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Human decisions are accompanied by a sense of con-
fidence regarding the accuracy of those decisions. In 
experimental work, decision confidence usually corre-
lates with objective accuracy: Participants report high 
confidence for correct choices and low confidence  
for errors (Fleming et  al., 2010). Theoretically, this is 
explained by assuming that confidence for binary 
choices reflects the probability of being correct given 
the available data (Kiani & Shadlen, 2009). Thus, humans 
should be rather stable in computing and reporting con-
fidence. However, although such probabilistic models 
on average explain decision confidence well, vast dif-
ferences exist between individuals and tasks concerning 
the reported confidence level (Ais et al., 2016). This is 
clearly evident in simple, low-level perceptual decision-
making tasks, where some systematically underestimate 
their accuracy and others overestimate.

Introduction

Under- and overconfidence have far-reaching implica-
tions in real life: Overconfidence has been related to 

increased sharing of fake news (Lyons et al., 2021) and 
diagnostic inaccuracies in physicians (Saposnik et al., 
2016), whereas underconfidence is linked to low self-
esteem (Moses-Payne et al., 2019). Moreover, impaired 
metacognition has been linked to holding radical beliefs 
(Rollwage et al., 2018) and various psychiatric symp-
toms (Hoven et al., 2019).

Despite clear evidence for individual and task differ-
ences in confidence, with potentially far-reaching con-
sequences, the origins of the phenomenon are ill 
understood. Although researchers have proposed expla-
nations in terms of impression management (Belmi et al., 
2019; Schwardmann & van der Weele, 2019) or feedback 
exposure (Baranski & Petrusic, 1994; Petruzzello & 
Corbin, 1988), these accounts do not fundamentally 
explain the underlying mechanism of confidence biases. 
The current work investigated whether a probabilistic 
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Humans differ vastly in the confidence they assign to decisions. Although such under- and overconfidence relate to 
fundamental life outcomes, a computational account specifying the underlying mechanisms is currently lacking. We propose 
that prior beliefs in the ability to perform a task explain confidence differences across participants and tasks, despite similar 
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confidence is quantified as the probability of being correct conditional on prior beliefs, causing under- or overconfidence. 
We provide a fundamental mechanistic insight into the computations underlying under- and overconfidence.
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framework can account for under- and overconfidence 
by leveraging an underappreciated aspect of probabilis-
tic models of confidence: The probability of being cor-
rect depends on the task context. Everything else being 
equal, the probability of a correct choice is higher in an 
easy task context than in a difficult task context simply 
because correct choices appear more often in easy tasks. 
Thus, even agents who merely believe to be operating 
in a difficult task context will report lower confidence 
than agents who believe the task context to be easy (see 
Fig. 1). Likewise, agents who assume themselves to be 
very bad at a task will report lower confidence than 
agents who believe themselves to be very competent. We 
introduce a subjective drift rate representing prior beliefs, 
which controls the mapping between the available data 
and the probability of being correct. The idea that an 
internal model of the world informs the computations of 
decision confidence has been explored before (e.g., 
Drugowitsch et al., 2014; Fleming & Daw, 2017; Khalvati 
et al., 2021), demonstrating that a “wrong” model of the 
world could lead to distorted confidence computations. 
Here, we opted for the term prior beliefs because we 
propose that changes in participants’ beliefs about their 
ability to perform a task influence their computations of 
confidence. Thus, this term relates more closely to the 
idea that confidence depends on beliefs about capacities 
compared to their beliefs about the world. Apart from 
theoretical considerations, direct empirical support for 
the involvement of prior beliefs in the computation of 
confidence is equally lacking. We aimed to provide direct 
evidence that prior beliefs underlie under- and overcon-
fidence by explicitly manipulating beliefs about task per-
formance in perceptual decision-making tasks.

In two experiments, we manipulated prior beliefs 
during the training phase and looked at the influence 
on confidence ratings during a subsequent test phase. 
Our results showed that altered prior beliefs, resulting 
from fake comparative feedback (Experiment 1) or 
training on tasks with differential difficulty (Experiment 
2) selectively affected subsequent (test phase) confi-
dence ratings while leaving performance unaffected. 
These effects were accounted for by a probabilistic 
model of confidence that represented prior beliefs 
about one’s ability to perform the task at hand, chang-
ing the mapping between accumulated evidence and 
confidence (see Fig. 1).

Method

Open practices statement

All raw data and analysis code are openly available on 
the Open Science Framework at https://osf.io/8bf3r/. 
This work was not preregistered.

Participants

Fifty participants (8 men, one nonbinary; age: M = 19 
years, SD = 4.9 years, range 17–52 years) took part in 
Experiment 1. Fifty participants (5 men; age: M = 18.5 
years, SD = 1 year, range 17–22 years) took part in 
Experiment 2. In our lab, unless otherwise required we 
use a convenience sample of first-year undergraduate 
students with the aim of testing 50 participants. In 
doing so, we ensure that we have high experimental 
power, well above the 1,600 trials per cell usually 
required of the design, combined across participants 
and items (Brysbaert & Stevens, 2018). Due to chance 
level performance in at least one of the tasks, we 
removed 2 participants from Experiment 1 and 3 from 
Experiment 2. All participants participated in return for 
course credit and read and signed a written informed 
consent at the start of the experiment. All procedures 
were approved by the KU Leuven Ethics Committee.

Stimuli and apparatus

Both experiments were conducted on a 22-in. Dell mon-
itor with a 60 Hz refresh rate, using PsychoPy3 (Peirce 
et al., 2019). All stimuli were presented on a black back-
ground centered around the middle of the screen (radius 
2.49° visual arc). Stimuli for the dot-number task (white 

Statement of Relevance

The ability to accurately evaluate your choices is 
crucial for healthy human functioning. Tendencies 
to be under- or overconfident in one’s choices 
have been linked to a variety of psychiatric symp-
toms, to self-esteem, and even to real-world out-
comes such as believing in fake news or holding 
radical beliefs. However, the underlying mecha-
nisms that result in such erroneous estimations of 
confidence are currently sorely underexplored. 
We provide a solid fundamental account that 
explains under- and overconfidence as resulting 
from prior beliefs in one’s performance, and we 
demonstrate how this results in dissociations 
between accuracy and confidence. Our study pro-
vides long-needed empirical evidence on the 
computational signatures of confidence devia-
tions, and we introduce manipulations of prior 
beliefs that could be leveraged in a clinical con-
text. Thus, our work will appeal to researchers 
interested in a fundamental understanding of 
(meta)cognition as well as researchers with a 
more clinical orientation.

https://osf.io/8bf3r/
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dots) were presented in two equally sized boxes (height 
20°, width 18°) at an equal distance from the center of 
the screen. Stimuli for the letter-discrimination task 
(white Xs and Os) and dot-color task (red and blue dots) 
were presented in one box (height 22°, width 22°), 
centered around the fixation point.

Procedure

General. In both experiments, participants completed 
three decision-making tasks: a dot-color task, a dot- 
number task, and a letter-discrimination task (see Fig. 2). 
Each task started with 120 training trials. In Experiment 1, 
participants were presented performance feedback every 
24 trials, whereas in Experiment 2, feedback was given 
on every trial. After the training phase of a task, a test 
phase of 216 trials followed during which no feedback 
was provided; instead, participants indicated their level 
of confidence after each choice. For all tasks, a trial 
started with a fixation cross that was presented for 500 
ms, after which the stimulus appeared for 200 ms or until 
a response was given. Participants indicated their choice 
using the C or N key, using the thumbs of both hands. 
There was no time limit for responding. On test trials, 
participants additionally rated their confidence after each 
choice on a 6-point scale, labeled certainly wrong, 

probably wrong, maybe wrong, maybe correct, probably 
correct, and certainly correct (reversed order for half the 
participants). Confidence was indicated using the 1, 2, 3, 
8, 9, and 0 keys with the ring, middle, and index fingers 
of both hands. There was no response limit for indicating 
confidence.

For each task, there were three levels of stimulus 
difficulty (easy, average, or difficult). Stimulus proper-
ties for Experiment 1 were decided on the basis of the 
results of a small pilot study (N = 5). For Experiment 
2, stimulus properties were revised on the basis of the 
results of Experiment 1 in order to achieve better 
matching accuracy between tasks. Stimulus dependen-
cies for each task can be found in Table 1.

Dot-color task. On each trial, participants decided 
whether a field contained more (static) blue or red dots. 
The total number of dots was always 80, with differing 
proportions of red or blue dots depending on the diffi-
culty condition. The position of dots was randomly gen-
erated on each trial.

Dot-number task. On each trial, two fields were pre-
sented, one of which contained 50 dots and the other 
either more than 50 dots or fewer than 50 dots. Partici-
pants decided which of the two fields contained the 
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Fig. 1. Illustration of how prior beliefs can influence decision confidence. We hypothesized that participants exposed to 
feedback indicating that they are performing well (versus badly) will hold the prior belief that they are good versus bad at this 
task. In our computational framework (top row), a change in prior belief is implemented by changing the mapping between 
the amount of evidence (y-axis) and the perceived probability of responding correctly (i.e., decision confidence; colored heat 
map). Within this framework, noisy sensory evidence (y-axis) accumulates over time (x-axis) until one of the two bounds (a or 
−a) is hit and a choice is made, after which postdecisional evidence continues to accumulate and informs decision confidence. 
In the figure, note that for the exact same trial, the final amount of accumulated evidence (blue circle) leads to different levels 
of confidence depending on the prior belief about task performance.
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Fig. 2. Experimental design. In both experiments, participants performed three different perceptual decision-making tasks (only 
one is shown here). Each task started with a training phase during which a different prior belief was induced. In Experiment 
1, participants received comparative feedback after each training block, indicating that their performance was better, similar, 
or worse than the performance of a reference group. In reality, feedback was unrelated to their performance. In Experiment 2, 
during the training phase participants encountered only easy, average, or difficult trials. In this experiment, trial-by-trial feed-
back reflected actual performance. For both experiments, these manipulations aimed to install the belief that participants were 
very good, average, or very bad, respectively, at performing this task. Each participant was subjected to each of these three 
manipulations once (i.e., a different manipulation in each task). After each training phase, participants completed a test phase 
during which they no longer received feedback but instead rated their decision confidence after each decision.
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largest number of dots. The exact number of dots in the 
variable field differed depending on the difficulty condi-
tion. The position of dots was randomly generated on 
each trial.

Letter-discrimination task. On each trial, participants 
decided whether a field contained more Xs or Os. The 
total number of Xs and Os was always 80, with differing 
proportions of Xs or Os depending on the difficulty con-
dition. The position of the letters was randomly gener-
ated on each trial.

Experiment 1: prior-belief induction  
in the comparative-feedback experiment

In Experiment 1, prior beliefs about the ability to cor-
rectly perform the task were manipulated by means of 
fake comparative feedback during the training phase. 
Participants were told that their feedback score was 
indicative of their performance (accuracy and reaction 
time, or RT) on the preceding trials relative to the  
performance of other participants who took part previ-
ously. Unknown to participants, feedback was prede-
termined to be either good, average, or bad for a 
specific task, and feedback scores were randomly sam-
pled according to the feedback condition. Each partici-
pant received good feedback on one task (inducing 
prior beliefs of high task performance), average feed-
back on another task, and bad feedback on a third task 
(inducing prior beliefs of low task performance; order 
and mapping, with tasks counterbalanced between par-
ticipants). For each task, participants received feedback 
after every 24 training trials, amounting to five feedback 
presentations per task. Feedback scores were pseudo-
randomly generated on each feedback presentation and 
ranged between 5% and 30% in the negative-feedback 
condition, between 37% and 62% in the average-feedback 
condition, and between 70% and 95% in the positive-
feedback condition. To increase the credibility of the 
negative feedback, the second of the five feedback 
screens showed average feedback (ranging between 
32% and 36%, labeled as average). Likewise, the second 

of five feedback screens in the positive-feedback condi-
tion showed average feedback (ranging between 63% 
and 67%, labeled as average).

At the top of the feedback screens, a verbal indica-
tion of the participant’s score was presented—“good 
performance” in green, “average performance” in white, 
or “bad performance” in red. The score itself was pre-
sented in the same color as the verbal indication. In 
the middle of the feedback screen, the participant’s 
score was indicated in a visual way. A vertically ori-
ented rectangle with no fill color was presented, with 
the bottom line marked “worst performance,” the top 
line marked “best performance,” and a midline marked 
“average performance.” The participant’s score was 
used to color the same percentage of the rectangle’s 
total surface (starting at the bottom) in red (bad per-
formance), white (average performance), or green 
(good performance; see Fig. 2).

Experiment 2: prior belief induction 
via task difficulty

In Experiment 2, prior beliefs about the ability to cor-
rectly perform the task were induced by manipulating 
the difficulty of the task during the training phase in 
three levels. Contrary to Experiment 1, participants 
received genuine feedback on every trial: Each correct 
choice was followed by the word “Correct!” and each 
incorrect choice by “Wrong!” Each participant com-
pleted one task with a training phase consisting only 
of easy trials (inducing positive prior beliefs about task 
ability), another with a training phase of all average 
trials (inducing average prior beliefs), and another with 
a training phase of all difficult trials (inducing negative 
prior beliefs).

Statistical analyses

Data from the test phase were analyzed using mixed-
effects models. We started from models including the 
fixed factors of testing phase difficulty and condition 
(Experiment 1: positive, average, or negative feedback; 

Table 1. Stimulus Properties for Each Difficulty Level, Task, and Experiment

Difficulty

Dot-color task
Number of dominant color 

dots (80 dots in total).

Dot-number task
Number of dots in the  

variable field (reference  
field contains 50).

Letter-discrimination task
Number of dominant letters 

(80 letters in total)

Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2

Easy 61–65 61–65 + or − 21–25 + or − 21–25 70–75 70–74
Average 51–55 46–50 + or − 11–15 + or − 11–15 51–55 53–57
Difficult 41–45 41–45 + or − 1–5 + or − 1–5 41–45 42–46
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Experiment 2: easy, average, or hard training phase) 
and their interaction, as well as a random intercept for 
each participant. These models were then extended by 
adding random slopes through forward selection. More 
specifically, we first compared two separate models 
(each including the random slope of one of the two 
fixed factors) against the starting model, using an alpha 
level of .05 for significance testing. If only one of the 
random slopes provided a better fit than the starting 
model, we kept that model as the final model. If both 
random slopes significantly improved the fit, we then 
compared a model including a slope for each factor 
against the best-fitting model from the previous step 
(i.e., the lowest Bayesian information criterion, or BIC). 
If we failed to find a better fit, we kept the model with 
one random slope and the lowest BIC as the final 
model. If the inclusion of both slopes did provide a 
better fit, we compared this model against a model 
including a random slope for the interaction as well. 
However, for all models reported in our manuscript, 
the latter failed to converge or provide a better model 
fit, so that the final models included random slopes for 
one or both factors, but not the interaction. For Experi-
ment 1, the final model for confidence ratings included 
additive slopes of both testing-phase difficulty and 
feedback, whereas the final models for accuracy and 
RTs included only a random slope of feedback.

For Experiment 2, all three models included only a 
random slope of training condition. Confidence ratings 
and RTs were analyzed with linear mixed-effects mod-
els, for which we report F statistics and the degrees of 
freedom as estimated by Satterthwaite’s approximation. 
Accuracy was analyzed using a generalized linear mixed 
model, for which we report χ2 statistics. All model anal-
yses were done using the lmerTest package (Kuznetsova 
et al., 2017) in RStudio (RStudio Team, 2019) using an 
alpha level of .05 for significance testing. In addition 
to these frequentist analyses, we calculated Bayes fac-
tors (BFs) using the BayesFactor package in R (Morey 
& Rouder, 2018) with default priors. A BF10 indicates 
data in favor of the null hypothesis (BF10 < ⅓), data in 
favor of the alternative hypothesis (BF10 > 3), and data 
that are uninformative (BF10 ≈ 1).

Computational model

Bounded evidence accumulation. We modeled the 
data using the drift-diffusion model (DDM), a popular 
variant of the wider class of accumulation-to-bound 
models. In the DDM, noisy evidence is accumulated, the 
strength of which is controlled by a drift rate v, until one 
of two boundaries, a or −a, is reached. Nondecision 
components were captured by a nondecision time ter 
parameter. To simulate data from the model, we used 

random walks as a discrete approximation of the con-
tinuous diffusion process of the drift-diffusion model 
(Ratcliff & Tuerlinckx, 2002). Each simulated random-
walk process started at z * a (here, z was an unbiased 
starting point of 0), which terminated once the accumu-
lated evidence reached either a or −a. At each time step 
τ, accumulated evidence changed by Δ with Δ given in 
Equation (1):

 D = +v * * *τ τσ �N ( , ).0 1  (1)

Within-trial variability is given by σ. In all simulations, 
τ was set to 1 ms, and σ was fixed to .1.

Accounting for prior beliefs. Within this model, con-
fidence is given by mapping accumulated evidence, RT, 
and the choice on a two-dimensional heat map (as shown 
in Fig. 1) representing the probability of being correct for 
any given evidence level, time, and choice. Because con-
fidence judgments were given after the choices in both 
experiments, we allowed for additional postdecision evi-
dence accumulation following boundary crossing before 
quantifying confidence (Pleskac & Busemeyer, 2010). 
The duration of the postdecision evidence-accumulation 
process was sampled from the full confidence RT distri-
bution observed during the test phase for each partici-
pant. The heat maps were constructed by computing the 
ratio between the probability densities of the amount of 
evidence accumulated with a given drift rate (μ > 0) and 
its opposite (−μ) at each time step (the inverse ratio is 
computed depending on the choice). An important 
aspect to consider is that these heat maps depend on the 
actual drift rate that is used to generate them; when gen-
erating heat maps with high versus low drift rates, the 
probability of being correct will be high versus low, 
respectively (because high drift rates are associated with 
higher accuracy and vice versa). To model prior beliefs, 
we assumed that the drift-rate parameter controlling the 
shape of the heat map can be different from the drift-rate 
parameter controlling objective performance. To avoid 
confusion, we refer to the former as the subjective drift 
rate (vs, formalizing the theoretical notion of prior beliefs) 
and the latter as the drift rate (v).

Qualitative-model fitting. We estimated vs for each 
participant and each prior belief condition by estimating 
which vs provides predictions about confidence that best 
match the feedback received by participants in the train-
ing phase. Note that in Experiment 1, feedback was given 
only once at the end of each training block (24 trials), so 
we equally assigned the feedback value presented at the 
end of a block to every trial within that block. To have 
access to the amount of accumulated evidence, we first 
simulated predictions of the observed trials in the training 
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phase from DDM parameters fitted to the training data. 
Confidence predictions for those simulated trials were 
then quantified as the probability correct given time and 
evidence for the heat map generated by vs. The cost func-
tion was determined by the mean square error (MSE) 
between observed feedback and predicted confidence—

 MSE
N

oFB pCJ
i

N

i i= −
=
∑1

1

( )² (2)

—with N representing the number of observed trials in 
the training phase for a given prior belief condition, 
oFBi the feedback received at trial i, and pCJi the con-
fidence predicted for trial i. Each observed trial’s feed-
back was compared 24 times to new predictions to 
account for the stochastic nature of the DDM. Because 
generating a heat map is computationally costly, we 
generated 500 heat maps from values of vs ranging from 
0 to .5. The MSE was then computed for each of these 
generated heat maps. Smoothing using the locally 
weighted scatterplot-smoothing method (LOWESS; 
Cleveland, 1981) was performed over the computed 
MSE for all vs to further reduce noise. The final esti-
mated vs for each participant and prior belief condition 
was therefore equal to the one that generated the heat 
map with the minimum smoothed MSE.

Quantitative-model fitting. Quantitative-model pre-
dictions were produced by directly fitting our model to 
confidence ratings in the testing phase. An improved 
implementation of the heat-map generation allowed us to 
directly estimate the best-fitting vs instead of comparing 
the cost for several pregenerated values, as explained in 
the previous section. We estimated vs separately for each 
participant and prior belief condition. Because model 
confidence is given as a probability of being correct, we 
applied equal-width binning to map model predictions 
on the confidence-ratings scale. The biases and individual 
differences in mapping confidence on a categorical scale 
were accounted for by estimating an additional bias 
parameter separately for each participant but fixed over 
conditions. To estimate these parameters, we computed 
the proportion of trials falling in each confidence level 
separately for correct responses and errors. We then used 
a differential evolution algorithm, as implemented in the 
DEoptim R package (Mullen et al., 2011), to minimize the 
sum of squared error function shown in Equation 3:

 SSE o CJ p CJ o CJ p CJCJ

j

N

c j c j e j e j

c

= −( ) + −( )
=
∑

1

2 2
.   (3)

Here, Nc represents the number of confidence levels, 
o CJc j  and p CJc j  represent respectively the proportion 
of observed and predicted correct trials with confi-
dence judgment j, and o CJe j  and p CJe j  represent the 

proportion of observed and predicted incorrect trials 
with a confidence judgment j. The population size for 
the differential evolution algorithm was set to 10 times 
the number of free parameters, as recommended in 
Price et al. (2006). Two termination criteria were set:  
(a) no new minimum of the sum of squared errors (SSE) 
observed for the past 100 iterations or (b) a maximum 
of 1,000 iterations. The 1,000-iteration criterion was 
never reached. Model predictions for the sake of param-
eter estimation were generated by simulating 5,000 ran-
dom walk paths for each drift rate to be fitted. Model 
predictions from best-fitting parameters (as shown in 
Fig. 3) were generated by simulating an equal number 
of paths as in the corresponding observed data.

DDM fitting. For each task and participant in the train-
ing data of Experiment 1 as well as in the test data of both 
experiments, we fitted five DDM parameters to the accu-
racy and RT data: three drift rates (v; one for each trial-
difficulty level), the decision boundary (a) and the 
nondecision time (Ter). Because only one trial difficulty 
was presented per task in the training phase of Experi-
ment 2, only one drift rate per task was fitted to the train-
ing data of Experiment 2, resulting in the estimation of 
three DDM parameters in this case. To estimate these 
parameters, we implemented quantile optimization. Spe-
cifically, we computed the proportion of trials in six 
groups, formed by quantiles .1, .3, .5, .7, and .9 of RT, 
separately for correct responses and errors. We used a differ-
ential evolution algorithm to minimize the following SSE—

 SSE o RT p RT o RT p RTRT

j

Nq

c j c j e j e j= − + −
=
∑

1

( )² ( )²   (4)

—with Nq representing the number of quantiles, o RTc j 
and p RTc j  the proportion of observed and predicted 
correct responses in RT quantile j, respectively, and 
o RTe j  and p RTe j  the proportion of observed and pre-
dicted incorrect responses in RT quantile j. Model fitting 
was done separately for each participant, each phase 
(training vs. testing), and each experimental manipula-
tion. All DEoptim settings were identical to the ones 
described in the previous section.

Results

To unravel the influence of prior beliefs on decision 
confidence, we carried out two experiments that aimed 
to causally influence participants’ prior beliefs about 
their ability to accurately perform the task. In both 
experiments, participants performed three similar per-
ceptual decision-making tasks. Each task started with 
a training phase in which we manipulated participants’ 
prior beliefs in their ability to accurately perform the 
task. This was done by providing them with feedback 
indicating that their performance was good, average, 
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Behavioral Data and Quantitative Model Fits

Qualitative Model Predictions

Experiment 1: Comparative Feedback Experiment 2: Training Difficulty
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Fig. 3. Manipulating prior beliefs to causally induce under- and overconfidence. In Experiment 1—left column, (a), (c), and 
(e)—providing participants with comparative feedback during the training phase (i.e., indicating that they were performing 
better, equal, or worse than a reference group) left objective performance during the test phase unaffected (a), but induced 
under- and overconfidence, respectively (c). This effect was captured by our computational model, using both a quantitative 
fitting method (a, c; shaded bars) and qualitative (e) fitting method. These findings were replicated in Experiment 2—right 
column, panels (b), (d), and (f)—where prior beliefs were manipulated by differential difficulty levels during the training phase. 
Shaded bars reflect the model fits’ standard errors of the mean, behavioral data is represented by lines with error bars to reflect 
standard errors of the mean, and small dots in (c) and (d) reflect individual participants. Note that in (c) and (d), standard 
errors were too small to produce visible error bars. RT = reaction time.
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or poor. In the subsequent test phase of each task 
(without comparative feedback in Experiment 1; with-
out task differences in Experiment 2), we tested the 
influence of the manipulation on trial-by-trial confi-
dence ratings. To account for the influence of prior 
beliefs on confidence, we fitted a computational model 
to the data in which belief about its ability to perform 
the task is based on earlier task experience, dissociated 
from its actual performance.

Experiment 1: Manipulating prior beliefs 
via comparative feedback causally 
induces under- and overconfidence

In Experiment 1 (N = 48), we used comparative feed-
back to influence prior beliefs about task performance. 
Participants were told that they would receive feedback 
every 24 training trials about their performance on the 
task, relative to a group of participants who had per-
formed the same task at an earlier time. Unbeknownst 
to participants, feedback was manipulated so that for 
one task feedback indicated that the participant’s per-
formance was better than most participants’ perfor-
mance; that it was on average for the second task; and 
that it was worse than most participants’ performance 
for the third task (see Fig. 2). Because the feedback 
was not about performance per se but rather about 
participants’ supposed relative performance, we 
assumed that the insincerity of the feedback would be 
noticed less easily. More importantly, we suspected that 
comparative feedback would have a more profound 
impact on participants’ beliefs about their task perfor-
mance than direct performance feedback would. After-
ward, participants took part in a test phase during 
which they no longer received feedback but instead 
rated their perceived level of confidence on each trial. 
In both the training and the test phase, each task was 
composed of three levels of difficulty (see Method). In 
line with our main hypothesis, confidence ratings dur-
ing the test phase depended on the feedback that par-
ticipants received during the training phase, F(2, 47) = 
16.65, p < .001, BF10 = 5.18e + 15 (see Fig. 3c). Partici-
pants reported a higher level of choice confidence after 
exposure to feedback indicating they had performed 
better (M = 4.79), average (M = 4.64), or worse (M = 
4.41) compared to the reference group. This change in 
average confidence was mostly driven by an increase 
in “sure correct” ratings and a decrease in “guess cor-
rect” ratings after positive versus negative feedback (see 
Fig. S1 in the Supplemental Material available online; 
a–c). Likewise, participants tended to change their 
minds more often (i.e., reporting “guess error,” “prob-
ably error,” or “sure error”) after receiving negative 
compared to positive feedback (see Fig. S1, a–c). In 

addition to the effects of feedback, there was the 
expected effect of trial difficulty on confidence ratings, 
F(2, 47) = 159.71, p < .001, BF10 = 5.21e + 51. There 
was also a small interaction between feedback condi-
tion and trial difficulty, F(4, 30,744) = 2.60, p = .034, 
demonstrating that the influence of feedback on con-
fidence slightly depended on trial difficulty, but this 
conclusion was not supported by the BF, which sup-
ported the null hypothesis (BF10 = 0.018). As can be 
seen in Figure 3c, the main effect of feedback condition 
was significant for all levels of stimulus difficulty (easy 
trials: F(2, 47) = 7.65, p < .01; average difficulty: F(2, 
47) = 16.67, p < .001; hard trials: F(2, 47) = 19.78, p < 
.001). Importantly, the induction of prior beliefs selec-
tively affected decision confidence but left objective 
performance unaffected. During the test phase, both 
accuracy and RTs were affected by trial difficulty—accu-
racy: χ2(2) = 2,421.63, p < .001, BF10 = 9.47e + 113; 
reaction times: F(2, 30,837) = 316.29, p < .001, BF10 = 
752e + 10, but not by feedback condition—accuracy: 
χ2(2) = 0.3, p = .863, BF10 = 0.03; RTs: F(2, 47) = 2.06, p = 
.14, BF10 = 13.96 (see Fig. 3a). There were also no sig-
nificant interactions between trial difficulty and feed-
back condition for objective performance—accuracy: 
χ2(4) = 4.528, p = .34, BF10 = 0.019; RTs: F(4, 30,837) = 
1.024, p = .3930, BF10 = 0.014. Note that for the effect 
of feedback condition on RTs, the BF indicated evidence 
in favor of the alternative hypothesis. However, this dif-
ference seems to originate mostly from the negative 
condition, whereas the effect of confidence was clearly 
visible for all three feedback conditions and was not 
replicated in Experiment 2.

Interestingly, the effect of prior beliefs on confidence 
was quite persistent throughout the test phase. Each test 
phase comprised three blocks of 72 trials, separated by 
a break of 1 min. Analyzing the data of each block sepa-
rately, the effect was remarkably consistent within each 
of the three blocks—Block 1: F(2, 48) = 21.79, p < .001, 
Mpositive = 4.79, Maverage = 4.60, Mnegative = 4.34; Block 2: 
F(2, 48) = 14.20, p < .001, Mpositive = 4.81, Maverage = 4.67, 
Mnegative = 4.44; and Block 3: F(2, 48) = 9.51, p < .001, 
Mpositive = 4.76, Maverage = 4.65, Mnegative = 4.46. However, 
there was a subtle decrease in the effect across time: 
When adding the factor “block” to the main model, 
including the data from all three blocks (see above), 
there was a significant interaction between block and 
feedback condition, F(4, 31,412) = 4.98, p < .001.

Experiment 2: Manipulating prior 
beliefs via differences in task 
difficulty during training

In Experiment 2 (N = 47), we altered prior beliefs about 
task performance by varying the difficulty of the task 
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during the training phase. Participants were only trained 
on easy trials on one task, on trials of average difficulty 
on another task, and on difficult trials on a third task 
(Fig. 2b). Unlike Experiment 1, participants received 
genuine feedback about their choice accuracy (“wrong” 
or “correct”) on every trial. Critically, because of this 
difference in difficulty between tasks, we achieved a 
similar feedback pattern as in Experiment 1: On aver-
age, participants saw positive feedback on 95% of the 
trials (near-perfect performance), on 79% of the trials 
(average performance), or on 60% of the trials (slightly 
above chance performance) for the easy, average, and 
hard tasks, respectively. After the training phase, par-
ticipants took part in a test phase that was identical to 
Experiment 1’s (i.e., three levels of difficulty per task, 
occurring in equal proportions). Despite the different 
approach in altering prior beliefs, the results fully rep-
licated those of Experiment 1: Confidence ratings dur-
ing the test phase depended on the difficulty level of 
the preceding training phase, F(2, 46) = 8.19, p < .001, 
BF10 = 121461028. Participants reported higher levels 
of confidence after previous training on an easy task 
(M = 4.88) versus a task of average difficulty level (M = 
4.86) versus a difficult task (M = 4.64; see Fig. 3d). As 
in Experiment 1, this change was mostly driven by an 
increase in “sure correct” ratings and a decrease in 
“guess correct” ratings after training on easy versus dif-
ficult trials (for histograms of the actual ratings, see Fig. 
S1, d–f, in the Supplemental Material). Changes of mind 
(“guess error,” “probably error,” or “sure error”) were 
also more common after training on a difficult task 
compared to an easy task (see Fig. S1, d–f). As expected, 
trial difficulty during the test phase also had an effect 
on confidence ratings, F(2, 30,109) = 2,122.11, p < .001, 
BF10 = 1.77083e + 64, with no interaction between both, 
F(4, 30,109) = 1.64, p = .16, BF10 = 0.02. The effect of 
training phase difficulty was significant for all levels of 
testing-phase difficulty—easy testing trials: F(2, 46) = 
3.54, p = .037; average testing trials: F(2, 46) = 8.50, p < 
.001; hard testing trials: F(2, 46) = 9.5, p < .001. Again, 
our manipulation left task performance unaffected. 
Accuracy and RTs were significantly influenced by testing- 
phase trial difficulty—accuracy: χ2(2) = 3,090.93,  
p < .001, BF10 = 2.013009e+163; RTs: F(2, 30,109) = 
563.52, p < .001, BF10 = 2.727619e+16—but not by the 
training-phase difficulty conditions—accuracy: χ2(2) = 
.03, p = .99, BF10 = 0.09; RTs: F(2, 46) = 0.01, p =  
.99, BF10 = 0.03 (see Fig. 3b). Again, the interaction 
between both factors was not significant for objective 
performance—accuracy: χ2(4) = 1.6, p = .81, BF10 = 0.012; 
RTs: F(4, 30,109) = 1.52, p = .19, BF10 = 0.01.

As in Experiment 1, the influence of prior beliefs  
on confidence persisted across time. When adding 
block to the analysis on confidence reported earlier, 
there was no significant interaction between training 

condition and block, F(4, 30,091) = 2.3, p = .056,  
and the effect was remarkably consistent across all 
three blocks—Block 1: F(2, 80) = 15.97, p < .001, Measy-

training = 4.88, Mmediumtraining = 4.87, Mdifficulttraining = 4.60; 
Block 2: F(2, 81) = 9.83, p < .001, Measytraining = 4.87, 
Mmediumtraining = 4.84, Mdifficulttraining = 4.65; Block 3: F(2, 
82) = 10.69, p < .001, Measytraining = 4.90, Mmediumtraining = 
4.87, Mdifficulttraining = 4.67.

Introducing prior beliefs into 
probabilistic confidence models

In order to address the underlying mechanisms by 
which prior beliefs influence the reported level of con-
fidence, we turned toward computational models of 
decision confidence. We focused on accumulation-to-
bound models, a family of models that have success-
fully accounted for choices, RT, and confidence 
(Desender et al., 2021; Kiani & Shadlen, 2009; Zylberberg 
et al., 2016). Accumulation-to-bound models, such as 
the DDM, describe decision-making as the noisy accu-
mulation of evidence until a decision boundary is 
reached, at which point a response is triggered. The 
rate of evidence accumulation is controlled by the drift 
rate (v), representing the efficiency of information 
extraction from the stimulus. To account for decision 
confidence within such a model, researchers have 
argued that confidence reflects the probability of a 
choice being correct, conditional on the state of the 
accumulator (i.e., the amount of evidence accumu-
lated), the decision time, and the choice (Desender 
et al., 2021; Kiani et al., 2014; Moreno-Bote, 2010). In 
Figure 1, this is represented by the heat maps that 
visualize how different combinations of evidence 
(y-axis) and time (x-axis) are associated with different 
levels of confidence (darker colors are associated with 
lower confidence). Importantly, when the perceived 
probability of being correct matches the actual prob-
ability of being correct, such a model cannot account 
for biases in confidence that are independent from 
objective performance (such as under- and overconfi-
dence). Intuitively, this occurs because the model’s 
beliefs about its performance match its actual perfor-
mance. In a typical evidence-accumulation model, task 
performance is controlled by the drift-rate parameter. 
Importantly, the drift rate also controls the shape of the 
two-dimensional heat map representing probability cor-
rect for any given evidence level, time, and choice (see 
Fig. 1). Thus, higher drift rates will generate heat maps 
with a higher probability of being correct than lower 
drift rates, because high drift rates are associated with 
higher accuracy and vice versa. To allow for dissocia-
tions between actual and perceived performance, we 
propose that participants have an imperfect approxima-
tion of the probability of being correct (which can be 
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manipulated via comparative feedback or differential 
training difficulty). Thus, we differentiate between 
beliefs about performance and actual performance, 
explicitly incorporating prior beliefs into the computa-
tion of decision confidence (for a similar implementa-
tion, see Khalvati et al., 2021). In a similar vein, other 
work has already demonstrated the importance of con-
sidering dissociations between participants’ internal 
model of the world and the external evidence (e.g., 
Fleming & Daw, 2017; Khalvati et al., 2021). For exam-
ple, Khalvati et al. (2021) were able to show that com-
mon discrepancies between confidence and choice 
accuracy can be explained by assuming a wrong model 
of the world. Although Khalvati et al. used a Bayesian 
framework, the similarity between DDM and Bayesian 
models has been established (Bitzer et al., 2014). For-
mally, we propose to parameterize the computation of 
the probability of being correct and thereby provide a 
solution as to how individuals integrate previous expe-
rience with the current task to form prior beliefs about 
current performance. To achieve this, we propose a 
dissociation between the drift rate controlling objective 
task performance and the subjective drift rate control-
ling the shape of the heat map (i.e., representing prob-
ability correct). This subjective drift rate can be thought 
of as a formalization of prior beliefs (inverting the heat 
map into a single parameter), reflecting how well par-
ticipants think they perform at a task rather than how 
they actually perform (see the Method section for full 
details). Thus, different values for the subjective drift 
rate will give rise to different, unique probability maps, 
corresponding to different, unique prior beliefs. By 
assigning different values to the subjective drift rate 
while leaving the other parameters of the model unaf-
fected, this proposal can in principle explain how condi-
tions with identical objective task performance (i.e., 
same drift rates) but different prior beliefs (i.e., different 
subjective drift rates) can lead to differences in subjec-
tive confidence. That is precisely the pattern of behavior 
observed in both experiments: In Experiment 1, partici-
pants were faced with false comparative feedback in 
the training phase, in the sense that it misinformed them 
about the positioning of their task performance relative 
to the performance of others. In Experiment 2, as par-
ticipants were exposed in the training phase to only one 
of the three difficulty levels subsequently experienced 
in the test phase, they received an accurate, yet neces-
sarily biased, sample of the heat map.

Modeling the effect of prior beliefs  
on decision confidence

Quantitative-model fitting. To validate the prediction 
of our model that differences in subjective confidence, 
but not task performance, can be captured by a change 

in subjective drift rate only, we fitted our model to the 
performance and confidence ratings observed in the test-
ing phase. Given that there was no effect of the compar-
ative-feedback or training-difficulty manipulations on 
performance, we estimated DDM parameters (v, a and 
ter) on the basis of testing-phase accuracy and RT data 
separately for each participant with fixed DDM parame-
ters over conditions. Subjective drift rate was estimated 
separately for each participant and prior belief condition 
based on the empirical confidence ratings in the testing 
phase. Model-predicted confidence was separated into 
partitions of 6 equal intervals in order to be mapped on 
the same 6-point scale as the confidence ratings. We fit-
ted an additional confidence bias parameter to account 
for the specific mapping from continuous probabilities to 
the categorical ratings that participants made. Impor-
tantly, this parameter was fixed over conditions, so that 
each participant had only one bias parameter. As an 
alternative to our explanation that the effect of our prior 
belief manipulations on confidence is best accounted for 
by a change in subjective drift rate, we fitted two alterna-
tive candidate models. In the first alternative model, a 
confidence bias parameter was allowed to vary between 
training conditions, and instead of having a subjective 
drift rate, the probability map used to quantify confi-
dence was calculated on the basis of the mean of objec-
tive drift rates estimated from all difficulty levels. Hence, 
in this model the shift in confidence across conditions 
can be accounted for only by an overall shift in confi-
dence bias. In the second alternative model, both subjec-
tive drift rate and confidence bias were allowed to vary 
between training conditions. Formal model comparison 
using BIC showed that in both Experiment 1 and Experi-
ment 2, the model in which only subjective drift rate was 
allowed to vary across training conditions provided the 
best fit to the data (see Table 2). This result shows that 
the influence of training conditions on confidence is best 
accounted for by a selective change in participants’ belief 
about their own performance and not by a simple change 
in confidence bias.

Next, we analyzed simulated data from our best model 
to assess its ability to capture behavioral results. As can 

Table 2. Formal Model Comparison

Bayesian information  
criterion (BIC)

Free parameter across 
conditions Experiment 1 Experiment 2

 
Confidence bias −297.58 −299.83
Subjective drift rate −300.16 −303.35
Both −294.69 −296.94

Note: Each BIC value reported in this table corresponds to the mean 
BIC over participants. The winning model is indicated in boldface.
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be seen in Figures 3a through d, model fits closely 
tracked empirical accuracy, RTs, and confidence ratings. 
Importantly, simulated confidence ratings from the best-
fitting parameters showed the same pattern as the empir-
ical data. Simulated confidence ratings increased both 
with increasingly positive feedback presented in Experi-
ment 1, F(2, 48) = 6.92, p = .002, BF10 = 7.4838542e+7, 
and with easier training difficulty in Experiment 2, F(2, 
47) = 7.02, p = .002, BF10 = 1.93840824e+8. Simulated 
confidence ratings were also influenced by trial diffi-
culty in both Experiment 1, F(2, 48) = 194.27, p < .001, 
BF10 = 8.145035e+36, and Experiment 2, F(2, 47) = 
251.68, p < .001, BF10 = 1.978466e+61. Last, identical to 
behavioral data, no interaction was found between prior 
belief condition and trial difficulty—Experiment 1: F(4, 
30,306) = 1.07, p = .37, BF10 = 0.01; Experiment 2: F(4, 
29,519) = 0.38, p = .82, BF10 = 0.01. See the Supplemental 
Material for model fits at the participant level.

Qualitative-model fitting. In the previous section, we 
demonstrated that our computational model was able to 
capture the influence of prior beliefs on confidence by 
assuming a change in subjective drift rate between the 
different conditions. We next show that our model can 
also account for the influence of prior beliefs on confi-
dence even when it is blind to empirical confidence rat-
ings. In this section, our model was exposed to the same 
training conditions as participants and was then asked to 
predict confidence judgments on the basis of the perfor-
mance in the testing phase. We estimated the subjective 
drift rate, per participant and per task, using the data of 
the training phase. To do so, we estimated DDM param-
eters (Ratcliff & McKoon, 2008) using the training-phase 
data and generated simulations using these parameters. 
We estimated which subjective drift-rate parameter pro-
vided confidence predictions that were in line with the 
feedback presented to participants. As expected, when 
the model was exposed to negative feedback, the esti-
mated subjective drift rate was lower than when the 
model was exposed to positive feedback, F(2, 94) = 
450.02, p < .001 (Experiment 1, Fig. 4a). Likewise, when 
the model was trained on a difficult task, the estimated 
subjective drift rate was lower compared to when the 
model was trained on an easy task, F(2, 92) = 64.97, p < 
.001 (Experiment 2, Fig. 4e). Second, to demonstrate that 
our feedback and training manipulations selectively influ-
enced subjective drift rate but left objective performance 
unaffected, we next estimated the parameters of our 
accumulation-to-bound model on the basis of the test-
phase data as well. The estimated parameters did not vary 
with the feedback conditions in Experiment 1 (all ps > .36, 
Figs. 4b–d), nor were they influenced by the differential 
training difficulty in Experiment 2 (all ps > .31, Figs. 4f–h). 

Thus, our model was able to generate different levels of 
prior beliefs about task performance after seeing fake 
comparative feedback (Experiment 1) or performing tasks 
of differential training difficulty (Experiment 2).

Third, we finally tested whether this difference in 
prior belief induced during the training phase was suf-
ficient to capture under- and overconfidence in the test 
phase. To do so, we checked model predictions that 
were based on the DDM parameters obtained from the 
fit to the data of the test phase, using the subjective 
drift rate that was estimated from the data of the train-
ing phase. Note that we could not estimate the DDM 
parameters using the training-phase data in Experiment 
2 because in that phase participants performed only 
one of the three difficulty levels encountered during 
the testing phase. Therefore, although the subjective 
drift rate was estimated on the basis of the training-
phase data, the DDM parameters were estimated using 
the testing-phase data. For the sake of consistency, we 
followed the same approach for Experiment 1. It is 
important to stress that using this approach, instead of 
fitting our model to empirically observed confidence 
data, we generated model predictions from a model 
that was merely exposed to the same feedback as the 
participants. Thus, our model was effectively blind to 
the empirical confidence judgments. As expected, for 
both Experiment 1 and Experiment 2 (Fig. 3e), the 
model predicted increases of confidence with increas-
ingly positive feedback, F(2, 47) = 274.10, p < .001 
(Experiment 1), and lower task difficulty during the 
training phase, F(2, 46) = 91.00, p < .001 (Experiment 
2). Additionally, the model also predicted the 
expected increase of confidence with lower testing-trial 
difficulty—Experiment 1: F(2, 47) = 168.06, p < .001; 
Experiment 2: F(2, 46) = 198.90, p < .001. Finally, for 
both experiments there was an interaction between 
both factors—Experiment 1: F(4, 30,639) = 110.46, p < 
.001; Experiment 2: F(4, 29,894) = 83.45, p < .001—
reflecting that the model predicted the effect to be 
slightly smaller with difficult trials. In sum, we success-
fully accounted for expressions of under- and overcon-
fidence within accumulation-to-bound models by taking 
into account prior beliefs.

Discussion

The current work provides direct evidence that under-
confidence and overconfidence for perceptual decisions 
arise from prior beliefs about the ability to perform  
a task. In two experiments, a manipulation of prior  
beliefs causally influenced reported confidence. This 
was accounted for by extending probabilistic models 
of confidence with a subjective drift rate, explicitly 
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Fig. 4. Manipulating prior beliefs selectively influences subjective drift rate. In Experiment 1, the subjective drift rate (a), 
which reflects the prior belief about performance, increased when the model was exposed to increasingly positive feedback. 
The feedback conditions in the training phase did not influence the other parameters of the evidence-accumulation model 
(b–d). Similarly, in Experiment 2 (e–h), only the subjective drift rate was sensitive to the differential training difficulty. 
Gray dotted lines represent individual participants, solid black lines represent the mean, and error bars reflect standard 
errors of the mean.
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representing prior beliefs. Our behavioral manipula-
tions selectively influenced the model’s prior belief, in 
turn accounting for under- and overconfidence as 
observed empirically.

The mechanism behind under-  
and overconfidence

In the last decade, numerous studies have investigated 
how to explain confidence within decision-making 
models. Although most work focused on quantifying 
confidence sensitivity (Fleming & Lau, 2014), the com-
putational mechanisms underlying under- and overcon-
fidence remain poorly understood. For example, 
signal-detection theory (Green & Swets, 1966) models 
confidence biases by changing the criteria that dissoci-
ate high from low confidence (Rahnev, 2021). However, 
this is merely descriptive and does not provide funda-
mental insight into the computational underpinnings. 
To tackle this, we relied on accumulation-to-bound 
models that explain confidence as the posterior  
probability of being correct given time and evidence 
(Zylberberg et al., 2016). Notwithstanding previous sug-
gestions that prior experience might be important to 
understand deviations in confidence (Drugowitsch 
et al., 2014; Khalvati et al., 2021; Moreno-Bote, 2010), 
empirical evidence for this claim has been lacking. 
Here, we provide the first empirical demonstration that 
inducing under- and overconfidence by changes in 
prior beliefs can be readily accounted for within 
dynamic probabilistic models. Interestingly, recent work 
(Olawole-Scott & Yon, 2023) has found very similar 
results to the results of our Experiment 2, yet the 
authors explained their findings in terms of expected 
precision of the stimuli rather than expected perfor-
mance. As support for this claim, they showed that a 
manipulation of expected precision also influences the 
reported level of subjective visibility, a finding that does 
not trivially follow from the computational account put 
forward here. Conversely, however, the influence of 
comparative feedback on confidence that we observed 
does not trivially follow from their account, either.

An elegant solution to this issue is to assume that 
humans can form prior beliefs at different levels of the 
processing hierarchy—for example, at higher levels 
about their overall task ability and at lower levels about 
the expected precision of perceptual stimuli. In both 
cases, these prior beliefs then influence subjective judg-
ments, such as confidence and visibility reports. We 
modeled our results both quantitatively (fitting our 
model directly to the empirical confidence) and quali-
tatively (exposing the model to the same training  
conditions as participants and querying qualitative pre-
dictions). Both methods successfully captured our 

empirical finding that both comparative feedback and 
different training difficulties affected subsequent con-
fidence ratings. Our quantitative method fitted the 
empirical data closely, capturing subtle patterns such 
as the closeness between the easy and medium condi-
tions in Experiment 2. In contrast, our qualitative 
method predicted stronger effects than those actually 
observed and predicted an interaction between training 
condition and testing-phase difficulty that was lacking 
in the empirical data. Still, it is not trivial that a model 
that was effectively blind to the empirical confidence 
judgments successfully captured the main empirical 
finding. It is important to note that during qualitative 
fitting our model started from a blank slate (i.e., without 
any preconceptions), building its prior beliefs entirely 
from the feedback. Real participants likely come to the 
experiment with preexisting prior beliefs, and our 
experimental manipulations ride on top of these. This 
likely makes participants less sensitive to the manipula-
tions than the predictions of the qualitative model would 
suggest, which explains the slight differences with the 
qualitative-model predictions. Additionally, our model 
assumed perfect feedback integration, as opposed to 
the presumably leaky feedback integration in humans.

Nevertheless, despite these simplifications, our qual-
itative-model predictions reflected the empirical find-
ings. Notably, because our modeling framework builds 
on existing accumulation-to-bound models, it can also 
account for empirical findings that were previously 
accounted for within accumulation-to-bound models 
(e.g., statistical signatures of confidence; Desender 
et  al., 2021). Moreover, because of the addition of a 
subjective drift rate, our model can flexibly account for 
other empirically established phenomena, such as the 
hard–easy effect (Baranski & Petrusic, 1994) or confidence 
leak (Rahnev et al., 2015) and confidence-accuracy dis-
sociations such as blindsight (Weiskrantz et al., 1974) 
and change blindness (Levin et al., 2000). Although our 
lab-based prior belief induction is slightly artificial, one 
can imagine how this might operate in real life. Spon-
taneous exposure to comparative feedback (cf. Experi-
ment 1) or engaging in difficult versus easy tasks (cf. 
Experiment 2) will result in different prior beliefs and 
hence different confidence ratings.

The interplay between local and global 
confidence

Our findings are closely linked to global decision con-
fidence (Rouault et al., 2019): the general, subjective 
feeling about the ability to perform a task, spanning a 
broader timescale than trial-specific local confidence. 
Given the clear resemblance between global confidence 
and the concept of prior beliefs and subjective drift rate 
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discussed here, our findings suggest a direct influence 
of people’s prior beliefs about task performance (global 
confidence) on how people believe they will perform 
on individual trials (local confidence). Interestingly, 
when lacking trial-by-trial feedback, participants com-
pute global confidence by integrating local confidence 
judgments (Rouault et al., 2019), revealing an intriguing 
interplay between local and global confidence. There-
fore, it could be that causally inducing prior beliefs 
might have a long-lasting effect on local confidence 
through a self-sustaining loop between the two. Our 
current data already demonstrate that prior beliefs 
affected local confidence even in the third (final) test 
block (72 trials), indicating a long-lasting effect rather 
than a temporary boost or lapse in self-confidence. This 
interplay between local and global confidence would 
naturally give rise to a phenomenon known as confi-
dence leak (Rahnev et al., 2015), the finding that con-
fidence on the current trial influences confidence on 
the next trial. Specifically, when participants’ prior 
belief about their ability to perform a task is not stable 
across the experiment (e.g., because of feedback), this 
would give rise to autocorrelation in confidence judg-
ments. Future work might address whether the persis-
tent nature of prior beliefs on local decision confidence 
is indeed mediated by global confidence and whether 
this gives rise to confidence leak. Because impaired 
confidence on perceptual tasks has been linked to a 
variety of psychiatric symptoms (Hoven et al., 2019), 
uncovering the mechanisms behind these persistent 
biases could provide important new insights for clinical 
practice. Moreover, our prior belief manipulations could 
be leveraged to examine whether it is possible to aid 
individuals with low confidence (which is, for example, 
typically seen in anxiety disorders) to recalibrate their 
confidence estimation on simple perceptual tasks. 
Building on the interactions between local and global 
confidence, this could potentially be a first step toward 
a recalibration of overall confidence.

Dissociations between accuracy  
and confidence

Dissociations between confidence and accuracy are 
well documented (Rahnev, 2021; Vaghi et al., 2017). For 
example, whereas choices are equally informed by 
choice-relevant and choice-irrelevant information, deci-
sion confidence mostly reflects choice-relevant informa-
tion (Peters et  al., 2017), and variance has a more 
profound effect on confidence than on decisions 
(Desender et al., 2018). Importantly, these observations 
are often treated as evidence for the existence of a 
metacognitive module existing separately from the 
decision-making circuitry (Fleming & Daw, 2017; 

Mamassian & de Gardelle, 2021). Here, we reported a 
clear dissociation between accuracy and confidence, 
but our interpretation of these findings does not require 
a separate metacognitive processing stream: We 
explained decision confidence within the decision cir-
cuitry simply by changing the prior beliefs within this 
framework (Khalvati et al., 2021). One could argue, still, 
that the process of forming (and updating) prior beliefs 
is the work of a metacognitive module. However,  
contrary to the modules described in earlier works 
(Fleming & Daw, 2017; Mamassian & de Gardelle, 2021), 
our module is rooted within the decision-making pro-
cess. In other words, our model does not assume pro-
cessing of metacognitive evidence independent of and 
parallel to the processing of sensory evidence. All in 
all, our findings add to the ongoing debate about the 
need for a separate metacognitive module to explain 
confidence-accuracy dissociations, demonstrating that 
both can operate on one stream of data.

Counterfactual confidence

One interesting discussion point is the extent to which 
participants consciously reported different confidence 
levels for the same levels of evidence. Especially in 
Experiment 1, the postexperiment debriefing indicated 
that 18 out of the 49 participants were aware of the 
influence the comparative feedback had on their con-
fidence ratings, explicitly stating that positive feedback 
made them feel more confident and negative feedback 
less confident. Notably, additional analyses showed no 
difference between these and the other participants in 
terms of our manipulation’s effect on confidence. This 
raises an intriguing question about whether participants 
immediately computed the level of confidence they 
eventually reported (i.e., modulated by prior beliefs) 
or whether they initially computed the “unbiased” prob-
ability of being correct and strategically lowered or 
increased this rating depending on their prior beliefs. 
The latter would imply that participants possess an 
unbiased confidence representation, which could be 
used for alternative purposes (see also “counterfactual 
confidence”; Zylberberg et  al., 2018). Similar to the 
representation of confidence based on external feed-
back that our model described, this unbiased represen-
tation could be formed similarly from an unbiased 
internal feedback signal. Moreover, in social contexts 
it is known that people can sometimes feel very confi-
dent (or not very confident) but for social reasons will 
decide to report a higher (or lower) level of confidence 
(Bang et al., 2022). Our model could explain such phe-
nomena by assuming that the decision-maker holds an 
explicitly aware bias between the actual computation 
and the reporting of confidence.
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Suggestions for future research

We tested the hypothesis that underconfidence and 
overconfidence arise from prior beliefs in two separate 
perceptual decision-making experiments using two 
samples of college students. Although the use of simple 
perceptual tasks allowed us to uncover the fundamental 
mechanisms behind under- and overconfidence, our 
results are currently still limited to the domain of per-
ceptual metacognition. Thus, to further confirm the 
generality of our claim, future research should investi-
gate prior beliefs in other domains (e.g., memory, learn-
ing) and finally in real-life decision-making (e.g., 
economic decision-making). Moreover, the current 
study used a convenience sample of college students, 
limiting immediate generalizability to the wider popula-
tion. In future research, it would be interesting to see 
how susceptible a more general sample of participants 
would be to the prior-belief manipulations employed 
in our study and whether the results we report are 
generalizable to the wider population. Our comparative 
feedback manipulation (Experiment 1) could be par-
ticularly helpful for studying confidence in group decision- 
making. Research on group decision-making shows that 
decision makers automatically communicate their con-
fidence (Bahrami et al., 2010), with opinions expressed 
with higher confidence gaining more weight (Zarnoth 
& Sniezek, 1997), and multiple studies detail how 
groups unify different expressions of individual confi-
dence and cope with individual biases in confidence 
(Bang et al., 2017). Thus, it would be interesting to see 
how manipulations of prior beliefs, inducing under- or 
overconfidence, would change the content and extent 
of social confidence sharing.

Conclusion

We have demonstrated that a manipulation of prior 
beliefs in task performance, either through comparative 
feedback or through changes in task difficulty, causally 
influences subsequent decision confidence for percep-
tual decisions. This was well accounted for within a 
dynamic probabilistic model by changing the model’s 
prior belief. Our findings provide a mechanistic under-
standing of under- and overconfidence.
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