Data-driven state-space identification of nonlinear feedback systems:
application to an F-16 aircraft structure
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1 Background

This work aims to learn the complex and nonlinear dy-
namics of vibrating structures from input-output measure-
ments, by proposing a computationally efficient identifica-
tion method that is robust to the many poor local minima
seen during nonlinear optimization. The effectiveness of the
proposed method is evaluated on a multi-output benchmark
dataset of an F-16 fighter jet [1], where a shaker was placed
underneath the right wing to excite the structure (see Fig. 1).

2 Problem statement

The complex F-16 dynamics can be adequately captured by
means of so-called nonlinear feedback models, represented
in state-space form as:

Xi+1 =AXy + Buuty + Bywy,

(1a)
Yk =Cxy + Dyuy + Dyywy,

where A, B, C and D, are the linear state, input, output, and
direct feedthrough matrices, respectively. Moreover, x; is
the latent state vector and u; and y; are the measured inputs
and outputs, respectively, at discrete time instant k. Coeffi-
cient matrices B,, and D,, determine how the feedback input
enters the system. The nonlinear feedback itself is modeled
as a neural network wit L hidden layers:

Wi = WLO-(WL—I ...
2k = Coxy + Doy,

&(Wozk +bo) +br_1) by,
(Wozk +bo) +br—1) +bL (1b)

where {W;,b;}- , are the weights and biases, and o(.) the
nonlinear activation function. Assuming localized non-
linearities, the neural net input is z; is typically a low-
dimension subspace of the states and input, determined by
the linear coefficient matrices C, and D,. To obtain the
model parameters 0, we minimize'

Z |y — 5(0) 113 2)

where $(0) is the modeled output. Minimizing (2) is
a high-dimensional and non-convex optimization problem
that is prone to poor local minima. The aim of this work is
to present a sequential identification approach that is com-
putationally attractive and mitigates the risk of falling into
poor local minima.

Figure 1: F-16 ground vibration test.

3 Method

The sequential identification procedure is initialized by the
best linear approximation, which yields estimates for A, B,,,
C and D,. As a next step, we set up a convex optimization
problem that infers the latent trajectories of the x and w in
the time domain (similar to [2]), while simultaneously opti-
mizing B,, and D,,. By doing so, we allow for the supervised
learning of (1b), which in turn provides a good initial guess
for the final optimization step that directly minimizes (2).

For higher-dimensional systems like the F-16, however, the
supervised approach introduces a common adverse phe-
nomenon in machine learning: the covariate shift, which
occurs when the distribution of the training data does not
match with the distribution during deployment. The reason
for this is that during deployment, a neural net output at time
k influences its own input at time k + 1, which was not ac-
counted for during training and can hence result in diverging
simulations. We address this issue by actively preventing
poor deployment performance during the training of (1b),
without introducing a significant computational burden.
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