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1 Background

This work aims to learn the complex and nonlinear dy-
namics of vibrating structures from input-output measure-
ments, by proposing a computationally efficient identifica-
tion method that is robust to the many poor local minima
seen during nonlinear optimization. The effectiveness of the
proposed method is evaluated on a multi-output benchmark
dataset of an F-16 fighter jet [1], where a shaker was placed
underneath the right wing to excite the structure (see Fig. 1).

2 Problem statement

The complex F-16 dynamics can be adequately captured by
means of so-called nonlinear feedback models, represented
in state-space form as:

xk+1 =Axk +Buuk +Bwwk,

yk =Cxk +Duuk +Dwwk,
(1a)

where A, Bu, C and Du are the linear state, input, output, and
direct feedthrough matrices, respectively. Moreover, xk is
the latent state vector and uk and yk are the measured inputs
and outputs, respectively, at discrete time instant k. Coeffi-
cient matrices Bw and Dw determine how the feedback input
enters the system. The nonlinear feedback itself is modeled
as a neural network wit L hidden layers:

wk =WLσ(WL−1 · · ·σ(W0zk +b0)+bL−1)+bL,

zk =Czxk +Dzuk,
(1b)

where {Wi,bi}L
i=0 are the weights and biases, and σ(.) the

nonlinear activation function. Assuming localized non-
linearities, the neural net input is zk is typically a low-
dimension subspace of the states and input, determined by
the linear coefficient matrices Cz and Dz. To obtain the
model parameters θ , we minimize:

J(θ) =
N

∑
k=0

||yk − ŷk(θ)||22, (2)

where ŷk(θ) is the modeled output. Minimizing (2) is
a high-dimensional and non-convex optimization problem
that is prone to poor local minima. The aim of this work is
to present a sequential identification approach that is com-
putationally attractive and mitigates the risk of falling into
poor local minima.

Figure 1: F-16 ground vibration test.

3 Method

The sequential identification procedure is initialized by the
best linear approximation, which yields estimates for A, Bu,
C and Du. As a next step, we set up a convex optimization
problem that infers the latent trajectories of the x and w in
the time domain (similar to [2]), while simultaneously opti-
mizing Bw and Dw. By doing so, we allow for the supervised
learning of (1b), which in turn provides a good initial guess
for the final optimization step that directly minimizes (2).

For higher-dimensional systems like the F-16, however, the
supervised approach introduces a common adverse phe-
nomenon in machine learning: the covariate shift, which
occurs when the distribution of the training data does not
match with the distribution during deployment. The reason
for this is that during deployment, a neural net output at time
k influences its own input at time k+ 1, which was not ac-
counted for during training and can hence result in diverging
simulations. We address this issue by actively preventing
poor deployment performance during the training of (1b),
without introducing a significant computational burden.
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[2] M. Floren and J.-P. Noël, “Nonlinear restoring force
modelling using Gaussian processes and model predictive
control,” 2022-04-07.


