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Abstract. Consider the triplet (E,P, π), where E is a finite ground
set, P ⊆ 2E is a collection of subsets of E and π : P → [0, 1] is a require-
ment function. Given a vector of marginals ρ ∈ [0, 1]E , our goal is to find
a distribution for a random subset S ⊆ E such that Pr [e ∈ S] = ρe for
all e ∈ E and Pr [P ∩ S 6= ∅] ≥ πP for all P ∈ P, or to determine that
no such distribution exists.
Generalizing results of Dahan, Amin, and Jaillet [6], we devise a generic
decomposition algorithm that solves the above problem when provided
with a suitable sequence of admissible support candidates (ASCs). We
show how to construct such ASCs for numerous settings, including su-
permodular requirements, Hoffman-Schwartz-type lattice polyhedra [14],
and abstract networks where π fulfils a conservation law. The result-
ing algorithm can be carried out efficiently when P and π can be ac-
cessed via appropriate oracles. For any system allowing the construction
of ASCs, our results imply a simple polyhedral description of the set
of marginal vectors for which the decomposition problem is feasible. Fi-
nally, we characterize balanced hypergraphs as the systems (E,P) that
allow the perfect decomposition of any marginal vector ρ ∈ [0, 1]E , i.e.,
where we can always find a distribution reaching the highest attainable
probability Pr [P ∩ S 6= ∅] = min

{∑
e∈P ρe, 1

}
for all P ∈ P.

1 Introduction

Given a set system (E,P) on a finite ground set E with P ⊆ 2E and a requirement
function π : P → (−∞, 1], consider the polytope

Zπ :=
{
z ∈ [0, 1]2

E

:
∑
S⊆E zS = 1 and

∑
S:S∩P 6=∅ zS ≥ πP ∀ P ∈ P

}
,

which corresponds to the set of all probability distributions over 2E such that
the corresponding random subset S ⊆ E hits each P ∈ P with probability at
least its requirement value πP .1 We are interested in describing the projection
of Zπ to the corresponding marginal probabilities on E, i.e.,

Yπ :=
{
ρ ∈ [0, 1]E : ∃z ∈ Zπ with ρe =

∑
S⊆E:e∈S zS ∀ e ∈ E

}
.

? Proofs of results marked with (♣) can be found in the the full version [24].
1 Note that we can assume πP ∈ [0, 1] without loss of generality in the definition of Zπ,

but we allow negative values for notational convenience in later parts of the paper.
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For ρ ∈ Yπ, we call any z ∈ Zπ with ρe =
∑
S⊆E:e∈S zS for all e ∈ E a feasible

decomposition of ρ for (E,P, π). Note that every ρ ∈ Yπ fulfils∑
e∈P ρe ≥ πP ∀P ∈ P (?)

because
∑
S:S∩P 6=∅ zS ≤

∑
e∈P ρe for any feasible decomposition z of ρ. Hence

Yπ ⊆ Y ? :=
{
ρ ∈ [0, 1]E : ρ fulfils (?)

}
.

We say that (E,P, π) is (?)-sufficient if Yπ = Y ?. Our goal is to identify classes of
such (?)-sufficient systems, along with corresponding decomposition algorithms
that, given ρ ∈ Y ?, find a feasible decomposition of ρ. Using such decomposition
algorithms, we can reduce optimization problems over Zπ whose objectives and
other constraints can be expressed via the marginals to optimization problems
over Y ?, yielding an exponential reduction in dimension.

1.1 Motivation

Optimization problems over Zπ and polytopes with a similar structure arise, e.g.,
in the context of security games. In such a game, a defender selects a random
subset S ⊆ E of resources to inspect while an attacker selects a strategy P ∈ P,
balancing their utility from the attack against the risk of detection (which occurs
if P ∩S 6= ∅). Indeed, the decomposition setting described above originates from
the work of Dahan, Amin, and Jaillet [6], who used it to describe the set of
mixed Nash equilibria for such a security game using a compact LP formulation
when the underlying system is (?)-sufficient.

Two further application areas of marginal decomposition are randomization
in robust or online optimization, which is often used to overcome pessimistic
worst-case scenarios [17–19, 27], and social choice and mechanism design, where
randomization is frequently used to satisfy otherwise irreconcilable axiomatic
requirements [3] and where decomposition results in various flavors are applied,
e.g., to define auctions via interim allocations [2, 12], to improve load-balancing
in school choice [7], and to turn approximation algorithms into truthful mecha-
nisms [21, 22]. In [24, Appendix A], we discuss several applications from these
three areas, including different security games, a robust randomized coverage
problem, and committee election with diversity constraints. There we also show
how the structures for which we establish (?)-sufficiency here arise naturally in
these applications and imply efficient algorithms for these settings.

1.2 Previous Results

As mentioned above, Dahan et al. [6] introduced the decomposition problem
described above to characterize mixed Nash equilibria of a network security
game played on (E,P). They observed that such equilibria can be described by
a compact LP formulation if (E,P, π) is (?)-sufficient for all requirements π of
the affine form

πP = 1−
∑
e∈P µe ∀P ∈ P (A)
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for some µ ∈ [0, 1]E . They showed that this is indeed the case when E is the
set of edges of a directed acyclic graph (DAG) and P the set of s-t-paths in this
DAG and provide a polynomial-time (in |E|) algorithm for computing feasible
decompositions in this case. Matuschke [25] extended this result by providing
an efficient decomposition algorithm for abstract networks, a generalization of
the system of s-t-paths in a (not necessarily acyclic) digraph; see Section 3 for a
definition. He also showed that a system (E,P, π) is (?)-sufficient for all affine
requirement functions π if and only if the system has the weak max-flow/min-cut
property, i.e., the polyhedron {y ∈ RE+ :

∑
e∈P ye ≥ 1 ∀P ∈ P} is integral.

While the affine setting (A) is well-understood, little is known for the case
of more general requirement functions. A notable exception is the conservation
law studied by Dahan et al. [6], again for the case of directed acyclic graphs:

πP + πQ = πP×eQ + πQ×eP ∀P,Q ∈ P, e ∈ P ∩Q, (C)

where P ×e Q for two paths P,Q ∈ P containing a common edge e ∈ P ∩ Q
denotes the path consisting of the prefix of P up to e and the suffix of Q starting
with e. Dahan et al. [6] established (?)-sufficiency for requirements fulfilling (C)
in DAGs by providing another combinatorial decomposition algorithm. It was
later observed in [25] and independently in a different context in [4] that (C) for
DAGs is in fact equivalent to (A). However, this equivalence no longer holds for
the natural generalization of (C) to arbitrary digraphs.

1.3 Contribution and Structure of this Paper

In this article, we present an algorithmic framework for computing feasible de-
compositions of marginal vectors fulfilling (?) for a wide range of set systems
and requirement functions, going beyond the affine setting (A). Our algorithm,
described in Section 2, iteratively adds a so-called admissible support candi-
date (ASC) to the constructed decomposition. The definition of ASCs is based
on a transitive dominance relation on P, which has the property that a decom-
position of ρ ∈ Y ? is feasible for (E,P, π) if and only if it is feasible for the
restriction of the system to non-dominated sets.

Our algorithmic framework can be seen as a generalization of Dahan et
al.’s [6] Algorithm 1 for requirements fulfilling (C) in DAGs. An important nov-
elty which allows us to establish (?)-sufficiency for significantly more general
settings is the use of the dominance relation and the definition of ASCs, which
are more flexible than the properties implicitly used in [6]. A detailed comparison
of the two algorithms can be found in [24, Appendix B.1].

To establish correctness of our algorithm for a certain class of systems, which
also implies (?)-sufficiency for those systems, it suffices to show the existence of
an ASC in each iteration of the algorithm. We assume that the set E is of small
cardinality and given explicitly, while P might be large (possibly exponential
in |E|) and is accessed by an appropriate oracle. To establish polynomial run-
time of our algorithm in |E|, it suffices to show that the following two tasks can
be carried out in polynomial time in |E|:
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(i) In each iteration, construct an ASC.
(ii) Given ρ ∈ [0, 1]E , either assert ρ ∈ Y ? or find a maximum violated inequality

of (?), i.e., P ∈ P maximizing πP −
∑
e∈P ρe > 0.

We prove the existence and computability of admissible sets for a variety of
settings, which we describe in the following.

Supermodular Requirements. A basic example for which our algorithm implies (?)-
sufficiency is the case where P = 2E and π is a supermodular function, i.e., πP∩Q+
πP∪Q ≥ πP +πQ for all P,Q ∈ P. In Section 2.3, we show the existence of ASCs
for this setting and observe that both (i) and (ii) can be solved when π is given
by a value oracle that given P ∈ P returns πP .

Abstract Networks under Weak Conservation of Requirements. We prove (?)-
sufficiency for the case that (E,P) is an abstract network and π fulfils a relaxed
version of the conservation law (C) introduced by Hoffman [15]. Such systems
generalize systems of s-t-paths in digraphs, capturing some of their essential
properties that suffice to obtain results such as Ford and Fulkerson’s [9] max-
flow/min-cut theorem or Dijkstra’s [8] shortest-path algorithm; see Section 3 for
a formal definition and an in-depth discussion. In particular, our results gener-
alize the results of Dahan et al. [6] for DAGs under (C) to arbitrary digraphs.

Lattice Polyhedra. We also study the case where P ⊆ 2E is a lattice, i.e., a
partially ordered set in which each pair of incomparable elements have a unique
maximum common lower bound, called meet and a unique minimum common
upper bound, called join, and where π is supermodular with respect to these
meet and join operations. Hoffman and Schwartz [14] showed that under two
additional assumptions on the lattice, called submodularity and consecutivity,
the system defined by (?) and ρ ≥ 0 is totally dual integral (the corresponding
polyhedron, which is the dominant of Y ?, is called lattice polyhedron). These
polyhedra generalize (contra-)polymatroids and describe, e.g., r-cuts in a di-
graph [10] or paths in s-t-planar graphs [26]. When π is monotone with respect
to the partial order on P, a two-phase (primal-dual) greedy algorithm introduced
by Kornblum [20] and later generalized by Frank [10] can be used to efficiently
optimize linear functions over lattice polyhedra using an oracle that returns
maxima of sublattices. We show the existence and computability of admissible
sets under the same assumptions by carefully exploiting the structure of extreme
points implicit in the analysis of the Kornblum-Frank algorithm; see Section 4
for complete formal definitions and an in-depth discussion of these results.

Perfect Decompositions and Balanced Hypergraphs. We call a set system (E,P)
decomposition-friendly if it is (?)-sufficient for all requirement funtions π. Note
that (E,P) is decomposition-friendly if and only if every ρ ∈ [0, 1]E has a feasible
decomposition for (E,P, πρ), where πρP := min

{∑
e∈P ρe, 1

}
for P ∈ P. We

call such a decomposition perfect, as it simultaneously reaches the maximum
intersection probability attainable under ρ for each P ∈ P. In Section 5 we show
that (E,P) is decomposition-friendly if and only if it is a balanced hypergraph, a
set system characterized by the absence of certain odd-length induced cycles.
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1.4 Notation and Preliminaries

For m ∈ N, we use the notation [m] to denote the set {1, . . . ,m}. Moreover, we
use the notation 1A to indicate whether expression A is true (1A = 1) or false
(1A = 0). We will further make use of the following observation.

Lemma 1 ([25, Lemma 3]). There is an algorithm that given ρ ∈ [0, 1]E and
z ∈ Zπ with

∑
S:e∈S zS ≤ ρe for all e ∈ E, computes a feasible decomposition of

ρ in time polynomial in |E| and |{S ⊆ E : zS > 0}|.

2 Decomposition Algorithm

We describe a generic algorithm that is able to compute feasible decompositions
of marginals for a wide range of systems. The algorithm makes use of a dominance
relation defined in Section 2.1. We describe the algorithm in Section 2.2 and state
the conditions under which it is guaranteed to produce a feasible decomposition.
In Section 2.3, we provide a simple yet relevant example where these conditions
are met. Finally, we prove correctness of the algorithm in Section 2.4.

2.1 The Relation vπ,ρ and Admissible Support Candidates

For P,Q ∈ P we write P vπ,ρ Q if either P = Q, or if πP ≤ πQ −
∑
e∈Q\P ρe

and πP < πQ. We say that P is non-dominated with respect to π and ρ in P ′ ⊆ P
if P ∈ P ′ and there exists no Q ∈ P ′ \ {P} with P vπ,ρ Q.

Lemma 2 (♣). The relation vπ,ρ is a partial order. In particular, for any
P ′ ⊆ P, there exists at least one P ′ that is non-dominated in P ′.

As we will see in the analysis below, it suffices to ensure
∑
S:S∩P zS ≥ πP

for non-dominated P ∈ P to construct a feasible decomposition. This motivates
the following definition. A set S ⊆ E is an admissible support candidate (ASC)
for π and ρ if the following three conditions are fulfilled:

(S1) S ⊆ Eρ := {e ∈ E : ρe > 0}.
(S2) |S ∩ P | ≤ 1 for all P ∈ P=

π,ρ :=
{
Q ∈ P :

∑
e∈Q ρe = πQ

}
.

(S3) |P ∩S| ≥ 1 for all non-dominated (w.r.t. π and ρ) P in {Q ∈ P : πQ > 0}.

We now present an algorithm, that when provided with a sequence of ASCs
computes a feasible decomposition for ρ ∈ Y ?.

2.2 The Algorithm

The algorithm constructs a decomposition by iteratively selecting an ASC S for
a requirement function π̄ and a marginal vector ρ̄, which can be thought of as
residuals of the original requirements and marginals, respectively, with π̄ = π
and ρ̄ = ρ initially. It shifts a probability mass of

επ̄,ρ̄(S) := min {mine∈S ρ̄e, maxP∈P π̄P , δπ̄,ρ̄(S)}
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to S, where δπ̄,ρ̄(S) := infP∈P:|P∩S|>1
π̄P−

∑
e∈P ρ̄e

1−|P∩S| . Intuitively, επ̄,ρ̄(S) corre-

sponds to the maximum amount of probability mass that can be shifted to the
set S without losing feasibility of the remaining marginals for the remaining re-
quirements. The residual marginals ρ̄ are reduced by επ̄,ρ̄(S) for all e ∈ S, and
so are the requirements of all P ∈ P (including those P with P ∩ S = ∅).

Algorithm 1: Generic Decomposition Algorithm

Initialize π̄ := π, ρ̄ := ρ.

Initialize z∅ = 1 and zS := 0 for all S ⊆ E with S 6= ∅.
while maxP∈P π̄P > 0 do

Let S be an ASC for π̄ and ρ̄.

Let ε := επ̄,ρ̄(S).

Set zS := zS + ε and z∅ := z∅ − ε.
Set ρ̄e := ρ̄e − ε for all e ∈ S.

Set π̄P := π̄P − ε for all P ∈ P.

Apply Lemma 1 to z to obtain a feasible decomposition z′ of ρ.

return z′

Our main result establishes that the algorithm returns a feasible decompo-
sition after a polynomial number of iterations, if an ASC for π̄ and ρ̄ exists in
every iteration. To show that a certain system is (?)-sufficient, it thus suffices to
establish the existence of the required ASCs.

Theorem 3. Let (E,P) be a set system and π : P → (−∞, 1]. Let ρ ∈ Y ?. If
there exists an ASC for π̄ and ρ̄ in every iteration of Algorithm 1, then the al-
gorithm terminates after O(|E|2) iterations and returns a feasible decomposition
of ρ for (E,P, π).

Note that Theorem 3 implies that Algorithm 1 can be implemented to run in
time O(T |E|2), when provided with an oracle that computes the required ASCs
along with the corresponding values of επ̄,ρ̄(S) in time T .2 Before we prove
Theorem 3, we first provide an example to illustrate its application.

2.3 Basic Example: Supermodular Requirements

Consider the case that P = 2E and π is supermodular, i.e., for all P,Q ∈ P it
holds that πP∩Q + πP∪Q ≥ πP + πQ. Note that if π is supermodular, then π̄
is supermodular throughout Algorithm 1, as subtracting a constant does not
affect supermodularity. Moreover, we show in Section 2.4 that ρ̄ fulfils (?) for π̄
throughout the algorithm. To apply Algorithm 1, it thus suffices to show exis-
tence of an ASC when ρ ∈ Y ? and π is supermodular. To obtain the ASC, we
define Q :=

⋃
P∈P=

π,ρ
P and distinguish two cases: If Q∩Eρ = ∅, we let S′ := Eρ.

Otherwise, we let S′ := (Eρ \Q) ∪ {eQ} for an arbitrary eQ ∈ Q ∩ Eρ.
2 In particular, note that επ̄,ρ̄(S) can be computed using at most |S| iterations of the

discrete Newton algorithm if we can solve problem (ii) from Section 1.3, i.e., the
maximum violated inequality problem for Y ?.
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Lemma 4. If P = 2E, π is supermodular, and ρ ∈ Y ?, then S′ is an ASC.

Proof. Note that S′ fulfils (S1) by construction and it fulfils (S2) because P ⊆ Q
and hence P ∩ S′ ⊆ {eQ} for all P ∈ P=

π,ρ. To see that S′ fulfils (S3), as-
sume by contradiction that P ∩ S′ = ∅ for some non-dominated P ∈ P. Note
that P ∩ Eρ ⊆ Q \ {eQ}. Because Q ∈ P=

π,ρ by standard uncrossing arguments,
we obtain πP ≤

∑
e∈P ρe =

∑
e∈Q∩P ρe = πQ −

∑
e∈Q\P ρe and thus P vπ,ρ Q

(note that eQ ∈ Q \ P and hence πP < πQ), a contradiction. ut

We remark that both the described ASC and maximum violated inequalities
of Y ? can be found in polynomial time using submodular function minimiza-
tion [29] when π is given by a value oracle, that given P returns πP .

2.4 Analysis (Proof of Theorem 3)

Throughout this section we assume that (E,P, π) and ρ fulfil the conditions of
the Theorem 3. In particular, ρ ∈ Y ? and in each iteration of the algorithm there
exists an ASC. We show that under these conditions the while loop terminates
afterO(|E|2) iterations (Lemma 6) and that after termination of the loop, z ∈ Zπ
(Lemma 8) and

∑
S:e∈S zS ≤ ρe for all e ∈ E (Lemma 5(a) for k = `). This

implies that Lemma 1 can indeed be applied to z in the algorithm to obtain a
feasible decomposition of ρ, thus proving Theorem 3.

We introduce the following notation. Let S(i) and ε(i) denote the set S and
the value of ε chosen in the ith iteration of the while loop in the algorithm. Let
further π(i) and ρ(i) denote the values of π̄ and ρ̄ at the beginning of the ith
iteration (in particular, π(1) = π and ρ(1) = ρ). Let K ⊆ N denote the set of
iterations of the while loop. If the algorithm terminates, K = {1, . . . , `}, where
` ∈ N denotes the number of iterations. In that case, let ρ(`+1) and π(`+1) denote
the state of ρ̄ and π̄ after termination.

Using this notation, we can establish the following three invariants, which
follow directly from the construction of ρ(i) and ε(i) in the algorithm and the
defining properties of the ASC S(i).

Lemma 5 (♣). For all k ∈ K, the following statements hold true:

(a) ρ
(k+1)
e = ρe −

∑k
i=1 1e∈S(i) · ε(i) ≥ 0 for all e ∈ E,

(b)
∑
e∈P ρ

(k+1)
e ≥ π(k+1)

P = πP −
∑k
i=1 ε

(i) for all P ∈ P, and

(c) S(k) 6= ∅ and ε(k) > 0.

The next lemma shows that the while loop indeed terminates after O(|E|2)
iterations. Its proof follows from the fact that in every non-final iteration k ∈ K,
there is an element e ∈ S(k) for which the value of ρ̄e drops to 0, or there are
two elements e, e′ ∈ S(k) such that e, e′ ∈ P for some P ∈ P=

π(k+1),ρ(k+1) . It can

be shown that the same pair e, e′ cannot appear in two distinct iterations of the
latter type, from which we obtain the following bound.

Lemma 6 (♣). The while loop in Algorithm 1 takes at most
(|E|

2

)
+ |E| itera-

tions, i.e., K = {1, . . . , `} with ` ≤
(|E|

2

)
+ |E|.
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The termination criterion of the while loop implies the following lemma.

Lemma 7 (♣). It holds that
∑`
i=1 ε

(i) = maxP∈P πP .

Finally, we can use the properties of the ASCs S(k) to show that z ∈ Zπ.

Lemma 8. After termination of the while loop, it holds that z ∈ Zπ.

Proof. Note that zS =
∑`
i=1 1S=S(i) · ε(i) ≥ 0 for S ⊆ E with S 6= ∅ and that

z∅ = 1 −
∑`
i=1 ε

(i) ≥ 0, where the nonnegativity follows from Lemma 5(c) and
Lemma 7 with maxP∈P πP ≤ 1, respectively. This also implies

∑
S⊆E zS = 1.

We will prove that
∑`
i=k 1P∩S(i) 6=∅ · ε(i) ≥ π(k)

P for all k ∈ [`+ 1] and P ∈ P,

which, for k = 1, implies
∑
S:P∩S 6=∅ zS =

∑`
i=1 1P∩S(i) 6=∅ · ε(i) ≥ π(1)

P = πP and
hence z ∈ Zπ. We prove the above statement by induction on k, starting from
k = ` + 1 and going down to k = 1. For the base case k = ` + 1, observe that
the left-hand side is 0 and π`+1

P ≤ 0 by termination criterion of the while loop.
For the induction step, let k ∈ [`], assuming that the statement is already

established for k + 1 and let P ∈ P. We distinguish two cases.

– Case P ∩ S(k) 6= ∅: We can apply the induction hypothesis to obtain∑`
i=k 1P∩S(i) 6=∅ · ε(i) = ε(k) +

∑`
i=k+1 1P∩S(i) 6=∅ · ε(i) ≥ ε(k) + π

(k+1)
P = π

(k)
P .

– Case P ∩ S(k) = ∅: If π
(k)
P ≤ 0 then the desired statement follows from

ε(i) > 0 for all i ∈ [`] by Lemma 5(c). Thus, we can assume π
(k)
P > 0.

By property (S3), there is Q ∈ P with P vπ(k),ρ(k) Q and Q ∩ S(k) 6= ∅.
Hence we can apply the induction step proven in the first case to Q, yielding∑`
i=k 1Q∩S(i) 6=∅ · ε(i) ≥ π(k)

Q . From this, we conclude that∑`
i=k 1P∩S(i) 6=∅ · ε(i) ≥

∑`
i=k 1P∩Q∩S(i) 6=∅ · ε(i)

≥ π
(k)
Q −

∑`
i=k 1(Q\P )∩S(i) 6=∅ · ε(i)

≥ π
(k)
Q −

∑
e∈Q\P ρ

(k)
e ≥ π

(k)
P ,

where the first and second inequality use ε(i) > 0 by Lemma 5(c), the third

inequality uses ρ
(k)
e =

∑`
i=k 1e∈S(i) · ε(i) by Lemma 5(a) and the final in-

equality uses P vπ(k),ρ(k) Q. �

3 Abstract Networks Under Weak Conservation Law

An abstract network is a tuple (E,P,�,×), where (E,P) is a set system, �P
for each P ∈ P is a linear order of the elements in P , and × is an operator that
takes P,Q ∈ P and e ∈ P ∩Q as arguments and maps them to a member of P,
such that P ×e Q ∈ P fulfils P ×e Q ⊆ {p ∈ P : p �P e} ∪ {q ∈ Q : e �Q q}
for all P,Q ∈ P and e ∈ P ∩ Q. Note that the definition of abstract networks
does not impose any requirements on the order �P×eQ. In particular, it does
not need to be consistent with �P and �Q.
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Abstract networks were introduced by Hoffman [15] in an effort to encapsu-
late the essential properties of systems of paths in classic networks that enable
the proof of Ford and Fulkerson’s [9] max-flow/min-cut theorem. Indeed, the
set of s-t-paths in a digraph constitutes a special case of an abstract network
(however, see [16] for examples of abstract networks that do not arise in this
way) and the elements of P are therefore also referred to as abstract paths. The
maximum weighted abstract flow (MWAF) problem and the minimum weighted
abstract cut (MWAC) problem correspond to the linear programs

max
∑
P∈P πP xP

s.t.
∑
P :e∈P xP ≤ ue ∀e ∈ E

x ≥ 0

min
∑
e∈E ue ye

s.t.
∑
e∈P ye ≥ πP ∀P ∈ P

y ≥ 0

where u ∈ RE+ is a capacity vector and π determines the reward for each unit of
flow sent along the abstract path P ∈ P.

Hoffman [15] proved that MWAC is totally dual integral, if the reward func-
tion π fulfils the following weak conservation law:

πP×eQ + πQ×eP ≥ πP + πQ ∀P,Q ∈ P, e ∈ P ∩Q. (C’)

McCormick [28] complemented this result by a combinatorial algorithm for solv-
ing MWAF when π ≡ 1. This was extended by Martens and McCormick [23]
to a combinatorial algorithm for solving MWAF with arbitrary π fulfilling (C’)
when π is given a separation oracle for the constraints of MWAC.

A combinatorial algorithm for marginal decomposition in abstract networks
under affine requirements (A) based on a generalization of Dijkstra’s shortest-
path algorithm is presented in [25]. Here, we prove (?)-sufficiency for the more
general setting (C’) by showing that ASCs can be constructed in this setting.

Theorem 9. Let (E,P,�,×) be an abstract network, let π fulfil (C’), and let
ρ ∈ Y ?. Then S := {e ∈ Eρ : there is no P ∈ P=

π,ρ and p ∈ P∩Eρ with p ≺P e}
is an ASC for π and ρ.

Proof. Note that S fulfils (S1) and (S2) by construction. It remains to show that
S also fulfils (S3). For this, let Q ∈ P be non-dominated with πQ > 0 and assume
by contradiction Q ∩ S = ∅. We use the notation (P, e) := {p ∈ P : p ≺P e}
and [e, P ] := {p ∈ P : e �P p} for P ∈ P and e ∈ P .

Note that Q ∩ Eρ 6= ∅ because
∑
e∈Q ρe ≥ πQ > 0. Let q := min�Q Q ∩ Eρ.

Observe that q /∈ S by our assumption, and hence, by construction of S, there
must be r ∈ Eρ and R ∈ P=

π,ρ such that r ≺R q.
Let Q′ := R ×q Q and R′ := Q ×q R. Note that R′ ∩ Eρ ⊆ [q,R] because

(Q, q) ∩ Eρ = ∅ by choice of q as ≺q-minimal element in Q ∩ Eρ. Using (?), we
obtain

∑
e∈[q,R] ρe ≥

∑
e∈R′ ρe ≥ πR′ . We conclude that

πQ′ +
∑
e∈[q,R] ρe ≥ πQ′ + πR′ ≥ πQ + πR = πQ +

∑
e∈R ρe,

where the second inequality follows from (C’) and the final identity is due to
the fact that πR =

∑
e∈R ρe because R ∈ Pπ,ρ. Subtracting

∑
e∈[q,R] ρe on both

sides yields πQ′ ≥ πQ +
∑
e∈(R,q) ρe.
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UsingQ′\Q ⊆ (R, q) by construction ofQ′, we obtain πQ′ ≥ πQ+
∑
e∈Q′\Q ρe.

Note further that πQ′ > πQ because r ∈ (R, q) ∩Eρ and hence
∑
e∈(R,q) ρe > 0.

We conclude that Q vπ,ρ Q′, a contradiction to Q being non-dominated. ut

We remark that the corresponding ASCs and hence feasible decompositions
can be computed in polynomial time in |E| if the abstract network is given via an
oracle that solve the maximum violated inequality problem for Y ? and returns
πP and ≺P for the corresponding P ∈ P.

4 Lattice Polyhedra

We now consider the case where P is equipped with a partial order � so that
(P,�) is a lattice, i.e., the following two properties are fulfilled for all P,Q ∈ P:

– The set {R ∈ P : R � P, R � Q} has a unique maximum w.r.t. �, denoted
by P ∧Q and called the meet of P and Q.

– The set {R ∈ P : R � P, R � Q} has a unique minimum w.r.t. �, denoted
by P ∨Q and called the join of P and Q.

We will further assume that P fulfils the following two additional properties:

1e∈P∨Q + 1e∈P∧Q ≤ 1e∈P + 1e∈Q ∀P,Q ∈ P, e ∈ E (SM)

P ∩R ⊆ Q ∀P,Q,R ∈ P with P ≺ Q ≺ R (CS)

which are known as submodularity and consecutivity, respectively.
Furthermore, we assume that the requirement function π is supermodular

w.r.t. the lattice (P,�), i.e.,

πP∨Q + πP∧Q ≥ πP + πQ ∀ P,Q ∈ P

and monotone w.r.t. �, i.e., πP ≤ πQ for all P,Q ∈ P with P � Q.
Hoffman and Schwartz [14] showed that under these assumptions (even when

foregoing monotonicity of π) the system defining the polyhedron

Y + :=
{
ρ ∈ RE+ :

∑
e∈P ρe ≥ πP ∀P ∈ P

}
,

which they call lattice polyhedron, is totally dual integral. For the case that π is
monotone, Kornblum [20] devised a two-phase (primal-dual) greedy algorithm
for optimizing linear functions over Y +, which was extended by Frank [10] to
the more general notions of sub- and supermodularity (still requiring montonic-
ity). The algorithm runs in strongly polynomial time when provided with lattice
oracle that, given U ⊆ E returns the maximum member (w.r.t. �) of the sub-
lattice P[U ] := {P ∈ P : P ⊆ U} along with the value of πP . We prove the
following decomposition result under the same assumptions as in [10, 20].

Theorem 10 (♣). Let (P,�) be a submodular, consecutive lattice and let π be
monotone and supermodular with respect to �. Then (E,P, π) is (?)-sufficient.
Moreover, there is an algorithm that, given ρ ∈ [0, 1]E, finds in polynomial time
in |E| and T , a feasible decomposition of ρ or asserts that ρ /∈ Y ?, where T is
the time for a call to a lattice oracle for (P,�) and π.
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Our strategy for proving Theorem 10 is the following: If ρ ∈ Y ?, we can
express it as a convex combination of extreme points (and possibly rays) of Y +.
We can use the structure of these extreme points, implied by the optimality of
the two-phase greedy algorithm, to construct ASCs and hence, via Algorithm 1,
a feasible decomposition of each extreme point. These can then be recomposed
to a feasible decomposition for ρ. The two-phase greedy algorithm allows us to
carry out these steps efficiently as it implies a separation oracle for Y ?.

In the remainder of this section, we show how to construct an ASC for the
case that ρ ∈ Y ? is an extreme point of Y +. We start by describing the properties
of extreme points implied by the correctness of the two-phase greedy algorithm.

Theorem 11 ([10]). Let ρ ∈ Y +. Then ρ is an extreme point of Y + if and only
if there exists e1, . . . , em ∈ E and P1, . . . , Pm ∈ P with the following properties:

(G1) ei ∈ Pi for all i ∈ [m],
(G2) Pi = max� P[E \ {e1, . . . , ei−1}] for all i ∈ [m],
(G3) πPi > 0 for all i ∈ [m] and πQ ≤ 0 for all Q ∈ P[E \ {e1, . . . , em}],
(G4) ρ is the unique solution to the linear system∑

e∈Pi ρe = πPi ∀ i ∈ [m],
ρe = 0 ∀ e ∈ E \ {e1, . . . , em}.

We call such e1, . . . , em ∈ E and P1, . . . , Pm ∈ P fulfilling these properties a
greedy support for ρ. Indeed, note that (G4) implies Eρ ⊆ {e1, . . . , em}. Proper-
ties (G1)-(G4) also imply that greedy supports have a special interval structure,
enabling the following algorithmic and structural result.

Lemma 12 (♣). Given a greedy support e1, . . . , em and P1, . . . , Pm of an ex-
treme point ρ of Y + one can compute in time O(m) a set S fulfilling

S ⊆ Eρ and |S ∩ Pi| = 1 for all i ∈ [m]. (1)

The corresponding algorithm iterates through e1, . . . , em in reverse order and
adds element ei to S if it does not result in |S ∩ Pi| > 1. We now show that S
as constructed above is indeed an ASC.

Theorem 13 (♣). If S fulfils (1) for the greedy suppport of an extreme point
ρ of Y +, then S is an ASC for π and ρ.

Proof (sketch). Note that S fulfils (S1) as S ⊆ Eρ by (1). Next, we show that S
also fulfils (S2). Assume by contradiction that there is Q ∈ P=

π,ρ with |Q∩S| > 1.
Without loss of generality, we can assume Q to be �-maximal with this property.
We distinguish three cases.

– Case 1: Q � Pm. Note that ej /∈ Q for all j ∈ [m] with j < m, as otherwise
Q ≺ Pm ≺ Pj would imply ej ∈ Pm by (CS), contradicting (G2), which
requires Pm ⊆ E \ {e1, . . . , em−1}. Therefore Q ∩ S ⊆ {em}, from which we
conclude |Q ∩ S| ≤ 1.
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– Case 2: There is i ∈ [m] with Pi � Q � Pi+1. It can be shown that (G2)
and (CS) imply Pi ∩ Eρ ⊆ Q ∩ Eρ in this case. Moreover, Pi, Q ∈ P=

π,ρ and
monotonicty imply

∑
e∈Pi ρe = πPi ≥ πQ =

∑
e∈Q ρe. We conclude that in

fact Pi ∩ Eρ = Q ∩ Eρ. Thus Pi ∩ S = Q ∩ S and |Q ∩ S| ≤ 1 by (1).
– Case 3: There is i ∈ [m] such that Q ∼ Pi (i.e., Q and Pi are incomparable

w.r.t. �). Let i ∈ [m] be maximal with that property and define Q+ := Q∨Pi
and Q− := Q ∧ Pi. Using standard uncrossing arguments we can show that
Pi, Q ∈ P=

π,ρ implies Q+, Q− ∈ P=
π,ρ and 1Q+∩S + 1Q−∩S = 1Pi∩S + 1Q∩S .

Note that |Q+ ∩ S| ≤ 1 by maximality of Q ∈ P=
π,ρ with |Q ∩ S| > 1. We

will show that |Q− ∩S| ≤ 1, which, using the above and |Pi ∩S| = 1 by (1),
implies |Q ∩ S| ≤ |Q+ ∩ S|+ |Q− ∩ S| − |Pi ∩ S| ≤ 1, a contradiction.
It remains to show |Q− ∩ S| ≤ 1, for which we distinguish two subcases.
First, if i = m, then Q− ∩ S ⊆ {em} as shown in case 1 above. Second, if
i < m, then maximality of i with Pi ∼ Q implies Q � Pi+1 and therefore
Pi � Q− = Pi ∧Q � Pi+1. Thus either Q− = Pi+1 and hence |Q− ∩ S| = 1
by (1) or Pi � Q− � Pi+1, in which case |Q− ∩ S| ≤ 1 by case 2 above.

The proof that S fulfils (S3) follows similar lines but requires the use of some
additional consequences of (G1)-(G4). ut

5 Perfect Decompositions and Balanced Hypergraphs

In this section, we study decomposition-friendly systems, where every ρ ∈ [0, 1]E

has a perfect decomposition that attains requirements πρP := min{
∑
e∈P ρe, 1}

for all P ∈ P. We show that such systems are characterized by absence of certain
substructures that hinder perfect decomposition.

A special cycle of (E,P) consists of ordered subsets C = {e1, . . . , ek} ⊆ E
and C = {P1, . . . , Pk} ⊆ P such that Pi ∩ C = {ei, ei+1} for i ∈ [k], where we
define ek+1 = e1. The length of such a special cycle (C, C) is |C| = k = |C|. A
balanced hypergraph is a system (E,P) that does not have any special cycles of
odd length at least 3. Balanced hypergraphs were introduced by Berge [1] and
have been studied extensively, see, e.g., the survey by Conforti et al. [5]. Our
main result in this section is the following:

Theorem 14 (♣). A set system (E,P) is decomposition-friendly if and only
if it is a balanced hypergraph. If (E,P) is a balanced hypergraph, a perfect de-
composition of ρ ∈ [0, 1]E can be computed in polynomial time in |E|.3

Proof (sketch). To see that every decomposition-friendly system needs to be a
balanced hypergraph, consider any odd-length special cycle (C, C) and observe
that the marginals defined by ρe = 1

2 for e ∈ C and ρe = 0 for e ∈ E \ C
do not have a perfect decomposition. The existence of perfect decompositions
in balanced hypergraphs can be established by a reduction to the case πρ ≡ 1,
for which a perfect decomposition can be obtained using an integrality result of
Fulkerson et al. [11]. ut
3 Note that |P| is bounded by O(|E|2) for any balanced hypergraph [13]. Thus, the

stated running time holds even when P is given explicitly.
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