Contextual anomaly detection in time series: A temporal context perspective

Louis Carpentier, Wannes Meert, Mathias Verbeke

Digitized Production enabling end-to-end design-operation

Goal

Create a generic wrapper approach for time series anomaly detection to leverage the temporal context of the system, thereby enhancing the anomaly detection capabilities.

Motivation

The automatic detection of anomalies is critical in many applications because anomalies have many severe consequences:

Industry
Ind

Money laundering

Credit card fraud

These applications contain numerous temporal contexts, i.e., time intervals or segments that share a similar meaning in the application domain:

Financial

Industry Product specification
Production cycle
Machine settings
Operator
Working hours

Clinical trial phases
Recovery cycles

Tax filing deadlines
Billing periods

However, "normality" largely depends on the context [1]. A sequence may be anomalous in one context but like the normal subsequences of some other other context [2].

Approach

Extract the temporal context of a time series through state-of-the-art semantic segmentation algorithms [3, 4].

Detect anomalies within each temporal context

Critical difference diagram, according to VUS ROC

6 5 4 3 2 1

IForest 4.5829 2.3886 Contextual STOMP

LOF 3.9157 2.7000 STOMP

Contextual IForest 3.8286 Contextual LOF

 better VUS ROC than its non-contextual variant

 #wins
 #losses
 #ties

 IForest
 241
 107
 2

 LOF
 174
 143
 33

 STOMP
 161
 143
 46

The number of times the contextual version had a

Key take-aways

By injecting the temporal context in existing anomaly detection methods – in the form of semantic segmentation – we significantly improve anomaly detection performance.

Further reading

- [1] M. Thill, W. Konen, and T. Back, "Time Series Anomaly Detection with Discrete Wavelet Transforms and Maximum Likelihood Estimation," Proceedings of the International Conference on Time Series (ITISE), Sep. 2017.
- [2] P. Boniol, M. Linardi, F. Roncallo, T. Palpanas, M. Meftah, and E. Remy, "Unsupervised and scalable subsequence anomaly detection in large data series," The VLDB Journal, Nov. 2021, 10.1007/s00778-021-00655-8.
- [3] L. Carpentier, L. Feremans, W. Meert, and M. Verbeke, "Pattern-based Time Series Semantic Segmentation with Gradual State Transitions," SIAM international conference of data mining (SDM), Apr. 2024.
- [4] A. Ermshaus, P. Schäfer, and U. Leser, "ClaSP: parameter-free time series segmentation," Data Min Knowl Disc, Feb. 2023, doi: 10.1007/s10618-023-00923-x.
- [5] P. Desenfans, Z. Gong, D. Vanoost, K. Gryllias, J. Boydens, and D. Pissoort, "The influence of the unbalanced magnetic pull on fault-induced rotor eccentricity in induction motors," Journal of Vibration and Control, Mar. 2023, doi: 10.1177/10775463231162908.