
1 

 

Differences in polygenic score distributions in European ancestry 

populations: implications for breast cancer risk prediction 

 
Kristia Yiangou1, Nasim Mavaddat2, Joe Dennis2, Maria Zanti1, Qin Wang2, Manjeet K. Bolla2, Mustapha 

Abubakar3, Thomas U. Ahearn3, Irene L. Andrulis4, 5, Hoda Anton-Culver6, Natalia N. Antonenkova7, Volker 

Arndt8, Kristan J. Aronson9, Annelie Augustinsson10, Adinda Baten11, Sabine Behrens12, Marina Bermisheva13, 

14, Amy Berrington de Gonzalez15, Katarzyna Białkowska16, Nicholas Boddicker17, Clara  Bodelon18, Natalia V. 

Bogdanova7, 19, 20, Stig E. Bojesen21-23, Kristen D. Brantley24, Hiltrud Brauch25-27, Hermann Brenner8, 28, 29, Nicola 

J. Camp30, Federico Canzian31, Jose E. Castelao32, Melissa H. Cessna33, 34, Jenny Chang-Claude12, 35, Georgia 

Chenevix-Trench36, Wendy K. Chung37, NBCS Collaborators38-49, Sarah V. Colonna30, Fergus J. Couch50, 

Angela Cox51, Simon S. Cross52, Kamila Czene53, Mary B. Daly54, Peter Devilee55, 56, Thilo Dörk20, Alison M. 

Dunning57, Diana M. Eccles58, A. Heather  Eliassen 24, 59, 60, Christoph Engel61, 62, Mikael Eriksson53, D. Gareth 

Evans63, 64, Peter A. Fasching65, Olivia Fletcher66, Henrik Flyger67, Lin Fritschi68, Manuela Gago-Dominguez69, 

Aleksandra Gentry-Maharaj70, 71, Anna González-Neira72, 73, Pascal Guénel74, Eric Hahnen75, 76, Christopher A. 

Haiman77, Ute Hamann78, Jaana M. Hartikainen79, 80, Vikki Ho81, James Hodge18, Antoinette Hollestelle82, Ellen 

Honisch83, Maartje J. Hooning82, Reiner Hoppe25, 84, John L. Hopper85, Sacha Howell86-88, Anthony Howell89, 

ABCTB  Investigators90, kConFab  Investigators91, 92, Simona Jakovchevska93, Anna Jakubowska16, 94, Helena 

Jernström10, Nichola Johnson66, Rudolf Kaaks12, Elza K. Khusnutdinova13, 95, Cari M. Kitahara96, Stella 

Koutros3, Vessela N. Kristensen39, 49, James V. Lacey97, 98, Diether Lambrechts99, 100, Flavio Lejbkowicz101, 

Annika Lindblom102, 103, Michael Lush2, Arto Mannermaa80, 104, 105, Dimitrios  Mavroudis106, Usha Menon70, 

Rachel A. Murphy107, 108, Heli Nevanlinna109, Nadia Obi110, 111, Kenneth Offit112, 113, Tjoung-Won Park-Simon20, 

Alpa V. Patel18, Cheng Peng59, Paolo Peterlongo114, Guillermo Pita72, Dijana Plaseska-Karanfilska93, Katri 

Pylkäs115, 116, Paolo Radice117, Muhammad U. Rashid78, 118, Gad Rennert119, Eleanor Roberts86, Juan Rodriguez53, 

Atocha Romero120, Efraim H. Rosenberg121, Emmanouil Saloustros122, Dale P. Sandler123, Elinor J. Sawyer124, 

Rita K. Schmutzler75, 76, 125, Christopher G. Scott17, Xiao-Ou Shu126, Melissa C. Southey127-129, Jennifer Stone85, 

130, Jack A. Taylor123, 131, Lauren R. Teras18, Irma van de Beek132, Walter  Willett 24, 59, 60, Robert Winqvist115, 116, 

Wei Zheng126, Celine M. Vachon133, Marjanka K. Schmidt134-136, Per Hall53, 137, Robert J. MacInnis 85, 129, Roger 

L. Milne85, 127, 129, Paul D.P. Pharoah138, Jacques Simard139, Antonis C. Antoniou2, Douglas F. Easton2, 57, Kyriaki 

Michailidou1, 2* 

1. Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2371. 

2. Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of 

Cambridge, Cambridge, UK, CB1 8RN. 

3. Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 

Department of Health and Human Services, Bethesda, MD, USA, 20850. 

4. Fred A, Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, 

Toronto, Ontario, Canada, M5G 1X5. 

5. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 1A8. 

6. Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, 

USA, 92617. 

7. NN Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus, 223040. 

8. Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 

Germany, 69120. 

9. Department of Public Health Sciences, and Cancer Research Institute, Queen’s University, Kingston, ON, Canada, 

K7L 3N6. 

10. Oncology, Clinical Sciences in Lund, Lund University, Lund, Sweden, 221 85. 

11. Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals 

Leuven, Leuven, Belgium, 3000. 

12. Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, 69120. 

13. Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 

Ufa, Russia, 450054. 

14. St Petersburg State University, St, Petersburg, Russia, 199034. 

15. Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK, SM2 5NG. 

16. Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland, 71-252. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302043doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.02.12.24302043
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

17. Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA, 55905. 

18. Department of Population Science, American Cancer Society, Atlanta, GA, USA, 30303. 

19. Department of Radiation Oncology, Hannover Medical School, Hannover, Germany, 30625. 

20. Gynaecology Research Unit, Hannover Medical School, Hannover, Germany, 30625. 

21. Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, 

Denmark, 2730. 

22. Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, 

Denmark, 2730. 

23. Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 2200. 

24. Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA, 02115. 

25. Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, 70376. 

26. iFIT-Cluster of Excellence, University of Tübingen, Tübingen, Germany, 72074. 

27. German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 

Tübingen, Germany, 72074. 

28. Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor 

Diseases (NCT), Heidelberg, Germany, 69120. 

29. German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany, 69120. 

30. Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA, 

84112. 

31. Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany, 69120. 

32. Oncology and Genetics Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Foundation, 

Complejo Hospitalario Universitario de Santiago, SERGAS, Vigo, Spain, 36312. 

33. Department of Pathology, Intermountain Healthcare, Salt Lake City, UT, USA, 84143. 

34. Intermountain Biorepository, Intermountain Healthcare, Salt Lake City, UT, USA, 84143. 

35. Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-

Eppendorf, Hamburg, Germany, 20246. 

36. Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia, 4006. 

37. Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA, 10032. 

38. Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, 

Norway, 0379. 

39. Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway, 0450. 

40. Department of Research, Vestre Viken Hospital, Drammen, Norway, 3019. 

41. Section for Breast- and Endocrine Surgery, Department of Cancer, Division of Surgery, Cancer and 

Transplantation Medicine, Oslo University Hospital-Ullevål, Oslo, Norway, 0450. 

42. Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway, 0379. 

43. Department of Pathology, Akershus University Hospital, Lørenskog, Norway, 1478. 

44. Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway, 0379. 

45. Department of Oncology, Division of Surgery, Cancer and Transplantation Medicine, Oslo University Hospital-

Radiumhospitalet, Oslo, Norway, 0379. 

46. National Advisory Unit on Late Effects after Cancer Treatment, Oslo University Hospital, Oslo, Norway, 0379. 

47. Department of Oncology, Akershus University Hospital, Lørenskog, Norway, 1478. 

48. Oslo Breast Cancer Research Consortium, Oslo University Hospital, Oslo, Norway, 0379. 

49. Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway, 0379. 

50. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA, 55905. 

51. Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK, 

S10 2TN. 

52. Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK, S10 

2TN. 

53. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, 171 65. 

54. Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA, 19111. 

55. Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands, 2333 ZA. 

56. Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands, 2333 ZA. 

57. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK, 

CB1 8RN. 

58. Faculty of Medicine, University of Southampton, Southampton, UK, SO17 1BJ. 

59. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard 

Medical School, Boston, MA, USA, 02115. 

60. Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA, 02115. 

61. Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany, 04107. 

62. LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany, 04103. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302043doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302043
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

63. Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and 

Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK, M13 9WL. 

64. North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, 

Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK, 

M13 9WL. 

65. Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander 

University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany, 91054. 

66. The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK, SW7 3RP. 

67. Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark, 

2730. 

68. School of Population Health, Curtin University, Perth, Western Australia, Australia, 6102. 

69. Cancer Genetics and Epidemiology Group, Genomic Medicine Group, Fundación Instituto de Investigación 

Sanitaria de Santiago de Compostela (FIDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, 

Santiago de Compostela, Spain, 15706. 

70. MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK, 

WC1V 6LJ. 

71. Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College 

London, London, UK. 

72. Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain, 28029. 

73. Spanish Network on Rare Diseases (CIBERER). 

74. Team 'Exposome and Heredity', CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, 

France, 94805. 

75. Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University 

of Cologne, Cologne, Germany, 50937. 

76. Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of 

Cologne, Cologne, Germany, 50937. 

77. Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, 

CA, USA, 90033. 

78. Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany, 69120. 

79. Cancer RC, University of Eastern Finland, Kuopio, Finland, 70210. 

80. Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland, 

70210. 

81. Health Innovation and Evaluation Hub, Université de Montréal Hospital Research Centre (CRCHUM), Montréal, 

Québec, Canada. 

82. Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands, 3015 GD. 

83. Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University 

Düsseldorf, Düsseldorf, Germany, 40225. 

84. University of Tübingen, Tübingen, Germany, 72074. 

85. Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University 

of Melbourne, Melbourne, Victoria, Australia, 3010. 

86. Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester 

Academic Health Science Centre, Manchester, UK. 

87. Nightingale/Prevent Breast Cancer Centre, Wythenshawe Hospital, Manchester University NHS Foundation 

Trust, Manchester, UK. 

88. Manchester Breast Centre, Manchester Cancer Research Centre, The Christie Hospital, Manchester, UK. 

89. Division of Cancer Sciences, University of Manchester, Manchester, UK, M13 9PL. 

90. Australian Breast Cancer Tissue Bank, Westmead Institute for Medical Research, University of Sydney, Sydney, 

New South Wales, Australia, 2145. 

91. Research Department, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia, 3000. 

92. Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia, 3000. 

93. Research Centre for Genetic Engineering and Biotechnology 'Georgi D, Efremov', MASA, Skopje, Republic of 

North Macedonia, 1000. 

94. Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 

Szczecin, Poland, 171-252. 

95. Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, Ufa, Russia, 

450076. 

96. Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA, 20892. 

97. Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA, 91010. 

98. City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA, 91010. 

99. Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, 3000. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302043doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302043
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

100. VIB Center for Cancer Biology, VIB, Leuven, Belgium, 3001. 

101. Carmel Medical Center, Haifa, Israel. 

102. Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden, 171 76. 

103. Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden, 171 76. 

104. Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland, 70210. 

105. Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland. 

106. Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece, 711 10. 

107. School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4. 

108. Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada, V5Z 1L3. 

109. Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, 

Finland, 00290. 

110. Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 

Germany, 20246. 

111. Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, 

Germany, 20246. 

112. Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer 

Center, New York, NY, USA, 10065. 

113. Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 

USA, 10065. 

114. Genome Diagnostics Program, IFOM  ETS - the AIRC Institute of Molecular Oncology, Milan, Italy, 20139. 

115. Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, 

University of Oulu, Oulu, Finland, 90220. 

116. Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland, 

90220. 

117. Unit of Predictice Medicine, Molecular Bases of Genetic Risk, Department of Research, Fondazione IRCCS 

Istituto Nazionale dei Tumori (INT), Milan, Italy, 20133. 

118. Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & 

RC), Lahore, Pakistan, 54000. 

119. Technion, Faculty of Medicine and Association for Promotion of Research in Precision Medicine, Haifa, Israel. 

120. Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain, 28222. 

121. Department of Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, the 

Netherlands, 1066 CX. 

122. Department of Oncology, University Hospital of Larissa, Larissa, Greece, 411 10. 

123. Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 

USA, 27709. 

124. School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy’s Campus, King's College 

London, London, UK. 

125. Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, 

University of Cologne, Cologne, Germany, 50931. 

126. Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer 

Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 37232. 

127. Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 

Australia, 3168. 

128. Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia, 3010. 

129. Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia, 3004, 

130. Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, 

Western Australia, Australia, 6000. 

131. Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, 

Research Triangle Park, NC, USA, 27709. 

132. Department of Clinical Genetics, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, 

Amsterdam, the Netherlands, 1066 CX. 

133. Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA, 

55905. 

134. Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands, 1066 CX. 

135. Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van 

Leeuwenhoek hospital, Amsterdam, the Netherlands, 1066 CX. 

136. Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands, 2333 ZA. 

137. Department of Oncology, Södersjukhuset, Stockholm, Sweden, 118 83. 

138. Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA, 90069. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302043doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302043
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

139. Genomics Center, Centre Hospitalier Universitaire de Québec – Université Laval Research Center, Québec City, 

Québec, Canada, G1V 4G2. 

*corresponding author; Kyriaki Michailidou, email: kyriakimi@cing.ac.cy 

 

Abstract   

The 313-variant polygenic risk score  (PRS313) provides a promising tool for breast cancer risk prediction. 

However, evaluation of the PRS313 across different European populations which could influence risk estimation 

has not been performed. Here, we explored the distribution of PRS313 across European populations using 

genotype data from 94,072 females without breast cancer, of European-ancestry from 21 countries participating 

in the Breast Cancer Association Consortium  (BCAC) and 225,105 female participants from the UK Biobank. 

The mean PRS313 differed markedly across European countries, being highest in south-eastern Europe and 

lowest in north-western Europe. Using the overall European PRS313 distribution to categorise individuals leads 

to overestimation and underestimation of risk in some individuals from south-eastern and north-western 

countries, respectively. Adjustment for principal components explained most of the observed heterogeneity in 

mean PRS. Country-specific PRS distributions may be used to calibrate risk categories in individuals from 

different countries. 

 

Introduction 

Genetic susceptibility to breast cancer is influenced by multiple genetic variants which contribute different 

levels of risk to the disease (1-6). Genome-wide Association Studies  (GWAS) have identified thus far a large 

number of common, low-risk variants that each contribute a small risk to the disease but can be combined into 

Polygenic Risk Scores  (PRSs) with larger effect (7, 8). PRSs provide a promising tool for clinical risk prediction 

of breast cancer by stratifying women into different categories of breast cancer risk (9-11), and may be used to 

inform targeted screening and prevention strategies (12-20).  

Mavaddat et al.,  (2019) constructed a 313-variant PRS  (PRS313) for breast cancer, using data for women of 

European ancestry from the Breast Cancer Association Consortium  (BCAC) (11). In prospective validation 

studies, this PRS was estimated to be associated with a relative risk for breast cancer of approximately 1.6 per 

standard deviation increase, and its discriminatory ability, measured in terms of area under the ROC curve  

(AUC), was 0.63. The lifetime absolute risk of developing breast cancer for individuals in the lowest percentile 

of the PRS313 risk distribution was estimated to be ~2%, while for those in the highest percentile it was ~33%. 

PRS313 has been incorporated into the multifactorial BOADICEA  (Breast and Ovarian Analysis of Disease 

Incidence and Carrier Estimation Algorithm) model which is available via the CanRisk tool (14, 21, 22)  ( 

www.canrisk.org ) and, together with other lifestyle and genetic risk factors, has been shown to improve risk 
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stratification in European and European ancestry populations (14, 23-27). PRS313 has also been shown to be 

transferrable to women of other ethnic backgrounds, although the strength of the association with breast cancer 

risk was attenuated compared with that for women of European ancestry (OR per SD  (95% CI) 1.52  (1.49-

1.56),  AUC = 0.61 in women of east Asian ancestry; OR 1.27  (1.23-1.31), AUC = 0.57 in women of African 

ancestry (28-30)). 

Although several studies have investigated the transferability of PRS developed in European ancestry 

populations to non-European populations (31-34), the PRS distributions across different European countries has 

not been extensively evaluated. Differences in the PRS distribution, if not appropriately accounted for, could 

lead to inappropriate risk classification, with implications for clinical management.  

In this study, we aimed to examine the distribution of the PRS313 across 17 countries in Europe, together with 

individuals of European ancestry from Australia, Canada, Israel and the USA. Similar analyses were performed 

using data from the UK Biobank, stratifying individuals by country of birth. We explored different approaches 

to account for the differences in the distribution, and investigated the implications of distribution differences 

across countries in breast cancer risk prediction.  

 

Materials and methods 

Study populations and Genotyping 

Breast Cancer Association Consortium dataset  

The BCAC dataset used here consisted of 110,260 female invasive breast cancer cases and 94,072 female 

healthy controls of European ancestry, recruited into 84 studies from 21 countries participating in the BCAC  

(Supplementary Table 1A). For simplicity and with attempt to explore the effect on the general female 

population, only the control data were used in these analyses as the distribution of the PRS in cases might vary 

between studies due to differences in study design  (in particular oversampling of cases with a family history of 

disease). Samples from participating individuals were genotyped using the iCOGS (1) or OncoArray (3, 35) 

genotyping array. For samples genotyped using both arrays, the OncoArray genotype data were used. The 

iCOGS and the OncoArray datasets were imputed separately in a two-step manner using SHAPEIT (36) for 

phasing and IMPUTE2 for imputation. The Phase 3  (October 2014) release of the 1000 Genomes data (37) was 

used as the reference panel. More details on genotyping, quality control and imputation are given elsewhere (2, 

3, 35). Ancestry-informative principal components  (PCs), derived separately from the iCOGS and the 

OncoArray genotypes, were also calculated for all the samples, as previously described (3).  

UK Biobank dataset 

UK Biobank, is a prospective cohort study including more than 500,000 participants from England, Wales and 

Scotland, with age at recruitment between 40 to 69 years old, more details can be found elsewhere (38, 39). For 
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the analyses in this study, genotype data from females  (genetic reported sex) participating in the UK Biobank 

were used. Individuals were excluded if they had a recorded breast cancer diagnosis  (malignant neoplasm of 

breast or carcinoma in situ of breast) or had a personal history of malignant neoplasm of breast. Genetic ancestry 

was inferred using the FastPop software (40). Individuals self-reported “white” and with an estimated European 

ancestry proportion ≥ 80% were retained in the analysis. Then, individuals were stratified by the “country of 

birth” field in the UK Biobank; only countries with at least 100 participants were used. After filtering, 225,105 

females from 17 countries of Europe and from Australia, Canada, New Zealand, and the USA were used in the 

analyses  (more details in Supplementary Table 1B). Samples were genotyped using the Affymetrix UK 

BiLEVE Axiom array and the Affymetrix UK Biobank Axiom array. Imputation data used were based on the 

Haplotype Reference Consortium (41), the UK10K +1000 Genomes panel references. More details on 

genotyping, quality control and imputation are given elsewhere (38). Ancestry informative PCs were also 

available (38). 

All study participants gave written informed consent, and all the studies were approved by the relevant ethics 

committees. The use of the UK Biobank has been approved under application ID102655. 

Statistical Analyses 

PRS313 was developed previously using a hard-thresholding stepwise forward regression approach, and included 

variants independently associated with breast cancer risk at a p-value cut off < 10-5 (11).  PRS313 was calculated 

in each study participant using the following formula: 

𝑃𝑅𝑆𝑗 = 𝛽1𝑥𝑗1+. . 𝛽𝑘𝑥𝑗𝑘 +  𝛽313𝑥𝑗;313 

Where 𝑃𝑅𝑆𝑗 is the PRS of individual j,  𝑥𝑗𝑘 is the estimated effect allele dosage for 𝑆𝑁𝑃𝑘 carried by individual 

j and can take values between 0 and 2, and 𝛽𝑘 is the weight for 𝑆𝑁𝑃𝑘 in the PRS for overall breast cancer, as 

derived by Mavaddat et al. (11). PRS313 was standardized to have unit SD in controls in the pooled dataset. 

Mavaddat et al. (11) also derived ER-specific versions of PRS313, with weights optimised for predicting ER-

positive or ER-negative breast cancer risk  (Supplementary Table 2). 

The main analyses focused on calculating the mean standardized PRS313 in BCAC controls, using both the 

iCOGS and OncoArray datasets. These values were derived using linear regression with array type as a covariate 

and no intercept  (so that estimates were generated for every country). Heterogeneity in the mean PRS313 

between countries was assessed using I2 statistics and Q statistic p-values.  

We also evaluated the distribution of the mean PRS by country of birth in female participants in the UK Biobank. 

Seven of the 313 variants were not available from the UK Biobank data and thus we used the remaining 306 

variants in the analysis  (PRS306)  (Supplementary Table 2). We also evaluated a “standard” breast cancer PRS  

available in the UK Biobank data, previously generated from external GWAS data (42), and was available for 

224,776 individuals  (Supplementary Table 1B). 
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Potential sources of the variability in the mean PRS313 across the countries were explored in the BCAC dataset 

using three approaches. The PRS was first recalculated excluding variants in the CHEK2 region. The protein 

truncating variant CHEK2 c.1100delC is a relatively common founder variant that exhibits a large variation in 

frequency across Europe (43). Although it is not included in PRS313, other variants in the PRS313 are correlated 

with this variant.  For this reason, the four variants in the CHEK2 region included in PRS313  (the CHEK2 p. 

Ile157Thr variant, and variants at positions 29135543, 29203724 and 29551872 on chromosome 22, positions 

based on build 37) were removed, resulting in a 309-variant PRS  (PRS309). Mean and SE by country were 

recalculated for PRS309, as described above.  

Second, we examined the effect of removing variants with the most variable frequency across countries. For 

this analysis, the mean and SD of the effect allele frequency in controls of the pooled dataset was calculated for 

each of the 313 variants by country. Variants with a coefficient of variation  (SD/mean) greater than 0.3 were 

removed. Means and SE of the newly constructed PRS were recalculated by country as described above. 

Third, we explored the effect of adjusting for up to 10 ancestry-informative PCs, in addition to type of array. 

As the PCs derived from the iCOGS and OncoArray are not comparable, separate PCs for each were included 

in the regression. We explored the number of PCs that were required to eliminate the heterogeneity in the 

adjusted mean PRS313, using the thresholds I2 < 10% and p-value > 0.05. Similarly, for the UK Biobank dataset, 

PRS306 was adjusted for up to 10 PCs, which were available in the UK Biobank. 

As a complementary approach to generating population-specific estimates, we explored an empirical Bayes 

approach similar to that described by Clayton and Kaldor (44) for mapping disease rates. The motivation of this 

approach is that, if some of the variation in means among countries is genuine, while some is due to sampling 

variation, better estimates of the country-specific means can be obtained by “shrinking” the country-specific 

estimates towards the overall mean, by an amount depending on the sample size. In our implementation, we 

allowed the PRS means to be correlated between countries, using the autocorrelation matrix proposed in Clayton 

and Kaldor. A detailed description is given in Supplementary Methods. 

To investigate the implications of PRS distribution differences in breast cancer risk prediction, we explored the 

proportion of women by country by percentile (<1%, 1%-5%, 5%-10%, 10%-20%, 20%-40%, 40%-60%, 60%-

80%, 80%-90%, 90%-95%, 95%-99%, ≥99% percentiles), based on the distribution cut-offs of either the full 

dataset or country-specific estimates. We also examined a specific risk estimation example using the CanRisk 

tool (14, 21, 22).  

All analyses were performed in R  (version 4.2.1) (45). Forest plots were generated using the metafor package 

(46). Maps were generated using the packages world map data from natural earth  (rnaturalearth) (47), the world 

vector map data from natural earth used in 'rnaturalearth' (rnaturalearthdata) (48), simple features for R  (sf) 

(49) and interface to geometry engine  (rgeos) (50). 
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Results 

Geographic diversity in the mean PRS313 across European ancestry populations 

The mean PRS313 in the BCAC controls differed markedly across European countries, with heterogeneity I2 = 

80%  (p-value = 5.6 × 10−13). The mean was highest in the Republic of North Macedonia  (0.25), Greece  

(0.23), Russia  (0.18) and Italy  (0.12), and lowest in Ireland  (-0.12). The mean estimates for Australia, Canada, 

Israel and the USA were close to the overall mean  (Figure 1; Figure 2; Table 1; Supplementary Table 3A). 

A similar level of heterogeneity was observed for the ER-positive  (I2 = 84%) and ER-negative PRS  (I2 = 64%)  

(Figure 2; Supplementary Table 3B). There was no evidence of a difference in the SD of the PRS between 

countries.  (Supplementary Table 3A). 

The mean PRS306 in female UK Biobank participants, stratified by country of birth, was also calculated  (Figure 

3 and Supplementary Table 4). There was strong evidence of heterogeneity in the PRS distribution  (I2  = 66%, 

p-value = 2.3 × 10−06). The pattern was generally similar to that seen in the BCAC dataset, with a higher PRS 

in individuals born in southern and eastern Europe  (e.g. Cyprus, Russia, Italy) and lower in western Europe  

(e.g. Ireland). Similar results were found for the “standard” UK Biobank PRS  (I2 = 87%, p-value = 1.4 × 10−25)  

(Figure 3 and Supplementary table 4).  

Exploring potential reasons for differences in mean standardized PRS between countries  

Potential sources of the variability in the mean PRS313 across the countries were explored in the BCAC dataset, 

using three approaches. We first evaluated the effect of removing variants in the CHEK2 region on the 

distribution of the mean PRS313 for the countries. After removing these four variants, the variation in the mean 

PRS309 across countries in the controls remained similar that for PRS313  (I2 = 83%, p-value = 9.4 × 10−16). We 

next identified the variants with the most variable frequency from countries in the control dataset. Seventeen of 

the 313 variants had a coefficient of variation greater than 0.3  (Supplementary Table 5). Excluding these 17 

variants did not reduced the variation in the mean PRS  (I2 = 80%, p-value = 2.4 × 10−12). 

We next explored the effect of adjusting for PCs. When individuals in the BCAC dataset genotyped with 

OncoArray were plotted by the first two PCs, those from the same country separated clearly, in a pattern 

consistent with their geographical relationship  (Supplementary Figure 1). This suggests that adjusting for PCs 

maybe an effective approach to reducing the variation in PRS distribution. When we adjusted the PRS for the 

leading PCs in the BCAC dataset, the I2 reduced as each PC was added in the model and reached < 10% when 

adjusted for the first six PCs  (I2 = 69%, 54%, 47%, 39%, 22%, 0%, and 0% when including 1, 2, 3, 4, 5, 6, and 

10 PCs respectively)  (Table 1; Supplementary Table 3A; Supplementary Figure 2). A similar result was 

obtained for the ER-positive PRS  (Supplementary Table 3B), when adjusted for the first 6 PCs  

(Heterogeneity: I2 = 0%, p-value = 0.69). For the ER-negative PRS, however, the heterogeneity was not 

eliminated even when the PRS was adjusted for 10 PCs  (Heterogeneity: I2 = 56%, p-value = 0.001)  

(Supplementary Table 3B). The predicted PRS of each individual, as derived from the fitted values of the 
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linear regression model of PRS adjusted for the first 6 PCs and array, were then used to calculate a predicted 

mean PRS313 by country  (Table 1 and Supplementary Table 3A).  

We repeated these analyses for PRS306  using the UK Biobank dataset. I2 reduced as each PC was added in the 

model and reached < 10% when adjusted for the first eight PCs  (Supplementary Table 4 and Supplementary 

Figure 3). 

Mean PRS estimates by country calculated using an Empirical Bayes approach  

The empirical Bayes estimates by country for the mean PRS in controls of the BCAC dataset are given in Table 

1 and Supplementary Table 6. Compared with the unadjusted estimates, the estimates shrunk towards the 

overall mean, with the shrinkage being greatest for countries that had small available sample sizes, such as 

Republic of North Macedonia and Russia  (Table 1). The adjusted mean PRS by country were generally similar 

to those predicted by the model adjusting for six PCs  (Supplementary Table 6). When PRSs were adjusted 

for the first 6 PCs, applying the empirical Bayes approach makes little difference to the estimates  

(Supplementary Table 6).  

Implications for Breast Cancer Risk Prediction  

To explore the effect of these differences in PRS distribution between different European populations on risk 

stratification, we first defined risks thresholds based on the distribution of the controls in the full BCAC dataset  

(Supplementary Table 7A). We then calculated the percentage of controls by country that would be 

categorized in the 90-95th, 95-99th, and >99th percentile categories, based on the distribution in the full dataset, 

and compared these to the percentages based on the country-specific distributions  (Supplementary Tables 7B-

D). Based on the overall distribution, approximately 4.1%, 3.7%, 1.3% and 0.5% additional women from 

Belarus, Republic of North Macedonia, Greece, and Italy, respectively, would be incorrectly classified in the 

95-99th percentile instead at the 90-95th percentile; while 1.1% and 1.4% additional women from France and 

Ireland, respectively, would be incorrectly classified in the 90-95th instead of the 95-99th percentile  

(Supplementary Table 7C). Figure 4 and Supplementary Table 8 illustrate the PRS313 percentile distribution 

in the full dataset, Greece, Italy  (countries with the highest PRS313 and including more than 100 controls) and 

Ireland  (lowest PRS313).  

We next considered as an example a 50-year-old female from Greece with a raw PRS313 of 0.3414  (falling into 

the 90th – 95th percentile category in the full BCAC dataset) and no data on family history or other known risk 

factors. As Greek incidence rates are not available and not currently implemented in CanRisk, we used the UK 

incidence rates for the calculations. If this PRS was standardized based on the mean and SD used  in the CanRisk 

tool  (when a variant call format  (vcf) file is uploaded to the CanRisk tool, a raw PRS313 can be calculated and 

standardized using the mean: -0.424; SD: 0.611), the individual would  (assuming UK incidence rates) be given 

an estimate of 14.1% risk of developing breast cancer by the age of 80 and classified in the moderate risk 

category  (Table 2). On the other hand, if the PRS were standardized based on the mean and SD of the controls 
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of Greece  (mean: -0.305; SD: 0.612-raw values), she would fall in the 80-90% percentile category with an 

estimated 13.3% risk of developing breast cancer by the age of 80, and be classified into the population risk 

category  (Figure 5 and Table 2). Similarly, if the PRS were standardized based on the mean and SD of PRS 

for Greece predicted by adjustment for the first 6 PCs  (mean: -0.42, SD: 0.696), she would also be classified 

in the population risk category  (Table 2). Finally, if the PRS were standardized based on the mean and SD of 

the empirical Bayes approach  (mean: -0.325 SD: 0.554), will have an estimated 13.9% risk of developing breast 

cancer by the age of 80, and be classified into the moderate risk category  (Table 2). 

A second example is illustrated in Table 2 and Figure 6, based on a 50-year-old female from Ireland with raw 

PRS313 equal to 0.273  (equivalent to the 85th – 90th percentile-in the full BCAC dataset) and no other risk factors 

known. Using the CanRisk tool and assuming UK incidence rates, she would be classified in the 87.3% 

percentile with an estimated 13.7% absolute risk of developing breast cancer by the age of 80, which according 

to the NICE guidelines would be classified in the population risk category. If the PRS was standardized based 

on the mean and SD of PRS313 as derived from the controls in Ireland  (mean for Ireland: -0.519, and SD: 0.624 

-raw values), then she would be classified in the 89.8% percentile with estimated 14.2% risk of developing 

breast cancer by the age of 80, classified in the moderate risk category  (Figure 6). If the PRS were standardized 

based on the mean and SD of PRS for Ireland predicted by adjustment for the first 6 PCs  (mean: -0.456, SD: 

0.74), she would also be classified in the population risk category  (Table 2). Finally, if the PRS were 

standardized based on the mean and SD of the empirical Bayes approach  (mean: -0.503, SD: 0.562), will have 

an estimated 14.7% risk of developing breast cancer by the age of 80, and be classified into the moderate risk 

category  (Table 2). 

 

Discussion 

Transferability of PRSs across different populations remains a major challenge in the field of personalized 

cancer risk prediction (31, 51). In this study, we explored the distribution of PRS313 for breast cancer in European 

ancestry women from 21 countries, using data from studies participating in the BCAC, and further investigated 

how the observed variability might be accounted for in breast cancer risk prediction.  

The results indicated that the PRS313 distribution varies markedly even within Europe, with a higher mean in 

south-east Europe  (e.g. Republic of North Macedonia, Greece, Italy) and a lower mean in western Europe  (e.g. 

Ireland). We observed a very similar pattern in females participating in the UK Biobank, based on country of 

birth. If not accounted for, these differences would lead to an over- or under-estimation of risk, thus affecting 

the risk categorization and possibly the clinical management of some women. This may be important not only 

at the individual country level but also for individuals living in a different country to that of their origin.  

The variability in the mean PRS313 could not be explained by removing variants with the most variable 

frequency, indicating that a large number of variants may contribute to this difference. Removing such variants 
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to reduce the heterogeneity would not in any case be desirable as it would reduce the risk discrimination 

provided by the PRS. The results do, however, indicate that most if not all of the variability in the mean PRS313 

across countries in controls can be explained by adjusting for the leading ancestry informative PCs  (6 PCs in 

the BCAC datasets, based on the OncoArray or iCOGS arrays, 8 PCs in UK Biobank). An advantage of using 

PCs is that they do not require any prior data from the population in question. A disadvantage, however, is that 

PCs require array genotyping data to generate, making them less attractive when implemented using sequencing 

panels. Moreover, the PCs generated using different genotyping arrays are not necessarily comparable. One 

interesting observation is that the heterogeneity of the ER-negative specific PRS was not eliminated even with 

the adjustment for 10 PCs.  

We also explored generating country-specific mean PRS using an empirical Bayes approach. This approach 

considers both the uncertainty due to the small available sample size and the true variation in the means across 

the countries; these country-specific mean PRS were similar to those generated by adjusting for PCs. These 

values can then be used to standardise the PRS before, for example, implementing in the CanRisk tool. The risk 

categorization of the females from Greece and Ireland, the two examples in the Result section, was changed 

depending on the mean and SD of the sample used for the standardization of PRS. According to the NICE, 

women classified in the moderate risk category  (lifetime risk of at least 17% and less than 30%), have different 

managing guidelines compared to women classified in the population risk category (52). 

While adjustment of the PRS distribution at the population level is clearly necessary, the results raise the 

question as to whether it is appropriate in general to adjust PRS for PCs at the individual level, which gives 

different scores and potentially different risk classifications. This is a difficult question to address and hinges 

on whether the PCs should be regarded as nuisance parameters correcting for confounding factors, such as 

screening or lifestyle factors. Reanalysis of prospective studies with BCAC OncoArray dataset shows that the 

first two PCs are associated with the PRS  (PC1 negatively, PC2 positively) and are also associated with risk  

(in the same direction). The PRS effect size  (OR per 1 SD) is essentially unchanged whether or not adjustment 

for PCs is made  (Supplementary Table 9 and Supplementary Table 10). This implies that risk discrimination 

would be slightly improved by including the effect of PCs in the PRS, and that adjusting the PRS for PCs further 

reduces the discrimination. Fortunately, the association between the PC1 and risk is weak and, within a country, 

the variation in the PC1 is not large enough to materially change risk categories. 

The differences in the PRS distribution across Europe are a manifestation, on a continental scale, of the larger 

intercontinental differences – the mean PRS is higher in both east Asian and African populations than in the 

European dataset examined here (28, 29, 53). It is interesting to note that the pattern appears unrelated to the 

population-specific incidence, which is fact lower in south-east than north-west Europe (54), presumably 

because the effect on disease incidence is counterbalanced by larger effects of lifestyle  (or other genetic) factors. 

It remains unclear whether the differences in the PRS can be attributed purely to random genetic drift or whether 

selection pressures relevant to breast cancer aetiology are involved. 
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We would like to acknowledge some potential limitations of our study. The dataset we used was genetically-

homogeneous and maybe not completely representative of the population of each country. It remains an 

important issue how to interpret the PRS in individuals classified as mixed ancestry. In the future, the 

exploration of the distribution of the mean PRS across the individuals classified as mixed ancestry could be 

performed. Furthermore, evaluation of the country-specific calibrated PRS in combination with classical breast 

cancer risk factors should be performed in order to explore the extend to these findings have on final risk 

prediction.  

In summary, these results demonstrate that the implementation of the PRS313 in risk prediction models such as 

CanRisk/BOADICEA could potentially require country-specific calibration. This can be achieved by 

genotyping a large control group to obtain population-specific means, by using a principal components 

adjustment, or the empirical Bayes approach described here. 
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Figures 

 

Figure 1: Map of the European countries of origin of BCAC study participants included in the analysis. Countries were 

coloured based on their mean standardized PRS313 in control dataset of BCAC. Countries with higher mean are represented 

with darker colour while those with lower mean with lighter colour. 

 

Figure 2: Distribution of the standardized PRS313 across country of origin for overall, ER-positive and ER-negative breast 

cancer in control dataset of BCAC. The squares represent the mean PRS by country and the error bars represent the 

corresponding 95% confidence intervals (FE Model: Fixed effect Model). 
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Figure 3: Distribution of the mean PRS306, and “standard” PRS for breast cancer, as defined in the UK Biobank, across 

countries of origin of participating white females. The squares represent the mean PRS by country and the error bars 

represent the corresponding 95% confidence intervals (FE Model: Fixed effect Model). 
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Figure 4: PRS313 distribution in controls by percentiles in the pooled BCAC dataset, Greece, Ireland and Italy. The dashed 

line corresponds to the 95th percentile of the PRS313 distribution in controls of the pooled BCAC dataset. 
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Figure 5: Classification of a 50-year-old woman from Greece when her raw PRS313, which is equal to 0.34 is 

standardized based on the mean and SD of the controls of BOADICEA model (upper panel) and Greece (lower 

panel), using the CanRisk tool. Plots were generated using the CanRisk tool (www.canrisk.org). 
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Figure 6: Classification of a 50-year-old woman from Ireland when her raw PRS313, which is equal to 0.27 is 

standardized based on the mean and SD of the controls BOADICEA (upper panel) model and Ireland (lower 

panel), using the CanRisk tool. Plots were generated using the CanRisk tool (www.canrisk.org). 
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Tables 

Table 1:  Mean standardized PRS313 by country in controls in the pooled BCAC dataset, estimated when adjusted for array, 

6 PCs country and array, using fitted values adjusted for 6 PCs and array and when using an Empirical Bayes approach 

adjusted for array. 

Country 
Number of 

Controls 

Mean 

PRS313
1 

Mean PRS adjusted 

for array and 6 PCs 

PRS adjusted for 6 

PCs, fitted values2 

Empirical Bayes 

Posterior Mean3 

Australia 4049 -0.005 0.01 -0.005 -0.003 

Belarus 342 0.07 0.071 0.016 0.064 

Belgium 1823 -0.006 -0.007 0.010 -0.002 

Canada 2277 0.018 0.019 0.013 0.02 

Denmark 5241 -0.013 0.012 -0.031 -0.012 

Finland 2083 0.031 0.008 0.010 0.032 

France 1372 0.0003 -0.008 0.008 0.004 

Germany 8563 0.011 0.004 0.013 0.011 

Greece 607 0.232 0.043 0.208 0.199 

Ireland 719 -0.118 -0.015 -0.112 -0.092 

Israel 724 0.047 0.001 0.062 0.047 

Italy 1554 0.115 -0.007 0.131 0.11 

Netherlands 4407 0.021 0.043 -0.019 0.022 

Norway 217 0.077 0.094 -0.027 0.066 

Poland 2554 0.013 0.025 0.010 0.015 

Republic of North 
Macedonia 

92 0.25 0.134 0.140 0.129 

Russia 120 0.18 0.166 0.044 0.11 

Spain 2098 0.057 -0.006 0.057 0.056 

Sweden 16680 -0.015 0.005 -0.017 -0.014 

UK 16854 -0.01 0.019 -0.023 -0.01 

USA 21696 0.029 0.033 0.013 0.029 

1Mean PRS313 adjusted for array 
2Mean PRS313 by country using predicted PRS of each individual; estimated using linear predictor of PRS vs 6 PCs and the command predict () in R.  
3Country-specific estimates, means β, using the Empirical Bayes approach, adjusted for array 
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Table 2: Mean and SD used to standardize PRS313 of a 50-year-old woman with raw PRS313 equal to 0.341 from Greece 

and another 50-year-old woman with raw PRS313 equal  0.273 from Ireland, and the risk estimation and categorization 

when using the CanRisk tool, Greek and Ireland values. 

  

Samples used for the 

standardization: 

Raw PRS; Mean  

(SD) 

Standardized 

PRS1 

Percentage based on 

CanRisk tool 

Lifetime risk 

based on 

CanRisk tool2 

NICE Risk 

category 

Individual from Greece with raw PRS313 = 0.341  (falling into the 90–95% percentile category in the full BCAC dataset ) 

 CanRisk tool3 -0.424  (0.611) 1.253 89.5% 14.1% Moderate 

Controls Greece  (raw)4 -0.305  (0.612) 1.056 85.5% 13.3% Population 

Controls Greece adjusted 

for 6 PCs  (raw) 
-0.420  (0.696) 1.094 86.3% 13.5% Population 

Controls Greece, using 
Empirical Bayes method 

-0.325  (0.554) 1.204 88.6% 13.9% Moderate 

Individual from Ireland with raw PRS313 = 0.273  (falling into the 85-90% percentile category in the full BCAC dataset) 

CanRisk tool3 -0.424  (0.611) 1.14 87.3% 13.7% Population 

Controls Ireland  (raw)1 -0.519  (0.624) 1.27 89.8% 14.2% Moderate 

Controls Ireland adjusted 

for 6 PCs  (raw) 
-0.456  (0.74) 0.985 83.8% 13% Population 

Controls Ireland, using 

EB 
-0.503  (0.562) 1.38 91.7% 14.7% Moderate 

1Standardised based on the mean and SD specified in the second column  
2Absolute risk of developing breast cancer by the age of 80 
3When a variant call format (vcf) file is uploaded to the CanRisk tool, a raw PRS313 can be calculated and standardized 

using the mean  (SD) -0.424  (0.611)  
4Adjusted for array type 
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