version:
spaces vs( g, s, 8 ) of DV.S (i.e., those not consistent with i). It contains all vérsionspaces
vs( 9’ , Ji,{ L }) where ¢’ is a-makimally general specialization of g consistent with 7. The
third a..rgument of the versionspace can. in geneml only be recomputed from { L }, because some
elements of 5 might be overgéneral (since g is overgeneral) or: consistent with some s- bound a'
is. not consistent with. Therefore the set § correspondmg to ¢’ can in general only be computed
by reprocessmg all s-bounds consistent with g'. In the d spec:.allze 2ll the second and the.
third argument of the versionspaces vs( g’ , J, , { 1 } ):are not yet computed {i.e:, they do not:
necessarily satisfy Invariant 4.3.2 and Invariant 4.3 3) at. this time ¢"is not guara.nteed to be
mammally general, and might therefore not be'included in DV'§ after all.

‘The set of all consistent versionspaces.in DVS returned by d_specialize_ali{ DV i Jsis as-
signed to DVS the set of newly spema.hzed versionspaces” is-assigned to DV Sp,,, (see Step 4, 10) .
At-this pomt -all elements in. DV.S Tulfill Invariant 4.3.3 and Invariant 4.3.2, because they weré in
bvs before: and they are unchanged Furthermore, forallvs{ g, J, , § )in DVS, gis maximally
general in DVS and also in DV Sn... If it were not, Invarzant 4.3.1 would ¢ontradict the fact
thatws( ¢, Je , § ) wasin DV S before:. Elements v.s( g,Js, 8 )in DV 8., are not necessarnily-
_fulﬁ]llng Invariant 4:3.1 and Invariant 4.3.2. Cnly those with ¢ not strictly more -specific than
the “g” of an element in PVS or in JDVS,“m are consistent with all g-bonnds and maximally
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procedure DDI (_Inf_: stream of info )
returns set of disjunctive concept, set of disjunctive concept
DVS:={vs{T,6,{1L})]
Ty 1= 0
while there are:still information elements to be processed
do §:= 'read( Inf)
if i is an s-bound
then n, :._n,-J-l fins) =1 {4.1}
DV Sivicori = @3 DV Siirie 1= @ {4.2}
for allvs{ g, J,, S )€ DVS
doifg~ i |
then J, ;= J,U{n, } {43}
S = generalize all('§ ,4i) {44}
= select all s from §
with s < g and -3’ € §:¢ < s {45}
BV .Seons = DV 8eons U{uvslg, J, 283} {46}
clse DV Sincone = DV Simeons YU {vs{ g, 7., 85)} {4 ?}

endfor

i DV 8oy = &

then failure. {4.8}

else DVE := DV Sincons U DV Seons {49}

else {i is a g-bound}
DVE, DV ew i= d_ specialike,al!(_L?.VS_ s 1) {410}
for all ws( g, J,; S ) € DV 56w
do if ~3uvs{ ', S')EDVSUDVS,,W g%g
then J, = selec_t all ind from J, with g ~ L [ind] {411}

5= d':_genera!ize_afl( g.7) {4_._1.2} '
DVS = DVS U {vs(g,ds,5))

e_n_dfbr

if Upysds # I, then failure {4.13}
endwhile
DG:={glg= 91\/ Vg and ¥j, 15 <n: vs{g;,Js;,5; ) € DVS and g ~ I}
ADS:= {5 V V.S{IglV <+ Vg € DG and

Vi, 1 gj'.g Ly ovs{ g;y Jags Sj ) € DVS and Vj', 1<yt 55 € S_,}
return DG, ADS '
-endproe

Algorithm 4.1 Disjunctive Description Identification algorithm (-DDI)’:
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spemﬁc (cf Invariant 4.3.1). According fo tlie. spe(:lﬁca.twn of dspecializé.all the set of s-
bounds g is consistent with is a subset .of J,, since J,.is the set of s-bounds ‘a generalization. of
g is ‘consistent with. So the sibset of J, comsistent with ¢ is assigned to J, :(cf. Invariant 4.3.3;
see Step. 4.11). Then d-generalize: walll g - Jg ) assignis the' set of almost makimally specific con-
cept represeiitations under g to § {ef. Invariant 4.3.2; sée Step 4.12). In general, the procedure
d_generalize.all returns, for & given concept g and a set.J, of indexes to sibounds, the set .§
of all alimost maximally specific concépt representations under g.

‘Finally the newly compufed versionspace 4s( g ,J;., S ) is added to DV S. After having
-added a- newly computed versionspace for all ws( g , J, 4 5 J of DV 8pew with. maximally general
g, Invariant 4:3.1 will bé fulfilled as well. Since the sets J, of the elements in DV Sy.,, Nave been
reduced, Invariant 4.3.4 may be viclated. I it is, the disjunction of all elernents of Gy, is incon-
sistent with soine s-bound; heice, no element.of DL €dn be consistént with. 7 (Theorem 4.25).
So in that case DDIshould fail {Step 4.13). Otherwise, Invariant 4.3.4 is fulfilled. Consequently,
-all invaridnts will also hold at the end of the while 'lfoop

Then Dg[ (in Algorithm -4.1 denoted by DG) is the set of all disjunctions. Vi_,.95 with
'vs( 9isds s 55 e DVS for all §,1 <j <=, and such that. V;—1 g; is consistent with f,. The
58t ADSC (in-Algorithm 4.1 denoted by ADS) isthe set of all corresponding almost maximally
specific elements.

Generalization and Specialization in DDI [T]

SUMMARY: In"__t:h_i_s section we d‘esc-ribe't'hq_gent_f:reiliza_'_t-ion and specialization operations that
are used in the Disjunctive Description Identification.algorithim.

To establish the specifications of d.specialize all is rather straightforward: each version-
spacevs( g , Jy , § )} from DV 8 consistent with iis-added o DV Scon,. For all other versionspaces
in DVS, the specrﬁed versionspaces based on the maximally géneral spemallzations of g (i.e., min-
‘imal upperbounds or most general specializations)} are added to jS"V.‘j’,,,hIJ Then DVSWM and
DVSMU;, are returned.

The procedure d generalize all (see Algorithm 4.2) returns, fnr 8 given concept g and a
set J, of indexes to the s'bounds g is consistent -with, the set-of aﬂ almost maximally speuﬁc
concept representations under g.. The- implementation of the procednre d_generalize allisagain
'straaghtforward because the s-bounds consistent with g are given by J.. The zmplementatlon
uses the procedure general:.ze all of Algonthm 3.2.- Given an-s- “bound 1, generalize all(S 4 )
returns all. maximally specific. generalizations w.r. £..1 of all elementsin 5.

In d.generalizi.all 5 is computed by recomputingit from 1., This step could be optimized,
because recomputing S5 is only necessary in case Jy really changed in Step 4.11. I it did not
change, the elements of s np_t'con__si_stent with 4 should just be :eniov_ed .-ﬁ'_o:m_:S . '

Properties of DDI

Theorem 4.34 DDI fails iff there exists no disjunction in DL consistent with F.

Proof There are two places where DDI can fail. In both cases, Invariant 4.3.4 is viclated,
‘which means that there does not exist an elefent in PLo consistent with 7. If DDI
does not.fail, Invariant 4.3.1 and Invariant 4:3.4 imply that the disjunction.of all’
eletnents of Q'r-, is consistent with 1. ' ' i
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pracedure 4_specialize all{ DV§: set of versionspace; g-bound )
retizrns sef of vermonspace, sét of versionspace
{ Returns: DV S.one: the set of elements in DV S consistent with 4;
DV Snew forall ather versaonspaces ‘us{g Ji , 8 ) in DVE:
the set of all versionspaces vs{ g’ , Jo , { L } )
where g’ is a mazimally general specialization of g consistent with i }

DVS::t'ms = Q;Dvgnew = {3
for allvs( ¢ ,J,., § Y e DV
doifg w1
then DV Seone := DV Scons U{vs{ g;J,,5)}
else G .= specmhzatwns( y3) '

for.alig' e G
do DV ey := DV S U{ws{ ¢ , L, , { L]} }
endfor .- i
endfor
return DV'Sons, PV Spew
endproe

procedure d.generalize a1l{ g concept: J,: set of index ) returns: set.of concept
{Requires: J, = {4 ¢ I, | g~}
Returns; the set of all almost mazimally specific concepi representations under g }

S:={L1}
for all ind €7,
do § = generahze.&!l( § , Llind] )
8= select all s from S
with's ¢ and -35 € 85:5" < ¢
endfor '
return §
endproc

Adgorithm 4.2 Generalization and Specialization in DDI
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Theorem 4.35 1f DDI does not fail, it returns the set of miaximally .:g_'enéra'l concept-
representations consistent with 7, and the set of almost maximally specific éoncept
representations consistent with T.-

Proof The first part, follows from:Invariant 4. 3.1, and the postprocessing step. The second
part follows from Invariant 4.3.2, and the postprocessmg step. ]

Complexity analysis [T}
SUMMARY: in this section we describe the computational complexity-of DDL

For this analysis e are using the same notation as in Sectlon 3.8:2. We, express the complexity
in terms of § (the size of the general-tospecific search space in- ﬁc) and 3 {the size of the specific-to-
genera.l search space in £¢). The average branching factor-of the general-to- spe_q_lﬁc search space
I8 bg, ‘and ‘of the specific:to-géneral search space b,, Note"howéu'er that the average br_a,nt;'hi'ng
factor by will be different. than the one obtained in DI and TTVS (Se_ctic‘_n‘ 3.8.2), because no ¢ i§
pruned_from DV S for being inconsistent with I,. The total number of s-bounds is #,; the total
number of g-bounds is ny. The mefory complekity of an information element i &, and of a
concept representation c.. The sets J, contain indices fo information elements.. We denote the
space complexity of di index by €jna. As.in Chapter 3, we assume g, ¢ and &ing are constants.
The time comiplexity: of a_specﬁia'liz'a.'tion ‘operation is gopee, of & generalization operation cgen, and
of a %-test ¢y We also dssume Cope, Cgen ‘and ¢y to be constant. -

Theorem 4.36 The worst case space complexity. of DDILis-
o _b;"_-’ ¥ {1 +671) % e+ b;’- X Ny X Cind 'ﬂ—'fﬁ,_—l— 'n,g') X ¢ J-

Proof In the worst case there are b;’ elements vs{ ¢, Jy , 5 } in. DV 5. For each of these DDI
stores:
e g itself (this yields the term O 53° X ¢, ));
o the.set J, of indexes to the: s-bounds consistent with g. In the worst case J,- contains
an index to each. s-bound (this yields the term O b"’ X Te X Cind s

s the set S of ma:_n_ma.l_ly_ s__pec1ﬁ'c concept repl_'ese_n_ta_.tlo_n_s mere specific than g. In
the ‘worst case, § is equal to §j, which contains. b7+ elements (this yields the term
O{ ba? X b X e, ))

Finally there is an éxtra term O (ne —E-ng)_"_x ¢; Y, because all s-bourids and all g-bounds.
have {0 be stored. m|

Theoren 4.37 The worst case time complexity of DDI is:
O{ §X €apee G X (BT + g +EX (LHOP)Y X eg + F X 5% cgen )s

Proof For each of the g ‘elérnents g in the general-to- spemﬁc search space, we have'in the worst
case all following operations:
e ¢ is specialized once (this yields the term O §'X €spec J)i

o g must be checked to be ma.ximall_y general, Therefore, it must be compared with the:
g ofal bg® other elements-of DV'S (this ylelds the term Of § x 43¢ X.cq )i
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o when g.1s a- spec;ahzatlon of g*, the set J, is the set of- a.]l elements in J! such that
the corresponding s-bound is consistent with g. Therefore g must be compared ta all
these correspondmg s-bounds, which could, in the'worst case, be all. 7, s-Bounds (this.
yields the term O § % n, X e ))..

¢ in'the worst-cdse, each specialization of g’ to g leads. 10 the recomputation of S = St
This ineans that each of the 5 elements in. the specific-to-general search space will
be generalized once (yielding the term O § X 5 X Cgen )i will be-compared to g once
(vielding the term Of gx §% 1 X cx }), and will be éompared to all b7 other elements
of § t6 check maximally specificity (yielding the term ©f g x 53¢ b7r % ex ))-

The post-processing step to compute DG and ADS only selects all combinations. of g’s
and the correspondmg s’s and does not search the search space, neither are there any.
-generalization or specidlization operations, nor ={-tests involved. O

4.4 Preference criteria for disjunctive languages
In“Section 4.3.2 we introduced a constructive and structured way to.compute ‘almost max-

imally specific disjunctive concept representations. The method is less explosive than the
way maximally specific disjunctive concept represéntations ¢am be computed, because it

~-eliminates-the. partitioning of -J;-gves-all-possible -disjuncts {see-Seetion-4:8+1):- This-does—— -

not, however, solve the problems of the (unique} maximally ‘general disjunctive concept
representation: thé number of disjuncts might still be exponential in the number: of g-
bounds, while some disjuncts could be dropped without losing consistency. To.control. the
number of disjunicts, we introduce an additional preference criterion. We first discuss sare
preference criteria used in exlstmg systems, and then try to define our own criteria in a
langua.gc independent way.

4.4.1 Existing systeins.

Existing systems that learn dlﬁ]unctwe concept representations start from the original
‘problem setting of Chapter 2, i.e., they use positive and negative lowerbounds from £y
as information elements. Consequently the maximally specific and -maximally general dis-
junctive concept representatmns s, resp. g, are unjquely determined {as a consequence of
Theorem 4.25): s={p; V --- V p,,] where pi,...,p, are maximally specific concept repre-
sentations consistent, w1th one positive example and g = Ve g where @'= (’;g, i.e.; the'set
of all maximally general concept representations consistent with all negative examples In
-general these solutions are not desirable; mainly because we want concept representations
to be as simple as possible. Simplicity cannot be expressed by a langnage bias, because
it only distinguishes the well-formed concept representations from the not-well formed on
the basis of their own characteristics (often mainly syntactical ones). Therefore an extra
preference eriferion on the seb of consistent dls_;unctlve concept representations is needed.
A preference criterion partially orders the set of concept Tepresentations, such that con-
cept representations with a higher preference are preferred over those with lower preference.

Sinceit is a partial order, it is a relation between concept . representatlons and i1 particalar
between consistent concept representations. Possible preference criteiia are:
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o dl is preferred over. d, if d, hag less disjuncts than ds. Consequently; the disjunctions
with a inindmal number-of disjuncts are the most preferred. We call this the minimal
length criterion.

s dy is preferred over dy if d; is a subset of dy. Consequently, the dlSJuDCtIOIl as-a sel
of disjuncts minémalfor € is the most preferred. We will call this the minimal set
criterion.

‘s Minimality criteria could take the minimality of the disjuncts themnselves in account
or minimality of the average size of the disjuncts (see [Kodratoff, 1988]). Complexzity
based induction is based orni.the minimal description. Iength principle [R:tssa.nen 19?8}
and tries to minimize the number &f bits to represent the background knowledge
and the examples (see, [Conklin and V_Vltten,__ 1994] aipd [Mu_g_g_leton el al., 1992] for
applications in ILP}. '

s Other criteria could be based on reliability and resilience to noise, or easiness to
evaluate (see [Lavraé and Dieroski, 1994 and [Kodratoff, 1988]).

These criteria could alse be combined. _

As already noted in the previous section, it is-éasier to search DL¢ general-to-specific
than specific-to-general. It is also easier to adapt comjunctive genéral-to-specific mieth-
ods to leasn disjunctions:thanspecific:to-general ones.(see also [Dietterich and Michalski,
1983]). ‘A widely used method is the covering dpproach. The basic idea. of the covering
approach is to introduce new- disj:unc'ts only when necessary, thus aiming at. having as few
disjuncts as possible inthe- result. In this way the-minimal léngth or-minimal set criterion
is approximated. All disjuncts must be kept consistent with all g-bounds at all times: with
each s-bound ‘at ledst .one-disjunct must be’ consistent.

The covering approach is very well suited for non-incremental general-te-specific algo-
rithms. Roughly speaking it starts with an empty set of disjuncts, then selects an s-bound.
inconsistent with the set of disjuncts found so'far, finds a maximally general disjunct con-
sistenit with the s-bound and all g-bounds, and t_h_cn rernoves all s-bounds consistent with
the new disjunct from further consideration. [Lavraé and Dieroski, 1994} describes a non-
incremental generic algorithm using a covering approach'in more detail. Many famous sys-
tems:use the covering approach, for instance AQ [Michalski, 1983], FOIL [Quinlan, 1990j,
MOBATL [Morik .t al, 1993], Progol [S__mm_va.sa.n el al., 1994], [Muggletqn, 1995}, SPEG-
TRE [Bostrémi and Idestam- Almiquist, 1994]. [Haussler, 1988] shows that this strategy can
find a solution.with 4 x ( n( n, }+1 ) disjuncts; where n, is the number of s-bounds and
d is-the number of disjuncts in the minimal length solution. Specific-to-general systems.
can use.a sn_mlar approach by using s-bounds to generalize candidate disjuncts as much
as possible, i.e., without having inconsistencies with g-bounds. This strategy is used by
GOLEM [Muggleton and Feng, 1992].

In-iricrémental approaches not all g-bounds. {neither all s-bounds for that matter) are
known in advance. Therefore it is-necessary to be able to adapt a current set of disjuncts
w.rit. an inconsistent g-bound as well. In the general-to-specific case (e.g., MIS [Shapiro,
1983] a new disjunct is crested each time none of the existing. dls_]uncts covers a new
s-bound : specializations of the dxsjuncts da ot -eover the s-bound anyway. If any of the
disjuncts is inconsistent with a new g-bound, the disjunct is marked and removed from the
disjunction. New unmarked disjuncts have to be added for those s-bounds the disjunction
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becdme inconsistent with by rémoving this disjunct. We will further on {Algorithm 4. 3)
elaborate on this case.

In the specific-to-general case {c.g., CLINT [De Raedt, 1992]), the existing disjuncts
could be generalized in order to cover & new s-bound, and enly if no existing disjunct
can be consistently generalized, a new disjunct is crea.ted This of course at the risk
of overgeneralizing existing disjuncts. Specific-to-general methods have the problem of
partitiening the positive examples info sets, such that each: set of examples generalizes to'
a disjunct also.consistent with 4ll negative examples. The problem then amounts exachly
to the problem raised i Section 4.3.1 all possible combinations-of partitions of s-bounds
may have to be tried. Moreover, i an incremiental approach, whenever a-chosenpartition
fails (i.e., a disjunct turns out to be inconsistent with a new g- bound), these methods
need & recovery strategy, e.g., through backtrackmg or by marking and removing the:
inconsistent disjunct. (see also [Bundy et al, 1985]). I the. disjurict is again removed,
all mnconsistent s-bounds are reprocessed. Most systems employ an ad hoc procedure of
creating a new disjunct, in ‘particular whenever no existing disjunct can be generalized
consistently. Consequently, when used incrementally, the resulting concept representation
is highly dependent on the order of the examples, and not necessarily minimal.

Finally, bi- diréctional methods tend to inherit advantages and disadvantages of both
‘approaches. Exatmmples.are Focussing {Bundy et al, 1985] rule shell creation [Mitchell e
al., 1983} and the rnult1p1e convergence approach of HYDRA [Murray, 198?6,]

Covering in an incremental general-to-specific strategy

In this section we elaborate on the covering approach, because it is widely used in incremen-
tal and non-incremental disjunctive algerithms. We will discuss a variant that computes
disjunctions of maximally geheral elements consistent with Iy Algorithm 4.3 describes a
simple incfemental algorithm implementing the covering approach in the general-to-specific
case. I) is a set of concept representations ¢ , ..., ¢,, representing & maximally general
dlSJuncmon oy V Y ¢y, consistent with all known s-bounds and g-bounds. Fér.each new
s-bound ithat is inconsistent with D (i.e., inconsistent with-all of the ¢;); a new maximally
general concept represeniation c, consmtent with J; and with'¢, and not marked is added to
D (Step 4.14). Concept representations that are. marked ‘were removed from: D-before, and
should therefore.not be included in D again. Which element is actually- ¢chosen, depends
on the search:strategy of the algonthm The resulting disjunction D is consistent with all
s-bounds and all g-bounds.

For each new g-bound ¢ that'is inconsistent with D (i.e., inconsistent with-at least one
of the-¢;), 2l disjuncts inconsistent with ¢ are removed from D (Step 4. 15) and- marked.
Most probably some s-bounds will not be consistent with the: resulting 1. These are added
one by one again as if they were just presented to the algorithm (Step 4.16).

The algorithm only creates new disjuncts when necessary, hoping that the resulting D
will contain as few disjuncts as possible. However, in-general D will be neither a minimal
set nor a minimal length solution. Suppose for instance that. D = { e }, and that ¢
‘is consistent with the s- -bound ;. Suppose c; is not consistent with a new s-bound ip.
Therefore a new dmjunct cz will be added 6.0, which is consistent with 7,. If ¢, is also
consistent with 43, D = { &1, ¢ } is not minimal since the d151unct & coulcl be dropped.
The main reason for this behavior is that the covering approach never removes a disjunct
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procedure k;o'w_.'rer-ing_'( Inf i stream of info ) returns set. of concept
Di=g
while Inf is not empty
doi ;= read( Inf )
if 1.is.an s-bound
then D := add_s.bound( D ,% )
else {iisd g-bound} '
D= add_ g bound( D , i )
endwhile
veturn D
éndproc
procedure add s _bound{ D: set of concept; i: s-bound ) returns set of concept
(D~
then D:=DuU{e¢} _
where ¢ € 'g;, and ¢ ~ 1 {4.14}
return D
endproc.

procedure add_g-bound( D set of concept; i: g-bound ) returns set of concept:
if (D ~i) _ _
then D= D\ {c|=(ec~i}} {415}
for all.s € I, such that ~{ D~ 4 )
do D := add.sbound( D , i) {416}
endfor
retirn D
endpioc

Algorithm 4:3 Covering in an incremental general-to-specific strategy
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that is consistent with I, even'if the disjunct is redundant. On thé other hand, detecting
and removing redundant disjuncts such as ¢; might lead to a re:introduction of ¢; when ¢,
turns out to be inconsistent with 7.

Since this kind of recovery strategy becomes rather cumbersome and not well- structured,
we propose to introduce a backiracking scheme in which.the covering approach.can be- de—
scribed. Using the same scheme we will also describe a depth-first séarch which will find
minimal set solutions, and an iterative deepening approach to:find minimal length solutions.
{see Section 4.5). Therefore we will first study the minimalset and minimal length criterion
as a: primary preference critéfion in Section 4.4.2. Between equally preferred disjunctions
according to these criteria, other preference criteria can beused.

4.4.2 Minimal L‘ength-and_ Minimal Set Preference Criterion
The minimal length criterion

In this section we describe DG and DS in combination with the minimal length preference
criterion.

Definition 4.38 (Length of adisjunction) Ve ; ..., cp € Lg : the length of the dis:.
junction ¢’V 1V ¢, i85 T

--Notation 4,39 -We denot &the-length-of- the-disjunction-d-EPLpby #d:
We can now formally define the minimal length criterion.

Definition 4.40 (Minimal length criterion) d ¢ DL is a minimal length solution
w.r.t: a set I of information elements iff #d is minimal w.r.t <inDVS;.

Notation 4.41 We will say that “d'is a ML-solutien”, or “dis ML”.

Lemma 4.42 For all ML-solutions d.in DL¢ there exists an ML-solution ¢ of DG such
that 4 =4 g.

Proof Letd=c; V- -V ¢n From Theorem 4.23 follows that. d is-more specific than the
element g" of the. smgleton DG;. Consequently, for each ¢; of d there exists a disjunct

¢; of g" that-is more general. Let g = ¢ Vv Then g £ DG . We also have
d =4 g. Furthermore, g ~ I,, because d ~. I,, and g ~ Iy, because each disjunct of g
is alse'a disjunct. ofg Since #d = #g, g is ML. ]

Lemma- 4.43 All ML solutions in DLy have the same length as the ML solutions in
DG .

Proof This is an immediate consequence of the previous lemma. O

Now we ¢can specify the maximally géneral disjunctive concept representations that are
ML. .

Theorem 4.44 The set of ML maximally general concept representations in DLg
consistent with I are the eléments of 'Dg: of minimal length
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Proof { <) Suppoese disan ML maximally general concept representation consistent with
I. Then there exists g in @g; ():f'.mi'n_i'ma,] _l_engt_h-suéh that d < ¢ :(Lemrr_la.'-‘%?é?-).
Supposeé d.# g. Since g is consistent with 7, it follows that d is not maximally general.
Consequently g = d.

{ 2 ) Suppose 7 s in DG , and of minimal length in DG . Then g is consistent
with J, and of minimal léngth in DLe (Lemma 4.43). Supposc ¢ is not maximally
general. Then there exists ¢' € DG strictly more general than g, of minimal length
and consistent with J (Lemma 4.42); This means that thereis a disjunct ¢ of g and
a disjunct ¢’ of ¢* such that ¢' i strictly mote general than ¢ This contradicts the
fact that g 1s in DG . Consequently, ¢ must be maximally general. o

To search for maximally specific elements that are ML, Theorem 4,44 and Lemma 4.42
suggest to-search Dg[; for a mlmmal element g=0c V-V and conmstent with f
first. The disjuncts of ¢ are elements of ng, 1.e., consistent W1th I, and maximally gcneral
For each g, all's = ¢} V --- V ¢ such that VJ, I€i<m: < < and such that s is
maximally specific, have to be computed For the samle reasons as in Section 4.3 it will
‘be impossible to compute all such rnaxrrnally specific. elements constructively, because we
cannot just assign each s-bound to éne of the ¢j. Thf_:refore. we will also compu_t_e almost
maximally specific elements under g instéad.

Definitién 4.45 {Almost maximally specific w.r.t. a préference criterion) Given.
a set.J of information-elemnents and a preferente criterion @, a disjunction s is called
almost maximally specific w.r.t. [ and fulfilling the preference criterion @ iff there
exists a rmaximally general disjunction g consistent with I and fulfilling the preference
criterion @, such that s is almost maximally specific under g.

The following theorem states that all ML elementsof ADVSe (see Definition 431) are
exactly the elements of DL that are between an ML elemhent g of DG c and an element
s of ADS¢ under g. Conseguently; this theorem provides-a way to find all elements of
ADVS c that are ML. ' '

‘Theorem 4.46

{de ADVSc |d15ML}—{dE'D£c[s Sad=y9,0€ DG
g.isML, and s is almost maximally specific under 4 and g 3.

Proof (C) Given d € .A?D]/‘S[: and d is ML. By definition of A’DVSE ‘there exists
g € DGy and almost maxamally specific under d and g sich-that s =4 d <4 g.
Consequently #s5 = #d = ftg, which means that-5 and g are ML.

{ 2 ) Given d € DL such that s g d'<a g, g € PG , ¢ is ML and s is almest
maximally specific under d and g. Then d € A’DVSE , sinece g in EDQE and s is
altnost maximally specific under d and g. Also. #.s = #d #g, which'means that s
and- d are ML. (]

The 'foll_o_w_ing_ theorem'pl_'oves_ that an almost maximally specific concept representation
under ¢ € DL¢ 15also in DL, i.e., it is automatically reduced.

Theorem 4.47 leen g=e V- V¢, € DLp, which is ML and consistent with. I.
Also given s = ¢} V - Y cl, conswtent with I, and such that for dll 7, 1 < § <.
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s ¢ € Lg,

¢ . = ¢j, and

o ¢} is consistent with all s-bounds in.[ that ¢; is.consistent with.
Then s € DPLc.

Proof We have to prove that s is reduced. Suppose it is not, i.e., there exist j anid !c,

1 < j,k <, such that ¢} 5 ;. This means that ¢ v :-- v oy Ve, Vv,
is also consistent with I and has one disjunct less than g. By Lemma 4.42 this
contradicts the fact that g is ML, r

Now we can slightly adapt Algerithm 4.1 to compute ML solutions only. The compu-
tation of DV.5 remains the same. In.the post processing step after the while- loop: only
minimal length solutions are selected for DG

DG={glg=q V-V Qm_vj-;- L<j<n:us( 951 Js3, 55 ) € DV,
9~ I, and yis ML }.

The construction of ADS remains the same: for each gy V' <+ V g, in. DG the corre-

““sponding almost maximally spemﬁc. concept representations are in ADS. The. complcx1ty
of the adapted algorithm remains the same, as anly the post-processmg step changed. This
post-processing: step again only selécts all combinations of g’s and the corrcspondmg 3’8
and does not séarch the search space, neither are there any generalization or specialization
operations, nor =¢-iests involved.

Note that since the-Multiple Convergence approach ([Murray, 19876.] see Section 4. 3)
is actually computing the same sets DG and ADS in the specific case of conjunctive
attribute-value languages with. k featuves, it could be extended with a similar selection
step. to select only the ML-sclutions.

The minimal set criterion
We can now formally define the minirnal set. criterion as well,

Definition 4.48 (Minimal set criterion) d € Df¢ is a minimadl set solution w.r-t. .a
set ] of information elements iff d is minimal w.r.t T in DVS;.

Notation 4.49° We will say that “d is a MS-solution”, or “d is MS”.

‘The following proposition shows in a-more concrete way what it means for d € DLg
to be MS. The proposition proves that for each- disjunct in a'MS solution, there is at least,
one s-bound that s consistent with this disjunct- enly.

Proposition 4.50 Given the disjuncliond =¢; V- V¢, € DLe consistent with 7.
Then dis MS 1iff there exists for each 7, 1 53 <, at least one-s-bound 7 such that

& ¢; ~ 1, and.




128 CHAPTER 4. DISJUNCTIVEITERATIVE VERSIONSPACES
o foreach k, 1 <k <n, k#7 implies = cg-~3).
Proof ( =) Consider for each c; the set.
{icL |3k 1<k<n:k#j and cp ~1i}.

Suppose there is a j, 1 £ 7 £ n, for which this set is equal to- I, Then
g V-V Ve Voo Ve, isasubdisjunction of 4 and. consistent with I, which
-contradicts the fact that 4 is MS.

( %= )} Consider the disjunct c;. For ¢; there exists an s-bound 4.such that ¢; is
-consistent with 7, and-none of the other disjuncts is consistent with i. Consequently,
.ormttmg ¢; from d would cause d to be inconsistent with 7. This is true for a.ll
disjuricts ¢; of d, Consequently, d is minimal for C in DVST. 0

This result also holds for ML solutions. This is an immediate corollary of the following
‘proposition. 1t says'that each ML solution is alse a MS solution.

Proposition 4.51 Every ML-solution d € DLg is also a MS-solution.

Proof Suppose d.=c; V --- 'V ¢ is ML but not MS, Then there exists a subdisjunction
d' of d, different from d, inDVSy. The fact that #d’ < #d now contradicts that d is
ML, |

Similarly as for ML solutions, almost maximally specific disjunctions under an MS
solution are automatically reduced.

Theorem 4,52 Giiren g=c V- Ve & DLg, whichis MS and cor}'s'is'_t'e'nt with 7.
Also given 5 = ¢} V :- -V ¢, consistent with J, and such thatfor all 7, 1.< 7 < n:

° c;- € Lo,

e ¢ < ¢, and

@ c; is consistent \'j.'_it'h'a.:ll .s-b'ou-n'd_s_ in I that & is consistent with,
Then s € DLe.

Proof We have te prove that s is reduced. Suppose it is not, i.e., there exist 7 and &,
1 €4,k < n, such that ¢} "c;. This means that ¢ is conszs’cent with all s-bounds in
I that & is consistent thh By constructlon ‘of 8, ¢ 16 consistent with all 5 bounds
in I that ¢; is consistent with. By Proposition 4,50 this contradicts the fact that g8
MS. o

The minimal length criterion is-stronger than the minimal set criterion, because if
there does not exist a consistent disjunction of smaller length-than that of a consistent
disjunction 4, no disjunct of d can be deleted while.remaining consistent.

On the ¢ther hand, to implement the minimal length criterion directly, all possible
disjunctions will have to be searched, because the length of the disjunction does not have a
direct relation with =, which is the order used to search DLs. The minimal set criterion.
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on the other hand does, because of Proposition 4.5. Although the minimal set criterion
has 'd 'more-direct: rela.tjonshlp to <4 than the minimal ength criterion, .and would there-
fore be.mdre easy to handle, maximally specific d:s;unctwe concept representations tha.t-‘
are MS are exactly the elements of’ DS: because the concep! representations of DS are
reduced, omitting a disjunct from an element of DS causes the conicept representation to
be mconmstent with the s-bound the disjunct originated froiii. Consequently, also in this
case if, will be more useful to ise almost maxunally specific concept Tepresentations under
the maximally general ones.

‘Similatly as Theorem 4.46 the following theorcm states that all MS elements of A’DVS.:
areexactly the elements of DL that are between an MS element gof DGy and an element
s of A'DSC under g,

Th eorem 4.53

{de ADVS [d]s MS}“{dEDﬁCIS <zd <4 9,9 € PG,
gis MS, and s is almost maximally specific under d and g } .

Proof ( C ) Given d € ADVSc and d'is. MS. By definition. of ADVSE  there exists
g & 'D_(,;E -and 3 almost ma.xunally spec;ﬁc under d and g such that s- =g d =<4 9.
Suppose g =i Vi Ve, s=c¢, V- Ve, andd=c/V--- vl ThenVj 1 <
JEn: {vel, icjmz}—{zef [c wz}-{zef ic ~ 1-}. Consequently,
ifdis MS then g is MS.

( 2) Given d € DL¢ such that s < d —<d 9,9 € DGr , g1is MS and 5 is almost
maximally specific under 4 and g. Then d € AD]/S.—_- since ¢ in ’D(’C and s ig almost

maximally spec1ﬁc under ¢ and g Suppose g=c V- Ve,s=c V-~V and
d=cfv-- . Then ¥j, 1 <5< n: {ZCI]CJ"-'?.}“‘{ZEIICNT,}—
{iel,] c ~i3 } ‘Consequently; if g is MS ‘then d.is"MS. N

4.5 The Disjunctive Iterative Versionspaces
algorithm

In Chapter 3 'we presented the Iterative Versionspaces algorithm, a depth-first version of
the Description Identification algorithm, and we constructed a framework in which beth
algorithms could be described. We will now similarly present a depth-first version. of the.
Disjunctive Descrlptzon [dentification algorithm, and build up a framework fo describe
disjunctive search algorithms. The underlying motivation for developmg a depth-firs} al-
gorithm to search for disjunctive concept representations, instead of computing all solutions
as in:DDI, is-again that searching all solutions is memary. ‘consumming, while ¢concept learn-
ing. algomthms are ‘usually not asked 16 find alf solutions. They should rather: find only
one, which is maximally preferred w.r.t. the ‘preference criterion, The advantages of find-
Ing a maxrmally general and a maximally specific were discussed in Section 3.4.2: it allows
choosing between making more errors of commission rather than errors of oimissior, and
vice ‘versa; it also allows the generation of relevant lower- and upperbouids. -As shown
in the previous sections, not imposing a preference criterion could lead to. very -specific
solutions, or to solutlons with fmany. disjusicts, etc. Therefore we do not have to compute
the set. DVS of DDL completely, but rather only a subset, until we have found a solution.
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As we have illustrated-above, this is also the idea behind the covering approach (see Algo-
rithm 4—3) there is, at edch moment, only one current.set of disjuncts; if this set.is overly
specific; it is géneralized; if it is overly genéral, it is specialized. However, whereas:it is not
always clear what the effect .is of the covering approach’s adding and rémoving disjuncts,
we describe a: backtracking scheme in which we can fit several approaches, such as the
minimal set criterion by using a depth-first. search, the minimal length criterion by using
‘ani iterative deepering approach, and the covering approach by yet.another kind of back-
‘trackirg. One could even think of going beyond these search ‘strategies, and of introducing
.more sophisticated backtracking mechanisms.

In the text we only present-the depth-first version, which actually implements: the
rriinimal set. preference criterion, and explain how the other search strategies can be derived.
As such, the developiment of the Disjunctive: Tterative Versionspaces algorlthm (DITVS)
again establishes @ framework in which other disjunctive search stralegies .can also be
described and understcod. “

This section is structured as follows;: first we discuss the datastructures.in DITVS (Sec-
tion 4.5.1), and the: invariants on these datastructures (Section 45.2). The reader may
already want to take.a lock at the example iti Section 4.5.5, before reading the techniéal
‘section describing the algorithm (Section 4.5.4). Section 4. 5 6 describes how the frame-
work of DITVS can be used o adopt the minimal sét criterion and the covermg approach
(Section 4.5.6). Then we discuss the computational complexity of DITVS in Section 4. 5.7.
Finally; we briefly discuss to what extent the extensions of ITVS are still applicable in
Section 4.5.8.

4.5.1 Datastructures

Basically the idea. of DITVS is the follow:ng mstead of computlng the sets DG and
ADS (the boundary sets of .A’DVSE : see Section 4 3.1) completely, DITVS should only
compute-one element gy, =gy V --- V gaof DGp and one elementof sy = 51V« V 55 6
ADSL , such that g,, and.s,, are MS and such that 8y, 15 almost maximally SpEClﬁC {Ginder
gis- The dlS_]‘LIIlCtS g;0f gy are elements of G;, (see Definition 4.19 and Definition 4.31). To
find g,, we have to search systematically i:he set of all subdisjunctions of Voo (W1th G =
G, } consistent with 7,. In order to find a MS solutlon we should search the most preferred
elements first. “This is one’of the main differerices of DITVS wir:t. DDI: wheteas DDI only
selects :MS. solutions. in a post-processing step, DITVS takes the preference criterion into
account during the search. To find sy, we search-for an almost. maximally specific concept
representation under g,,. ' '
In order to compute alternatives for gy, and sy, in-case these are inconsistent with I,
DITVS should contain. baclimck’infor‘matiﬁn In ITVS this backtrack infermation consisted
of two stacks B, and By, from which the boundary sets § and G could be recomputed at-all
times. The stack B, contamed choicepainis ( ind | Sing , elting ), such that Sing and alting
were ma}nmally spec;ﬁc and consistent with the ﬁrst ind. g-bounds;, Sing Was the current
choicé in the choicepoint, altinz contained alternatives to be expl_ored when the branch of
Sing turned out to contain no sclutions; B, has a similarstructure (for all invarianis on B,
and’ B,, see Section 3,6:2). Here we will try to find a similar representation for DITVS.
Like DDI, DITVS will be general-to-specific driven: it systematically searches through
DLe for elements of DG . Thetefore we will first make a choice for the disjunctive
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Figure 4.7 Introducing the datastructures of DITVS

counterpart of By, the disjunctive backirack stack {further on called d_stack) DB,. The
d_stack DB, could consist. of several backtrack-stacks of the ‘type. By, one for cach of

_ the pairs (g;,.5;), thus representing a versionspace for each of the disjuncis in. gys-and-————

Sus- However, this would give a great amount of overhéad, since these versionspaces aré
not necessarily disjunct. On the one.hand, an element that is already rejected in one
versionspace, possibly after having searched its generalizations or specializations, will not
necessatily be rejected in the other versionspaces, meaning that its gencra}iza;tit}ns-_a;nd_
specializations will be searched again. On the other hand, this could.also result in searching
all permutations- of all disjunctions, Thercfore we will mtegrate these different. stacks inte
one datastructure for DE,.

If we are to search the set of subdisjunctions of Vg ¢ in a systematic way, each time
we make a-certain. choice which subdisjunction to explore next, we.should be able to
represent the chosen subdisjunction, and the remaining sybdisjunctions, As in ITVS, this
information is contained in a choicepoint. We will first €xplain how we will represernt. the
chosen subdisjunction,

As G;, has elements in all parts of Lg, subdisjunctions of ;g can have disjuncts of all
parts of Lg. Consider the search tree in Figure 4.7. The top layer only contains T, and
is consistent with no g-bounds. The layers below consist. of the maximally. general spe-
cializations of T consistent, with 1,, 7 and s respéctively. The current choice of disjuncts
is on each layer represented by the shaded boxes. In the figure, for each new- g-bound all
chosen disjuncts of the previous layer had to be specialized. Suppose the concept repre-
sentations f; € Lo (7 € {1,2,...}) areconsistent with the g-bounds 7; and %,. L;
is the list of maximally general specializations of f;, consistent with i5. The lists L; are
depicted: by boxes. We will call the lists. L; VS:lists. The list of all VS-lists of one layer
is called a. Disjunctlist, Let us concentrate on the disjunction ¢; V ¢z V ¢3 V ¢z. This dis-
junction is' détermined by ‘the VS-lists to which its disjuncts belong, and by the actual
choice of disjuricts within-each VS-list: ¢, V ¢ V 3V ¢, is determined by the VS-lists
Ly, Ly and ‘La; and, within these, by the choices {al, {e,é }and {e} respec-



132 CHAPTER 4. DISJUNCTIVE ITERATIVE VERSIONSPACES

tively, { (L i{eaa} ), (Ley{ca,ea} ), (La,{ea} )} then represents the disjunic-
tlon¢;’ Ve V e3 V cqr o '

In general, we can distinguish two levels of disjunctions-in a cutrent choice gg for gyy to
be represented in a choicepoint: g4 could contain one or more elements of a VS:-list, and
it could contain elements of one or more VS-lists. Consequently, we ha.ve to represent a4
on two levéls; we have to specify which V5- lists contain. disjuncts of g4, and for.each such
VS-list, we have to specify which of its-elements are disjuncts-of ga. A particular choice of
disjuncts within a certain V8-list L is denoted Chy,.

The second element we have to. represent in a choicepoint is the set of remaining choices.
We will do this by iinposing a iotal order on-all possible choices in a chomepomt and by
searching the remaining choices according to thisorder: This total order can be.defined on
two- levels: we can-define an order-on the possible choices inside ¢ach VS-list (what we will
call a local order), and then define an order on lists of VS-lists (what we 'will call a global
or.__der) Given a list DL ‘of VS-lists, a global order on the: possible choices made inside each
VS-hist will be constrained by the chosen pr_e_fe_rence_ criterion.

Constraint 4.54 (The Order Constraint) Forthe minimalset criterion, all subsets of
a certain choice 9d should come Before 9. itself,

For the minimal seticriterion this means that the chosen local order must be a superset of

. Note that, since we do not use empty. disjunctions, the minimal element in the global
order will be a singleton. Alsb note that this constraint does not” comipletely ‘define the
t_ota.l.ord_er of .alternatives. In Section 4:5.4 we specify a ‘total order for the minimal set
criterion which fulfills ihe constraint. It is based on the positions of the elements of Chy,
within L. _ _ _

Tn general a list DL of VS-lists L, together with a particular cheice Chy, in each VS-
list, represents-a disjuriction Vpy, { Ven, ¢}, and all remainisig choices. A combination of
L together with a choice C'hy is called a Global Disjunct. The list BL is therefore. called
a Global Disjunctlist.

In the discussion of the DITVS -algorithm, we will make abstraction of the actual
representation of €Ay dnd of the actually chosen'local and global order. We will use the
following functions:

1. the function init _choice, which for & given VS-list L returns the first poss;ble local
choice in the chosen enumeration. Because of Constrairit 4.54 (the Order Constraint)
for the minimal set criterion, init_choice always returns a choice representing a
-s"in_gle_ton._ containing one element of L. '

2. the function is_last_global _choice, which for a given Disjunctlist DL returns true
if the current global choiee for DI is maximalin the global order. Because of Con-
straint 4.54 (the Order Constraint) for the minimal set criterion, this would be the
case when each Gy, in DL represents the corresponding set Lin DL completely.

3. the fu-netion'__n'e_xt_globalechci.c.a, whiich for & given list DL of VS-lists such. that
—~is.ldst global choice( DL ), returns the next possible global choice in the chosen
order.

After having chosen a particular global order, each choicepoint on DH, represénts a dis-
junctive concept representation ga and a corresponding set of alternatives for ga.
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So far, we have described how we can sear_ch'-'thro_u'gh the subdisj'unc-tio'ns--of' Vg g sys-
tematically. To this aim we have already partly described the structure of the choi cepoints
of the d_stack DB,. In DDI the versionspaces vs{ ¢; ; Joy, S; ) of DV'S also contained
for each maximally general disjunct g; theset J, ; of indexes to the s-bounds g; is consis-
tenit with, and the set ); of maximally specific elements in L more specific than.g;, .and
consistent with [, and. I_,]J,J In DITVS we also associate to each disjunct giof g5 a set
J, ;. of indexes to s-bounds g; is consistent with. When specializing g;, this allows to check
consistency of the s-bounds of I,|J, ; instead of checking consistency with. all elements of
;. Werb. the set S5, DITVS differs from DDI in that it does not compute §; completely,
but rather only one element s; €.5;. DITVS should also have the possibility to backtrack
én 5, whenever necessary. Therefore each set S; is represented by one element 85, together
with & backtrack stack B,; to compute alternatives for sj. The stack B, ; has the same
form as the stack B, in ITVS (see ahove; or Sgc_ti_on:-S.ﬁ.l)..

‘There are several alternative options s to whether the stacks B, for the elements g;-
on DB, should be stored explicitly or recomputed:

1. One could choose 46 store a backtrack stack B, for each element of each VS-list ¢n
D.B_g-. Fichtimea new s-bound-is processed, all backtrackstacks on DB, are updated.
'Ba'ckt'r’ackin_g_tb a previous choicepoint on DB, wotild then require no recomptitation
at all. However, as we will see in the presentation of DITVS, these backtrackstacks
are not necessarily useful. '

2. One could choose to store the backtrack stack only for elements in the top cheicepoint
of DBy, and therefore only for the actual disjuncts in s,,. This means that each time
‘the disjunciion represented by the top changes (at least some of) the corrésponding
backtrack stacks have to be recomputed.. ' '

3. Another option stores a backtrack stack for each element of each VS-list on D3,
but never updates them. If possible these stacks are reused when specializing the
elements of ‘a VS-list. Tf they are not reusable, they are recomputed, but only-for the
disjuncts corresponding to g,,. '

The third option is implemented in DITVS {Algorithm 4.4y

Figure 4.8 relates the datastructures of DVS and DITVS (see also Figure 4.5), The
large bullet peints in the upper part of the figure now depict the disjunction g,,. To
each disjunct ¢; one concept representation s; is associated in the lower part of the figure.
Whereas the structure DV'S used in DDI would contain all elements of theé lowest layer of
the upper part of the figure, DlTVS_re_p_;&_sei_l_ts ‘only one current. disjunction g, together
with the information contained in DE;: which VS-lists contain di's_j:unc_'ts of .gw,__a;nd, Jor.
‘each V5-list, which disjuncts belong to g,,. In the lower part of Figure 4.8 5; corresponding
to g; would in DDI contain all ieaves of the corresponding tree. DITVS stores only one
element s; € 5, together with the backtrackinformation in B, ;. The choicepoints of B.;
are depicted by the -dashed boxes. - '

Another matter related to.the structure of DB, is the ‘way of implementing & maximal
generality test for an element gy represented in a choicepoi_’ﬁf of D{Bg; We, will describe
a simnilar- test as in ITVS: it tests whether a given disj_u.nct_ive_ concept repr’eseht&tibn is
maximally general .and consistent with I, or _ﬁhgther.th'i_s_ﬁoncept representation can be
obtained by specializing an alternative for g, on DB,. Therefore we will need to trace the
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Figure 4.8 Relating the datastructures of DITVS and DPI

path back from each disjurict.c; in gq towards T, along the concepts cj it was obtained from-
by specialization. If c; was obtained by specializing fi, we will call f the father-coricept.
of ¢;. The Global Disjunct that contains f; will be called the father-disjunct of ¢;. The
transitive closure of the father-disjunct-relation will be called ancestor-disjunct. Similarly
the transitive closuze of the father- concept relation will be called ancestor-concept. For
edich ¢; present i DB , 2B, has‘to contain mformatmn about which VS-list.is its fa.ther—
disjunict. However, we will not explicitly represent this lnforma.tlon ‘and assume. it is
implicitly present. Whenever we need the father-concept; resp. father-disjunct, of ¢;; we
will use the functions father_concept or father.disjunct. ' '

In Figure 4.9 the links to the father-concepts are explicitly depicted with full arrows.
Each VS- llst ongmates from exactly one father -concept, \'\hlch belongs to- the father-
d}sjunct

In summary, DITVS uses the following datastructures (see Figure 4.9%):

o The d_stack 'DBQ._'con'sis_t's of choicepsints (g each tontaining

— a list DL of global disjuncts (i.e., 2 Global Disjunctlist), and

3-Note-.t'hat.,.. asin.the previous figures, on Figure 4.9 the bottam choicepoint of DBy is drawn inthe top.
of the figure, and the choicepoints closer to the top of the stack are drawn below it, to reflect the relatici
= in the figure.
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Figure 4.9 The datastructures of DITVS

5

) SCr-k

— an index ind, in J; up to where the elements of the VS:lists in the global disjuncts

are consistent with.7,,

In Figure 4.9 a choicepoint is depicted as one layer of DB,. In the algorithms we

represent a choicepoint Cg as a term: (DL | ind, ).
¢ Lach global disjunct D on DB, consists of

— alist. L of Versionspaces (ie, 'a.--VSJlist:)_; and
— the particular choice of a sublist.Chy, of L.

In Figure 4.9 & global disjunct is depicted as'a VS-list. I where the elements of Chy,
are shaded, and the others are white, In the algorithms we represent a global disjunct_

by-a term d{ L., Chy, ).

® Each Versionspace in-a VS:list L consists-of
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— the representation of its maximal element g (g e Le),
~ the set J, of all indexes of elements.in I, consistent with g, and
— a representation’ Ser of the set of almost maximally specific. concept represen-
tations in Lg, morespecific than g and consistent with I, [.J,
In Figure 4.9 a Versionspace is depicted as a square. In the algorithms we represent
a Veérsionspace by a term vs( g , J, ,. scr ).

o Bach set of almost maximally specific concept representations Ser is tepreseitted by

— ‘one -maximal'_ly-sgeciﬁc.to_ncept representation s consistent with I,]J,,
— a stack B, to backtrack on s, with the same structure as B, in ITVS, and

— af index ind, denoting up to.where s is consistent with the elements of 7, | J, .
In the algorithms we represent Scr by a térm ser( s, By , ind, ).

Since each B, is of the same sort as the stacks used in ITVS, we will use the same:
operations (push and pop) on.them. For DB, we have similar push and pop operations.
Additlona.lly we introduce an operation top on DB, top( DBy ) returns the List DL and
the corresponding index ind, of thetop element ¢ DL , thdy ).of DB,. In contrast to pop,
top doeg not return _DB with its top element rcmo__v_ed '

4.5.2 Invariants
We have the following invariants on the datastructures of DITVS:

) In-\_rar_iant 4.5.1. g;, 1§ & maximally general MS’ concept representatiorni consistent,
with.J.

o Invariant 4.5.2. s,, is-an almost rhaximally specific MS comncept representation
under Gus-

« Tnvariant 4.5.8. For each choicepoint Cg = o DL , indy }on DBy, the disjuncticn
gd = VDL (Vea, € ) is 2 maximally general MS concept representation consistent with
WY Y § [mdg] and I,} gs, is the disjunctive concept representation represented by

the top chqlce_pomt_ of DB,.

o Tnvariant. 4.5.4. For all d € DLgr if d ~ I and d is MS, thén d is more ._§_pe_ciﬁ:c
than g,; orthan an alternative {or g,. on DB,.

é For each ¢hoicepoitit Cp = ¢ DL ,.ind, ) on DBy, foreach d( L , Chy’) in DL, and
for each vs( g, J, , Ser Jin L:
— Invariant 4.5.5. J, = { & | 1<k<n, and g ~ Ik} }

- Tnvariant 4.5.6. If Cy is-1iot the bottom choicepoint on DB, there exists a
father-disjunct and a father-concept for g on D B,.

- For Ser = ser(-s , B, , ind, ) we have:
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* Invariant 4.8.7; 5 g, and s is maximally specific and consistent with
{ L{k) l1<k< ind, and k €J, L

* Invariant 4.5.8. For all _ch_oicepoi:nt'sj (ind, , s, »&ld ) on B: oan ele-

ments a; of alt, are more-specific than g and are maximally specific in Sy,
where J = L{l.mg] U { Lk 1<k ind) and ke Ji }. Furthermore
a5 )

# Invariant 4.5.9. For all choicepoints { ?:nd_l'g_'_:, Sz, alty ) closer to the top

of B,: ind, < ndy, 51 < 5y, 5y < @z and ~( g, @z )for all g, ¢ aliy and-

Az S alty.

* Imvariant 4.5.10. For all €€ L, more specific than 9 and consistent with
5LiJ, 4 S oran alfernative for s on B, is ' more specific thap ¢,

* Invariant 4.5,11. I Cg is the top choicepojnt of DB, and ¢ is a disfunct
of gy, ind, =n,.

Invariant ¢.5.3 expresses that each choicepoint o DBy represents.a disjunctive concept;
representation ¢, consistent with al] s bounds and with the g-baunds up-to Llind)]. Simi.
larly as in I_TV-S_', backiracking to this choicepoint wii} have io be fol_l_owe_d.'by' Iepracessing

all g-bounds 94 is not ‘consistent with er-Jylendg - 1 S gng].

{nvariant 4.54 expresses t-he'jn\farianc_y of completeness: each MS sol'_u'tiqn consistent

with [ is more specific than us; OF more specific thar ap alternative for g,, which can he
fouind by 'ba_ckt'racking'. Note t‘hat,- like in .D.D_I?_. no element of 5 VSlist should be removed
from: consid‘eration_.foi_';npt béing consistent with all s-bounds, Therefore a V8-list shouid
1ot be remaved from-the stack until all jts elements and al] disjunctions of these elemenis

vs( g de, Ser ) on DB,. Iﬁv&riant-:%i’._ﬁﬁ states that J, cor’ztains_a.ll_ indexes to s-bounds
of I, consistent. with g. In_\'ra.'riant 4.5.6 ensures thai there js a _fa.th'er-_disjuncﬁ:_.a.nd father-

<oncept for each g-whiclh is not in the bottom c’hoic_epo:int' of :DB,. This will be i-niport_a.n_t

Invariant 4.5.5 to Invariant 4.5.11 express the invariants.ip, each of the versionspaces.

Invariant 4.5.7 to Invariant 4:5.1p mainly express that for the components s, B, and
ind,. of each ser(.s | B, y 1nd, ) on DB, the same invariants hold ag in ITVS for 5, B,
and n, (See’ Section 3.6.2). Invariant 4.5.7 states that s ig more specific thag g (which
did not necessarily hold in ITVS) and consistent with all the s-bounds - up. to-.I'f’_z'nd,]
whose index is in J,. Invariant 4.5.8 and. Invariant 4.5.9 express that the stack B, can
be used for testing maxima) 'speciﬁcit_y'of';s', and for im_pleménting a1 optimal refinement
>Perator (see Section 3.6.2). Invariant 4.5.10 expresses the Invariarice of comipleteness
Or $4,¢ each Mmaximally specific- disjunet. more specific than ¢ ang consistent with the

on A, Finally Invariant 4.5.11 €Xpresses that only 't_he'-st'ac:ks B, qf. the versionspaces

:
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4.5.3 Maximal gén.erality and .op'-ti'mal refinement

We will pow explain how to search for mmaximally ._g'{anc_ral' MS disjunctions. To-find the
MS elements of DGe, the upperbousnid of all MS elements of ADVSC, the result of Theo-
rem 4.53 18 used. The disjunctions 1n DG cox‘is'_is‘_cs of maximally general disjuncts only-
Checking whether g,,,_'is'rﬁ-ax’ima.l_ly general therefore amounts to checking whether each
of its disjuncts is ‘maximally g’ener"a_i. Checking whether a disjunct is maximally general
will be done as’in ITVS, by searching for: more -:genera_l elements iri the jances_tor-disjunct's.
Whereas in ITVS the choicepoints on By only contained alternatives that.are still to be ex-
plored; we will have to malke a similar distinction between the alternatives already explored
and. the alternatives sill to be explored. The strategy in ITVS amounted to considering a.
conceph represcn’ta.tior; ¢ for Speciali_zaiibn only whenno alternativeon. B, was more ‘general
than ¢ Consequently, if more than aneé clement 10 & choicepoint was more general than ¢,
C Was oﬁl.y-_alldwed a8 & s‘p_‘ccializa,tion-of the last one'in the list. (_See S’ccti'on'-S';S'.-Z‘_). We will
extend this metho d tothe disjunchive case, by alsor _speci-alizi-ng ¢only from one-_alt_erﬁa.'tive..
In TTVS the order of choosifig '_a.lte_m_ati_vés was left-to-right ; by-each time considering the
first element of the list of alternatives as the next candidate, Here the order of Lraversing
2 VS-hist is-determined by the local order on the V&.list. We will iherefore assume the
“following constraint o the local order of each VS-list..

Constraint 4.55 _(-'_].‘_he'..conse_q_ue‘ntial order constraint) Given a VS-list L, {possi-

bly emp_ty_) subset 3 of L and g and g’ which are in- L, but.not in 5. Then { g } is

‘before { ¢’ } in the local order on L iff suU{g) is before 5U { g'} in the local
order..

1{-more than one: element i & VS-list is more g"er;_e_ral than-c, then, we can now require
that cis only.allowed:as & speci alization-of the largest one in the local order, independently
of the oy'he'r- choices. made in. this VS-list. As such we have. a similar situation as in ITVS
for testing maximal specificity. _

Suppose. We: have.to check whether the. disjunct.c is. maximally general. Also suppose,
s 15 @ (possibly .empty) set of maximally gerieral concept. representations, which: are not
consistent. with il s-bounds. The idea s to add € 10 Guasx if cis maximally general.

Suppose d( L, Chy ) isan ancestcr_—'di'sjunct. of ¢, and g isthe corresponding ancestor-
concept of ¢ {i.e, ¢18 ‘obtained by successive specialization of g).. Suppose that’ there exists
ag vi*__h:i'ch somes after g in. the local order on L, and such that ¢ < ¢'. In that case; 1518
£afe to skip ¢ at this__'pdint_, because it is either mot maximally general, or it will be found
as a specialization of ¢’ .

Now suppose that there exists no ¢’ shich comes after g-in the local order’on L, and
such that ¢ <'g', and this for all ancestor-disjuncts of g.. In that case, there’is no other
choice left to spe'cidlize ¢ from, except the choices with more disjuncts. These choices riﬁght
result in non-MS solutions, if ¢ is rné;xim_all-y-.general. Therefore ‘¢ -gshould be considered as-
a candidate-disjunct, if 3% is maximally general. Suppose it is not maximally general. Then
there is & maximally g_enf._:r;il disjunct ¢ which is more general than ¢ Moreover, there
exists-an ancestor-disjunct d{ I ,Chy )olc wwith corresponding ancestor-concept-g, and
a g in L, such that g is before ¢ in-the local order om L, and such that ¢ = & =g
Singce g is before g,'ihe-choice- Chf = Che 5§ gty { g } was before Chr (because of
Constraint 4.55): Consequently, all-disjunctions of specializations of elements of ChY have
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‘been considered, and '_c"ff.-ca.nj only be rmaximally g_eneral:__if it is L gy, anse(juéntly, ifcis
not more specific than a disjunct in q,, it is maxirnally general. If ¢ 1$ more specific than
an 'eIement_i_n-'_g,,, ; it 1s.not maxirnally g_enéral_.

Consequently, to check makimal generality of ¢, ¢ has to be tompared to all g in all

ancestor-disjuncts. of ¢, with corresponding father-disjunct 9, and such that ¢ is afier g
in the local order. of the ancestor-disjunct. If rone of these ¢’ is more general than ¢, cis

'-m_ax-imall_y'-gr:n_cral. O’ther’wise, it is not maximally general, or it will he generated while

specializing g

4.5.4 The algorithm [T]

Same ideas as ITVS, iie., it checks fpr_.ma.xi_mal_g'enerali'ty using.i::hc disjunctive_ba;ckffack
stack DB, and for 'ma;xirna_l spec__iﬁcity using ‘the backtrack stacks ‘B, on DB, At the
samne time, the method implements an optimal refinement operator.

"We will first discuss the procedure DITVS_ (see Algorithm 4.4}, the main loop of the algorithm,

First the d'a_ta's_truct_urcs are jfitialized in initialize. I, and 1, are initially empiy, n, and

g are correspondingly 0, Qe thioicepoint in which there is one ‘glebal disjunct d, consistent
with the ind, = 0 elements of Ig; is. pushed onto DBy, Initially d's VS ke hasone lement

_______7;?.-5_(...];,,.I,-,,--Iﬂ-ét-é'-cr-“);"WhEr'é' 1,718 it ially empty. The only Possible global choicé of this ljst

will just contain T consequently the corresponding g,, is T, The icorresponding initial Ser
s ser( L, @ ,.0), which represents the singleton {1} The corresponding: maximally specific
concepd répresentation Syy 15 therefore: equal to 4. After initialization aj] invariants are fulfilled;
“As before (and reflecting the incremenital nature of our-algorithms'), after initialization the main
loop reads-a new informatién elément. 7 from t‘h'e-infosti:ea.m_ Iinf (Step. 417} and processes it.,
Again we will split up ‘the _dis_cu'ssi_on;..ac_cord_in_g to ¢ being an s.hound or g-bound.

Because DITVSs main view is general_-'tc_-s'pe(:iﬁc,'ha.n_dl.i'ng- s-bounds. and g-bounds is not
Symmetrical, Iiké it was it ITVS. We will first discuss. the case of ; being 2 7-houind. Like
in ITVS (but walike jn DDT), ¢ is stored in 1y for reasons df’ba_c’_:k_tra:’:king_ (Step 4.22). I iis
consistent vith. Jvsy nOthing has t6 be adapted, since then each disfunet of 'gu_-,_ s consistent with
el g-bounds, since gy, is still consistent with. all s-bounds, since DB, did ﬁqt- change, and since
Sue _i's still almost maximally specific ‘under Gve. In this cage _all"in.var_iants still hold at the end of
the while loop. On the other hand, when g, is not consistent with i, a new. Jvs Will haveto he

* DB, folfilling Invariant 4.5.3 to Invariant 4.5,10, and
® iy, 2 :-ma-x__ima]l_j,z-genera,l concept representation consistent wit‘h_!ﬂl} yi- vy Jglind), and
° if g,,-i5 consistent with 1y, then it is M8,

d_s__e_!eci_alte-mqi'iiref Gos > DB, | ind ) (see Algorithm 4.5} in general feturns a-new g, and DB,
fulfilling Invariant 4.5.1, and Invarjant 4.5.3 to Invariani 4.5.10. Before Step 4,93 the number ind
of g-bourids DB, is consistént with is Ty~ 1, and the preconditions.of .d;sel'_s'r::t_altern'ati_ve-are
fulfilled, Therefore its Postconditions will be fulfilied also, Ther, given the resulting g,, and DB,
the structures scp in the top of D By are updated.in generalize dis juncts {see Algorithm 4.8;
Step 4.24). In general, given s, and DB, fulfilling Invariant 4.5.3 tp Invariant 4.5, 10, procedure
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) returns disj-concept, disi-concept, dstack

procedure DITVS(Inf : stream of infe
Gusy Susr DB = initialize(. )
while there are sgill iaformation elements 1o be processed
do 1 = read( Inf y {417} '
if 7 is. an-s-bound
then ny =1, + 15 Lin = i {4.-18}.
DB; = update Js( DBy n, ) {418}
if o goe ~ 1) " _
‘then gy., DBy 1= d_select_alternative( gus DBy > P9 ¥ {4.20}
Syg, DBy = g_énet_ali_ze,disjﬂncts( DB, {421}
else {i is.a g-bound 3
ng o= Mg T 13 Iing] =4 [a.22}
then gos,. P Bg ::-d-j_glect.a!te'r‘nat_'ivé( Gos s DBg s g = 1'}-{4.23}
_ Spuy DB 1= _g_e;{Ler.alize.dis'j'uﬂ'cts( DB, ) {424}
endwhile '
return gus, Svar- D8z
endproc '
proced-ure'_._init-ialize( Y returns disj_concept, ‘dis] concept, d:stack
L= #hm =0
I, =@ mg i= 0
JnitScr = sr."r'( 1.,6,0:
L= vs( T, 5 InitSer ) ]
pL:=[d( L, init_choice( L ))]
DB, = push{ DL, 0, DBy 3
Gos 1= T .
Sus = L
FEbUTTL Gusy Svsr D Bg
endpro¢

isjunctive Iterative Versionspaces (DITVS)

Algorithm 4.4 D
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generalizedisjuncts returns s,, and DB, such that Inviriant 4.5.2 to Invariant 4.5.11 are
fulfilled. Consequently, in this case ail Jnvana.nts held at the end of the while loop.

Now we will discuss the case of ¢ being an s-bound, First 4is stored in s (Step 4.18). Then.
all J, o DB, are updated to fulfill Invanant 4.58.5. (Step 4, 19) H g,, is ftot consistent with 7, an
alternative DB must be searched using d. select aIternaiwa( Fus » DBg , g ) (Step 4, 20). Note
that in this case.the third argument (i.e., the number of g-bounds DB, is a.h'eady consistent with)
is ng. This fulfills Invariant.4.5.1, and. Invarzant 4.5.3to Invariant 4.5.10. If g,,, is consistent with ¢ t,
‘DB, does not have to-be- changed Because.of the update of all J, in DBQ, Invariant 4.5.11 might
be violated though. Therefore the top of DB, mustin any case (1 é., whether 9y, Was consistent
with ¢ or not) be updated in generalzze_dts;uncts( DB, ) (Step 4. 21) As & consequence, also
in this case all invariants hold at the end ‘of the while loop. Conséquently Invariant 4.5.1 to
Invariant 4.5.11 hold each time the’ body of the while-loop has, been - complétely executed, and
therefore alse. when the while- loop ends.

Backtracking

In this section we will explain how d.select_alternative {see Algorithm 4.5} works. Aec-
cording to the spemﬁca.t]on given in the previous séction, weé havé to shaw that, givenr

¢ DB, fulfilling Invarfant 4.5,3 to Invariant 4'.5.1(},
* gv: is maximally general, and consistent with I[1] , .. o Llind], and

o if g, is consisfent with Iy, then it is MS,

.d -select allernative( g, . DBg , ind ) returhs a new g,, and DB fulﬁlhng Invariant 4.5.1 and
_Invarlant 4.5.3 to Irvariant 4.5.10.
For the while-loop of d_selact alternative Invariant 4. 5.3 to Inva.nant 4.5.10 are saiisfied,
I_nvana,nt 4.5.1 is not; instead we have the followmg

» Tnvariant 4.5. 12, gy, 5 a ma.x1ma.lly general M3 concept representation consistent with
L, ... Llind) and with I, 1], -.., Lin,).

At the end of the while- loop, we also haveind = ‘ng. -Consequently Invariant 4.5.1 will then be
fulfilled.

We will first prove that the invariants hold before the while- loop. Invariant 4.5:3 to Invari-
ant 4.5.10 hold because of the preconditions of d_sélect alterndtive. Furthermore from these
precondltlons we alsg know-that g, is consistent with I, [l] vy dglind], and that ifit is consmtent
with T, it is MS. Consequently, if Gua 15 comnsistent-with 7, Invana.nt 4.5.12 is fulfilled, Otherwise,
given DB fulfilling Invariant 4.5.3 to Invariant 4.5.10, fulfilling Invariant 4.5.3 except for the top
chmcepomt and such that g,, is not consistent with 1, » next_disjunction returns g,; and DB,
fulfilling Invariant 4.5.3 to Invariant 4.5.12 (Step 4. 25)

Entering the while-loop means that addltlona.lly ind < fy is true. This means that after
incrementing ind by 1 (Step 4.26), I {ind] is still well-defined. Furthermore Step 4.26 only affects_
I_nvarlant 4.5.12: g, is now a maximally general M$S ‘concept representation ‘consistent with

L[t} .. dg[ind — 1] and with I,. Consequently, if gy, ~ Llind] is also true, Invariant 4.5.12 is
fuLﬁIled Otherwise, given DBy fulfilling Invariant 4.5.3 to Invariant 4.5.10 and the mdex ind such
that gy, Is a ma:suma]ly general MS concept representation consistent with I all]y [md - 1]
.and with T, but not with 7, olind], specialize.disjuncts réturns a new Fus and a new d stack
DB, fulﬁlhng Invariant 4.5.4 to Invariant 4.5.10 {Step 4.27). Furthermore Invariant 4.5.3 is true
except for the top chmcepomt of DB . The disjunction gy, (and thus the top chcncepomt of
DB,) is consistent with I,[1].. [md] and zflt is consistent with I,, then gu, is MS. If then

T T T Tt i T =0 P DT
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procedure d select_alternative ( g, disj'__cqncep't; DBy dustack; ind: index )
returns disj.concept,d.stack:
{Regu:res DB Julfills Invanant 4.6.3 to Invariant- £.5.10;
Gus 5. mammally general, and consistentwith I,[1] ; ..., Ipfind};
if gua is cansistent with I,, then it is MS;
Returns:g,, and. D_B Julfil ling Invariant 4 5.1 and Invariant {.5. 3.to Invariant {.5.10. }
if- _'( Gusr T ) .
theri gy., DBg, ind 1= nexi_disjunction{ DBy} {4.25}
while ind < ng
do indy = indg + 1 {4.26}
i Gos ~ ] Emd] )
ihen gy, DB = specmhze disjunets{ DBy ;ind ) {4.27}
if _‘( Jus ™ I )
_ then g,,, DBy, ind 1= next.disjunction( DB, }{4.28]
endwhile. ' '
return gvs, DBy
endproc

procedure next dlsjtmct:l.on(DB d_stack.) returns «disj-concept,d_stack,index
{ Reguires:D B, fulfills Invariant 4.5.3 to Invariant £.5. 10;
DBy fulfills In-uarmnt 4.5.3 except for the top choicepoint;
Gua 15 10t consistent with I,
Returns:gy, and DB, fulfilling Invariant 4. 5.9 to Invariant 4.5.10, and Inwariant 4 5.12;
Fails:iff no such gu, cmd DB €Tist: }

DL, ind, DB, := pop{ D ) {420}
repeat
vwhile is {ast.global choice{ DL )

then failure {4.30}
else DL, ind, DB = pop( DBg ) {4.31}
‘endwhile _
Gus, DL 1= next_global_choice{ DL ) {4.32}
until gy, < I, {4.33}
DBy = push( DL, ind , DB, ) {4.34}
return g,,, DB, ind
endprot

Algorithm 4.5 Backtracking in DITVS




o o P IR AR 8 s e ot At

4.5. THE DISJUNCTIVE ITERATIVE VERSIONSPACES ALGORITHM 143

Gua ~-Iy, Invariant 4.5,12 follows immediately. Otherwise, next_disjunction (Stcp-dé.ﬂ&)_retums
gve and DB, fu}.ﬁ'lling Invariant: 4.5.3 to Invariant 4,5.10 and ‘Invariant 4,5.12. '.Gonsequeutly,
Tavariant 4.5:3to-Irivariant 4.5.10 and Invariant 4.5.12 are fulfilled sfter the while-loop.

We will now prove that the procedure next dis junction is correct according teits specifica-
tion. Given DBQ fulfilling Invariant 4.5.3 to-Invariant 4.5.10, fulfilling Invariant 4.5.3 except for
the top c'hcic_epointr, and such that Fus 15 10t consistent with I, nex-ﬁ_disjunc_t‘ion Teturits. gy,
and DB, fuifilling Invariant 4.5.3 to Invarfant 4.5.10 and Invasiant- 4:5,12. Trom Invariant 4.5.4

and —n('gu, ~ I, ) {follows that for. all d € DLg: ifd~ Tand.dis MS,::E is.more specific than'

an alternative. for g, ‘an DB, Consequently, if the topmiest choicepoint on DB, that doées not
contain a last global theice is replaced by its nest global-choire, Invariant 4.5.4 s still fulfilled. If
no such next global choice exists, no disjunction consistent with exists, and DITVS should fail.

First.the top-choicepoint is popped from DB, (Step 4.29). W hile the just popped choicepoint
contains a last global choice, Step 4.31 keeps Popping choicepoints of DB,. If at a certain
Ppoint B, becomes empty, DITVS. Tfails (Step 4.30).. While popping elements from DB, none
of the other invariants becomes viclated. Then the.next global choice 15 selected in the just
popped choicepoint. (Step-4.32), If this next global choice is consistent with [, Invariant 4.5:12
is Tulfilled. Otherwise, the same conditions hold as before the repeat-loop. Therefore. the repeat-
loopcan be repeated. After the repeat-loop Step 4:34 pushes the cheicepoint ¢f DI ;ind ) on

DB,. With respect to the last popped choicepoint the particular local choices Chi, could have:

changed by nejtt_g_lob'a'l&choic_:e,_ but not the VS.lists 'L.'themselvgs. Consequently, the only
invariant affected is Invatiant 4.5.3, However, becausé of Constraint 4.54 (the. Otder Constraint),

o alternitive for g, on DBy will be a subset of Jus- Therefore gy, is MS. Comnseqiently, the
——.postconditions-of next-disjunction—are futfilled:

If the order fulfills Constraint 4.54 (the Order Constraint}.all subdisjuzictions of & disjunction
gd will be considered before g,. However, if g4 is not consistent with 1, none of its subdisjunctions
will be consistent with 7. Therefore it-might be useful to. check consistency of gs with 7, first,
before all subdisjusctions of g4 are enumerated and tested in.Step 4.3'2 and Step 4.33: if gz is nots
consistent, then its subdisjunctions shoyld 1ot be considered,

Specialization

In this-section. we show how specialize.disjuncts {see Algorithm. 4.6) works.

Given DB, fulfilling Invariant 4.5.4 to Invariant 4.5,10 and the. jndex- ind such that g,
{the disj'u_n_ction corresponding ‘to the top choicepoint of DBy)is a maximally gene_l-al".MS_ con-
cept rep'rgse_ntati_on- consistent . with B}, -y Iglind - 1] and ‘with Iy, but not with I find],
specialize disjuncts returns 9%, (2n updated g, and a d_stack DB (an updated DB}
fulfilling Invariant 4.5.4 to Invariant 4.5.10 (Step 4.27). _l?hrth'ermoféfnvari_ant 4.5.3 is true ex-
cept for the top choicepoint, of DBj. The disjunction 5, (and this the top choicepoint of DBy
is consistent with 7,{1]., dglind]; and if it is consistent with I, then. g, is MS. '

Of these postconditions, Tnvariant 4.5.4 to Invariant 4,5.10 already hold at the start. The
other p_o_s:t'co_ndit'-ibns Gnly -concern 'g:” and therefore also the top chbicépo'in_t o:f' DB;, We will
add a choicepoint Gg on top of DBy such-that the latter conditions are fulfliled, by specializing
the inconsis_te_nt_ disjuricts of g;,. Meanwhile Invariant 4.5.4 to Invariant 4.5.10 should. not be
violated. Note that. Gusy the disjunction represented by the top choicepoint, is MS. This mearns
that if we add (g, consisting of specializations d; of the disjuncts of g,,, the.disjunction of the.
father-disjuncts of the d; is MS. We will need this observation at the end of this argument.

‘Since.g,,.is niot consistent with Ip[ind), at least one of its disjuncts must be inconsistent with
Tglind]. specialize disjuncts first selects the list of global disjuncts DL of the top choicépoint
of DB, (Step 4.38). For edch global disjunet d{ L ;Chg ) in BL, and for each Versionspace
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Invariant 4.5.3

DLt =@
iy =0

endfor
endfor

endproc

procedute specialize disjuncts ( DBy dostack; ind: index )
returns disj.concept,d stack ' _
{ Regquires:D B, Fulfills Invariont 4:5:4 to Invariant 4.5.10; Gu, zs mazimally general;
MS; and cgﬁ-_sisijen_t__w_i't_h:')_rg','['l}, o Tglind = 1), Ly, but 6t with Ipfind];
Réturns:g), and DB, fulfitting Invariont 4.5.4 fo Ir'marfant{.iiﬂ;

gl 15 consistent with I{1]. . . J5[ind}, and if it is consistént with I,, then g, is MS.}
DL, indp:= top{ DBy ) {indy i not relevant} {4.35}

foralld( L, Ch Yin DL
do for all vs{ g ;Js , Ser Y in Chy,
do- '

DB, = push( DI’ ind , DBy ) {445}
return g;,, DB,

is true-ezcept for the lop choicepoint of DBY;

if d ~ Tplind]
then I/ = [vs(g,7,, Ser}] {486} _
glse specs = specializations( g, Lslind] ) {437}
specs = select-all ¢ from specs _
with d.maz _general ¢ . gus , DB, ) {4.38}
=g
for-all g"€ specs
do Ji = { ind' € J, | ¢’ ~ Llind] } {4.39}
T, =T ' _
then Ser’ ;= prune.and:reuse( Ser g’ ) {140}
else Jer’ i= ser{ L, @, 0} {4.41}
L= 1 Wfvs g, g, Ser™) ] {442}
endfor ' _
DI = DL'w [ d{ L, init_choice( YY) {443}
g e gy UL gl | vs 8, 9L, Ser') € initichoice ')} {4:44)

Algorithm 4.6 Specialization in DITVS B
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vs{ g, Jo, Ser )in Chi, g is checked for being consistent with Io[ind] (i.e., each disjunct qf--gu,__.
is checked). If g is consistent with I,[ind] it does not have to be specialized: a new VS:list ¥

containing ‘this-oné Versionspace is created (Step 4,36), Otherwise, if ¢ is not consistent with.

Io{ind), all maximally general spectalizations ‘of g consistent with {,ind] are computed (Step4.37).
Only those that are maximally general are selected, bécause the maximally general disjunctions
cansist; of maximally géneral elements of ﬁc_. consistent with I, (see 'furt-he'r_); From the resulting
list- specs another VS-list I is constructed. L" is initialized as the empty list (Step4.38). For
each ¢’ in speés, a versionspace vs( g’ ; Jb, Sert ) is constructed to be added to I, First the set
Ji is computed (Step 4.39). J! is a subset of J;, because of Theofem 3.14. From Invariant 4.5.5
and because ¢ = g, we have again Invariant 4.55 If the sét J; = J,, the set represented by
Fer! will be a subset of the set represented by Ser. Given Ser and. g’ prune_and reuse will
return Ser’, which répresents the subset of Scr of eleménts more spécific than g (Step 4.40}. The
resulting Ser’ Tulfills Invariant 4.5.7 to Invariant 4.5.10. If 7! & J, (ie;J! # J.); the elements
it Scr are overgeneral for Ser’, and Ser/ will have to be reconiputed, This will only be dore

Tates: therefore the representation ser( L., @,0) of an empty set is taken as Ser! _(St-ep-‘l.ﬂlj.._

This also-fulfills Tnvariant 4;-5.‘7-to'Invarié._nt 4.5.10. Reusing Scr might save some recom‘putatiogs
of Ser’ from L, but will not always be possible, E'_ach-Ver'sionspa'ce-_ﬂ.s( g, 7}, Ser' )is added?

to L' {Step.4.42). This means only specidlizations of g-are added to 1': each of them has g'as

father-concept and ws( g5 Jey Scr ) as father-disjunct. Since the Versionspace ws( ¢ , J, , Scr )
is on the top of D By, and since the top of DB, is not changed, Invariant 4.5.6 is fulfilled.. Then
the combination of L’ and the minimal element in-the local order for I/ (i-e., init_choice( L' b
is added to DL’ (Step 4.43). The disjunci corresponding to.Chy is added to g, (Step 4:44).

. ..Einailyi_DLf_is..pnéhe;d--@n-t}oi-}?Bg,-—wi-t.-h-—.}rt&ex“_i_nd'(‘Step"'zl_‘;ll'E)T_AIter adding a choicepoint to DBy,
Invariant 4.5.3'ts only valid for the: choicepoints not on top of DB, Since the father-concepts of

the. disjuncts of:g,, are‘consistent with I[1].. 7 [ind ~ 1], g5, is consistent with L. Jind].
Mozeover, each element added to g/, is consistent with Iy[ind]. Consequently Invariant 4.5.3 is
fulfilled. The disjunction g/, is maximally general because of Invariant 4.5.3 and Theorem 4.53
(see Section 4.5.4). Finally gh, Tulfills the minimal set eriterion, betanse all local choices in D7
are initial clicices, i.e., singletons. Suppose one ‘of these disjuncts could be dropped. Then. the
disjunction of the father-concepts would not be M5 because ¢f Proposition 4.50. This contradicts
the observation made in the beginning of this section,

Then we still have to prove Invarjant 4.5.4, Trom Invariant 4.5.4 in- the preconditions of

specialize disjuncts, each d € PLg consistent with 7 and M$ is ‘more specific- than g,, or
t’ha.:n some alternative for Gvi- Suppose d ~ {and d =;.9,,, thién. cach disjunct d; of d must be
more specific than some disjunct of cj of gy,. Furtherriore.d; ~ I [ind]. Consequently, because of
'Cd'r_l'stra-int.-S.lB-_ (the Boundedness Constraint) there is some z; & syécializaiions( gj , fgiind] }
such that d; <z; «.¢;.. Since the disjunction of these z; is equal to 9u: Or to an alfernative,
this part is proven. Suppose d -~ { and d is more specific-than some alternative of g,,. Then this
alternative is still on DR, CdnseQueniﬁIy,.In_va,_riaht 4.5.4 rernains valid.

Maximal Generality and Optimal Refinement

To make sure a disjuncﬁtm is maximally general, we have to check whether the disjuncts

-are maximally general. This is what is checked in-Step 4.38 of Algorithm 4.6 with the fudction

d.max_general. (iven an element ¢ € £¢, a disjunction gva and a dstack DB,, dmax _genseral

‘checks whether ¢ is maximally general and consistert with Iq, or whether ¢ will be generated as a

disjunct of g,, by spe_cia.]jzing ‘an alternative on DB;. The check is implemented as explained in
Section 4.5.2, under Constraint 4.55. First it is checked whether ¢ is more specific than a disjanct

4The operation Listy @ Listy appc_n'ds Listz at the end of List,.

i
£
H
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procedure. d.max.general (. concept; gi.: disj.concept; DB, d_stack }
returns boolean
{Returns:trie iff ¢ ts mozimally general and consistent with I;, or.c will be generated
as @ disjunct by specializing ariother concept representation which is still to be ezplored. }.
¢ = ¢ {4.46} ' '
if3g € gus ve X §
then return false {4.47}
else while father_disjunci( ¢' ) exists' _
do Let d{ L ;'Chy ) = father disjunct{ c")
Let g = father_concept(.c!)
i dg’ € L whereg' ¢omes .after ¢ in the local order on Land ¢ .4’
then return false {4.48}
¢ =g {4.48} '
endwhile
return irue
endproc

Algorithm 4.7 Maximal Genérality and Optimal Refinement in DITVS

of gys- I it is, ¢ is not maximally general. In this case, false is returned (Step 4.47). Otherwise,
the concept representation ¢’ follows: the chain of ancestor-disjuncts of ¢, ice;, during the while
loop ¢ is always an ancestor-concept of ¢. Initially ¢ is set. to ¢ (Step 4.46). As long as the
Bottom ‘of DB, is not reached (i.e:; as long as.c’ still has a-father--disjunet), the father-disjunct
d( L, ChL, ) of ¢ is considered: if there exists a g’ € I, which 'comes after. the father disjunct g
of & -which is more general than ¢, then ¢ is not maximally general, or will be gonsidered as 2
disjunct.of ¢’ (see Section 4:5.3). ‘In that case: false is returned (Step 4.48), Otherwise, if there
exists ng such g', the 'fa.t'h_er-cohcept g of ¢ is assigned to ¢ (Step: 449). Hence, <’ is stil an
ancestor-concept of ¢. When. ¢’ reaches the bottom of DBy, ¢ miust be maximally general, and
will not be considered when specializing another concept représentation.

The function ti_m_ax_genei‘-al does. not affect any of the datastructures and therefore any of
the invarianis. '

Generalization

Given a d.stack DB, fulfilling In-variant 4.5.3 to Invariant 4.5.10, generalize.disjuncts
réturns s, fulfilling Invariant 4,5.2 and DB, fulfilling Invariant 4.5.3 to Invasiant 4.5.11. The
procediire generalize disjuncts updates DB, such that all versionspaces corresponding to
disjuncts of gy, are updated, i.e., made ‘consistent with all n, s-botnds. At the samie fime all
disjuzcis of Sy, -are-_-'collect‘e’d. '

First the top of DB, is popped (Step 4.50). The global Disjunctlist DL is: to be updated. All
updated global disjuncts will be collected in the list DI Initially DI'is empty. :Also sy, is empty.
For zll global disjuncts. d( L , Chr ) in DL, all updated VS-lists will be collected in L. The lst
L' i for each globial disjunct initialized as-empty. All'VS-lsts vs{ g, J, ; ser( s, By, ind, } ) in
Chy, are to beupdated, ie;s ha.s,to-be_con‘sis_tent-with-I;,[-J,_,.a.nd B, has to contain all information.
to compute all alternatives for s. From Invariant 4.5.7 follows that 5. = g. Furthermore s < g and
-5-is maximally specific and consistent with [, ... indd ] J. and I,. From. the preconditions
of generalize.disjuncts follows that. B, fulfills Invariant 4.5.8 to Invariant 4.5.10. Therefore
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';oce;dure generalize disjuncts.( DB,: dstack )
' returis disj_concépt,d stack-
{ Requires:s,, and DB, fulfil Invariant-{.5.3'to Invariant {.5,10;
leturns:s,, and Dﬂg_fulﬁiling Invarfant 4.52 te Invarignt. 4.5, 11. 1
DL, ind,, DB, ;= pop( DB, ) {4.50}
DL_" =0 {451} '
Byy 1= ;25 {452}
for all d( L, Ghy, § in DL
do L' := ¢ {453}
for all-us( g , .J, , ser( s, By inidy ) )in Chy
do s, B, = d.generglize( s , B, vind, | T, ,g) {4._54}
D=5y ws(g,J,,sers 1By e ) )Y {4.55)
Sys 1= By, U.{ 8 } {455}
endfor
DL':= DL' @ | d{ L' ,init.choice( L' ) ) ] {4.57}
endfor
DBy == push( DL! , ind, ,-DBg ) {4.58}
return sy,, DB, e

-endproc

returns concept, stack

B, fulfills Invariant 4.5.8 to Invariant 4.5.10;
Returns:s mazimally specific and consistent with I,|T,, and
B, fulfilling Invariant 4.5:8 to Invariant 45.10; ¥
'F_‘aJ;_'E:i_f‘F'nO' such s and B, exist, while indy, #n,
do ind, := ind, -+ 1
if[ind, € 7,] and (s ~ Llind,] _
then gens := generalizations( s, Lfind,]'y
gens ;= select all ¢ from géns
with m and ‘mazispecific c, B, ) {4.59}
s, B,, ind, = sétect_a(fernaiive( gens | B, | ind, ) {450}
endwhile
return s, B,
endproe

Algorithm 4.8 Generalization in DITVS.

procedure d-generalize { s concept; B, stack_;_'.iﬂ&,:' index; J,: set of.index; g¢: concept )]

Reguires:s % g and 5 15 mazimall épecific and consistent with LI ... ind,] and I ;
! Y " i LIRS ] . dgy
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d_generalize( s , By ,indy , Js., g ) returns an s fulfilling Invariant 4.5.7 (i.e., maximally specific
and consistent with. I,|J5), and B, fulilling Invariasit 4.5.8 to Invariant 4.5:10. Such s and. By
-exist, since. g 18 consistent with J; ¢ohsequently, there must be a maximally specific s which is
more specific than g and consistent with I. The new versionspace vs( g , Js ,ser( s, B, 1 75 )
is added td L', and s is added to-sy,;. In the tesulting E' all versionspaces fulfill In\_ra.ri'ant.ii.&.'?
to Invariant:4.5.11. Each of them is ‘added to DIL!. Consequeiitly, all versionspaces-in. DL/ fulfill
Invariant 4.5.7 to Invariant 4.5.11. TFurthermore for none &f the versionspaces neither g nor J,.
have changed, no versionspaces are added, and fione dre omitted. After pushing DL’ on top
of DBy with the index #nd, of DL, Invariant 4.5.3 to Invariant 4.3.11 are therefore fulfilled.
Moreovet, $us is almost. maximally specific under gu, {Invariant 4,5,2). Consequently, syy and
DB, retutned by generalize.disjuncts fulfill Trivariant 4.5.2 to Invariant 4.5.11.

The procédire 4_generalize is-almost identical to proceduré generalize in Algorithm 3.4,
except for-t.he.diifférences'which'-are shown by the boxes. Instead of g_enera;l'izing_w‘r._t:. all elements
in 7y, d_generalize only generalizes w.r.t. elements in I, | J5 . Furthermore, instead of testing
the résulting generalizations for being consistent ‘with I, they are tested for _b_é_i_ng more specific
than g. The result is.a,_'_co_nce_pt s maximally specific and consistent with I, 1 7, ,-a‘,n__d' a st_aﬁek B,
of alternatives for s.

Someé-operations on stacks

Algorithm 4:9 contains ‘some of the ;_L'uxi_]ja;'y procedures we used in the previous sectiens,
Given a d.stack DB, and an index n, in 1, _npci'a.te___.is updates the sets .J; of all elements
vs( g, 7y, Ser’) in all VS-lists in all choicepoints of DBy it g~ L[ﬁg}_, ‘ny is added tothe
corresponding J,- If Tnvariant 4.5.5 was true in all these Versionspaces for m, —1, it will mow be,
ttue for . '

Given a structure ser('s , B, , ind, ) containing a concept, & stack and an index in I, Which
is the representation of a set- §, and given-a concept g, prune_and reuse refurns a structure
ser( & , By ,ind, } which is the representation of the subset of § of elenents more specific than
g. It uses therefore the. procedure prune.stk which is in structure completely analogous to
prune_stack of Algorithm 3.6. The procedure select_alternativeis described in Algorithm 3.6:
it selects an alternative for s on B,, aiid returns this alternative, the rest of B, and the index
ind, in I, upto where s.is consistent. with I,. _

The procedure prune.and reuse will make Invariait. 4.5.7 to Invariant 4.5.10:true, because it.
removes all elements from B, niot more specific thah g, and if fiecessary:also s itself, ‘Consequently,
Invariant 4.5.7 to-Invariant 4.5.9 remain true for the elements that remain on B,. To prove: that

Invariant 4:5.10 holds: suppose that ¢ is fnorespecific than g.and c_o_néiét_ent with L,}J,. Then ¢
is.mmore specific than the father-concept of g, for which Invariant 4.5.10 Liolds. Consequently, §-ox

an alternative §' _f"_i!_r s.on H, is more spécific than c. Buf then s or s' is also more specific than
g, which means that-it is still on B, ‘after pruding.

The order. of searching DB

In this section we.defipe a specific.local order within V.S-lists, and a-global orderon a Disjunctlist,
i.e., a list of VS-lists (see Section 4.5.1). The resulting’ global arder must fulfill Constraint 4.54
for the minimal set criterion. The Jocal order is-based on the positiors of the elements of-Chy,
within L. Similarly, the ._g'lqba,l_:orc'ler is based on the order of the VS-lists in the Pisjunctlist. they
are in: o

Suppose that each subset Chy, of L is represented as an ordered list® of the positions in L

5We represent alist as:an enumeration of its elements separated by éommas and surrcunded By square
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Pprocedurcupdate_Js( DBy dustdck; n,: index ) returns d-sta,dk_
{_Reiﬁms:a d_stack DB, obtaified by updating the. sets I, of all elements vs( g, J., Ser )
in all V8-lists in all choicepoints of DBy: if g ~ Lin,), n, is added ta-J,. }
DL, ind,, DB, = pop( DB, ) ' '
DE =¢g
for all d( L , Ghy, )in DI
do L/ i=¢
for all vs(.g , J, , Ser')in T
do if g~ I,[n,]
ther J, = J, U {n,}
1= 10w [ger( g, 1, Ser) |
endfor o
DL = DLW [d( L', -Chy, ) ]
endfor
DB;,.-_::-upda_te__J.s(; DBy, n, )
DBy :=push( DL, {ndg ' 'DBQ )
-return B,
endproc,

procedure prune. and _reuge { ser( 8 ,-B, , ind; ) scr{ 'c:_oncep_t"_, stack: indez %
- —mgrToneept T retUEHE T5EF( Eoncept , stack | index ) .
{feturns:a structure ser(s', By, ind, ) representing all elements of the giten
structure scrf s, B, ,ind, ) more specific than . }
B, = prunestk( 8, ;g )
ifn{s=<g)
then s, B, ind, := select alternative( ¢, B,., ind, 3
return ser( s, B, , ind, ) ' '
‘endproc '

procedure prune_stk( B, stack; g: concept ) returns stack _
{Returns:a stack B’ obiained by removing all alternatives from B,

that are not more specific than g. '}
af i‘s_cmpf.y(' B,y '
the_n- return ;3 _
else And, Sind; .'Gii.inda Byi= POP( A, )
B; = prune_stk{ B, ,g)
aliyig 1= select all ¢ from el with c=¢ g
H alting £ ¢ _ '
then B, ;= pish( g | Sind , ating , B, )
return B, ' '
endproc

Algorithm 4.9 Operations on stacks in DITVS i
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‘of the elements that are in. Chy, (i-e.; Chy is represented by an ordered set of indexes, instead
of by its acinal elements) E.g., for L = [a,b,¢,d,¢, f] the list [1,3,8] represents the sublist
[a,e,f}. Then all sublists of L are. ordered according to growing length, i.e., first all sublists
‘of cne clement, then sublists of two elements, etc. Within a group of lists of the same length
‘elenients are ordered according to tlie first elemeiit in the list where they differ: the list with the
‘smallest element comes first: This results in the following ¢rder on sublists of a list L of lenght
five:

o [1},[2], ]3], [4), [5}

o 11,2], 11,3}, (1,4,(1,5],12, 3], {2, 4], 12,5), 3,4}, 13, 5], (4. 5]

Q [1: 2:3], [132) 4]; [1)2: 5]: [1; 3: 4]: [1:335]: [1)4:5]: [25 3.:.4]1 L] i__[sw 415}

o ...

This defines a local order-on each VS-list,

Then we define a global order on lists of VS-lists, based: on the: chosen local order‘on the
sublists-of each VS-list, as follows. Thé first element in the global order consists of all minimal
elements in each of the VS-lists w.r.t. the local order. For the minimal set criterion, lists of
VS-lists can be. ardered as follows:: elements with less VS- lists- come first; if fwo lists Iy and {p
have the same number of V§-lists, the lists are ordered’ accord_mg to the ﬁrst VS-list that differs:

the list with the smallest clement comes first. For a-disjunction of three: V- lists, each containing
two elements, , this order would look:like: this:

{[a], 1], 1]
(2, [ )
(1,2, (1), 1))

(12, (23 1)

o [[2); 120 11T
[, 2}, 21, 1]
[11), {1;2], 2]
(2], (1,2}, [1]
(12,2}, 11,2), {1}]
{1, 121

As such, all subdisjunctions of a__dis’junc‘;.i';j_n wil_}_ be _cons_ider_ed' ‘before the disjunction itself is-
considered, ., Constraint 4.54 is satisfied.

brackets, as in PROLOG.
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4.5.5 Example
We will now go. back to the second example of Section 3.7. In that example L is the
direet. product of the lattice M {(see Figure 3.11) with itself. Concept representations are
couples ¢’ X , 'Y Jwith X, Y € M. In the direct product the relation = is defined by

o Xi, Xy )ge( Yy, Ya) iff (3 Y and KXo Y3).

‘The top element of L¢ isthen ¢f T ;T ) and the bottom element.is e L, L)

New Information | Stored In
"5t L c(human, T) ) i
~( c{womadn, woman) < 1) | 1[I
c(woman, man) = ¢ L2
elman, woman) < ¢ I,[3]
1t X c(antimate, animate) 12y
(< o, foman) | L1
~(cman,mem) <4) LR

Figure 4,10 Information elements of Example 1

On this example ITVS failed because a disjunction is'necessary to represent the target.
concept. The suecessive information elements.are givenin Figure 4.10. We have drawn the.
consecutive stages of 1By, in the style.of Figure 4.9, ‘The top of the figure always represents:
the bottom of DB,;. Each layer in the figure represents one choicepeint on DB, Fach
. ldyer consists of one or more VS-lists:: A VS-list [ consists of one or more versionspaces,
ieach represented by a white or. shaded rectangle. Shaded rectangles are in Chy, white
rectangles are not in.Chyr. A rectangle depicting a versionspace vs( g , J, , Scr ) shows g
and ‘the set J,. Onlyfor the versionspaces contained in gy, .Sor is shown in a rectangle
with rounded corners. A rectan gle with rounded corners depicting ser( s , B, , ind, ) only
shows 5 and B,, beciuse ind, is always equal to n,. In the example. B, has never more
than one choicepoint ( ind | 544 y @lting ). ITB, is empty, it is denoted by @. Note that T
is tepresented by “top”, L by “bottom”. '

Figure 4.11 shows DB, after the first information element has been processed. After
the first information elerrent is presented, DB, has one choicepoint, containing one VS-
list, containing one ¢lement. The current disjunctive concept kepresentation g,_J'_,'ha;s_ pnly
one disjunct: ¢( top , top ). This disjunct is consistent with if1], so the corrésponding
s must also be consistent with I,[1]. There are several alternatives for @: one of them
is chosen as current almost, maximally specific disjunction under g (in. particular: s =
c(tnanimate, bottom)). The alternatives ¢{ female, bottom) and c{male, bottom) are on the
‘stack B,. '

After the second :inf_orma._tion element, a g-bound, js processed, DB, contains 4 new:
choicepoint, with one V§-list (see Figure4.12). Of this VS-list. ong element (the first one:
c(inanimate, top)) is includedin vs, since this one disjunct is consistent with all (ie., one)
-3-bounds. For this disjunct, s.= c(tnenimate, bottom) and B, are reused from its father
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¢{ top , top)

{1}

R ——

< inanimate , bottom ).

1- r_cﬁi.'fexna]e,'bqtmm-) ‘ et lml'e:.___bot'torn-}J

Figure 4.11 DB, after processing L{l] = ~( ¢ < cthumcm:?""i_)_ )]

disjunct; note however that the corresponding stack. B, has been pruned, because the alter-
natives c(female boitorn) and ¢(male, bottom) are not ‘consistent with e(inanimate, top).

After the third information element, again an.s-bound, the previous choice in the VS-
list. of the top choicepoint in DB, has been changed, because c{inanimate,top) is Dot
consistent with 7,[2] (see Figure 4. 13) The concept representation c{mele, top)is skipped,
because it is also not consistent with J; [2] The concept representation c{top, rale) however

is consistent with both I,[2] and L{1]. The s under this‘disjunct is c{ fernale, rhan), which
has one alternative ¢(male, bottom) on B,.

After reading the next s-bound, a further global choice must be taken in- the top
choicepoint of DBy (see Figure 4. 14) The fourth element in the VS-list is only consis-
tent with L1 ]. Consequently more than one disjunct appeats in g,,, each with a corre-
sponding s. The first combination that is consistent with all s-bounds is the disjumction

¢(male, lop) V c(top,male). Note that none of the dls]uncts can be dropped: both of them
are consistent. with I,{1]; howevet, only one is also consistent with 7,(3), while the other
is ‘consistent ‘with I,[2]. This is ensurcd by the order in which we search the combina-
tions, because this order satisfles Constraint 4.54 (the Order Constraint). There is only
one ma}.lmally specific concept representation under c{male, top): e{male, female). Under
&(top, male) there is more than one choice: one is chosen as s (i.e., ¢ female, male)), the
other one-{i.e., c(male,bottom))is pushed onto, B.. .

After. rea.dmg the mext g-bound, a new chomepo;nt is created Only those dlSJuncts
included in the previous g.. are spec_la,_h_zed {see Figure 4.15). For both there is only ‘one.
choice. In bath cases s and B, are reused.

The next information element iz again an s-botind{see Figure-4. 16) Note that all sets
J. on DB, are updated with each new s-bound. Tn the top choicepoint .s and B, are
updated.

Finally we have the last information element 7, [3] Because none of the disjuncts of
Gus is consistent with this g-bound; both are specialized. Now c(female ‘male) is the only
specialization of’ _c(a_mm_ate__mafe_) The concept representations c(bottom, animate) and
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c{1op . top )

{1

o inarmate- . 1ap) of male | lu?)

e top , male ),

{1}

e{ 1o, inanimaie }

i

11 )

e m e

cf inanimate , bonom )

¢

Figure 4.12 DB; after processing I [1] = —( c'(iu_'oman,_wom:zn__)":#.t )

"'"'c:("ma'l'e;‘fémzrié)"‘a‘fé""b'ﬁt'h“ specializations of c{male, antmnate). The forn'i'e_r,_ however; in
combination with ¢ female, male) is not consistent with I,. The latter, in combination
with ¢ female, male) is consistent with I,, Note that B, has become empty for both
versionspaces.' At this point Tnf is empty, and the algotithm halts,

4.5.6 Minimal Length and Covering in DITVS

In this section we will discuss how ‘DITVS can be adapted to obtain ML solutions and how
to fit the covering approach (see Section 4.4.1) into the backtracking scheme of Section 4.5.1.

To obtain ML solutions, we can embed ‘Algorithm 4.4 in an iterative deepening loop
which places an upperbound 7 on the' number of disjuncts that are allowed io be in-
cluded in g,,. The funciion rext.disjunction should therefore only return disjunctions
of length maxirially equal to ng. This can be done by changing lwst global_choice( DL )
to feturn frue if DL represents the last global choice of DL ‘of length mazimally ny. Sim-
ilatly, next.global_choice( DL ), for a DL such that ~last_global.choice( DL }, should
‘be (':han_g"ed'ﬁo return only a next global choice of DI of lenigth mazimally ny. Whenever
DITVS fails to find a solution with maximally nq disjuncts, it should try to find & sclution
wi__ﬁ:h maximally ng -+ 1 disjunets..

The covering approach is not associated to a particular search strategy as such. There-
fore, to obtain the covering approach also, the piocedure select alternativs will have
to be reimplemented. However, an implémentation of the covering approach can still ise
the same framework. We will now briefly show how. this can be realized:

o For m_;-bound % inconsistént with Gus @n extra disjunct will be added {see Fig-
ure 4.18). This means that s6mewhere on DB, a Versionspace in one of the VS§-lists
1, that 1s not in the correspending Chy, is selected and added to Cthy. Then this
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e(top ,top ]

{12}

el inanimate , top) c{male , 1ap) ¢( top-, male § cf 16p - inanimate )

{1} {13 1,2} L1y

)

wffemale  male’}

1- | e mate, botom 3

Figure 4.13 DB, after processing I,[Q]' = c{woman, man) < t

choice is t0 bhe specmllzed until it is consistent with all g-bounds. Note that find-
ing a new disjunct implies-the séarch for an element of Lo consistent with I, and
1, comparable to what happens in select alternative. This ineans also that all
cho:cepomts closer to the top choicepoint of D By than L haveto be updated,or have
to be created if necessary.

In Figure 4.18 the bold subtree on. the right is an update of DB,. A versionspace is
added in the-choicepoint with index: tndg 4. The chéicepoints with index iftdg 3 and
index mdgg have to be updated as well.

o For a.g-bound 7 mconsxstent with. g,, all inconsistent dlsjuncts will bé. remnoved from
the lists Chg they are in (see Figure 4.19). If a certain list Chy becomes empty,. the
VS-list can beremoved from the corresponding st DL. If DL becomes.empty, the
¢hoicepoint can be Temoved from DB, In Figure 4. 19 the disjunct. which. has been
cressed should be removed. This means that Chp inits father-disjunct will become
empty. Therefore this father-disjunct can be removed. The father-disjunct ‘above
however does not have an empty Chy, and should thetefore not be removed. This
makes g., ‘consistent with 1, ‘but not.necessarily with I,. To be consistent with I;
disjuncts are to be added again.

4.577 Complexity analysis [T]

SUMMARY: in this section cwe discuss the -gomp_lexity. of the three instantiations of the
DITVS algorithm discussed in Section 4.5:6.

We will use the same notation as in Section 4.3.2. Additiohally we will denbteth_e- n‘u‘mbe'r- of
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e(iop, top}

{1.2.3]

of male., 1op)

c( 1op ¢ inanimxe-}

ity

f inanimale ,.wop} o 1op,, male?

{1.2}

{1

A3}

o male, femiale 3

¢

Figure 4.14 DB, after processing I, 8] = c(man, wornan) < ¢

disjuncts in Gvs-a5 Ny. Note thatin the cove'r'ing-apprq_ach as well as.in the minimal sef version of
DITVS, ngis in the worst case equal'to'm, (1.¢., the number of 5-bounds) because 6f Thedrem 4.23,

Theorem. 4.56 The worst ¢ase space complexity of DITVS s
O ng X 7g X by X (2+ my X ba) X &0 + Mg X Ty X B X by X Cing +'(ms 4 mg) X ¢ ).

Proof  There are in the worst case 7, choicepoints on DBg, each containing ng V§-Hsts of b,
Versionspaces each. Each Versionspace contains g, s, the set J, and the stack B,. The
stack B, contains at most n, X b, concept representations, _Together with ¢ and s this
gives a term Of ny X ng X b, X {2+n, X b,) x ¢c.). J, contains at most {an index o) all
11, elémients of I,. This gives a.term O ng X1, Xy X-by X Ging }. Apart from this. 7, and
I hive to be stored completely, which gives another term O {(n: +n,) x ¢ ). oo

The major term of the worst case space cotaplexity i5 of the order O naq X n, X-ng ). The
factor ng arises from the fact that there are basically ny versionspaces for which information must
be stored. The factor T, X fiy arises from the fact that we store a ‘backtrack 'si’.’ac'k_.B_, in each
versionspace on DB,. If we would only store B, for the disjunctions of Gua (1e, only for the
versionspaces in the top of D-Bg:)'_th'e factar ng {the depth of the stack D-Bg_) _\;mu_ld.d::_:ip. This
option would, on the other hand, require that all B, are always recomputed from L, i.e., no 5,
cail ‘b pruned and reused. (see prune.and._reusein Section 4.5.4).

This worst case space complexity is 2 major gain w.r.t: DDI (see Theorem 4.37), which is
exponential in case the size of the geéneral-to-specific search space or the size of the specificito:
general search space is exponential ('i._e.;, wher b, > 1 or 5, >-1).
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¢ 1op . topd)

{1,2.%3)

of inanimiié |, top) c{ male . top ) f top , male Y of 1op , inanimaie J-
ina (1op

ay 1.3 11,2} {1y

of male , dntihare ) cf animate , male )

{13}

{1.2)

|
|
I
:

o male, female ¥ of fémalc., male)

0 - | ef male , botiom }

Figure 4.15 DB, after processing L,[2] = ¢ 5 c[animate, animate)

Theorem 4.57 The worst case time:complexity for DITVS to compute one maximally general
MS disjunction gy, consisient-with [ and one almost maximally specific 54, under gy, is
o 25971 30§ X Capect
(2851 % § % (g X b + 1) + 12 X{s +7g) X T X (L4 1y X b)) X ezt
nd X.'(?.’La -+ ng) X &% c;qgﬁ }

Proof First note that each. élément ¢ in the general-to-specific. search space - will, in the worst

-case, He specialized 281 times. To see this, con51der the VS-list. L of. whlch ¢lis a member

There are 255_1 'posmble ¢ cuces Chy, of Whlch g {s 2 member-and 2"’9"1 possxble choices

" Chyof which g is not a miember. For edch ‘sf the choides of which ¢ 1§ a mermiber, § nceds
to be specialized.

“For each of these 2%~ choices each of the g clements of the general-to:specific seazch space
are specialized we hlave:

e one specialization operation (this-yields the term Of 2871 X F X Cypec. )

s g must be checked for bemg maximally general. Using the maximally specific test
as in. ITVS this requires a comparison of g with all comcept representations.in all
_a.ncestor»dlsjuncts of g. This amounts to ng % by-comparisons in the worst. case (this
yields the term O( 2% x § X ng X'bg X cg });
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<{10p 1ap )-

{12,3.4}

157

c{ iranimate | top) of mule ~iop ) c(':{ op « male ¥

vler (13.4) Ha24

[1.4)

- top', inanimate ).

¢ male , snimate §

( animate , malc.)

13,4 {1,2,4}
1 1
r 3
b I
1 1
1 1
¥ ¥ J—
o mafe  fenidle ) ¢ female , male.)

o 1- | o{male, bottom )

Figure 4.16. DB, after processing 7, [4] = (1 X (T, hurnan) )

-e g must be.compared to all s-bounds of T4, with J, the sef of indexes-of s-bounds the
father-concept of g is consistent with. In the worst case J, contains .all n, s-bounds

‘this yields.the term.(f 2bs=1 y Fxa, Xew )

For each of the ny disjuncts in 9ys 2 corresponding disjunct &f s,, must be computed,
and this each time & new @vs consistent with I is compute__d, ie., in the ‘worst casc once
for each new information element. For each of these ng x (n, + ny} updates, we have to
-search the specific-to-general search space completely, i.e., for each of the 5 elements s of

‘the specific-to-general search space, we have to:

o generalize s once (this yields the term O ng x (n, + :"'.’—gj- X 8 X Cgen });

¢ compare s to g"on.c_e' (this vields the term Of na X {m, + Tig) X 5% e N

& compare s to all n, X b; eleménts of B, to check whether s is maximally specific {this

yields the term O nad X.(n, + g} X 5 m, % b, x e ).

o)

W.rt. ITVS, thére.is an extra factor 9bs—1 accompanyifg §: each operation on a concept
representation in the general-to-specific search space is repeated 2%-1 times in the worst case.
Then there is a factor g% {1, X.Tg) accompanying 5. This factor is cauged by thefact that in the

s
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¢l top, top)

(12.3:4)

“ctinanimate .. top) ¢l male, 16p ) ) c{fap , maie ) e{op . hanimate )

1.y {134} {1,241 _ f1.4F

_—

o male, animate-)

of animate.. male)

41,2, 4_.’}

{134}

of boggm , animme ¥ ol male . female’y ef female , male )
{41 3.4 11.2.4)
A 1
L : . 1.
e _ma:l_c . female ) ol femate , male ).

¢ Ll

Figure 4.17 DB, after processing L[3] = =( (men, mc.f;n-j <t)

worst case the specific-fo-general search space has to Be searched completely ng times for each of
the n, + g -'infbrma._tion.élemen-ts (l.e.,in the worst case B, cannot be-r'e:_l_sed__-)._"D"I)I'.'computes all
consistent versionspaces, and has theréforé a factor § accompanying ¥. It suffers from the same
problem of in :_t_}ie worst. case. having t¢ recompute the sets § of each versionspace for each new
information element. Finally the test for maximal generality or maximal specificity in DITVS js
linear in the number of information elements, whereds in DDIit is exponential as soon as'b, > 1
or by > 1. We have the same property as in ITVS: if we want DITVS to generate all maximalily

general solutions, we havete.compare each-new candidate solutions to.all solutiens already found,
which would also be-exponential in that case.

For the iterative deepening approach to compute ML solutions, the worst case space’ complex-
ity is theé sarhe s in Theorem 4.56. The worst casé time: complexity is determined by the number
ng.0f disjuncts-in. the ML_s_ci'lut-i'on found. This is the number of times DITVS must. be repeated
before this solution is obtained. Consequently, we have-to multiply the result &f Theorem 4:57
with n4 to 6btain the worst case time complexity of the iterative déépening approach to obtain
MT solutioms.

Theorem 4.58 The worst case time complexity. for DITVS to compute one maximally general
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4 (%, Bsz . ind_'s_.E_ )

(54 ¥ '85'34 1 in‘d's",_{ ;) ?

(S, Bsg,indgy ) (53, Bea,indgz ) { S5, Bss , indgs )

Figire 4.18 Adding a new disjunct in covering approach

ML disjunction gy, consistent with I"and one almost maximally specific- 3,, tnder g, is

O( T x'2he= ><§ X C:p'¢c+
ma X (2970 X § X (mg X bg + 1) - mg X (my + Tig) XF X (1 4y X 8)) %6 e
g X (s + Mig) X5 X, Coen)-

4.5.8 A short note on the extensions of ITVS in DITVS

At this point 'we want to elaborate briefly on” the extensions of ITVS concerning ormttmg
redundant information elements, shifting the bias; and generating relevant upper- and
lowerbounds.

In DITVS omitting redundant information elements (see. Section 3.9) is still allowed,
because Theorem 3.45 will still hold for each disjunct separately.. Theorem 3.45 sta,ted
that if an s-bound i is s- prunable w.rt. an s‘bound %, or if a g-bound 7; is g-prunable
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Figure 4.19 Removing 4 disjunct in covering approach

w.rd. a-g-bound 7y the fact that a concept represéntation c¢is consistent with 7z always
implies that ¢ is consistent with 4;. Section 3.9 also described possibilities: of génerating
new information. elements automatically, such that other-information elements become
-s-prunable or.g-prunable:

1. replacing two positive lowerbounds by their minimal upperbound, if the:lalter is
unique;

2. replacing two positive upperbounds by their maximal lowerbound, if it is unique;
3. replacing a lower near-miss by a positive upperbound; and
4. replacing an upper near-miss by a negative upperbound.
The firsi operation ‘is not allowed in DITVS: a disjunctien can be consistent with two.

positive lowerbounds because one _di"sjunct' is consistent with one positive lowerbound, and
the other digjunct is-consistent with the other positive lowerbound. None of the. disjuncts
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is necessarily consistent with both positive I_owerbou_nds,. and hence nei.th'er with their-

minimalupperbound. - The second operation is still allowed in DITVS: since each disjunct
‘must bé consistent with each:positive aupperbound, it also has to be consistent with the
‘maximal lowerbound, if this s unique. The third operation is also allowed in DITVS:
given a lower-near miss i, w.r.t. a positive lowerbound tp.and with.cotresponding positive
upperbound %, one of the digjuncts. has. to be-_consistenjt__ with 1, and i -Con’ééciuently,_
one of the disjuncts has to be consistent with tp and .. Finally, the fourth operation is
allowed: given a upper-near miss to w.r.t, a positive upperbound 4, and with corresponding

positive lowerbound 1;,-one of the disjuncts has to be consistent with the i, and bny and:

consequently .with i, and: i,

Consequently, only the replacement of positive lowerbounds: by rminimal upperbounds
is not allowed.

The possibility to shift bias by means of a series of languages is still possible, but will
be restricted. Instead of shifting to the next language when 1o concept representation in
Lg 1s'consistent. with all information elcmen__t_s,-d_iaj.u_nt_:_f:‘i‘ons will be introduced. Only when
Gy, is ¢mpty, and consequently DG, is empty (see Definition 4.19), shifting to the next
language is necessary (see CLINT [De Raedt, 1952},

) 'Gericrat_ing relevant information elements is also-possible inDITVS. Relevant lower- and
upperbounds can be genierated using a disjunct g of g,,, arid it corresponding disjunct s in
Sue. Becausethe c_orre.ép onding disjunct 5'is always morespecific than g, itis not necessary
to use Algorithm 3.11 to find an s’ more specific than’ ¢, ot to find a g” more general than

s. By classifying the relevant lower- or upperbounds as positive or megative, one of the

disjuncts of g,, will be spec:jializ’ed_,.-dne of the disjuncts of s,, will be generalized, or a- new

disjurct will be created,

4.6 Conclusion

In this chapter we have introduced a new concept representation langnage DL¢ based on
Lc by int_r_dducing'd_isjunc:t'i_ons. We have determined under which constraint itis passible
to reduce the operations on disjunctions to operations.on disjuncts; This constraint deter-
mines the applicability 6f this chapter to learning disjunctive concept representations. In
Chapter 5, we will see which restrictions this impaoseson the kind of c:o_h_cc_p_t representations
that can’ be.learned by DITVS. applied to ILP.

We have built up a similarframework as in Chapter 3, by descsi bing thé versionspace of
consistent concept representations i'r__L Dee. An additional preference criterion was ﬁ_e'eded_
to restrict the number of disj'u_n_cts 1n the solutions. We have described disjunctive ver-
sionspaces in combination with preference criteria in a similar way as in the framework of

Versionspaces, namely by means of their maximally general and maximally specific bound-

aries. We found that the set of all maximaily general concept representations fulfilling.

the minimal length of minimal set criterion are exactly the elemerts of minimal length
of the set of all disjunctions of maximally general .disjuncts. We have'introduced almost
maximally specific concept: representations. ;i order to avoid a huge number of maximally
specific consistent concept representations. ‘On the basis of these theoretical achievements,
wé have extended both the Description Identification algorithm and the Tterative Version-
spaces algorithm towards disjunctive concept representations. Iri the same spirit as the

[ — s nary P S A S i e v s s
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Iterative Versionspaces framework, we.could view the resulting datastructures as a frame-
work. in which other disjunctive search methods can be described, As an example, we
discussed. the covering approach.: _

Disjunctive concept learning has always been considered-asa tough problem. The major
reason dor this is the complexity of the problem. This chapter contributes to- the under-
standinig of that complexity, and hopefully also to the further developmient of algoritlims
that can handle this complexity. '



Chapter 5

(D)ITVS in Inductive Logic
Programming

5.1 Introduction

Inductive Logic Programming (ILP) is often said to be'in the intersection of Inductive
Learning and Logic Programming (e.g,, [De Raedt, 1992}). It is the research area.in which
induction’is studied within a logical representation. To this aim it borrows the framework
and several tec_'hniq"ueg from the Logic =P1‘021"6:Ii‘},m_i_-ng'___ggmmnﬁy+.;._8.__as_ically..t.hi_e.-.problems ............. .
~ that are studied in ILF are those of Machine Learning in general, formulated in a logical
framework.. Consequently, the problem of concept.learning, one of the major themes in
Machine Ledrning, has also been ported to ILP, and s called the predicate learning problem.
Currently the representation languages used in ILP dfe subseis of first order logic. Far
predicate learning, concepts are represented by (sets of} definite Horn Clauses.

In this chapter we will show that the framework of Iterative Versionspaces (ITVS)

and of Disjunctive Iterative Versionspaces (DITVS) also applies to predicate learning.

Consequently the properties of our framework will contribute to a better understanding
of predicate learning as a search problem. In particular it is important to understand
the 'computational-._cquilexiti'e's"of the search processes 'inv‘oh?_e‘d. Furthermmore the ITVS
framework allows to search for maxiin ally general and {@lmost)-maximally specific-concept
representations. in an ILP context; and allows, the implementation of optimal refinement
operators as.in ITVS. By implementing predicate learning in the- context of ITVS, we

also automatically embed it in Mitchell’s framework of Versionspaces. .Although predicate
learning is without doubt considered in. this way by many ILP researchers, this forrnal
embedding explicitly relates predicate learning to concept learning,

Aj we did not touch upon the problem of learning multiple toncepts in ITVS, we will.not
‘touch upon the mulitiple predicale learning problem, for which we refer to theory revision.
literature (see Chapter 2}, Asin the framework of (D)ITVS, we.assume the ‘background
'knowledge.(sec ‘Chapter 2) is correct, ‘Another:respect of ILP in which we have to.restriet
ourselves is the problerm of recursion. We will use some “standard” ILP solutions to handle
fFegursion, and describe the. current, limitations of DITVS w.r.t. recursion.

This chapter is arganiz.e_d'a_s follows: -in Section 5.2 we introduce basic notions from Logi¢
Programming. Then, step by step, we instantiate the ITVS framework w.r.t. Logic Pro-
gramming.. First we choose. £g afid Ly in Section 5.3. Then we propose some alternatives
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for the function éover in Section 5.4. In Section 5.5 we introduce #-subsumption, which
could be used as . However, since f-subsumption does not take the background knowledge
into. account, we choose a generalized form of #-subsumption (generalized subsumption:of
[Buntine, 1988}) and show how this can be reduced to §-subsumption (Section 5. 6).. Then
we show How to search the defined concept representation language. Therefore we first
‘briefly discuss fefinernent operators ifi general in Section 5.7, Search is determined by bias,
and one of the most important forms of bias is language bias. Several kinds of language
bias and the closely related notion of starting clausés are discussed in Section 5.8 and
Section 5.9. This leads us to an implementation of the four refinément operators of the
ITVS framework_ (mub mlb, msqg and mgs) in Section 5.10. In Section 5.11 we:describe
how the instance generation approdch of Chapter 3 can be accomplished.in ILP. Finally
we, demonstrate ITVS on an example when we put. it all together in-Section 5.12, and
conclude in Section 5.13, At the end of the chaptér we give an overview of the definitions
and constraints of (D)ITVS, together with their inductive logic counterpart in this-chapter.

5.2 The Logic of Inductive Logic Programming

‘Before we can specify the predicate learning problem, -and-instantiate Le, £ and cover,
‘we have to build up the logical framewark used in ILP.
We first introduce some notation and terminology of Logic Programming.

Definition 5.1 {Logic Progtamining Termin ology)

¢ A vagriable is determined by its name. A variable name is a string of characters,
starting with-an upper-case letter.

o A funcior is determined by its name and its arity. A funcior name is a'string of
lettérs, digits and « 7 starting with a lowercase letter. The arity of a functor is
a non-negative integer: A functor with name f and arity n. is denoted by f/n.
A functor with arity 0 is called a constant.

o A predicate is determined by its name and its arity. A predicate name is a
string of letters, digits and “_, starting with a lowercase lefter. The arity of
a predicate is 2 non-negative 1nteger A predwate with name p and arity nis
denoted by p/n.

o A ferm is a variable; or-is of the form f( 1y pln )y where f/n is a functor
and all t;, 1 < k < n, are terms. %y, ..., 3, are called the argiments- of the
term. A term c( ) for the functor ¢/0 is denoted c.

o An atom is of the'_forrn p( TP T8 w_he_r_e_ p/n is a -predicate and all i,
1 €'k £n, ate terms. iy, ...,t, afe called the arguments of the atom. An
atom g{ ) for the functor ¢/0 is dencted. g.

o A literal is an atom ! or the negation ! of an atom.. An atom is also. called a
positive literal; the negation of an atom is also called 2 negative literal.

o A clausé is a logical disjunction of a finite number of literals. All variables in a
clause are implicitly universally quantified. The clause

By Voo VR VB VoV B,
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(with m > 0,n> U) 18 usu'a.Hy written as

Sometimes a clause is considered as the set of its literals. The set of positive

literals in-the clause is called the head of the clause; the set of negative literals is

the body of the.clause. The eriipty clause is denoted by 01, If » certain predicate
p/n occurs both in the head and in the body of a clause, the clause is called-
recursive. Variables appearing in the body of the clause but not in the head are.

called exisiential Yaria_b'Ies,

® A Horn: clause is a clause with aft Tost one positive li't'ejral. (m < 1), A definite
clause is a clause with ezactly one positive Jiteral (m =1

* A definite programis a conjunction of deﬁni_te'_:claus_es‘ Since we will only use def:
inite programs, we will often Just-talk about, “programs”, Sometimes-a Program
is considered as the sef of its clauses.

© A substitution. { Xafte, ..., Xufta '}, with X, v Xn (7 2 0) distinct vari-
ables.and 4, , ..., ¢, terms, maps a term, resp. literal, clause oI program Lo

another term, resp. literal, clause or program, obtained by simultaneously re-.

placing all occurrences of Xi by t;, and this for--a.ll-."z'? 1<:2<n,
* A wvariable rendming is a substitution {leil 1 ooy Xnft, } where for ail 7
1 <3< m, 45 4 variable, and for all Ul S S g implicy Lyt

® A substitution 8 is 3 unifier of two.atoms @y -and ag, if ;8 =-2,8. In that case
@i maiches a,, and vice versa. A substitution #is a most general-unifier of two
atoms @y and a,, iff it is & unifier of a; and a3, and for é{rf:_r_y unifier r there

exists a substitabtion o such that o=, A rmicst.general unifier 1s unigue up to.

a variable reriaming.

o A term, resp. atom, literal, clause of Program z is an. instdnce of another term,
Tesp. atorn; literal, clause or program z', iff there exists @ substitution # such
that = = 2/6.

o A term, resp. atom, li"teral,__ clause or Program, is ground iff it does 16t contain
variables, A substitution {Xif4: . iy Xufty }is ground, iff ¢; is ground for
alls, 1 <4< 5. '

o A clauseis range res't'm'cted iff all variables in the head of the clayse also eccur
iri the body of the claise,

-Given a set-of variables, & set of functors and a set of pr'eﬂic-a.tes_-,- the following definitions
will be useful in describing the sets of clauses we will use, and in particular £ and Lr. In
the rest of the thesis we will‘always assume the set of predicates and the set of functors
are finite,

Definition 5.2 (:Ter'rns_-, atoms and clauses)

» Given a finite set of functors F and a set of variables ). The set Ty of all finite
terms that can be constructed with ¥ and F is the set containing all variables
of V'and all terms 7( £, 1 v+ 38n ) where f/n.€ F, and t; s i Ty for all i,
17 <n,

H
i
H
2
H
H
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(iven a finite set-of predicates P, a finite set of functors F; and aset of variables
V. The set Ap 7y of all atoms that can. be constructed ‘with P, .F and V is
the set of all atoms p{ £y, .:. ,tn ) Where p/n€ P, and tiis in Try forall s,
1< <.

Givena finite set of predicates P, a finite set of functors F and a set of variables
¥, the set of definiite clauses that can be constructed with P, F and V is’

CL;C_'?;f,v;-':' { fg- o Il_ y e ,_l.',_f_;_ 1 m2 0 and V_‘}', a $ J g mo IJ £ Ajplf—_.‘y. }

So far we only described the syntax -of logic programs. We will also need to describe

their semantics.

Definition 5.3 (Interpretations and models) Let P bea set of predicates, 7 2 set of
functors, and V-a set of variables. '

An interpretation for CLp 7 maps each constant to an element of a certain
domain D in vwhich the program is-going_t_c'be--intetpr‘e’lﬁed;:it_m_a.ps each functor
f/n € F (withm # 0)to a mapping from D™ to-Dj-and it maps each predicate
p/n €P toa mapping from D™ to { true , false }. Intuitively,an interpretation
attaches a meaning to-all constants, functors and predicates, and. defermines the
range of the variables in the clauses. It deséribes how these symbols are $0° be
interpreted; i.ei, mapped to the cofresponding item in the.domain.

To each ground clanse an interpretation attaches a truth valie, by interpreting
each constafit, funciion and predicate in [, and evaluating the resulting logical
formula. If the resulting ‘value 15 true, the clause is called true w.t.b. the
interpretation. A non-ground clause is frue-w.r.t. the interpretation, if each
possible .ground instance of the clause is true w.rt, the interpretation. A set-
of clanses is trie w.r.t. the interpretation, if'each clause is true w.rit. the
interpretation. '

'_S_iini_larly,-_ an interpretation. attaches a t_'_r-ut-_hva_lue to a.-conjuction o.f literals.

When 2 conjunction ¢ is checked for its truthvalue w.r.t: an interpretation we

call ¢ .a query. If a query contains variables, it is an.existential query.

A program P is usually intended to represent 2 particular set of relations about
.objects in & cértain domain. The interpretation that interprets P according to

this intention, is called the intended interpretation of P.

- Az interpretation is a . Herbrand interpretation if the domain of discourse D 15

the Herbrand buse, i.c., the set of all ground elements of A zy.

~An 'intcrpretat'ion_ is called a model for a set of .cla._mse_s,. iff each clause is true:

w.r.t. the interpretation.

A set of clavses P logically entails a set of clauses Pi"_(denotea_ P = P') iff every
meodel of P is also a madel of P

Fina_l__ly, a-s6t of clauses P is tatitologically true, if P is truein all interpretations.

of CLp Fy-

For mere details on Logic Programming and its current state of the art we refer to.
|Genesereth and Nilsson, 1987), [Lloyd, 1987] and [Bruynooghe et al., 1994].
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5.3 Representing concepts and instances in ILP

How can definite clauses be used to represent concepts? As defined in Chapter 2.a concept
is a set of instances. Instances consist of (abstract or concrete) objects in the real world.

An instanece in Examplc 2.1 18, e.g., “successfully dragging doctiment d; from folder f,
to folder f; at time ¢,”. The objects involved are di, f1, f» and ¢;. An absiract object
would be, e. g, & particular “suécessful drag operation”, named e,. Instances that belong
to a cerfain concept p, are characterized by a particular relation between.the # involved
objects. In the example, the document, d, could have been part of folder fi, folder f; could
have been open, etc. The relation that characterizes p, can be. represénted by a predicate
p/n with the objects as arguments. The problern.of léarning a concept representation for
‘Pn 15 to find what relationship is general holds between several objects ¢; , ..., %, in order
for (21,..., %, ) to belong to p,. The objects are then represented by ground terms.

Insta.nccs are n-tuples of ground terms. That {4y, ..., ¢, } belongs to p,, is denoted:
by p{ 1 , ..., tn ). In this way, the problem of concept lcarnmg in & logical context, is
to find one ot more definite clauses for p/n, ie., tofind a definition for pfn. Should
18 TP ) be an instance of the concept, p( ¢y, ..., &, ) has to match the head of
at least one clause; furtherrnore the body of that clause after matching then expresses
the conditions for (4, , ... ,%, ) to be an instance of the concept. These ¢lauses together
represent the concept, and are called the (concept) definition of p,. The problem of concept
learmng will then be called pred:cate Iearmng [De Raedt; 1992]. One clause expresses a

réprunettge condition on )il T XN thE problem of finding one clatse s called the'
conjunctive prédicale learning problem (which we will solve by means of ITVS) Disjunctive
conditions can be expressed by conjunctions of clauses! with the same predicate inr the head;
the problem af finding ‘mere than one definite clause is the disjunctive predicate. problem
{(which we will solve by mieans of DITVS).

‘This suggests Definition 5.4 as a definition for £ and £;. This.definition is commonly
used in TLP.

Definition 5.4 {£; and £c) Given a set of predicates P, a sct of functors ¥, a set of
‘variables V and a ‘predicate pfn € P for which a definition is to be induced:

o Lr={(t1,....t:)[Vi1<i<n: t;€ Try and t; is ground } .
o L = { p{t1, ..., 1, ) =y . » f,_-n_|
Vi 1SiSn: b€ Try and Vi, 1< <me L dpzy } .

DL can then be defined as in Chapter 4. Often instances will also be denoted by
Pty ...t ) instead of ( ¢1, ..., 1, ).
Using the intended mtcrpreta.tion we ¢ar desctibe By and Rg of Chapter 2.

Definition 5.5 (R; and Re)

1’l‘hat a disjunction of concept representations is actnally a loglca.l conjunction of clauses in the frame-
work of ILP might. cause some confuslon Leatning sets {1 ., conjunctions) of clauses unfortunai.e]y COITe-
sponds to “disjunctive concept. learning”™ in the tradltlonal sense. The set{ A~ by , & « b2 } can however
‘be interpreted as & if §; or bz, ‘which shows the cennection to disjunctive concept learning. 'To avoid con-
fusion, “disjunction® in this chapter means disjunction in the sense of Chapter 4.. If we méan “ioglca]
dispnction” we will explicitly say so.
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o Rj mapsan instance ( ¢i , ..., ¢, ) to'the n-tuple consisting of the'images of ¢;
under the intended interpreiaiion.

e Re maps a definition p( 4, , ... , a ).+ b to the set of n-tuples (27 ,...; 1)
for which there exists a ground substitution &, such that for - all ;1 < i < 7,
1,8 is-interpreted as t%, and b8 is true'in the 1ntended mterpretaﬁ:on

As defined. in Chapter 2; positive and negative lowerbounds are elements of £, which
are assumed to be consistent with what we called the farget concept represeniation. Inthis
conitext the intendedinterprétation is meant to be a model c_>f the target concept represen-
tatior. Therefore the positive lowerbounds that are in L; (i.e., the positive examples, gee
‘Chapter 2) are-assimed to be frue'w.r.t. the intended Interpretatlon negative lowerbounds
that are in £ (i.e., negative examples) are assumed to be false w.r.t. the intended interpre-
‘tation. Aﬂ;er ha.v_mg_.dcﬁn_cd_% further on, we will be able-fo extend this towards positive
and neg_a'.tive--'u'ppere and lowerbounds being consistent with the intendedinterpretation.

Example 5.6 Given

P ={ holds_atf2, dbl.click.succeeds/2,
dbl clickinitiates/2, dbl clicklerminates/2,
isa_folder /1, isa.document/1} , '

F = { is.closed]1, is-in/2, i3 open/1 is wisiblef1}

and
V={AB, ...,2}.
Then

(da,t1 )
( d_-i_"‘:l tai-_ )_

are':possibie instances of the -co'nce'pt'of_'“_s'ﬂ__c(:cssfl_il.l'y'.dbu'ble clicking document. D-at
time 7. This'is denoted by '

dbl click:succeeds( dy , t1 ).
dbl_click siéceeds{ dy , 14 ).

A possible definition of the concept could be the following two clauses:

c1: dblclicksiucceeds( D, T ) —

isd.documient( D-),

holds_at( is.closed( D } , T ), holds_ at( i5:visible( B ), T ).
cq:- dbl_click.suceeeds{ D, T') +

isa.document( D ) holds-at{ is closed( DY) ' T b3

hotds_at({ isin( D., F ), T}, isa folder( F ),

holds-at{ is_.open( F 3., T).
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‘The question is now; how t6 inducé consistent concept définitions from instances, A
concept representation describes conditions én the ob'j"f:ct's that are part of the instances.
These conditions are relations between the objects in the mstances commort to. all in-
stances. Consequently; these relations ha.ve to be known, at. least partlally, before a concept,
definition can be induced. In Example 5.6 clanse ¢ ‘could be induced from facts such as

Holds atf is. c!osed{ da ), £ )
hofds_ai( isiclosed( dy ) t.; ).
Holds.at( s mszb!e( da )ty )
holds.at{ is.visible{ dyg ), ‘!,4 )
isa_document( dy ).
i_.sa_'ddtument( da )

In general, the additional knowledge about the relations between the predicates that can be
includedin the body of the clauses to be learned, is ¢ontained in the background knowledge;,
denoted by B (see Chapter 2). In ILP 5 is. usually a logic. program, not necessarily definite
though. The set of predicates P and the set of furictors & determine how the induced
clauses will be represented, and therefore which definitions B must contain. In general
there are many alternatives, We will for instance formulate the above examiples in the
event caléulus representation. It introduces extra predicates act/2 and- time/2, and new

-.constants ey and es _represenimg -events.-We.will continuéto use-this representation-in the-—— -

rest-of this.chapter, because it will also be used in Chapter 62..
Example 5.7 With
P = { kolds.at/2, succeeds/1,

initiales/?, terminates/?, act/2, time/2,
isa.falder (1, {sa_document/1 }s

F = { dbl.click]1, is_closed/1, #5in/2, is open/1, isvisible/1}
and

Ve={A4,B8..,2},
the above i.ns_ta;nc'es_.can_ be represented as

succeeds ey ).
succeeds( eg ).

The above concepi definition would then be written as:

iz succeeds( B ¥ «
act{ E ; dbi.clzck( DY) time{ E,T),
154 document( by,

“#Technically we thén have a. coricept “an event E is possxble which consists of sevéral suhconcepts
such as “doublc clicking a documest is possible”, “dragging a document from one folder to another folder
is p0551b1e etc. However, we will only work with the latter ‘concepts; and consider the event calcilus as
a way of- rcpresentlng them.
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holds.at{ is_closed( D ) ; T }, holds_at isvisible( D), T ).
ch: succeeds( E ) — '

act{ B., dbl_click( D)), time( B, T},

isa.document( D ),

holds.at( is closed( DY, T, holdsat( isan( D | F Y, T),

asa_folder( F ), holds_at( is_open( F) ;T).

The above background knowledge would be written as

holds_atf is_closed{ dy ) ,-‘£1 ).
holds_ai( is_closed( dy ) , tg ).
holds_ at(is wisible( da ) t )
holds.at{ is.visible( da") y-ts ).
isa_document( da ).
ésd_document{ ds ) _

act( ey, dbl_click({ d2"} ).

act{ ey , dbl.click( dy ) 3
time( ei , % ).

time( eq , %4 )

&

Now that we'have defined £:and £, we have to define the cover function. From cover,
we then derive covers and = (see Chapter 2). The relation X determines how Lo will be
searched: it is'the partial order oir the search space on which the refinement ¢perators are
based. Therefore one of the most important forms of searéh bias in ILP 1% the choice of’
the = relation, and therefore; in our framework, the choice of cover.

5.4 The function cover

The logical choice for the function cover is to take logical implication, ie., a’clause ¢
¢overs an atom ¢ ff B Acl=a. However, most ILP systems only a,pproxxma.te Jogical
‘implication by subsumption, The most widely: used form. of subsumption is 8-subsumption.
HOWE:ver, §-subsumption is & relation bétiveen two clauses which does not take B into ac:
count. Therefore. we will use generalized subsumption [Buntine, 1988], which does take
B into account, and we will show its relation to logical implication. Unfortunately, gener-
alized Subsumptlon is only semi-decidable. Therefore we will in a further step apprommafe
generalized subsumption by means of 6-subsumption.

D:e'ﬁ_nition 5.8 (coverr, and coversy, in £L¢}) A ground atom @ 15 covered by a clanse
¢=h « bin an interpretation Ip iff there is a substitution & such that A8 is a; and
the query 3( 5@ ) is true inthe interpretation fp.

The 3 quantor quantifies-all variables in b existentially.

Notation 5.9 The function cover w.rit. interpretation Ip is denoted COVET 15,

For disjunctions of clauses we define coveryy, as follows:
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Definition 5.10 (coveryy, and coversqy pp, in ‘Dﬁc) A ground atom a is covered by & set
of clauses d = { &1, ..., s } In an interpretation Ip iff there is 2 7,1 < j < n,
with coversp(¢; , d ).

Independently of what interpretation is actually chosen, this definition corresponds to
Definition 4.3, i.e.,

covergp( €1 Voo Ve )= covergp( ¢ YU -+ U coverp( c, )2

Definition 5.8 and Definition 5.10 define cover w.r.t. an- interpretation 1p. The question

is now, which' interpretation to choose as I». An instance (61, ..., %a } is covered by a
concept définition ¢.= & - b for the prédicate pfn if there exists a submtut.mn § such that-
the atom p( #: , .~ , 4 ) is equal to A#, and 348 is truein the chosen. interpretation. The

query b8 is true in the chosen interpretation if there exists a ground instance of b§ which

ds-true.in the chosen :nterpretatlon On the other hand, Constraint 2.8 {the soundness’

constraint for cover) requires that.{¢; ,... 1, )is covered bye RN {t,. ..,t))E
Re{ ¢'). By Definition 5.5, the. dcﬁmhon of Ky and Rg, this-means that the soundness
constraint for eoveris fulﬁllcd if and only if the interpretation chosen to evaluate coverage
is the intended interpretation.

In general, the problem with the intended interpretation is that it is unknown. This.
__Imeans that queries. cannot necessatily be answered. Yet £ is to be structured, accordmg___

ko coverin order to sea.rch L for consistent coneept: deﬁmtlons For nen-recursive clauses,
the body. of ¢ only containis predicates defined in the ba.ckground knowledge. Becatise of our
-assumption that the background knowledge is. correct ' w.r.t. the intended interpretation,
2ll queries can be answered by querying the background knowledge: Note that in multiple
predicate learning this approach could therefore lead to incorrect results. For recursive
clauses; the body of ¢ also contains literals of the predicate witich is to be learned. In this
case, the background knowledge cannot beused to solve the query either. The only instance
representations that are guaranteed to be covered in the intended interpretation are the
ones covered by the positive lowerbounds since the information elements aré supposed to
be correct w.r.t. the intended interpretation:

Let It therefore denote the set of all pasitive lowerbounds in the set J.of all information
elemnents. In the context of MIS, [Shapiro, 1983] uses threc different ¢over- functions. MIS
is a theory revision. systern that uses-no background knowledge and accepts only positive
and negative instances (1 e. exa.mples) as‘informiation ¢lements. In that context the three
cover- functions are:

» Bager: in this case the mterpretatmn Ip is the intended interpretation: for all exis-
teritial queéries and for all other queries that are not in the minimal Herbrand model
of the theory I}, Shapiro proposes to consult an oracle, which answers the querigs
correctly w.r.t. theintended interpretation.

o Lazy: in this case the interpretation Ip is the minimal Herbrand model of the: theory
I+,

o Adaptive: in this case the interpretation Ipis the minimal Herbrand model of fhe
theory I} A P, where P is the part of the théory already learmed.
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In .cur context of sitigle concept learning, using backgrournd knowledge B and also
accepting elements of L¢ as positive lowerbounds, this can be formulated as follows:

o Bager: in this case the interpretation Ip is the intended intérpretation: for all exis-

tential queries and. ftn‘ all other queries that are-not in the minimal Herbrand model
of the theory B A T ', an oracle answers the queries. carrectly w.r.t. the intended
interprétaiion.
This is the most powerful .of the three pdssibilities because it answers every query
correctly. However, this is also its main disadvantage: it relies heavily on the pres-
ence of an oracle. Since we suppose the background is gorrect w. r.t, the intended
intérpretation, the oracle only has to be consulted for queries about the predicate:
that is learned itself. But an answer %o a query for this predicate can also be used
as a new information element with which the: current definition has-to be consistent.
This in turn can give rise to new queries to the oratle, and sé on. In general this can
also result.in problems of t_er‘-r_nin:ibion for recursive clauses (see further),

» Lazy: in this case the.interpretation /pis the minimal Herbrand model of the theory
B ALt

The advantage of this choice is that it does not tequire an oracle. For non-recursive.
clauses this is no problem, since we assume the ‘background knowledge to be correct.
However, in order to answer the existential queries about the predicate that is learned
_cor.rectly,_ IF¥ must contain enough _posﬂ.wc lowerbounds. I general this will not be
the case. In this respect; this a_'.'[ip'roach'is- very much ordér depéndent: clatises could
be rejected for not covering a particular instance, because the positive lowerbounds
needed to solve recursive queries-are not. yet known.

In."i_:__his. context, the-autornatic _genera_.tion. of new p’_o_siit-_iye'1_0werboun_d.s_ as described
in. Section 3.9 is advantageous, because the resulting positive lowerbounds are more
general than the original ones, and might therefore cover more instances. In this way,
the information contained in the positive lowerbounds is more optlma]ly used. As an
exa.mple one could think of two instances of the base-case of a recursive definition,
which together gen_e_r_a,hz__e to a more general basc_ ‘case. _Th_ls__base case can then be
used to answer quéries when léarning a recursive clause.

o Adaptive: in this case the interpretation Ip-is the minimal Herbrand model of the

theory B A I} A P. P contains the already found clauses for the predicate that is
currently learned.
Shapiro calls the adaptive approach & compromise between the Eager and the Lazy
approach: it does not requite an oracle, and is less-order dependent than the Lazy
approach. For a disjunction ¢, V ¢, this choice would determine cover( ¢;.) on the
basisiof .the chosen ¢, and vice:versa: This means that the search-space of ¢; would
change with ancther choice of ‘¢;. In g'f_:njc;a;l' this is probleématic, because the search
of ¢; will not be sound. Finally, because P could still be incorrect, some mechanism
will be ‘needed to aveid infinite loops.

W.r.t. disjunctions, Constraint 4.8 reqinres that for all ¢, ¢; and ¢ in Lg,

cover{ ¢z ) C cover{ ¢, V ¢; )
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implies that co'fver'( c3 ) C cover( ¢ ) or cover( e3 ) G cover( ¢z }. This constraint requires
that the cover of.c; and ¢, can be determined independently. This is no problem if the
eager approach is used: each query is solved using the oracle, independently of ; any other
definitions. In the case of the lazy approach, cover( €, ) and cover{ ¢, ) ate also determined:
independently, because they are only based on I}. Only in the case of the adaptive
approach, the constraint is not valid, because the cover of - ¢y is based on ¢; and vice
versa. This means that DITVS cannot be applied correctly, because (in the. termmology
of Chapter 4} covery on PLC cannot be reduced to cover on L. Then covery has to be
defined globally on sets-of clauses, without reducing this te individual clauses. Civen this
gim DI or ITVS (see Chapter 3) can-still be used,

In the remainder, we will assume that we can evaluate cover by means of the intended
inferpretation. For non-recursive clauses, this approach is equivalent to the lazy and the.
adaptive approach. For recursive clauses, it is in many situations only a theorctical ap-
preach, since it relies on the oracle.

Definition 5.11 (cover and covers)

‘¢ A ground atom a'is covered by a clause <. iff'a is covered by c:in the intended
interpretation.

e A ground atom a is covered by a set of ¢lauses {er,...,c, } iff a’ts covered
by { ¢, ..s, ¢ } In'the intended interpietation.

The second part of this definition corresponds to Definition 4.3, i.e;,

"c_overdi.;p('_ e V- Ve, ) = co*u'e_r,rp( cr YU - U coverp( ¢ )

Definition 5.12 (T and L) For cach predicate p/n, we define T and L as follows:
¢ T=p( X, .., Xa )i
o L =0

Both are assumed to be contained in the definition of L¢ (Deﬁmtlon 5.4). As such, T
covers every element.in £7, and ! does not cover any elément of L.

5.5 @-subsumption

In-this section we will define 8-subsumption, and investigate its.properties. S—subsumptlon
will .not directly be used as =, because it does not take the background knowledge into
account. Therefore we do-als not relate §- subsumptmn directly to cover. However, §-sub-
sumption will be used for implementing generalized subsumption in Section 5.6, Therefore
1t will be discussed first.. '

Definitien 5.13 (f-subsumption ) A clause c1 G-subsumes a clause ¢, iff there exisis
a substitution § such that ¢, 8 C e

n

Notation 5,14 “c; #:subsumes ¢y

will be denoted as ¢z Xp 1
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Proposition 5.15 The relation = is.a reflexive and transitive relation on CLp ry.
Proof This follows from the.reflexivity and transitivity of C. Do

‘f:subsumption is decidable [Robinson, 1965], but in general NPvcomplete {Garey and
Johnson, 1979}, [Gottlob, 198'?] proves that ¢ £ ¢i 15 egquivalent to ¢ implies 657, if
¢y is not self-resolving and ¢, is not tautological; or if ¢; is not ambivalent, A clause is
selfsresolving- if it resolves with a copy of itself. A clause is ambivalent iff a predicate
symbaol appears in a positive literal as well as in & negative literal of the clause. As long
s we'do rot use récursive clauses, this condition is fulfilled.

Note that #:subsumption is .neifh&r-symmet-’fii;,_ nor anti-symmeétric:

P(X) — gq{X;a).
on the one hand #-subsumes

but, on. the other hand, it is also #-subsumed by the latter clause. Both clauses, however,
8-siubsume

p(X) - 4(X, 2}, (X, b)-

and nejther of them is f:subsumed by the latter clause.

[Plotkm 1970] defines an equlvalence relation on the set-of all clauses, and identifies
exactly one clause per equwa.lence class as ‘the representant of that class. On the set of all
representants of all equivalence classes, =g will be anti-symmetric.. The framework of ITVS
requires < to be a partial order, and thus anti-symmetric. If we want to use f-subsamption
as a basis for generalized subsumption, we have to use these representants as well. This
approach is similar as as in Section 2.4.1.

Definition 5.16 {Equivalence of clauses) The clanses ¢; and ¢, are. calléd equivalert
“w.rit. 6-subsumption iff ) =4 ¢; and & =g €1-

N‘btati‘on 5.17 ‘g .i's_eq.ui"?alent with ¢z w.r.t. f-subsumption * is denoted. as. “c; = c?”"

Definition 5.18 (Reduced .cfause') A literal I in a'clause cis redundant iff e, \{ 1 }.
A clause-is reduced if it does not contain any redundant literals, A reduction of a
clause ¢; is a clause ¢; such that ¢ € ¢, 6, =g ¢y and ¢, is reduced.

[Plotkin, 1970} proves that two reduced clauses that. are equivalent, are egual up toa
variable renaming. This means that there is exactly one reduced clause j per equivalence class
wird. =g, which can be taken as a répresentant of that equivalence class. Consequently,
in the set of all reduced clatses, =y is-anti:symmetric, and thus a partial order.

[Plotkin, 1970] also gives an. algorithm to find a reduction of a given clause. [Gottlob
and Fermiiller, 1993] presents an algorithm for reducing a clause ¢ with in the worst case
1c] =p-tests.

[Plotkin, 1970} defines the least general generalization [gg.of two clanses as follows:
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Definition 5.19 (Least general generalization) For all ¢),¢,¢ € L¢: c¢is-aleast gen:
eral generalization (lgg) of ¢; and ¢; iff
® ¢y <3 ¢ and ¢; =< ¢, and
e for all ¢ € L such that ¢ <3 ¢ and ¢ <4 <, we have ¢ .

By definition a least general generalization is a minimal upperbound (mub) wrt. §-
‘sitbsumption.,

Prbposi_tion 5.20 For all ¢,05 € Lot if [y anid I, are least general generalizations of ¢,
and ¢z, then l; =4 Iy

Proof This follows from-the second condition in the definition of 1gg. =

[Plotkin, 1970] gives an algorithm for computing the lgg of two clauses. We will not present
the algorithm here, although we use'it to actually implénient mub in Section 5:10.

We introduce a notion dual to Igg: the least specific specialization. The least specific
specialization of two definite clauses ¢; and ¢, is the maximallowerbound of ¢; and ¢y w.r.t.
#-subsumption,

Deﬁnltlon 5.21 (lieast specific specialization) For all ey, ¢ and ¢ € Lg: ¢is a least

specific specialization (lss) of ¢; and ¢, iff

@ ¢ =55 ¢ and ¢ =g ¢z, and
= 3 )

e for.all ¢"€ Li. such that ¢ =g ¢, and ¢’ <4 ¢, we have & = ¢.

By definition. a least. specific specialization is a maximal lowerbound (mf-b_:) w.rt. 6-
subsumption.
We also have a dual uniqueness result.

Proposition 5.22 Forall ¢, 6:€ Lg: if Iy and .l dre least specific specializations of ¢;
and ¢z, then I} ==, 4y,

‘Proof This follows from the second condition in the definition of lss. 0

Proposition 5:23 Given.cy =h; « by and ¢; = hy — b; in L, such that ¢; and s, have
rio.variables in common. If there exists a most general unifier §°of h; and hz, then

c= ( 8 — b8, 5.8 ) is a least specific specialization of ¢; and g, otherwise:

ss(a ,o)=1

Proof First suppose there exists no general unifier of ¢; ard ¢;. Then no.clause c exists
in Lo such that ¢ <4.¢; and ¢ <4 ¢z, except ¢ = L (which 1s defined as the. empty
clause; see Definition 5.12),

Now suppose there exists @ general unifier {and therefore a most general unifier} of
¢; and ¢;. Because a most general unifier is unique up to a variable Tenaming, we'
can choose @ such that ky0 and A,8 have no-variables in.common with either ¢; or
¢s. Then ¢.1s more specific than ¢; and ¢, because ;8 C cand 8 C ¢
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For the second part of the definition of [ss, suppose thereisac' = &' « ¥ stich ‘that.

¢’ =g &1 and ¢ =y ¢, and the variables of ¢ are again distinct from those in <, &

#nd ¢. Then: there exists a sibstitution 71 and .7 such ‘that hym = &', hery = A/
bymp € b and by, © ¥, Furthermore, because all clauses have distinct: va.rla.bles we

have:
L h]_'i‘l = "h-l.'].'l.?'z = hf,
° by = bnyTy © Y,
o hy7y = hamary = hatare = B/, and

o byTy = bymymy = bymymy S V.

Consequently, &' = by = kim7e = home = hoTiTe, i.e., 7172 is a unifier of &; and h,.

Since § is & most general unifier of by and k,, there exist a-substitution ¢ such that
fo = 1172 Consequently b8 C ¥ and b6 'C ¥, Thus ¢’ &4 ¢, which concludes the.
proof. O

[Plotkin, 1871a] describes a similar operation -on general (i.e., not necessarily definite)

clanses, called the most genemi’ instance. The most: general mstance of two clauses having
distinct- variables-is the union of the two clauses. _Applied on deﬁmte clauses, this glves
only the same result as our least specific specialization, if the heads of the two clauses have
different variables and are equal up tc a variable renaming.

5.6 Generalized subsumption

In Section 2.4 we mentioned the predicates used in the bodies of concept representations
are. defined in the background knowledge B. B might also express relationships between
these predicates used in the bodies. Therefore B has to be.tak_eﬁ into account when defining
. 'We will first give an example to show why = is_._ir_:"gen_er_a."l not suitable.

Example 5.24 Consider clauses c5, s and the program £ ={ ¢7 }.

cs : succeeds( B )
act{ E , dblclick( D)), time( E:, T"),
tsa_document( D ),
Rolds.at( isin_open.folder{ D )., T ),
holds.at( ts.closed( D), T ).

¢s succeeds{ B ) «—
act{ B, dbl.click{ D )'l),_i:z'__'me{' E,T),
isa-document( D ), i5a.folder( F ),
Holds_at{ is.open{ '), T,
holdsat( isin( D , F) ,T ),
holds_ot{ is.clesed( D ), T).

¢t holds.at( is in.open_folder( D), T ) «
isadocument( D ), isa_folder( F Y,
Hholds.at( isiopen{ F ), T},
Kolds.at{ isin{ D, F) ,T ).
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The clause c7-of P expresses a relation between the properties is_in_open_folder/2,
1s.openfl and isdin/2. Taking P into account is important in deciding whether or
not cs is a generalization of cs. The clause es:does not 4-subsume ¢z, However, & is
intended to be a generalization of ¢, w:r.t: P, because the underlified literal in cg
implies, according to ¢z; the underlined literals i in Cp- G

This example illustrates that ¢, is not suitable as =< in the: presence of background knowl-
edge. Generalized subsumption [Buntine, 1988} on the other hand allows to make use of
background knowledge:

Definition 5.25 {(Generalized Subsumption) Forall ¢),¢; € Lot o5 subsumies ¢; w.rit.
program P> 1if for ay Herbrand- interpretation Ip of Lo such that P-is true in Ip,
we have coverp( ¢, ) € coverpy{ o ).

Notation 5.26 "¢ subsumes c; w.r.t. P” is denoted as “c; =p ci”.

Definition 5.25, usmg coverp with P'= B, is an instantiation of the general Deﬁmtlon 3. 1
of < with the partlcular choice we made for cover in this ILP context (see Definition 5. ll)
Cons&quently, = inherits, all properties from <.

{Buntlne 1988] also extends the definition of =p to sets of clauses.

--Definition-5:27-{Generalized-Subsumptionfor-sets-of clauses}-The-disjunction -
dy € PLg subsumes the disjunciion dz € DLg w.r.t. program P iff for any Herbrand
interpretation Ip such that. Pis true in I'p, vie have coverp( d, ) C cove'r,rp(_ dy ).

Gerieralized subsumption. is a special case of relative subsumption [Plotkin, 1971b] re-
stricted to definite clauses. Generalized subsumption is 2 stronger generality Telation than
f-subsumption in thal e1 <4 ¢, implies ¢ <p co. Actually =18 just < p, with P =4.

As for §-subsumption, an equivalence relation can be:defined for generalized subsump-
tiodt.

Definition 5.28 (=p) For all ¢;, 00 € L2

¢r=p ¢ iff ¢ %pea and ¢ %p 1.

We can also-define equivalence classes for generalized subsumption w.r.t. P, Note that
each class for 6- subsumptlon will be a subset of a class for generalized subsumptlon, and
that it is possible that several classes for @-subsumption are contained in one class f6i
generalized subsumption.

Example 5.29 Consider the clauses cg and cy; and the clauses ¢5 and ¢; from Bxam-
ple 5.24.

cg nsucceeds B}
act( B, dblclick( D ) ), time( B, T),
£5a_ document( D },isa_folder{ F),
holds at( is_ open( FY,T),
holds.at( isin( D, F ) T,
kolds_ai{ is fn. open.. folder{ D'y, T),
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holdsit{ is.closed( D ), T ).
ca - succeeds( B ) e
act{ B, dbl_chck( D ) ) time( B, T},
s document( D), isa_folder( F ) 15e.folder( F' ),
Rolds.at( is_open{ F.), T ),
holds_at( is.open( F*) , T,
hotds.al( isin( D, F ), T,
holds.at{ is_in_open_folder( D ) ;T ),
holds.al( isclosed( D } ;T ). .

Clause cg is equivalent to ¢; under generalized subsumption w.r:t. P = { ¢; }. How-
ever, although ¢z f:subsumes c3, ¢z does not f-subsume c5. The clause ez dees 4-
subsurme ¢o, because it is a'subset of cg. But cg-alse #-subsumes cg, with § = { PP 3

.Consequently, €s =p €5 Z=p Ty, €5 =4 to, and &5 %y Cg. ko

'Theorem 5.30, Theorem 5.31 and Theorem 5.33 are taken from [Buntine; 1988].

Theorem 5.30 Givend=1¢, V --- V ¢m € DLg, d' = ci. VooV €DLeand Pa

p‘rc_a'gi'a.m. Then d <p d' iff forail k, 1 <k <m, there exists 1, 1 < [ <m, such that

o <p ¢ O
This means that {3 as defined in Definition 5.27 for disjunctions of clauses fulfills

Constraint 4.8 (the Disjunctions. Constraint; see Corollary 4. 12).

Théorem 5.31 Given a program P, two definite clauses €1 =i < bi and 6y = hy & by,
and a substitution o, replacing all varidblesin &, by distinct skolem constants. The
clause ¢; subsumes ¢; w.r.t. ‘P iff there exists a substitution 8 such that 216 = ks and

0
Example 5.832 The clause c5 subsumes: cg w.r.t. P ={ ¢; }, because

cr.A
act( sk , dbliclick( sk2 ) ), time( sk1-, 5&3 ),
isa.document( sk2 Y}, ise_folder( sk4 ),
holds.at{ is_open( sk4 ), sk3 ),
holds_at( is_in{ sk2 , skd) ; sk3 ),
halds_ai( is.closed( sk2), sk3 )
act( skl ; dbl.elick( D ) ), time( skl , T'),
zsa.document( DY,
hotds.at( is.in_open_folder( D'}, T ),
holds.at{ is.closed( D }, T}

with substitution {D/sk2, T/sk3}.- S

Theorem 5.31 can be used to implement generalized subsumption using a theorern
prover, eg., PROLOG. As a consequence, generalized subsumption is ini general semi-
decidable, i.e., termination of a generalized subsumption test c; <p ¢z can only be guar-
anteed when cl_ <p €2 Howe\rcr, when P does not contain recursive clauses, or when P
‘does not contdin any proper functor symbols, it is decidable [Buntine, 1988].
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Theorem 5.33 Given ci,¢; € Le, such that.c, is not tautdlogically true, and a program
P. Then P A ¢ |= c; iff there exists ¢} € P A ¢y such that ¢; <p ¢} 0

This theorern describes the relation of generalized subsumption to implication w.r.t. P.
On the one hand, it shows that if ¢; =<p ¢, then ¢, implies &, w.r.t. P, i.e., implication
is stronger than gcnerahzed subsumption. On the other hand, applied on definite clauses
and single predicate learning, and if P = B, P A ¢; k= e u‘nphes that c2 Xp €1, becdise
i must be equal to ¢y, If P would be allowed to contain clauses for the predicate of ¢i in
order to cope with recutsion (as.in the adaptive strategy of Section 5.4), the fact that 1
logically implies ¢, w.r.t. P does not necessarily mearn that ¢; generally subsumes ¢, w.r:t,
P‘.:

Using implication as.< has been studied in [Muggleton, 1994} {Idestam- Almquist, 1993},
and [Lapointe and M_atwm .. 1992]. For several reasons (efficiency-and decidability being the
most important ones) most ILP systems tend not to.choose implication as a basis. for cover
and <, but rather approximate them by subsumption. For an overview of other existing
ch01ces for = 'we refer to [Mugglcton and De Raedt, 1994].

Instead of using Theorem 5.31, generalized subsumption can also be implemented by a
combination 'of #-subsumption wri’.h saturation [Rouveirol, 1894).

Definition 5.34 (Saturation} Given a pregram P, a definite clause ¢ = & «— b, and a.
—.suhstiiution. g, replacing all variables in e:hy. d]stmci skolem constants,

s Elementary saturation of ¢ w.rt. P returns a clause ( ko, « boy, h'8)a, 2,
where d = &' «— ¥ is a clause.from P and § a substitution such that &' C boy.

e Saturaticn of ¢ w.r:t, P returns the transitive closure of elemnentary saturation
of cw.rit. P.

Notation 5.35 The saturation of a clause ¢ is denoted as Sa#{ ¢ }.

The intuitive idea behind saturation ‘is. that, in order to compare two clanses with <,
‘while taking the background knowledge into account, all relations between the predicates-
in the body ought to be made explicit, because =z compares the information basically
on a set inclusion ba51s Note, that for f-subsumption Sat(c) is more specific than e,
because. its ‘body is a superset of the body of c. As with the theorem proving step of
Theorem 5.31, computing the transitive closiire of this resolution step might not terminate
‘wlien B contains recursive clauses (see further). '

‘Example 5.36 Sat{cg) wirt. P={c; } (see Example 5.24) is

Sat( es ) : succeeds( E ) «
act{ E , dblclick( D ) ), time( B, T )
isa document( DY, isa_folder{ F )
holds ait( is.open{ F },T ),
holds mt( isan( D, F ), T )
holds_at( zs_clased( D), T),
holds at{ tsinopen_folder( By, T )
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Becaise a skolemized version of the literals isa documient( D ), isa_folder( F'),
holds.at( 1s.open{ F ) T ) and. holds_at{ is in( D, F),T)in the body of ¢s re-
solve with the body of ¢z, theliteral holds_at{-is_in_ open_folder( DY, T ) was added
to saturate- Cie &

Th_e_ore’r;_l 5:37 from [jung, 1993] proves that the i..d'éa- of 'saturation is .€quivalent to
generalized subsumption.
Theorem 5.37 Given a range-restricted program P, and two definite clauses ¢; and e;.
Then ¢, <p ¢z iff Sai( ¢ ) g o u|

‘This theorem will be aseful in the implementation of the refinement operators mub
mib, msg and mgs (see Section 5 10). We can already prove ‘the following lemma.

Lemma 5.38 For all ¢ € Lo e =p Saif.c).

Proof On the ore hand Sai{ ¢) <5 ¢, and thus Sai{ ¢) <p ¢ On the other hand
Sat{ ¢ ) =g Sai{ ¢ ), so ¢ <p Sai( ¢) follows from Theorem 5.37. Consequenfly
c=p Sat{¢). 0

Using only range-restricted clauses is no major restriction. ‘W.r.t. the interided in-
terpretation clauses that are not. range-restricted are often incortect w.r.t. the intended
interpretation, For instance, the ¢lause

initialiy( is.opén{ F'} }.

(which is net range restricted) miust be interpreted as everything in the domain bcmg
initially open, while its intention was actually to express that all folders are initially open,
as the range restricted clause

initially( is.open{ X ) ) — isa. folder( X ).

expresses. This justifies intuitively the restriction to range-restricted clauses in the follow-

ing sections®.

Constraint 5.39 (Range-restrictedness) We assume all clauses in B to be range-re-
stricted, '

If we wantto restrict ourselves to learning range: restricted ¢lauses only, T has tc be
altered accordmgly

T=p( X1, ..., Xn) e domaina{ X, ), .,"d()m'a_in,.( Xn )

The predicate domain;/1 determines the domain D; of the j-th argument of p/n; eg.,
15 document/l Thesée predicates are: used to make every clause in Lo range- restricted.
As such, T covVers every element of D1 XDy % oo x By The bottom €lement 1 does not
change.

As mentioned before, termination in proving Equation 5.1 of Theorem 5.31 cannet be.
guaranteed if P contains recursion and functers. In order to ensure termination, we have to

*[De Raedt, 1992} adopts range-restrictedness as one of the Practical Language Assumptions,
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set a depth-bound on the chosen proof:procedure i some way. One could use a standard
PROLOG mechanism augmentéd with an upperbound on the depth of inference. To make
the computation.of the transitive closure of saturation én & clause ¢ terminate, one can
put an upperbound on the number of saturation steps. In both cases checking whether
6 =p c; then resulfsin checking whethcr (mth the notation of Theorem 5.31): 3( 4,80, )
can be.proven from P A bgag w;th a derivation of depth n. Note that asa-consequence the
saturated clause might not contain the right literals to prove §-subsumption. Moreover,
bounding the nurnber of saturation steps makes the saturation of ¢ not unique, becaiise
the order of application of clauses of B might result in different clauses after n steps, This
means that because of the semi-decidable character of < in general, we cannot guaran-
tee completeness. Therefore in general, Esubsun’;pt;on tan only be an approximation of
generalized subsumption. '

In general, we believe that the termination problems of recursion should be tackled by
using extra language bias on £¢ and B. Within this language bias only clauses should be
allowed for which pari‘.lcular queries are guaranteed o terminate. One such frarncwork 15
that of acyclic programs [Apt and Bezem, 1991]. Parficular queries (consmting of bourided
goals) are guaranteed. to terminate, given a certain level mapping. So, after having chosen
a level mapping, allowing only to induce acyclic programs would yield completeness for
acyclic programs w.r:t. that particular level mapping. Related (but informal) approaches

_are descrlbed by IShaero 1983} a.nd {Bergadano, 1993] bas:caﬂy by reqmrmg tha.t t.here

Q.ulnla.n_, 19931 automat:cally m_duces an orderlng on TECuTSive quenes in the absence of
functors. However, in the absence of functors termination problems can also be avoided
by applying-the QLDT* proof method [Tamaki and Sato, 1986]. ‘Another (already more
theoretically founded) approach that fits in this framework is the use of h-conform theocries
as described in [_De Raedt, 1992].. To. our knoivledge, little: résearch has been done on
the nature of the needed orderings. It is élear that this fopic is highly related 1o work on
termination of logic programs [De Schreye and Decorte, 1994]. However; although recursion
is- considered .of major importance in Logic Programming, and therefore alsa in Inductive
Logic Programming, the links with program termination have rarely been studied in ILP.

One can argue the problem then only shifts towards the particular language bias. The
advantage however is that this enables toidentify classes of programs fér which correctness
is- guaranteed. Although the study of langunage biasés for recursive programs is outside the
scope of this chapter and of this-thesis, we consider this as an important topic for. future
research,

5.7 Refinement operators in ILP

In Section 5.10 we implement the refinement operators mub, mlb, msg and mgs. These

‘refinemnent operators refine (i:e., generalize for the generalization operators and specialize
for the specialization operators) a given clause wir.t. another clause, To implement them

we use refinement operators that minimally refine an element within Lg, i.e., not w.r.t.
another clause. We will need one such speciglization operator, and one such generalization
aperator for Lg.

10rdered. selection strategy with Linear resolution for Definite clauses with Tabling.
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[van der Laag and.Nienhuys- Cheng, 1994} presénts both a locally finite and locally
‘compléte specialization and generalization operator. The. specialization operator specializes
a clause with three basic steps:: unifying two distinct variables, unifying a variable with a.
term f( Xi, .., Xu ) (where X1, ..., X, are new distinct variables, and f/n is in F),
and: adding a literal p( X5 , ... , X ) (where X1, ..., Xn arenew dlstmc_t variables, and
#/n 15 in. P) to the body of t_he ‘clause. The generalizati’on operator basically consists of
the -inverse of these operations.

The disadvantage of these operators is that they do not return reduced clauses, neither
wir.t. B-subsumption, nor w.r.t. generalized subsumption. If an operator returns non-
reduced clauses,. oné has {o check explicitly whether the refinements are- strictly more
specific or more igeneral than the original clause. [van der Laag and Nlenhu}r&Cheng?
1994] calls refinernent operators that return only clauses more specific or general than
the original clause proper, and proves that locally finite a.nd complete: proper refinement
operators do not exist (neither specialization eperators, nor generalization operators) fof
unrestricted spaces, i.e., first order languages with finitély many préedicate symbols and
function symbols w_lth_out any hirther restriction. Basically problems arise in.Lg because
it contains infinite ascending atid descending chains. Therefore, if we want.generalization
operators that are locally finite, complete and proper, we have to restrict the search space
with a language bias which avoids the infinite chains. We could put, for instance; an
upperbound on'the total mimber of arguinénts all literals and all occurrences of terms can
have in a. clause. Alternatively; we could: put an upperbound on the number of existential
variables in the clause®. Actually, these constraints make Constraint 3.19 (the Finiteness
Constraint) true.

In the rest of the thesis we will use the refinement. operators of [van"der ‘Laag and
Nienhuys-Cheng, 1994] when we need a specialization'or ‘generalization operator that min-
imally refines ‘elements in Cc, together with the assumption that the spaceis sufficiently
restricted by a language bias to allow properness.

5.8 Language Bias

It is clear that the framework sketched so far is highly unpractical becaiise of the huge size
of Lg Therefore the use of a language bias is absolutely necessary. Language bias allows’
us to. consider only that part of the. concept representation. language that seems worth
searching.

Possible choices for. language bias in ILP are, for instance,

1. that the body of an allowed clause can only contain a maximum numberof terms?
riot occurring in the head of the clause (e:g:, CLINT [De Raedt and Bruynooghe,
1990], LINUS [Lavrat et al., 1991, ITOU. {Rouveirol, 1992]), or

2. that the literals in the body of an allowed clause must be finked to the head through
terms appearing in more than one literal, or

SUsing ﬂattenm_g-{Rou\reuoI, 1994], a representation trick t'o_repiace' _functdrs by predicates, both re-
strictions are equivalent.

'5Usmg flattening [Rouveirol, 1994] one can actyally restrict the number of variables not occurring in
the head.
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, that the terms in an a,llowed clause havé a maximum degree of indirect relevancc fo

the terms in.the head 7 (e g:, CLINT, GOLEM [Muggleton and Feng, 1992})

. that the literals in an allowed clause mustbe determinate (i.e., the literal’s variables

not occurring in preceding literals have orﬂy one possible; value; given the values of
the literal’s variables occurring in preceding litérals) (e.g., GOLEM, DINUS. [Lavrag
and Dieroski, 1994]), or

. that the literals in an allowed clause must be relevant te the concept (e 8., PGA

[Buntlne 1987], ESubramanla.n and: Genesereth 1987] [Russell and Grosof, 1990],
CLIN_T__), : '

. that an allowed clause must-be consistent w.ri. given modes and itypes on the

arguments of predicates in P and functors. in. F (cg., MIS [Shapiro, 1983] GOLEM,
FOIL , LINUS [Lavrat et al., 1991], [Muggleton, 1995]) .

Tn the following example we will _expla.m. the above bias restrictions on' an example clause

C10.

Example 40 Consider clause 6.

1.2 succeeds) B Ve

aci( E dbl_c!zck( D) ) time( B, T ),
isa doeument( D), isa_folder( F ),
holds_at{ is: closed(_ D 1. T )

holds a{‘is_in{ D, F ), T,
holds_at{ is.open{ F ), T

1. There is only one term appearing in the head of ¢10: the variable E. All other
terms only appear in the body of ¢p.

2. The clause cyg is linked, because every lLiteral in tlie body can be linked to
the head. The time- dependent literals (i.e:, the ones containing 7'} are linked:
through the literal time( & ,'T.) to the. head because the latter contains the
-variable E of the head. The htera.l isa documen_t( D) contains the variable D,
‘which occurs in act( E , dbl. click( p) ). The latter again contains. the. vari-
able E. The literal isa_ folder( F ) contains the variable F, which occurs in
holds at( isan( D, F ), T ). '

3. I e ‘all literals in the body can be linked to the head through at rmost two
intermediate literals (see the previous item). The inmber of intermediate literals
allowed could be bound: if it were bound by 0 or 1, e1p would not be allowed.

4. Whether the clause is determinate, depends on the meaning of the predicates,
and the order-of the htera.ls The: clausc ¢1g i not determinate if there is moie
than: one fo_l_der in that case theré is more than one value for F* in the literal
isa.folder( F ). I this literal would be:put at the end of the body of .¢y; and
supposing that each event corresponds to exactly one -action, that each event-

7This is also called the depthof & variable.in & funcior-free context.
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corresponds to-exactly one timepéint and that each document isin exactly one
folder, the clause.is detérminate.

5. Suppose F contains the predicate was.last_changed /2, éxpressing the time a
document was last. changed. If 'knowledge is available that literals of the form
holds_at( was Iast_chan_qed( D, TC}, T )are irrelevant for defining the pred-
icate succeeds/1, clauses for- succeeds/l containing a literal of this form are not
allowed.

6. Knowledge of types.of argiments can exclude clausés, If the second argument
of is.4n/2 is of the type isa.folder/l, and if isa. folder( D} is incompatible
with zsa-document( D. ), adding the literal holds_at( is-1n( (F,D),T ) to ey
is not allowed. Knowledge of modes is also useful: given that T and D are
input for the literal. holds_at( is closed{ D}, T ),. it-1s not a]lo.we_d_ to remove
the literal trme{ E,T ) {rom cyp; because it outputs T,

@

Several of these bias restrictions can be declaratively speci'ﬁed but some of them are less
declarative than others, .g., those restrictions setting-a bound on some numeric parameter
in'the ¢lause. Therefore some recent systems introduce the same kind of restrictions using
more declarative language bias specifications. Examples-are clause models- (mtroduced i
the context of CLAUDIEN; see [Van Laer ef al. ,.1994] "but also [Adé et al. , 1995]}, clause
schemata (mtroduced n the context of MOBAL [Morik et al., 1993]) and predicate sets
and clause sets (introduced in the context of TRACY {Bergadano and Gunetti, 1994]).
Intuitively these formalisms allow to give a declarative specification of the syntactical
consiructs allowed in the language bias. This can reduce the search spacé drastically,
because many useless clauses can bé excluded syntactically. Procedutally these types of
bias specify which (series of ) refinément steps of the refinément operators given above are
permitted: The main advantages of these declarative specifications -of language bias i
that differences between several biases can be described declaratively, and that changmg
to another bias only requires to- replage the spemﬁcatlon without having to implemient
the corresponding refinement operators. The. disadvantage is, however, that 2 lot of these
syntactical constricts hide semastical restrictions as for instance relevance information,
moede information.or type. information.

Example'5.41 A small example of a clause model s’

succeeds{ E. } <-
act( E , dbl_click(D ) , time{ E ., T) .,
isa_document( D } ,
{ < isa_folder(F )} ,
{ holds_at({ is _in( D L FY T,
holds_at{ [is_open,is closed}( F), T),
holds_at( is_visible( F ) , T ) ,
holds_at( is_in_ open_dir(F ) , T ) ¥ > ,
holds_at( [is_open,is_closed]( DY, T),
holds_at( is_in open.dix{( D ) , T ) ¥ .
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The clauses specified by this clause model all contain the same head succeeds( E )
The literals act{ B dbf_chck( R 51), tame( B T ) and ise.document{ D ) also
appear i all of thcm There are sets of eiements de:hrmted By { and }, by [ and
.},- of by < and >. The eléements of the sets dre separated by commias. A set be-
tween curly brackets means. that any subset of the set can be included in avalid
clause. A set befween square brackets means that exactly one of the elements of
the set should be included. A set between triangular brackets means thai the el-
etnerits id the set-form a fixed combination. By nesting this kind of constructs. a
whole language bias of allowed constructs can be described: In the example any seb
of literals containing ' must be accornpanied by the literal isa_folder{ F ). The
construct helds_at( | is-open,is_closed ){ D}, T ), expresses that only one of the
literals: holds_ai{ is_open( D ), T} holds_at{ is_closed( D ) , T ) is allowed. <&

As before we denote the set of clauses. denoted by the language bias *.on L¢ as-Lf.
the rémainder we will only make a specific choice for * when it s really necessary.

5.9 Starting Clauses

There s a special case of generalization where language bias plays an important role:

"'"genera:hza.trcn oo w:th a lmverbcunt} '-"Phese ‘generalizations-are catled storting clanses

We will first define starting clauses in gur terminclogy.

Definition 5.42 (Startmg clause) Givcn i€ L), a _st'attiﬁg clanse is an element of
mub( L, )

Qiven a positive lowerbournd 7, a startlng clause is & maximally specific clause in Lg
.. that is comsistent with 7, in the presénce of background knowledge B, and w.r.t. to the
chosen language bias: (i.e., starting clauses are in £%). The notion of a starting clause
was introduced in the context of specific-to-general ILP systems; in particular in. LINT
{De Raedt and Bruynooghe 1988), working with lowerbounds (examples) only. Hdawever,
starting clauses can also be used in other settings, because it is 2 way to transform instances.
into clauses. Several approaches have Seen developed to consiruct starting clavses. In any
case, the body of a starting clause:is a finiteé subset of the minimal Herbrand model of
B, or a subset of the minimal Herbrand model in which all distinct constants have been
replac_ed by distinct variables. In p:actme. it would. not _be_fea,mblc to add the minimal
Herbrand model of any kind of background knowlédge theory B completely to the body-of

a starting clause, because it maj be too large {even when it is finite) or it may be infinite.
Therefore the language bias:must determine which part of the minimal Herbrand model to
include. Language bias restrictions can reduce the size of the starting clause drastically.
However, the less literals in the body of the startmg clause, the more general the starting:
clause is w.r.t, f-subsumption, such that the search space will be reduced. Consequently,
the restrictions on the literals to be included in the starting clause mainly determine which
part of the search space will be searched. Of course; this is at the risk of the reduced search
space not containing the target concept. A general approach to allewate this problem is.
the shift of bias approach (see Section 3.10). For-further discussion and comparison. of
langnage biases and starting clauses in ILP we refer to. [Adé et.al, , 1895].
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5.10 Implementing the refinement operators of
ITVS [T]

StMMARY: in this section we Implement the féur refihement operators. used in the frame-

work ‘of ITVS, but also'in DI, in the context of ILP.

The four operators we have to implement are mub, mlb, msg and mgs. Rephrased in terms
of =g these operators are defined as:

Definition 5.48 (Refinement operators in ILP)
o mublcy 2 )=Min{c€Lle]eaxpcand c;5gc}
e milb{e;, e )=Max {ccLlc|c=pe and <=5k
s msg(-er, ) =Min{c€Lg|c %B ¢ and. = ¢ <5 e2 ) };
e mgs(er,e2)=Maz{c€Le|e<spe and (& xp¢)}

Maz selects maximal elemerts w.r.t. g ; Min'selects mifiimal elements w.r.t. <p. To'imple-
ment these operators, we first introdizce -a géneric algc:rxthm for minimal refiement.

5.10.1 Minimal refinements

procedure minimal refine ( ¢ eondept; pg: refinement operator;
selection criferion, prune criterion: boclean funiction of concept )
returns set of coneept.

¥
whll £ @

d_o q = select one ¢ from Q with true
Q=Q\{g}
Grew 1= select all q from pq( q)
x'.lth—EJq"qu(q)UQUR g" < ¢" and q”;éq
and not pruné_criterion( ¢}

R R u{ q € Qnm | selection criterion( ¢ ) }

Q:=Q U{ g E Quew | ~selection. eriterion( ¢' } }
.er_idw:hile
return R
lendproe

B
{

Algorithm 3.1 Searching for minimal refinements.

‘The procedure minimal refine (see. Algerithm 5.1) accepts as input & concept ¢, a proper
refinement operator pg (see Section 5.7), a-selection criterion and. a _pruning criterion. The.
refinement ‘operator pg -can. be a locally complete specialization operator P (in which case <
would be =) or a locally complete generalization operator py. {in which case < would be >—)
We will use the refinement operators of [van der Laag and ’\Ilenhuys Cheng, 1994] introduced
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in Section 5.7. ‘The selection cntcrlon and the pruning criterion are both boolean funciions. of
a concept. The following relations are required between the refinement operator and the two

criterias
o if e7 ¢an be prunéd and é; < €1, tHen é; can be pruned;
e if ¢; can Ye pruned and ¢y 9 ¢y, then £» does not satisfy the seleéction criterion.

This means that subtrees of the search tree whose root fulfills the pruning criterion do. not
contain. concept representations fulﬁ]]mg the selection crrtenon minimal _refine then retnrns-all
refinements of ¢ that fulfill the selegtion criferion, that cannot be prnned and that are maximal
for 9.

The algorithm Implements a complete search using-the ideas of ITVS to obtain ma:ﬂmaﬂy
specific. or maximally genera.l elements only. @ is the set of elements still to be refined, and R
is.the set of already found refinements of ¢ fulfilling the: selection criterion and: ma.)amal for 4.
Initially @ = {¢},and R =@ In the while-loop one element g is. removed from () a.nd refined
one step. The set. of refinernents of ¢

8 thdi are maximal for g w.r.t, the other elements in £9 (q ),
o that aré maximal for < w.r.t. the elements in &, and.

th

t are maximal for g w.rit. the elemenis in {J, and

o

o that cannot be pruned

is assigned t0 Qpew. These conditions fmplement an optimal refinerient operator as in ITVS.
Eléments that do nat fulfill onie of these conditions aré net to bé refined, either becaise they
are not maximal, or because they ¢an be obtalned by refining another element in@ or palg),
or because they can be pruned. The elements in Qn.y that satisfy the selection. ériterion are
solutions, and therefore added to' R, The others are added to @. Care should be taken that
the algorithm halts. This depends on the chosen selection @nd pruning eriterion, and on the
langnage bias. The pruning criterion is used to prume the search with global search conditions
(i e.; conditions not depending on @ or R): These global search conditions can, for instance,
ta.ke B, or B, into account. This is usefal because the operations maub, mlb, msg and mgs are
oftén followed by an extra.selection step to select only. maximally general elements w.r.f. B,
maximally specific elements w.r.t. By, or consistent elements w.r.t. I, or I,. In DI, the pruning
critefion car be used to prune w.r.t. ‘G or &, The pruning criterion is then used to incorporate
these seléction steps into. the refinement. operators.

"This generic:algorithm for minimal réfinement is similar in stricture to the refinement aperator
described in {Shapiro, 1983] However; the refinement operator of [Shapiro, 1983]is different in
the following respects: it searches general-to-specific only; it searches breadth-first; it:searches for
only one solition; it always starts from Ty it does net allow for a generic pruning-and.selection
‘eriterion, and it does not use the optimal pruning of ITVS. '

‘We will now use this generic algorithm to implement the- operators of Definition §.43,

5.10.2 The genera-li‘zat.i-on operator mub

Because all elements of £ are transformed to starting €lauses we can disume ‘we only have to
consider yub( c. , €2 ) where ¢1,¢2 € L¢, If no ‘starting clause can be found for an inférmation
element ¢, rnub{ £, , 1) =@
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Proposition 5.44 Al elements of mub( ¢ 3 €z ) are equivalent to Igg( Sat{c; ), Sat( ¢y ) )
w.r.t. generalized subsumption.

Proof  ‘For all ¢ &€ mub{ ¢y , €7 ) we have ¢, =g e.dnd ¢ <p.c. -Because of Theotem 5.31, we.
havé Sat{ ¢ ) < ¢ and Sat('ea’) <p c. Now consider & least general generalization I of
Sai( e ) and Sat( ¢z ). By definition of least general generalization ! {4 ¢. Consequently
{ %5 ¢c. Since ¢ must be minjiral in maub( o1 4 €2 ) [ _B ¢. Since all least general gener-
alizations are equivalent w.r.t. 8- subsumpt;on, since =g.is weaker than =p -and since =p
is transitive; all minimal upperboiunds of ¢i and ¢, aré equivalent to.! w. 1.t. generalized
subsumption. a

This proposition has also:been formulated by [Jung, 1993] -and more generally for relative least
general generalization by [Muggleton, 1992]. It means- that' to compute mub( ¢y , ¢z ) we. only
have. to' compute the Igg of Set( c; ) and Sat( ¢; ). Al other minimal upperbounds belong to
the 5ame da.ss Of '_B

‘Although we now have a way to compute rnub for any two clauses in Lg, this: does not mean
that this minimal uppérbound.is allowed in the. langnage bias *. The elements of mub w.r.t.
the bias must be more general than the minimal wpperbound ! without the bia.s though So to
compuite them, we have to-gereralize ! minimally such that it is in L. This can be done using
the procedute mininal refineg (see Algorithm 5.1) with '

w c=lgy( Sat{ e1), Sat{ca ) );

.« Pg= Py

»_selection _criterion(-¢ )= { g € CE-; %
o prunecriferion(q )= { false }.

‘We can further optimize this instantiation when incorporating it in ITVS by choosing a particular
pruning criterion. The operation mub is only used in generalizations of Algbrithm 3.4, Each
call to generallzatlons in the algorithms of ITVS (Algerithm 3.4 in‘particular), of the extensions
of ITVS (Algorithm 3.8) andof DIT'VS (Algonthm 4:8) Is immiediately followed by a-selection of
particular: elements from-those returned by’ generalizations, i.e., from the elements refurned
by mub. The negation of the conditions’ of each of these’ seiectmns ¢ould be used as a pruning
criterion to- -optimize: the mstantla,tlon of minimal vefine. Consider for instance generalizé in
Algorithm 3.4. Step 3.19,which follows the call to generalizations, selects those generalizations
that are consistent with all §-bounds; and that are maximally specific w.r.t. the alternatives on
B - Then we could take. the'negation of this condition as a: prining criterion for 7nub, 1.e.

prune_criterion{ ¢ } = ( ~dall_consistent( g , I, , ng ) or ~maz. .speczfac( q,8,) )

Indeed, if ¢; is not consistent with all g-bounds, then a generalization of €1 ca.nnot be consmtent_
with all g-bounds either; and if there is an element.on B,. which.is more specific than ¢, then
this-élement. will ‘be more specific than each generahzatlon of ¢i as well.

Whether the- algorlthm halts, depends on the chosen. language bias. Ifr case the language
bias restricts the number. of existentlal varzables or the total mumber of argumenis of literals
and occurrences. of terms (as suggested in Section 5.7) it is guarantéed to halt, becansé midimal
subsets. of literals will be dropped from mub{ ¢y , ca ) such that the regilt is a.llowed in LF,.

Note that this is Just- a general approach to compute mub. For particular language bi-
ases it might not' be necessary to apply m:.nmal_refme at all. E.g., if no existential wazi-
ables are allowed by the language bias, the result can be obtdined by removing all litérals from .
lg9( Sai( ey ), Sat( c; ) ) that contain existential variables.
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5.10.3 The specialization operator mib

The case of m!lb is duil to-the one of mub. Al maximal Jowerbounds of ¢, and ¢ are equivalert
wir:t. gereralized subsumption to the least specific specialization of ¢; and ¢;. Moreover, the
result might dgain not be allowed by the language bias. In that case it ‘will have to be minimally
specialized using an instantiation of minimal refine.

Proposition 5.45 1f lssl 1., 2 ) éxists, all elements of mid( ¢ , €z ) are equivalent to
Iss{ e , o3 ) w.r.t. generalized subsumption

Praof For all e £ m!b( €1, € ) We Have ¢ —<B ¢; and ¢ % €2. Becaise of Theorem 5.31,
we have Set( ¢ ) =g ¢1 and Sat( ¢ } =g c2. Now consider & léast specific specislization
{ of ¢y and ¢y3. By definition of least specific specizlization Set{ ¢ ) =3 [. Consequestly
Sat{ ¢') gp land ¢ < I (Lemma 5.38). Sinceé c must be maximal in mib{ ¢; , 2 ), e =g L
Since'all least specific specializations are éqivalent w,r.t. §-subsumption, since ={, is weaker
than <p and since =p is transitive, all maximal lowerbourids of ¢1 and ¢&; are équivalent
to ! w.r.t. generalized subsumption. [

This theorem means that to compute: mlb( £y ,-C2 ) we only have to compute the lss of ¢i and
¢, and saturate it. All other maximal lowerbounds- belong to the samie class of =j.

If tss{ e, c2 ) does not exist, mib( & 00 ) =

If {ss( e1 ;¢4 ) Is not allowed by the la.ngua.ge bia.s %, the elements of mlb( €1, €2 ) are the

" minimal specializations of &1 a.:nd cg-that are in £f. These can be computed usmg the procedure

minimal refine (see Algorithm 5.1} with

o e=1Is5( ¢1., éa );'

¢ P2 =P

» selection_criterion{ ¢ ) = { ¢ € L ):
o prunecriterion( g } = ( false ).

Again we can further optimize this instantiation by choosing a particular pruning criterion. The

opetation-mib is only used in specializations of Algorithm 3:5. Each call ta specializations
in’ the- algorithms of IT'VS (Algerithm 3.5 in particular); of the extensions of TTVS (Algo-
tithm 3.11) and of DITVS (Algorithm 4.6) is immediately followed by a selection of particular

elements from those retuined by specializations, i.e.; from the elements returned by mib. As

‘in the implementation of mub, the negation of the condxtlons of each of these selections could be
‘used as a pruning,.criterion to optimize the instantiation of minimal_refine. Consider for instance
-spetialize.disjuncis in-Algorithm 4.6. Step 4.38, which follows the callto SPEC1a112at10nS'

selects those specializations that are svaximally general w.r.t, the alternatives on DBy. Then we

could take

pruné criterion( g ) = ( ~dmaz.general{ ¢ , gy, , DBy ) ),

'b.eca._use_-i'f ¢y is not maximally general w.r.t. the alternatives on DB, then a sp_eciéliza_tion'of ¢y

cannot be maximally gereral w.r.t. the alternatives on: D-B'g either.

Again the termination of the algorithin depends on thé chosén language bias, and langnage.
bias specific algorithms ‘might replace the general strategy. In case the language bias restricts

the number of ex.is_tential variables, éxistential variables can be removed by substituting variables

and 'term's.fro:_n the head for e_x.is.tex__‘:t'_iai variables. __Ther_e could bé:a problem when: there:ate more:
existentizl varizables than variables in the head of the clause: replacing existential variables by
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distinct. ground terms always gives a maximally general element of £&. If an infinite number
of clauses remains-after pruning, this means that Constraint 3.19 (the Finiteness Constrairit). is
not fulfilled. In case the languige bias restricts the total number of arguments of literals and
-securrences of terms, mlb{ ¢; , 3. )isempty wheniss{ €1 , €. e Lo In that case,. specialization,
ie. , adding extra literals or- terms, will mot help to obtain elements in LE.

5.10.4 ‘The specialization operator mgs
(e e ), mgs{ ¢ , ¢z Y= - { ¢y }. To compute 'm.g.s( oy, 62 ) when & = ¢, we.instantiate
minimal refine with

e c= €13

¥ Pa =Py

o selection criterion{ ¢ )= (g€ L% and =(c; < g) )

o prune.criterion{ ¢ } = { false ).

As an optimization the pruning criterion can be: instantiated exactly the same way as in mib.
Also, for particular language biages, more’ specific solutions. could be implemented.

5.10.5 The generalization operator ms g

This case is dual 1o the iinplementa.tion of mgs, If =( ¢y < ex ), mgs(c1 , ¢z ) {ei}. To
compute mgs{ ¢; , ¢z ywhen ¢; <'¢cp, we mstantla.te ‘mininal refine with

* L= Ly

* P PE

v selection.criterion( ¢ )="(¢€ L and ~{ g <ep) )y
o prune.criterion{ g )= ( false )

For optimization the pruning criterion should be instantiated: as in mub.

5.11 Instance Generation in ILP

In this section we will bneﬂy ¢laborate on an implementation of the heuristic to find a
middle in the context of instance generation (see Section 3.11), because this will be used
to generate experiments in the context of an a.utonomous agent in Cha.p’f.er 6.

" Letius first introdiice the following notation.

Notation 5.46 Teét ¢ = ( h + by, ..., by ) be a definite clause. We denote-the clause
obtained by removing the literal b frorn thebody of ¢, i.e., the. clause

m(h{-“ b} 3 .'..,bj_1,bj+1 I ...,\bn.),

asc © { b; }. We denote the clause obtained by adding a set of literals { & , ..., 8 }
to the body of ¢, iie., the clause

={he by, b b, b)),
asce{b,...,0 }
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A lowerbound i is relevant (see Definition 3.58) if there is a maximally specific s, a
maximally general g, a.¢c; and a ¢3 in Le such that s < £; < ¢ X g, and = e ).and
i % ¢z. Ideally ¢; and ¢; are chosen close to a middle point (Definition 3.60) between &
and ¢;: knowing whether ¢ is.a positive lowerbound or'a negative lowerbound would then
exclude half of the candidate hypotheses. In this section we will descri.be-a,'heuris,t_ic.-'to.
find such a ¢y, €2 _a_n_‘d £,

We will base ourselves on a propositional representation of the clauses s, g¢,-¢; and ¢,..
Furthermore we assume that for all predicates p/n €. P we can-éxpress that an instance s
is not covered by p/n. This could e.g., be done by defining a predicate 5/ for p/n, which
covers ¢ if p/n does not cover 1.

Let g=he—b,.. ., b, and let 5 =k B U with & < n, be two saﬁturatg‘d.
clases. A_ssur’ne that neither g nor s contains at the-same time a literal b and-b, otherwise.
they would not cover any instances. There are 2°~* clauses mofe general than s an’d mc’re?
specific than g: the set of all clauses of the form.s- @ {&,. }, where { 8] ;. }'C
{ brsr 5oy be b We will bryto find an lowerbound- that is consxstent with 2""“ -1 of these.
clauses, and inconsistent with the other k-1 clauses.

Take a literal b € { %41, .., by }, such that the saturation of s & { b} is not 5. Let

® =g,

ek ﬂ[_._..__(_ g_G}{_ b.}_) -an d
oi={g®{bd}).

The literal ¥ is mot in c3, because then s would contain & as well as b. ‘Then we have s =3,
(2 <0 ) and ¢; < cp. Conséquetitly ¢ is a rélevant lowerbound. '

If'2 Is a positive lowerbound, s should be generalized to be consistent with i, i.e., the
literal b should be dropped from s. All clauses consistent with.i, more spemﬁc than g, and
more general than s should not contain the literal b, Consequcntly, half of the clauses more
general than s and more s_peczﬁ_c than g are excluded as hypothesis.

If 1 is & fiegative lowerbound, g should be specialized to be consistent with 4, i.e:, the
literal & should be-added fo g. All clauses consistent with ¢, more specific than g and rmore
general than s should contain the literal b. Consequently,. ha]f of the clauses more general
than s and mere specific than g are excluded as hypothesis.

Note that the argument that half of the hypotheéses can- be excluded is, in general, only-
correct for propositional clauses. However, it can be used as a heuristic in case of first-order
logic clauses,

Another choice would be the following: let & be 'a literalin { beyr , ..., ba }, such that
the saturation of s © { &} 15 not 5. Let

e c=(s6{b}) and
ei=(se{s}e{b})

The literal EIiS--.I_lDt.-i_II.-Cg, because then s '_Wo_uid.r_;onté,in b as well as b. Then we havei < ¢,
(i ¢ ) and g <. Consequently ¢ is-again a relevant lowerbound:

e T T T A I A D T LT T T I T L Ll e AL T e AL L R A A L e TR
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The advantage of a bi-directional approach over a geieral-to-specific: approach. or a
specific-to-general. approach; is that the bidirectional approach has s and g available.
Fherefore it can determine which literals  should be dropped to. obtain relevant lower-
bounds. Tf; in a specific-to-general approach, only s wete available, dropping a literal b
from s would 1ot necessarily-give.a rélévant upperbound if there is o g-more general than
5 that does not contain b,

For examples, we réfer to Section 5.12.

We will now cons:der the case of relevant upperbounds. An tpperbound 7'is relevant
(see Definition. 3. 59) if there is a maximally specific 5, @ maximally getieral g, a-¢; and a:
ca.inl L such that s = ¢ <& <.¢;and ¢; < fand = ( K1)

Againlet g = (h + by, oo, be Yand s = (b« Biy.oey ba ), with & <7, be two
saturated «clauses, not, contamlng at the same time‘a literal b; and a literal 3;, and this for
any j.

Let b be a literal in { bryy 5 ..., by}, such that the saturation of s & b }.is not s.

‘Let ¢y = g, o _(gw{b}) andz—(gEB{b}). Then we have ~{ ex X1'), &1 < %,
and ¢; < ¢;. Consequently 7 is-a relevant upperbound.

If 1 is a negative upperbound, s should be-generalized to be consistedt with i, i.e., the
literal b should.be dropped from 5. All clauses consistent with 3, more- specific than g, and
more general than s sheuld not contain the literal 4. Consequently, halfof the clauses more
general thar. s and more specific. ‘than ¢ are excluded as hypothesis.

If i is-a positive upperboind, g should be. specialized to be consistent with 1, l.e., the
literal & should be added tog. All clauses consistent with i, more specific than g and more
general than s should contain the literal 5. Consequently, half of the clauses more general
than s and more spemﬁc than ¢ are excluded as hypothesis.

5.12 Example

The example presented in this section is situated, in the context of the autonomous tutor
introduced in Section. 1.3. In this cxa_r_nple the concept * ‘successfully dragging a docu-
ment D from folder F to ano.th'er folder Fy* is learned. The infarmation elements in the
infostream of this example originate from the.example in Section 6.6. Section 6.6 gives
an example session of the integration of ILFP with an Al planning system, based on the
event calculus representation; it merely shows how in the tesulting architecture planning,
learning, executing actions and observing effects interact. Here we will concentrate on the
evolution of the definition.of 6ne of the concepts involved in that example. :

The predicates of the event calculis are described in detail in Section 6.3. In this section
we introduce the clauses we need in the course of the example

We do have to give'sorme preliminary remarks about the chosen language and language
bias, ‘and-about the background knowledge, though. The concept to be learned is “suc-
cesshlly draggmg & document D from folder 7y to another folder F»”. This could be
répresented as in Example:3.6. However, as’in Example 5.7 we will use the event calculus
‘notation to represent the.learned definitions.

The bottom L of the language is the empty clause. (see Program 51). The top T
of the language is Clause (5.2). This means that the bedy of each clause must contain
at least theliteral act{ E , drag:and.drop( D , Locl , Loc2 ) ). Because we will use range-
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{51) L=n0
(.2). T = succeeds{ B ) «
' act{ E ; drag_and.drop( Doc , Eocl , Loc2 )'),
isa_ document( Dec ), tsa. Iomtwn( Locl } isa_location{ Loc2 ) .
(5.3)  incompatible( isin( X ;¥ ), ds.nolein( X Y ) )
{ Forall X and Y, 4s.in{ X, Y ) is-incompatible w:th is.nolin{ X ;¥ ).}

Program 5.1 Language and language bias in the example.

restricted clauses only, ecach variable. in the clause ratiges over a pacticuldar démain by
including the type of the variablé.. The possible types are: isa_folder/l, isa.document/l;
45a. locaiwn/l isa_desklop/1, isa.object/1 and isa_event/1. The chosen language: bias. also
restricts the numberof variables in the clause to those occurring in the head of the clause
or oCcurTing in the literal act{ E. 5 drag__and,dmp( Doc , Locl , Loc2 ) ). This means that
each }ow_e'rb_bu'r_ld corresponds to a unique starting clause.

Ariother bias. restriction concerns niegations of predicates, and negations of properties.
On the one hand information like Clause (5.3) is valuable meta-knowledge for the planner
used in Chapter 6, in order not to-consider subgoals containing incompatible Literals: On the

~-gther tramd; if-we introduce negations-of propertiesinorder to generate relevant lowerand
upperbounds (see Section 5.11), this information is also useful. It allows to remove clauses
containing incompatible literals from consideration during learning, i.e., these clauses are
not allowed in the language bias. We also do not allow .constants in the body of the
clauses. This means all distinct constants: will be replaced by distinet variables when
minimal refine is used to. minimally generalize clauses such that they are allowed by the
language bias (see Section 5.10. 2).

(5.4)  isaobject X )  isa.document( X. ).
{ Each document is an object. }

(5.5) isa_object( X )« isafolder( X ).
{ Each folder is an cbject. }

(5.6) isalocation X ) & isafolder{ X ).
{ Each folder is-a location. }

(5.7)  isalocation{ X } « isa.desktop( X ).
{ Bach desktop is a location. } '

(5.8) isafolder( X } « isaobject{ X ),isalocationf X ).
{ Each ob_]ect that is a location is aifolder. }

Program 5.2 Background knowledge about types

The background knowledge contains some relations about the types, shown in Pro-
gram .-5.2. The background knowledge also contains clauses as shown in Program ‘5.3
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(5.9)  holds_at( isnot_in{ Obj , Locl )}, B ) _
isa-object{ Obj.), isalocation{ Locl }, isa_location{ Loc2),
different ioe{ Locl , Loc2 ),
holds_at( is.in{ Obj , Loc2} ,E Y.

{ An object Ob_;' in lecation . Loc2is not in a location Loel which is different

(5.10) kolds.a{ is_in.open location{ Obj ) , E ) v
isa_object{ Obj '), holds.at( is. in( Obj , Loc ) , & ),
holds_at{ is_open( Loc) , E- ) tsa.location{ Loc ) ..

{ ¥ an object Ob7 is in location Loc2 which is open, theén Ob7 is in an open’

(5.11) holds.ai( is.not_in_open location{ Qb7 ) , E }
isa.object{ b3 ), holds. at( is.in(: Obj Loe Y, E
holds_at( not_is. 0pen( Loc}, E ), isa. !ocat'zbn( Loc ).

{ If object Obj is in location Loc2 which is not-gpen, then -Obs is not in.an

(5.12) eternallyl different_loc Locl , Loc2 ))
isa Iocatwn( Locl }, fsa_location( Loc2 )
Locl # Loc2 .

{ Hlocation Locl is not equa.l to location Lae?, = )

(5.13) eternally( is_open{ DT ) )~ isa_deskiop{ DT ) ..

JA deskto_p is ‘always open; '}

(514) holds-a{ P, B}« eternally( P.), isa_event( E).
{ A property P holds at the time of event E if P holds eternally. }

Program 5.3 Background 'kn'dwled_ge
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Clause (5.14) is a domain-independent clause to link the predicates holds.atf2 and
eternally /1.

Although our instantiation of DITVS works with saturated clausés, we will not show the
saturated clauses for reasons. of readability: literals that can be re-i_:ntrqduc&d by sdturation
with the clauses of Program 5.2 and Program 5.3 are omitted. As an'exampleof a saturated
clause, consider Clause (5.15). It is the saturation of Clause (5.17) below.

(5.15) succeeds( B ) —
act{ B , drag.and.drop( Doc., Locl , Lee2 } ),
isa_docuinent( Ddc ), isa.object Doc ),
isa_folder{ Lotl ), isa:object( Locl ), isalocgtion{ Locl ),
isa.folder{ Loc2'); isa_object{ Loc2 ), isalacation| Loc2 ),
different.loc( Locl., Loc? ), different_loc( Loc2 , Locl )
holds_at{ is.inf{ Obj Locl }, E),
hotds at( is_ m( Lée2 , Locl ), B ),
kolds-ai( is_in_open_ locatwn( Doc )o E ),
holds_a#( is_in.open.location{ Locl) , E ),
holds_at( is.in_open_locationf Loc2 ), B ),
holds_ai{ is.motan{ Doc , Loc2 ), E ),
holds.a¥{ is.not:in( Locl yLoe2 )y, B,
holds_at{ is.not.in Loc2 |  Loc2 ), B,

holds_gi{ is_riot.in{ Locl , Lo¢l ). E),
holds_at{ is.open{ Locl ) , E ),

holds. at{ 1s. open( Loc2') , E ),
holdsiat{ notis.oper{ 0b7), E ).

Let g =g V »++ V gg be the current rmaximally general concept representation, and let
s=8 VoV sy, be the current almost maximally specific concept tepresentation under
g Inmtiallyn=1,¢g=g =T, and s =51 = L.

Program 5.4 gives the consecutwc information elementson tleinfostream, Clause (5.16)
is a positive upperbound. With this information element g, is specialized fo Clause (5.18)
itself.

The other information elements are positive and negative lowerbounds. For each -of
these, Program 5:4 gives the corresponding starting clause, together with a substitution
‘to obtain ‘the actual positive or negative lowerbound, Applying the substitution to the
hedd of the starting clause gives the actual positive or negative lowerbound; applying the
substitution to the body of the clause gives a set of facts that are in the background
knowledge:

The second information element, for instance, is a positive lowerbound. Clausé (5.17)
is the corresponding starting clause The litéral succeeds( e305 )? is thé actual positive
lowerbound. Applying the corresponding substitution to the body of Clause (5.17) gives-
-a set of facts which basically describe the (relevant part of) the situation at the time of
event e305. All these facts are true in the background knowledge.

After processing. this positive, lowerbound 51 has been generalized to Clause (5.17) itself
{i.e:, the minimal upperbound of Clause.{5. l? and 1}, while # remains unchanged:

8'Phe names el; e2, ... for the events are generated by the planning system. That the numbers are nat’
consecutive is because not a.ll events that are considered are actually.executed.
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(5.16) succeeds( E } «
act( .E ., drag.and. drop( Doc , Locl , Loz2 ) ),
isa doaumerrt( Doc ), isa. locatwn( Locl 3, isa_ location{ Loe2 ),
differentdoc( Locl , Loc2 ), holds_at{ is.in{ Doc, Loel ), E)..
Positive uppetbound

(51?) succeeds{ B ) _
) act{ E drag'_and__dmp'('_ﬂpc' , Locl | Loc2) ),
isa_document{ Doc'), ise_folder{ Locl ),
isa_folder( Loc2 ), different loc( Loel. Loc2)
Rolds_at{ isin{ Doc , Locl ), B ), ho!ds af{ is.nf Loc2 , Locl ), E ),
holds._af is.in, open-iocatwn( Locl ), E ) '
holds_at{ is.notin(-Locl ., Loc2 ), E ),
Rolds_at( is.open{ Locl V. E holds. al{ is.apen Loc2 ) , E ),
Hholds_at( niot.is_open{ Doc ), E ). B
Positive lowerbeund - { E/eBG:J Docf'thesis.mbozr’ |, Locl/home , Loc2/thesis }

(5.18) succeed.s( B}

aét( B, dragiand. drop( -Doc , Locl , Loc2 I

1sa. document( ‘Dac Y, zsa_locatwn{ Locl 3,

4se location Loc2 ) different_loc( Locl , Loc2'),

holds_ai{ is_in{ Doc., Locl ) , E), '

Holds.at{ zs_not-m( Loc2 y Locl) , B ),

[holds.d#{ is_open{ Locl Y, .E), holds.atf is. open{ Loc2 )., B},

‘holds.at{: not.is-openf{ Doc ), E N~ '
Positive lowerbound - { E/e317 , Doc/'thesis.tec’ , Loel fthesis | Loc2/home '}

(5.19) succeéds( B ) —
act{ E , drag-and_drop( Doc , Locl , Loc2 )'),
154 documeni( Deoc ) 50 Iacatwn{ Lacl h
'ssa._locaimn( Loc2 ), different.loc{ Locl , Loc2 ),
holds.at( is_in{ Doc , Locl ), E'),
holds_at( is_not_in: open.locatson( Doc), B),
[holds_at( is. open( Loc2) , B,
holds_at{ ot isiopen( Doe) E),
Holds_ai{ not.is.open{ Locl'), B .
Négative lowerbound - { E/f€324, Doi::_/-'thesi's.dui" ,.Locl ftex files ; Loc2/home }

Program 5.4 Iiformation eleéments - Partl
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(5.20) succeeds( B ) —

act{ E |, drag.and.drop( Dec , Locl | Loc2 ) ),
isa. documeni( Doc ), isa_folder{ Locl ), isa.desktop( Loc2 },
holds_at( isin{ Doc , Locl ), B},
plds__at(_ 15 nol_ m.( L_oc:l Loc?. ) Y,
holds:aif is.open( Locl ) , B ), .
holds.at{ not_is.open( Doc ), B ) .

Positive lowerbound - { E/e337 , Doc/'invitation:tec’ | LocL/thesis ; Loc2fdeskiop }

{5.21) succeeds( E ) &

act{ & dmg and_ dmp( Dee | Bocl , Loc2 ) h
isd_ document{ Doc ), isa_ locaizon( Locl ),
isa_folder{ Loc2, ), different_loé{ Locl , Loe2 b
holds..ct(_is wr}l’ Do Losd \ 24 \

-hold_s___a_t( 15.in.open _loc"a'tia_n( D"c__rc: ) , E),

holds-__at( is;_n_ot_'in_qpen__iqmtim_:( Log2 ) . B, _
| isa.desktap( Loel ), holds.at{ is_openf LocZ ), E ),

holds.atf not.is.apen( Doc) . E)}.
Positive lowerbound - { E/e348., Doacf'invitation.tex’ | Locl/desktop | Loc2/thesis }

(5.22) succeeds( B ) « o _
aet( E , drog-and_ dr"op(' Doc | Loel , Loc2)),
5@ document( Doc Y, wa_folder{ Locl ) '

isa_folder( Loe2 ), differeni_toc Locl , Loc2 ),
holds_af{ isin{ Doc , Locl ) , E ),

holds_at{ is_in_open._ location( Loc2 ) | E ),

halds_af{ is_open( Lol ), B ), holds.at{ not_is.open{ Doc ) , B )l
holds_atf not_is_epen{ Loc2), B ) .

Neg_'at’i:v'e lowerbousnd - { £/ed05 , Doej'invitation.ps’ | Locl fhome Loc2/psfiles }

Program 5.5 Information elements -.Paxt 2
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By means of g and §; a relevant instance can-be generated, by taking a literal from
$; such that the saturation of the rest of s, doesnot contain this literal, and adding the
negation -of that lltera.l to .g; {see Section 5.11). E.g., Clause (5.18). (W1th0ut the part
in square brackets) is obtained by adding holds. af{ is_not. m( Loc2 , Locl ) ; B ) from the
body of 5; t6 g1. Aninstantiation ef the resulting clause provides a relevant lowerbound.
The startmg clause of the instantiation can contain more literals than was specified. These
literals are shown between sqiiare brackets,

In Section 6.6 more t_h_an ‘one concept:is learned si'_m'u'lﬁaneously._ Tor instatice, also
dcﬁniti’ons for the concept s'uccess'fully dragging document D from location F) to.another
lccatlon F, hag the effect that I is in Fz" are derived. Generating: relevant instances
for the other ¢oncepts rhight at the same.time give instances to update g and s. In this-
example, the learned concepts are very similar, such that we can explain _.th_e_ generated
relevant ins’ta.nces'by means:of ¢, and 5.

In Chapter 6:finding an-instantiation of Clause (5. (5.18) is done by making @ plar to obtain
a situation in which the:body of the clause holds. .In.order to obtain this desired sitnation,
the plan that is found must be executed. Executing this plan. could also give new informa-
tion elements to update g and s with. In-the particular case-of Clause (5.18) no intermediate
actions have to be executed to find an instantiation of Clause (5.18); Clause (5.18) instan-
tiated with the corresponding substitution - { E'/eSl? Doc/'thests. tez! , Loclfthesis |
Loc2/home’ } is-a. positive lowerbound. Therefore s is. generahzed - Clause (5.23).

(’5.23_) succeeds( E)+
' act{ B, drag.and. dirop(Doc ; Locl.; Loc2 } ),
isd. document{ Doc ), isa folder( Locl ),
isa_folder( Loc2 ), different.loc] Loel , Loc2 ),
holds:at( is.in{ Doc, Locl ) , B,
holds_at( is_in_open_location{ Locl ), E.},
holds_at{ is_in_open_location{ Loc2 ) ;| B )
holds.at( is.open( Locl ), E. )i hotds.al( is.open( Locl ) E )
'holds-ai( riot_is_ open( Doc) E }

By searching for-an instantiation of Clause f5‘..19.).'a.':new relevant lowerbound is gener-
ated. Clause (5.19) was obtained by adding holds_af{ is_not_in. open_location{ Doc ) , B )
to g1. This time a negative lowerbound succeeds{ €324 ) is genera.ted This means that
the instantiation of the body of Clause {5.19) with the corresponding substitution is true,
while the. head .of Clause (5.19) is false: '

Processing this negative lowerbound: gives rise to- a VS.list of 11 specializations of
g1+ Oure-of these that is consistent with the negative lowerbound and with both pasitive
léwerbounds is chosen as the new g;: ' '

(5:24) suceceeds( F )
ect{ E , drag.and.drop{ Doc., Locl , Loc2 ) ),
isa.. document( Doc ), isa: locatzon( Locl )3
isa_location{ Loc2 }, different.loc{ Locl , Loc2 },
holds_at( is.in{ Doc ; Loel ) , E ),
holds_et( is_in-open.location{ Doc’) , E.) .

Since s, is more specific than the new value of gy, s, (and B, for that maiter) can be
reused; actually s; remains unchanged:
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A niew relevant lowerbound is generated by finding an instantiation of Clause (5.21). In
this case, some interrnediate actions aré exectted dusing the seirch for an instantiakion of
Cla.u'se"(.:B,-El). The new positive lowerbound represented by starting clause Clause (5.20)
and with corresponding instantiation is found. Since this positive lowerbound is-consistent
with g1, s, must be generalized to be consistent with it as well. This results in Clause:(5.25)
as new-value for 3. '

{6.25) sueceeds( £ ) e _
' act( E , drag_and_ drop( Doé , Locl , Loc2 } ),

isa_document{ Doc }, isa_folder{ Locl ),
isa_location Loc2 ), differeni loct Locl ; Loé2 ),
holds.aff is_in{ Doc , Locl ) ; E ),
holds_ai{ is_in_open_ iocatmn( TLocl }, E),
holds_at{ is_open{ Locl ) ; E ), holds_at{ is_.open( Loc2 ) , E ),
holds_ai{ noi_is_open{ Doc ), E Y. ' '

Then, the instantiation of Clause (5.21) with the corresponding instantiation is a pos-
itive lowerbound. Further generation of relevant. lowerbounds gives four more positive
lowerbourds. All-these positive lowerbounds. are consistent with g1, s0 5 ha.s to be gener-

Talizéd again and becoiies eqiivalent €0 gy, 1.6, to Clanse (5. 24¥.

Then the negative lowerbound Clause’ (__5.22) is in the infostream. Tt is‘not consistent
with gi. Therefore g; is specialized. There are four maximally general specializations of
g1, shown in Program 5.6. The underlined literals are the onés not in g;. For each of
the disjuncts the corresponding J, is also shown. Since all clausestogether are consistent
with all s-bounds, combinations of these clauses are considered. None of these clauses
is individually consistent with all eight s-bounds. T_he:e_io_:e disjunctions of the_se_. clauses
are considered next. ‘The first one according to the global order, .i.g., the disjunction of
Clause (5.26) and Clausé (5:27), is consistent with all s-bounds, and assigned to'g. Then
the almost maximally specific.s under g is computed. Tt is equivalent to the disjunction of
Clause (5. 26) and Clause (5:27), i.e., equivalent to g. Therefore no more relevant. instances
are generated. Furthermore the_qus_tr_ea_m is empty, s6 DI'TVS halts.

5.13 Conclusion

In this chapter we instantiated the framework of Versionspaces and Iterative Versionspaces
-of Chapter 3 for predicate learning, to obtain the predicate Jearning setting as it is. usually
studied in ILP. With this: instantiation we have shown in detaj] how predicate learning
amounts to concept learning in an TLP framework, and how general concept learning al-
gorithms as DI and ITVS can be applied to ILP. When the conditions of Constraint 4.8
apply in ILP, we can also use DDI and DITVS to learn sets of clauses. DITVS is not:
applicable (at least not in a straightforward way) for multiple predicate lea.rmng and for
recursive predicates. Future work could point out whether the framework of DITVS could.
‘be extended towards lea,r_mng mujtlple_prcdlcat_e_s_, and whether this can be g_enera.hzed. to
the language-independent framework.
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(5.26) succeeds{ E IR
act( B ; drag and. drop( Dac , Locl , Loc2 ) ),
5@ document( Doc }, isa_ Iocatwn{ Locl ),
‘isa-location( Loc2’ 3 dt_ﬁ’erent foc{ Locl , Loc2),
holds.at(. is.in{ Doc , Lecl ), B ),
holds_at{ is.in_open_ locatwn( Doc), E ),
holds_at( is.open{ Loc2 ), E ).

J':. m{]_, 2':-.3: 41 536:?}

(5.27)  succeeds( E ) —
«act( E , dragand.drop( Doc , Locl , Loc2 )},
5. document( Doc), isa. Iocatmn{ Locl 3
:zsa_folder( Loc? ), different loc{ Locl , Loc2 ),
holds.al(- is.in{ Doc , Locl ), B B
.:holds oi{ {s_in_open_ !ocaiwn{ Doc), B )
holds.at{ is.in_open location( Loc2 ) , B') .

Jy = {1,3,6,8} ' '

(5.98) succeeds( E) | |
' act( E ,drag.arid_drop{ Doc., Loel , Locd B
isa.document{ Doc ), isa_location Locl ) s
isa_desktop( Loc2 ), differéni.loc{ Locl , Lioc2 )
holds-ai{ is-in{ Doc , Loel ), E );
holds.at{ is_in.open.location|- Decy Y.

7, ={4,8}

(5:29) sueceeds( B

' ' act{ E , drag.and_drop( Dot , Locl , Loc? Y h
isa document_( Doc ), zsa._desktop( Loc:l )y
isa_location Loc2 ), different_loc{ Locl , Loc2 ),
holds_atf és.in{ Doc , Locl )}, E ).

Program 5.6 Maximally general specializations of ¢,
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Overview of Definitions and constraints

L;and L& are-defiied in Definition 5.4, DL is defined in Definition 4.13,

Ry and R are defined by means of the intended interpretation (sec Definition 5:5).

The definition of cover.for £g and DL¢ in Definition 5.11,

"The sourdness of cover (Constraint .2.8;)__Zho_lds iff coveér is defined w.r.t. the infended
interpretation (see Section 5.4).

Constraint 4.8 is fulfilled by proving the equivalent condition of Corollary 4.12 in

Theorem .5.30.

‘The definition of < -as an instantiation of Definition 5.27 with- P = B corresponds
to the definition of = (Definition 3.1).

Concepts are represented by a unigue representation by the equivalence relation = B
(an instantiation of Definition 5.28 with P = B

The Boundedness Constraint {Constraint. 3.18) and Finiteness Constraint (Con-

straint _3‘19)'- have to be fulfilled by choosing an apprapriate language bias {see Sec-

“tieH 5-.8).
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Chapter 6

Integrating Planning and Learning
in an autonomous agent

6.1 Introduction
Motivation
Thls chapter dlscusses a partlcula.r mtegratlon of rnachlne lea.rmng and Al- p]a.nnmg in.a

ta.tlon 15 smooth Because of thls, more: attentlon can be devoted to the problemb arising
spe_c_:;ﬁ(_:a.l_ly I the_l_n_tegrated_. architeeture, such as the probler of controlling when to plan,
when to:learn, when to observe, when to eXecute-.ac-tions_, when to do experimerits, etc. This
chapter-is also-intended to illustrate the pirevious chapters: it shows. how the framework of
Iterative Versionspaces, instantiated in an ILP sebting, can be used for machine learning.
“We have chosen. planning to be integrated with learning, because planning is a typical AT-
problem. From the point of view of Cha.pter 1,.a planning system can only be considered
intelligent, if it has some 1eammg capabilifies. Therefore there is a.recent growing interest
in integrating planting and learning (see, ¢.g.,. {Mmton 1993] for a collection of state of
the art papers, and further [Veloso et al; 1995} [Sheﬂ 1993} (Benson .and Nilsson, 1995),
[Sablon:and Bruynooghe; 1994]).

Planning Knowledge

Planning systems typically use three, and. sometimes four, kinds of domain-dependent:
knowledge:

o knowledge about actions’ preconditions and effects: for each of the available actions,
“the planner must knowunder which conditions the action will have particular effects;
» knowledge about the environment (or ezternal knowledge): the. planner must have:

'-k_nowledge about the objects in. ifs environment and the relations between these
shjects;

o control knowledge: during the search for a plan the planner sometimes needs to
‘choose among subgoals to explore, or needs to decide which action to use to fulfill
‘& certain subgoal. Control knowledge contains some genéral ruleés which are to be

203
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used. as heuristics. in making these choices. Control knowle'dg'_e- also contains general
pruning rules, which are used to stop searching in unpromising directions;

o abstraction knowledge: some planners can work on different levéls of abstraction.
They make-an abstract plan first, and then gradually refine the abstract plan .unti}
& working planis found. Abstraction knowledge specifies how abstract actions are
to be. r__cpl'ated by more concrete ones, and which extra constraints then have to be
_:t_a'}_:en-.'into. account, The use of abstraction. in planning is very important because it
‘teduces the computational complexity of the search when searching on higher levels
of abstraction, and midinly reduces pléﬁnin_g to scheduling when refining an abstract
plan to a wotkable plari. '

Research has studied how to acguire each of ‘these types of knéwledge automatically, In
this chapter we will focis on the acquisition of the first kind of knowledge. Acquisition
of the second kind of knowledge (external knowledge) can be seen as an exténsion of
our approach. using a theory revision system, rather than 1earn1ng téncepts. 1ndependently
from each other (see. Chapter 9, and $ée further). The acquisition of control know :ledge has
been e\tenswely studied a5 an application of Explanation based leammg in the context
of PRODIGY [Minton et al, 1989),[Etzioni, 1993a). ‘Also the acquisition of abstraction
knowledge has been studied in PRODIGY [Knoblock, 1994}

Context

The problem of integrating planning and learning arises in the area of aitfonomaous agents.
We consider a planning dgent which has to achieve some'initial goals'in a certain environ-

ment. In order to achieve the goals; the agent i§ able t¢ ezectite actions in its. environment.
To achieve the goals-the agent has to decide itself which actions to execute and im which
order to execute them (i.e:, the agent must make up-a plen). Bach of the actions will
‘have a well.determined effect in ¢very situation (i.e., the environrent is dez‘.'e:’r‘-m_im's'ticj.
Héwever, in general the agent itself does neither know the exact effects, nor the .conditions
‘under which the effects will take place. Therefore the agent should observe the effects of its
‘specific actions. From these observations it learns new knowledge, which explains al] previ-
ously observed effacts of actions, in order o avoid makmg planning mistakes in the future.

These two abilities {planning and. Iearmng) are the major components of the agent: and
have to be coordinated with executing actions and observing effects. Coordination then
consists of deciding when to plan, when to learn, when to execute and when to observe

The agent is.autonomous in the sense that it rna}ccs these decisions. itself. :

This setup does.not exclude the presence of a teacher, who prowdes the agent knowledge
in whatever form. The advantage of having a teacher available is. thatthe teacher can
supply solution plans for specific goals for which no plan can be found by the planner. The
disadvantage of relying on a teacher is thai the agent becomes less autonomous.

This approach. very well supports an active learning strategy. The learner does riot
only update its knowledge (w.r.t. observations of actions), but also proposes relevant
experiments. By executing ehperlments relevant for & certain cohcept, and observing the
effects, the learner obtains'new information. If the generated experiment was relevant, this
new 1nformatlon allows to-exclude at least part of the possible hypotheses for the coricept..
In this way, the learner does not passively wait, for failures of executed actions, but actively
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provokes successes and failures. As such it anticipates failures which could have occurred
“Tater. This strategy is also called learning by experimentation.

Representation

We.will mainly concentrate on the architecture that.infegrates planning and learning.. Less
attention will be given to planning and learning methods themselves, The chosen repre-
sentation for the integrated system is the event calculus. The event calcuhis in its original
form was introduced by [Kowalski and Sergot, 1986] It-15 a formalism o reason about
time and change and can be described in Horn clanse Jogic: Events initiate and terminate
periods during which certain properties hold. [Denecker et of., 1952] shows that the event
'Ca}gplﬁS'is a powerful tool for temporal reasoning in general, by solving some benchmark.
problems {such as e.g., the Russian Turkey Shootin‘fg p‘ro‘blem)._ 'Tempbr_al reasoning, in
general, formalizes the notion of time. It allows to represent and Teason with temporal
'knowledge Representing and reasoning with temporal’ knowledge is typical for planning.
‘The event calculus has proven to be a well suitable representation for planning. Planners:
using an event based framework are described, in [La.nsky, 1988], [Shanahan, 1989}, [De-
necker et al. 1992] [Mlssmen et al. 1995] In [_Shana.han_ 19_89_] and [Missiaen et al. , 19951,
abduction is prescnted as a mechamsrn for planning in the event calculus. The a’bd‘ucﬁive
event calculus provides natural represertations-and planning capabilities that most of the.

-~ systerns based-on-other representations do-not-have; such-as handling indirect-and-context——--

dependent effects, and planning for multipleagents. Because the event calculus can be rep-

resented in Horn clause logic, learning can be done by Inductive Logic Programming (IL %)
techniques:(see Chapter.5). Consequenﬂy the learning behavior of the-agent can be derived:
from the learning behavior of the chosen technigue: An advantage of the modularity of
the logical representation is that each type of knowledge can be acquired independently.

The relevant questions about the.concept to be-learned {see Section 3.11) gencrated. by
interactive ILP systems, can be-used as experiments. The observation-of the results of an
experiment can be interpreied ds an answer to the corresponding question. Furthermore,
because of the declarative character of the representation, the temporal knowledge as well
as the-non-temporal knowledge can easily be used by other p_rob_lem solvers which work
with first-order logic representations.

For ‘all those reasons the event calculus turns out to be a natural representation for
an architecture integrating learning by ezperimentation, plinning, and temporal redsoning:
Several other systems that integrate planning and learning use & STRIPS-like representa--
tion {Fikes.and Nilsson, 1971]. In this representation each action has a list of precondlhcns
a'list of effects that are initiated (the add-list), and a list of effects that are terminated {the
deléte-list). This represeiitation is mich less suitable for a straightforward application of
‘well known machine learning techniques, and does not allow the integration of more genéral
temporal reasoning. In the context of PRODIGY [Veloso ef al,, 1995] the STRIPS repre~
sentation was therefore substantially extended towards first order logic. In this extension
inference rules are represented by means of add- and delete-lists as well.

Overview

This- ch:a.pte_r is structured as follows: first we specify the problem of integration of plan:
ning-and learning in the area of an autonomous agent (Section 6.2). Then we present the
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event calculus as a suitable representation for this integration (Section 6.3). In Section 6.4
we introduce the distinct components of the integrated system. Then the controlhng al-
gorithm for the integrated system is given. (Section 6. 5) and applied on the example of
the autonomous tutor (Section 6.6). Finally, we discuss related work {Section 6.7) and
conclude.

6.2 Problem specification

We suppose an autonomous agent is-situated in a given environment. The agent can
exécute a-given set of actions which have an éffect on the domain under certain conditions.
Effecis.are properties that are initiated by the action or properties that are ferminated by
it. Preconditions of an action specify the conditions under which the action will have an
effect. However, the agent’s knowledge of its own actions is incomplete and incorrect. This
means that the agent dées not know the exact preconditions nor the ekact effects of its
actionis. We suppose the agent’s knowledge about the environment itself (i.e., external o
the agent) is correct-and complete.

Given a goal and’an initial situation to the agent, the agent can achieve the ‘goal by
executing actions. The agent can also observe the énvironrment. We assume the- agent ean
observe all aspects in its environment relevant for describing the preconditions and effects
of its actions. We assume these observations are correct. We also assume there are no
other agents executing actions which-could influence the environment or tlie observations.

Both the assumption that the. agent’s external knowledge and its observations are cor-
rect; are simplifications for the learning task: Further on we argue that an extension
towards learning of full demain knowledge amounts to the use of a theory revisién system,
instead of separate (and independent) learning processes for the distinet concepts, The
assumption.about correct-observitions could be relaxed by using &.learner that can handle
Tioise.

‘Whenever, during execution, the agent observes evidence that its knowledge is irconsis-
tent with reality, it will try to- adapt its knowledge. The- resultmg koowledge of the agent:
should then be consistent with all previously gathered eviderice, in order to avoid similar
mlstakes in the future.

The main cycle of & system realizing this is 'plan, then eXecuté, then cbserve, then
learn’ {see Figure 6. l) ‘Starting from-a- given goal, the agent triesto ﬁnd a plan for the goal
using its current knowledge. Then it starts executmg the plan. When the plan is executed
{cormpletely-or partially}, the agent observes the result of executing the actions, and learns-
from the cbserved results. An active learner would not only-learn from inconsistencies
arising during execution of a plan. It would also try to perforin relevant experiments, r.e.,
1t would try to execute:the action czusing the inconsistency in other situations as weil'
in order to- gather more televant information about the action. Experiments consist of a
setting and an action to. be executed in that setting. Note that this architecture-also fits
i the. schieme of Figure 1.1.
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Figure 6.1 The architecture of the agent in'its environment

6.3 The event calculus

In this section we presént the event calculus in Horn clause logic as a suitable representa-
tion formalism for the integrated architecture. Events correspond to timepoints- (without
.duratlon) that initiate and terminate certain (t1rne dependent) properties of the domain.
In the framework of the autonomons agent, exactly one action coiresponds. to each event.
Because of their correspondence to time, events must be partially ordered in time.

The predicates that are used in the event calculus are Kappens/1, time/2, act /2, < /2,
holds_aif2, initially /1, succeeds/l, initiates/2 and terminates/2.

o The literal happens( B } expresses that event B happens: The literal time( &.,.T)
expresses that the event E corresponds to timepoint 7. The literal act{. B, A)
expresses that the event E'corresponds to the action A, The literal T} & T2 (to
be read as “Ty is before. Tu™) expresses that timepoint Ty is before timepoint Ty.
The literal Ty L' T, éxpresses that timepoint T} is before timepoint T3, or equals
Ty. In general, these three prédicates are defined by facts expressing which actions
happened in the past, which actions will happen in the future, and in which order
they happened or will happen.
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o holds_at{. P , T ) expressés that property P holds at time T'. Clauses for holds_at/2

express tempora.l knowledge of the domain. E.g., Clause (6.1) expresses that an object.
Obj is ifv an open location if 1t isin-a location Loc and Loc is open. Clause (G 2)
expresses that an obiject Obj is not in a location Locl if it is in a location Loc2 that
is different from. Locl.

(6.1}  holds.ai{ i§-in_open.docation{ O )., T } +
isa.object( Oby ), '
holds.af( is-in{ ObF , Loc ), T'),
holds:a¥( is.open( Loc ) , T ),
isa.location{ Loc ).
(62} holds_at{ is_not_in{ Obj , Locl }, T} e
isa_object{ Obj }, isa.location{ Locl ) isa.location( Loc2 ),
different. foe{ Locl ., Loe ),
holds_at( is_in{ Qb5 , Loc2 1.7

Apart from this temporal knowledge, there can be domain dependent predicates
expressing: non-temporal knowledge, These are defined by definite clauses. E.g.,
Clause (6.3) and Clause (6,4) express that directories and documents are objects.
Fact (6.5) to Fact (6.7} express. which cbjects are documents and ‘which objects are

directories,

(6.3) isa:ebjec{ Fol ) —
t5a. foldef{ Fol ).
(6:4)  iso_object Doc ) «
' isa.docurnent( Doc )
(6.5)  isafolder( home ).
(6.8) isafolder{ thesis:).
(6.7)  isa.document( 'thesis.ies’ ).

succeeds( E-) expresses that the event F succeeds. An event sicceeds if- executing
the correspondmg action has an’effect (i.e:, some property not holding before E is
initiated by E, or some property holding before - is termlnated by E). The cla.uses-
for .succeed.s/l it fact express the preconditions for an -action at event K to succeed,
E.g., Clause (6.8) expresses that an event B succeeds; if the event is a “double-click”
action onan- ob;ect Obj, which is closed and which is 1n an open location. Clause (6.9}
expresses that an event E sutceeds; if the event is an “open-parent” action on a folder
ol which is contained in a closed folder.

(6.8) smeceeds( E ) _
' act("_E ,_-dbf_c{fc'k( Ob] )), _ti;me(. E + 1),
isa.object{ Obj ),
holds_al{ is.closed{ Obf ), T ),
holds.af{ is_in.open.location{ Obj ) , T' ).
(6.9) succeeds{ E)
act{ E ,.open.parent( Fol ) ), time( E, T ),
isa_folder{ Fol)), _
holds.at(_ is.in_closed_directory( Foly,T).
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initiates( E, P ) expresses that the event E initiates the property P. E.g,
Clause (6. 1[]) expresses that the event E initiates the property is. open( Ob; ), if
the actibn corresponding to B 15 dbl.click{ Obj }. .

e (6.10) instigtes( ¥ , is_apen{ Ob7 ) ) «—
act( E-, dbl_click 057 ) ),
isa_object{ Oby ). '

o terminates( E , P) expresses that the event B terminates the property P. Prop-
erties that are’ expllmtly initiated or terminated by an event are called primitive
properties. The other properties are called derived properties. E.g., the property
is-in_open_location/1 (see Clause (6.1} and Clause (6.2)) is a derived property. This
property is never explicitly mltlatcd or. terminated, 1f will hold only when the condi-
tions of the body of Clause (6.1) or Clause- (6.2) are true. Clauses for initiates/2 and
terminates/2 are called context dependent if the body of the clause contaiis literals of
the predicate holds_ai/2. E.g:, Clause (6.11) expresses that an event £ terminates the
property is.closed( Fol2 ), if the action correspondmg to E is open.parent{ Foll },
and‘if Fol2'is a folder such that Foll isin Fol2.

(6.11) ierminates{ E , is.closed Fol2) ) «
act{ E-, open_parent( Foll ) ), time( E, T ),
150 fnl_rfﬁr( Falll,

holds-af{ is:in{ Foll , Fol2),T ),
tsa_folder( Fol2 ).

o tnitially{ P ) expresses that the property P is truein the initial situation.

(6.12) instially( isiclosed('thesistez’ ) ).
(6.13) indtially( is.in{ 'thesis.tez! , thesis ).
(6.14) indtially( is: _closed( thesis ) ).

(6.15) initially( is:in( thesis , home Y ).
(6.16) snitially( is open( home ) ).

Properties that are initially true are handled as if they were initiated by a special
event siart which happens, succeeds and which is before any other timepoint, i'e.,

(6.17) .happens( start ).

(6.18) succeeds( start).

(6.19) ‘initiates( start , P} — initially( P ).
(6.20) start € X « X # start..

Together &1l definitions of each of these predicates form an event: calculus theory.

‘The most important part of the event calculus is the spet:]ﬁca,tlon of the frame aziom.
The frame axjiom allows to reason about how the: domain i is affected by events. In patticilar
it allows to-derive what holds at the time of a certain event from what helds true before
that event. The frame axiom ean be written'in 2 domain-independerit way, and must be
part of every event calculus theory. .

Clause (6:21) to Clause (6.23) formalize the frame axiom in the'event calculus. The first.
clause expresses that a property P holds at timepoint P, if & successful event E happened
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before T' which initiated P, and if P was not: clipped hétween E and T.. Claise (6.22)
expresses. when a peoperty P is.clipped between E-and 7. This is the case, if a successful
evernt € happened in between! E and. T, which terminated P.

(6 21) holds.al{ P, T ) &
happens( EY,
initiates( B, P ),
succeeds{ & )
time( B, Tg )

T <& T

_ not chpped( Tg , P, T).

{6.22) clzpped( Tg P, T)

. h,appen.s( C )y _
terminates( C, P ),
suéeeeds( C ), '
time{ C , Te ),

'm(Tc ,TE,T)
(6 23) m( Te ., Tg , ) - TP Te, Teg T

The time constraints are formiulated in. Clause (6:24) and Clause (6.25). Clause (6.24)
‘expresses the transitivity of time order. Clause’ (6. 25) EXpresses that the time order is
anti-symmetric.and anti-reflexive.

(_5-24_.) I €Ty e T < Ty, Ty <. s

Clause (6.26} expresses. the constraint that to each event -corréspords e:{'a;'ctl}_r one action.
('_5.26_)' —act{ B, 4 ) act{ E | Ay ), A1 # 4Aa..

The event calculus as such allows clauses containing any of the temporal predicates with
any timepoint as temporal arguments. This means it can éxpress relations between dis-
tinct. timepoirts: However, in our application we limit surselves to. clauses for ho!ds.at/? :
succeeds 1, zmtwtes/2 a.nd termmates/fl which refer only-to the timepoint: occurring in
the head. - Also, since there is only one. event per timepoint, we do not explicitly write
the time/2- relatlon but identify each event with the timepoint associated to it. More
specifically the ¢lauses we use have the. followmg form:

o holds at{ B ; P) e~ he\,...iha iy oty by
o succeeds( E') e Ry ooy Ry bty o, D,
o initigtes{ B, P )« act( B, a )by, ooy Koyl y ooy Einy.

o termanaies( E ,_P-_) “oact{ B e )by, oo oyl Dy,

UThis representahon uses half open time intervals, to avoid problems with properties. P-for which. there
-exists a negated priperty £. With open inteérvals there could be frulh gaps; where neither P nor F holg;
with closed intervals there couId be incensistencies, bétause both P dnd P hold at the same timépoint
(see [Missiaen, 1991]).
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The literals h; are temporal literals. They are of the form holds.ai( P; , E ), i.e., they
have the same time argument as the head of the clause. The literals {, are non-temporal
literals.

In this chapter we use the basical event. calculus representation, which neither deals
with actions with a duration, nor with effects with a duration. These extensions of the

event. calculus are studied in [Shanahan, 1990], {Van Belleghem et al., 1994], [Missiaen,

1994]. Some related exiensions handle time granularity [Evans, 1090} and [Montanari €f.

al.; 1992]. For more details about, the event.calculus as we use i-t‘h‘ei-e‘, we'refer to _[Missiﬁen,
1991} and [Missiaén ‘et ol,, 1995].

6.4 Components of the architecture

In this section we fill in'the components of the system by concrete systems.

6.4.1 Planning

In the event calculus a plan is a set P of facts for the predicates happeris/l; act/2 and.

< /2.

._._..Deﬁm,tmn 6.1 {A Plan..i in ‘H‘lp Levent {‘n](‘ulnq‘ Civen an_event calculus, thegry T B

ground planmng goal G, and a proof procedure F,a plan P-is a solution far G iff

e TUPE @G, and
o VE;: happéns( E; ) € P implies T U P | succeeds( E; ).

Given a goal G, the aim of planning is.to find & solution plan P for G.

The planning system we will use is CHIGA [Missiaen, 1991], [Missiaen et al., 1995].
‘The proof procedure CHICA uses for b is SLDNF. However, the planning system must
not only prove that P is a plan, it must also find P. Therefore SEDNF was extended to
SLDNFA [Denecker el al.; 1992), [Denecker 1993]. Basically SLDNFA s SLDNF extended
with & mechanism fo abduce the incompletely defined predicates happens/l act/?. and &
/2 [called abduczbfes) ‘Ttie idea.is the following. Suppose the goal G is holds ai( P 1 tend )-
If the abducibles are completely unknown, it is, in general, impossible to infer. the lit-
eral holds_al p ,tena. ) with SLDNF. Every clause for initiates/2, terminates/2 and
succeeds/l contains, for instance, a literal of the predicate aci/2, which can never be
proven. However, if these literals are abduced in a way consistent with the constraints of
Clause (6 24} o Cla.use (6. 25) thén it may beé possible to prove holds_af{ p , tens ). Given
a goal G, SLDNF on the literals of the defined predicates, and consistent abduétion on
the literals of thie abducibles, results in a set of abduced literals containing the events that
have:to happen, the associated actions, and: the order of the events,'in order to prove G.
If this set of abduced literals fulfills the conditions of Definition 6.1, it is'a solution. plan.

CHICA.is.a planning system using SLDNFA as an inference mechamsm In [Missi-
wen, 1991] completeness and. soundness of CHICA are proven. For more details on the
SLDNFA procedure we refer to [Denecker et al, 1992}, [Van Belleghem et al., 1994] illus-
trates that abduction can potentially be used for planning in the event caleulus extended
with continuous changes as well..
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Example

Figure 6.2 shows an SLDNFA derivation to illustrate the SLDNFA -procedure. The set Ap
collects the events that happen, and the corresponding actions. The set At collects the
time relations between these events, and Ac collects constraints that have to be checked
each time new facts are abduced. Also the domain-independent constraints. Clause (6.24),

Clause {6:25) and Glause (6.26) have to be checked when abducing new facts. Suppose
the predicates happens/t, act/2 and < /2 do nol-have a definition (except in the spe-
cial case of start: Fact (6.17) and Clause (6.20)). Goals for these ‘predlca.tes cari-either
be abduced, or resolved with an already abduced fact from Ap or At. The goal G is
holds.at{ is_ open( ‘thesis.tez’ } , tend ). In the derivation a.goal which is resolved in. the
next step, is _und_er]_lned The goal G is resolved with Clause: (6 21) In the following node,

the. gc')ai happens( ) can be resolved with Fact. (6.17). 'This would give branch (A)

which eventually fails, because start does not initiate is_open{ ‘thesis.tez’). Therefore
branch:{A} is not 1nc11_1_c_ie_cl in Figure 6. 2 T_h_e branch that is shown is the one that abduces
happens( e; ) (i.e., happens( 1 ) is added to Ap). The constant e; is new, in the sense
that it does not occur élsewhere in the event calculis théory. In the next step,. &y & g
is abduced, L.e., added to A?, and inifiates( E , is_open( ‘thesis.tex’ ) ) is resolved with
Clanse (8. 10] The figure shows another-branch (B) to indicate that there might be othet
clauses to resolve with. These other choices can be considered on backtracking. In the
next step, three things happen:

o act( € | -'dbl;-cfick:f "thests.tez’ ))15 abduced, i.e.; added to Ap;
» isa.object{ 'thesis.tex’ ) is resolved with Clause (6.4); and,.

o not clipped( e , is_open( ‘thesis.tes’ } | .4 ) is checked {this is a branch that is tot
shown in the figure), and added to Ac.

Each time new facts are abdiced, an element 'in._.&_c.'m'ig'h_t'be violated, so all elements
of Ac have to be checked. Then ise.dotument( ‘thesis.tea’ ) resolves with Fact (6. 7},
and - succeeds( ey } resolves with' Clause (6. 8) Actually succeeds( e; ) can resolve with
any clause for succeeds/1, but all these other branches fail if they contain a literal for
act/2 ‘other than aci( E , dblclick{ Obj ) ). (thls is because' this literal can meither be
resolved with a fact in ,&p, rior. abduced, since Ap already contains an action associ-
ated to ey). Consequently, ‘the literal aci( e1 , dblclick{ Obj ) ) resolves with the fact
aci( ey, dblclick( 'thesisitex! ) ) from Ap, and isa_object(. Obg ) resolves with Clause: (6.4}
Then the goal isa.document( ‘thesis.tex’) is resolved with Fact (6.7). The. property
is.closed/2 is primitive, so the literal holds.af{ is- closed{ "thesis.tex' ) | e ) only resolves
with the frame asiom (Clause (6.21)). In the riext step, happens( E ) resolves with
Fact (6.17). Another possibility would be to abduce happens( e; ). The latter branch.
is'indicated by (C).

The process continues in a similar way, until the empty clause is derived. In thai.
case the goal holds_ai is.open{ 'thesis.tex’ )+ tend ) can be proven from the event calculus
theory, Ap and Az. The séts '

Ap = { happens{ e, } ,; act( e1 , dbl.click{ "thesis.tez') )}
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holds:at( ié-_open( ""'_ihesi';s,._te:’ Y, tend )

Clause (6.21)
_?iap_p.gns(.' E'.j,-'-initiafe.s(z E |, iscopend "thesis.lex )B 3
succeeds( B ), B € toa; not clipped( E | is_open{ 'thesisiex’ ), tona )
()" Ap = { happens(.er)}

initiates( ey , is.open( ."thesis_.tem’ e

succeeds( ey ), ei < _tmd.,.hot_. clipped( e is-open( ‘thesis.tex’ ) v lend )

A= {6y Citeng } | Cla_use.(ﬁ.l_q (3)
-act( ey , dblclick( ‘thesis tez’ ) )}, isa object( ‘thesis.tez’ ),

stcceeds( &, ), ot cligped( e, , is-open{ 'thesis.tea’ } | tons )

Ap-= { happens( ey ), act{ e1 , dbl click{ "thesis tes’ ) )}

Ac = { not clipped( & » s_open( 'thésis tex’ Y} atena ) }

Clanse (6.4}

zsa-do_cumen_i( 'thesisitert Y,

succeeds( e; )
Fact (8.7}, Clause (6.8)

act( ey , dblclick{ Obj ) ), isa.object(-0bj ), halds.at{ is.closed Obj ) , e; ),
Jholds_at( is_in.open_location( Obf ) , e )

Ap, Clause (64)

1
isa_document( 'thesisiiex’ ), holds_ai( is_closed{ 'thesistex’ ), e );

Holds_ai( is_in-open.location( "thesis.tes’ ysel)

Fact (6.7), Clause (6.21}

happens( B ), inittates( E ;is.closed] 'thesis.tex’ )) succeeéds{ E ), E < &1,
not clipped E | is_closed( 'thesis.tex’ ) )€1 )y
holds.. aY is:in.open.location( "thesistec! ) ;€ )

me)

Figure 6.2 Example of 4 SLDNFA derivation
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and
At = { ey K fend, }

constitute the plan.

6.4.2 Executing and Observing

After executing a particular action a associated toevent e ifi its environmient, the agent
can ¢heck whether e “really” succeeds, by observing all changes.in the environment. Only
primitive properties.are observed. All observations are added to the background knowledge.

Because we assume there are no other agents that influence the effect of e, each observed
change must’ be ascr]bed 10 e. H there are no changes, succeed.s( ) is a.negative liistance to
be provided to the leatner. If there are some changes, succeeds( e }is provided as a positive
instance to the learner: In‘the latter case, a property p that did not hold before e, but did
hold after e, is initiated by e, i.e. znztzates( » P )i a positive instance. H a property p,
did hold before e, but not after e, 1t is terminated by e; i.e., terminates{ ¢, p Jis & positive
ingtance. By assuming that all changes can'be- observed a.ll instances initidtes( & , p )and
terminates(-e , p ), such that p was neither initidted, nor terminated by e, are negatwef-
instances. This assumption amocunts to applying the closed. world -assumption on the
set of all ground -atoms holds_af{ p , e }; with p a primitive property. This means that
‘megative mstances of tnitiates/2 and terminates/2.are only implicitly known. The niegative
.instances that are covered by the current definitions of zmtzates/E and termznate.s/fa are
particulaily useful to the learnet, becaiise these are inconsistent. This mieans shab ‘these.
effects were expectéd, but did not happen. Sitnilarly, positive uncévered instances are
&lso inconsistent: with the current definitions of initiates/2 and terminates/2; these are
unexpected effects that did happen. Positive covered instances are consistent with the
current deﬁn;_tlons

6.4.3 Learhning

After observing the effects of an event e, the learner is provided with positive and neg-
ative instances for-sicceeds/1, zmtmies/? and terminates/2. The positive and negative
instances are groiund facts; they can be used as lowerbounds by an ILP learner. Since the
definitions for succeeds/1; initiatesf2 and terminates/2 should relate the effects of e to
the properties that hold-at timepoint e, and riot to other timepoints, the only part of the
the background knowledge that is to.be considered when constructing starting clauses (see
Section 5.9) consist of

o all primitive properties that hold attimepoint e,

o the clanses -deﬁning the derived propcr’cies _('s_e"e C'l'au_se (61) to C'la,iu"se-._'(ﬁ;fz_)_-)_, ‘and

s the non-temporal clauses{see Clause (6.3) to Fact (6.7)).
Because: we. assume all these to-be correct, the background knowledge is correct. The
only reason fof'a positive instance. succeeds( €1 ) to be uricovered is thus that the defini-

tion for succeeds/1.is overly specific. Dually, the reason for a covered negative instance
is that the corresponding definition is .overly general. Suppose, for instance, that the
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plan found by the SLDNFA derivation of Figure 6.2 is executed. The plan consists of one
agtion dbl.click( 'thesis.tez’); associated to event e;. Suppose that e; does not sucgeed, al-
though it was expected to (because in the fifth node from'the top succeeds( e, )is proven
by means of Clause (6.8) from. the literals act{ e; dbl_cliclk{ Obj ) ) tsa object( 05 ),

holds.al{ is_closed( O8] } ; e; } and holds_at( is_in_open_location{ Obj } , &, ), with thesub-
stitution: { Obj /'thesis:tec’ }). The only reason why this negative examp]e is covered is
-t.hat_ Cl_ause 6.8) is overly general, because the action _d:‘)_f__chck( Obj )-is certainly -associ-

ated to &, an‘d the other litetals can be proven using definitions that are assumed to be
correct. Moréovet, the definitions for succeeds/ I, initiatés/2 and termminatesf2 are not
allowed to be recursive. This meéans that learning a definition for succeeds/1, learning
a definition for instiates/2 and learning a definition for terminates/2 are three separate
-single predicate learning problems without recursjon..

Basically any incremental ILP system that can learn the kind of clauses that are al-
lowed in definitions for succeeds/1, tnitiates/2 and f.ermmates/? can be used. In {Sablon,
and Bruynooghe 1994} we used CLINT [De Raedt, 1992]. CLII\'T is able to lea.rn the dis-
junctive concept definitions of the event calenlus, prov_lt_:i_es a nice Iramework for handling
bias in ILP, and has a sound behavior, Furthermore GLINT is interactive: it proposes ex-
periments and learns from the results of theit execution, The disadvantages of CLINT (as
in some other -suitable ILP systems) arise ffom the fact that it works specific-to-general
only. When using maximally specific concept representations, the result is a very cautious

~ agent, which only executes actions in restricted situations in order not to make errors of
commission (see Section 3.4). To avoid that the agent would almost never find a. plan
‘because its concept definitions are tdo specific, a . general-to-specific approach would be
mote appropriate in this case: in the beginning the agent applies the actions in several
situations. in which they do not succeed, or do not have the desired effects. "With these
.observa.tlons the agent then specializes its concepts in order to avoid sirnilar mistakesin the
future. CLINT has to learn maximally specific definitions for the negations of succéeds/1,
initiates/2 and ierminetes/2, and negate these definitions to realize the same behavior
as-a maximally general concept representation. Furthermore, although CLINT is interac-
tive, the experiments 1t generates are not always relevant in the sense of Definition 3. 59

A bi-directional approach allows to generate relevant experiments’ (see. Section 3.11 and.
Section: 5.11).

We propose to use the framework of Iterative Versionspaces, instantiated to Inductive.
Logic Programming, as described in Chapter 5. This framework.can &lso legarn dm}unctmns,.
it is sound, if provides a useful framework for relevant instance generation by defining
middle poinits; and offers the choice between using maximally general or maximally specific
concept’ representatlons

Under the assumption of having full abservations, programs derivirig constraints that
hold in the background knowledge could alse be used to find these definitions. Examiples of
such systems are CLAUDIEN [De Raedb and Bruynooghe, 1993] and ICL {De Raedt and
Van Laer, 1995].

In this context we briefly describe why, in-géneral, the learning modiule must be a theory
revision system, when the external knowledge can be incorrect. Temporal clauses defining
derived properties as well as non-temporal knowledge might be incorrect.. For a covered
negative instance, -at least one of the clauses which are used to prove that the instance is
covered, is t_n:a_bla_me for the inconsistency, and is to be updated. In the above example
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where the-execution of the action dblelich( ‘thesis.tez’ ) does not succeed, the fact that
succeeds( €, ) is covered by Clause (8. 8) might also be caused by an incorrect definition-of
isa.object{1 or holds. at/2 Therefore, the theory revision system should modify the event
calculus theory as a whole. {except for the domain-independent part and the observations},.
in order to be:globally consistent with the observations. Theory revision theoretically also’
provides a solution when the problem is exténded towards multiple agents, such that more
than one event per timepoint is possible.

Similarly as for the external knowledge, the observations of the agent might not be
correct. In that case, the learning system, or theory revision systent, will have to deal with,
noise (see Chapter 2) in-order $o find any workable concept definitions..

8.4.4 Experimentation

For each of the learned concept definitions the learner can ‘generate relevant. lowerbounds
(sce Section. 5. 11}. These can be mterpreted s experiments’in the: followmg way. Suppose
¢1s a relevant lewerbound for the concépt “a successful execution of action a*, as-defined in
Section 5.11.- The clause ¢ is of the form succeeds( E ) «— act{ E , a ),ci,6( E ), where
¢ is a conjunction of non-temporal literals, and ¢ is a. con_]unction of t&mpora.l literals..
If:c covers'the representation of an instance : that belongs to the corncept, ¢'i5.a positive
lowerbound. If c-covers the representation of-an instance i that does not belong to the-
cancept, ¢ 1§ a negative lowerbound.  This means that. in order to evaluate whether cis a
positive or negative lowerbound, we have to find an-event e, for which-

o the-associated action is a,

o the temporal and non-temporal literals of ¢ instantiated to e (i.e., ¢, ca( e )) ate
true, and '

© we know whether the execution of a at timepoint e was successful.

Tofind such an instance is what we call experimentation: ‘Experimentation consists of two
phases:

o first set up the experiment (i.e., find, or “create”, a timepoint e such that ¢;,¢( € )
is true; '

‘® th’e'n execitteaction a at timepoint e.

Thzs Teans that an expenment consists of two compoenents: .an experiment setting 8=
{ erycs( B ))and an action a. The experiment setting defines the conditions in which the
action a must be executed.

To set’ up. the experiment, the expériment setting § is considered as a goal for the
‘planner. When the goal §.is established, the action a can be executed. Observing whether
or not the execution of a is successful determmes whether the event belongs to the concept,
and thus whether or not ¢ is & positive or & negative lowerbound.

Simi'l'arly_a relevant lowerbounds for concepts of the'form “a successful execution of a-
initiates property p”, or of the form “a successful execution of @ terminates property p”
can be interpretéd as experiments.
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6.4.5 Simulating the environment

In our implemgntqti‘on of the above architecture, the environment of the agent will be
simulated for practical reasons. This means that the robot interacts with a.software model
of the environment, instead of with the environment itself. The software model can alsa
‘be implemented using the event calculus. However, the simulator’s knowledge is strictly
separaied from the agent’s knowledge, The agent can only inferact with the simulator by

e executing-an actioni the agent specifies to the simulator which action it wants to
execute; The simulator then changes the environment according to its own model,

e observing the environment: the agent asks the simulator the current state of the
environment, The simulator then returns the set of relations that hold in the current
state of the environment.

Actually the use of 2 simulator lmphmtly solves the problem of interpreting the observa-
tions, 1.e., of identifying-each object each time the environment is ebserved, and to fiiid ont
which .-rela.tlor_is hold between these observed objects. As we will only concentrate on the
learning and planning aspects of the agent and their integration, we assumie that in gen:
eral this problem is solved in an interfacing module (belonging to the agent) between the
agent’s knowledge base and its execution and observation devices, This interfacing module

15 i most domains non- trivial, as in robotics 1t will need techmiques to, interprete images

{computer mswn) sounds. (e.g., speech recognition) or gven sther sensor information. If
the agent i§ able to handle different levels of abstraction, the learning module {which is
the one processing observations) should be able to specify a level of abstraction, and the
interfacing module should also be able to interpret the observed information on the given
abstraction level.

6.5 The resulting architecture

Suppose the agent is in: an initial sifuation Sin; and has & goal @ to achieve. A gaal
1s représented by a conjunction of literals. An experiment ewp( S, A} consists of an
expetiment setting S {represented as a goal) and an action A. Performmg an cxperlment
consists of applying A4 when the goal specified by § holds.. In the algorithm an instance
is called an inconsistency if it is an uncovered positive instance, or a covered negative.
instance.

The agent'’s algorithm to achieve a goal G from an initial current situation e, can
then be described as follows:

1. Plan:
Make a plan P for G from situation Seuer.
If nerplan can be found, then fail.

2. Execute and Observe:
Let the set Inf initially be empty.
As long-as P.is not empty and there are no inconsistencies between the observations
and the currént knowledge:
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o Execute:
Take the first action from P, and is éxecute it. If the execution of F has any
effects, this gives a change n Seuire

o -Observe:
Ohserve the effects of executing the action: if there are any effects, this event is
a positive instarice for succzeds/1, dtherwise it is a negative one. Each property
that is ‘initiated, resp. terminated; gives a positive instance for inifiates/2,
resp. terminates/2. Effects that were expected but are not observed result in
negative instances for fnitiates/2 or terminates/2. Collect all instancesin Fnf.

3. Learn:

o For all instances in Jnf, update the corresponding definition, such that it is:
consistent with all known instances.
e As long as the learner generates relevant experiments ezp{ S , 4 ):
— Goal;
Call this algorithm tecursively with goal § and initial situation Seyrr.- The
aim is to let the planner makea plan to-achieve §,.and to execute that plan.
During thie execution new instances are gathered, and progessed By the
learnier. It is also possible that some éxperiments are performed. However,
it.is not allowed tode any experiments for the action A during the recursive.
call, in erder to.aveid infinite loops: _
Note that executing actions in-the recursive.call could lead to a new,. Sqrr.
— Experiment:and Observe:
If the recursive call does not fail (i.e., the goal . is achieved):
% Experiment:
execute A-{which can again change Sm-,-')
* Observer
Collect positive and negative instances as gbove.
* Learn from experimeitt:
The collected positive and negative instances are used to update the
corresponding definitions.

4, Stop or-Retry:

If G is‘achieved; then announce success. _
Otherwise, call this algorithm recursively with goal G and initial situation S If
the recursive call succeeds, then announce success; otherwise fail.

If the algorithm fails, the plariner is unablé to make a- plan forthe given goal G. The
planner will not be able to make a plan, if its definitions for the preconditions. and effects
ate overly specific, i.e., they restrict. the set of situations.in which the action is expected to
succeed, or to have a certain effect, too much. In that case, the only way toget out of this
deadlock autonornously, is to execute some. heuristically generated actions {or, if no better
solution is. availdble, execute some randomly generated actions), and observe the effects.

A semi-autonomous agent would in this'case call the help of a teacher. The teacher

could give'the agent a.full soluticn plan; or only some actions to get out.of theimpasse. By
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executing ﬁhis--pian_o;"ﬁ-h_ese.act_i_on;;, t}_xc learner is provided with new instances, which then
lead to an update of the agent’s knowledge. Typically this kind of systems heavily rely on
the teachér in thé beginning, but as: they obtain miore good examplé actions to exécute;
gradually get better in achieving their goals antonomously (se¢ e.g., [Benson, 1995]).

Each: time the algorithm is called recursively in Step 4, a new plan for G is made,
Somme planning systems allow the possibility for plan répair, when something goes wrong
in the execution of z plan (see e.g., [Wilkins, 1988]). ‘Suppose that after a plan has been
made and partially executed, the preconditions of the next action in ‘the plan are not
fulfilled. Basically, plan repair would then adapt the remaining part of the plan such that
the preconditions.of all remaining actions are again fulfilled. In this way repairing the
rest of the plan avoids recomputing a completely new plan, [Ml_ssmen_ 1991] informally
describes conditions and a method to extend CHICA for plan Tepair,

6.6 Example

In this section we presenf an example session with the algorithm of Section 6.5, in which
the autonomous tutor of Section 1.3 learns concepts about a graphical -user interface:
The primitive properties in the example are is_in/2, is.open/1 and not.is_openfl. The
_ derived properties are is_nol_in/2, is.in_open_location/l, is_not in_opén.location/l. “The

definitions of the derived properties belong tothe background knowledge and are presented
in Program &.3. Apart -fI;:Ol'_I_'l Program 5.3 the background knowledge also consists of the
definitions of Program 5.2.

The actions the tutor can performiin the examplé are dbl_ chck( Obj ) to apen an object
Obj, menu_close{ Obj } to close.an object. Obj, and drag.and-drop{ Doc , Locl , Loc2 ) to
drag a document Ob7 from location Locl to another location Loc2.

We. suppose the clauses for succeeds/l zmttates/fz and terminates/2 of the actions
dbl_click({ Obj )-and ménu. close{ Obj ) are known. These are provided initially as positive
upperbounds to the learner. This means the futor will always correctly apply these ac-
tions during planning. During execution of these plans, the correct applications of these
definitions gives positive lowerbounds of succeeds/1, initiates/2 and terminates/2, from
which an almost maximally specific definition for each of the predicates and for each -of
the actions is derived. We concentrate on the action of dragging a documient from one
folder to another’ folder. We show how the algorithm of Section 6.5 applies to this case.
The initial definitions for succeeds/1; zmiwtes/Q and terminates/2 of a drag-action are
given in Program 6.1. They are provided o the learner as positive upperbounds.  For
plarining we will always use: the maximally general _c_leﬁ_nltlons returned by the learner (see
Section 6.4.3). In Section 5.12 we have illustrated how the concept. “successfully dragging
a document ) from felder £ to another folder F,” was learned by DITVS, instantiated to
ILP. The information elernents used in Section 6.4.3 were taken from the example in this
session. This allows to view both the ILP aspect and the integration aspect of the same
exdmple session. As in Section 512 we do not present the saturated clanses,

The initial situation is shown in Figure 6.3. Apart from the folders and -documents
shown, the folder maz! contains a document de fence.mboz; and the folder tez files contains
the ﬁle "thesis.dvi’. All folders-and documents, except home and thesis, are not open.
There is only one desktop, called 'desktop”.
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(6.27} succeeds{ E ) «

act( E., drag and drop( Doc Loel , Loc2) ),

150 document{ Doc ), isa. locaimn( Lacl ), tsa_location{ Loc2 ),

dzﬁ'erent loc{ Locl | Loc2 }, holds_oif is.in{ Doc, Locl ¥, E ).
(6:28) indtiates( B, is.in{ Doc , Loc2 )} e~

‘act( E , drag_and.drop( Doc., Locl , Loc2 } ),

dsa_ d.’ocument( Doc }, isa. Eocatzon( Locl } isa_location{ Loc2 3,

different_ loc( Locl , Loc2 ), holds . at( isin{ Doc, Locl ) , B ).
{6.29) terminates( E , tsdn( Doc Loel ) )

act{ B, drag_ond. d‘r‘op( Doc, Locl , Loc2 ) ),

ﬁsa-documeni( Doe.), wa-locatwn( Locl ), isa. location{ Loc2.),

different loc{ Locl , Loc2 ), holds.at{ is_in{ Doc. , Locl ) E).

Program 6.1 Initial definitions

e a.1. Plan: suppose a first. goal for the tutor to. achieve is to put the mailbox
'thesisimboz’ in the folder thesis; ie., G is

holds.at is.in{ 'thesis.mbog’ | thesis ) | tous ).
The.planner retiirns a plan for this goal:
_c&_i:i(_ €305 ,-d:r'ag_and_'_d?‘opf_' ‘thesis.mboz’ |, home | thesis ))

e a.2. 'Exgcu.te_ and observe: This planis executed, and the effects are observed. The
real effects are exactly the ones expected, i.e., there are only positive lowerbounds.

3 373' Learn:
— Each of thesé¢ pasitive lowerbounds is consistent with the current maximally.
general defiditions, but not with the current almost maximally specific-defini-

tions.. Therefore the maximally specific definitions are generalized using these
positive lowerbounds, For succeeds/1, clause Clause (5.17) is induced.

— A first experiment is genera.ted the setting of the experiment consists.of the
body of Clause (5.18); i.e:, Gy is
isa.dacument( Doc ) isa_location{ Locl )
. isa_ Iocatton( Loe2 3, different_loc{ Locl , Loc2 I8

holdsnat( zs&m( Dot , Locl }, B,
holds at{ is_not_in( Lac2 , Locl 3, B )

The action to be executed at tlmepoint K is
Ay = drag_and_drop( Doc ; Loct , Loc2 ).

* Goal: the planner makes a plan for G; by calling the algorithm recur-
sively. Actually, this goal is already fulfilled with the substitution { E/e3l?,
Dot/'thesis.tex’ , Locl/thesis Loc2/home:}. Since there are no actions
to be executed, no-inconsistenéies are found, and. no experiments will be:
done in the recursive call; -
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E0= home ==
4iterns  $46.8 MB in disk
i | il
Tmail ihesis
thesismbox  invitation.ps [{1
=l 2]
& iteras 146 2 MBindisk 6.4 MB availabls
texfiles psfiles
. : S W S
costs.spe invitationtex thesisitex thesis.ps

Figure 6.3 Initial situation

+ Experiment and Observe: Consequently, the action A, instantiated to
drag_and.drop{ hesistex’ | thesis | home 3,

‘can immediately be execubed.
. BExperiment: Aj, corresporiding to event €317, is executed.
- Observe: Again the real effects are exactly the ones expected, i.e.,
there are only positive lowerbounds.
- Learn from experiment: Consequently the maximally specific defi-
nitions are-updated. For succeeds/1, clause Clause (5.23) is induced.
~ A second experiment is generated: the setting of the experiment consists of the
body of Clause (5.19}, i.e., Gz is
tsa_document( Doc }, ise_location Locl ),
isalocation( Loc2 ), different.loc( Locl', Loc2 ),
holds_at{ is.ini{ Dot , Lol ), E'),
holds_at( is.not_in_open_location( Doc } , E ).

The action to be executed at timepoint & is
Ag = drag_and_drop( Doc , Locl , Loc2 ).
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# Goal: the planner makes a plan for Gs- by ca.llmg the- algorithm recur-
sively. Again, this goal is already fulfilled,in this case. with the substitution.
{ L'/8324 Dac/'thesis.dui’ Locl/temfzfe.s Loc2/home }. Again there:
are no actions to be executed noinconsistencies found, and no experiments
to be done in the recursive call.
# Experiment and Observe: Consequently, the action -of the experiment
can immediately be executed.
- Experiment: the iction

drag_and_drop( "thesis.dui’ ytex files | home ),

corresponding to event e324,is executed,

. Observe: In this case the action does not succeed. “Since it was in-
‘ténded to succeed, _
succeeds{ €324 ) is a negative lowerbound. Furthermiore, this action
was expected fo initiate the property is_in( ‘thesis.dvi’ , home ), and
‘to terminate the property is.in{ 'thesis.dvi’ | texfiles ). Consequé_ntly;

initiates( e324 , dsinf "thesis.dvi’ | home )) and
termanates( €324 , ds.in{ ‘thesis.dvi’ | home).)
are also negative lowerbounds.
- Learn from -experiment: Consequently the maximally general def-
iitions of ‘Program- 6.1 are updated; for-suceeeds/1 this resulted in

Clause (5.24). Similar clauses.are derived for the predicates initrates/2
and terminates /2.

~ A third experiment is generated: the setting of the experiment coniists of the
body of Clause (5. 21), ie., Gsis

isa. document( Doc) isa_location( Lorl ),
isa_folder{ Loc2 ), dzﬁerent_loc( Locl , Loc? Js
holds_a¥{ is in( Dac , Eoel ¥y ,.E ),
holds. at( s in_open-location{ Doc. 1, EY,
holds_a¥{ is:not.in_open_location Loc2) , B ) .

‘The action to be executed at timepoint & is
A3 = drag.and.drop( Doc., Locl y Loc2 ).

# Goal: the planner. makes. a plan for G by calling the algorithm recursively.
This time, the goal is not fulfilled immediately.
+ b,1 Plan: The plan for ach1ev.1n_g godl Gy is

act( 328 , menu.elose( Bome )),
act{ €337 , drag.and.drop( “nuitation.tex’ , thesis | desktop ) ).

- b.2 Execute and Observe: Executing the action meny. close( home )
only results in expected effects. Therefore

drag.and.drop( "invitetion.tex’ , thesis. deskiop )

15 also executed.
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- b.3 Learn: All collected positive lowerbounds are used to update the
definitions of succeedsyf1, initiates/2 and terminates/2 for menu_closeé
and dr'ag-and‘drop At this poifit experiments could be done for the -
action menu_close or for dmg and_drop. However, for drag.and_drop
this is not allowed, since we are in the middle of an experiment for
drag_and.drop on levél a; for menu_close no relevant lowerbounds can
be generated, because s a,lr_ea.dy converged to g

- b:4 Stop or Retry: G is checked. It is fulfilled, so level b succeeds.

#+ Experiment and Observe: Action A; is execited, instantisted with
{ B/e348 | Doc/'invitation.dez' , Locl/desktop , Loc2/thesis }.

- Experiment: the action
drdg_and_drop{ "invitation.tex' |, deskiop | thesis ),

corresponding to evént €348, is executed.

"« Observe: Again the.real ef_féct_'s are exactly the ones expected, i,
there are only positive lowerbounds..

. Learn from e)'_cpe'rimej_nf': Conseqll_e'n_’é_l_iy_ thie maximally specific 'defi-
nitions are updated to be consistent with these positive lowerbounds.

~ Seme more experiments-are generated, which yield more positive lowerbounds.
By means of these, the maximally specific definitions are generalized further, in
this case until the maxlmally specific.congept represéntation is. equwalent to the
maximally general one.

o a.4 Stop or Retry: The original goal G is checked, It is fulfilled, so the alggrithm
halts.

Then the tufor could still have other goals, for which it would like to check whether
the plans i, makes execute correctly. One of the foHowmg goals is

holds_af( is.in{ "invitation.ps’ , psfiles }, ' ;).
One of the actions in the plan for this goal is
act( E ; drag.and drop( "invitation.ps’ ; home , psfiles ) ).
Executing this action does not. succeed, and therefore gives the negative lowerbound of
‘Clause (5.22). By means of this negative lowerbound, succeeds/1 is further updated as

described in Section 5,12, The definitions for initiates/2 and terminates/2 are updated
in-a-similar Way.

6.7 Related Work

Most symbolic systemns integrating planning-and learning work with a STRIPS-Iike repre-
sentation: with each action an add-list and a delste-list is associated., The add-list contains

-'ll-h-e--m-a-x-imaliy—geher'«éil—-een-cept—fepfeseﬁ-t&kie&&—r‘emam—uﬂehafigéd----------—---——---



994 INTEGRATING PLANNING AND LEARNING

the properties that become true when executing the action, and a delete-list.contains the
properties that become false. The frame axiom is expressed by the STRIPS assumption:
all properties are carried over from one situation to the next unless they are explicitly-
-deleted by the executed action. This assumption makes it difficult to handle context de-
pendent effects and derived properties. Moresver, it is more difficultto incorporate general
temporal knowlédge in the STRIPS framework. Furthermore STRIPS-like representations
make it more difficult to apply eristing machine learning algorithms in a straightforward
way and to inherii'their characteristics. The event calculus, on the ¢ther hand, has a clear
semantics, and is obviously more expressive than the. STRIPS representation. This-is one
6f the main- advantages of our approach..

The best known related work in the-area of learning by experimeéntation in a planning
environinent is part of the PRODIGY system. The global PRODICY system is-a general
problemi selving system with learning capabilities. One part of the research is concerned
with'learning’ by experimentation. PRODIGY uses a :STRIPS-like. representation for the
actions {called operators) as well as for the domain knowledge (called inference rules), This
means they take an operator-oriented viewpoint, opposed to the time-oriented viewpoint of
the event calculus. On the sther ha.nd 'PRODIGY has the advantage of having a complete
architecture to be fitted.in; so that it-can make use of other already implemented learning
techniques, such as techniques o learn search-control rules or te learn: dbstractions for
hierarchical planning. Possible future research could peint out that the event calculus is
powerful enough to represent similar metheds. Reseatch on lcarmng by experitnentation’in
PRODIGY [Gil, 19911 and {Carbonell and Gil, 199[}] also concentrites on acquisition of pre-
and postconditions of operators, and does not Iearn any domain knowledge. PROBIGY: has
another difference with our system! it does also-take into.aceount effects from other actions
than- the last one executed {Gil and Carbonell, 1987]. On the. one hand, this makes i
difficult to decide which action is. responsible for an unexpected effect in the system; on.
the other hand this assumption might be ‘realistic In systems where not. all’ effects are
immediately detectable. Rephrased in event calculus terms, it means that the clauses for
succeeds /1, initiates /2 and terminates/2 must also be allowed to contain temporal literals.
with a timepoint other than the one occurring in.the head. In order to learn such clatises,
the background knowledge should not only contain the shservations at the time the action.
was executed, but also al] other relevant observations. ‘Consequently, this is just a matter
of bias for the startirig clause, aithough it ‘will make the problem much more complex.

LIVE [Shen, 193] is. demgned to learn: to solvé goals in an unknown environmert, and
therefore has to learn coriditions and conseqiiefices of its actions in that environment. LIVE-
also uses a:STRIPS based representation, and has a similar plan-execute-observe-learn ey-
cle as our system. The learning component works general to specific:and only uses the
information provided by failing plan executions. LIVE does only take the opportunity to
do experimentation when faulty knowledge is detected during planding. In our active ap-
‘proach, experimentation is'done. durmg the léarning phase. Searching for inconsistencies in
a logically represented theory can in general be.done by theorem proving (e.g., SATCHMO
[Manthey and Bry, 1988}).

LIVE also does not rely on the presence of a teacher. It has an exploration phase. in
case no plan can be fournd.for a given goal. Tt then selects some-actions, using heuristics
‘that try to maximize the information gain, and executes.them. LIVE dqcs therefore not
have an active learning strategy, because it will only start exploring or experimenting when
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necessary to solve 1ts goals.

There are also some autonomous systems that learn preconditions and effects of actions
through observation of an expert; guided by the heuristic “imitate activity that you see
in the environment” [Hume and Sammut, 1992, or by analyzing exscution traces [Wang,
1994]. . : &

Finally, as noted in Cha.pter 1 and Section 6,2, the basic. cycle of the architecture is
very much related to the one of LEX ([Mltcheli €t an' , 1983)).

6.8 Conclusion

We have presented an architecture integrating planning and learning in- the context of

an autonomous agent. The underlying representation is the event caleulus. The event
calculus is a logical representation for temporal reasoning in generdl, and for ‘planning
in particular. Because it is.a logical representation, clauses of the cvent. calculus can be
learned using TLP techniques. I‘urthér’mcre, interactive ILP systems provide a framework
for learning by experimentation. Concerning the integration using a logical representation,

we have illystrated that the logical representation offers the possibility to concentrate on.

the infegration aspécis themselves, e.g., on.controlhng the dl_stlnct componentsof the agent.
-As this.chapter’s aim was only to'show the ease of integrating planning and learning ising

--logic; rriere-questions-have-risen-than-{here-have-been-solved:

From-this point of view there are several possibilities for future work, By relaxing the

many constraints, other ILP learning techniques can be used for J_carnlng. ‘We have argued

‘that in general theory revigion systems have fo be used to learn kn_cwl'e'clgc' about actiens
and‘domain knowledge at the same time. Also'learning algorithms that can copewith neise:

can be uséd when the observations are not guarantéed to be.correct. We also mentioned
ILP-systems leatning constraints could be used to find regularities in the set of- observed
facts. From this point of view our setup can also be used as a benchmark for other ILP
systems. Because of the modularity of the logical representation, systems learning distinct
types of knowledge can easily be combined. .

~In this chapter we have merely concenirated on the'integration of Planning and Learn-
ing, but the line of reasoning can be used to integrate other Al problem solvers with ILP
as well. As an example, simulating the environment can also be done in the event caleulus
(Section 6.4.5). More generally, [Missiaen, 1995] describes a domain independent simulator
in the evént calculus, The event calculits also allows to represent knowledge about mul-
tiple agents. In that context agents could learn more about each other’s behavior. One
such agent is studied in an ongoing masters’ thesis at our department; in the context of
computer assisted exercises? [De Wolf and Hays, 1995 In this application several players
play a multi-player simulation. game, This kind of sirmulation games is used to train people
for decision making, eig., to get practice in economical or military strategies. In the setup
of [De Wolf and Huys, 1995] one of the players is observed by an agent: This agent derives
a set of niles about the behavior of that player. The aim s to reuse these rules to simulate
the player. As:a learning component [De Wolf and Huys, 1995] uses CLAUDIEN. This
application isranother example of an 1n_‘_ﬁeg1_'_a.ti_cn of machine learning with problem solvinig
in a logical context,

*In coopéeration with SHAPE Technical Centre, The Hague.



226 INTEGRATING PLANNING AND LEARNING



Chapter 7

Conclusions

To conclude, we will briefly summarize the achievements of thethesis and present some:
possible directions for future research.
Achievements

In Chapter 2 to Chapter 4 we have. studied ‘concept learning .in -a. language: jndepen—
dent framework. This framework is built up based on the framework of Versignspaces:

of [Mitchell 1982], and.the Description Identification. algorithm. of - [Mellish,-£891]. . In.thigi - --...

framework we have developed the Itera.tlve Versionspaces algorithm, which efficiently com-
pirtes a maximally general and a maximally specific cousistent concept represerntation. The-
bi-directional approach allows a dynamic choice which strategy to use for problem salving.
{making errors of omission, rather-than errors of commission;, or vice: vcrsa.) and allows to
generate relevant lower- a.nd upperbounds automatically. We have also developed a theery
of reditndant information elements;, which allows to reduce-the amount of meniory needed
to store information élements, A further reduction can be obtained by safely replacing in-
formation elements by automatically generated ones. The implementation of the efficient
maximal generality and maximal specificity tests, of the optimal refinement operators, and
of the removal of redundant information. elements are described language independently,
and are alsa applicable in. other ¢oncept learning systems. We have also described hHow the
conicept representation language ¢an be made more expressive by introducing disjunctions.
‘We have identified a condition under which the concept learning, problem in the language
of the dlS_]unCthIlS can be reduce_d to'a search problem in. the underlying language of dis-
juncts. We have illustrated that the increase in expressiveness.is too large to be practically
aseful. Thereforg we introdiiced almost maximally specific concept representations, and
combitied this with preference criteria; which minimize disjunctions on the basis. of set.
inclusion, or on the basis of their fength. This resulted in disjunctive extensions of the
Description Identification algorithm and of the Tterative Versionspaces algorithm.

In Chapter 5 and Chapter & the frameworks of ITVS and DITVS are 1nstant1at'ed-_'-.by'
means of concept represeritation languages and instance representation languages consist-
ing of definite Horm clauses. We have described in detail how predicale learning is an
instantiation of concept learning in a first order logic framework. In particular we have
regarded predicate learning as a search problem: we have described how to define lan-
guages of definite clauses for predicate learning, and how to structure them. By doing so,
the predicate learning problem can be solved by language independent concept learning

2271
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-techniques The application of the language independent framework to ILP also shows
‘that the framework is applicable on non-irivial concept representation languages.

T'uture Research

‘We believe it is important to keep. up both a.Janguage indepéndent point.of View; and at
the same time language specific-point of view. The foitmer pdint of view allows to abstract
language specific aspects, such that generally applicable techniques can be developed and
applied in distinct languages Several ideas. 1 this thesis are based on language specific
techniques in attribute value Janguages. By generahzmg them into the language indepen-
dent framework, these ideas become applicable fo, for instarice, ILP. The latter point. of
view allows to appfy the general ideas; to evaluate them, to firid new interesting prob-
lems to be solved, and to find possible solutlons for these problems. Following this line of
reasoning, there are several topics which look interesting for future research, both in the
direction from ILP towards a language independent framework, and vice versa.

Although we haveinstantiated our framework in the context of ILP, not-all consequences
of this instantiation are fully understood. For: instarice, the part on redundant information
elements has not yet been studied.in an ILP context. We think this technigue is useful
in the context of ILP, as it reduces the number of information elements.that have to be’
stored. It:might also be interesting.to study the relation with existing work on redundancy
in the context of ILP.

An important topic that. is related to learning disjunctions is the automatic 1ntroduc~'
tion of new coneepts in the background knowledge. This is called predicate invention in
the context of ILP. As observed in Chapter 4 thisis related to learning disjunctions by con-
sidering the separate disjuncts as the definitions of new concepts. Here also we. think that
there.ate relations that go beyond the particular languages in which existing approaches
are described, and that it would be interesting to identify these relationships.

Throughout the thesis we have not. worried about noisy data. As described in Chapter 2
handling noise implies a relaxation of the suecess eriterion, In this sense thisiis orthogonal
to'the approach we have'taken: we have fixed the success criterion, and then investigated
preference criteria {at least for the disjunctive case): [Mitchell, 1978] and [Hirsh, 1990
present approaches that embed noise-handling in the context of Versionspaces. It would
be interesting to investigate to.what extent their approach is applicable in the framework
of Herative Versionspaces, to what extent it-¢in be combined with our preference criteria,
and what the consequences are for the’ resulting Versionspaces.

On two occasions we have restricted the kind of information slements that the- a]go-
rithmsn this the515 accept they did not. .accept information clemerits for the negation of
& concept, and thev did ‘not accept information elements containing disjunctions. In ILP
this: kind of information mriight. be ateeptable and informative, though. Asan exa.mple the
integrity constraints used by CLINT [De Raedt, 1992] provide a more general framework of
information-elements in which this kind of information wauld be allowed. We think it is ini-
teresting to. mvestlgate what corresponds to-the use ofintegrity constraints in the language
independent framework, and what ate the consequences for the résulting versionspaces-and
the resulting algorithims,

Allowing information.elements for the negation of a concept would imiply orie can learn
negative concepts. Some ILP systems adopt multivalued logics in‘order to handle concepts
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together with their negation {e.g., CLINT [De Raedt, 1992} and MOBAL [Morik et dl,
1993]). We think this must be possible in’ a more abstract (and language mdependent)
framework. That the negative information elements can be described in such-a framework-
(see Section 3; 2), is a first indication that this is possible. We also___ wonder whether the
frameworks we developed can be extended in the direction of multiple concept learning,
and tinder which conditions: '
We have only instantiated the framework of ITVS iii a classical ILP setting; in which
definite clauses are learned; and in the so-called normeal semantics of ILP (i.e., the usual
one) Recently sotme systems. have been developed that also derive c]auses whlch are not
definite -{called cons._tr_a.mts) and this in the so- called non-monolonic semanlics of ILP
(see [Muggleton and De Raedt, 1994}). It could be useful t6 investigate to which extent.
these approachies fits in extensions or in similar frainéworks as the lierdtive Versionspaces
framework. Can the non-morotonic setting of ILF also be described in a langnage inde-
pendent context? Points of departure for further research in- this direction might be the
ideas of [De Raedt and DZeroski, 1994] and [De Raedt and Van Laer, 1995] wliich relate

the. non-monotgnic semantics to classical concept l_ea.rnmg_ methods.
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Samenvatting

1 Inleiding

Automatisch leren is het deelgebied van het Onderzoéksge'bied Kunstmatige Intelligentie
waar algoritmen worden ontwikkeld om intelligente programma, s (of kénnis- systémen) zich-
zelf te laten aanpassen. Dezé 1ntelllgente programina’s hebben als hoofdtaak bepaalde
problemen op te lossen aan.de hand van- hun kennis, Door middel van de leer- -algoritmen
zijn ze in staat hun kennis om problemen op te lossen te wijzigen, om op die:manier meer
problemen te kunnen oplessen, of problemen beter of sneller te kunnen aplossen. De vorm:
van lerén waar we.ons ¢p zitllen concentreren is het leren van concepten.

Deze kerinis- systemen moeten dan hun hoéfdtaak (het.oplossen van- problemen) afwisselen
met Het aanpassen van hun kennis (het’ leren) Op die manier ontstaat er een wisselwer-
king van.enerzijds het oplossen van problemen aan de hand van de huidige kennis, en van
anderzijds het aanpassen van die huidige kennis. De informatie die nodig is om. kennis
-aan te passen kan ult verscheidene bronnen .v_oqrtko_r_nen: enerzijds kan: er cen men‘selijke'
gebruiker zijn die informatieaan het systeem doorgeeft. Anderzijds.kan het sysieem even-

Ttuesl beschikken over een évaliatie-mechanisme, 'dat gévonden oplossinigen kan toetsen.
Indien degevonden op'los'sing niet voldoet, of kan verbeterd worden, beschikt hef systeem
over 1r1forrna.t1e om zijn kennis aan ie passen. Ook wanneer een oplossing wel voldoet, kan
het systeem daaruit besluiten trekken: deze informatie bevestlgt dat de. gcbrulkte kenms-‘
tot goede oplossingen leidt. Indien het systeemn -ock beschikt over een mechanisme om
zelf ‘nieuwe problemen te genereren, deze problemen te laten oplossen door middel van de
huidige kennis, en de oplossingen te laten toetsen (waaruit dan opnieuw belangrijke. infor-
matie kan gehaa.id worden om te leren}, spreken we van een aclief leer-systeem. De zelf
gegenercerde problemen kunnpen beéschouwd worden alé éxperimenten, Deze cyclus werd
beschreven in het systeem LEX [Mitchell éf al. , 1983].

Opdat het systeem afwisselend de huidige’ kr:nnls zou kunnen gebruiken en ze dan weer aan-
passen, moet het gebruikie leer-algoritme incremenieel zijn: het moet de huld.[ge kennis.
kunnen aanpassen aan - de hand van de -nieuwe informatie, zonder da.ELI'blj noodzakehjker—
wijze alle vroeger vergaarde informatie opnieuw te moeten verwerken.

Een ander belangrijk aspect is de integratie van het algoritme om de problemen dp te
losseri en het leer-algoritme. Kennis voorstellen door middel van Iogische formalismen
ladt- toe op een eenvoudige en eenduidige manier het kennis-systeem en het leer-systeem
te infegreren. Bovendien zijn kennisvoorstellingen gebaseerd op logica zeer expressief; ze
zijn wiskundig grondig .onderbouwd, en hun semantiek is. goed gekend. Tegenstanders
voeren, aan dat het. gebrmk van log1sche voorstellingen in intelligente systernen praktisch
onbruikbaar zou zijn; en dat kennis ven nature niet logisch en declaratief zou zijn, maar
wel proceduraal. Zelfs indien deze argumenten gegrond zouden blijken te, zijn, voeren wij
aan dat het gebruik van legische voorstellingen dan toch nog kan gebruikt worden om deze
intelligente systemen en de problemen-die z& kunnen oplossen formeel te beschrijvenen ten
grondé te béstuderen. Vanuit dit oogpunt spitsén wij onze aandacht dan ook toe op het
leren van kernis voorgesteld door middel van logische formalismen, in het bijzonder door
middel van predicatenlogica.



Deze thesis bestaat hoofdzakelijk uit twee delen. In een eerste deel (hoofdstukken 2, 3 en
4) wordt het incrementeel leer-probleem voorgesteld als een zoek-probleem. Hierbij gaat
speciale aandacht naar het beschrijven van de oplossingsruimte en naar de zoekstrategie,
waarbij de tijdscomplexiteit van de algoritmen wordt afgewogen tegenover de geheugen-
complexiteit. Speciale aandacht wordt besteed aan het vermijden van het opslaan van
overtollige informatie. Ook wordt aandacht besteed aan het uitbreiden van de zoekruimte,
indien ze geen oplossing blijkt te bevatten. Deze uitbreiding gebeurt op een voorstellings-
onafhankelijke manier, in het bijzonder door het invoeren van disjuncties.

De belangrijkste bijdragen van dit deel zijn:

o het Iterative Versionspaces algoritme, dat in het slechtste geval een geheugenverbruik
heeft dat lineair is in functie van het aantal informatie-elementen. Dit algoritme
wordt beschreven in een ruimer kader: het kader van de Iteratieve Versieruimten;

e de voorstellings-onafhankelijke beschrijving van overtollige informatie, en van tech-
nieken om informatie te vervangen door meer gecompacteerde informatie met dezelfde
informatie-inhoud;

e het beschrijven van de met disjuncties uitgebreide oplossingsruimte, al dan niet in
combinatie met bijkomende, voorstellings-onafhankelijke beperkingen die het disjunc-
tieve probleem praktisch bruikbaar en interessant moeten houden;

e het Disjunctive Description Identification algoritme, en het Disjunctive Iterative Ver-
sionspaces algoritme, die de zoekstrategieén die eerst niet-disjunctief werden bestu-
deerd, nu uitbreiden naar het disjunctieve geval.

In het tweede deel worden deze ideeén toegepast in het onderzoeksdomein van Inductief
Logisch Programmeren (Eng. Inductive Logic Programming; ILP) [Muggleton en De Raedt,
1994]. In het bijzonder specifiéren we de onderscheiden voorstellings-afhankelijke parame-
ters van het in het voorheen geschetste kader van Iteratieve Versieruimten.

De belangrijkste bijdragen van dit tweede deel zijn:

¢ het volledig formalizeren van het leren van concepten in een ILP context, zodat de
resultaten uit het eerste deel onmiddellijk toepasbaar zijn in een ILP context;

o dit deel illustreert bovendien dat het kader van Iteratieve Versieruimten, zowel dis-
Junctief als niet-disjunctief, inderdaad toepasbaar zijn in een voorstellings-specificke
context.

Deze samenvatting is gestructureerd als volgt. Sectie 2 geeft aan wat moet verstaan worden
onder het leren van concepten. Sectie 3 bespreekt de verschillende elementen van het
eerste deel: (niet-disjunctieve) iteratieve versieruimten, het compacteren van informatie en
disjunctieve iteratieve versieruimten. Sectie 4 bespreekt dan het tweede deel: de toepassing
van Iteratieve Versieruimten in Inducief Logisch Programmeren. Tenslotte besluiten we in
Sectie 5.
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levend levenloos

mannelijk mens vrouwelijk

jongen man  vrouw Imeisje

_J__

Figuur 1: De tralie M

2 Inleldlng tot het leren van concepten

We introduceren het. p_r_obieem__ van leren van concepten aan de hand van een voorheeld,

‘Voorbeeld Beschouw de tralie M voorgesteld in Figuur 1 (een uitbreiding van een tralie
uit {Melhsh 1991]). Elk van de elementen in deze tralie stelt een verzameling “we-
zens” voor:. levend stelt bijvoorbeeld alle levende wezens voor, mens alle mensehjke-
wezens, man.alle mannelijke mensen van 18 jzar oud of ouder, jongen alle marnnelijke
‘mensen jonger dan 18, enz. Voorbeelden van voorstellingen van menselijke wezens
zijn, bijvoorbeeld, hilde, wim;, luc, hendrik. Anderelevende wezens zijn bijvoorbeeld
tweety (een vrouwelijke vogel) en oliver (een mannelijke vogel). De wezens in kwes-
tie-zijn niet voorgesteld in de figuur. Onze manier van spreken geeft aan-dat we, om
te redeneren over bepaalde wezens of over vcrza_mehngen van wezens, elk wezen en.
elke verzameling van wezeéns op een of andere manier moeten voorstellen. Redeneren
-over-wegells en verzamelingen van wezens wordt dan teruggebracht fot redeneren met
de overeenkomstige voorstellingen. In onze terminologie noemen. we een wezen een
instantie; een verzameling van wezens noemen we een concept. &

We komen dan in het algemeen tot de volgende noties:

o Ubjecten uit het domein waarin we werken noemen we instanties. In het voorbeeld
zijn de'objecten wezens. Elk object wordt voorgesteld door een instantic-beschrijuing.
Za laat de beschrijving hilde foe om over het echte wezen “hilde? te praten. De verza-
meling van alle__msta.ntl_e beschrijvingen noemen we. de instantic- -tgal; de instantie-taal
noteren we met, £},

¢ Een verzameling van objecten rioemen we een concept. EIK concept wordt voorge-
steld door een covnicepi-beschrijuing, Zo laat de beschrijving mens toe om over de



verzameling van alle menselijke wezens te praten. De verzameling van alle concept-
beschrijvingen noemen we de concept-taal; de concept-taal noteren we met L.

Tussen instantie-beschrijvingen en concept-beschrijvingen moet er een relatie bestaan die
overeenkomt met de relatie “is een element van” tussen instanties en concepten. Dit is
de relatie “dekt”. Deze relatie is afhankelijk van de gekozen concept- en instantie-taal.
Opdat ze zou overeenkomen met “is een element van” moet ze voldoen aan de volgende
voorwaarde: een concept-beschrijving dekt een instantie-beschrijving enkel en alleen indien
het overeenkomstig concept de overeenkomstige instantie bevat.

Indien niet alle deelverzamelingen van instanties een voorstelling hebben in L¢, is het soms
mogelijk een concept ¢ te identificeren zonder dat alle elementen ervan gegeven zijn. Bo-
vendien kunnen we ook negaiieve informatie gebruiken om een concept ¢ te identificeren.
Indien men weet dat een bepaalde instantie niet tot het concept behoort, kan men immers
alle concepten uitsluiten die deze instantie toch bevatten. In de grond is het identifice-
Ten van een concept, gegeven een verzameling instanties die er wel toe behoren (positieve
instanties), en een verzameling instanties die er zeker niet toe behoren (negatieve instan-
ties), een leer-probleem. Het voordeel van een concept te identificeren, is dat we dan ook
van andere instanties kunnen bepalen of ze tot dat concept behoren of niet, zonder dat
expliciet gegeven is of ze positieve of negatieve instanties zijn. Bijgevolg is dit een vorm
van inductie: uit de eigenschappen van specificke instanties die tot een concept behoren,
leiden we algemene voorwaarden af om tot dat concept te behoren. Daardoor kan ook veor
nog niet geziene instanties worden afgeleid dat ze tot het concept behoren. Op deze ma-
nier geleerde concepten zullen in het algemeen in kennis-systemen worden beschouwd als
nieuwe kennis; met deze nieuwe kennis kunnen een aantal voorheen onoplosbare problemen
worden opgelost.

In het vervolg van deze samenvatting zullen we alleen nog werken met instantie-beschrij-
vingen en concept-beschrijvingen. Omwille van de leesbaarheid zullen we ze echter altijd
afkorten tot instanties, resp. concepten. Het leer-probleemn wordt dan herleid tot het vinden
van een concept dat alle positieve instanties dekt, en geen enkele negatieve instantie dekt.

Voorbeeld Stel dat men moet bepalen welke wezens kunnen praten, d.w.z. dat men
een concept ¢ € Lo moet vinden dat alle wezens bevat die kunnen praten, en geen
andere. Stel dat gegeven is dat hilde and wim kunnen praten, d.w.z. dat ze positieve
instanties zijn van ¢, en dat tweety niet kan praten, en dus een negatieve instantie
is van ¢. Dan moet ¢ gelijk zijn aan mens. Immers: mannelijk, man en jongen
bevatten hilde niet; vrouwelijk, vrouw en meisje bevatten wim niet; levenloos
en L bevatten hilde noch wim; levend en T bevatten tweety; alleen mens bevat
hilde en wim, terwijl het toch tweety niet bevat. Omdat we nu afgeleid hebben
dat alle menselijke wezens kunnen praten, betekent dit dat luc en hendrik eveneens
kunnen praten, hoewel dat niet expliciet gegeven was. Dit resultaat is afhankelijk
van de gekozen concept-taal. Indien bijvoorbeeld ook het concept “mensen die aan
de K.U.Leuven werken” tot L¢ behoorde, zou ook dat een mogelijke oplossing zijn.
<&

In het algemeen kan een leeralgoritme niet zelf bepalen of het het te zoeken concept heeft

gevonden of niet. Enerzijds vereist dit dat er voldoende positieve en negatieve instanties
gekend zijn om alle andere kandidaat oplossingen uit te sluiten. Anderzijds vereist het
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dat £7 het tezoeken concept inderdaad bevat. Geen van beide voorwaarden is noodzake-
lijkerwijzé voldaan. Daarom beperken de meeste leer-algoritmen zich tot het vinden van
één kandidaal oplossing die alle positieve instanties dekt, en geen enkel negatieve mstantle )

dekt.

3 Iteratieve Versiernimten

Het-oplossen van het probleemi van Sectie 2 gebeurt meestal door middel van een zock-
proces- in de concept-taal L. Om op een systemnatische manier Lo te doorzoeken, wordt
Lc over het algemeen gestructureerd door middel van de orde-relatie | ‘algemener dan™, In
het algemeen is- (de voorstelling X; va,n) eeri verzameling instanties 1 algemener da.n (de
voorsteng Xg va.n) éen verzameling Vi, indien V4 eén deeclverzameling is van V5. Dat X,
algemnener is dan X5 wordt genoteerd door Xp < X1 Als Xy a.lgerncner is dan }Lg, zeggen
we ook dat Xy specifieker is dan X, dat X cen veralgemening is van X,; en dat X, een
specializatic is van X,

Voorbeeld De tralie in Figuur _l-'stél_t_.-niet alleen de concepten van £ voor, maar ook hoe
deze concepten zijn geordend t.o.v. “algemener dan”. Het meest algemene element
T in L¢, dat de verzaméling van alle wezens voorstelt, staat bovenaan. Het meest
- gpeciicke element bstaat-onderaan. -Ben-element ¥r-vande-frabeis-algemener dan——-
cen clement X5 van de tralie, indien X) =.Xj»; of indien Xj rechtstreeks verbonden
is met X, en boven X3 staat, en X5 algemener is dan X,. Za is, bijvoorbeeld, levernid
zowel algemener dan mannelijk als algemener dan vrouwelisk. Anderzijds is mens
niet algemener dan mannelijk, omdat mens niet gelijk is aan mannelitk, en omdat
man noch vrouw algemener zijn dan mannelifk. ' Ro

Informatie over hoe concepten uit L¢ zich onderling verhouden met betrekking tot de
relatie * ‘algemener dan”, noemen: we achtergrondkennis. De achtcrgrondkennls noteren we
door B. In deze thesis. bestuderen we alleen het leren van één- concept en veronderstetlen
we daarbij dat de achtergrondkennis correct is.

De orde-relatie “algemener dan” laat toe concepten te identificeren op basis van cen meer
algemeen soott van inform atie: positieve en negatieve onder- en bovengrenzen. Het gebriiik
van deze vier soorten informatie-elementen: voor het leten van concép’tén werd Ingevoerd.
door [Mallish, 1991].. We zullen ze illustreren aan-de hand van een voorbeeld. Figuur 2
illustreert de relatie tussen een informatie-element i en het te zoeken concept £ op. een
visuele rmanjer.

Voorbeeld 8tel dat we apnicuw. zocken naar het concept “kan praten”™. Indien we weten
dat alle manner kunnen praten, betekent dit dat _het te zocken concept algemener
moet zijn dan mdn. Indien we weten dat planten niet kunnen praten, mag het {e
zoeken concept niet algemener zijn dan leverloos: Van bepaalde concepten kan dus
gegeven zijn dat ze al dan niet een ondergrens vormen. voor het te zoeken concept,
met-andere woorden of ze-een posilicve ondergrens dan wel een negatieve ondérgrens
ziin voor het te zoeken concept. Voor ecri positieve bovengrens moet het te zoeken
concept dan’ alle instanties dekken die de positieve ondergrehs dekt {zie Figuur 2.4).
Voor gen negatieve ondergrens moet het minstens één. instantie niet dekken, die de
negatieve ondergrens wel dekt {zie Figaur 2.b).



a. Positieve Ondergrens b. Negaticve Ondergrens

c. Positieve Bovengrens d. Negaticve Bovengrens

Figuur 2: Soorten informatie-elementen

Duaal kan van bepaalde concepten gegeven zijn dat ze een positieve of negatieve
bovengrens zijn voor het te zoeken concept. Bijvoorbeeld, er kan gegeven zijn dat alle
pratende wezens levende wezens zijn (m.a.w. alleen levende wezens kunnen praten);
dit wil zeggen dat levend een positieve bovengrens is: levend is algemener dan het
te zocken concept. Alleen instanties die gedekt worden door de positieve bovengrens
mogen gedekt worden door het te zoeken concept (zie Figuur 2.c). Ook kan gegeven
zijn dat niet alle pratende wezens vrouwen zijn (m.a.w. het zijn niet alleen vrouwen
die praten); dit wil zeggen dat vrouw een negatieve bovengrens is: vrouw mag dan
niet algemener zijn dan het te zoeken concept. Of met andere woorden: er moet
minstens één instantie zijn die gedekt wordt door het te zoeken concept die niet
gedekt wordt door de negatieve bovengrens (zie Figuur 2:d). <

Men kan de relatie “algemener dan” uitbreiden naar instanties, door te definieren dat een
concept algemener is dan een instantie, indien het concept de instantic dekt. Indien £; een
deelverzameling zou zijn van L¢ (zodat “algemener dan” al gedefinieerd was), levert dit
geen inconsistenties op indien de single-representation trick [Cohen en Feigenbaum, 1981]
geldt. Op die manier kunnen we ook instanties als ondergrenzen beschouwen.

Van elk gegeven informatie-element weten we of het een positieve of negatieve onder- of
bovengrens is voor het te zoeken concept. Bijgevolg zullen kandidaat-oplossingen ook aan
deze voorwaarde moeten voldoen. We noemen een concept ¢ daarom consistent met een
positieve ondergrens ¢, indien ¢ algemener is dan 7; consistent met een negatieve ondergrens,
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Jindien ¢ miet dlgemeneris dan 1; consistent met een positieve bovergrens, indien 1 a_1 gemener
i15-dan ¢; en consistent met een negatieve bovergrens, indien 7 niet algemener is: dasi ¢ (zie

opnieuw Figuur 2). '
De uitgebreide probleemstelling wordt gegeven in Probleem 1. We veronderstellen hier

‘Gegeven:
& cen taal Lo van coneept-beschrijvingen ;
‘e een taal £ van voorbeeld-beschirijvingen;
e de achtergrondkennis 55;
o een relatie < : (L7 UL X Lr U ).':c) — { true, false };

o cen verzameling I van informatie elemenien: I bevat positieve ondergrenzen, ne-
gatieve ondergrenzen, positieve bovengrenzen en negatieve bovengrenzen van gen
doel-concept-heschrijving ¢;

Vind: eenelément & € £¢, indien er een bestaat, zodat h consistent is met alle elementen
varr 1. h wordt.ecn hypothese genoemd.

Probleem 1: Het leren van concepten

dat de gegeven informatie-elementen «correct zijn, d.w.z. dat ze geen ruis {Eng.. noise)
bevatten. ' N

De orde “algemener dan” laat vooral ook toe L¢ systematisch te.doorzoeken. Dit betekent
‘dat-alle elementen van L¢ liefst maar één maal worden beschouwd als kandidaat-oplossing,
(dit noemen we ¢en optimaal zockproces), en dat bepaaldé delen van Lo kunnen worden
gesnoeid tijdens het zoekproces. Om te snoeien kunnén we de boven- en oiidergrenzen in
twee groepen onderverdelen: positieve ondergrenzen en negatieve bovengrenzen noemen
we. s-grenzen; megatieve ondergrenzen .en positieve bovengrenzen noemen we g-grenzen.
‘Snoeien gebeurt dan met de volgende twee regels:

o indien een concept T niet consistent is met een s-grens ¢, dan zal elk concept z
specifieker dan r evenmin consistent zijn met Z; bijgevolg kan =’ gesnoeid worden.

o indien cen concept = miet consistent is met een g-grens 7, dan zal elk concept z!

algemener dan z evenmin consistent zijn met 1, bijgevolg kan 2’ gesnoeid worden.

Voorbeeld Indien mannelijk wordt verworpen als oplossing, omdat het niet consisient
1s met de positieve ondergrens hilde, kunnen ook onmiddellijk man en L worden
verworpen omdat ze specifieker zijn dan mannelijk. Zo kan ook T worden verworpen,
van zodra is gevonden dat levend de negatieve ondergrens tweety dekt. O

3.1 TIteratieve Versieruimten

Naargelang het probleem kunnen verschillende aspecten moeten wordéen ingevuld.



Figuur 3: Over-algemene, over-specifieke en consistente elementen in L¢

o het probleem kan gesteld zijn als een incrementeel probleem: hoewel de verzameling
I nadien nog kan worden uitgebreid, moeten er toch al bepaalde problemen opgelost
kunnen worden met de tot nu toe geleerde kennis. In dit geval moet een hypothese
gezocht worden die consistent is met alle tot nu gekende informatie-elementen. Deze
hypothese kan dan al gebruikt worden om nieuwe problemen op te lossen. Het af-
wisselen van leer-fasen met probleem-oplossings-fasen vereist dat een hypothese die
consistent was met alle voorheen gekende informatie-elementen in J, maar niet con-
sistent is met een pas gekend informatie-element 7, moet kunnen aangepast worden
tot een hypothese consistent met alle elementen van I en met 7, zonder het zoekpro-
ces van vooraf aan te moeten beginnen. In deze thesis hebben we ons beperkt tot
incrementele leer-algoritmen.

e men kan L¢ specifiek naar algemeen, algemeen naar specifiek of in beide richtingen te-
gelijkertijd doorzoeken. In deze thesis bespreken we alleen bi-directionele algoritmen.
Dit heeft als voordeel dat bij het oplossen van problemen zowel voor een maximaal
algemene oplossing als voor een maximaal specifieke oplossing kan gekozen worden,
en het laat toe relevante informatie-elementen automatisch te genereren.

Gegeven een probleemstelling als Probleem 1, dan is de oplossingsruimte de versieruimte
(Eng. Versionspace) VS van alle consistente concepten in L¢. Op voorwaarde dat Le geen
oneindige dalende of stijgende ketens bevat voor de relatie <, en dat L¢ convex is, kan een
versieruimte worden voorgesteld door middel van de verzameling G van alle meest algemene
elementenin V'S, en de verzameling S van alle meest specifieke elementen in VS: er bestaat
dan immers voor elke consistente ¢ € £ een s € S en een g€Gzodats < c=xg [Mitche]l,
1982]. Figuur 3 stelt deze situatie voor: de taal Lo wordt verdeeld in drie delen: de
verzameling OG van over-algemene concepten (d.w.z. concepten die inconsistent zijn met
minstens één g-grens), de verzameling OS van over-specifieke concepten (d.w.z. concepten
die inconsistent zijn met minstens één s-grens), en de verzameling V'S van alle concepten
consistent met alle g-grenzen en alle s-grenzen. Aan de bovenste rand van VS bevindt zich



G: aan de'ondersterand van V& bevindt zich S.
{Mellish,_.lggl] stelt het “Description Identification” algoritme {DI) voor: een'bi-directioneel
breedte-eerst programma-dat G en § berekent. Een eerste voordeel van het volledig bereke-
nen van G en & isdat alle'info’r.m_&igic over dé concepten consistent met [ vervat zit in G en.
8, en de informatie-elementen dus niel hoeven opgeslagén te warden. Een tweede voordeel
is. dat, op voorwaarde dat het te zéeken concept tot Le behoort, somimige niet-gegeven
instanties reeds met zekierkeid als positief of negatiel kunnen geclassificeerd worden: een
instantie i die gedekt wordt door-alle eleme_nten in S zal zeker ook gedekt worden door
het te zgoekcn_ concept; een 'i'nstantx;_c ¢ dat door geen enkel element van § wordi _gedek_f,
kan in‘geen geval door het te zoeken concept gedekt worden. Het nadee! van deze aanpak:
ligt in het feit dat de grootic van G en S-in het slechtste geval een exponéntiéle functie
van het aantal elementen in 7 kan zijn [Haussler, 1988}, Een tweede nadeel 1s dat ook de
tijd-om G en-S voor jeder nieuw informatie-element te berekenen in het slechtste geval een
exponentiéle functie is van het aantal informatie-elementen:

Het Iterative Versionspace algotitme (ITVS) [Sablon et ol, 1994} is cen bi-directioneel
diepte-cerst algoritme om Probleem 1 op te lossen. Het voordeel van ITVS is dat het
geheugcn—verbruik in het slechiste geval een lineaire functie kan zijn van het.aantal ele-
menten in 1. ITVS moet daartoe wel alle informatie-elementen bijhouden. ITVS berekent
ook niet telkens heel § en S (wal ook niet is gevraagd in Probleem 1) maar wel slechts

meen maximaal a,lgemeen element- g € G, en één maximaal specifiek element s € S. " Boven-
dien houdt ITVS in de stapels B, ¢én B, terugheer-informatie (Eng backtrack information}
bij. Deze terugkeer-informatie bestaat uit keuzepunien -waar het diepte-eerst algoritme
€en keuze heeft moeten maken welk alternatief eerst te onderzoeken, en welke alternatie-
ven later te onderzoeken. Aan de hand van de terugkeer-informatie kunnen dan ook alle
altérnatieven berekend worden, indien nodig.

ITVS kan, gegeven een nieuw informatie-element, het huidig maximaal algemeen element g
.daripassen in een t1)d lineair.in het aantal mformat;e elementen, afgezienvan het terugkeren
(Eng. bacltmckcn) doorheen een tuimte met grootte exponenticelin het aantal informatie-
elemen’_ﬁen. Om echter orgeziene m{or_matle elementen et zekerfieid te classificeren is nog
steeds de volledige verzameling G of S nodig. Beide verzamelingen kunnes; indien nodig,
in het kader van 1TVS berekend worden. De tijd die daarvoor nodig is, is in het slechtste
geval dan wel éen linedire factor slechter dan deijd van DI,

3.2 _Com_pact_ie' van [

Vermits ITVS als. dusdani'g_.allé informatie-elémenten expliciet meet bijhouden, en vermits.
ook de'rekentijd van ITVS een funétic is van het aantal informatie-clementen, is het belang-
rijk-zo- weinig mogelijk informatie elementen te moeten bijhouden. Dit wil zeggen, dat we,

ten eerste, geen overbodige mformatlc elementen wensen bij te houden. Hiermee bedoelen
we informatie-elementen met een k}cm:_:re informatiesinhoud dan een ander informatie-
element. Ten tweede zullen w¢ 6ok trachten paren informatie-elementen te vervangen door
één eénkel informatie-element met dezelfde informatie-inhoud [Sablon en De Raedt; 1995].
‘We zullen deze operaties illustéren aan de hand van voorbeelden.



3.2.1 Overbodige informatie-elementen

Voorbeeld Stel dat man en hendrik twee positieve ondergrenzen zijn voor het te leren
concept. Het concept man dekt de instantie hendrik; eisen dat man een ondergrens
is voor een hypothese ¢, komt neer op eisen dat alle instanties gedekt door man
ook gedekt worden door ¢, dus in het bijzonder dat hendrik gedekt wordt door c.
Van zodra man een positieve ondergrens is, is hendrik daarom ook een positieve
ondergrens. Dit betekent dat hendrik niet hoeft bijgehouden te worden. <

In het algemeen hoeft men van twee positieve ondergrenzen waarvan de ene algemener
is dan de andere, steeds slechts de meest algemene bij te houden. Hetzelfde geldt voor
negatieve bovengrenzen.

Negatieve ondergrenzen hebben een duaal karakter: van twee negatieve ondergrenzen waar-
van de ene algemener is dan de andere, moet men slechts de meest specifieke bijhouden.
Hetzelfde geldt voor positieve bovengrenzen.

Voorbeeld Stel dat het concept vrouwelijk en de instantie tweety (een vrouwelijke vogel),
beide negatieve ondergrenzen zijn voor het te leren concept. Eisen dat vrouwelijk een
negatieve ondergrens is voor een hypothese, komt neer op eisen dat er een negatieve
instantie bestaat die gedekt wordt door vrouwelijk. Bijgevolg zal eisen dat tweety
een negatieve ondergrens is, impliceren dat vrouwelijk een negatieve ondergrens is.
Dit betekent dat vrouweligk niet hoeft bijgehouden te worden. <

Er is nog een derde geval van overbodige informatie-elementen.

Voorbeeld Stel dat levend een positieve bovengrens is, en dat “de appel van Newton”
een negatieve ondergrens is. De instantie “de appel van Newton” wordt niet gedekt
door levend, maar wel door levenloos. Eisen dat levend een positieve bovengrens is
voor een hypothese ¢, heeft dan tot gevolg dat ¢ onmogelijk “de appel van Newton”
kan dekken. Bijgevolg hoeven we “de appel van Newton” niet bij te houden. O

Dit voorbeeld toont aan dat negatieve ondergrenzen die niet specifieker zijn dan elke po-
sitieve bovengrens, overbodig zijn. Duaal zijn negatieve bovengrenzen die niet algemener
zijn dan elke positieve ondergrens overbodig.

3.2.2 Vervangen van informatie-elementen

In een volgende stap kunnen we ook twee gegeven positieve informatie-elementen vervangen
door één informatie-element met dezelfde informatie-inhoud. We bespreken twee gevallen:
ten eerste, hoe en wanneer twee positieve informatie-elementen kunnen vervangen worden
door één ander positief informatie-element, en ten tweede, hoe en wanneer één negatief
informatie-element kan vervangen worden door een positief informatie-element.

Voorbeeld Stel dat vrouw en man beide positieve ondergrenzen zijn. Merk op dat mens
de enige veralgemening is van vrouw en man in L¢, die maximaal specifiek is.
Daarom is eisen dat vrouw en rman positieve ondergrenzen zijn equivalent met eisen
dat mens een positieve ondergrens is. Immers, een hypothese ¢ consistent met vrouw
en consistent met man, zal algemener moeten zijn dan vrouw en man. De maximaal
specifieke van zulke veralgemeningen is mens, en deze is uniek. Dus zal ¢ algemener
moeten zijn dan mens. Dit betekent dat mens een positieve ondergrens is. <
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In het algemeen kunnen we twee positieve ondergrenzen die slechts één maximaal specificke
veralgemening hebben, weglaten door te eisen dat deze maximaal'specifieke veralgemening
een positieve ondergrens is.

Duaal, kunnen we ock twee positieve bovengrenzen die slechts. één maximial algerrene
spe(:la.hzat.le hebben, weglaten door te éisen.dat deze maximaal algemene specializatic een.
positieve _bov_engren__s 1s.

Ten tweede bespreken we hoe we één negatieve ondergrens kunnen vervangen door één
pasitieve bovengrens. Op zich levert dit: geen ‘Winst op, thaar de positieve bovengrens kan
everitueel tesamen met een andere positieve bovengrens vervangen worden door hun meest.
algemene specializatie. '

Voorbeeld Stel dat we moeten zoeken welke wezens rokjes dragen, dat vrouw een po-
sitieve ondergréns 18, en dat mens een positieve Bovengrens is. Stel nu dat de ne-
gatieve ondérgrens jongen gegeven isi Dan is ér maar én meest algemeen .con-
cept dat algemener is dan vrouw en toch niet algemener is dan jongen, namelijk
vrouwelizh. Dit betekent dat de negatieve ondergrens Jongen door de positieve bo-
venigrens vrouwelijk kan vervangen worden. In dif specifieke peval gijiver twee maxi-
masl algemene specializaties van de pQS_l_t.ie‘VC bovengrenzen mens én vrovweltik,
zodat ze miet kunnen vervaﬁ'gen'worden:-door één andere. &

Net. zoa]s het kader dat gcschetst wordt voor ITVS, is deze aanpak ona.fba.nkehjk van.
de gekozen taal. Bovendien zijn de ejgenschappen van redundante informatie-elementen
ook onafhankelijk van ITVS geformuleerd. Dat maakt ze toepasbaar bij elk algoritme
dat infermatie-elementen explicliet moet bijhouden Bij nader inzien zijn verschillende
van deze aspecten in de context van attribuut-waarde talen-eok reeds impliciet toegepast.

Zo kunnen, bijvoorbeeld, de resultaten van het Incrementel Non- Backtracking Focussing
:algorltme van [Smith en Rosenbloom .1960] ook in Beze context worden gemterpreteerd De
negatieve ondetgrenzen die kunnen origesét worden naar positieve bovengrenzen, worde_n
in een attribuut-waarde context near-miss genoeimd [Winston, 1975} .

3.3 D'i__s_jun_ct‘iex.re Iteratieve Versiernimten

De keuze van de concept-taal is zeer belangrijk bij het leren van concepten. Indien-de taal
niet toelaat het te zoeken concept voor te stellen, kan ITVS (of een leersysteem in het
algemeen) geen oplossing vinden voor Probleem 1. Het bepalen van een taal'die voldoende
concepten bevat, 35 dus een bela,ngrjjk probleem. Dit probleein kan gedeeltelijk opgelost
worden doar au{omafzsch de te gebruiken taal te veranderen, bijvoorbeeld door ze uit te
breiden (dxt noemt men shiff of bias iUtgoﬁ" 1986], [_De Raedt,_ 1992}

Voorbeeld De taal L£¢ uit de vorige voorbeelden zow kunnen uitgebreid worden met
nieuwe concepten als volwassene kind, enz. De relatie ‘algemener dan” moet ook
'ustgebrezd worden met bettekkmg tot deze concepten: man en vrouw zijn spemﬁeker
dan volwassene, voluiasséne1s specifieker dan mens, ehz. Met de uilgebreide taal
kunnen dan meer concepten worden uitgedrukt dan met de oorspronkelijke taal. Merk
op dat de-gekozen ulhbrelding domein-afhankelijk is (het concept volwassene is niet
zornaar 1n elke taal nuttig als uitbreiding), en dusis z¢ ook tecl-afhankelijk. O
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Een mogelijke taal-onafhankelijke uitbreiding, die in vele leer-programma’s wordt gebruikt,
is het “combineren” van concepten uit L¢ tot nieuwe concepten. Zulk een “combinatie” van
concepten dekt een instantie enkel en alleen indien één van de concepten de instantie dekt.
Uit het volgende voorbeeld blijkt waarom deze combinaties klassiek disjuncties worden
genoemd. De elementen van een disjunctie noemen we disjuncten.

Voorbeeld Veronderstel dat we opnieuw moeten bepalen welke wezens rokjes dragen. Ge-
geven zijn de positieve instanties hilde en liesje. De instantie liesje wordt gedekt
door het concept meisje. Ook gegeven zijn de negatieve instanties wim en tweety.
Een leerprogramma (bijvoorbeeld ITVS) dat een oplossing zoekt in L, faalt: na
de eerste twee informatie-elementen zijn er twee mogelijke maximaal specifieke con-
cepten: mens en vrouwelijk. De cerste mogelijkheid dekt echter ook de negatieve
instantie wim; dus dekken ook alle veralgemeningen van mens deze negatieve instan-
tie. De tweede mogelijkheid dekt ook de negatieve instantie tweety: dus dekken ook
alle veralgemeningen van vrouwelijk deze negatieve instantie. Bijgevolg is er geen
oplossing.

Beschouw nu de disjunctie van meisje en vrouw (genoteerd door meisje V vrouw)
als een nieuw concept. Het concept meisje V vrouw dekt alle instanties die door
meisje of door vrouw worden gedekt. Dan dekt meisje V vrouw beide positieve
instanties hilde en liesje, maar geen van de negatieve instanties wim en tweety. <

Net als in Sectie 3.1 volgt dan ook hoe disjuncties zich verhouden volgens de relatie “al-
gemener dan”. Deze relatie laat opnieuw toe de verzameling van de disjuncties op een
gestructureerde manier te doorzoeken. Nochtans beperkt men zich dikwijls tot het zoeken
in Lo naar elke disjunct afzonderlijk. Dit kan niet zonder meer taal-onafhankelijk gebeu-
ren. Het gaat alleen als voor alle ¢;, ¢; en ¢; in L¢ geldt dat ¢; < ¢ V ¢3 impliceert dat
c; meer specifiek is dan ¢; of meer specifiek is dan c;.

Deze beperking geldt in het gebied van Inductief Logisch Programmeren (zoals het wordt
besproken in Sectie 4) voor niet-recursieve concepten. A fortiori geldt ze dan ook voor
attribuut-waarde voorstellingen, omdat deze ook als propositionele, niet-recursieve voor-
stellingen kunnen beschouwd worden.

Voorbeeld Het concept man is specifieker dan de disjunctie mannelijk V vrouwelijk,
omdat rnan specifieker is dan mannelijk. Het concept meisje is eveneens specifieker
dan mannelijk V vrouwelijk.

Indien een concept dier niet specfieker zou zijn dan mannelijk, noch specifieker dan
vrouwelifk, toch specifieker zou zijn dan mannelijk V vrouwelijk, en tot Lo zou
kunnen behoren, dan zou de beperking niet opgaan. O

Door gebruik te maken van deze beperking kan men de definitie van consistentie uitbreiden
naar disjuncties: een disjunctie van concepten is consistent met een s-grens enkel en alleen
indien één van de concepien consistent is met de s-grens; een disjunctie van concepten is
consistent met een g-grens enkel en alleen indien elk van de concepten consistent is met de
g-grens. Merk op dat het toevoegen van disjuncten een concept algemener maakt, en dat
het weglaten van disjuncten een concept specifieker maakt.

Voorbeeld De disjunctie meisje V vrouw is consistent met de positieve ondergrens liesje
omdat meisje consistent is met liesje; de disjunctie is consistent met de positieve
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ondergrens hilde omdat vrouw consistent is met hilde; de disjunictie is consistent
- 'met de negaticve ondergrenzen tweety én wim, omdat elke disjunct consistent is met
tweety en met wim. O

Omdat a V e; niet meer instanties dekt dan ¢;; indien ¢, algemener is dan ¢z, is het
‘piet nuttig de. disjunctie o V ¢ toe te laten. Im het a.lgemccn noemen’ we een dlS_qu‘lCth'
gereduceerd, indien geen enkele van zijn disjuncten algemener is dan een andere van zijn
disjuncten. In het vervolg werken we alleen met géreduceerde disjuncties.

Hoewel het invoeren van disjuncties toelaat: meer concepien te beschrijven, is het op zich
niet praktisch bruikbaar om automatisch concepten te leren, omdai de grootte van de
versieruimte van alle disjuncties consistent met een gegeven aantal informatie-elementen in
het algemeen combinaterisch explosief is. In deze versieruimte is er één miximaal algemeen
element, na.mehjk de disjunctie van alle elementen van L¢ consistent. met alle g- grenzen,
en zijn er relatief veel maximaal specifieke eleinenten.

Voorbeeld Nemen we opnieuw het concept “kan praten”. Gegeven- de positieve onder-
grénzen hilde, wirn en liesje. De instantie fweety is cen negatieve ondergrens. Dan-is
de disjunctie mannehjk V mens V levénloos de meest algemene consistente disjunc-
tie consistent met alle gegeven informatie-elementen. Dat deze disjunctie consistent
is met-alle _in3f0rmatie—eicmenten is. eenyvoudig te controleren; dal ze ook maximaal
._..__..._........_a,lgemeen'._i3,.,.kom.t..d0'cj:r HPf_fm'i‘ Ha'f_-geen_:,e;'nk.e-]ff van.de Aicjnn_rf_fpn L:ﬁn--\\l’erﬁlgemeénd ______________ -
worden zonder tweety ‘te dekken, en.geen enkele andere disjunct kan toegevoegd
worden, en toch een geréduceerde disjunctie té bekomen. '

De enige meest specifieke disjunctie is man V vrouw V meisje. Deze disjunctie.is
consistent met alle.informatie-elementen. Geen enkele disjunct kan echier weggelaten
worderi, of meer specifiek gekozen worden. 3

Zoals dit voorbeeld aantoont, bevat de resulterende versiernimte tal -van disjuncties die.
‘ongewenst zijn: het te zoeken concept was net zoals hoger mens. Door het toelaten van
disjuncties bevatten de meeste oplossingen echtér disjunctics, en wordt er onvoldoende
véralgemeend en gespecializeerd. Om al de ongewenste disjuncties uit te sluiten zou men
haast voor elke mogelijke disjunctie een bovcn- of ondergrens moeten. vinden die er niet
consistent:mee is. Daarom moeten we op één of andere manier aangeven. dat we niet alle
dls}unctws willen beschouWCn en op één of andere manier het aantal disjuncten. beperken

In cen eerste stap beschirijven we hoe we, vertrekkend van de maximaal a) gemiene disjunctie
meer interessante consistente deel-disjuncties kunnen construeren. In een tweede stap zul-
len we door middel van een extra voorkeur-criterium de verzameling van de meest gewen ste
deel-disjuncties selecteren..

3.3.1 Deel:disjuncties en bijna maximaal specifieke disjuncties.

In.cen éerste stap: beschouwen we van de maximaal algemene disjunctie .., alleen deel-
disjuncties die consistent zijn met alle s-grenzen; een deel-disjunctie is een disjunctie waar:
van ‘de dlSJuncten een deelverzamehng vormen van de disjuncten van gmax. De gekozen
deel-disjuncten zullen dan. consistent zijn met alle’ informatie-elementen. Van eeft. maxi-
maal specifieke disjunctie kunnen we geen disjuncten weglaten, en toch consistent blijven
met alle s-grenzen. De enige mianier-om dadr het aantal disjuncien te beperken is het veral-
gemenen van twee of meer disjunciies tot cen nieuwe disjunct. De keuze welke disjuncties
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Figuur 4: Bijna maximaal specifieke disjuncties

te veralgemenen, is niet triviaal: in principe komen alle partities van de disjuncten in
aanmerking. Daarom voeren we een nieuw begrip in: de bijna mazimaal specifieke disjunc-
ties onder een disjunctie g. Een bijna mazimaal specifieke disjunctie onder een disjunctie
g1V .-+ V g is een disjunctie s; V -+- V s, zodat voor elke j, 1 < j < n, g; algemener is
dan s;, s; maximaal specifiek is en consistent met alle s-grenzen waarmee g; consistent is
(zie Figuur 4). Op die manier wordt het probleem welke disjuncties van de maximaal spe-
cifieke disjunctie moeten gecombineerd worden opgelost: er zullen nog precies n disjuncten
overblijven.

Het nadeel van deze methode is dat de resulterende disjuncties te specifiek kunnen zijn.
Dit zal blijken wanneer een nieuwe s-grens bekend wordt die met geen enkele disjunct van
g consistent is. In dit geval is de gekozen deel-disjunctie, noch zijn specializaties een oplos-
sing. Ook kunnen de resulterende disjuncties te algemeen zijn. Dit zal blijken wanneer een
nieuwe g-grens bekend wordt, die met minstens één van de disjuncten van s inconsistent
is. In dat geval zullen ook de overeenkomstige disjuncten in g inconsistent zijn, en dus
ook de disjuncten van g,,... Daarom moeten de over-algemene disjuncten van Gmaz cerst
worden gespecializeerd. Daarna kunnen deel-disjuncties van deze nieuwe maximaal alge-
mene disjunctie worden beschouwd, tesamen met de bijhorende bijna maximaal specificke
disjuncties.

Voorbeeld In het vorige voorbeeld kunnen we de volgende deel-disjuncties van ¢ =
mannelijk V mens V levenloos worden beschouwd: mens en mens V levenloos. De
andere (echte) deel-disjuncties (d.w.z. mannelijk, levenloos, mannelijk V mens, en
mannelijk V levenloos) zijn niet consistent met alle s-grenzen. Men kan opmerken
dat de tweede disjunct van mens V levenloos met geen enkele s-grens consistent is,
en daarom eveneens zou kunnen weggelaten worden (zie verder). De disjunct mens
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is consistent met alle s-grenzen. .Fen bijna algemeen specifieke disjunctie onder g
moet dan eveneens een disjunct bevatten die met alle. s-grenzen consistent is. De
enige mogelijkheid voor s is'dan-eveneens mens.- Het resultaat is.dan g = mens en
5. IMERS.

Wanneet zou blijken dat de instantie hansje, die gedekt is door het conicept jongen,
een negatieve ondergrens is, volgt -dat mens te algemeen is: Een mogelijke specia-
lizatie van mens die wel consistent is met alle informatie-elcmenten is de disjunc-
tie man V vrouw V meisje. De enige bijna maximaal specifieke disjunctie onder
man-V vrouw V meisje is dan man V vrouw. V metsie zelf., Res

3.3.2 Bijkomende voorkeur-criteria

Een andére manier om toch de gewenste disjuncties als oplossing te bekomen is een bijko-
.mend voorkeur-criterium te specifiéren. In het algemeen specifieert een voorkeur-criterium-
welke concepten verkozen worden. bover . andere concepten. Meestal bevat het voorkeur-
criteriutn een notie van minimalitedt. Twee mogelijke criteria die-in deze thesis worden
-onderzocht zijn het criterivm van minimale lengle (ML) en het criterium van de minimale
verzameling (MS). Een consistente disjunctic noemen we ML, indien er geen consistente
disjunctie bestaat met minder disjuncten. Een consistente dlS_]llnCtrlC noemen we M3, indien
..er. geen enkele deel-disjunctie hestaat die. ock nog. consistentis_ . _____._

Voorbeeld In het vorige vooibeeld. kon de- disjunct levenloos uit de .disjunctie
mens V. levenloos worden weggelaten omwille van beide criteria. Enerzijds bestaat
er een consistente disjunctie met één disjunct (namelijk mens); anderzijds.is mens
ook een deel-disjunctie, die toch nog consistent is met alle informatie-elementen.

<

We hebben dan het volgende resultaat: de verzameling van alle consistente disjuncties die
voldoen aan het MS (resp. ML) voorkeur-criterium is de verzaméling-van alle dizjuncties
-d waarvoor gcl_d_t dat:

» d is specifieker dan een deel-disjunctie g van gmas, die voldoet aan het MS (resp. ML)
criteriums;

e dis algemener dan ecen bijna maximaal specifieke disjunctie s onder g.

DD is een disjunctieve.uitbreiding van DI: het berekeént in cen eerste stap alle disjuncten
van de maxirnaal algemene disjunctie, enalle overeenkomstige maximaal specifieke disjunc-
ten. In-een tweede stap berekent DDI alle combinaties van deze disjuncten die consistent
zijn met alle s-grenzen, en de gvereenkomende bijna maximaal specifieke disjunctics onder
deze deel-disjuncties.

DITVS is éen disjunctieve uitbreiding van ITVS: het berekent één maximazl algemene’
disjunctie, die voldoet aan het MS-criterium, en een overeenkomende bijna maximaal spe-
cificke disjunctie. DITVS kan aangepast worden zodat de oplossing ML is.

De voor- en nadelen van DITVS t.o.v. DDI zijn a.naloog aan de voor- en nadelen van ITVS
t.0.v. DI; enerzijds is er cen besparing van geheugen door hét niet expliciet bijhouden van
alle deel-disjuncties van de maximaal algémene disjunctie; anderzijds kunnen disjuncten
die werden verworpen als disjunct voor de ene disjunctie, later eventueel opnieuw berekend
meoeter worden als-deel van een.andere disjunctie. ' '

15



4 Iteratieve Versieruimten en Inductief Logisch Pro-
grammeren

4.1 Inleiding

In Inductief Logisch Programmeren (ILP) tracht men inductieve leer-problemen op te los-
sen door gebruik te maken van logische voorstellingen. In die zin is ILP te situeren in de
doorsnede van de onderzoeksgebieden automatisch leren en Logisch Programmeren (Eng.
Logic Programming). Op dit ogenblik stelt men in ILP concepten hoofdzakelijk voor door
middel van predicatenlogica. Predicatenlogica is expressiever dan attribuut-waarde voor-
stellingen, omdat deze laatste in wezen propositioneel zijn.

In het bijzonder is het leren van concepten, voorgesteld door middel van een logisch for-
malisme, bestudeerd in ILP. In die context wordt dit dan leren van predicaten genoemd.
In deze sectie tonen we hoe het algemene kader voor het leren van concepten uit Sectie 3
kan worden toegepast in ILP. Daartoe zullen we de verschillende elementen van dit kader
verder specifiéren: de instantie-taal, de concept-taal en de relatie “dekt”.

Het belang van deze sectie is dan tweeérlei. Enerzijds tonen we aan dat we op die manier
het leren van predicaten kunnen beschouwen als een specifieke vorm van het leren van
concepten, zodat alle algemene eigenschappen van Sectie 3 onmiddellijk toepasbaar zijn.
Anderzijds tonen we hiermee ook aan dat het kader van Sectie 3 ook effectief praktisch kan
toegepast worden.

4.2 De instantie-taal en de concept-taal

Concepten komen in ILP overeen met predicaten. De instanties van een concept worden
meestal voorgesteld door feiten van het overeenkomstige predicaat. De concepten zelf wor-
den voorgesteld door middel van definiete clausules (Eng. definite clauses) met het over-

eenkomstige predicaat in het hoofd. Een definiete clausule is van de vorm h « &, O, 2
Hierinzijn hen by , ..., b, atomen (Eng. atom, of ook positive literal). Het atoom h is het
hoofd van de clausule; de atomen b, | ..., b, vormen het lichaam. Deze atomen kunnen

ook veranderlijken bevatten; alle veranderlijken in een clausule zijn 1mpliciet universeel
gekwantifieerd. Een clausule kan ook beschouwd worden als een verzameling van de er in
voorkomende atomen, waarbij een strikt onderscheid wordt gemaakt tussen de atomen in
het hoofd en die in het lichaam. In het lichaam van deze clausules worden concepten uit
de achtergrondkennis gebruikt. In een ILP context betekent dit dat deze predicaten reeds
zijn gedefinieerd, en dat hun definities tot de achtergrondkennis behoren.

Voorbeeld In het voorbeeld dat we in de vorige secties hebben ontwikkeld kunnen we
nu ook concepten uitdrukken die relaties voorstellen tussen verschillende wezens. Zo
zijn er de relaties ouder, vader, moeder, enz. We gaan er steeds vanuit dat we een
van de concepten moeten leren, d.w.z. uitdrukken in termen van de andere. Die
andere worden op dat ogenblik als volledig gekend beschouwd (zie Sectie 2), d.w.z.
zi] behoren tot de achtergrondkennis bij het leren.

Stel bijvoorbeeld dat het concept ouder is gekend, en dat we (de definitie van) het
concept vader moeten uitdrukken in termen van de predicaten uit de tralie M, en
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het predicaat ouder. Mogelijke concept-definities zijti bijvoorbeeld:
vader{ X , ¥ } « levend{ X ),mens(Y ),
wat uitdrukt dat elk levend wezen X de vader is van elke mens Y, of
vader( X , Y ) v mannelijk( _X_),qu_der( X,Y ),_animat_e( v,

wat uitdrukt dat elke ma’nneiijk levend wezen. X dat de ouacr 18 van een levend wezen
Y, de-vader is van Y. Talrijke andere clausules zijn natuurlijk mogelijk, O

4.3 De relatie “dekt”

In JLP iseen instaniie gedekt door een concept indien de instantie een logisch gevolg i5 van
het concept, tesamen met de achiergrondkennis B. BEen concept h « ! dekt een instantie i,

indien het hoofd A unificeert met de instantie 1, en indien het lichaam ! cen logisch gevolg
is van de achtergrondkennis. Onr te testen of een instantie gedekt wordt deor een concept-
zal men.in het algemeen een stellingbewijzer (bijvoorbeeld PROLOG) gebruiken. Indien
men zich beperkt-tot logische voorstellingen zonder functie-symbolen of indien men geen
.....«.recu.rsie;\te.de,ﬁni.ties..gebr.u.ikt-,-:ka_.n.;men.gai'}l.ndtzmh daf deze test steeds eindigt Anders kan.

men dat niet, en is dé test eigenlijk maar een benadering van het idedal.

Voorbeeld Stel-dat de volgende feilen tot de.achterg’ro_ndker_i_nis behoren:

maﬁ:( wimn ). ouder( wim ; liesje:).
meisje( hesje ). ouder( oliver , tweely ):
mannelijk( oliver ). ouder( hilde , hansje ).

vrouwelis k( tweety )

Door middel van de relatie “algemener dan” voorgesteld in de tralie M, kunnen we
uit deze feiten een aantal andere logische gevolgen afleiden (zoa.ls ma.nnefzj K wim ),
levend( tweety ), human( liesje. ), enz.) 'We veronderstellen dat de atomen die niet
op deze marier afleidbaar zijn en die we niet hebben. opgesomd (zoals man( dliver B
vrou_w( lweely J, vrpuw( liesje ) enz.). geen logisch gevolg zijn van de achtergrond-
kerinis. '

Dan dekt. de clansule

vadér(z XY )+ mannelijk{ X ) ouder( X | Y ), levend( YV ),

de instanties vader{ oliver , tweety ) en veder{ wim , liesje ), en geen andere, om-
dat bij andere waarden voor X en Y het lichaam van. deze clausule geen logisch gevolg
is van de gegeven achtérgrondkennis. &

Niet alle veranderlijkén wuit. het lichaarn moeten ook in het-hoofd veorkomen, Omgekeerd
beperken we ons. wel tot clausules waarvan het hoofd geen veranderlijken bevat die niet
in-het lichaam voorkomen. Clausules die aan deze la,a.tste voorwaarde voldeen noemen we
beperkt in bereik (Eng. range-restricted).
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Voorbeeld Het concept dat uitdrukt dat iemand een kind heeft (laten we het concept
i15_een_ouder noemen) kan bijvoorbeeld gedefinieerd zijn door de clausule

1s.een_ouder( X ) — ouder( X ,Y ).

Deze clausule drukt uit dat voor elke X en Y geldt dat als X de ouder is van Y,
dat dan X een ouder is; of met andere woorden: voor elke X geldt dat als er een ¥
bestaat waarvan X de ouder is, dat dan X een ouder is.

De clausule
bemint( X | Y ) « mens( X )

laten we niet toe, omdat ze uitdrukt dat X elke ¥ bemint. Om (minstens) aan te
geven wat het domein is van deze Y eisen we dat ¥ ook in het lichaam voorkomt.
Een versie van deze clausule die beperkt in bereik is, is bijvoorbeeld:

bemint( X , Y ) « mens( X ),mens( Y )
<&

Volgens de definitie van Sectie 3.3 is een disjunctie van concepten in de context van ILP
een verzameling van clausules met hetzelfde predicaat in het hoofd. Een disjunctie van
clausules dekt een instantie, indien het hoofd van minstens één van de clausules unifi-
ceert met de instantie, en indien het lichaam van die clausule een logisch gevolg is van
de achtergrondkennis. Net zoals in het taal-onafhankelijke geval, is het gebruik van dis-
juncties nuttig indien er onvoldoende concepten (dus predicaten) gedefinieerd zijn in de
achtergrondkennis.

4.4 De relatie “algemener dan”

De relatie “algemener dan” komt in het ideale geval overeen met de relatie “impliceert”.
Ook dit zal men weer moeten benaderen door middel van testen die voor logische voorstel-
lingen zonder functie-symbolen of voor niet-recursieve definities correct zijn. Een mogelijke
benadering is het gebruik van veralgemeende subsumptie [Buntine, 1988] om te testen of de
ene clausule algemener is dan de andere. Veralgemeende subsumptie is een veralgemening
van @-subsumptie [Plotkin, 1970], in die zin dat veralgemeende subsumptie rekening houdt
met de achtergrondkennis, daar waar #-subsumptie dit niet doet: f-subsumptie is een lou-
ter syntactische operatie. We zullen zowel f-subsumptie als veralgemeende subsumptie
illustreren aan de hand van een voorbeeld.

Voorbeeld De clausule ¢4
c1: vader( Xy, ¥y ) ouder( X, Y; ), mannelijk( X, ),levend( Y7 )
1s algemener dan clausule ¢,

2t vader( Xp , Yy ) ouder( X, , Y, ), mannelijk( X, )ymens( X, ),
levend( Y, )

met betrekking tot §-subsumptie, omdat men de veranderlijken in ¢; zodanig kan
instantiéren dat de atomen van ¢, ook in ¢; voorkomen (namelijk X; = X, en ¥; =
Y2). Zo is 1 ook algemener dan c¢j met betrekking tot f-subsumptie:
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¢y vader{-wim , Y3 Y ouder{ wim , Vs ), mannelijk{ wim ), mens{ wim )3
devend( Y3 ).
Maar ¢; 1s niet :algemener dan ¢3 met betrekking tot 8-subsumptie.

cs: vader( X; , Y; Je— ouder( X3, Y: ),man{ X3 ), mens( Xs ),
levend( V3 ).

Immers, het atoom mannelizk( Xy ) kan voor geen enkele instantiatie van X, een
element zijn van het lichaam van cz. Nochtans dekt ¢, alle instanties die door ¢
zijn gedekt. Imnmers, stel dat vocr een bepaalde instantie: uader( e, b ) de atomen
ouder( a , b}, man{ a ), mens( ¢ ) en levend( b ) uit het lichaam van ¢; een Jogisch
gevalg. zljn van de achtergrondkennis, Din unificeert. vader( a , b ) ook met het hoofd
van.ci. Bovendien was verondersteld dat de atomen oudew:_( a_, b}en levend{ b ) uit
het lichaam van ¢; een logisch gevolg zijn var de achtergrondkennis. Tensloite zal
ook manneligk( & } een logisch gevolg zijn van de achtergrondkennis,. vermits het
concept mannelijk algemener is dan het concept rnan. Dus is ¢ toch algémener dan
C3.

Omtot dit reshltaat te komen, kunnen we veralgemneende subsumptie t.0.v. de ach-
tergrondkennis gebrulken De clausule ¢ is algemener dan €z o, vera.lgemeende
subsumpme orndal ten eerste de hoofden van ¢ en ¢; unificeren, en.omdat ten tweede
alle-atomen van het’ lichaam van ¢; een logisch gevolg zijn van de achtergrondken-

- wistesuraen et et Hehaan oan €3, WAarin alle veranderlijher ayn gemstantasem
-met. nievwe consianten: We zullen deze bewerking wat meer in dctaﬁ bespreken.
‘Het uitificeren. van de hoofden van ¢; en ey heeft tot gevolg dat Xy met X3 wordb
geiinificeerd, ‘en Y7 met Y5 wordt géiinificeerd. Het instantiéren van alle verasider-
lijken van het lichaam van c; met nicuwe constanten sk, en. .'s'_k'y levert deé volgende
atomen:

As = {ouder( sk. , sk, ), man{ ske )_,_m_en.s_(_’skm ), levend( sky )}.
Door deze instantiatie is het lichaam van ¢; eveneens 'g'e_i'rist'a,ri_t-i:_een'& it
= {ouder{ sk , sk, ), mannelijk{ sk, ) levend( sk, 3}

Welnu, de atomen uit' A; zijn een logisch gevolg van de. achtergrondkennis tesamen
met de atomen uit A;. Immers, ouder{ sk, , sk, ) en levend( sky ) zijn elementen
van A;. Uil het feit-dat het concept mannelizk algemener is dan het concept man-
(dit zit in de achtergrondkennis) volgt dat mannelijk( sk, ) cen logisch gevolg is van
de achtergrondkennis tesamen met A;, indien man( sk, J-een logisch gevolg is-van
de- achtergrondkennis tesamen met 4;. \’Velnu man( sk ) behoort tot 4y, enis er
dus cen logischi gevolg van. <

In het algemeen is een clausule ¢; een veralgemening van een clausule ¢; met betrekking tot.
f-subsumiptie, indien ¢; (beschouwd als verzameling van atomen) zodanig geinstantieerd
kan worden. dat het een deelverzameling.is van e;. Merk ook op dat veralgemeende sub-
sumptie. steedsis gedefinieerd ien opsichie van een logisch programma P (in het voorbeeld
t.0.v. de achtergrondkennis). In die zin js #-subsumptie cen speciaal geval van veralge-
meéeride subsumptie, namelijk het geval dat P = ¢.
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We zullen nu aantonen dat veralgemeende subsumptie toch kan geimplementeerd worden
aan de hand van #-subsumptie. @-subsumptie vergelijkt in wezen of de ene clausule, be-
schouwd als een verzameling atomen, een deelverzameling 1s van de andere clausule. Indien
de achtergrondkennis in rekening moet gebracht worden, moeten we er voor zorgen dat de
literals die nodig zijn om #-subsumptie te testen, aanwezig zijn in de specifiekere clausule.
De operatie die men daarvoor nodig heeft is saturatie [Rouveirol, 1994]. Saturatie van een
clausule levert een nieuwe clausule die men bekomt door het lichaam van de ocorspronkelijke
clausule uit te breiden met alle atomen die een logisch gevolg zijn van de andere atomen
in het lichaam. Men kan dan bewijzen dat een clausule ¢; een veralgemening is van een
clausule ¢; met betrekking tot veralgemeende subsumptie t.o.v. een programma P, enkel
en alleen indien de clausule ¢; een veralgemening is van de saturatie van ¢y met betrekking
tot @-subsumptie.

Voorbeeld De saturatie van ¢z is de clausule ¢}:

¢y vader( X3, Y3 ) — ouder( X3 ,Y; ),man( X3 ),mannelijk( X3 ),
mens( X3 ), levend( X; ), levend( Y3 ).

De atomen mannelijk( X3 ) en levend( X3 ) zijn een logisch gevolg van het atoom
man( X3 ) uit e3, en moeten dus aan ¢; worden toegevoegd om de saturatie van ¢z
te bekomen.

Om te controleren of ¢; algemener is dan ¢} kunnen we nu #-subsumptie gebruiken:
het atoom mannelijk( X3 ) uit ¢; dat geen element was van c3 is door saturatie wel
een element van cj. <

4.5 Enkele andere belangrijke aspecten van ILP

Op verscheidene belangrijke aspekten van ILP wordt in deze thesis niet dieper ingegaan.
We denken hier in de eerste plaats aan zoekoperatoren voor ILP en aan vooraf bepaalde
beperkingen (Eng. bias), in het bijzonder vooraf bepaalde beperkingen qua taal (Eng.
language bias).

Zoekoperatoren worden in het algemeen in een leer-context verfijningsoperatoren genoemd.
Er zijn zowel veralgemeningsoperatoren als specializeringsoperatoren. Voor onze doeleinden
is het voldoende de operatoren te gebruiken die worden besproken in [van der Laag en
Nienhuys-Cheng, 1994].

Om van het leer-probleem een praktisch realizeerbaar zoek-probleem te maken, moet het
probleem van vooraf aan in verschillende opzichten beperkt worden. Zo kunnen er vooraf
bepaalde beperkingen zijn wat betreft het deel van de taal dat zal doorzocht worden, met
welke zockstrategie dit zal gedaan worden, welke heuristieken daarbij zullen gebruikt wor-
den, enz. Vooral de vooraf bepaalde beperkingen op de taal maken dat het probleem
praktisch realizeerbaar. Een belangrijke deelgebied binnen ILP (en ook in heel het onder-
zoeksgebied van automatisch leren) bestudeert en vergelijkt verschillende mogelijkheden
van taal-beperkingen; er zijn ook verscheidene mogelijkheden bestudeerd om deze beper-
kingen in min of meerdere mate declaratief te specifieren. Hiervoor verwijzen we naar
[Adé et al., 1995].
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5 Besluit

In deze thesis hebben we het kader van Iteratieve Versieruimiten nitgebouwd waarin we
zockstrategieén en oplossingsruimien voer het automatisch leren van concepten hebben
bestudeerd. Dit. kader hebben we dan toegepast op InductlefLogmch Programmeren. Fen
van de bélangrijkste aspecten van het'werk is de taal-onafhankelijke aanpak. De bekomen
resultatén ziji dah ook toepasbaar voor een ruim pakket van leer-problemen. Verscheidene
van de bijdragen in-deze thesis veralgemenen taal-specifieke noties en technieken naar een
taal-onafhankelijk niveau. Hiermee hebben we dan ock aangetoond dat verscheidene as-
pecten van taal-specificke. a,anpakken in wezen taal-onafhankelijk zijn. Door deze. aspecten
te isoleren en taal-onafhankelijk te bestuderen worden. z1] dan ook toepasbaar in. andere
Jeer-systemen.
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