
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Semi-Automated Modular
Formal Verification of Critical
Software
Liveness and Completeness Thresholds

Tobias Reinhard

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

February 2024

Supervisors:
Prof. dr. B. Jacobs
Prof. dr. A. Timany

Semi-Automated Modular Formal Verification of
Critical Software
Liveness and Completeness Thresholds

Tobias REINHARD

Examination committee:
Prof. dr. ir. D. Vandermeulen, chair
Prof. dr. B. Jacobs, supervisor
Prof. dr. A. Timany, supervisor
Prof. dr. ir. F. Piessens
Prof. dr. ir. T. Schrijvers
Prof. dr. M. Huisman

(Universiteit Twente)
Prof. dr. P. Müller

(ETH Zürich)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

February 2024

© 2024 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Tobias Reinhard, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

I am grateful to my advisor, Bart Jacobs, and my co-advisor, Amin Timany, for
providing me with the opportunity to delve further into the realm of software
verification and, especially, for introducing me to separation logic. Your steadfast
encouragement and profound expertise have been deeply appreciated, along
with all the insightful and interesting discussions we’ve had. The insights I
gained from separation logic have significantly enhanced my understanding of
software verification, an experience I deeply value. Furthermore, I appreciate
the freedom Bart offered me to cultivate and pursue my own visions while
venturing into new and uncharted territories.

I want to express my gratitude to my dissertation committee, Marieke Huisman,
Peter Müller, Frank Piessens, and Tom Schrijvers, for their insightful evaluation
of my dissertation. Your expertise was invaluable, and I sincerely appreciate the
time and effort you dedicated to reviewing my work. Additionally, I thoroughly
enjoyed the engaging and enriching discussion of my thesis during the defence.
I would also like to thank Dirk Vandermeulen for chairing my dissertation
committee.

Besides my work in academia, I had the invaluable opportunity to intern twice at
Amazon’s Automated Reasoning Group. This experience profoundly impacted
not only my personal growth but also my development as a researcher. I want to
extend my heartfelt thanks to my mentor, Nathan Chong, and manager, Mark
Tuttle, for the engaging discussions and for their thoughtfulness that defined
my time in Boston. Additionally, I am grateful to my other managers and
colleagues, Mike Whalen, Jim Grundy, Saswat Padhi, Felipe Monteiro, Daniel
Kroening, and Michael Tautschnig, for our fruitful collaboration.

I want to thank my friend and collaborator Joachim Kristensen for the joint
project we recently started. Working with you has been a pleasure and I am
sure that we have some exciting times ahead of us. I am particularly excited
about the opportunity to visit you and your group in Oslo soon. Next, I want

i

ii PREFACE

to thank all the people who read my works and listened to my pitches numerous
times. Note that all the feedback you gave me over the years and all the
discussions we had are truly appreciated. While this list is not exhaustive, I
want to give particular shout-outs to the following friends: Friedrich Weber for
being my go-to model checking expert and for pointing me to the first work on
completeness thresholds I ever read. Ramana Nagasamudram for your warm
and constructive attitude, especially during those discussions that made me
change my mind. Justus Fasse for being the personification of a related work
library and for the fun I had during our collaborations. Next, I want to extend
my gratitude to my SIGPLAN mentor Stavros Aronis. Thanks for sharing your
experience with me and for the insightful perspectives you offered during our
meetings.

I am happy to say that, during my time in Leuven, I found the most supportive
and inclusive circle of friends and fellow PhD candidates one could wish for
(in order of first appearance): Justus Fasse, Nima Rahimi Foroushaani, Ðorđe
Marković, Vida Ranjbar, Niels Mommen, Denis Carnier, Weihong Wang. All of
you are truly amazing and have made my experience in Leuven unforgettable.
Thank you for your unconditional support and the kindness you showed me
during the years. Your friendship has enriched my life in ways I’ll always cherish
and never forget.

Moreover, I thank my other friends and colleagues in the research community
and the department: Hanneli Tavante, Robbe Van den Eede, Federico Quin,
Gints Engelen, Fritz Alder, Shirin Kalantari, Pieter Luyten, Gerald Budigiri,
Lesly-Ann Daniel, Ignace Bossuyt, Petra Asma, Katrien Janssens, Annick
Vandijck, and An Makowski.

I am deeply thankful to my parents, Erwin and Karin, and my brother, Dominik
Reinhard, for their unwavering support and enduring belief in my capabilities.
Their steadfast encouragement has been invaluable, and their continuous support
has played a crucial role in helping me pursue and achieve my goals throughout
my journey.

Coming to an end, I just want to give a big shout-out to my partner, Carina.
Your support over the years has been nothing short of incredible. Thank you
for always being there to listen to my possibly overly detailed descriptions of
random verification topics. Anyways, without you, none of this would have
been possible! And now, I can’t wait to see what adventures await us in the
next chapter of our journey together! Schau’n mer mal was wird.

Abstract

In this dissertation we describe two contributions to the state of the art in
reasoning about liveness and safety, respectively.

Programs for multiprocessor machines commonly perform busy waiting for
synchronization. We propose the first separation logic for modularly verifying
termination of such programs under fair scheduling. Our logic requires the
proof author to associate a ghost signal with each busy-waiting loop and allows
such loops to iterate while their corresponding signal s is not set. The proof
author further has to define a well-founded order on signals and to prove that
if the looping thread holds an obligation to set a signal s′, then s′ is ordered
above s. By using conventional shared state invariants to associate the state
of ghost signals with the state of data structures, programs busy-waiting for
arbitrary conditions over arbitrary data structures can be verified.

Moreover, we present the first study of completeness thresholds for bounded
memory safety proofs. Specifically, we consider heap-manipulating programs
that iterate over arrays without allocating or freeing memory. In this
setting, we present the first notion of completeness thresholds for program
verification which reduce unbounded memory safety proofs to bounded ones.
Furthermore, we demonstrate that we can characterise completeness thresholds
for simple classes of array traversing programs. Finally, we suggest avenues of
research to scale this technique theoretically, i.e., to larger classes of programs
(heap manipulation, tree-like data structures), and practically by highlighting
automation opportunities.

iii

Beknopte samenvatting

In dit proefschrift beschrijven we twee bijdragen aan de state-of-the-art in
redeneren over respectievelijk liveness en safety.

Programma’s voor multiprocessor machines maken gebruik van busy waiting
voor synchronisatie. Wij stellen de eerste separation logic voor om modulair de
beëindiging van zulke programma’s onder fair scheduling te verifiëren. Onze
logica vereist dat de auteur van het bewijs een ghost signal toekent aan elke busy
waiting lus. Deze lussen mogen itereren zolang hun corresponderende signaal s
niet is ingesteld. De auteur van het bewijs moet daarnaast een welgefundeerde
orderelatie op signalen definiëren, en moet daarbovenop bewijzen dat als de
looping thread een obligatie van een signal s′ bezit, dat s′ groter is dan s. Door
klassieke gedeelde toestandsinvarianten te gebruiken om de toestand van ghost
signals te associëren met de toestand van datastructuren, kunnen programma’s
met busy waiting geverifiëerd worden, voor arbitraire condities over arbitraire
datastructuren.

Daarnast presenteren we de eerste studie naar completeness thresholds voor
bounded memory safety bewijzen. Specifiek beschouwen we heap-manipulerende
programma’s die itereren over arrays zonder het toekennen of vrijgeven van
geheugen. In deze context presenteren we de eerste notie van completeness
thresholds voor programmaverificatie die unbounded memory safety bewijzen
reduceren tot bounded bewijzen. Tevens laten we zien dat we completeness
thresholds kunnen karakteriseren voor eenvoudige klassen van programma’s die
arrays doorlopen. Tot slot suggereren we theoretische onderzoekspistes voor gro-
tere klassen van programma’s (heapmanipulatie, boomachtige datastructuren),
en praktische mogelijkheden voor bewijsautomatisatie.

v

Contents

Abstract iii

Beknopte samenvatting v

Contents vii

1 Introduction 1

2 State of the Art 9
2.1 Deductive Liveness Verification of Concurrent Software 9
2.2 Reducing Unbounded to Bounded Proofs 12

3 Ghost Signals: Verifying Termination of Busy Waiting 17
3.1 Introduction . 17
3.2 A Guide on Verifying Termination of Busy Waiting 19

3.2.1 Simplest Setting: Thread-Safe Physical Signals 20
3.2.2 Non-Thread-Safe Physical Signals 25
3.2.3 Arbitrary Data Structures 32
3.2.4 Signal Erasure . 33

3.3 A Realistic Example . 35
3.4 Specifying Busy-Waiting Concurrent Objects 39
3.5 Tool Support . 40
3.6 Integrating Higher-Order Features 41
3.7 Related & Future Work . 41
3.8 Conclusion . 42

4 Completeness Thresholds for Memory Safety of Array Traversing
Programs 43
4.1 Introduction . 43
4.2 Limitations of Bounded Proofs 44
4.3 Completeness Thresholds . 46

vii

viii CONTENTS

4.3.1 Approximating CTs via Verification Conditions 47
4.3.2 Modularity of Completeness Thresholds 52

4.4 Conclusion . 54
4.5 Related Work . 55
4.6 Outlook . 55

5 Conclusion and Future Work 57
5.1 Liveness Verification . 57
5.2 Completeness Thresholds . 60

List of Contributions 65

A Ghost Signals: Formalization & Case Studies 69
A.1 General . 70
A.2 Language . 71
A.3 Logic . 74
A.4 Soundness . 81

A.4.1 Annotated Semantics 81
A.4.2 Hoare Triple Model Relation 90
A.4.3 Soundness Proof . 92

A.5 Case Studies . 99
A.5.1 Verification of Realistic Example 100
A.5.2 Case Study: Statically Unbounded Number of Communi-

cating Parties . 107

B Ghost Signals: Generalised Logic 115
B.1 Universe . 115
B.2 General . 116
B.3 Syntax . 117
B.4 Example . 118
B.5 Resources . 118
B.6 Semantics . 119
B.7 Assertions . 121
B.8 Proof Rules . 125
B.9 Annotated Semantics . 127
B.10 Hoare Triple Model Relation 137
B.11 Soundness . 138
B.12 Verification Example . 147

B.12.1 Minimal Example . 148
B.12.2 Bounded FIFO . 148

C Completeness Thresholds: Formalization 163
C.1 Introduction . 163

CONTENTS ix

C.2 General Notation and Basic Definitions 164
C.3 Syntax . 166
C.4 Dynamic Semantics . 167
C.5 Assertion Language . 169
C.6 Memory Safety . 172
C.7 Verification Conditions . 173

C.7.1 VC Generation . 174
C.8 Completeness Thresholds . 175

C.8.1 Iteratively Extracting Completeness Thresholds 178
C.8.2 Iterating over Arrays . 179

D Generalising Completeness Thresholds 181
D.1 Basic Definitions . 181
D.2 Generalised Completeness Thresholds 182

Bibliography 189

Chapter 1

Introduction

Critical software is everywhere and almost every piece of critical infrastructure
depends on it, in one way or another. The electrical power we use every day is
produced by power plants whose safety heavily depends on the correctness of a
variety of software systems. For instance, in case of an emergency dedicated
shutdown systems [113, 179] are responsible to automatically power down
reactors and prevent disaster. But also a power plant’s normal operation
is heavily software controlled. Specifically, they rely on sophisticated networks
of hardware sensors and software components, called supervisory control and
data acquisition (SCADA) systems [95]. These collect data and make automatic
decisions about the plant’s operation or assist human decision makers. Their
correctness is critical to any power plant’s safety. Moreover, the complex
networks that supply our homes every day with electricity, gas and water are
also operated by SCADA systems [171]. They can typically be accessed remotely,
which makes them vulnerable to cyber attacks exploiting bugs [171, 95].

To a similar extent, we critically rely on software when we travel. Many of
the safety features that cars offer nowadays are provided by software [140]:
ABS (anti-lock braking system) prevents wheels from locking during emergency
braking. ACC (adaptive cruise control) ensures a safe distance to the vehicle
ahead. ESC (electronic stability control) is yet another service helping the car
to stay on track by controlled breaking. Just to name a few.

Aircrafts use onboard software to control about every aspect of their journey.
They navigate via GPS software [160]. Dedicated software controls the slats and
flaps – the parts of the wing used to alter or keep the altitude [31]. The most
critical part of any flight, the landing, is also computer guided [160]. Faults in
any of these programs can have critical consequences. The two groundings of

1

2 INTRODUCTION

Boeing 737 MAX planes in October 2018 and March 2019 should serve as a sad
reminder of that [89]. 1

Correctness Properties It is easy to agree that correctness is essential for
critical systems. Though, what exactly it means for software to be correct
differs from case to case. Two important classes of correctness properties are
safety and liveness [111, 4].

Safety We call a program safe if something bad never happens. For instance, a
program is memory safe if it never accesses invalid memory (e.g. unallocated or
already freed memory). This is typically the most basic property that we want
for every program, since we need it to ensure any other correctness property. A
very common class of memory safety errors are array out-of-bounds accesses,
where we read or write memory past the array bounds. This type of error is
often exploited in cyber attacks [96, 48, 75].

Another safety property that we commonly care about in concurrent applications
is data race freedom [11]. A data race occurs when a thread (non-atomically)
writes a memory cell (or any other shared resource) concurrently with another
thread writing or reading it. Whenever that happens the outcome is undefined
or non-deterministic if the involved operations are atomic. In the worst case,
a concurrent write can corrupt the memory cell. If the subsequent program
depends on the memory cell’s value, its behaviour becomes unpredictable. Even
worse, depending on the concrete programming language used, the semantics of
the entire program might become undefined.

Liveness Liveness is the counterpart to safety. We call a program live if
something good eventually happens. For instance, we often want computations
to terminate, because we care about their result. Non-terminating computations
block the entire subsequent program. Hence, termination is a commonly desired
liveness property, even though the name liveness suggests otherwise.

Imagine a distributed banking system processing monetary transactions. For
each transaction, it would debit the specified amount from the sending account,
send it to the recipient’s institution and then add it to their account. One of
the most important properties of such a system is that the transferred money
eventually arrives on the recipient’s account, which is also a liveness property.

1We should note that the software was only one of multiple flaws that ultimately led to
the groundings.

INTRODUCTION 3

Approaches to Correctness Over the years the community came up with
different approaches to reduce the number of bugs and thereby improve
the correctness of software systems. It remains, however, very difficult to
reason about programs. Many interesting properties are undecidable, e.g.,
memory safety [157], deadlock freedom [80] 2 and termination [156]. In a
nutshell this means that for sufficiently complex programs it is not possible to
reason precisely and automatically about every possible execution.

Testing Test driven development [78], i.e., writing tests first and implementing
the actual functionality later, has proven valuable in finding bugs early on.
However, as Dijkstra said: “Program testing can be used to show the presence
of bugs, but never to show their absence!” [60] Even for relatively simple
programs, the number of tests we had to write to cover every possible scenario,
would be infeasibly large. Approaches like property based testing [33] and
fuzzing [129] try to tackle this issue by automatically generating test cases and
thereby increasing coverage. However, due to the sheer number of possible
inputs and runtime behaviours, even automatic testing is not sufficient to
guarantee that we did not miss any bug. The situation gets even worse when we
move from sequential, single-threaded software to concurrent, multi-threaded
computations. In the latter case, we not only have to explore all possible inputs
but also all possible thread interleavings to ensure that our software works as
expected. By that the number of required test cases explodes exponentially.
Meanwhile, the main advantage of testing is its simplicity.

Bounded Model Checking Model checking [37, 146] is an alternative approach
to automatically find bugs by exhaustively simulating every possible program
execution. Since programs do not necessarily terminate, neither does model
checking them. Moreover, the number of different states that the program might
be in and which we have to check grows exponentially with the complexity of
the program, the number of possible inputs and the length of the executions.
This is known as the state space explosion problem [27, 36, 142, 35] and it makes
straight-forward model checking unfeasible, even for terminating programs.

Bounded model checking (BMC) [15] overcomes this issue by bounding both
the length of executions and the input size. That is, when we bounded model
check a program sorting lists of integers, we specify an input size bound S and
a depth bound D. Then the model checker simulates all executions for lists
with up to S elements and it stops the simulation after D program steps.

2The cited work concerns communicating finite state machines, but the work applies
straightforwardly to deadlock freedom in concurrent programs.

4 INTRODUCTION

Compared to testing, BMC is a much more exhaustive approach to ensure
program correctness. Over the years, BMC has become an established technique
in industry, though still far less widespread or well-known than testing. At
this point we have industrial grade bounded model checkers like CBMC [39]
and ESBMC [46] that are relatively easy to use. Writing a CBMC proof for
instance requires little more than specifying the bounds S and D as well as which
correctness properties the model checker should look for. The rest happens
automatically. Since CBMC simulates concrete executions, it can report a
counterexample for every found bug. Just like with testing, this makes it easy
for the developer to understand and fix the problem.

The main selling point of bounded model checkers is that they manage to
strike a compromise between usability and exhaustiveness. It achieves this by
under-approximating the program behaviour, i.e., exploring a (small) subset
of finite prefixes of concrete program executions. However, as with all under-
approximating approaches it does not suffice to ensure that the program we
checked is correct. Maybe we missed a bug that only shows up for bigger inputs
or longer program executions. To make things worse, the state space explosion
makes it usually only feasible to check small inputs.

Deductive Verification The approaches we discussed so far focus on finding
bugs. With every bug we find and fix our program converges a bit more towards
correctness. With these approaches we can, however, never be certain that no
bug is hiding in a corner that we didn’t explore. One way to overcome this
limitation is deductive verification [173, 92]. The underlying idea is that we
analyse the program and use mathematical reasoning to rule out every possible
error. When this succeeds, we know for sure that the program is correct. Hence,
it is the most powerful correctness approach among the ones discussed here.

So why do we bother with testing or model checking at all? For once, to
validate the scenarios considered by our proof. Yet also because proofs are
hard! In order to logically reason about the behaviour of a program we have to
understand how it works and – even worse – why it should be correct. That
is, we have to manually come up with a correctness argument in the form
of specifications, invariants and inductive proofs. The deductive verifier then
checks that every proof step we took is correct and that our argument holds.
This requires not only a detailed understanding of the software’s inner workings
but also expertise in the logic the deductive verifier is built upon. This makes
deductive verification hard to access for developers without any background in
formal logic. In contrast, testing and BMC allow us to more or less treat the
program as a black box.

Another difference is that a deductive verifier never executes the program. That

INTRODUCTION 5

means that we never look at any concrete program state in an execution. Instead
we deduce correctness from the program’s static structure. Our correctness
argument must be general enough to cover all possible executions. This often
forces us to over-generalise in the sense that our argument also covers impossible
executions, especially for loops and recursion. As a result, it is not possible to
verify every correct program.

Nevertheless, deductive verification (complemented by validation testing) is
the best approach that we have to truly ensure correctness of complex critical
systems. For some applications failure is not an option and the stakes are high
enough to warrant the tedious correctness proofs. Over the years, many research
tools such as VeriFast [99], VerCors [18], Viper [132], Why3 [70], and VCC [43]
have been developed. While their focus is primarily academic, some are also
used in industrial projects such as the verification of FreeRTOS [153, 55] or
cloud infrastructure [44]. Moreover, a small number of industrial grade tools
such as Dafny [116] and AdacCore Spark [125] exist with a long track record
in critical areas like cryptography and security [44, 158, 1, 86, 68]. Meanwhile,
works like loop invariant synthesis [145, 117] and – recently – the application of
large language models [185, 183] try to make deductive verification simpler and
thereby more accessible to the masses.

Advantages and Disadvantages Testing is a good way to find bugs early
in the development cycle. It requires little expertise and the results are easy
to understand. But given the very limited guarantees it entails, testing alone
is clearly insufficient to guarantee correctness of any critical system. Yet, it
complements deductive verification well and serves as an easy way to validate
proof assumptions.

In contrast, BMC provides much stronger guarantees. Nonetheless, it succeeds
in preserving the main advantages of testing: It is fairly easy to apply. Especially
because it allows us to treat most of the target program as a black box. And it
yields real, i.e., non-spurious, counterexamples when it fails. The combination
makes it easy to find and fix bugs. Its main drawback is that BMC proofs are
unsound, because they only explore a subset of all inputs and only bounded
executions. Consequently, no matter how big we set the bounds, we can never
be certain that no bug hides in some dark corner we did not explore.

Deductive verification, in contrast, is sound and yields unbounded guarantees.
This makes it an appropriate approach for critical systems, where we cannot
tolerate any failure. Yet, it should be complemented by validation, e.g., testing,
to ensure the proof considers the right scenarios. Deductive proofs are hard,
though, and require significant expertise. At the same time, the approach is
incomplete. That is, many programs are impossible to verify even though they

6 INTRODUCTION

are fully correct. Hence, choosing the right correctness approach is a trade-off
between the degree of guarantees we desire and resources we are willing to
spend.

Termination of Busy Waiting In concurrent programs responsibilities are
often distributed across threads. The same holds for dependencies. It is very
common for a thread A to depend on data produced by another thread B. Both
threads can run concurrently until A arrives at a point where it needs to access
said data. Whenever that happens A has to wait until the data arrives. That
is, the thread is blocked until B finishes the computation it is responsible for.
We call this pattern blocking concurrency. One possible implementation that
we focus on in this dissertation is for A to loop until the awaited data arrives
and to check the status in every iteration. We call this busy waiting [128].

Such a system can easily get stuck if one thread fails to adhere to its responsibility
or if we accidentally end up with cyclic dependencies. Ensuring that this not the
case, i.e., that the system is live, is far from trivial. Even more so to formally
prove it live. Every such proof has to show that A’s wait loop eventually
terminates. To achieve that, we can first tie A’s busy waiting to the progress
of B. In a next step, we can prove that B eventually produces the data A is
waiting for.

We see that reasoning about whether or not A’s busy waiting eventually
terminates, forces us to take B’s progress into account. Hence, reasoning
about such liveness properties and dependencies is difficult to achieve modularly,
i.e., thread-locally. In § 3 we present the first work that allows us verify
termination of busy waiting modularly. We present a separation logic [155, 138]
and a new type of ghost resource [103] that we call ghost signal.

Ghost resources are objects that do not exist during the runtime of a program.
Instead we only introduce them for the sake of our proof. Naturally, we have
to make sure that they can be introduced and erased without affecting the
program’s semantics or control flow. Intuitively, a ghost signal is a witness of
some other thread promising to do something. For instance, suppose thread A
possesses a ghost signal tied to the data A is waiting for. Then it knows that
another thread promised to produced said data. Hence, we can use it in a
thread-local proof to justify that A’s busy waiting eventually terminates.

Completeness Thresholds BMC is unsound by construction since there’s
always a chance that we chose our bounds too small to find all bugs. While this
is obviously a big disadvantage, it is also where BMC’s usability comes from. In
general, bounded proofs such as the one that we see in BMC are easy to automate

INTRODUCTION 7

since they only explore a finite set of finite, concrete program executions. Also
for that reason, failed proofs yield non-spurious counterexamples. The latter
help developers by showing them precisely under which circumstance the bugs
occur. The same does not hold for unbounded proofs like the ones we get with
deductive verification.

BMC proofs are often justified by the intuition that if there is a bug in a program,
then it also tends to show up for small inputs and early in an execution. The
problem is that we do not know when this intuition is true and when it is not.
If we knew that it was correct for certain programs, it would allow us to turn
bounded proofs into unbounded ones.

Though, we know at least that this intuition holds for bounded proofs of specific
properties ϕ over finite state transition systems T [15, 40, 28]. To formalise
it, the model checking community came up with the concept of completeness
thresholds (CTs) [40]: Intuitively, such a threshold is a number k that is large
enough such that if T violates ϕ, then there is also a violation that can be
reached with at most k steps. In other words, if there is a bug, we can find it
by exploring all finite path prefixes up to the length k.

Any bounded proof that exceeds the threshold is sound. From a verification point
of view it would make more sense to call it a soundness threshold. Unfortunately,
the model checking and verification communities use the terms sound and
complete in opposite ways. For the verification community, soundness means
that any proven property indeed holds. The model checking community calls
this completeness, because the proof did not miss any bugs.

In § 4 we present the first notion of CTs for program verification. In particular,
we define them in the context of memory safety proofs and show that we can
extract them for array traversing programs. The programs we study do not
correspond to finite transition systems. Hence, we cannot reuse the existing
results or approaches to CTs from the model checking literature. Though,
to highlight the connection to previous CT research in the model checking
community, we chose to continue the terminology instead of calling them
soundness thresholds. Yet, apart from the term CT we continue to use sound
and complete in the verification sense.

For us, a CT is not a number k. Instead it is a subdomain Q ⊆ X of an input
domain X that is big enough to ensure that a bounded proof only exploring Q
covers all relevant cases. Suppose we want to prove memory safety of a program
that iterates over an array of size s ∈ N. How can we know whether it is
sufficient to check memory safety for arrays of size s < 10? In § 4 we show that
we can extract that knowledge from the program’s verification condition and
thereby reduce unbounded memory safety proofs to bounded ones.

Chapter 2

State of the Art

2.1 Deductive Liveness Verification of Concurrent
Software

We can broadly classify major deductive approaches to reason about concurrent
software along two dimensions: (i) The abstraction level and (ii) the foundation.

Abstraction Level Most popular approaches [135, 139, 184, 176, 177, 104, 122],
like the one we propose in § 3, work directly with the target program and reason
about the effects of every single instruction. A less widespread alternative is
contextual refinement. The idea is to reason about a more abstract model
instead of the actual program we want to verify. In this context, a refinement
is a program transformation that preserves the properties we are interested
in and at the same time abstracts implementation details away. Refinement-
based works include Turon et al. [175], Gu et al. [82], Boussabbeh et al. [20],
de Carvalho Gomes et al. [51]. Works that employ a mixture of both approaches
include: CaReSL [174], LiLi [120, 121], Conditional Contextual Refinement [166].

Logical Foundation The second dimension is the foundation we choose to base
our reasoning on. While the landscape of logical foundations is vast, most fall
into one of two broad categories: (i) Type-based reasoning and (ii) program
logics à la Floyd-Hoare.

9

10 STATE OF THE ART

(i) The foundation for all type-based approaches is the Curry-Howard
correspondence which equates logical propositions P with types T and
consequently proofs of P with values of type T . Dependent type theories
like the calculus of constructions [45] form the basis of popular state-of-the-art
proof assistants like Coq [54] and Lean [57, 52]. Due to their expressiveness,
they mostly serve as a trusted foundation to mechanise and check higher-level
reasoning. For instance, Iris [104] and Verifiable C/VST-Floyd [8, 29] are
both higher-order separation logics mechanised in Coq. The expressiveness of
dependent types comes at the cost of automation. Meanwhile refinement types
are sufficiently restricted such that assertions/typings can be automatically
checked by SMT solvers. One of the most notable projects using refinement
types for automatic program verification is Liquid Haskell [178]. More recent
works include Flux [114] to verify Rust code and CN [144] which combines
refinement types and separation logic to verify C programs.

(ii) The central idea of Hoare-logic is that we specify the behaviour of a program
in the form of pre- and post conditions. This simple paradigm proved very
effective to reason about imperative programs. Since its introduction, many
successors have been proposed [135, 139, 184, 176, 177, 104, 122]. One notable
step along the evolution of Hoare-style logics is the Owicki-Gries method [139],
which introduced some of the concepts we still use today, such as ghost variables,
critical sections and resource invariants. Another notable, though not very
wide-spread, type of Hoare-style logics is rely-guarantee reasoning [184] and its
successor deny-guarantee reasoning [62].

Most notably, separation logic [155, 138] became the de-facto standard to
reason about heap-manipulating programs. Dynamic frames [105] and implicit
dynamic frames [165] are conceptually similar and used in verifiers such as
Dafny [116], though certainly less wide-spread than separation logic. In
particular, concurrent separation logic [155, 138] is now the de-facto standard
to reason about concurrent, imperative programs. The key idea is fine-grained
reasoning about ownership of resources. This is also the foundation for the
approach we present in § 3. Over the years, separation logic has been extended
by many concepts to address the challenges that arise when we try to reason
about concurrent programs. Higher-order ghost state [103] makes very expressive
invariants and specifications possible. Fractional permissions [22, 26] allow us to
distribute permissions among threads in a fine-grained manner that for instance
differentiates between read and write permissions.

Proving Liveness Hoare-style logics – and in particular separation logic – are
by construction safety logics. There are, however, several extensions that allow
us to prove liveness properties by reducing them to safety ones. Obligations [107]

DEDUCTIVE LIVENESS VERIFICATION OF CONCURRENT SOFTWARE 11

allow us to prove finite blocking by reasoning about responsibility distribution
among threads. Obligations are a very versatile concept that can be used to
reason about many different forms of blocking, e.g., acquisition of locks [19, 118],
reading from channels [19, 118], waiting for a heap cell to be set (§ 3). Call
permissions [100] support reasoning about termination of loops and function
calls by forming a decreasing measure.

Non-Blocking Concurrency We can divide the landscape of concurrent
programs into blocking and non-blocking ones. In case of the former, threads’
progress depends on that of other threads. Non-blocking ones are in contrast
programs where different threads cannot block each other’s progress. Several
previous works such as Moir and Anderson [130], Hurault and Quéinnec [94],
Gotsman et al. [79], da Rocha Pinto et al. [50] focus on verifying liveness
properties of non-blocking algorithms. Notably, Total-TaDA [50] is a total
correctness logic that supports proving termination of concurrent, non-blocking
programs. Moreover, it also allows us to prove non-impedance, i.e., that threads
cannot prevent each other’s progress.

Blocking Concurrency Boström and Müller [19] propose a technique to verify
blocking behaviour in non-terminating, concurrent programs. They consider
blocking behaviour that stems from primitive blocking operations: Reading
from built-in channels, acquiring built-in locks, joining another thread, i.e.,
waiting until it terminates. Their approach is based on several techniques that
we also reuse for the work we present in § 3. In particular, they use obligations,
decreasing measures and levels to prove that waiting terminates.

A non-primitive form of blocking behaviour is busy-waiting, where a thread waits
by looping until the desired event occurs. Liang and Feng [120, 121] propose
LiLi, a separation logic to verify liveness of blocking constructs implemented via
busy waiting. Their proofs rely on contextual, liveness preserving refinement.
Ghost signals (§ 3) allow the sound generation of fuel to justify indefinite
waiting in a context that provably leads to termination. Tada Live [64], a
separation logic published in parallel to our ghost signal paper, also allows to
prove termination of busy waiting loops. We discuss it in more depth in § 5.

Condition variables are another way to implement blocking behaviour. Threads
can register to wait for access to a specific resource and are woken up when the
resource becomes available. In their paper de Carvalho Gomes et al. [51] propose
technique to verify liveness of Java programs that synchronise via condition
variables. The liveness property they consider is that each thread which enters
a critical section eventually leaves it, which is essentially a termination property.
They reduce termination to reachability in coloured Petri Nets. The latter can

12 STATE OF THE ART

be checked by existing Petri Net analysis tools. Hamin and Jacobs [84] show
that we can also use obligations to reason about the liveness of code that uses
condition variables for synchronisation.

2.2 Reducing Unbounded to Bounded Proofs

The fundamental idea behind model checking is to express a problem as property
of a transition system and then exhaustively check that it holds for all paths.
This is often unfeasible for two reasons: (i) The system contains infinite paths
that can never be fully checked. (ii) The state space explosion problem [27, 36,
142, 35]. Transition systems grow very fast with the complexity of the original
problem we care about. Since our computational resources are limited, we can
often only check a small prefix of the entire system.

The model checking community came up with two fundamentally different
approaches to overcome this limitation: (i) Heavily reducing the state space via
abstractions and (ii) approximating unbounded proofs by bounded ones.

Simplification by Abstraction Predicate abstraction [81] over-approximates
concrete states in a finite transition system by abstract states expressed in terms
of hand-crafted predicates. Coming up with suitable predicates is hard and
leads to spurious counterexamples [12]. To counter this issue, Clarke et al. [34]
proposed counterexample-guided abstraction refinement (CEGAR). Each found
counterexample is checked against the concrete transition system to determine
whether it is spurious. When that is the case, we automatically refine our
abstractions to ensure that the refined abstract transition system does not
permit the spurious counterexample anymore. A special form of this approach is
lazy abstraction [88] where we limit the refinement to states where the previous
abstraction yields a spurious counterexample. This reduces the size increase
inherent to abstraction refinement. Another abstraction refinement approach
worth mentioning is property-directed reachability (PDR) [24, 66, 93]. While
both CEGAR and PDR use counterexamples to refine state abstractions, a
major difference is that PDR preserves a precise transition relation [93].

Approximating Proofs Bounded model checking (BMC), i.e., approximating
unbounded proofs by bounded ones, was originally introduced by Biere et al. [15]
and is now a wide-spread technique. State-of-the-art software-model checkers
such as CBMC [39] and ESBMC [46] use this paradigm. Instead of aiming for
an exhaustive check, they only focus on a small prefix of the transition system.
One way is to keep the transition system as is, but to set a depth bound that

REDUCING UNBOUNDED TO BOUNDED PROOFS 13

limits the length up to which path prefixes are explored [15]. Checkers typically
also allow for more fine-grained bounds, such as separate bounds for specific
input sizes and loop depths. Fine-grained bounds essentially allow the user to
trim specific parts of the transition system.

Completeness Thresholds While this approach is very popular, it only gives
us bounded guarantees that can not straight-forwardly be extrapolated to the
entire transition system. However, in the very paper introducing BMC Biere
et al. [15] already observed that finite, lasso-shaped prefixes (i.e., prefixes ending
in a backloop) can represent the behaviour of infinite lasso-shaped paths. Thus
they can serve as finite witnesses of infinite behaviour. This might sound profane
at first glance, but it is actually a very fundamental insight. As Biere et al.
showed, it allows us to extract unbounded guarantees from bounded proofs,
given the right circumstances. The concept was later popularised by Clarke
et al. [40] under the term completeness threshold. Consider a finite transition
system T and a property of interest ϕ. We call a number k ∈ N a completeness
threshold (CT) for T and ϕ if the following holds: If ϕ holds for all path prefixes
up to length k, then ϕ holds for all paths in T , i.e., T |=k ϕ ⇒ T |= ϕ.

Notice that the term CT is used inconsistently in the literature. While Clarke
et al. [40] use the definition above, Kroening and Strichman [109] refer to a CT
as the minimal k with T |=k ϕ ⇒ T |= ϕ. We stick to the original definition.

Since their introduction, CTs have been studied extensively for finite state
transition systems [15, 40, 109, 28, 2, 87, 10, 126, 108]. Finding minimal CTs
is in general just as hard as checking the unbounded system [110]. Moreover,
the question when we can soundly extrapolate a bounded proof to the entire
system highly depends on the property ϕ we are trying to prove. Hence, the
research focuses on finding over-approximations specific to certain types of
formulas. Existing works characterise CTs in terms of key properties of the
transition system T . For instance, the diameter is a CT for the simple LTL safety
properties Gp (i.e. □p), where p is local [15, 110]. Meanwhile the recurrence
diameter is a CT for simple LTL liveness properties Fp (i.e. ♢p) [110]. In this
context, the diameter of T is the maximal distance between two nodes in T
and the recurrence diameter is the length of the longest loop-free path in T .
That is, whenever we want to model check a simple safety or liveness property,
it suffices to run a bounded proof up to the diameter or recurrence diameter.
That way, we can get sound unbounded guarantees from a bounded proof.

That sounds great, but we should note that both CTs pose very large bounds,
which are typically too big to explore in practice. Both are often exponential
in the number of state variables in T [108]. Moreover, since both are hard to
compute, they are typically over-approximated as well [108, 141, 17], leading

14 STATE OF THE ART

to even larger CTs. They are also worse-case tight in terms of the chosen key
property [110]. Hence, we cannot hope to find smaller CTs for Gp or Fp that
are expressible purely in terms of T ’s diameter or recurrence diameter. To make
things worse, CTs for more complex LTL formulas have much larger CTs that
can be quadratic, super-polynomial and even exponential [28, 110].

An interesting combination of CTs and CEGAR is Sinha et al.’s Short-Small-
World (S2W) work [164]. They use counterexamples to determine which parts
of their state should be represented precisely. The rest can be abstracted
away, which makes the system smaller and easier to model check. Finally, they
compute an over-approximation of the reduced system’s reachability diameter
and use it as CT to bounded model check their system. If BMC fails, they collect
the found counterexample and return to the CEGAR phase. The CT guarantees
S2W ’s soundness. In addition, it also guarantees “short” counterexamples
(relatively speaking), making them easier to process in the CEGAR phase.

All existing, non-abstracting works on CTs focus on finite state transition
systems. Software that processes arbitrary large data structures, e.g., arrays
or lists, corresponds, however, in general to infinite state transition systems.
Hence, the key properties we typically use to describe CTs, like the (recurrence)
diameter, are in general infinite. The same holds thereby for the existing CT
approximations. In other words, we cannot reuse existing results to reason
about CTs for software that processes arbitrary large data. In § 4 we present the
first notion of CTs for memory safety proofs and show how to extract them from
the program’s verification condition. In this work we consider array-traversing
programs and focus on CTs for input variables, in particular on CTs for the
size of the traversed array. Hence, for us, CTs are not depth bounds k ∈ N but
subdomains. Let {A} c {B} be a program specification and let x be an input
variable with domain X. A subdomain Q ⊆ X is a CT for x in {A} c {B} if
correctness of the specification on Q implies the unbounded specification, i.e.,

|= ∀x ∈ Q. {A} c {B} ⇒ |= ∀x ∈ X. {A} c {B}.

In § 4 we illustrate the concept by characterising CTs for a simple array traversal
pattern. Moreover, in § 4 and § 5 we also sketch plans to characterise CTs
for complex programs that traverse a data structure (array, list, etc.) in a
memory-layout-preserving way. We also sketch plans our approach to arbitrary
correctness properties.

Reasoning about Coverage Intuitively, a subdomain Q ⊆ X is a CT if it
contains the right inputs to reach (and refute) all potentially problematic
behaviours of our program. In this sense, reasoning about CTs means reasoning
about a specific form of coverage. Coverage also plays a big role in traditional

REDUCING UNBOUNDED TO BOUNDED PROOFS 15

testing techniques, like fuzzing [129] and property-based testing [33]. Compared
to hand-written tests, automated approaches make it easier to reach a higher
coverage due to the bigger number of tests we can generate. Just as in the
context of BMC and CTs, the higher the coverage the stronger the guarantees
that our tests convey. The various notions of code coverage that we consider in
testing, e.g., method coverage, statement coverage, path coverage [6, 91], are
much weaker than what we need to reason about CTs. Furthermore, existing
testing works do not care about providing formal guarantees for the coverage
they achieve. Recently, Zhou et al. [186] proposed coverage types to reason
formally and automatically about coverage of test generators. Their approach
combines refinement types [178] and incorrectness logic [137] and supports
sophisticated structural notions of coverage.

Cut-Offs, Small Worlds, Small Models All of these terms are equivalent to
CTs but are mostly used in a different model checking subcommunity than CTs.
An exception that proves the rule is the Small-Short-World work by Sinha et al.
[164]. Many distributed protocols can be represented as a parameterised system
Pn = P1|| . . . ||Pn consisting of n identical and parallel processes Pi that each
can be represented by the same finite state transition system. Intuitively, a
distributed protocol should not behave wildly different for every possible number
of processes n. In other words, there should be a finite bound K big enough such
that K running processes P1|| . . . ||PK exhibit all interesting properties [134].
Emerson and Namjoshi [67] formalised this intuition in the context of token
rings [134]. Finding a small cut-off K then allows us to represent the finite
system PK = P1|| . . . ||PK in one finite transition system and use classic model
checking to reason about it. Note that this setting is fundamentally different
from the one considered by classic CTs à la Biere et al. [15] and Clarke et al.
[40]. In particular, it differs fundamentally from the setting we consider for our
CT work in § 4.

The technique is also known as small model or small world approach [164].
Since its introduction, it has proven a valuable technique to simplify reasoning
about a range of topologies, e.g., token rings, hybrid automata networks [102],
parameterised networks of timed automata [167], general composed network
topologies [41, 5]. Furthermore, it has since been applied to other domains where
systems can be represented by parameterised transition systems. For instance,
several works use cut-offs to simplify the verification of security properties in
hypervisors [73, 74, 164].

Franklin et al. [73] consider the verification of security properties concerning
page table accesses. They focus on a restricted setting that yields nice cutoffs
by construction: A guarded programming language and a restricted LTL for the

16 STATE OF THE ART

specification of security properties ϕ(n), where n refers to the number of page
table entries. Page table accesses are modelled via array accesses. Neither their
programming nor specification language support programs or specifications ϕ(n)
that differentiate between array accesses at different indices. They show that
they can reduce any expressible security property ϕ(n) to ϕ(1). Impressively,
even though they consider such a restricted setting, they manage to verify
two realistic case studies: The access control mechanisms in the hypervisors
SecVisor [161] and sHype [159]. Franklin et al. [74] extend this work to address
separation properties over multi-level data structures such as nested page tables.

k-induction Another approach that has gained popularity since its introduction
is k-induction. Originally, Sheeran et al. [162] proposed k-induction as a SAT-
based technique to prove safety properties over finite transition systems. Since
then, the approach has been adopted to program verification [63, 83, 3, 76]
and integrated in the C model checker ESBMC [77]. As the name suggests,
k-induction is a generalised form of proofs by induction. The approach’s special
peculiarity is that we replace loop invariants by k unrolled loop iterations. This
eliminates the difficult task of manually finding or generating loop invariants.
Once a k has been set, the loop has been unrolled and once the right assertions
have been set to represent the inductive step, we can use standard BMC to
carry out the proof. We see that k-induction does not reduce unbounded
proofs to bounded ones. However, it reduces the task of finding a traditional
loop invariant to finding a big enough k such that k unrolled iterations carry
enough information to be representative of the loop’s general behaviour. Both
approaches are thus similar in spirit.

Chapter 3

Ghost Signals: Verifying
Termination of Busy Waiting

This chapter was previously published as:

T. Reinhard, and B. Jacobs. Ghost signals: Verifying Termination
of Busy Waiting. In Proceedings of 33rd International Conference on
Computer-Aided Verification (CAV) (2021), vol. 12760 of Lecture Notes
in Computer Science, Springer, pp. 27–50.
doi.org/10.1007/978-3-030-81688-9_2

3.1 Introduction

Programs for multiprocessor machines commonly perform busy waiting for
synchronization [133, 128]. In this chapter, we propose a separation logic [155,
138] to modularly verify termination of such programs under fair scheduling.
Specifically, we consider programs where some threads busy-wait for a certain
condition C over a shared data structure to hold, e.g., a memory flag being
set by other threads. By modularly, we mean that we reason about each
thread and each function in isolation. That is, we do not reason about thread
scheduling or interleavings. We only consider these issues when proving the
soundness of our logic. Assuming fair scheduling is necessary since busy-waiting
for a condition C only terminates if the thread responsible for establishing the
condition is sufficiently often scheduled to establish C.

17

https://doi.org/10.1007/978-3-030-81688-9_2

18 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

Busy waiting is an example of blocking behaviour, where a thread’s progress
requires interference from other threads. This is not to be confused with non-
blocking concurrency, where a thread’s progress does not rely on—and may
in fact be impeded by—interference from other threads. Existing proposed
approaches for verifying termination of concurrent programs consider only
programs that only involve non-blocking concurrent objects [50], or primitive
blocking constructs of the programming language, such as acquiring built-in
mutexes, receiving from built-in channels, joining threads, or waiting for built-in
monitor condition variables [118, 19, 84], or both [100]. Existing techniques that
do support busy waiting are not Hoare logics; instead, they verify termination-
preserving contextual refinements between more concrete and more abstract
implementations of busy-waiting concurrent objects [121, 106]. In contrast, we
here propose the first conventional program logic for modular verification of
termination of programs involving busy waiting, using Hoare triples as module
specifications.

In order to prove that a busy-waiting loop terminates, we have to prove that it
performs only finitely many iterations. To do this we introduce a special form of
ghost resources [103] which we call ghost signals. As ghost resources they only
exist on the verification level and hence do not affect the program’s runtime
behaviour. Signals are initially unset and come with an obligation to set them.
Setting a signal does not by definition correspond to any runtime condition.
So, in order to use a signal s effectively, anyone using our approach has to
prove an invariant stating that s is set if and only if the condition of interest
holds. Further, the proof author must prove that every thread discharges all its
obligations by performing the corresponding actions, e.g., by setting a signal
and establishing the corresponding condition by setting the memory flag.

In our verification approach we tie every busy-waiting loop to a finite set of
ghost signals S that correspond to the set of conditions the loop is waiting for.
Every iteration that does not terminate the loop must be justified by the proof
author proving that some signal s ∈ S has indeed not been set, yet. This way,
we reduce proving termination to proving that no signal is waited for infinitely
often.

Our approach ensures that no thread directly or indirectly waits for itself by
requiring the proof author (i) to choose a well-founded and partially ordered set
of levels Levs and (ii) to assign a level to every signal and by (iii) only allowing
a thread to wait for a signal if the signal’s level is lower than the level of each
held obligation. This guarantees that every signal is waited for only finitely
often and hence that every busy-waiting loop terminates. We use this to prove
that every program that is verified using our approach indeed terminates.

We start by gradually introducing the intuition behind our verification approach

A GUIDE ON VERIFYING TERMINATION OF BUSY WAITING 19

and the concepts we use. In § 3.2.1 and § 3.2.2 we present the main aspects
of using signals to verify termination. We start by treating them as physical
thread-safe resources and only consider busy waiting for a signal to be set. Then,
we drop thread-safety and explain how to prove data-race- and deadlock-freedom.
In § 3.2.3 and § 3.2.4 we generalize our approach to busy waiting for arbitrary
conditions over arbitrary data structures and then lift signals to the verification
level by introducing ghost signals.

In § 3.3 we sketch the verification of a realistic producer-consumer example
involving a bounded FIFO to demonstrate our approach’s usability and address
fine-grained concurrency in § 3.4. Further, we describe the available tool support
in § 3.5 and discuss integrating higher-order features in § 3.6. We conclude by
comparing our approach to related work and reflecting on it in § 3.7 and § 3.8.

We formally define our logic and prove its soundness in appendix § A. To keep
the presentation in this chapter simple, we assume busy-waiting loops to have a
certain syntactical form. In our technical report [151], included as appendix § B,
we present a generalised version of our logic and its soundness proof. Further,
we verify the realistic example presented in § 3.3 in full detail in appendix § A
and in the technical report (appendix § B), using the respective version of our
logic. We used our tool support to verify C versions of the bounded FIFO
example and the CLH lock. The tool we used and the annotated .c files can be
found at [98, 149, 148].

3.2 A Guide on Verifying Termination of Busy
Waiting

When we try to verify termination of busy-waiting programs, multiple challenges
arise. Throughout this section, we describe these challenges and our approach
to overcome them. In § 3.2.1 we start by discussing the core ideas of our logic.
In order to simplify the presentation we initially consider a simple language
with built-in thread-safe signals and a corresponding minimal example where
one thread busy-waits for such a signal. Signals are heap cells containing
Boolean values that are specially marked as being solely used for busy waiting.
Throughout this section, we generalize our setting as well as our example
towards one that allows to verify programs with busy waiting for arbitrary
conditions over arbitrary shared data structures. In § 3.2.2 we present the
concepts necessary to verify data-race-, deadlock-freedom and termination in the
presence of built-in signals that are not thread safe. In § 3.2.3 we explain how
to use these non-thread-safe signals to verify programs that wait for arbitrary
conditions over shared data structures. We illustrate this by an example waiting

20 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

let sig := new_signal in
fork await is_set(sig);
set_signal(sig)

Figure 3.1: Minimal example with two threads communicating via a physical
thread-safe signal.

for a shared heap cell to be set. In § 3.2.4 we erase the signals from our program
and lift them to the verification level in the form of a concept we call ghost
signals.

3.2.1 Simplest Setting: Thread-Safe Physical Signals

We want to verify programs that busy-wait for arbitrary conditions over arbitrary
shared data structures. As a first step towards achieving this, we first consider
programs that busy-wait for simple Boolean flags, specially marked as being
used for the purpose of busy waiting. We call these flags signals. For now, we
assume that read and write operations on signals are thread-safe. Consider
a simple programming language with built-in signals and with the following
commands: (i) new_signal for creating a new unset signal, (ii) set_signal(x)
for setting x and (iii) await is_set(x) for busy-waiting until x is set. The main
thread creates the signal sig and forks a new thread that busy-waits for sig to
be set. Then, the main thread sets the signal. As we assume signal operations
to be thread-safe in this example, we do not have to care about potential data
races. Notice that like all busy-waiting programs, this program is guaranteed
to terminate only under fair thread scheduling: Indeed, it does not terminate if
the main thread is never scheduled after it forks the new thread. In this chapter
we verify termination under fair scheduling.

A GUIDE ON VERIFYING TERMINATION OF BUSY WAITING 21

Augmented Semantics

Obligations The only construct in our language that can lead to non-
termination are busy-waiting loops of the form await is_set(sig). In order to
prove that programs terminate it is therefore sufficient to prove that all created
signals are eventually set. We use so-called obligations [85, 84, 118, 107] to ensure
this. These are ghost resources [103], i.e., resources that do not exist during
runtime and can hence not influence a program’s runtime behaviour. They
carry, however, information relevant to the program’s verification. Generally,
holding an obligation requires a thread to discharge it by performing a certain
action. For instance, when the main thread in our example creates signal sig, it
simultaneously creates an obligation to set it. The only way to discharge this
obligation is to set sig.

We denote thread IDs by θ and describe which obligations a thread θ holds
by bundling them into an obligations chunk θ.obs(O), where O is a multiset of
signals. We denote multisets by double braces {[. . .]} and multiset union by ⊎.
Each occurrence of a signal s in O corresponds to an obligation by thread θ to
set s. Consequently, θ.obs(∅) asserts that thread θ does not hold any obligations.

Augmented Semantics In the real semantics of the programming language we
consider here, ghost resources such as obligations do not exist during runtime.
To prove termination, we consider an augmented version of it that keeps track
of ghost resources during runtime. In this semantics, we maintain the invariant
that every thread holds exactly one obs chunk. That is, for every running
thread θ, our heap contains a unique heap cell θ.obs that stores the thread’s
bag of obligations. Further, we let a thread get stuck if it tries to finish while
it still holds undischarged obligations. Note that we use the term finish to
refer to thread-local behaviour while we write termination to refer to program-
global behaviour, i.e., meaning that every thread finishes. For every augmented
execution there trivially exists a corresponding execution in the real semantics.

Fig. 3.2 presents some of the reduction rules we use to define the augmented
semantics. We use ĥ to refer to augmented heaps, i.e., heaps that can contain
ghost resources. A reduction step has the form ĥ, c

θ
⇝aug ĥ

′, c′, T expresses that
thread θ reduces heap ĥ (which is shared by all threads) and command c to
heap ĥ′ and command c′. Further, T represents the set of threads forked during
this step. It is either empty or a singleton containing the new thread’s ID and
the command it is going to execute, i.e., {(θf , cf)}. We omit it whenever it is
clear from the context that no thread is forked. Further, we denote disjoint
union of sets by ⊔.

22 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

Aug-Red-NewSignal
id ̸∈ ids(ĥ) L ∈ Levs

ĥ ⊔ {θ.obs(O)},new_signal θ
⇝aug ĥ ⊔ {θ.obs(O ⊎ {[(id, L)]}), signal((id, L))}, id

Aug-Red-SetSignal
ĥ ⊔ {θ.obs(O ⊎ {[s]})}, set_signal(s.id) θ

⇝aug ĥ ⊔ {θ.obs(O), signalSet(s)}, tt

Aug-Red-Fork
θf ̸∈ thIds(ĥ)

ĥ ⊔ {θ.obs(O ⊎Of)}, fork c
θ
⇝aug ĥ ⊔ {θ.obs(O), θf .obs(Of)}, tt, {(θf , c)}

Aug-Red-Await
θ.obs(O) ∈ ĥ signal(s) ∈ ĥ signalSet(s) ̸∈ ĥ s.lev ≺L O

ĥ,await is_set(s.id) θ
⇝aug ĥ,await is_set(s.id)

Figure 3.2: Reduction rules for augmented semantics.
Our reduction rules comply with the intuition behind obligations we outlined
above. Aug-Red-NewSignal creates a new signal and simultaneously a
corresponding obligation. The only way to discharge it is by setting the signal
using Aug-Red-SetSignal.

Forking Whenever a thread forks a new thread, it can pass some of its
obligations to the newly forked thread, cf. Aug-Red-Fork. Forking a new
thread with ID θf also allocates a new heap cell θf .obs to store its bag of
obligations. Since this is the only way to allocate a new obs heap cell, we
will never run into a heap ĥ ⊔ {θ.obs(O)} ⊔ {θ.obs′(O′)} that contains multiple
obligations chunks belonging to the same thread θ. Remember that threads
cannot finish while holding obligations. This prevents them from dropping
obligations via dummy forks.

Levels In order to prove that a busy-waiting loop await is_set(sig) terminates,
we must ensure that the waiting thread does not directly or indirectly wait for
itself. We could just check that it does not hold an obligation for the signal it
is waiting for, but that is not sufficient as the following example demonstrates:
Consider a program with two signals sig1, sig2 and two threads. Let one thread
hold the obligation for sig2 and execute await is_set(sig1); set_signal(sig2).
Likewise, let the other thread hold the obligation for sig1 and let it execute
await is_set(sig2); set_signal(sig1).

To prevent such wait cycles modularly, we apply the usual approach [118, 21, 72].
For every program that we want to execute in our augmented semantics, we

A GUIDE ON VERIFYING TERMINATION OF BUSY WAITING 23

choose a partially ordered set of levels Levs. Further, during every reduction
step in the augmented semantics that creates a signal s, we pick a level L ∈ Levs
and associate it with s. Note that much like obligations, levels do not exist
during runtime in the real semantics. Signal chunks in the augmented semantics
have the form signal((id, L)) where id is the unique signal identifier returned
by new_signal. The level assigned to any signal can be chosen freely, cf.
Aug-Red-NewSignal. In practice, determining levels boils down to solving a
set of constraints that reflect the dependencies. In our example, however, the
choice is trivial as it only involves a single signal. We choose Levs = {0} and 0
as level for sig and thereby get signal((sig, 0)). Generally, we denote signal tuples
by s = (id, L). Now we can rule out cyclic wait dependencies by only allowing
a thread to busy-wait for a signal s if its level s.lev is smaller than the level of
each held obligation, cf. Aug-Red-Await 1. Given a bag of obligations O, we
denote this by s.lev ≺L O.

Proving Termination As we will explain below, the augmented semantics has
no fair infinite executions. We can use this as follows to prove that a program c
terminates under fair scheduling: For every fair infinite execution of c, show
that we can construct a corresponding augmented execution. (This requires
that each step’s side conditions in the augmented semantics are satisfied. Note
that we thereby prove certain properties for the real execution, like absence
of cyclic wait dependencies.) As there are no fair infinite executions in the
augmented semantics, we get a contradiction. It follows that c has no fair
infinite executions in the real semantics.

Soundness In order to prove soundness of our approach, we must prove that
there indeed are no fair infinite executions in the augmented semantics. This
boils down to proving that no signal can be waited for infinitely often. Consider
any program and any fair augmented execution of it. Consider the execution’s
program order graph, (i) whose nodes are the execution steps and (ii) which
has an edge from a step to the next step of the same thread and to the first
step of the forked thread, if it is a fork step. Notice that for each obligation
created during the execution, the set of nodes corresponding to a step made by
a thread while that thread holds the obligation constitutes a path that ends
when the obligation is discharged. We say that this path carries the obligation.

It is not possible that a signal is waited for infinitely often. Indeed, suppose
some signals S∞ are. Take smin ∈ S∞ with minimal level. Since smin is never

1For simplicity, our augmented semantics assumes that the level order and the level
associated with any object remains fixed for the entire execution. However, following the
approach presented in [115], it would be sound to add a step rule that allows a thread to
change the level of an object it has exclusive access to (cf. § 3.2.2).

24 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

set, the path in the program order graph that carries the obligation must be
infinite as well. Indeed, suppose it is finite. The final node N of the path
cannot discharge the obligation without setting the signal, so it must pass the
obligation on either to the next step of the same thread or to a newly forked
thread. By fairness of the scheduler, both of these threads will eventually be
scheduled. This contradicts N being the final node of the path.

The path carrying the obligation for smin waits only for signals that are waited
for finitely often. (Remember that Aug-Red-Await requires the signal waited
for to be of a lower level than all held obligations, i.e., a lower level than that
of smin.) It is therefore a finite path. A contradiction.

Notice that the above argument relies on the property that every non-empty
set of levels has a minimal element. For this reason, for termination verification
we require that Levs is not just partially ordered, but also well-founded.

Program Logic

Directly using the augmented semantics to prove that our example program
terminates is cumbersome. In the following, we present a separation logic that
simplifies this task.

Safety We call a program c safe under a (partial) heap ĥ if it provides all
the resources necessary such that both c and any threads it forks can execute
without getting stuck in the augmented semantics. (This depends on the angelic
choices.) We denote this by safe(ĥ, c) [176] 2.

Consider a program c that is safe under an augmented heap ĥ. Let h be the
real heap that matches ĥ apart from the ghost resources. Then, for every
real execution that starts with h we can construct a corresponding augmented
execution.

Specifications We use Hoare triples {A} c {λr.B(r)} [92] to specify the
behaviour of a program c. Such a triple expresses the following: Consider any
evaluation context E, such that for every return value v, running E[v] from a
state that satisfies B(v) is safe. Then, running E[c] from a state that satisfies A
is safe.

2For a formal definition see appendix § A.4.2 and the technical report [151]
(appendix § B.10).

A GUIDE ON VERIFYING TERMINATION OF BUSY WAITING 25

Proof System We define a proof relation ⊢ which ensures that whenever
we can prove ⊢ {A} c{λr.B(r)}, then c complies with the specification
{A} c{λr.B(r)}. Fig. 3.3b presents some of the proof rules we use to define ⊢.
As we evolve our setting throughout this section, we also adapt our proof rules.
Rules that will be changed later are marked with a prime in their name. The
full set of rules is presented in the appendix (cf. Fig. A.7 and A.8). Our proof
rules PR-SetSignal′ and PR-Await′ are similar to the rules for sending and
receiving on a channel presented in [118].

Notice how the proof rules enforce the side-conditions of the augmented
semantics. Hence, all we have to do to prove that a program c terminates
is to prove that every thread eventually discharges all its obligations. That is,
we have to prove ⊢ {obs(∅)} c {obs(∅)}. Fig. 3.3a illustrates how we can apply
our rules to verify that our minimal example terminates.

3.2.2 Non-Thread-Safe Physical Signals

As a step towards supporting waiting for arbitrary conditions over shared
data structures, including non-thread-safe ones, we now move to non-thread-
safe signals. For simplicity, in this chapter we consider programs that use
mutexes to synchronize concurrent accesses to shared data structures. (Our
ideas apply equally to programs that use other constructs, such as atomic
machine instructions.) Fig. 3.4 presents our updated example.

As signal sig is no longer thread-safe, the two threads can no longer use it
directly to communicate. Instead, we have to synchronize accesses to avoid
data races. Hence, we protect the signal by a mutex mut created by the main
thread. In each iteration, the forked thread acquires the mutex, checks whether
sig has been set and releases it again. After forking, the main thread acquires
the mutex, sets the signal and releases it again.

Exposing Signal Values Signals are specially marked heap cells storing Boolean
values. We make this explicit by extending our signal chunks from signal(s) to
signal(s, b) where b is the current value of s and by updating our proof rules
accordingly. Upon creation, signals are unset. Hence, creating a signal sig now
spawns an unset signal chunk signal((sig, L),False) for some freely chosen level L
and an obligation for (sig, L), cf. PR-NewSignal′′. We present our new proof
rules in Fig. 3.6 and demonstrate their application in Fig. 3.5.

Data Races As read and write operations on signals are no longer thread-safe,
our logic has to ensure that two threads never try to access sig at the same

26 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

{obs(∅)}
let sig := new_signal in PR-NewSignal′ with L = 0
{obs({[(sig, 0)]}) ∗ signal((sig, 0))} s := (sig, 0)
fork ({obs(∅) ∗ signal(s)}

await is_set(sig) s.lev = 0 ≺L ∅
{obs(∅) ∗ signal(s)});

{obs({[s]})}
set_signal(sig)
{obs(∅)}

(a) Proof outline for program from Fig. 3.1. Applied proof rule marked in purple.
Abbreviation marked in red. General hint marked in grey.

PR-NewSignal′

L ∈ Levs
⊢ {obs(O)} new_signal {λr. obs(O ⊎ {[(r, L)]}) ∗ signal((r, L))}

PR-SetSignal′

⊢ {obs(O ⊎ {[s]})} set_signal(s.id) {obs(O)}

PR-Fork′

⊢ {obs(Of) ∗A} c {obs(∅) ∗B}
⊢ {obs(Om ⊎Of) ∗A} fork c {obs(Om)}

PR-Await′

s.lev ≺L O

⊢ {obs(O) ∗ signal(s)} await is_set(s.id) {obs(O) ∗ signal(s)}

PR-Let
⊢ {A} c {λr. C(r)} ∀v. ⊢ {C(v)} c′[x 7→ v] {B}

⊢ {A} let x := c in c′ {B}

(b) Proof rules. Rules only used in this section marked with ′.

Figure 3.3: Verifying termination of minimal example with physical thread-safe
signal.

A GUIDE ON VERIFYING TERMINATION OF BUSY WAITING 27

let sig := new_signal in
let mut := new_mutex in
fork with mut await is_set(sig);
acquire mut;
set_signal(sig);
release mut

(a) Code.

with mut await c := (while acquire mut;
let r := c in
release mut;
¬r

do skip)

(b) Syntactic sugar. r not free in mut.

Figure 3.4: Minimal example with two threads communicating via a physical
non-thread-safe signal protected by a mutex.

time. Hence, in our logic possession of a signal chunk signal(s, b) expresses
(temporary) exclusive ownership of s. Further, our logic requires threads to
own any signal they are trying to access. Specifically, when a thread wants to
set sig, it must hold a chunk of the form signal((sig, L), b), cf. PR-SetSignal′′.
The same holds for reading a signal’s value, cf. PR-IsSignalSet′′. Note that
signal chunks are not duplicable and only created upon creation of the signal
they refer to. Therefore, holding a signal chunk for sig indeed guarantees that
the holding thread has the exclusive right to access sig (while holding the signal
chunk).

Synchronization & Lock Invariants After the main thread creates sig, it
exclusively owns the signal. The main thread can transfer ownership of this
resource during forking, cf. PR-Fork′, and thereby allow the forked thread
to busy-wait for sig. This would, however, leave the main thread without any
permission to set the signal and thereby discharge its obligation.

We use mutexes to let multiple threads share ownership of a common set of
resources in a synchronized fashion. Every mutex is associated with a lock
invariant P , an assertion chosen by the proof author that specifies which
resources the mutex protects. In our example, we want both threads to
share sig. To reflect the fact that the signal’s value changes over time, we

28 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

{obs(∅)}
let sig := new_signal in PR-NewSignal′′ with L = 1
{obs({[(sig, 1)]}) ∗ signal((sig, 1),False)} PR-ViewShift & VS-SemImp
{obs({[(sig, 1)]}) ∗ ∃b. signal((sig, 1), b)} s := (sig, 1), P := ∃b. signal(s, b)
let mut := new_mutex in PR-NewMutex′′ with L = 0
{obs({[s]}) ∗ mutex(m,P)} PR-ViewShift{

obs({[s]}) ∗ mutex(m,P) ∗ mutex(m,P)
}

& VS-CloneMut′′

fork ({obs(∅) ∗ mutex(m,P)}
with m await m.lev, s.lev ≺L ∅

{obs({[m]}) ∗ P} PR-Exists
∀b. {obs({[m]}) ∗ signal(s, b)}

is_set(sig)λr.obs({[m]})
∗ signal(s, b)
∧ r = b

 PR-ViewShift & VS-SemImpλr.obs({[m]}) ∗
if r then P
else signal(s,False)

{obs(∅) ∗ mutex(m,P)} PR-ViewShift & VS-SemImp
{obs(∅)});

{obs({[s]}) ∗ mutex(m,P)}
acquire mut; m.lev = 0 < 1 = s.lev{

obs({[s,m]}) ∗ locked(m,P)
∗ ∃b. signal(s, b)

}
PR-Exists

∀b.
{

obs({[s,m]}) ∗ locked(m,P)
∗ signal(s, b)

}
set_signal(sig);{

obs({[m]}) ∗ locked(m,P)
∗ signal(s,True)

}
PR-ViewShift & VS-SemImp

{obs({[m]}) ∗ locked(m,P) ∗ P}
release mut
{obs(∅) ∗ mutex(m,P)} PR-ViewShift & VS-SemImp
{obs(∅)}

Figure 3.5: Proof outline for program 3.4, verifying termination with mutexes
& non-thread safe signals. Applied proof and view shift rules marked in purple.
Abbreviations marked in red. General hints marked in grey.

A GUIDE ON VERIFYING TERMINATION OF BUSY WAITING 29

PR-NewSignal′′

L ∈ Levs
⊢ {obs(O)} new_signal {λid. obs(O ⊎ {[(id, L)]}) ∗ signal((id, L),False)}

PR-SetSignal′′

⊢ {obs(O ⊎ {[s]}) ∗ signal(s,_)} set_signal(s.id) {obs(O) ∗ signal(s,True)}

PR-IsSignalSet′′

⊢ {signal(s, b)} is_set(s.id) {λr. signal(s, b) ∧ r = b}

PR-Await′′

m.lev, s.lev ≺L O signal(s,False) ∗R⇛ P

⊢ {obs(O ⊎ {[m]}) ∗ P} c {λr. obs(O ⊎ {[m]}) ∗ if r then P else signal(s,False) ∗R}
⊢ {obs(O) ∗ mutex(m,P)} with m.loc await c {obs(O) ∗ mutex(m,P)}

(a) Signals & busy waiting.

PR-NewMutex′′

L ∈ Levs
⊢ {P} new_mutex {λℓ.mutex((ℓ, L), P)}

PR-Acquire′′

⊢
{obs(O) ∗ mutex(m,P) ∧m.lev ≺L O}

acquire m.loc
{obs(O ⊎ {[m]}) ∗ locked(m,P) ∗ P}

PR-Release′′

⊢
{obs(O ⊎ {[m]}) ∗ locked(m,P) ∗ P}

release m.loc
{obs(O) ∗ mutex(m,P)}

(b) Mutexes.

PR-Frame
⊢ {A} c {B}

⊢ {A ∗ F} c {B ∗ F}

PR-Exists
∀a ∈ A. ⊢ {a} c {B}

⊢ {
∨
A} c {B}

PR-Fork
⊢ {obs(Of) ∗A} c {obs(∅)}

⊢ {obs(Om ⊎Of) ∗A} fork c {obs(Om)}

PR-ViewShift
A⇛ A′ ⊢ {A′} c {B′} B′ ⇛ B

⊢ {A} c {B}

(c) Standard rules.

VS-SemImp
∀H. consistentlh(H) ∧H ⊨A A ⇒ H ⊨A B

A⇛ B

VS-Trans
A⇛ C C ⇛ B

A⇛ B

VS-CloneMut′′

mutex(m,P)⇛ mutex(m,P) ∗ mutex(m,P)

(d) View shifts.

Figure 3.6: Proof rules & view shift rules for mutexes & non-thread safe signals.
Rules only used in this section marked with ′′.

30 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

choose a lock invariant that abstracts over its concrete value. We choose
P := ∃b. signal((sig, L), b). Let us ignore the chosen signal level L for now.
Creating the mutex mut consumes this lock invariant and binds it to mut by
creating a mutex chunk mutex((mut, . . .), P), cf. PR-NewMutex′′. Thereby,
the main thread loses access to sig. The only way to regain access is by
acquiring mut, cf. PR-Acquire′′. Once the thread releases mut, it again loses
access to all resources protected by the mutex, cf. PR-Release′′.

Deadlocks We have to ensure that any acquired mutex is eventually released,
again. Hence, acquiring a mutex spawns a release obligation for this mutex
and the only way to discharge this obligation is indeed by releasing it, cf. PR-
Acquire′′ and PR-Release′′.

Any attempt to acquire a mutex will block until the mutex becomes available. In
order to prove that our program terminates, we have to prove that it does not get
stuck during an acquisition attempt. To prevent wait cycles involving mutexes,
we require the proof author to associate every mutex as well (just like signals)
with a level L. This level can be freely chosen during the mutex’ creation, cf. PR-
NewMutex′′. Mutex chunks therefore have the form mutex((ℓ, L), P) where ℓ
is the heap location the mutex is stored at. Their only purpose is to record the
level and lock invariant a mutex is associated with. Hence, these chunks can
be freely duplicated as we will see later. Generally, we denote mutex tuples
by m = (ℓ, L). We only allow to acquire a mutex if its level is lower than the
level of each held obligation, cf. PR-Acquire′′. This also prevents any thread
from attempting to acquire mutexes twice, e.g., acquire mut; acquire mut or
with mut await acquire mut.

View Shifts When verifying a program, it can be necessary to reformulate the
proof state and to draw semantic conclusions. To allow this we introduce a so-
called view shift relation ⇛ [104]. By applying proof rule PR-ViewShift and
VS-SemImp we can strengthen the precondition and weaken the postcondition.
In our example, we use this to convert the unset signal chunk into the
lock invariant which abstracts over the signal’s value, i.e., signal(s,False) ⇛
∃b. signal(s, b).

The logic we present in this work is an intuitionistic separation logic that allows
us to drop chunks. 3 This allows us to simplify the postcondition of our fork

3This allows a thread to drop its obligations chunk obs(O). Note, however, that by dropping
this chunk the thread does not drop its obligations, but only its ability to show what its
obligations are. In particular the thread would be unable to present an empty obligations
chunk upon termination.

A GUIDE ON VERIFYING TERMINATION OF BUSY WAITING 31

proof rule’s premise from obs(∅) ∗ B to obs(∅), cf. PR-Fork, and drop all
unneeded chunks via a semantic implication obs(∅) ∗B ⇛ obs(∅).

We also allow to clone mutex chunks via view shifts, cf. VS-CloneMut′′. In our
example, this is necessary to inform both threads which level and lock invariant
mutex mut is associated with. That is, the main thread clones the mutex chunk
mutex(m,P) and passes one chunk on when it forks the busy-waiting thread.

In § 3.2.4 we extend our view shift relation and revisit our interpretation of
what a view shift expresses. The full set of rules we use to define⇛ is presented
in the appendix (cf. Fig. A.6).

Busy Waiting In the approach presented in this chapter, for simplicity we only
support busy-waiting loops of the form with mut await c, which is syntactic
sugar for while acquire mut; let r := c in release mut; ¬r do skip where r
denotes a fresh variable. 4 In each iteration, the loop tries to acquire mut,
executes c, releases mut again and lets the result returned by c determine
whether the loop continues. Such loops can fail to terminate for two reasons:
(i) Acquiring mut can get stuck and (ii) the loop could diverge.

We prevent the loop from getting stuck by requiring mut’s level to be lower
than the level of each held obligation, cf. PR-Await′′. Further, we enforce
termination by requiring the loop to wait for a signal. That is, when verifying
a busy-waiting loop using our approach, the proof author must choose a fixed
signal and prove that this signal remains unset at the end of every non-finishing
iteration. This way, we can prove that the loop terminates by proving that
every signal is eventually set, just as in § 3.2.1. And just as before, our logic
requires the level of the waited-for signal to be lower than the level of each held
obligation.

Acquiring the mutex in every iteration makes the lock invariant available during
the verification of the loop body c. This lock invariant has to be restored at the
end of the iteration such that it can be consumed during the mutex’s release.
PR-Await′′ allows for an additional view shift to restore the invariant. In
our example, we end our busy-waiting loop’s non-finishing iterations with the
assertion signal(s,False). We use a semantic implication view shift to convert
the signal chunk into the mutex invariant ∃b. signal(s, b).

Choosing Levels In our example, we have to assign levels to the mutex mut
and to the signal sig. Our proof rules for mutex acquisition and busy waiting

4As we discuss in § 3.5, in the technical report accompanying this chapter (appendix B)
we present a more general logic that imposes no such syntactic restrictions.

32 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

let x := cons(0) in
let mut := new_mutex in
fork with mut await [x] = 1;
acquire mut;
[x] := 1;
release mut

(a) Example program with busy
waiting for heap cell x to be set.

let x := cons(0) in
let sig := new_signal in
let mut := new_mutex in
fork with mut await [x] = 1;
acquire mut;
[x] := 1;
set_signal(sig);
release mut

(b) Example program 3.7a with addi-
tional signal sig inserted, marked in
green . sig and x are kept in sync.

[e] = e′ := (let r :=[e] in r = e′)

(c) Syntactic sugar. r free in e′.

Figure 3.7: Minimal example illustrating busy waiting for condition over heap
cell.

impose some restrictions on the levels of the involved mutexes and signals. By
analysing the corresponding rule applications that occur in our proof, we can
derive which constraints our level choice must comply with. Our example’s
verification involves one application of PR-Acquire′′ and one application
of PR-Await′′: (i) Our main thread tries to acquire mut while holding an
obligation to set sig. (ii) The forked thread busy-waits for sig while not holding
any obligations. Our assignment of levels must therefore satisfy the single
constraint m.lev <L s.lev. So, we choose Levs = {0, 1}, m.lev = 0 and s.lev = 1.

3.2.3 Arbitrary Data Structures

The proof rules we introduced in § 3.2.2 allow us to verify programs busy-waiting
for arbitrary conditions over arbitrary shared data structures as follows: For
every condition C the program waits for, the proof author inserts a signal s
into the program. They ensure that s is set at the same time the program
establishes C and prove an invariant stating that the signal’s value expresses
whether C holds. Then, the waiting thread can use s to wait for C. We illustrate
this here for the simplest case of setting a single heap cell in Fig. 3.7a.

The program involves three new non-thread-safe commands: (i) cons(v) for
allocating a new heap cell and initializing it with value v, (ii) [ℓ] := v for assigning
value v to heap location ℓ, (iii) [ℓ] for reading the value stored in heap location ℓ.
We use [ℓ] = v as syntactic sugar for let r :=[e] in r = e′.

A GUIDE ON VERIFYING TERMINATION OF BUSY WAITING 33

In our example, the main thread allocates x, initializes it with the value 0 and
protects it using mutex mut. It forks a new thread busy-waiting for x to be
set. Afterwards, the main thread sets x. As explained above, we verify the
program by inserting a signal sig that reflects whether x has been set, yet.
Fig. 3.7b presents the resulting code. The main thread creates the signal and
sets it when it sets x.

Heap Cells Verifying this example does not conceptually differ from the
example we presented in § 3.2.2. Fig. 3.8b presents the new proof rules we
need and Fig. 3.8a sketches our example’s verification. As with non-thread-safe
signals, we have to prevent multiple threads from trying to access x at the
same time in order to prevent data races. For this we use so-called points-to
chunks [155, 138]. They have the form ℓ 7→ v and express that heap location ℓ
stores the value v. When a thread holds such a chunk, it exclusively owns the
right to access heap location ℓ.

Heap locations are unique and the only way to create a new points-to chunk
is to allocate and initialize a new heap cell via cons(v), cf. PR-Cons. Hence,
there will never be two points-to chunks involving the same heap location. In
order to read or write a heap cell via [ℓ] or [ℓ] := e, the acting thread must first
acquire possession of the corresponding points-to chunk, cf. PR-AssignToHeap
and PR-ReadHeapLoc′′′.

Relating Signals to Conditions In our example, the forked thread busy-waits
for x to be set while our proof rules require us to justify each iteration by
showing an unset signal. That is, we must prove an invariant stating that the
value of x matches sig. As this invariant must be shared between both threads,
we encode it in the lock invariant: P := ∃v. x 7→ v ∗ signal(s, v = 1). This does
not only allow both threads to share the heap cell and the signal but it also
automatically enforces that they maintain the invariant whenever they acquire
and release the mutex.

3.2.4 Signal Erasure

In the program from Fig. 3.7b signal sig is never read and does hence not
influence the waiting thread’s runtime behaviour. Therefore, we can verify
the original program presented in Fig. 3.7a by erasing the physical signal and
treating it as ghost code.

34 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

{obs(∅)}
let x := cons(0) in
{obs(∅) ∗ x 7→ 0}
let sig := new_signal in PR-NewSignal′′ with L = 1
let mut := new_mutex in PR-NewMutex′′ with L = 0
s := (sig, 1), m := (mut, 0)
P := ∃v. x 7→ v ∗ signal(s, v = 1)
{obs({[s]}) ∗ mutex(m,P) ∗ mutex(m,P)}
fork ({obs(∅) ∗ mutex(m,P)}

with m await m.lev, s.lev ≺L ∅
{obs({[m]}) ∗ P}

∀v.
{

obs({[m]}) ∗ x 7→ v
∗ signal(s, v = 1)

}
[x] = 1
λr.obs({[m]})

∗ if r then P
else x 7→ v ∧ v ̸= 1

∗ signal(s,False)

{obs(∅)});

{obs({[s]}) ∗ mutex(m,P)}
acquire mut; m.lev = 0 < 1 = s.lev

∀v.
{

obs({[s,m]}) ∗ locked(m,P) ∗ x 7→ v
∗ signal(s, v = 1)

}
[x] := 1;{

obs({[s,m]}) ∗ locked(m,P) ∗ x 7→ 1
∗signal(s, v = 1)

}
set_signal(sig);{

obs({[m]}) ∗ locked(m,P) ∗ x 7→ 1
∗ signal(s,True)

}
release mut
{obs(∅)}

(a) Proof outline for program 3.7b. Applied proof rules marked inpurple. Abbreviations
marked in red. General hints marked in grey.

PR-Cons
⊢ {True} cons(v) {λℓ. ℓ 7→ v}

PR-AssignToHeap
⊢ {ℓ 7→ _} [ℓ] := v {ℓ 7→ v}

PR-ReadHeapLoc′′′

⊢ {ℓ 7→ v} [ℓ] {λr. r = v ∗ ℓ 7→ v}
PR-Exp

[[e]] ∈ Values
⊢ {True} e {λr. r = [[e]]}

(b) Proof rules. Evaluation function [[·]]. Rules only used in this section marked
with ′′′.

Figure 3.8: Verifying termination of busy waiting for condition over heap cell.

A REALISTIC EXAMPLE 35

Ghost Signals Central aspects of the proof sketch we presented in Fig. 3.8a
are that (i) the main thread was obliged to set sig and that (ii) the value of
sig reflected whether x was already set. Ghost signals allow us to keep this
information but at the same to remove the physical signals from the code. Ghost
signals are essentially identical to the physical non-thread-safe signals we used
so far. However, as ghost resources they cannot influence the program’s runtime
behaviour. They merely carry information we can use during the verification
process.

View Shifts Revisited We implement ghost signals by extending our view shift
relation. In particular, we introduce two new view shift rules: VS-NewSignal
and VS-SetSignal presented in Fig. 3.9b. The former creates a new unset
signal and simultaneously spawns an obligation to set it. The latter can be used
to set a signal and thereby discharge a corresponding obligation. We say that
these rules change the ghost state and therefore call their application a ghost
proof step. With this extension, a view shift A⇛ B expresses that we can reach
postcondition B from precondition A by (i) drawing semantic conclusions or by
(ii) manipulating the ghost state. In Fig. 3.9a we use ghost signals to verify the
program from 3.7a.

Note that lifting signals to the verification level does not affect the soundness of
our approach. The argument we presented in § 3.2.1 still holds. We formalize
our logic and provide a formal soundness proof in appendix § A and in the
technical report [151] (appendix § B). The latter contains a more general version
of the presented logic that (i) is not restricted to busy-waiting loops of the form
with mut await c and that (ii) is easier to integrate into existing tools like
VeriFast [99], as explained in § 3.5.

3.3 A Realistic Example
To demonstrate the expressiveness of the presented verification approach, we
verified the termination of the program presented in Fig. 3.10a. It involves
two threads, a consumer and a producer, communicating via a shared bounded
FIFO with a maximal capacity of 10. The producer enqueues numbers 100,
. . . , 1 into the FIFO and the consumer dequeues those. Whenever the queue is
full, the producer busy-waits for the consumer to dequeue an element. Likewise,
whenever the queue is empty, the consumer busy-waits for the producer to
enqueue the next element. Each thread’s finishing depends on the other thread’s
productivity. This is, however, no cyclic dependency. For instance, in order to
prove that the producer eventually pushes number i into the queue, we only

36 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

{obs(∅)}
let x := cons(0) in
{obs(∅) ∗ x 7→ 0}
new_ghost_signal; VS-NewSignal with L = 1{

∃sig. obs({[(sig, 1)]}) ∗ x 7→ 0
∗ signal((sig, 1),False)

}
s := (sig, 1)

∀sig. {obs({[s]}) ∗ x 7→ 0 ∗ signal(s,False)} P := ∃v. x 7→ v
∗ signal(s, v = 1)

let mut := new_mutex in PR-NewMutex′′ with L = 0{
obs({[s]}) ∗ mutex((mut, 0), P)
∗ mutex((mut, 0), P)

}
m := (mut, 0)

fork ({obs(∅) ∗ mutex(m,P)}
with m await m.lev, s.lev ≺L ∅

{obs({[m]}) ∗ P}

∀v.
{

obs({[m]}) ∗ x 7→ v
∗ signal(s, v = 1)

}
[x] = 1
λr.obs({[m]}) ∗

if r then P
else x 7→ v ∧ v ̸= 1

∗ signal(s,False)

{obs(∅)});

{obs({[s]}) ∗ mutex(m,P)}
acquire mut; m.lev = 0 < 1 = s.lev

∀v.
{

obs({[s,m]}) ∗ locked(m,P)
∗ x 7→ v ∗ signal(s, v = 1)

}
[x] := 1;
set_ghost_signal(s);{

obs({[m]}) ∗ locked(m,P)
∗ x 7→ 1 ∗ signal(s,True)

}
release mut
{obs(∅)}

(a) Proof outline for the program presented in Fig. 3.7a. Auxiliary commands hinting
at view shifts and general hints marked in grey (italic). Applied proof and view shift
rules marked in purple. Abbreviations marked in red.

VS-NewSignal
L ∈ Levs

obs(O)⇛ ∃id. obs(O ⊎ {[(id, L)]}) ∗ signal((id, L),False)

VS-SetSignal
obs(O ⊎ {[s]}) ∗ signal(s,_)⇛ obs(O) ∗ signal(s,True)

(b) Proof rules.

Figure 3.9: Verifying termination with ghost signals.

A REALISTIC EXAMPLE 37

need to rely on the consumer to pop i+ 10. A similar property holds for the
consumer.

Fine-Tuning Signal Creation To simplify complex proofs involving many
signals we refine the process of creating a new ghost signal. For simplicity, we
combined the allocation of a new signal ID and its association with a level
and a Boolean in one step. For some proofs, such as the one we outline in
this section, it can be helpful to fix the IDs of all signals that will be created
throughout the proof already at the beginning. To realize this, we replace view
shift rule VS-NewSignal by the rules presented in Fig. 3.10b and adapt our
signal chunks accordingly. With these more fine-grained view shifts, we start by
allocating a signal ID, cf. VS-AllocSigID. Thereby we obtain an uninitialized
signal uninitSig(id) that is not associated with any level or Boolean, yet. Also,
allocating a signal ID does not create any obligation because threads can only
wait for initialized (and unset) signals. When we initialize a signal, we bind its
already allocated ID to a level of our choice and associate the signal with False,
cf. VS-SigInit. This creates an obligation to set the signal.

Loops & Signals In our program, both threads have a local counter initially
set to 100 and run a nested loop. The outer loops are controlled by their
thread’s counter, which is decreased in each iteration until it reaches 0 and the
loop stops. For such loops, we introduce a conventional proof rule for total
correctness of loops, cf. Fig. A.7 in the appendix. Verifying termination of the
inner loops is a bit more tricky and requires the use of ghost signals.

So far, we had to fix a single signal for the verification of every await loop. We
can relax this restriction to considering a finite set of signals the loop may wait
for, cf. PR-Await presented in Fig. A.7 in the appendix. Apart from being a
generalisation, this rule does not differ from PR-Await′′ introduced in § 3.2.2.

Initially, we allocate 200 signal IDs id100
push, . . . , id

1
push, id

100
pop, . . . , id

1
pop. We are

going to ensure that always at most one push signal and at most one pop signal
are initialized and unset. The producer and consumer are going to hold the
obligation for the push and pop signal, respectively. The producer will hold
the obligation for sipush while i is the next number to be pushed into the FIFO
and it will set sipush when it pushes the number i into the FIFO. Meanwhile,
the consumer will use sipush to wait for the number i to arrive in the queue
when it is empty. Similarly, the consumer will hold the obligation for sipop while
number i is the next number to be popped from the FIFO and will set sipop
when it pops the number i. The producer uses sipop to wait for the consumer to
pop i from the queue when it is full. At any time, we let the mutex mut protect
the two active signals and thereby make them accessible to both threads.

38 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

alloc_ghost_signal_IDs(idipop, idipush) for 1 ≤ i ≤ 100;
Lipop := 102 − i, Lipush := 101 − i, six := (idix, Lix) for 1 ≤ i ≤ 100
init_ghost_signals(s100

pop, s100
push);

{obs({[s100
pop, s

100
push]}) ∗ . . .}

let fifo10:= cons(nil) in
let mut:= new_mutex in
let cp:= cons(100) in
let cc:= cons(100) in
fork (while (cp decreases in each iteration.

with mut await (Busy-wait for fifo10 not being full.
{obs({[scp

push, (mut, 0)]}) ∗ . . .} → Wait for consumer to pop.
let f:= [fifo10] in
if size(f) < 10 then (If fifo10 not full, push next element.

let c:= [cp] in
[fifo10] := f ·⟨c⟩;
[cp] := c − 1;
set_ghost_signal(sc

push);
if c − 1 ̸= 0 then

init_ghost_signal(sc−1
push));

size(f) ̸= 10); if size(f) = 10 then wait for scp+10
pop

[cp] ̸= 0) L
cp+10
pop = 92 − cp < 101 − cp = L

cp
push

do skip);
while (cc decreases in each iteration.

with mut await (Busy-wait for fifo10 not being empty.
{obs({[scc

pop, (mut, 0)]}) ∗ . . .} → Wait for producer to push.
let f:= [fifo10] in
if size(f) > 0 then (If fifo10 not empty, pop next element.

let c:= [cc] in
[fifo10] := tail(f);
[cc] := c − 1;
set_ghost_signal(sc

pop);
if c − 1 ̸= 0 then

init_ghost_signal(sc−1
pop));

size(f) > 0); if size(f) = 0 then wait for scc
push

[cc] ̸= 0) Lcc
push = 101 − cc < 102 − cc = Lcc

push
do skip);
(a) Example program with two threads communicating via a shared bounded FIFO with
maximal size 10. Auxiliary commands hinting at view shifts & general hints marked
in grey (italic). Abbreviations marked in red. Hints on proof state marked in blue.

VS-AllocSigID
True⇛ ∃id. uninitSig(id)

VS-SigInit
obs(O) ∗ uninitSig(id)
⇛ obs(O ⊎ {[(id, L)]}) ∗ signal((id, L),False)

(b) Fine-grained view shift rules for signal creation.

Figure 3.10: Realistic example program.

SPECIFYING BUSY-WAITING CONCURRENT OBJECTS 39

Choosing the Levels Note that we ignored the levels so far. The producer
and the consumer both acquire the mutex while holding an obligation for a
signal. Hence, we choose Levs = N, m.lev = 0 and s.lev > 0 for every signal s.
Both threads will justify iterations of their respective await loop by using an
unset signal at the end of such an iteration. Our proof rules allow us to ignore
the mutex obligation during this step. Hence, the mutex level does not interfere
with the level of the unset signal. Whenever the queue is full, the producer
waits for the consumer to pop an element and whenever the queue is empty, the
consumer waits for the producer to push. That is, the producer waits for si+10

pop
while holding an obligation for sipush and the consumer waits for sipush while
holding an obligation for sipop. So, we have to choose the signal levels such that
si+10

pop .lev < sipush.lev and sipush.lev < sipop.lev hold. We solve this by choosing
sipop.lev = 102 − i and sipush.lev = 101 − i.

Verifying Termination This setup suffices to verify the example program. Via
the lock invariant, each thread has access to both active signals. Whenever the
producer pushes a number i into the queue, it sets sipush which discharges the held
obligation and decreases its counter. Afterwards, if i > 1, it uses the uninitialized
signal chunk uninitSig(idi−1

push) to initialize si−1
push = (idi−1

push, 101 − (i − 1)) and
replaces sipush in the lock invariant by si−1

push before it releases the lock. If i = 1,
the counter reached 0 and the loop ends. In this case, the producer holds
no obligation. The consumer behaves similarly. Since we proved that each
thread discharged all its obligations, we proved that the program terminates.
Fig. 3.10a illustrates the most important proof steps. We present the program’s
verification in full detail in appendix § A.5.1 and in the technical report [151]
(appendix B.12.2). Furthermore, we encoded [149] the proof in VeriFast [99].

The number of threads in this program is fixed. However, our approach also
supports the verification of programs where the number of threads is not even
statically bounded. In the appendix in § A.5.2 we present and verify such a
program. It involves N producer and N consumer threads that communicate
via a shared buffer of size 1, for a random number N > 0 determined during
runtime.

3.4 Specifying Busy-Waiting Concurrent Objects

Our approach can be used to verify busy-waiting concurrent objects with respect
to abstract specifications. For example, we have verified [148] the CLH lock [90]
against a specification that is very similar to our proof rules for built-in mutexes
shown in Fig. 3.6. The main difference is that it is slightly more abstract: when

40 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

a lock is initialized, it is associated with a bounded infinite set of levels rather
than with a single particular level. (To make this possible, an appropriate
universe of levels should be used, such as the set of lists of natural numbers,
ordered lexicographically.) To acquire a lock, the levels of the obligations held
by the thread must be above the elements of the set; the new obligation’s level
is an element of the set.

3.5 Tool Support

We have extended the VeriFast tool [98] for separation logic-based modular
verification of C and Java programs so that it supports verifying termination
of busy-waiting C or Java programs. When verifying termination, VeriFast
consumes a call permission at each recursive call or loop iteration. In the
technical report [151] (appendix § B) we define a generalised version of our logic
that instead of providing a special proof rule for busy-waiting loops, provides
wait permissions and a wait view shift. A call permission of a degree δ can be
turned into a wait permission of a degree δ′ < δ for a given signal s. A wait
view shift for an unset signal s for which a wait permission of degree δ exists
produces a call permission of degree δ, which can be used to fuel a busy-waiting
loop. When busy-waiting for some signal s, we can generate new permissions
to justify each iteration as long as s remains unset.

VeriFast allows threads to freely exchange permissions. This is useful to verify
termination of non-blocking algorithms involving compare-and-swap loops [100].
However, we must be careful to prevent self-fueling busy-waiting loops. Hence,
we restrict where a permission can be consumed based on the thread phase it
was created in. The main thread’s initial phase is ϵ. When a thread in phase p
forks a new thread, its phase changes to p.Forker and the new thread starts in
phase p.Forkee. We allow a thread in phase p to consume a permission only if
it was produced in an ancestor thread phase p′ ⊑ p.

The only change we had to make to VeriFast’s symbolic execution engine was
to enforce the thread phase rule. We encoded the other aspects of the logic
simply as axioms in a trusted header file. We used this tool support to verify the
bounded FIFO (§ 3.3) and the CLH lock (§ 3.4). The bounded FIFO proof [149]
contains 160 lines of proof annotations for 37 lines of code (an annotation
overhead of 435%) and takes 0.08s to verify. The CLH lock proof [148] contains
343 lines of annotations for 49 lines of code (an overhead of 700%) and takes
0.1s to verify.

INTEGRATING HIGHER-ORDER FEATURES 41

3.6 Integrating Higher-Order Features

The logic we presented in this chapter does not support higher-order features
such as assertions that quantify over assertions, or storing assertions in the
(logical) heap as the values of ghost cells. While we did not need such features
to carry out our example proofs, they are generally useful to verify higher-order
program modules against abstract specifications. The typical way to support
such features in a program logic is by applying step indexing [7, 112], where the
domain of logical heaps is indexed by the number of execution steps left in the
(partial) program trace under consideration. Assertions stored in a logical heap
at index n + 1 talk about logical heaps at index n; i.e., they are meaningful
only later, after at least one more execution step has been performed.

It follows that such logics apply directly only to partial correctness properties.
Fortunately, we can reduce a termination property to a safety property by
writing our program in a programming language instrumented with runtime
checks that guarantee termination. Specifically, we can write our program in
a programming language that fulfils the following criteria: It tracks signals,
obligations and permissions at runtime and has constructs for signal creation,
waiting and setting a signal. The fork command takes as an extra operand the
list of obligations to be transferred to the new thread (and the other constructs
similarly take sufficient operands to eliminate any need for angelic choice).
Threads get stuck when these constructs’ preconditions are not satisfied, such
as when a thread waits for a signal while holding the obligation for that signal.
We can then use a step-indexing-based higher-order logic such as Iris [104] to
verify that no thread in our program ever gets stuck. Once we established this,
we know none of the instrumentation has any effect and can be safely erased
from the program.

3.7 Related & Future Work

In recent work [154] we propose a separation logic to verify termination of
programs where threads busy-wait to be abruptly terminated. We generalize
this work to support busy waiting for arbitrary conditions.

In [100] we propose an approach based on call permissions to verify termination
of single- and multithreaded programs that involve loops and recursion. However,
that work does not consider busy-waiting loops. In the technical report [151]
(appendix § B), we present a generalised logic that uses call permissions and
allows busy waiting to be implemented using arbitrary looping and/or recursion.

42 GHOST SIGNALS: VERIFYING TERMINATION OF BUSY WAITING

Furthermore, the use of call permissions allowed us to encode our case studies
in our VeriFast tool which also uses call permissions for termination verification.

Liang and Feng [120, 121] propose LiLi, a separation logic to verify liveness of
blocking constructs implemented via busy waiting. In contrast to our verification
approach, theirs is based on the idea of contextual refinement. In their approach,
client code involving calls of blocking methods of the concurrent object is verified
by first applying the contextual refinement result to replace these calls by code
involving primitive blocking operations and then verifying the resulting client
code using some other approach. In contrast, specifications in our approach are
regular Hoare-style triples and proofs are regular Hoare-style proofs.

In [97] we propose a Hoare logic to verify liveness properties of the I/O behaviour
of programs that do not perform busy waiting. By combining that approach with
the one we proposed in this chapter, we expect to be able to verify I/O liveness
of realistic concurrent programs involving both I/O and busy waiting, such as a
server where one thread receives requests and enqueues them into a bounded
FIFO, and another one dequeues them and responds. To support this claim, we
encoded the combined logic in VeriFast and verified a simple server application
where the receiver and responder thread communicate via a shared buffer [150].

3.8 Conclusion

We propose what is to the best of our knowledge the first separation logic for
verifying termination of programs with busy waiting. We offer a soundness proof
of the system presented in this chapter in appendix § A, and of a more general
system in the technical report [151] (appendix § B). Further, we demonstrated
its usability by verifying a realistic example. We encoded our logic and the
realistic example in VeriFast [149] and used this encoding also to verify the
CLH lock [148]. Moreover, we expect that our approach can be integrated into
other existing concurrent separation logics such as Iris [104].

Chapter 4

Completeness Thresholds for
Memory Safety of Array
Traversing Programs

This chapter was previously published as:

T. Reinhard, J. Fasse, and B. Jacobs. Completeness Thresholds
for Memory Safety of Array Traversing Programs. In Proceedings
of the 12th ACM SIGPLAN International Workshop on the State
Of the Art in Program Analysis (SOAP) (2023), ACM, pp. 47–54.
doi.org/10.1145/3589250.3596143

To streamline the notation, we replaced some constraints by constraint sets.

4.1 Introduction

Unbounded vs Bounded Proofs Many techniques have been developed to
convince ourselves of the trustworthiness of software. A fundamental pillar for
any higher-level property is memory safety. In memory-unsafe languages the
burden of proof lies with the programmer. Yet, it remains hard to prove and in
general requires us to write tedious, inductive proofs. One way to automate
the verification process is to settle on bounded proofs and accept bounded
guarantees.

43

https://doi.org/10.1145/3589250.3596143

44 COMPLETENESS THRESHOLDS FOR MEMORY SAFETY OF ARRAY TRAVERSING PROGRAMS

Consider a program c that searches through an array of size s. An unbounded
memory safety proof for c would yield that the program is safe for any possible
input, in particular for any array size, i.e., ∀s. memsafe(c(s)). A bounded proof
that only considers input sizes up to ten would only guarantee that the program
is safe for any such bounded array, i.e., ∀s ≤ 10. memsafe(c(s)).

Completeness Thresholds Approximating unbounded proofs by bounded ones
is a technique often used in model checking. Hence, the relationship between
bounded and unbounded proofs about finite state transition systems has been
studied extensively [15, 40, 109, 28, 2, 87, 10, 126]. For a finite transition
system T and a property of interest ϕ, a completeness threshold is any number
k such that we can prove ϕ by only examining path prefixes of length k in
T , i.e., T |=k ϕ ⇒ T |= ϕ [40] 1. Over the years, various works characterised
over-approximations of least completeness thresholds for different types of
properties ϕ. These over-approximations are typically described in terms of key
attributes of the transition system T , such as the recurrence diameter (longest
loop-free path) [109]. For instance, consider the class of global safety properties
of the form Gp for finite transition systems T , where p is a local property. We
know that the smallest completeness threshold for this class expressible solely
in terms of T ’s diameter is exactly diam(T) [15, 110]. As safety property of the
form Gp, this also applies to memory safety of finite transition systems.

In general, heap-manipulating programs’ state space can be infinite. That
is because the program’s input data can be arbitrarily large and because
executions can be arbitrarily long. Therefore, the key attributes described above
will generally be infinite as well. This vast structural difference between the
programs we are interested in and the transition systems for which completeness
thresholds have been studied prevents us from reusing any of the existing
definitions or results.

4.2 Limitations of Bounded Proofs

Bounded Model Checking Generally, if we want unbounded memory safety
guarantees, we have to consider all possible input sizes and all possible executions.
This is often hard and requires us to write tedious inductive proofs. An
alternative is to give up on the idea of unbounded guarantees and to settle for

1Note that the term completeness threshold is used inconsistently in literature. Some
papers such as [40] use the definition above, according to which completeness thresholds are not
unique. Others like [109] define them as the minimal number k such that T |=k ϕ ⇒ T |= ϕ,
which makes them unique.

LIMITATIONS OF BOUNDED PROOFS 45

1 for i in [L : s-R] do
2 !a[i+Z]

}
=: travZL,R(a, s)

Trav := {travZL,R | L,R,Z ∈ Z}

Figure 4.1: Class Trav of programs travZL,R traversing an array a of size s,
attempting to read elements. L,R,Z are constants.

bounded ones. One approach that has proven useful during development of
critical software is bounded model checking (BMC) [32].

The underlying idea is to approximate the original verification problem by a
finite model that we can check automatically. With this approach, we choose
a size bound S and only consider inputs with sizes up to S. Further, we also
only check finite execution prefixes. A common approach is to unwind loops
and recursion up to a certain depth.

The intuition behind this approach is that if the program contains errors, they
likely already occur for small input sizes and early loop iterations. As long as
BMC does not perform abstraction [35], all reported counterexamples are real
bugs. However, we should be careful not to forget that this way we only obtain
a bounded proof yielding bounded guarantees.

Array Traversal Pattern Consider the class of programs Trav presented in
Fig. 4.1 in a WHILE language with pointer arithmetic. Given a pointer a and
a variable s, such that a points to an array of size s, each program iterates
through the array and attempts to read elements. The class models a basic
programming pattern and common off-by-n errors [47]. We use upper case
letters for constants and lower case letters for (program) variables. A program
travZL,R from this class iterates from i = L to i = s − R (bounds incl.) and
attempts to read the array at index i+ Z. We use !x to express accesses to a
heap location x. Whether memory errors occur for a concrete instance travZL,R
depends on how the constants L, R, Z are chosen. We use it as minimal example
throughout this chapter.

What Could Go Wrong with Bounded Proofs? To illustrate the issue, let us
use BMC to check various instances of the array traversal pattern: (i) traversal
of the entire array: trav0

0,1, (ii) traversal of the array with accesses offset by two
from the index: trav2

0,1 and (iii) an additional reduction of the index variable’s
upper bound by one: trav2

0,2. It is easy to see that (i) is memory-safe while (ii)
and (iii) are not. However, before we run a model checking algorithm we have

46 COMPLETENESS THRESHOLDS FOR MEMORY SAFETY OF ARRAY TRAVERSING PROGRAMS

to choose appropriate bounds. The pattern we are looking at is quite simple.
So, we choose size bound S = 1 and unwinding depth D = 1 for the BMC
procedure. Note that the latter effectively means: we do not restrict the loop
depth for the input sizes we chose.

For the standard variant (i) we cannot find any errors within the bounds. This
is fine because the program is safe. In variant (ii) array accesses a[i + 2] are
incorrectly shifted to the right. This already leads to an out-of-bounds error
for arrays of size 1. This size falls within our chosen bounds, so BMC reports
this error and we can correct it. Finally, (iii)’s reduction of the index variable’s
range to [0, s − 2] means that the program only performs loop iterations for
arrays of size s ≥ 2. Consequently, it is trivially safe for the sizes 0 and 1. These
are the sizes our bounded proof explores. Hence, BMC does not report any
errors and leads us to wrongly believe that trav2

0,2 is safe.

4.3 Completeness Thresholds

As illustrated above, bounded proofs are in general unsound approximations of
unbounded proofs. A concrete approximation is sound iff we choose the bounds
large enough, such that we can be sure that we do not miss any errors. We focus
on bounding input sizes (in our examples array sizes), ignoring loop bounds
that do not depend on these parameters.

Recall from § 4.1 that completeness thresholds are a concept from model checking
of finite transition systems [40]. We borrow this terminology and apply it to
memory safety verification. Hence, for a program c(x) with input parameter
x ∈ X, we call any subdomain Q ⊆ X a completeness threshold (CT) for x in
c if we can prove memory safety of c by only considering inputs from Q, i.e.,
∀x ∈ Q. memsafe(c(x)) ⇒ ∀x ∈ X. memsafe(c(x)).

Intuitive CT Extraction Returning to our example class of programs Trav
implementing the array traversal pattern. Some of these are memory safe, some
are not. So, let us try to compute completeness thresholds for these programs.
First, let’s take a look at the errors that might occur. This gives us an idea
which sizes a sound bounded proof must cover. Any instance travZL,R(a, s)
iterates ascendingly i = L, . . . , s − R and accesses a[i + Z]. For sizes s that
cause the ascending range L, . . . , s − R to be empty, we do not execute the
loop at all. Any such run is trivially memory safe. Therefore, any meaningful
bounded proof of travZL,R(a, s) must include sizes s with {L, . . . , s − R} ≠ ∅,
i.e., s ≥ L+R.

COMPLETENESS THRESHOLDS 47

Suppose s ≥ L+R. An error occurs if the index i+Z violates the array bounds,
i.e., if i+ Z < 0 or i+ Z ≥ s. Taking the index range into account, we see that
we get an error if L+Z < 0 or s−R+Z ≥ s holds. We can simplify the latter
to Z −R ≥ 0.

Note that neither L+ Z < 0 nor Z −R ≥ 0 depend on the array size s. This
means that as long as we focus on sizes above the threshold s ≥ L + R, the
concrete choice of s does not influence whether an error occurs or not. In other
words, it suffices for our bounded proof to only check a single (arbitrarily chosen)
size q ≥ L+R and then we can extrapolate the result, i.e.,

∀a. memsafe(travZL,R(a, q)) ⇒ ∀s.∀a. memsafe(travZL,R(a, s))

Hence, any set {q} for q ≥ L + R is a CT for the array size parameter s
in travZL,R. We just found a uniform characterization of CTs for the entire
class Trav. Note that {q} is not necessarily the smallest CT. For safe instances
such as trav0

0,1, the empty set ∅ is a valid CT as well.

Our Approach We study CTs for x in c(x) by studying its verification
condition (VC). The latter is an automatically generated logical formula of
the form ∀x ∈ X. vc(x) and proving it entails memory safety of c(x) for all
choices of x. Next, we currently simplify vc(x) by hand until it becomes
clear how the choice of x affects the validity of vc(x). Knowing this allows
us to partition the domain into X =

⋃
Qi. For each subdomain we get

vci(x) = ∀x ∈ Qi. vc(x). If possible, we simplify each vci(x) into vc′
i(x) based

on the restricted subdomain Qi with the goal to eliminate occurrences of x.
If vc′

i does not mention x we pick any element of Qi as representative Q′
i.

Otherwise, Q′
i = Qi. Hence,

⋃
Q′
i is a CT for x in c(x). In the following we

elaborate this in more detail.

4.3.1 Approximating CTs via Verification Conditions

Now that we have an intuition for the CTs of Trav, let’s turn our informal
argument from above into a formal one. Formal definitions of the language
and logic we consider and proofs for the presented lemmas can be found in the
technical report [147].

Hoare Triples We use Hoare triples [92] to express program specifications.
A triple {A} c {B} expresses that the following properties hold for every
execution that starts in a state which satisfies precondition A: Firstly, the

48 COMPLETENESS THRESHOLDS FOR MEMORY SAFETY OF ARRAY TRAVERSING PROGRAMS

execution does not encounter any runtime errors. Secondly, it either (i) does
not terminate or (ii) it terminates in a state complying with postcondition B.

In this work, we study the memory safety of programs that do not change the
shape of the data structures they process. Hence, we choose preconditions that
merely describe the memory layout of the data structures which our programs
receive as input. For the array traversal program, we choose the predicate
array(a, s) as precondition, which expresses that a points to a contiguous memory
chunk of size s. Given that our target programs do not change the memory
layout, specifications simplify to {A} c {A}. For the array traversal we get
{array(a, s)} travZL,R {array(a, s)}.

Definition 4.3.1 (Completeness Thresholds for Programs). Let {A} c {B}
be a program specification containing a free variable x with domain X. We call
a subdomain Q ⊆ X a completeness threshold for x in {A} c {B} if

|= ∀x ∈ Q. {A} c {B} ⇒ |= ∀x ∈ X. {A} c {B}

We omit spelling out the pre- and postconditions when they are clear from the
context. Instead we say that Q is a completeness threshold for x in program c.

Separation Logic We use a first-order affine/intuitionistic separation logic
with recursion predicates [136, 138, 155] to describe memory. Since we focus on
heap-manipulating programs, we use assertions to describe heaps. Separation
logic comes with a few special operators: (i) The points-to chunk x 7→ v
describes a heap containing a location x which holds the value v. We write
x 7→ _ to express that we do not care about the value stored in the heap cell.
(ii) The separating conjunction a1 ∗a2 expresses that a1 and a2 describe disjoint
heaps. Hence, x 7→ _ ∗ y 7→ _ implies that x ̸= y. (iii) The separating
implication a1 −∗ a2 can be read as a2 without a1. That is, combining the
heap described by a1 −∗ a2 with a disjoint heap described by a1 yields a heap
compliant with a2. (iii) In our logic, the persistence modality □ a means that a
does not describe resources and hence holds under the empty heap (cf. [104]).

We assume that array denotes a (recursively defined) predicate, such that
for every fixed size s, we can express it as iterated separating conjunction:
array(a, s) ≡ ∗

0≤k<s

a[k] 7→ _.

Verification Conditions A common way to verify programs is via verification
conditions [71, 143]. For any specification {A} c {B}, a verification
condition (VC) is any logical formula vc, such that we can verify {A} c {B}
by proving vc, i.e., |= vc ⇒ |= {A} c {B}.

COMPLETENESS THRESHOLDS 49

Definition 4.3.2 (Verification Condition). We call an assertion a a verification
condition for {A} c {B} if

|= a ⇒ |= {A} c {B}.

Definition 4.3.3 (Completeness Thresholds for Assertions). Let a be an
assertion with a free variable x of domain X. We call a subdomain Q ⊆ X a
completeness threshold for x in a if

|= ∀x ∈ Q. a ⇒ |= ∀x ∈ X. a.

Consider a specification {A} c {B} with a free variable x ∈ X and a
corresponding VC ∀x ∈ X. vc. Suppose we get a completeness threshold
Q for x in vc. Knowing this threshold reduces correctness of the specification
to the bounded VC, i.e., |= ∀x ∈ Q. vc ⇒ {A} c {B}. That is, we can derive
unbounded guarantees from a bounded proof. We usually omit quantification
domains when they are clear from the context.

Weakest Liberal Preconditions A common way to generate VCs is via weakest
liberal preconditions [71, 61]. For any program c and postcondition B, the
weakest liberal precondition wlp(c, λr. B) is an assertion for which

∀A.
(
A |= wlp(c, λr. B) ⇒ |= {A} c {B})

holds. That is, if the weakest liberal precondition holds for the starting state,
then c does either not terminate or it terminates in a state complying with
postcondition B. In particular, no memory error occurs during the execution.
The canonical VC for {A} c {B} is ∀x. A → wlp(c, λr. B) where x is the tuple
of variables occuring freely in A, c and B.

Limitations of CTs In general, VCs are over-approximations. Hence, CTs
derived from a VC do not always apply to the corrresponding program. Consider
the specification {array(a, s)} trav2

0,2 {array(a, s)} and any unsatisfiable
assertion vcfalse ≡ False. Then ∀s ∈ N. vcfalse is an over-approximating VC, since
False ⇒ |= {array(a, s)} trav2

0,2 {array(a, s)}. As discussed in § 4.2, a bounded
proof that only covers sizes 0, 1 does not discover the errors in trav2

0,2. Hence, the
set {0} is not a CT for x in {array(a, s)} trav2

0,2 {array(a, s)}. However, {0} is a
CT for s in vcfalse, since ∀s ∈ {0}. vcfalse ≡ False and False ⇒ |= ∀s ∈ N. vcfalse.
We see that we can only transfer a CT Q for some variable x derived from a VC
vc to the corresponding program, if vc does not over-approximate with regard
to x. (We are currently studying this connection.) Note that this is, however,
the case for the examples we discuss in this chapter. Though, even if vc does

50 COMPLETENESS THRESHOLDS FOR MEMORY SAFETY OF ARRAY TRAVERSING PROGRAMS

over-approximate, CT Q still applies to any proof considering a property at
least as strong as vc.

As the name suggests, VCs derived from weakest preconditions yield very weak
properties. It is reasonable to assume that often a bounded proof would imply
a bounded version of the wlp-based VC. Therefore, it is reasonable to use them
during our study of CTs.

Extracting CTs via VCs Applying the above approach to our specification
{array(a, s)} travZL,R(a, s) {array(a, s)}, we get a VC ∀a. ∀s. vctrav, where vctrav
is as follows 2:

vctrav :=array(a, s) → (#1)
array(a, s) (#2)
∗ □(∀i. (L ≤ i ≤ s−R) ∧ array(a, s) −∗ (#3)

∃v. a[i+ Z] 7→ v ∧ array(a, s))
∗ (array(a, s) −∗ array(a, s)) (#4)

Here, (#1) is the precondition describing our memory layout. The separating
conjunction (#2)-(#4) is the weakest precondition derived from our specification
and vctrav says that it should follow from precondition (#1).

The weakest precondition states that the memory layout must stay invariant
under the loop execution. (#2) says that it should hold before the loop starts.
(#3) demands that every loop iteration preserves the layout, i.e., that the
layout description is a loop invariant. (#4) states this invariant implies the
postcondition from our specification, which, again, is the unchanged memory
layout.

Remember that we use an affine separation logic. Clearly, this VC contains
many trivially obsolete parts. We can simplify vctrav to vc1:

2The weakest precondition calculus requires us to annotate loops with loop invariants. In
the setting we study, the initial memory layout is invariant under the program’s execution.
The preconditions we consider describe exactly the initial memory layout, nothing else. Hence,
we can reuse preconditions as loop invariants during the wlp computation.

COMPLETENESS THRESHOLDS 51

vctrav ≡ // Eliminate (#2), (#4)
array(a, s) →
□(∀i. (L ≤ i ≤ s−R) ∧ array(a, s) −∗

∃v. a[i+ Z] 7→ v ∧ array(a, s))
≡ // Persistency makes pre. obsolete

□(∀i. (L ≤ i ≤ s−R) ∧ array(a, s) −∗
∃v. a[i+ Z] 7→ v ∧ array(a, s))

≡ // array(a, s) equiv. to ∗
0≤k<s

a[k] 7→ _

∀i. (L ≤ i ≤ s−R) → (0 ≤ i+ Z < s)
=: vc1

This equivalent VC ∀a. ∀s. vc1 does reflect the intuition we developed when
analysing the program informally: For sizes s < L+R, the program does not
perform any loop iterations and hence it is trivially memory safe. For bigger
arrays, a memory error occurs iff index i+ Z violates the array bounds.

We can justify this intuition by partitioning the domain of s into N = {0, . . . , L+
(R− 1)} ∪ {L+R, . . . }. Let’s analyse vc1 for both subdomains separately. For
a size s− < L+R, we get

vc1(s−) ≡ ∀i. False → (0 ≤ i+ Z < s−) ≡ True

So, we do not have to bother checking sizes s < L + R. For bigger sizes
s+ ≥ L+R, we get

vc1(s+) ≡ ∀i. (L ≤ i ≤ s+ −R) → (0 ≤ i+ Z < s+)
≡ ∀i. (L ≤ i → 0 ≤ i+ Z) ∧ (i ≤ s+ −R → i+ Z < s+)
≡ ∀i. (L ≤ i → 0 ≤ i+ Z) ∧ (i ≤ −R → i+ Z < 0)
=: vc2.

Since s+ does not occur freely in vc2, the truth of vc1(s+) does not depend on the
choice of s+. Remember that we have, vctrav(s−) ≡ True and vctrav(s+) ≡ vc2.
Hence,

|= ∀a. ∀s. vctrav ⇔ |= ∀a. vctrav(s+)

We see that it suffices to check the original VC vctrav for any size s+ ≥ L−R
to prove memory safety of our array traversing program travZL,R. That is, {s+}
is a CT.

Characterizing CTs via Constraints Note that the constraint s ≥ L−R we just
derived is a uniform representation for the CTs of the entire class Trav. We often

52 COMPLETENESS THRESHOLDS FOR MEMORY SAFETY OF ARRAY TRAVERSING PROGRAMS

use constraint sets {k1, . . . , kn} to concisely characterize CTs. Each ki describes
a property that some element in our CT must cover to reach a specific potential
error. If ki is unsatisfiable, it means that the error is unreachable. Hence, a set
Q models the constraint set if it contains models k1, . . . , kn for each satisfiable
constraint, i.e., ̸|= ¬ki ⇒ |= ki[s 7→ ki]. For singleton constraint sets {k}, we
drop the set notation and just write k.

Overall, a constraint set formulates a property that is sufficiently strong so that
every subdomain covering it is a CT. For every program travZL,R ∈ Trav, every
subdomain Q′ ⊆ N is a CT for the array size s if Q′ ∩ {s ∈ N | s ≥ L−R} ≠ ∅.

4.3.2 Modularity of Completeness Thresholds

Unrelated Data Structures Consider the program
sumZ

L,R(a, s, n) that attempts to sum up all elements of array a and writes the
result to heap location n:

1 for i in [L : s-R] do
2 !n := !n + !a[i+Z]

}
=: sumZ

L,R(a, s, n)

Analogously to travZL,R it iterates through the array and attempts to read array
elements. Additionally, it uses the read value to update the sum stored at heap
location n. Let us assume that the array a and the result variable n do not
alias. We get the specification {A} sumZ

L,R {A} for A := array(a, s) ∗ n 7→ _.
We assume structured memory. Therefore, it is not possible to access n via an
array access a[...].

Intuitively, it is clear that the array size does not affect the memory accesses
to heap location n. Hence, the CTs for s in sumZ

L,R should be the same as the
ones for travZL,R. In fact, analysing the wlp-based VC for sumZ

L,R confirms this
intuition. It has the form ∀a.∀s.∀r. vcsum and we can rewrite vcsum into

vcsum ≡ vctrav ∗ (n 7→ _ → A)

where vctrav is the VC from § 4.3.1 for the array traversing program travZL,R.
Moreover, freeVars(A) = {n}. Since s does not occur freely in n 7→ _ → A,
we can ignore it while searching for a CT for s in vcsum.

Lemma 4.3.4 (VC Slicing). Let a, ax, ay be assertions with x ∈ freeVars(ax)
and x ̸∈ freeVars(ay) and a ≡ ax ∗ ay. Let Q ⊆ X be a CT for x in ax. Then,
Q is also a CT for x in a, i.e.,

|= ∀x ∈ Q. ∀y ∈ Y . a ⇒ |= ∀x ∈ X. ∀y ∈ Y . a

COMPLETENESS THRESHOLDS 53

1 for i in [L : s-R] do
(

2 n := a[i+Z];
3 complex_fct (n, y, k)
4)

 =: compZL,R(a, s, y, k)

M(a, s) := array(a, s) ∗ complex_data(y, k)
Comp := {{M} compZL,R {M} | L,R,Z ∈ Z}

Figure 4.2: Class of programs involving a complex data structure and
computation that do not depend on the array size s.

We can extrapolate what we saw in the sumZ
L,R example to more complex

classes of programs. Consider the class Comp presented in Fig. 4.2. A program
compZL,R ∈ Comp receives two non-aliasing data structures: an array a of
size s and a complex data structure y of size k, described by the predicate
complex_data(y, k). compZL,R reads elements from array a, stores the result
in a local variable n and then calls a complex function complex_fct(n,y,k)
which does neither depend on a nor s. The VC vccomp will reflect this. That
is, analogous to the example above, it should be expressible as vccomp ≡
vctrav ∗ (complex_data(y, k) → . . .) where the right conjunct does not depend
on s.

VC Slicing lemma 4.3.4 tells us that whenever we want to characterize a CT
for a specific parameter, we can ignore all separated VC conjuncts that do
not involve this parameter. Effectively, this means that we can ignore all the
complex parts of compZL,R that are not related to the array size while searching
for a CT for s. This allows us to reduce the search to the CTs of Trav.

Compositionality We can describe the CTs of complex programs in terms of
the CTs of their building blocks. Consider the program c1; c2 and suppose that
c1 and c2 are instances of patterns we studied before. So we know that each ci
corresponds to a VC ∀x. vci with a CT Qi for x. Let vc1;2 be the VC for c1; c2
that we want to prove. Suppose it can be rewritten into ∀x. vc1 ∧ vc2. Then,
we know that Q1 ∪Q2 is a CT for vc1;2. Therefore, our approach to studying
CTs is to study patterns and combinators.

Basic Patterns We view basic patterns such as the array traversal pattern
discussed above as the basic building blocks. They tend to occur frequently
in programs and they are sufficiently concise to extract CTs by studying their
VCs. In particular, we focus on traversal and access patterns that preserve the

54 COMPLETENESS THRESHOLDS FOR MEMORY SAFETY OF ARRAY TRAVERSING PROGRAMS

memory layout. For now, we focus on arrays, but we are going to generalize it
to arbitrary inductive data structures.

Managing Complexity One of our main goals is to describe CTs for interesting
classes of programs. VCs tend to become very complex very fast as a program
gets more complex. Hence, we need a way to deal with this complexity and to
break the CT analysis down into simpler problems. Following the structure of
the program we want to reason about is a natural approach.

Combinator Patterns In order to exploit the program structure while analysing
CTs, we need to study how control structures affect CTs. For instance,
as described above, we can characterize the CT of a sequence c1; c2 as the
union of the CTs derived from c1 and c2. Further, consider the command
if e then c1 else c2 and suppose that we can describe CTs for a size s in
each ci via a constraint set Ki. Then, we can describe the CT for the entire
command via the constraint set (e ∧K1) ∪ (¬e ∧K2).

4.4 Conclusion

Past approaches to program verification either targeted unbounded guarantees
and relied on unbounded, often inductive, proofs or they targeted bounded
guarantees and tried to approximate the program behaviour using techniques
like bounded model checking. We have, however, seen little interaction between
the two communities.

In this work we propose a new perspective on memory safety proofs that connects
unbounded and bounded proofs. We show that we can reduce unbounded
memory safety proofs to bounded ones for certain programs that traverse arrays
and preserve the memory layout. For any such program considering a few
select array sizes yields the same guarantees as considering arrays of all possible
sizes. We call this concept completeness thresholds in reference to a similar
concept from model checking of finite transition systems. Moreover, we show
that studying verification conditions are an adequate way to study completeness
thresholds.

RELATED WORK 55

4.5 Related Work

Completeness thresholds were first introduced by Kroening and Strichman [109].
So far, the study of CTs has been limited to finite state systems. Indeed, the
well-known CTs for classes of LTL properties are defined with respect to the
(recurrence) diameter of the finite state system in question (e.g. [15, 110]).
Determining the worst-case execution time of a program and discovering upper
bounds on loops by iterative unrolling can also be used to determine CTs [65, 39].
For a possibly infinite state system those CTs can naturally be infinite as
well. By specializing in just one property, memory safety, we are able to
characterize and possibly find useful CTs for these systems as well. Model
checking for parameterized network topologies of identical (e.g. bisimilar [27] or
isomorphic [67]) processes features a related concept to completeness thresholds
called cutoff. That is, model-checking up to the cutoff implies correctness of
scaling the topology up to infinitely many processes. Positive results exist for
properties of such token rings [27, 67] but also other topologies [41, 5].

The model checking literature (cf. [42]) boasts a wealth of alternative approaches
to obtain unbounded guarantees on finite state systems, e.g., k-induction [16,
162], Craig interpolation [126] and property-directed reachability [24, 66] with
adaptions to the software verification setting (e.g. [63, 14, 13]).

Array-manipulating programs are well-studied across different domains [23, 25,
101, 30]. However, we consider our main contribution to be a novel approach
to connect unbounded and bounded proofs about memory safety. Ultimately,
as discussed in the outlook, we aim to generalize and automate our approach
to tree-like data structures. In that regard, Mathur et al. [124] consider the
special case of proving memory safety of heap-manipulating programs as well.
They prove that memory safety is decidable if the initial heap is forest-like and
the program only performs a single-pass over the data-structure (see also § 4.6).
They do not cover arrays and buffer overflows, but they support (de-)allocation.

4.6 Outlook

CTs for Programs Consider any program c with a free variable x and a
corresponding VC vc. Suppose we derived a CT Q for x in vc. In general, this
does not allow us to conclude that Q is also a CT for x in c. Intuitively, this
is only true if vc does not over-approximate with regard to x. This holds for
the programs and VCs studied in this chapter. While CTs for VCs still tell
us something about proofs targeting these VCs, our ultimate goal is to derive
thresholds for programs. Hence, we are currently studying this connection.

56 COMPLETENESS THRESHOLDS FOR MEMORY SAFETY OF ARRAY TRAVERSING PROGRAMS

Scalability In this work, we focus on a restricted array traversal pattern
to illustrate CTs. Our goal is to scale this approach to complex programs.
Therefore, we are currently studying more array traversal and access patterns
and combinators. This will allow us to better understand how the structure of
programs affects the relation between bounded and unbounded proofs. Knowing
this will allow us to characterise CTs for complex classes of programs that cover
errors besides off-by-n errors.

Afterwards, we are going to extend our approach to include arbitrary inductive
data types. In particular, we plan to describe CTs for a class of programs Sort
that includes (safe and unsafe) implementations of in-place sorting algorithms
involving nested loops. Once we managed that, we are going to investigate how
allocation and deallocation affect CTs.

Decidability The memory accesses we observe in sorting functions typically
mainly depend on the size of the sorted data structure, the traversal strategy
and a comparison relation <. Suppose we managed to derive finite CTs for the
class Sort. We conjecture that this will be sufficient to conclude decidability of
memory safety for Sort. Note that this targeted result would escape the scope
of the related work by Mathur et al. [124]. The latter showed decidability of
memory safety for a certain form of single-pass programs, i.e., programs that
traverse a datastructure exactly once.

Improving BMC Guarantees Bounded model checking suffers from the state
space explosion problem [36, 142, 35] with respect to the chosen bounds. It is
often only practical to check very small bounds on each parameter to keep the
verification time practical. We plan to automate the approach introduced in this
chapter and to leverage existing static analysis techniques (e.g. [180, 123, 9, 131])
to simplify the generated VCs. Once we are able to automatically compute
a small CT for one parameter, say the traversed data structure’s size, we
can adjust the corresponding bound. We can be sure that we didn’t miss to
check any size that could lead to memory errors. Hence, it would strengthen
the guarantees we get from our bounded proof. Ultimately, we would like to
integrate with the industrial-strength BMC tool CBMC [38, 39].

Further, it would speed up the verification time and free resources that can
be spend on exploring other parts of the program. That is, the lowered size
bound might allow us to increase other bounds that seem more important. We
would be able to do this while keeping the verification time stable and without
sacrificing guarantees.

Chapter 5

Conclusion and Future Work

In this thesis we described two contributions to the state of the art in reasoning
about liveness and safety, respectively. The following sections 5.1 and 5.2 reflect
on the contributions we presented in § 3 and § 4, respectively, and outline
directions for future work.

5.1 Liveness Verification

Ghost Signals In § 3 we presented the first separation logic to modularly
verify termination of concurrent programs involving busy waiting. Standard
separation logic only allows us to prove safety and partial correctness properties.
Safety properties are much better understood and easier to verify than liveness
properties. This is particularly true due the wealth of Hoare-style [92] logics that
have been developed for safety verification [135, 139, 184, 176, 177, 104, 122] .
Hoare triples {A} c {B} like the ones used in separation logic allow us to reason
locally and intuitively. The logic we presented in § 3 inherits these advantages
by extending separation logic. Moreover, extending a standard separation logic
made it easy to implement our approach in VeriFast, a separation logic based
program verifier for C.

Our approach to verifying termination is to reduce it to safety. We do this
by introducing a new type of ghost resource called ghost signal. These signals
only exist on the proof level and each is tied to an event a thread might wait
for. Creating a ghost signal also spawns an obligation – another ghost resource
– to perform said event. Our logic ensures that no thread terminates with

57

58 CONCLUSION AND FUTURE WORK

undischarged obligations. It also takes care to rule out cyclic wait dependencies
that could lead to non-terminating wait loops. Since the latter two are safety
properties, we indeed reduced liveness to safety.

Busy waiting verification is an active area of research. In the remainder of this
section, we briefly discuss TaDA Live, the main new development in this area
since our work appeared. We also briefly discuss an ongoing project of our
research group continuing our ghost signal work. Afterwards, we briefly sketch
another active research area: Reasoning about liveness in step-indexed logics.

TaDA Live D’Osualdo et al. propose TaDA Live [64], a separation logic to
verify termination of programs that involve blocking, fine-grained concurrency,
e.g., busy waiting for a heap cell to be set. The paper was submitted in
parallel to our ghost signal paper (cf. § 3) and published shortly after it. Both
approaches share similarities such as the use of obligations and levels (or layers
in TaDA Live terms) to reason about dependencies. Those aside, their logic
differs widely from ours. TaDA Live offers a notion of liveness invariants □♢P ,
expressed in terms of subjective obligations and guards [62]. Their obligations
are subjective in the sense introduced by Ley-Wild and Nanevski [119]. That is,
they support two different perspectives: Local and environment. This makes
knowledge about the environment duplicable and a first class citizen in TaDA
Live. (The term duplicable should not be confused with Iris’ notion of duplicable
assertions [104]. In Iris, duplicable assertions are assertions that remain true
forever. This is not the case here, since in TaDA Live duplicable assertions are
not necessarily stable.)

TaDA Live offers a notion of abstract atomic specifications to specify blocking
behaviour. This allows them to assign reusable and provable specifications to,
e.g., spin and CLH locks. Moreover, TaDA Live’s liveness invariants offer a great
deal of flexibility and control to the client over when subjective obligations are
spawned and discharged. In general, the client is responsible for proving that it
enforces the liveness assumptions required by the lock specifications. This allows
them to verify programs where a lock is acquired in one thread but released
in another one. Our ghost signal work does not concern the question of how
to construct optimally abstract yet expressive specifications for busy-waiting
modules.

The expressiveness that TaDA Live offers comes at the price of a proof system
that is significantly more complex than ours. Hence, it is also harder to
mechanize. In particular, TaDA Live is an unstable separation logic. That is, not
all assertions are stable in the sense that assertions can generally be invalidated
by other threads. Meanwhile, assertions used as pre- or postconditions in Hoare
triples require stability since they describe locally owned resources. That is, if

LIVENESS VERIFICATION 59

a relevant shared region protocol permits the environment to take a transition,
then we have to prove that this transition does not invalidate the assertion.
In contrast, we implemented our ghost signals and our CLH lock case study
in VeriFast [99]. Since VeriFast is a stable separation logic, it is difficult or
impossible to use it to implement TaDA Live. For the same reason, it is hard
or impossible to implement TaDA Live in the popular mechanised separation
logic Iris [104]. There is, however, a proof checker called Voila [182, 181] for
TaDA [49] a predecessor of TaDA Live.

Since the publication of our ghost signal paper, we focused on different research
areas. Meanwhile, our research group, specifically Fasse and Jacobs [69],
continues this line of work.

TaDA Live also supports specifying the abstract blocking behaviour of spin and
CLH lock [90] implementations as well as a flexible handling of obligations. The
ongoing work of Fasse and Jacobs [69] extends our ghost signal logic to support
more flexible, modular lock specifications for various lock implementations such
as spin, CLH, ticket [127] and cohort [58, 59] locks. In order to verify the
latter one, they need to treat the creation of obligations more flexibly than it
is currently the case in our ghost signal work. They achieve this flexibility by
letting the client create the obligations instead of the module. In the example
lock specifications we developed, every acquire call spawns an obligation to
release the lock. Since we do not allow threads to pass obligations to arbitrary
other threads, this means that we force the acquiring thread to eventually
release it. In a cohort lock, however, an acquired lock can be passed on to
another thread within the same cohort without releasing it. Our logic does not
support these hand-offs. By passing on the lock, the original owner loses their
chance to discharge their release obligation. Moreover, Fasse and Jacobs are
working on mechanising their logic in Iris.

Liveness and Step-Indexed Logics Reasoning about liveness in step-indexed
logics is an active research topic [170, 168, 172]. The main challenge is to
overcome the restriction that by default, step-indexed logics only allow reasoning
about finite execution prefixes.

Tassarotti et al. [170] focus on verifying liveness in concurrent settings that only
have bounded non-determinism (i.e. languages where each state has only finitely
many successors). This restriction allows them to extend Iris to reason about
fair termination-preserving refinement. Spies et al. [168] propose Transfinite
Iris which uses ordinals instead of natural numbers as step indices. Using
these transfinite step indices instead of finite ones allows them to reason about
termination and termination-preserving refinement in non-concurrent programs.
Timany et al. [172] propose Trillium, a separation logic framework to prove

60 CONCLUSION AND FUTURE WORK

intensional refinement relations between a program and an abstract model given
as transition system. In particular, they consider liveness-preserving refinements
concerning concurrent programs under fair scheduling.

5.2 Completeness Thresholds

In § 4 we presented the first notion of completeness thresholds (CT) for software
verification, which allows to obtain unbounded guarantees from bounded proofs.
To be precise, we study CTs for memory safety proofs of array traversing
programs. Bounded verification approaches like bounded model checking (BMC)
offer a high degree of automation and convenience. Yet this comes at the expense
of soundness, since they only explore a finite number of finite execution prefixes.
Bounded model checkers require the user to set two types of bounds upfront:
(i) A bound for input data and (ii) a depth bound limiting the size of the
explored execution prefixes (or alternatively distinct depth bounds for each loop
and recursive function call). In this work, we focus on bounding input data. In
practice, coming up with meaningful bounds is very difficult and requires the
user to take both the target program into account and also the class of errors
they want to find.

Extracting CTs from VCs CTs are a concept originally developed in the
context of model checking finite state transition systems [15, 40]. In this context
CTs are natural numbers that bound the length of path prefixes a model checker
needs to explore to produce a sound proof. The finite nature of these transition
systems allows for the characterisation of CTs in terms of key properties of
the transition system. Programs processing arbitrarily large data structures,
however, correspond to infinite transition systems where said key properties
are often infinite. Naively applying existing approaches would hence lead to
infinite and thus unusable CTs. Instead we study a program’s verification
condition (VC). The VC reflects all potential memory errors that might arise
during the program execution. Most importantly, it shows how different classes
of concrete inputs influence the correctness of the program. In our work, we
show that we can extract a CT Q for a variable x by extracting a validity
preserving subdomain Y ⊆ X from a VC. We prove that Y is validity preserving
by restricting x in the VC to Y and then rewriting the VC until we eliminated x.
If this succeeds, the concrete choice of x ∈ Y does not affect whether or not
a memory error occurs in our program. That is, we can collapse the entire
subdomain Y to an arbitrary representative y ∈ Y . Hence, we found our CT
Q = X \ Y ∪ {y}.

COMPLETENESS THRESHOLDS 61

Increasing Trust in BMC The state space explosion problem and resource
constraints make it often only practical to explore small bounds. Especially
traversing over data structures drives up the computational costs. Obtaining
small CTs for the size of the traversed structure does not only allow us to
obtain unbounded guarantees with respect to one dimension of the proof. In
many cases it will also allow us to reduce the explored size bound and thereby
significantly speed up the proof. We can then reinvest the freed up computation
resources into checking more critical bounds. That is, we can increase another
bound while maintaining the proof’s overall performance. Hence, ultimately we
obtain a bounded proof we can trust significantly more.

As this is an ongoing project, there are several angles that we are going to study
further.

Limitations of CTs In general, VCs over-approximate a program’s correctness
behaviour. That is, it is possible that the VC does not hold, even though
the program is correct. We have to be careful about this when relating
CTs that we extracted from a VC back to the original program. We are
currently investigating this relationship and found that CTs for a variable x
extracted from a VC hold for the program iff the VC does not over-approximate
the influence of x on the correctness of the program. Note that this is
a significantly weaker restriction than requiring that the VC as a whole
does not over-approximate. In appendix § C we formalise this relationship
and call such VCs precise in x (cf. Def. C.7.2). Moreover, we prove a
soundness theorem (cf. Theo. C.8.3) stating that precision is a sufficiently
strong requirement to ensure soundness of any extracted CT with respect to
the original program specification.

Note that this applies to the array traversal pattern and its VC studied in § 4.
Loops are a common cause for over-approximations in VCs. Meanwhile, iteration
over data structures is a common cause for exponential blow ups in model
checking. Therefore, we are going to focus on common traversal patterns for
inductive data structures. We are going to study whether their VCs over-
approximate with respect to the size of the traversed data structures. In case we
find that they do not, we plan to manually compute CTs for the most common
patterns. Model checkers could then automatically search for these patterns
and directly apply our CTs to speed up the model checking process.

Scaling Ultimately, we want to extract CTs for realistic programs that are
much more complex than the array traversal pattern studied in § 4. To achieve
this, we are going to look into several different directions:

62 CONCLUSION AND FUTURE WORK

(i) We are going to study the combinatorial properties of memory safety CTs. As
already sketched in the outlook of § 4, we can exploit the structure of a program
when extracting CTs. We are going to investigate how control structures allow
us to extract a CT by combining CTs from their respective sub-ASTs. Once
we know sufficiently many CT combinators, we will be a big step closer to
extracting CTs from realistic programs.

(ii) Consider a program that traverses an array, reads elements and uses the
read values for some further computation f not involving the array nor its
size s. Intuitively, f should not affect the CT for s. Yet, VCs tend to get very
complex very fast. Hence, proving that we can ignore the sub-VC corresponding
to f proves tricky on the VC level. Meanwhile, program slicing [180] is an
established technique that allows us to do exactly that: Slicing off the parts
of the program not affected by s. We are going to look into this. It seems
promising that (i) and (ii) together will allow us to compute array-size CTs for
realistic programs traversing arrays.

(iii) We are also going to investigate CTs for programs traversing inductive data
structures besides arrays, e.g., lists and trees. The mechanism of extracting
a CT remains the same regardless of the data structure. The VC, however,
and also the traversal patterns we need to study grow in complexity with the
traversed structure. We are confident that extending our results to lists will be
straight-forward. Though, we expect it to be more difficult to do the same for
tree structures. Mainly because of the complexity of common traversal patterns
like breadth-first-search.

Case Study Once we are able to extract CTs for realistic programs, we plan to
empirically evaluate their impact on the runtime of industrial-grade BMC proofs.
Our evaluation target will be FreeRTOS’s TCP/IP stack [56]. FreeRTOS [55]
is an open source, real-time operating system used by many commercial IoT
vendors. The FreeRTOS team heavily relies on CBMC – an industrial-strength,
open source bounded model checker – to ensure the correctness of their system.
In particular, the repository of their TCP stack contains many CBMC proofs
for functions traversing over TCP buffer arrays. We plan to select a number of
these functions, which we then manually transcribe to the WHILE language we
study in our CT work. Once we extracted CTs from those transcribed programs,
we are going to apply them to the existing CBMC proofs and measure the speed
up. We are going to run each proof with two sets of bounds: Once with its
original bounds and once with minimal bounds according to the extracted CTs.
The runtime difference, will then be the speed up we can attribute to our CTs.

We are aware that CTs extracted from transcribed programs are not a perfect
fit for the original C programs. There’s always a risk that the transcription

COMPLETENESS THRESHOLDS 63

misses some intricacies of C semantics. However, we are confident that these
experiments are sufficiently precise to convey insights into the magnitude of
speed up CTs allow for.

Generalise CTs At last, we are currently working on generalising CTs to
arbitrary correctness properties. We found that this is straight-forward for the
theoretical foundations of our work, i.e., the definition of CTs and all theorems
presented in § 4 and appendix § C.

In appendix § D we present a generalised CT theory that considers an abstract
notion of program correctness. Thereby, it covers both safety and liveness
properties such as memory safety and termination, but also more complex
functional correctness properties. In particular, it subsumes the memory
safety CT theory presented in appendix § C. We present a generalised notion
of precision (cf. Def. D.2.4) and a soundness theorem (cf. Theo D.2.11) for
the generalised theory. The latter states that (analogous to the special case,
cf. Theo. C.8.3) precision is a sufficiently strong requirement to ensure soundness
of any extracted CT with respect to the original program specification. Moreover,
we show that – following the intuition behind CTs – CTs are subdomains that
cover error equivalence classes (cf. Theo. D.2.20). This justifies extracting CTs
by factoring out potential error equivalence classes.

Most of the time, it is sufficient to treat correctness as an arbitrary predicate.
The same can, however, not be said for their combinatorial properties. Those
heavily depend on the studied correctness property. Memory safety CTs are
fairly easy to combine, because memory safety is essentially a local property,
as long as we do not change the memory layout relevant for the CT. We are
planning to look into more correctness properties and see whether we can from
that extract a locality requirement that allows for CT combinators similar to
the memory safety ones.

List of Contributions

Published Papers

• T. Reinhard, J. Fasse, and B. Jacobs. Completeness Thresholds
for Memory Safety of Array Traversing Programs. In Proceedings
of the 12th ACM SIGPLAN International Workshop on the State
of the Art in Program Analysis (SOAP) (2023), ACM, pp. 47–54.
doi.org/10.1145/3589250.3596143

• T. Reinhard, and B. Jacobs. Ghost Signals: Verifying Termination
of Busy Waiting. In Proceedings of 33rd International Conference on
Computer-Aided Verification (CAV) (2021), vol. 12760 of Lecture Notes
in Computer Science, Springer, pp. 27–50.
doi.org/10.1007/978-3-030-81688-9_2

• T. Reinhard, A. Timany, and B. Jacobs. A Separation Logic to
Verify Termination of Busy Waiting for Abrupt Program Exit. In
Proceedings of the 22nd ACM SIGPLAN International Workshop on
Formal Techniques for Java-Like Programs (FTfJP) (2020), ACM,
pp. 26–32. doi.org/10.1145/3427761.3428345

• P. Weisenburger, T. Reinhard, G. Salvaneschi. Static Latency Tracking
with Placement Types. In Companion Proceedings for the ISSTA/ECOOP
2018 Workshops. (2018) ACM, pp. 34–36.
doi.org/10.1145/3236454.3236486

65

https://doi.org/10.1145/3589250.3596143
https://doi.org/10.1007/978-3-030-81688-9_2
https://doi.org/10.1145/3427761.3428345
https://doi.org/10.1145/3236454.3236486

66 LIST OF CONTRIBUTIONS

Posters and Competition Contributions

• T. Reinhard, J. Fasse, and B. Jacobs. Completeness Thresholds for
Memory Safety: Unbounded Guarantees Via Bounded Proofs. ACM
SIGPLAN International Conference on Systems, Programming, Languages
and Applications: Software for Humanity (SPLASH) (2023), Poster Track.
Zenodo doi.org/10.5281/zenodo.10066197

• T. Reinhard. A Core Calculus for Static Latency Tracking with
Placement Types. ACM SIGPLAN Student Research Competition at
Symposium on Principles of Programming Languages (SRC@POPL)
(2019), Extended Abstract Round. doi.org/10.48550/arXiv.2007.15617

• T. Reinhard. Type-Level Latency Tracking with Placement Types.
ACM SIGPLAN Student Research Competition at Symposium on Prin-
ciples of Programming Languages (SRC@POPL) (2019), Poster Round.
doi.org/10.5281/zenodo.10160638

Abstracts and Technical Reports

• T. Reinhard, J. Fasse, and B. Jacobs. Completeness Thresholds for
Memory Safety: Unbounded Guarantees via Bounded Proofs (Extended
Abstract). (2023) arxiv.org/abs/2309.09731

• T. Reinhard. Completeness Thresholds for Memory Safety of Array
Traversing Programs: Early Technical Report. (2023)
arxiv.org/abs/2211.11885

• T. Reinhard and B. Jacobs. Ghost Signals: Verifying Termination of
Busy Waiting (Technical Report). Zenodo. (2021)
doi.org/10.5281/zenodo.4775181

• T. Reinhard and B. Jacobs. A Separation Logic to Verify Termination
of Busy-Waiting for Abrupt Program Exit: Technical Report. (2020)
arxiv.org/abs/2007.10215

http://doi.org/10.5281/zenodo.10066197
https://doi.org/10.48550/arXiv.2007.15617
https://doi.org/10.5281/zenodo.10160638
https://arxiv.org/abs/2309.09731
https://arxiv.org/abs/2211.11885
https://doi.org/10.5281/zenodo.4775181
https://arxiv.org/abs/2007.10215

LIST OF CONTRIBUTIONS 67

Invited Talks

• Completeness Thresholds for Memory Safety: Unbounded Guarantees Via
Bounded Proofs. Programming Languages and Verification Seminar,
Portland State University, 2023

• Completeness Thresholds for Memory Safety: Unbounded Guarantees Via
Bounded Proofs. Programming Group, University of St. Gallen (HSG),
2023

Research Internships

• Verification of the Multicore Implementation of the FreeRTOS Scheduler .
Low-level Code Reasoning Team, Automated Reasoning Group,
Amazon Web Services (2022)

• Strategies to Progress From Bounded to Unbounded Verification.
Proof Platforms Team, Automated Reasoning Group,
Amazon Web Services (2021)

https://github.com/Tobias-internship-AWS-2022/FreeRTOS-Kernel/tree/verifast_switch_context/Test/VeriFast/tasks/vTaskSwitchContext

Appendix A

Ghost Signals: Formalization
& Case Studies

This chapter formalizes the work described in chapter 3 and presents additional
case studies. The contents of this chapter were previously published on arXiv
in the form of an appendix of the extended version of the ghost signal paper:

T. Reinhard and Bart Jacobs. Ghost Signals: Verifying Termination
of Busy Waiting (Extended Version). arXiv, CoRR, abs/2010.11762,
2021. https://doi.org/10.48550/arXiv.2010.11762

In this appendix, we formalize our approach and prove its soundness. We
start in § A.1 by defining the notations we use. In § A.2 we define the simple
programming language we consider in this work. In § A.3 we define our logic
and in particular provide a full overview of all the proof and view shift rules we
use and state a soundness theorem. In § A.4 we prove our approach sound. Our
proof utilizes an annotated semantics that keeps track of ghost resources and
thereby connects the runtime and the verification level. We define it in § A.4.1.
Afterwards, in § A.4.2 we define a model for Hoare triples and prove that every
triple that we can derive with our proof rules also holds in our model. In § A.4.3
we use this model and the annotated semantics to prove our soundness theorem.
At last, in § A.5 we present two verification case studies. In § A.5.1 we provide a
detailed proof outline for the realistic example presented in § 3.3. In § A.5.2 we
present and verify a similar program but with a statically unbounded number
of producer and consumer threads.

69

70 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

A.1 General

Definition A.1.1 (Projections). For any Cartesian product C =
∏
i∈I Ai and

any index k ∈ I, we denote the kth projection by πCk :
∏
i∈I Ai → Ak. We define

πCk ((ai)i∈I) := ak.

In case the domain C is clear from the context, we write πk instead of πCk .

Definition A.1.2 (Disjoint Union). Let A,B be sets. We define their disjoint
union as

A ⊔B := A ∪B

if A ∩B = ∅ and leave it undefined otherwise.

Definition A.1.3 (Bags). For any set X we define the set of bags Bags(X)
and the set of finite bags Bagsfin(X) over X as

Bags(X) := X → N,
Bagsfin(X) := {B ∈ Bags(X) | {x ∈ B | B(x) > 0} finite}.

We define union and subtraction of bags as

(B1 ⊎B2)(x) := B1(x) +B2(x),
(B1 \B2)(x) := max(0, B1(x) −B2(x)).

For finite bags where the domain is clear from the context, we define the following
set-like notation:

∅ := x 7→ 0,

{[x]} :=
{
x 7→ 1
y 7→ 0 for y ̸= x,

{[x1, . . . , xn]} :=
n⊎
i=1

{[xi]}.

Further, we define for any n ∈ N the notation:

n · {[x]} := {[x, . . . , x︸ ︷︷ ︸
n times

]}.

We define the following set-like notations for element and subset relationship:

x ∈ B ⇔ B(x) > 0,
B1 ⊆ B2 ⇔ ∀x ∈ B1. B1(x) ≤ B2(x),
B1 ⊂ B2 ⇔ ∃C ⊆ B1. C ̸= ∅ ∧ B1 = B2 \ C.

LANGUAGE 71

For any bag B ∈ Bags(X) and predicate P ⊆ X we define the following
refinement:

{[x ∈ B | P (x)]} :=
{
x 7→ B(x) if P (x),
x 7→ 0 otherwise.

Definition A.1.4 (Disjoint Union). Let A,B be sets. We define their disjoint
union as

A ⊔B := A ∪B

if A ∩B = ∅ and leave it undefined otherwise.

A.2 Language

In this section and the next, we present our approach formally. In this section,
we define the programming language; in § A.3 we define the proof system.

We consider a simple imperative programming language with support for multi-
threading, shared memory and synchronization via mutexes. For its definition
we assume (i) an infinite set of program variables x ∈ X , (ii) an infinite set
of heap locations ℓ ∈ Locs, (iii) a set of values v ∈ Values which includes
heap locations, Booleans B = {True,False} and the unit value tt, (iv) a set of
operations op ∈ Ops and (v) an infinite, totally ordered and well-founded set of
thread IDs θ ∈ Θ.

Definition A.2.1 (Syntax). We define the sets of commands Cmds and
expressions Exps according to the syntax presented in Fig. A.1.

The language contains standard sets of pure expressions Exps and (potentially)
side-effectful commands Cmds. The latter includes commands for heap
allocation and manipulation, forking and loops. We define physical heaps [100]
(as opposed to logical heaps [100] presented in the next section) as a finite set
of physical resource chunks. A points-to chunk ℓ 7→ v expresses that heap
location ℓ points to value v [155, 100]. Moreover, we have chunks to represent
unlocked and locked mutexes.

Definition A.2.2 (Physical Resources). We define the set of physical resources
Rphys syntactically as follows:

rp ∈ Rphys ::= ℓ 7→ v | unlockedpRes(ℓ) | lockedpRes(ℓ)

ℓ ∈ Locs v ∈ Values

72 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

x ∈ X : Program variables ℓ ∈ Locs : Heap locations
v ∈ Values ⊇ {tt} ∪ B ∪ Locs : Values op ∈ Ops : Operations

(a) Assumed sets and variables. X and Locs infinite.

e ∈ Exps ::= x | v | e = e | ¬e | op(ē)
c ∈ Cmds ::= e | while c do skip | fork c | let x := c in c |

if c then c | cons(e) | [e] | [e] := e | new_mutex |
acquire e | release e

E ∈ EvalCtxts ::= if □ then c | let x :=□ in c

(b) Expressions and commands.

with e await c := (while acquire e; let r := c in release e; ¬r do skip)
c ; c′ := (let r := c in c′)
e ̸= e′ := ¬(e = e)
e′′([e]) := (let r :=[e] in e′′(r))

(c) Syntactic sugar. e′′(y) expression with free variable y. r ∈ X not free in e, e′′, c′.

Figure A.1: Syntax.

Definition A.2.3 (Physical Heaps). We define the set of physical heaps as

Heapsphys := Pfin(Rphys)

and the function locspRes : Heapsphys → Pfin(Locs) mapping physical heaps to
the sets of allocated heap locations as

locspRes(h) := {ℓ ∈ Locs | unlockedpRes(ℓ) ∈ h ∨ lockedpRes(ℓ) ∈ h ∨
∃v ∈ Values. ℓ 7→ v ∈ h}.

We denote physical heaps by h.

We represent a program state by a physical heap and a thread pool, which we
define as a partial function mapping a finite number of thread IDs to threads.
Thread IDs are unique and never reused. Hence, we represent running threads
by commands and terminated ones by term instead of removing threads from
the pool. For the following definition, remember that we assume the set of
thread IDs Θ to be infinite and well-founded.

Definition A.2.4 (Thread Pools). We define the set of thread pools TP as the
set of finite partial functions mapping thread IDs to threads:

TP := Θ ⇀fin (Cmds ∪ {term}).

LANGUAGE 73

The symbol term represents a terminated thread. We denote thread pools by P ,
thread IDs by θ and the empty thread pool by ∅tp, i.e.,

∅tp : Θ ⇀fin (Cmds ∪ {term}),
dom(∅tp) = ∅.

We define the operation +tp : TP × {C ⊂ Cmds | |C| ≤ 1} → TP as follows:

P +tp ∅ := P,
P +tp{c} := P [θnew := c] for θnew := min(Θ \ dom(P)).

We define the operational semantics of our language in terms of two small-step
reduction relations: ⇝st for single threads and ⇝tp for thread pools. Since
expressions are pure and their evaluation is deterministic we identify closed
expressions with their ascribed value. (i) h, c⇝st h

′, c′, T expresses that heap h
and command c are reduced in a single step to h′ and c′ and that this thread
forks a set of threads T . This set is either empty or a singleton as no step forks
more than one thread. (ii) h, P θ

⇝tp h
′, P ′ expresses that heap h and thread

pool P are reduced in a single step to h′ and P ′. ID θ identifies the thread
reduced in this step.

Definition A.2.5 (Evaluation of Closed Expressions). We define a partial
evaluation function [[·]] : Exps ⇀ Values on expressions by recursion on the
structure of expressions as follows:

[[v]] := v if v ∈ Values,
[[e = e′]] := True if [[e]] = [[e′]] ̸= ⊥,
[[e = e′]] := False if [[e]] ̸= [[e′]] ∧ [[e]] ̸= ⊥ ∧ [[e′]] ̸= ⊥,
[[¬e]] := False if [[e]] = True,
[[¬e]] := True if [[e]] = False,
[[e]] := ⊥ otherwise.

We identify closed expressions e with their ascribed value [[e]].

Definition A.2.6 (Evaluation Context). We define the set of evaluation
contexts EvalCtxts syntactically as follows:

E ∈ EvalCtxts ::= if □ then c | let x :=□ in c

c ∈ Cmds x ∈ X

For any c ∈ Cmds and E ∈ EvalCtxts, we define E[c] := E[□ 7→ c].

Note that for every c ∈ Cmds, E ∈ EvalCtxts, we have E[c] ∈ Cmds.

74 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

Definition A.2.7 (Single Thread Reduction Relation). We define a reduction
relation ⇝st for single threads according to the rules presented in Figure A.2. A
reduction step has the form

h, c⇝st h
′, c′, T

for a set of forked threads T ⊂ Cmds with |T | ≤ 1.

For simplicity of notation, we omit T if it is clear from the context that no
thread is forked and T = ∅.

Definition A.2.8 (Thread Pool Reduction Relation). We define a thread
pool reduction relation ⇝tp according to the rules presented in Figure A.3. A
reduction step has the form

h, P
θ
⇝tp h

′, P ′.

As thread scheduling is non-deterministic, so is our thread pool reduction
relation ⇝tp. Consider the minimal example we presented in Fig. 3.7a in § 3.2.3
to illustrate busy waiting for a shared memory flag to be set. It does not
terminate if the main thread is never scheduled after the new thread was forked.
Hence, our verification approach relies on the assumption of fair scheduling.
That is, we assume that every thread is always eventually scheduled while it
remains running. Further, we represent program executions by sequences of
reduction steps. As we primarily consider infinite sequences in this work, we
define reduction sequences to be infinite to simplify our terminology.

Definition A.2.9 (Reduction Sequence). Let (hi)i∈N and (Pi)i∈N be infinite
sequences of physical heaps and thread pools, respectively. We call (hi, Pi)i∈N
a reduction sequence if there exists a sequence of thread IDs (θi)i∈N such that
hi, Pi

θi⇝tp hi+1, Pi+1 holds for every i ∈ N.

Definition A.2.10 (Fairness). We call a reduction sequence (hi, Pi)i∈N fair iff
for all i ∈ N and θ ∈ dom(Pi) with Pi(θ) ̸= term there exists some k ≥ i with

hk, Pk
θ
⇝tp hk+1, Pk+1.

A.3 Logic

In this section we formalize the logic we sketched in § 3.2. For the definition
we assume (i) an infinite set of ghost signal IDs id ∈ ID and (ii) an infinite,
partially ordered and well-founded set of levels L ∈ Levs. We denote the level
order relation by <L.

LOGIC 75

ST-Red-EvalCtxt
h, c⇝st h

′, c′, T

h,E[c]⇝st h
′, E[c′], T

ST-Red-Fork
h, fork c⇝st h, tt, {c}

ST-Red-IfTrue
h, if True then c⇝st h, c

ST-Red-IfFalse
h, if False then c⇝st h, tt

ST-Red-Let
h, let x := v in c⇝st h, c[x 7→ v]

ST-Red-While
h,while c do skip⇝st h, if c then while c do skip

ST-Red-Cons
ℓ ̸∈ locspRes(h)

h, cons(v)⇝st h ∪ {ℓ 7→ v}, ℓ

ST-Red-ReadHeapLoc
ℓ 7→ v ∈ h

h, [ℓ]⇝st h, v

ST-Red-Assign
h ⊔ {ℓ 7→ v′}, [ℓ] := v ⇝st h ⊔ {ℓ 7→ v}, tt

ST-Red-NewMutex
ℓ ̸∈ locspRes(h)

h,new_mutex⇝st h ∪ {unlockedpRes(ℓ)}, ℓ

ST-Red-Acquire
h ⊔ {unlockedpRes(ℓ)},acquire ℓ⇝st h ⊔ {lockedpRes(ℓ)}, tt

ST-Red-Release
h ⊔ {lockedpRes(ℓ)}, release ℓ⇝st h ⊔ {unlockedpRes(ℓ)}, tt

Figure A.2: Single thread reduction rules.

TP-Red-Lift
P (θ) = c h, c⇝st h

′, c′, T

h, P
θ
⇝tp h

′, P [θ := c′] +tp T

TP-Red-Term
P (θ) = v

h, P
θ
⇝tp h, P [θ := term]

Figure A.3: Thread pool reduction rules

76 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

Definition A.3.1 (Fractions). We define the set of fractions as

F := {f ∈ Q | 0 < f ≤ 1}

and denote fractions by f .

Definition A.3.2 (Obligations, Signals & Mutexes). We define the set of
obligations O and signals S as

O := (Locs ∪ ID) × Levs,
S := ID × Levs.

We denote bags of obligations by O ∈ Bags(O), signals by s ∈ S and mutexes by
m ∈ Locs× Levs. For convenience of notation, we define the following selector
functions:

(id,_).id := id for signals,
(ℓ,_).loc := ℓ for mutexes,
(_, L).lev := L for signals, mutexes and obligations.

Definition A.3.3 (Assertions). We define the set of assertions A according to
the syntax presented in Figure A.4.1 We omit the index set I in quantifications
when its choice becomes clear from the context and write ∃i. a(i) and ∀i. a(i)
instead of ∃i ∈ I. a(i) and ∀i ∈ I. a(i), respectively.

In § A.2, we used physical resources and heaps to model a program’s state.
We use assertions to capture which fraction of a physical resource and which
ghost resources a thread owns. Therefore, we have to interpret assertions in an
extended notion of state. We define logical heaps and logical resources [100] which
correspond to physical ones but additionally encompass ghost resources and
ownership. For instance, logical resources include signal chunks and initialized
mutex chunks are associated with a lock invariant. Rather than being a set of
resources, logical heaps map logical resources to fractions. This allows us to
express which portion of a resource a thread owns.

Definition A.3.4 (Logical Resources). We define the set of logical resources
Rlog syntactically as follows:

rl ∈ Rlog ::= ℓ 7→ v | signallRes((id, L), b) | uninitlRes(ℓ) |
mutexlRes((ℓ, L), a) | lockedlRes((ℓ, L), a, f) | obslRes(O)

1That is, we define A as the least fixpoint of F where F (A) = {True, False} ∪ {¬a | a ∈
A} ∪ {a1 ∧ a2 | a1, a2 ∈ A} ∪ · · · ∪ {

∨
A′ | A′ ⊆ A} ∪ Since F is a monotonic function

over a complete lattice, it has a least fixpoint according to the Knaster-Tarski theorem [169].

LOGIC 77

A ⊆ A Index set I

a ∈ A ::= True | False | ¬a | a ∧ a | a ∨ a | a ∗ a | [f]ℓ 7→ v
|
∨
A

| uninit(ℓ) | [f]mutex((ℓ, L), a) | locked((ℓ, L), a, f)
| signal((id, L), b) | obs(O)

(a) Assertion syntax. We omit quantification domain I when it is clear from the
context.

a1 → a2 := ¬a1 ∨ a2
a1 ↔ a2 := (a1 → a2) ∧ (a2 → a1)
∃i ∈ I. a(i) :=

∨
{a(i) | i ∈ I}

∀i ∈ I. a(i) := ¬∃i ∈ I.¬a(i)

(b) Syntactic sugar.

Figure A.4: Assertions.

Further, we define the function getHLocslRes : Rlog → Locs mapping logical
resources to their respective (either empty or singleton) set of involved heap
locations as

getHLocslRes(ℓ 7→ v) := {ℓ},
getHLocslRes(uninitlRes(ℓ)) := {ℓ},
getHLocslRes(mutexlRes((ℓ, L), a)) := {ℓ},
getHLocslRes(lockedlRes((ℓ, L), a, f)) := {ℓ},
getHLocslRes(_) := ∅ otherwise.

Definition A.3.5 (Logical Heaps). We define the set of logical heaps as

H ∈ Heapslog := Rlog → {q ∈ Q | q ≥ 0}.

We define the empty logical heap ∅log as the constant zero function

∅log : rl 7→ 0.

We denote logical heaps by H, point-wise addition by + and multiplication with
non-negative rationals by ·, i.e.,

(H1 +H2)(rl) := H1(rl) +H2(rl),
(q ·H)(rl) := q · (H(rl))

for q ∈ Q with q ≥ 0. We give · a higher precedence than +. For convenience
of notation we represent logical heaps containing finitely many resources by sets
of resources as follows

{rl
1, . . . , r

l
n} :=

{
rl
i 7→ 1
x 7→ 0 if x ̸∈ {rl

1, . . . , r
l
n}.

78 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

Definition A.3.6 (Logical Heap Predicates). Let H be a logical heap. We call
H complete and write completelh(H) if it contains exactly one obligations chunk,
i.e., if there exists a bag of obligations O with H(obslRes(O)) = 1 and if there
does not exist any bag of obligations O′ with O ̸= O′ and H(obslRes(O′)) > 0.

We call H finite and write finitelh(H) if it contains only finitely many resources,
i.e., if the set {rl ∈ Rlog | H(rl) > 0} is finite.

We call H consistent and write consistentlh(H) if (i) it contains only full
obligations chunks, i.e., if

H(obslRes(O)) ∈ N

holds for all O ∈ Bags(O) and if (ii) heap locations are unique in H, i.e.,
if there are no rl

1, r
l
2 ∈ Rlog with rl

1 ̸= rl
2, H(rl

1) > 0, H(rl
2) > 0 and with

getHLocslRes(rl
1) ∩ getHLocslRes(rl

2) ̸= ∅.

We interpret assertions in terms of a model relation. H ⊨A a expresses that
assertion a holds with respect to logical heap H. Further, we define the view
shift relation ⇛ and the proof relation ⊢ we sketched in § 3.2.
Definition A.3.7 (Assertion Model Relation). We define a model relation
⊨A ⊂ Heapslog × A for assertions by recursion on the structure of assertions
according to the rules presented in Figure A.5. We write H ⊨A a to express that
logical heap H models assertion a and H ̸⊨A a to express that H ⊨A a does not
hold.

Definition A.3.8. Let L ∈ Levs, O ∈ Bags(O). We define ≺L ⊂ Levs× O as

L ≺L O ⇐⇒ ∀o ∈ O. L <L o.lev.

Definition A.3.9 (View Shift). We define a view shift relation ⇛ ⊂ A × A
according to the rules presented in Fig. A.6.

Definition A.3.10 (Proof Relation). We define a proof relation ⊢ ⊂ A ×
Cmds × (Values → A) according to the rules presented in Fig. A.7 and A.8. We
state the provability of a Hoare triple in the form of ⊢ {A} c {λr.B(r)} where
r captures the value returned by c. To simplify the notation, we omit the result
value if it is clear from the context or irrelevant.

Following the intuition provided in § 3.2, we can prove that a program terminates
by proving that it discharges all obligations. The following theorem states that
this approach is sound.
Theorem A.3.11 (Soundness). Let ⊢ {obs(∅)} c {obs(∅)} hold. There exists
no fair, infinite reduction sequence (hi, Pi)i∈N with h0 = ∅ and P0 = {(θ0, c)}
for any choice of θ0.

LOGIC 79

H ⊨A True
H ̸⊨A False
H ⊨A ¬a if H ̸⊨A a
H ⊨A a1 ∧ a2 if H ⊨A a1 ∧H ⊨A a2
H ⊨A a1 ∨ a2 if H ⊨A a1 ∨H ⊨A a2
H ⊨A a1 ∗ a2 if ∃H1, H2 ∈ Heapslog. H = H1 +H2 ∧

H1 ⊨A a1 ∧H2 ⊨A a2
H ⊨A [f]ℓ 7→ v if H(ℓ 7→ v) ≥ f
H ⊨A

∨
A if ∃a ∈ A. H ⊨A a

H ⊨A [f]uninit(ℓ) if H(uninitlRes(ℓ)) ≥ f
H ⊨A [f]mutex(m,P) if H(mutexlRes(m,P)) ≥ f
H ⊨A [f]locked(m,P, fu) if H(lockedlRes(m,P, fu)) ≥ f
H ⊨A [f]signal(s, b) if H(signallRes(s, b)) ≥ f
H ⊨A obs(O) if H(obslRes(O)) ≥ 1

Figure A.5: Assertion model relation. H ̸⊨A a expresses that H ⊨A a does not
hold.

VS-SemImp
∀H. consistentlh(H) ∧H ⊨A A ⇒ H ⊨A B

A⇛ B

VS-Trans
A⇛ C C ⇛ B

A⇛ B

VS-Or
A1 ⇛ B A2 ⇛ B

A1 ∨A2 ⇛ B

VS-NewSignal
L ∈ Levs

obs(O)⇛ ∃id. obs(O ⊎ {[(id, L)]}) ∗ signal((id, L),False)

VS-SetSignal
obs(O ⊎ {[s]}) ∗ signal(s,_)⇛ obs(O) ∗ signal(s,True)

VS-MutInit
L ∈ Levs

uninit(ℓ) ∗ P ⇛ mutex((ℓ, L), P)

VS-GhostLoop
∀n′. (I(n′) ∧ n′ > 0⇛ I(n′ − 1))

I(n) ∧ n ≥ 0⇛ I(0)

Figure A.6: View shift rules.

80 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

PR-Frame
⊢ {A} c {B}

⊢ {A ∗ F} c {B ∗ F}

PR-ViewShift
A⇛ A′ ⊢ {A′} c {B′} B′ ⇛ B

⊢ {A} c {B}

PR-Exp
[[e]] ∈ Values

⊢ {True} e {λr. r = [[e]]}

PR-Exists
∀a ∈ A. ⊢ {a} c {B}

⊢ {
∨
A} c {B}

PR-Fork
⊢ {obs(Of) ∗A} c {obs(∅)}

⊢ {obs(Om ⊎Of) ∗A} fork c {λr. obs(Om) ∗ r = tt}

(a) Basic Proof Rules.

PR-If
⊢ {A} cb {λb. C(b) ∧ (b = True ∨ b = False)}

⊢ {C(True)} ct {B} C(False)⇛ B

⊢ {A} if cb then ct {B}

PR-Await
S ⊂fin S ∀O′′. (∃s. signal(s,False) ∗R(s,O′′)⇛ I(O′′) ∗ P){

obs(O′ ⊎ {[m]}) ∗ I(O′) ∗ P
}

∀O′. ⊢ c
λb. ∃O′′. obs(O′′ ⊎ {[m]})

∗ if b
then P ∗B(O′′)
else ∃s ∈ S. signal(s,False) ∗R(s,O′′) ∗ s.lev ≺L O

′′

∗m.lev ≺L O
′′

⊢

{obs(O) ∗ [f]mutex(m,P) ∗ I(O) ∗m.lev ≺L O}
with m await c
{∃O′. obs(O′) ∗ [f]mutex(m,P) ∗B(O′)}

PR-While-Dec
∀n′. ⊢ {I(n′)} cb {λb. if b then ∃n′′. 0 ≤ n′′ < n′ ∧ I(n′′) else B}

⊢ {I(n) ∧ n ≥ 0} while cb do skip {B}

PR-Let
⊢ {A} c {λr. C(r)} ∀v. ⊢ {C(v)} c′[x 7→ v] {B}

⊢ {A} let x := c in c′ {B}

(b) Control Structures.

Figure A.7: Proof rules (part 1).

SOUNDNESS 81

PR-Acquire
m.lev ≺L O

⊢
{obs(O) ∗ [f]mutex(m,P)}

acquire m.loc
{λr. r = tt ∗ obs(O ⊎ {[m]}) ∗ locked(m,P, f) ∗ P}

PR-Release

⊢
{obs(O ⊎ {[m]}) ∗ locked(m,P, f) ∗A}

release m.loc
{obs(O) ∗ [f]mutex(m,P) ∗B}

PR-NewMutex
⊢ {True} new_mutex {λℓ. uninit(ℓ)}

(a) Mutexes.

PR-Cons
⊢ {True} cons(v) {λℓ. ℓ 7→ v}

PR-ReadHeapLoc
⊢ {[f]ℓ 7→ v} [ℓ] {λr. r = v ∗ [f]ℓ 7→ v}

PR-AssignToHeap
⊢ {ℓ 7→ _} [ℓ] := v {λr. r = tt ∗ ℓ 7→ v}

(b) Heap Access.

Figure A.8: Proof rules (part 2).

A.4 Soundness

We already sketched the high-level intuition behind our soundness argument in
§ 3.2.1. In this section, we prove it formally. In § A.4.1 we define an annotated
reduction semantics that tracks which resources threads own (including ghost
resources). In § A.4.2 we define a model relation for Hoare triples and prove
that every specification we can derive with our proof rules also holds in our
model. In § A.4.3 we use the annotated semantics and the model relation to
prove the soundness theorem we stated above.

A.4.1 Annotated Semantics

During runtime, all threads share one physical heap where every thread is free
to access every resource. This does not reflect the notions of ownership and

82 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

c ∈ Cmds+ ::= e | while c do skip | fork c |
let x := c in c | if c then c | cons(e) |
[e] | [e] := e |
new_mutex | acquire e | release e |

with S, ℓ await c | while n, c do skip
n ∈ N
S ⊂fin S finite set of signals

Figure A.9: Extended set of commands for intermediate representation.

lock invariants which we maintain on the verification level. It also does not
allow us to restrict actions based on levels, e.g., only allowing the acquisition
of a mutex if its level is lower than the level of each held obligation. Hence:
(i) We annotate every thread by a logical heap to express which resources it
owns (including ghost resources) and thereby obtain an annotated thread pool.
(ii) We represent the program state by an annotated heap that keeps track of
lock invariants and levels. In particular, we associate unlocked mutexes with
logical heaps to represent the resources they protect. Since annotated heaps
keep track of levels, they also keep track of signals.

Definition A.4.1 (Intermediate Representation). We define an extended set
of commands Cmds+ according to the syntax presented in Figure A.9.

For the rest of this appendix, commands c refer to the extended set of commands,
i.e., c ∈ Cmds+.

Definition A.4.2 (Annotated Resources). We define the set of annotated
resources AnnoRes as

ra ∈ AnnoRes ::= ℓ 7→ v | uninitaRes(ℓ) |
unlockedaRes((ℓ, L), a,H) | lockedaRes((ℓ, L), a, f) |
signalaRes((id, L), b)

where H does not contain any obligations chunks.

Definition A.4.3 (Annotated Heaps). We define the set of annotated heaps as

Heapsannot := Pfin(AnnoRes),

SOUNDNESS 83

the function locsah : Heapsannot → Pfin(Locs) mapping annotated heaps to the
sets of allocated heap locations as

locsah(ha) := {ℓ ∈ Locs | ∃v ∈ Values. ∃L ∈ Levs. ∃a ∈ A.
∃H ∈ Heapslog. ∃f ∈ F .
ℓ 7→ v ∈ ha ∨ uninitaRes(ℓ) ∈ ha ∨
unlockedaRes((ℓ, L), a,H) ∈ ha ∨
lockedaRes((ℓ, L), a, f) ∈ ha}

and the function idsah : Heapsannot → Pfin(ID) mapping annotated heaps to sets
of allocated signal IDs as

idsah(ha) := {id ∈ ID | ∃L ∈ Levs. ∃b ∈ B. signalaRes((id, L), b) ∈ ha}.

We denote annotated heaps by ha.

We call an annotated heap ha finite and write finiteah(ha) if there exists no chunk
unlockedaRes((ℓ, L), a,H) ∈ ha for which finitelh(H) does not hold.

Physical, annotated and logical heaps represent program states on different
abstraction levels. While each level focuses on different aspects of the program
state, they also share information. For instance, all three kinds of heaps use
points-to chunks. Also, annotated and logical heaps both have signal chunks.
Therefore, when referring to multiple kinds of heaps to talk about the same
program state, we have to ensure that their contents match and do not contradict
each other. We call such heaps compatible. The following definitions make this
precise.

Definition A.4.4 (Compatibility of Annotated and Physical Heaps). We
inductively define a relation ∼ah ph ⊂ Heapsannot × Rphys between annotated and
physical heaps such that the following holds:

∅ ∼ah ph ∅,
ℓ 7→ v ∪ ha ∼ah ph ℓ 7→ v ∪ h,

uninitaRes(ℓ) ∪ ha ∼ah ph unlockedpRes(ℓ) ∪ h,

unlockedaRes((ℓ, L), P,HP) ∪ ha ∼ah ph unlockedpRes(ℓ) ∪ h,

lockedaRes((ℓ, L), P, f) ∪ ha ∼ah ph lockedpRes(ℓ) ∪ h,

signalaRes(s, b) ∪ ha ∼ah ph h,

where ha ∈ Heapsannot and h ∈ Heapsphys are annotated and physical heaps with
ha ∼ah ph h.

Definition A.4.5 (Compatibility of Annotated and Logical Heaps). We
inductively define a relation ∼ah lh ⊂ Heapsannot × Heapslog between annotated

84 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

and logical heaps such that the following holds:

∅ ∼ah lh ∅log,
ha ∪ {ℓ 7→ v} ∼ah lh H + {ℓ 7→ v},
ha ∪ {uninitaRes(ℓ)} ∼ah lh H + {uninitlRes(ℓ)},
ha ∪ {unlockedaRes(m,P,HP)} ∼ah lh H + {mutexlRes(m,P)} +HP ,
ha ∪ {lockedaRes(m,P, f)} ∼ah lh H + {lockedlRes(m,P, f)}

+ (1 − f) · {mutexlRes(m,P)},
ha ∪ {signalaRes(s, b)} ∼ah lh H + {signallRes(s, b)},
ha ∼ah lh H + {obslRes(O)},

where ha ∈ Heapsannot and H ∈ Heapslog are annotated and logical heaps with
ℓ,m.loc ̸∈ locsah(ha), s.id ̸∈ idsah(ha) and ha ∼ah lh H.

We define annotated versions ⇝atp and ⇝ast of the relations ⇝tp and ⇝st,
respectively. The annotated reduction semantics we thereby obtain needs to
reflect ghost proof steps implemented by view shifts. Hence, we define ⇝atp
in terms of two relations: (i) ⇝ghost for ghost steps and (i) ⇝real for actual
program execution steps. The annotated semantics ensure that a reduction gets
stuck if a thread violates any of the restrictions formulated by our proof rules.

Definition A.4.6 (Annotated Single Thread Reduction Relation). We define
a reduction relation ⇝ast for annotated threads according to the rules presented
in Fig. A.10 and A.11. A reduction step has the form

ha, H, c⇝ast h
a′, H ′, c′, T a

for a set of annotated forked threads T a ⊂ Heapslog × Cmds with |T a| ≤ 1.

It indicates that given annotated heap ha and a logical heap H, command c can
be reduced to annotated heap ha′, logical heap H ′ and command c′. The either
empty or singleton set T a represents whether a new thread is forked in this step.

For simplicity of notation we omit T a if it is clear from the context that no
thread is forked and T a = ∅.

Definition A.4.7 (Annotated Thread Pools). We define the set of annotated
thread pools TPa as the set of finite partial functions mapping thread IDs to
annotated threads:

TPa := Θ ⇀fin Heapslog × (Cmds+ ∪ {term}).

We denote annotated thread pools by P a and the empty thread pool by ∅atp, i.e.,

∅atp : Θ ⇀fin Heapslog × (Cmds+ ∪ {term}),
dom(∅atp) = ∅.

SOUNDNESS 85

AST-Red-EvalCtxt
ha, H, c⇝ast h

a′, H ′, c′, T

ha, H,E[c]⇝ast h
a′, H ′, E[c′], T

AST-Red-Fork
ha, Hm + {obslRes(Om ⊎Of)} +Hf , fork c⇝ast
ha, Hm + {obslRes(Om)}, tt, {({obslRes(Of)} +Hf), c)}

(a) Basic constructs.

AST-Red-IfTrue
ha, H, if True then c⇝ast h

a, H, c
AST-Red-IfFalse
ha, H, if False then c⇝ast h

a, H, tt

AST-Red-Let
ha, H, let x := v in c⇝ast h

a, H, c[x 7→ v]

(b) Control structures.

AST-Red-Cons
ℓ ̸∈ locsah(ha)

ha, H, cons(v)
⇝ast ha ∪ {ℓ 7→ v}, H + {ℓ 7→ v}, ℓ

AST-Red-ReadHeapLoc
ℓ 7→ v ∈ ha

ha, H, [ℓ]⇝ast h
a, H, v

AST-Red-Assign
h ⊔ {ℓ 7→ v}, H + {ℓ 7→ v}, [ℓ] := v ⇝ast h ⊔ {ℓ 7→ v′}, H + {ℓ 7→ v′}, tt

(c) Heap access.

AST-Red-NewMutex
ℓ ̸∈ locsah(ha)

ha, H,new_mutex⇝ast h
a ∪ {uninitaRes(ℓ)}, H + {uninitlRes(ℓ)}, ℓ

AST-Red-Acquire
f ∈ F m.lev ≺L O

ha ⊔ {unlockedaRes(m, a,HP)},
H + {obslRes(O)} + f · {mutexlRes(m,P)},
acquire m.loc
⇝ast ha ⊔ {lockedaRes(m,P, f)},

H + {obslRes(O ⊎ {[m]}), lockedlRes(m,P, f)} +HP ,
tt

AST-Red-Release
HP ⊨A P consistentlh(HP) ∃O. H(obslRes(O)) ≥ 1

ha ⊔ {lockedaRes(m,P, f)}, H + {obslRes(O ⊎ {[m]}), lockedlRes(m,P, f)} +HP ,
release m.loc
⇝ast ha ⊔ {unlockedaRes(m,P,HP)}, H + {obslRes(O)} + f · {mutexlRes(m,P)},

tt

(d) Mutexes.

Figure A.10: Annotated single thread reduction rules (part 1).

86 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

AST-Red-WhileDec-Init
n ≥ 0

ha, H,while c do skip⇝ast h
a, H,while n, c do skip

AST-Red-WhileDec
n ≥ 0

ha, H,while n, c do skip⇝ast h
a, H, if c then while n− 1, c do skip

AST-Red-Await-Init
S ⊂fin S r ∈ X

ha, H,with ℓ await c⇝ast h
a, H, if acquire ℓ; let r := c in release ℓ; ¬r

then with S, ℓ await c

AST-Red-Await
r ∈ X H(obslRes(O)) ≥ 1

(id, L) ∈ S L ≺L O H(signallRes((id, L),False)) ≥ 1
ha, H,with S, ℓ await c⇝ast h

a, H, if acquire ℓ; let r := c in release ℓ; ¬r
then with S, ℓ await c

(a) Loops and auxiliary commands.

Figure A.11: Annotated single thread reduction rules (part 2).

We define the extension operation +atp analogously to +tp, cf. Definition A.2.4.

For convenience of notation we define selector functions for annotated threads
as

(H, c).heap := H,
(H, c).cmd := c.

Definition A.4.8 (Ghost Reduction Relation). We define a thread pool
reduction relation ⇝ghost according to the rules presented in Fig. A.12 to express
ghost steps. A ghost reduction step has the form

ha, P a θ
⇝ghost h

a′, P a′.

We denote its reflexive transitive closure by ⇝∗
ghost.

Definition A.4.9 (Non-ghost Thread Pool Reduction Relation). We define a
thread pool reduction relation ⇝real according to the rules presented in Fig. A.13
to express real (i.e. non-ghost) reduction steps. A reduction step has the form

ha, P a θ
⇝real h

a′, P a′.

SOUNDNESS 87

GTP-Red-NewSignal
P a(θ) = (H + {obslRes(O)}, c) id ̸∈ idsah(ha)

H ′ = H + {signallRes((id, L),False), obslRes(O ⊎ {[id, L]})}

ha, P a θ
⇝ghost h

a ∪ {signalaRes((id, L),False)}, P a[θ := (H ′, c)]

GTP-Red-SetSignal
P a(θ) = (H + {signallRes(s,False), obslRes(O ⊎ {[s]})}, c)

H ′ = H + {signallRes(s,False), obslRes(O)}

ha ⊔ {signalaRes(s,False)}, P a θ
⇝ghost h

a ⊔ {signalaRes(s,True)}, P a[θ := (H ′, c)]

GTP-Red-MutInit
P a(θ) = (H + {uninitlRes(ℓ)} +HP , c) H ′ = H + {mutexlRes((ℓ, L), HP)}

HP ⊨A P consistentlh(HP) ∃O. H(obslRes(O)) ≥ 1

ha ⊔ {uninitaRes(ℓ)}, P a θ
⇝ghost h

a ⊔ {unlockedaRes((ℓ, L), a,HP)}, P a[θ := (H ′, c)]

Figure A.12: Ghost thread pool reduction rules.

RTP-Red-Lift
θf = min(Θ \ dom(P a)) P a(θ) = (H, c) ha, H, c⇝ast h

a′, H ′, c′, T a

ha, P a θ
⇝real h

a′, P a[θ := (H ′, c′)] +atp T
a

RTP-Red-Term
P a(θ) = (H, v) H.obs = ∅

ha, P a θ
⇝real h

a, P a −atp θ

Figure A.13: Non-ghost thread pool reduction rules.

Definition A.4.10 (Annotated Thread Pool Reduction Relation). We define
the annotated thread pool reduction relation ⇝atp as

⇝atp := ⇝ghost ∪⇝real .

Note that the reduction relation ⇝atp indeed reflects the restrictions our proof
rules impose. For instance, proof rule PR-Await only allows a thread to wait
for a signal if the signal’s level is below the level of all held obligations. AST-
Red-Await ensures that any thread that does not comply with this restriction
gets stuck.

88 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

Definition A.4.11 (Annotated Reduction Sequence). Let (ha
i)i∈N and (P a

i)i∈N
be infinite sequences of annotated heaps and annotated thread pools, respectively.
Let sig : N⇀ S be a partial function mapping indices to signals.

We call ((ha
i , P

a
i)i∈N, sig) an annotated reduction sequence if there exists a

sequence of thread IDs (θi)i∈N such that the following holds for every i ∈ N:

• ha
i , P

a
i
θi⇝atp h

a
i+1, P

a
i+1

• If this reduction step does not result from an application of RTP-Red-Lift
in combination with AST-Red-Await, then sig(i) = ⊥. If AST-Red-
Await is applied to some signal s, then sig(i) = s.

In case the signal annotation sig is clear from the context or not relevant, we
omit it and write (ha

i , P
a
i)i∈N instead of ((ha

i , P
a
i)i∈N, sig).

We call (ha
i , P

a
i) an annotated machine configuration.

Definition A.4.12 (Fairness of Annotated Reduction Sequences). We call an
annotated reduction sequence (ha

i , P
a
i)i∈N fair iff for all i ∈ N and θ ∈ dom(P a

i)
with P a

i (θ).cmd ̸= term there exists some k ≥ i with

ha
k, P

a
k

θ
⇝real h

a
k+1, P

a
k+1.

Lemma A.4.13 (Preservation of Finiteness). Let (ha
i , P

a
i)i∈N be an annotated

reduction sequence with finiteah(ha
0) and finitelh(P a

0 (θ).heap) for all θ ∈ dom(P a
0).

Then, finitelh(P a
i (θ).heap) holds for all i ∈ N and all θ ∈ dom(P a

i).

Proof. Proof by induction on i.

Lemma A.4.14 (Preservation of Completeness). Let (ha
i , P

a
i)i∈N be an

annotated reduction sequence with completelh(P a
0 (θ).heap) for all θ ∈ dom(P a

0).
Then, completelh(P a

i (θ).heap) holds for every i ∈ N and every θ ∈ dom(P a
i).

Proof. Proof by induction on i.

Every thread of an annotated thread pool is annotated by a thread-local logical
heap that expresses which resources are owned by this thread. In the following
we define a function to extract the logical heap expressing which resources
are owned by threads of a thread pool (i.e. the sum of all thread-local logical
heaps).

SOUNDNESS 89

Definition A.4.15. We define the function ownedResHeapatp : TPa → Heapslog

mapping annotated thread pools to logical heaps as follows:

P a 7→
∑

θ∈ dom(P a)

P a(θ).heap

Annotated resources representing unlocked locks, i.e., unlockedaRes(m, a,Ha),
contain a logical heap Ha that expresses which resources are protected by this
lock. In the following, we define a function that extracts a logical heap from an
annotated heap ha expressing which resources are protected by unlocked locks
in ha.
Definition A.4.16. We define the function protectedResHeapah : Heapsannot →

Heapslog mapping annotated heaps to logical heaps as follows:

For any annotated heap ha let

LockInvs(ha) := {[HP ∈ Heapslog | ∃m ∈ Locs× Levs. ∃P ∈ A.
unlockedaRes(m,P,HP) ∈ ha]}

be the auxiliary bag aggregating all logical heaps corresponding to lock invariants
of unlocked locks stored in ha. We define protectedResHeapah as

ha 7→
∑

HP ∈ LockInvs(ha)

HP .

We consider a machine configuration (ha, P a) to be consistent if it fulfils three
criteria: (i) Every thread-local logical heap is consistent, i.e., for all used thread
IDs θ, P a(θ).heap only stores full obligations chunks. (ii) Every logical heap
protected by an unlocked lock in ha is consistent. (iii) ha is compatible with
the logical heap that represents (a) the resources owned by threads in P a and
(b) the resources protected by unlocked locks stored in ha.
Definition A.4.17 (Consistency of Annotated Machine Configurations). We
call an annotated machine configuration (ha, P a) consistent and write
consistentconf(ha, P a) if all of the following hold:

• consistentlh(P a(θ).heap) for all θ ∈ dom(P a),

• ∀m. ∀P. ∀HP . unlockedaRes(m,P,HP) ∈ ha → consistentlh(HP),

• ha ∼ah lh ownedResHeapatp(P a) + protectedResHeapah(ha).
Lemma A.4.18 (Preservation of Consistency). Let (ha

i , P
a
i)i∈N be an annotated

reduction sequence with consistentconf(ha
0, P

a
0). Then, consistentconf(ha

i , P
a
i) holds

for every i ∈ N.

Proof. Proof by induction on i.

90 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

A.4.2 Hoare Triple Model Relation

We interpret program specifications {A} c {B} in terms of a model relation
⊨H {A} c {B} and an auxiliary safety relation safe(H, c).

In the annotated semantics we annotate threads by local logical heaps that
express which resources they own (including ghost resources) and use an
extended intermediate representation for commands. We say that an annotated
thread pool P a is an annotation of a plain thread pool P if they represent
matching information. That is, they must store matching threads under the
same thread IDs.

Definition A.4.19 (Command Annotation). We define the predicate annotcmd ⊂
Cmds+ × Cmds such that annotcmd(c+, c) holds iff c results from c+ by replacing
all subcommands of the form (i) while n, c′ do skip by while c′ do skip and
(ii) with S, e await c′ by with e await c′.

Definition A.4.20 (Thread Pool Annotation). We define a predicate annottp ⊂
TPa × TP such that:

annottp(P a, P)
⇐⇒

dom(P a) = dom(P) ∧ ∀θ ∈ dom(P). annotcmd(P a(θ).cmd, P (θ))

Intuitively, a command c is safe under a logical heap H if H provides the
necessary resources so that for every execution of c, there is a corresponding
annotated execution of c that does not get stuck. That is, if we consider a
reduction step from c to c′ in the plain operational semantics, then the resources
that thread c owns according to H, allow us to perform a corresponding sequence
of annotated reduction steps leading to c′. Specifically, we can perform a finite
number of ghost steps to manipulate ghost resources followed by one real step
to reduce c to c′. Furthermore, safety requires c′ to be safe under its respective
local logical heap. The same must hold for any potentially forked thread.

Definition A.4.21 (Safety). We define the safety predicate safe ⊆ Heapslog ×
Cmds coinductively as the greatest solution (with respect to ⊆) of the following

SOUNDNESS 91

equation:

safe(H, c)
⇐⇒

completelh(H) →
∀P, P ′.∀θ ∈ dom(P).∀h, h′.∀P a.∀ha.

consistentconf(ha, P a) ∧ ha ∼ah ph h ∧
P (θ) = c ∧ P a(θ) = (H, c) ∧ annottp(P a, P) ∧ h, P

θ
⇝tp h

′, P ′ →
∃PG, P a′. ∃hG, ha′.

ha, P a
θ

⇝∗
ghost h

G, PG ∧ hG, PG θ
⇝real h

a′, P a′ ∧ annottp(P a′, P ′) ∧
ha′ ∼ah ph h

′ ∧
∀(Hf , cf) ∈ range(P a′) \ range(P a). safe(Hf , cf).

We interpret Hoare triples {A} c {B} in terms of safety as follows: Let E be
an evaluation context that (when instantiated) is safe under any heap HB which
fulfills postcondition B, i.e., let E be a context for which∀v. ∀HB . HB ⊨A B(v) →
safe(HB , E[v]) holds. Then, any heap HA that satisfies precondition A provides
all resources necessary to safely run E[c], i.e., ∀HA. HA ⊨A A → safe(HA, E[c]).
Thereby, if the reduction of c under HA finishes and returns a value v, then
postcondition B(v) holds in the final state. In the following definition, we also
allow HA and HB to be embedded into arbitrary heap frames HF .

Definition A.4.22 (Hoare Triple Model Relation). We define the model relation
for Hoare triples ⊨H ⊂ A × Cmds × (Values → A) such that:

⊨H {A} c {λr.B(r)}
⇐⇒

∀HF . ∀E. (∀v. ∀HB . HB ⊨A B(v) → safe(HB +HF , E[v]))
→ ∀HA. HA ⊨A A → safe(HA +HF , E[c])

We can instantiate context E in above definition to let x :=□ in tt, which
yields the consequent safe(HA + HF , let x := c in tt). Note that this implies
safe(HA +HF , c). Also note that compliance with the frame rule directly follows
from above definition, i.e., ⊨H {A} c {B} implies ⊨H {A ∗ F} c {B ∗ F} for
any frame F . Further, every specification we can derive in our proof system
also holds in our model.

Lemma A.4.23 (Hoare Triple Soundness). Let ⊢ {A} c {B} hold, then also
⊨H {A} c {B} holds.

Proof. Proof by induction on the derivation of ⊢ {A} c {B}.

92 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

A.4.3 Soundness Proof

In this section we prove our soundness theorem.

Constructing Annotated Executions Given a command c which provably
discharges all obligations and a fair reduction sequence for c, we can construct
a corresponding annotated reduction sequence (ha

i , P
a
i)i∈N. This is a useful tool

to analyse program executions as (ha
i , P

a
i)i∈N carries much more information

than the original sequence, e.g., which obligations a thread holds. Note that
our definition of fairness forbids (ha

i , P
a
i)i∈N to perform ghost steps forever and

that we use ha ∼ah lh H to express that ha is compatible with H.

Lemma A.4.24 (Construction of Annotated Reduction Sequences). Suppose
we can prove ⊨H {A} c {obs(∅)}. Let HA be a logical heap with HA ⊨A A and
completelh(HA) and ha

0 an annotated heap with ha
0 ∼ah lh HA. Let (hi, Pi)i∈N be

a fair plain reduction sequence with ha
0 ∼ah ph h0 and P0 = {(θ0, c)} for some

thread ID θ0 and command c.

Then, there exists a fair annotated reduction sequence (ha
i , P

a
i)i∈N with P a =

{(θ0, (HA, c))} and consistentconf(ha
i , P

a
i) for all i ∈ N.

Proof. We can construct the annotated reduction sequence inductively from
the plain reduction sequence.

Program Order Graph In the remainder of this section, we prove that programs
where every thread discharges all obligations terminate. For this, we need
to analyse each thread’s control flow, i.e., the subsequence of execution steps
belonging to the thread. We do this by taking a sequence (hi, Pi)i∈N representing
a program execution, constructing an annotation (ha

i , P
a
i)i∈N carrying additional

information and then analysing its program order graph G((ha
i , P

a
i)i∈N) which

represents the execution’s control flow.

Definition A.4.25 (Program Order Graph). Let ((ha
i , P

a
i)i∈N, sig) be an

annotated reduction sequence. Let Nr be the set of names referring to reduction
rules defining the relations⇝real,⇝ghost and⇝ast. We define the set of annotated
reduction rule names N a where AST-Red-Await is annotated by signals as

N a := (Nr \ {AST-Red-Await})
∪ ({AST-Red-Await} × S)

We define the program order graph G(((ha
i , P

a
i)i∈N, sig)) = (N, E) with root 0

where E ⊂ N × Θ ×N a × N.

SOUNDNESS 93

A node a ∈ N corresponds to the sequence’s ath reduction step, i.e., to the step
ha
a, P

a
a

θ
⇝atp h

a
a+1, P

a
a+1 for some θ ∈ dom(P a

a). An edge from node a to node b
expresses that the bth reduction step continues the control flow of step a. For
any ℓ ∈ N, let θℓ denote the ID of the thread reduced in step ℓ. Furthermore, let
na
ℓ denote the name of the reduction rule applied in the ℓth step, in the following

sense:

• If ha
ℓ, P

a
ℓ

θ
⇝atp h

a
ℓ+1, P

a
ℓ+1 results from an application of RTP-Red-Lift

in combination with single-thread reduction rule nst other than AST-Red-
Await, then na

ℓ = nst.

• If ha
ℓ, P

a
ℓ

θ
⇝atp h

a
ℓ+1, P

a
ℓ+1 results from an application of RTP-Red-Lift in

combination with AST-Red-Await, then na
ℓ = (AST-Red-Await, sig(ℓ)).

• Otherwise, na denotes the applied (real or ghost) thread pool reduction
rule.

An edge (a, θ, na, b) ∈ N × Θ ×N a × N is contained in E if na = na
a and one of

the following conditions applies:

• θ = θa = θb and b = min({k > a | ha
k, P

a
k
θa⇝atp h

a
k+1, P

a
k+1}).

In this case, the edge expresses that step b marks the first time that thread
θa is rescheduled for reduction (after step a).

• dom(P a
a+1) \ dom(P a

a) = {θ} and
b = min {k ∈ N | ha

k, P
a
k

θ
⇝atp h

a
k+1, P

a
k+1}.

In this case, θ identifies the thread forked in step a. The edge expresses
that step b marks the first reduction of the forked thread.

In case the choice of reduction sequence ((ha
i , P

a
i)i∈N, sig) is clear from the

context, we write G instead of G(((ha
i , P

a
i)i∈N, sig)).

Observation A.4.26. Let (ha
i , P

a
i)i∈N be an annotated reduction sequence with

|dom(P a
0)| = 1. The sequence’s program order graph G((ha

i , P
a
i)i∈N) is a binary

tree.

For any reduction sequence (ha
i , P

a
i)i∈N, the paths in its program order graph

G((ha
i , P

a
i)i∈N) represent the sequence’s control flow paths. Hence, we are going

to use program order graphs to analyse reduction sequences’ control flows.
We refer to a program order graph’s edges by the kind of reduction step they
represent. For instance, we call any edge (a, θ,R, b) a loop edge where R refers to
one of the rules related to the execution loops, i.e., AST-Red-WhileDec-Init,

94 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

AST-Red-WhileDec, AST-Red-Await-Init or AST-Red-Await. In the
following, we prove that any path in a program order graph that does not
involve a loop edge is finite. This follows from the fact that the size of the
command reduced along this path decreases with each non-ghost non-loop step.

Lemma A.4.27. Let (ha
i , P

a
i)i∈N be a fair annotated reduction sequence. Let

p = (V,E) be a path in G((ha
i , P

a
i)i∈N). Let

R = { AST-Red-WhileDec-Init, AST-Red-WhileDec,
AST-Red-Await-Init } ∪ ({AST-Red-Await} × S)

be the set of names of single-thread reduction rules related to loops and let
L = {e ∈ E | π3(e) ∈ R} be the set of loop edges contained in p. Then, p is
infinite if and only if L is infinite.

Proof. If L is infinite, p is obviously infinite as well. So, suppose L is finite.

For any command, we consider its size to be the number of nodes contained in
its abstract syntax tree. By structural induction over the set of commands, it
follows that the size of a command c = P a(θ).cmd decreases in every non-ghost
reduction step ha, P a θ

⇝atp h
a′, P a′ that is not an application of RTP-Red-Lift

in combination with some r ∈ R.

Since L is finite, there exists a node x such that the suffix p≥x starting at node
x does not contain any loop edges. By fairness of (ha

i , P
a
i)i∈N, every non-empty

suffix of p≥x contains an edge corresponding to a non-ghost reduction step. For
any edge e = (i, θ, n, j) consider the command ce = P a

i (θ).cmd reduced in this
edge. The size of these commands decreases along p≥x. So, p≥x must be finite
and thus p must be finite as well.

Definition A.4.28. Let G = (V,E) be a subgraph of some program order graph.
We define the function awaitEdgesG : S → P(E) mapping any signal s to the
set of await edges in G concerning s as:

awaitEdgesG(s) := {(a, θ, (AST-Red-Await, s′), b) ∈ E | s′ = s}.

Furthermore, we define the set SG ⊂ S of signals being waited for in G and its
subset S∞

G ⊆ SG of signals waited-for infinitely often in G as follows:

SG := {s ∈ S | awaitEdgesG(s) ̸= ∅},
S∞
G := {s∞ ∈ SG | awaitEdgesG(s∞) infinite}.

Definition A.4.29 (Partial Order on Finite Bags). Let X be a set and <X ⊂
X ×X a partial order on X. We define the partial order ≺X ⊂ Bagsfin(X) ×

SOUNDNESS 95

Bagsfin(X) on finite bags over X as the Dershowitz-Manna ordering [53] induced
by <X :

A ≺X B ⇐⇒ ∃C,D ∈ Bagsfin(X). ∅ ≠ C ⊆ B
∧ A = (B \ C) ⊎D
∧ ∀d ∈ D. ∃c ∈ C. d <X c.

We define ⪯X ⊂ Bagsfin(X) × Bagsfin(X) such that

A ⪯X B ⇐⇒ A = B ∨ A ≺X B

holds.

Corollary A.4.30. The partial order ≺N ⊂ Bagsfin(N) × Bagsfin(N) is well-
founded.

Proof. Follows from [53] and and well-foundedness of <N.

Below we define a metric on commands in a graph that allows us to prove
that every control flow path in which no signal is waited-for infinitely often
is finite. We construct the metric in two steps. (i) We consider the maximal
degree for which the command contains a nested loop. Here, we consider an
uninitialized loop while c do skip as a doubly nested one since its reduction
in the annotated semantics involves its conversion into either a decrease loop or
into an await loop, cf. AST-Red-WhileDec-Init and AST-Red-Await-Init.
(ii) We use the extracted degree to construct a rank (in form of a finite bag
of degrees) that intuitively spoken measures the number of loop iterations the
command’s execution causes in the graph we consider.

Definition A.4.31 (Degree Extraction). We define the function ⟨·⟩ : Cmds → N
mapping augmented commands to degrees by recursion on the structure of
commands as follows:

⟨while c do skip⟩ := ⟨c⟩ + 2,
⟨while n, c do skip⟩ := ⟨c⟩ + 1,
⟨with S,m await c⟩ := ⟨c⟩ + 1,
⟨fork c⟩ := ⟨c⟩,
⟨let x := c in c′⟩ := max(⟨c⟩, ⟨c′⟩),
⟨if c then c′⟩ := max(⟨c⟩, ⟨c′⟩),
⟨c⟩ := 0 otherwise.

Definition A.4.32 (Rank Extraction). For any subgraph G of a program order
graph with S∞

G = ∅, we define the function ⟨⟨·⟩⟩G : Cmds → Bagsfin(N) mapping

96 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

commands to finite bags of degrees by recursion on the structure of commands
as follows:

⟨⟨while c do skip⟩⟩G := {[⟨while c do skip⟩]},
⟨⟨while n, c do skip⟩⟩G := n · {[⟨while n, c do skip⟩]},

⟨⟨with S,m await c⟩⟩G :=
∣∣∣∣∣⋃
s∈S

awaitEdgesG(s)
∣∣∣∣∣ · {[⟨with S,m await c⟩]},

⟨⟨fork c⟩⟩G := ⟨⟨c⟩⟩G,
⟨⟨let x := c in c′⟩⟩G := ⟨⟨c⟩⟩G ⊎ ⟨⟨c′⟩⟩G,
⟨⟨if c then c′⟩⟩G := ⟨⟨c⟩⟩G ⊎ ⟨⟨c′⟩⟩G,
⟨⟨c⟩⟩G := ∅ otherwise.

We view paths in a program order graph as single-branched subgraphs. This
allows us to apply above definition on graphs to paths. In the proof of the
following lemma, we see that in any control flow path where every signal is
waited-for only finitely often, the rank of the reduced command decreases step
by step.
Lemma A.4.33. Let G((ha

i , P
a
i)i∈N) be a program order graph and let p = (V,E)

be a path in G with S∞
p = ∅. For every θ ∈ dom(P a

0) let P a
0 (θ).heap be finite

and complete. Then, p is finite.

Assume p is infinite. We prove a contradiction by assigning a decreasing metric
to every node along the path. For every i ∈ V , let p≥i be the suffix of p starting
at node i. Every node i ∈ V corresponds to a reduction step ha

i , P
a
i
θi⇝atp h

a
j , P

a
j .

In the following, we let ci := P a
i (θi) denote the command reduced in this step.

Consider the function f : V → Bagsfin(N), i 7→ ⟨⟨ci⟩⟩p≥i
mapping every node on

the path to the rank of the command whose reduction the node represents.

Consider the sequence (f(i))i∈V . Since every element is a finite bag of natural
numbers, we can order it by ≺N. We are going to prove a contradiction by
proving that the sequence is an infinitely descending chain.

Consider any edge e = (i, θ, r, j) ∈ E. There are only 4 cases in which f(i) ̸= f(j)
holds.

• r = AST-Red-WhileDec-Init:
In this case we have ci = while c do skip and cj = while n, c do skip
for some c, n. We get

f(j) = n · {[⟨c⟩ + 1]} ≺N {[⟨c⟩ + 2]} = f(i).

• r = AST-Red-WhileDec:
In this case we have ci = while n, c do skip and cj = if c then while n−

SOUNDNESS 97

1, c do skip for some n, c. We get

f(j) = {[⟨c⟩]} ⊎ (n− 1) · {[⟨c⟩ + 1]} ≺N n · {[⟨c⟩ + 1]} = f(i).

• r = AST-Red-Await-Init:
In this case we have ci = with m await c and
cj = if acquire m; let x := c in release m; ¬x then with S,m await c
for some m,x, c, S. We get

f(j) = {[⟨c⟩]} ⊎ |. . .| · {[⟨c⟩ + 1]} ≺N {[⟨c⟩ + 2]} = f(i).

• r = (AST-Red-Await, s′) for some s′:
In this case we have ci = with S,m await c and
cj = if acquire m; let x := c in release m;x then with S,m await c
for some m,x, c, S. We get

f(j) = {[⟨c⟩]} ⊎
∣∣∣⋃s∈S awaitEdgesp≥j

(s)
∣∣∣ · {[⟨c⟩ + 1]}

≺N

(
1 +

∣∣∣⋃s∈S awaitEdgesp≥j
(s)
∣∣∣) · {[⟨c⟩ + 1]}

=
∣∣∣⋃s∈S awaitEdgesp≥i

(s)
∣∣∣ · {[⟨c⟩ + 1]} = f(i)

By application of Lemma A.4.27 we get that p contains infinitely many of the
loop edges listed above. Hence, (f(i))i∈V is an infinitely decreasing chain. By
Corollary A.4.30, ≺N is well-founded. A contradiction. So, p is finite.

We proceed to prove that no signals are waited for infinitely often.

Lemma A.4.34. Let (ha
i , P

a
i)i∈N be a fair annotated reduction sequence

with P a
0 = {(θ0, (H0, c))}, finiteah(ha

0), completelh(H0), finitelh(H0) and also
consistentconf(ha

0, P
a
0). Let H0 contain no signal chunks. Further, let ha

0 contain
no chunks of the form unlockedaRes(m,P,HP) where HP contains any signal
chunks. Let G be the program order graph of (ha

i , P
a
i)i∈N. Then, S∞

G = ∅.

Proof. Suppose S∞
G ̸= ∅. Since Levs is well-founded, the same holds for the set

{s.lev | s ∈ S∞}. Hence, there is some smin ∈ S∞ for which no z ∈ S∞ with
z.lev <L smin.lev exists.

Since neither the initial logical heap H0 nor any unlocked lock invariant
stored in ha

0 does contain any signals, smin must be created during the
reduction sequence. The reduction step creating signal smin is an application
of GTP-Red-NewSignal, which simultaneously creates an obligation to
set smin. By preservation of completeness, Lemma A.4.14, every thread-
local logical heap P a

i (θ).heap annotating some thread θ in some step i

98 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

is complete. According to reduction rule AST-Red-Await, every await
edge (a, θ, (AST-Red-Await, smin), b) implies together with completeness
that in step a (i) thread θ does not hold any obligation for smin (i.e.
P a
a(θ).heap(obslRes(O)) = 1 for some bag of obligations O with smin ̸∈ O)

and (ii) smin has not been set, yet (i.e. signalaRes(smin,False) ∈ ha
a). Hence,

in step a another thread θob ̸= θ must hold the obligation for smin (i.e.
P a
a(θob).heap(obslRes(O)) = 1 for some bag of obligations O with smin ∈ O).

Since there are infinitely many await edges concerning smin in G, the signal is
never set.

By fairness, for every await edge as above, there must be a non-ghost reduction
step ha

k, P
a
k

θob⇝atp h
a
k+1, P

a
k+1 of the thread θob holding the obligation for smin

with k ≥ a. Hence, there exists an infinite path pob in G where each edge
(e, θob, n, f) ∈ edges(pob) concerns some thread θob holding the obligation for
smin. (Note that this thread ID does not have to be constant along the path,
since the obligation can be passed on during fork steps.)

The path pob does not contain await edges (e, θob, (AST-Red-Await, s∞), f)
for any s∞ ∈ S∞, since reduction rule AST-Red-Await would (together
with completeness of P a

e (θob).heap) require s∞ to be of a lower level than all
held obligations. This restriction implies s∞.lev <L smin.lev and would hence
contradict the minimality of smin. That is, S∞

pob
= ∅.

By preservation of finiteness, Lemma A.4.13, we get that every logical heap
associated with the root of pob is finite. This allows us to apply Lemma A.4.33,
by which we get that pob is finite. A contradiction.

Finally, we got everything we need to prove that any program that discharges
all its obligations terminates.

Lemma A.4.35. Let ⊨H {obs(∅)} c {obs(∅)} hold. There exists no fair, infinite
annotated reduction sequence (ha

i , P
a
i)i∈N with P a

0 = {(θ0, (H0, c))}, ha
0 = ∅ and

H0 = {obslRes(∅)}.

Proof. Suppose a reduction sequence as described above exists. We are going
to prove a contradiction by considering its infinite program order graph G.

Since P a
0 contains only a single thread, G is a binary tree with an infinite set of

vertices. By the Weak König’s Lemma [163] G has an infinite branch, i.e. an
infinite path p starting at root 0.

The initial logical heap H0 is complete and finite and the initial annotated
machine configuration (ha

0, P
a
0) is consistent. By Lemma A.4.34 we know

CASE STUDIES 99

that S∞
G = ∅. Since S∞

p ⊆ S∞
G , we get S∞

p = ∅. This allows us to apply
Lemma A.4.33, by which we get that p is finite, which is a contradiction.

Theorem B.10.7 (Soundness). Let ⊢ {obs(∅)} c {obs(∅)} hold. There exists
no fair, infinite reduction sequence (hi, Pi)i∈N with h0 = ∅ and P0 = {(θ0, c)}
for any choice of θ0.

Proof. Assume that such a reduction sequence exists. By Hoare triple soundness,
Lemma A.4.23, we get ⊨H {obs(∅)} c {obs(∅)} from ⊢ {obs(∅)} c {obs(∅)}.
Consider the logical heap H0 = {obslRes(∅)} and the annotated heap ha

0 = ∅.
It holds H0 ⊨A obs(∅), ha

0 ∼ah lh H0 (since H0 does not contain any logical
resources with an annotated counterpart) and ha

0 ∼ah ph h0 (since both heaps are
empty). This allows us to apply Lemma A.4.24, by which we can construct a
corresponding fair annotated reduction sequence (ha

i , P
a
i)i∈N that starts with

ha
0 = ∅ and P a

0 = {(θ0, (H0, c))}. By Lemma A.4.35 (ha
i , P

a
i)i∈N does not exist.

A contradiction.

A.5 Case Studies

In this section, we verify two example programs in detail. In § A.5.1 we verify
the realistic example program presented in § 3.3. It involves two threads
communicating via a shared bounded FIFO. In § A.5.2 we present and verify
a program similar to the one from § 3.3 but with an unbounded number of
producer and consumer threads. In order to lower the visual burden on the
reader, we use the following colour coding:

As in the paper body, we present the proof state in blue, applied proof and
view shift rules in purple, and abbreviations and definition in red. Since the
verification outlines we present in this section span multiple figures, we include
hints and explanations concerning other figures (e.g. a hint pointing to the
figure where an invariant was defined). To set these remarks and in general any
hints off from the essential parts of the proof, we present them in a grey and
italic font. We occasionally remind the reader of earlier proof steps performed
in a previous figure by repeating them in the same grey font at the beginning
of the current figure.

Further, we highlight how our proof steps effect the proof state as follows:
Consider a proof state of the form {A ∗ ℓ 7→ v}. (i) When a proof step
adds a new chunk C, we highlight it in green , i.e. {A ∗ ℓ 7→ v ∗ C }.
(ii) When a proof step removes the chunk A, we highlight this change by
underlying the removed part of the assertion with a dark grey background,

100 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

{obs(∅)}
let fifo10 := cons(nil) in let mut := new_mutex in PR-Let (2x) & PR-Cons
∀ℓfifo10 , ℓmut. & PR-NewMutex

{obs(∅) ∗ ℓfifo10 7→ nil ∗ uninit(ℓmut) } PR-ViewShift & VS-AllocSigID
& PR-Exists (200x)

∀id1
pop, . . . id100

pop, id1
push, . . . , id100

push.

{ ∗i=1,...,100
uninitSig(idi

pop) ∗∗i=1,...,100
uninitSig(idi

push) ∗ . . .}

Li
pop := 102 − i, Li

push := 101 − i for 1 ≤ i ≤ 100

(Later L
i+10
pop < Li

push and Li
push < Li

pop must hold, cf. Figures A.19 and A.21.)

si
push := (idi

push, Li
push), si

pop := (idi
pop, Li

pop) for 1 ≤ i ≤ 100 PR-ViewShift & VS-SigInit{
uninitSig(id100

pop) ∗ uninitSig(id100
push) signal(s100

pop, False) ∗ signal(s100
push, False)

∗ obs({[s100
pop, s100

push]}) ∗ . . .

}
let cp := cons(100) in let cc := cons(100) in PR-Let & PR-Cons (2x)
∀ℓcp , ℓcc .

{ ℓcp 7→ 100 ∗ ℓcc 7→ 100 ∗ . . .} PR-ViewShift & VS-SemImp
obs({[s100

push, s100
pop]}) ∗ [1

2]ℓcp 7→ 100 ∗ [1
2]ℓcc 7→ 100 ∗ uninit(ℓmut)

∗ Pmut

∗∗i=1,...,99
(uninitSig(idi

push) ∗ uninitSig(idi
pop))

 For definition of lock invariant
Pmut cf. Fig. A.15.
PR-ViewShift & VS-MutInit

m := (ℓmut, 0)
(Later m.lev < Li

push and m.lev < Li
pop must hold

for all 1 ≤ i ≤ 100, cf. Figures A.19 and A.21.)
{ uninit(ℓmut) ∗ Pmut mutex(m, Pmut) ∗ . . .} PR-ViewShift & VS-SemImp

obs({[s100
push, s100

pop]}) ∗ [1
2]ℓcp 7→ 100 ∗ [1

2]ℓcc 7→ 100

∗∗i=1,...,99
(uninitSig(idi

push) ∗ uninitSig(idi
pop))

∗ [1
2]mutex(m, Pmut) ∗ [1

2]mutex(m, Pmut)

. . . Continued in Fig. A.18.

Figure A.14: Verification of realistic example 3.10a: Initialization.

i.e., { A ∗ ℓ 7→ v}. Note that in this case, the greyed out A ∗ is not a part
of the proof state anymore. (iii) When a proof step changes only part of a
chunk, we highlight this change in yellow . For instance, if the step changes
the value of heap location ℓ from v to v′, we highlight it in the resulting state
as {A ∗ ℓ 7→ v′ }.

A.5.1 Verification of Realistic Example

In this section, we verify the realistic example program from § 3.3 presented in
Fig. 3.10a. We present the full proof outline in Fig. A.14 – A.22. We scaled the
proof outlines down to fit them into the page layout. You can find the original
proof outlines in the extended version of the ghost signal paper [152] and in the
technical report [151].

CASE STUDIES 101

P ′
mut(vmut

fifo10
) := ∃vmut

cp , vmut
cc .

[1
2]ℓcp 7→ vmut

cp ∗ [1
2]ℓcc 7→ vmut

cc ∗ 0 ≤ vmut
cp ≤ 100 ∗ 0 ≤ vmut

cc ≤ 100 Producer & consumer
counters.

∗ ℓfifo10 7→ vmut
fifo10

∗ vmut
cc = vmut

cp + size(vmut
fifo10

) ∗ 0 ≤ size(vmut
fifo10

) ≤ 10 Bounded FIFO & its
relationship to counters

∗ vmut
fifo10

= (vcp + size(vmut
fifo10

)) :: . . . :: (vcp + 1) :: nil

∗
(

vmut
cp > 0 → signal((id

vmut
cp

push, L
vmut

cp
push), False)

)
Signal set by producer.

∗
(

vmut
cc > 0 → signal((id

vmut
cc

pop , L
vmut

cc
pop), False)

)
Signal set by consumer.

Pmut := ∃vmut
fifo10

. P ′
mut(vmut

fifo10
)

Pmut
no:spush := ∃vmut

cp , vmut
cc .

Shorthand for lock
invariant without
push-signal chunk.

[1
2]ℓcp 7→ vmut

cp ∗ [1
2]ℓcc 7→ vmut

cc ∗ 0 ≤ vmut
cp ≤ 100 ∗ 0 ≤ vmut

cc ≤ 100

∗ ℓfifo10 7→ vmut
fifo10

∗ vmut
cc = vmut

cp + size(vmut
fifo10

) ∗ 0 ≤ size(vmut
fifo10

) ≤ 10

∗ vmut
fifo10

= (vcp + size(vmut
fifo10

)) :: . . . :: (vcp + 1) :: nil

∗
(

vmut
cp > 0 → signal((id

vmut
cp

push, L
vmut

cp
push), False)

)
∗
(

vmut
cc > 0 → signal((id

vmut
cc

pop , L
vmut

cc
pop), False)

)
Pmut

no:spop := ∃vmut
cp , vmut

cc .
Shorthand for lock
invariant without
pop-signal chunk.

[1
2]ℓcp 7→ vmut

cp ∗ [1
2]ℓcc 7→ vmut

cc ∗ 0 ≤ vmut
cp ≤ 100 ∗ 0 ≤ vmut

cc ≤ 100

∗ ℓfifo10 7→ vmut
fifo10

∗ vmut
cc = vmut

cp + size(vmut
fifo10

) ∗ 0 ≤ size(vmut
fifo10

) ≤ 10

∗ vmut
fifo10

= (vcp + size(vmut
fifo10

)) :: . . . :: (vcp + 1) :: nil

∗
(

vmut
cp > 0 → signal((id

vmut
cp

push, L
vmut

cp
push), False)

)
∗
(

vmut
cc > 0 → signal((id

vmut
cc

pop , L
vmut

cc
pop), False)

)
Figure A.15: Verification of realistic example 3.10a: Lock invariant.

Lp(n, Op) := 0 < n ≤ 100 ∗ ∗
i=1,...,n−1

uninitSig(id
i
push) Loop invariant of producer.

∗ (n > 0 ↔ Op = {[sn
push]}) ∗ (n = 0 ↔ Op = ∅)

Figure A.16: Verification of realistic example 3.10a: Producer’s loop invariant.

Lc(n, Oc) := 0 < n ≤ 100 ∗ ∗
i=1,...,n−1

uninitSig(id
i
pop) Loop invariant of consumer.

∗ (n > 0 ↔ Oc = {[sn
pop]}) ∗ (n = 0 ↔ Oc = ∅)

Figure A.17: Verification of realistic example 3.10a: Consumer’s loop invariant.

102 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

. . . A.14 . . . Continuation of Fig. A.14.
obs({[s100

push, s100
pop]}) ∗ [1

2]ℓcp 7→ 100 ∗ [1
2]ℓcc 7→ 100

∗∗i=1,...,99
(uninitSig(idi

push) ∗ uninitSig(idi
pop))

∗ [1
2]mutex(m, Pmut) ∗ [1

2]mutex(m, Pmut)

fork (PR-Fork obs({[s100

push]}) ∗ [1
2]ℓcp 7→ 100 ∗∗i=1,...,99

uninitSig(idi
push)

∗ [1
2]mutex(m, Pmut)

 Resources transferred to
producer thread.
PR-ViewShift & VS-SemImp

obs({[s100
push]}) ∗ [1

2]ℓcp 7→ 100

∗ ∗i=1,...,99
uninitSig(si

push) Lp(100, {[s100
push]})

∗[1
2]mutex(m, Pmut)

 For definition of producer loop
invariant Lp(n, O)
cf. Fig. A.16.

. . . A.19 . . . Producer loop in Fig. A.19.
obs({[s100

push]}) ∗ [1
2]ℓcp 7→ 100 ∗ Lp(100, {[s100

push]})

∗ [1
2]mutex(m, Pmut)

obs(∅)

);

obs({[s100
push, s100

pop]}) ∗[1
2]ℓcp 7→ 100 ∗ [1

2]ℓcc 7→ 100

∗∗i=1,...,99
uninitSig(idi

push) ∗∗i=1,...,99
uninitSig(idi

pop)

∗[1
2]mutex(m, Pmut) ∗ [1

2]mutex(m, Pmut)

Resources remaining with
consumer thread.
PR-ViewShift & VS-SemImp

obs({[s100

pop]}) ∗ [1
2]ℓcc 7→ 100

∗ ∗i=1,...,99
uninitSig(idi

pop) Lc(100, {[s100
pop]})

∗ [1
2]mutex(m, Pmut)

 For definition of consumer loop
invariant Lc(n, O) cf.
Fig. A.17.

. . .
Continued in Fig. A.21
(consumer loop).

{ obs({[s100
pop]}) ∗ [1

2]ℓcc 7→ 100 ∗ Lc(100, {[s100
pop]}) ∗ [1

2]mutex(m, Pmut) obs(∅) }

Figure A.18: Verification of realistic example 3.10a: Main thread (consumer)
forks producer thread.

CASE STUDIES 103

∀ℓfifo10 , ℓmut, ℓcp , ℓcc .

. . .
Continuation of
Fig. A.18.

{obs({[s100
push]}) ∗ [1

2]ℓcp 7→ 100 ∗ Lp(100, {[s100
push]}) ∗ [1

2]mutex(m, Pmut)}
while (PR-While-Dec

∀vcp .

{obs({[s
vcp

push]}) ∗ [1
2]ℓcp 7→ vcp ∗ Lp(vcp , {[s

vcp

push]}) ∗ [1
2]mutex(m, Pmut)}

m.lev = 0 < 101 − vcp = s
vcp
push.lev Justification for

application of:
with mut await (PR-AwaitFor definition of producer loop invariant Lp(n, O),

∀Op. lock invariant Pmut and variations cf. Figures A.16 and A.15.{
obs({[s

vcp
push]} Op ⊎ {[m]}) ∗ [1

2]ℓcp 7→ vcp ∗ Lp(vcp , {[s
vcp
push]} Op)

∗ [1
2]mutex(m, Pmut) Pmut

}
PR-Exists

∀vmut
fifo10

.

{ Pmut P ′
mut(vmut

fifo10
) ∗ . . .}

let f :=[fifo10] in PR-Let
& PR-ReadHeapLoc

{Lp(vcp , Op) ∗ obs(Op ⊎ {[m]}) ∗ [1
2]ℓcp 7→ vcp ∗ P ′

mut(vmut
fifo10

)}

if size(f) < 10 then (PR-If{
size(vmut

fifo10
) < 10 ∗ Lp(vcp , Op) ∗ obs(Op ⊎ {[m]}) ∗ [1

2]ℓcp 7→ vcp

∗ P ′
mut(vmut

fifo10
)

}
. . . A.20 . . . Production step presented in Fig. A.20.

∃O′
p. obs(O′

p ⊎ {[m]})
∗ if size(vmut

fifo10
) ̸= 10

then [1
2]ℓcp 7→ vcp − 1 ∗ Lp(vcp − 1, O′

p) ∗ P ′
mut(vmut

fifo10
)

else signal(s
vcp +10
pop , False) ∗ L

vcp +10
pop < L

vcp
push ∗ [1

2]ℓcp 7→ vcp
∗ Pmut

no:spop (vmut
fifo10

) ∗ Lp(vcp , O′
p)

 =: PostIfp

) else ({
size(vmut

fifo10
) = 10 ∗ Lp(vcp , Op) ∗ obs(Op ⊎ {[m]}) ∗ [1

2]ℓcp 7→ vcp

∗ P ′
mut(vmut

fifo10
)

}
PR-ViewShift
& VS-SemImp

size(vmut
fifo10

) = 10 ∗ Lp(vcp , Op) ∗ obs(Op ⊎ {[m]}) ∗ [1
2]ℓcp 7→ vcp

∗ P ′
mut(vmut

fifo10
)

PostIfp

);

{ Lp(vcp , Op) ∗ obs(Op ⊎ {[m]}) ∗ [1
2]ℓcp 7→ vcp ∗ P ′

mut(vmut
fifo10

) PostIfp }

size(fifo10) ̸= 10
PR-Exp
& PR-ViewShift
& VS-SemImp

{. . . ∗ if . . . then . . . P ′
mut(vmut

fifo10
) Pmut else . . .}

);
∃O′

p. obs({[s
vcp
push]} O′

p) ∗ [1
2]ℓcp 7→ vcp − 1

∗ Lp(vcp − 1 , {[s
vcp
push]} O′

p)

∗ [1
2]mutex(m, Pmut)

[cp] ̸= 0 Remember that command is syntactic sugar.

PR-Let
& PR-ReadHeapLoc
& PR-Exp
& PR-ViewShift
& VS-SemImp{ if vcp − 1 ̸= 0

then obs({[s
vcp −1
push]}) ∗ [1

2]ℓcp 7→ vcp − 1 ∗ Lp(vcp − 1, {[s
vcp −1
push]})

∗ [1
2]mutex(m, Pmut)

else obs(∅)

}
)

{obs({[s100
push]} ∅) ∗ [1

2]ℓcp 7→ 100 ∗ Lp(100, {[s100
push]}) ∗ [1

2]mutex(m, Pmut) }

. . .
Continued in
Fig. A.18.

Figure A.19: Verification of realistic example 3.10a: Producer loops.

104 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

∀ℓfifo10 , ℓmut, ℓcp , ℓcc , vcp , Op, vmut
fifo10

.

. . . Continuation of Fig. A.19.
For definition of Pmut, Lp(n, O) and variations cf. Fig. A.15 and A.16.

{size(vmut
fifo10

) < 10 ∗ Lp(vcp , Op) ∗ obs(Op ⊎ {[m]}) ∗ [1
2]ℓcp 7→ vcp ∗ P ′

mut(vmut
fifo10

)} PR-ViewShift & VS-SemImp
[1

2]ℓcp 7→ vcp ∗ [1
2]ℓcp 7→ vmut

cp ℓcp 7→ vcp ∗ vcp = vmut
cp

∗ (vcp > 0 → signal(s
vmut

cp
push, False)) signal(s

vcp
push, False)

∗ (vcp > 0 ↔ Op = {[s
vcp
push]}) ∗ (vcp = 0 ↔ Op = ∅) Op = {[s

vcp
push]}

∗ . . .

let c :=[cp] in PR-Let & PR-ReadHeapLoc
[fifo10] := f ·(c :: nil); [cp] := c − 1 PR-AssignToHeap (2x)

{ℓfifo10 7→ vmut
fifo10

·(vcp :: nil) ∗ ℓcp 7→ vcp − 1 ∗ . . .} PR-ViewShift & VS-SetSignal

{obs({[s
vcp
push, m]}) ∗ signal(s

vcp
push, True) ∗ . . .} PR-ViewShift & VS-SemImp

{ (vcp − 1 = 0 ∨ vcp > 0) ∗ . . .} PR-ViewShift & VS-Or

case: vcp − 1 = 0 PR-ViewShift & VS-SemImpLast iteration, nothing left to do.

{obs({[m]}) ∗ [1
2]ℓcp 7→ 0 ∗ Pmut} PR-ViewShift & VS-SemImp

∃O′
p. obs(O′

p ⊎ {[m]})

∗ if size(vmut
fifo10

) ̸= 10

then [1
2]ℓcp 7→ vcp − 1 ∗ Lp(vcp − 1, O′

p) ∗ P ′
mut(vmut

fifo10
)

else signal(s
vcp +10
pop , False) ∗ L

vcp +10
pop < L

vcp
push ∗ [1

2]ℓcp 7→ vcp

∗ Pmut
no:spop (vmut

fifo10
) ∗ Lp(vcp , O′

p)

= PostIfp
For definition of PostIfp
cf. Fig. A.19.

case: vcp − 1 > 0 PR-ViewShift & VS-SigInitMust create signal for next iteration. obs({[s
vcp −1
push , m]}) ∗∗i=1,...,vcp −2

uninitSig(idi
push)

∗ uninitSig(id
vcp −1
push) signal(s

vcp −1
push , False) ∗ . . .

 PR-ViewShift & VS-SemImp

{PostIfp}

{PostIfp}
. . . Continued in Fig. A.19.

Figure A.20: Verification of realistic example 3.10a: Producer thread’s
production step.

CASE STUDIES 105

∀ℓfifo10 , ℓmut, ℓcp , ℓcc .

. . .
Continuation of
Fig. A.18.

{obs({[s100
pop]}) ∗ [1

2]ℓcc 7→ 100 ∗ Lc(100, {[s100
pop]}) ∗ [1

2]mutex(m, Pmut)}
while (PR-While-Dec

∀vcc .

{obs({[s
vcc

pop]}) ∗ [1
2]ℓcc 7→ vcc ∗ Lc(vcc , {[s

vcc
pop]}) ∗ [1

2]mutex(m, Pmut)}

m.lev = 0 < 102 − vcc = s
vcc
pop .lev Justification for

application of:
with mut await (PR-AwaitFor definition of consumer loop invariant Lc(n, O),

∀Oc. lock invariant Pmut and variations cf. Figures A.17 and A.15.{
obs({[s

vcc
pop]} Oc ⊎ {[m]}) ∗ [1

2]ℓcc 7→ vcc ∗ Lc(vcc , {[s
vcc
pop]} Oc)

∗ [1
2]mutex(m, Pmut) Pmut

}
PR-Exists

∀vmut
fifo10

.

{ Pmut P ′
mut(vmut

fifo10
) ∗ . . .}

let f :=[fifo10] in PR-Let
& PR-ReadHeapLoc

{Lc(vcc , Oc) ∗ obs(Oc ⊎ {[m]}) ∗ [1
2]ℓcc 7→ vcc ∗ P ′

mut(vmut
fifo10

)}

if size(f) > 0 then (PR-If{
size(vmut

fifo10
) > 0 ∗ Lc(vcc , Oc) ∗ obs(Oc ⊎ {[m]}) ∗ [1

2]ℓcc 7→ vcc

∗ P ′
mut(vmut

fifo10
)

}
. . . A.22 . . . Consumption step presented in Fig. A.22.

∃O′
c. obs(O′

c ⊎ {[m]})

∗ if size(vmut
fifo10

) ̸= 0

then [1
2]ℓcc 7→ vcc − 1 ∗ Lc(vcc − 1, O′

c) ∗ P ′
mut(vmut

fifo10
)

else signal(s
vcc
push, False) ∗ L

vcc
push < L

vcc
pop ∗ [1

2]ℓcc 7→ vcc

∗ Pmut
no:spush (vmut

fifo10
) ∗ Lc(vcc , O′

c)

 =: PostIfc

) else ({
size(vmut

fifo10
) = 0 ∗ Lc(vcc , Oc) ∗ obs(Oc ⊎ {[m]}) ∗ [1

2]ℓcc 7→ vcc

∗ P ′
mut(vmut

fifo10
)

}
PR-ViewShift
& VS-SemImp

size(vmut
fifo10

) = 10 ∗ Lc(vcc , Oc) ∗ obs(Oc ⊎ {[m]}) ∗ [1
2]ℓcc 7→ vcc

∗P ′
mut(vmut

fifo10
)

PostIfc

);

{ Lc(vcc , Oc) ∗ obs(Oc ⊎ {[m]}) ∗ [1
2]ℓcc 7→ vcc ∗ P ′

mut(vmut
fifo10

) PostIfc }

size(fifo10) > 0
PR-Exp
& PR-ViewShift
& VS-SemImp

{. . . ∗ if . . . then . . . P ′
mut(vmut

fifo10
) Pmut else . . .}

);
∃O′

c. obs({[s
vcc
pop]} O′

c) ∗ [1
2]ℓcc 7→ vcc − 1

∗ Lc(vcc − 1 , {[s
vcc
pop]} O′

c)

∗ [1
2]mutex(m, Pmut)

[cc] ̸= 0 Remember that command is syntactic sugar.

PR-Let
& PR-ReadHeapLoc
& PR-Exp
& PR-ViewShift
& VS-SemImp{

if vcc − 1 ̸= 0

then obs({[s
vcc −1
pop]}) ∗ [1

2]ℓcc 7→ vcc − 1 ∗ Lc(vcc − 1, {[s
vcc −1
pop]})

∗ [1
2]mutex(m, Pmut)

else obs(∅)

}
)

{obs({[s100
pop]} ∅) ∗ [1

2]ℓcc 7→ 100 ∗ Lc(100, {[s100
pop]}) ∗ [1

2]mutex(m, Pmut) }

. . .
Continued in
Fig. A.18.

Figure A.21: Verification of realistic example 3.10a: Consumer loops.

106 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

∀ℓfifo10 , ℓmut, ℓcp , ℓcc , vcc , Oc, vmut
fifo10

.

. . . Continuation of Fig. A.21.
For definition of Pmut, Lc(n, O) and variations cf. Figures A.15 and A.17.

{size(vmut
fifo10

) > 0 ∗ Lc(vcc , Oc) ∗ obs(Oc ⊎ {[m]}) ∗ [1
2]ℓcc 7→ vcc ∗ P ′

mut(vmut
fifo10

)} PR-ViewShift & VS-SemImp
[1

2]ℓcc 7→ vcc ∗ [1
2]ℓcc 7→ vmut

cc ℓcc 7→ vcc ∗ vcc = vmut
cc

∗ (vcc > 0 → signal(s
vmut

cc
pop , False)) signal(s

vcc
pop, False)

∗ (vcc > 0 ↔ Oc = {[s
vcc
pop]}) ∗ (vcc = 0 ↔ Oc = ∅) Oc = {[s

vcc
pop]}

∗ . . .

let c :=[cc] in PR-Let & PR-ReadHeapLoc
[fifo10] := tail(f); [cc] := c − 1 PR-AssignToHeap (2x)

{ℓfifo10 7→ tail(vmut
fifo10

) ∗ ℓcc 7→ vcc − 1 ∗ . . .} PR-ViewShift & VS-SetSignal

{obs({[s
vcc
pop, m]}) ∗ signal(s

vcc
pop, True) ∗ . . .} PR-ViewShift & VS-SemImp

{ (vcc − 1 = 0 ∨ vcc > 0) ∗ . . .} PR-ViewShift & VS-Or

case: vcc − 1 = 0 PR-ViewShift & VS-SemImpLast iteration, nothing left to do.

{obs({[m]}) ∗ [1
2]ℓcc 7→ 0 ∗ Pmut} PR-ViewShift & VS-SemImp

∃O′
c. obs(O′

c ⊎ {[m]})

∗ if size(vmut
fifo10

) ̸= 0

then [1
2]ℓcc 7→ vcc − 1 ∗ Lc(vcc − 1, O′

c) ∗ P ′
mut(vmut

fifo10
)

else signal(s
vcc
push, False) ∗ L

vcc
push < L

vcc
pop ∗ [1

2]ℓcc 7→ vcc

∗ Pmut
no:spush (vmut

fifo10
) ∗ Lc(vcc , O′

c)

= PostIfc
For definition of PostIfc
cf. Fig. A.21.

case: vcc − 1 > 0 PR-ViewShift & VS-SigInitMust create signal for next iteration. obs({[s
vcc −1
pop , m]}) ∗∗i=1,...,vcc −2

uninitSig(idi
pop)

∗ uninitSig(id
vcc −1
pop) signal(s

vcc −1
pop , False) ∗ . . .

 PR-ViewShift & VS-SemImp

{PostIfc}

{PostIfc}
. . . Continued in Fig. A.21.

Figure A.22: Verification of realistic example 3.10a: Consumer thread’s
consumption step.

CASE STUDIES 107

A.5.2 Case Study: Statically Unbounded Number of Commu-
nicating Parties

In this section we present and verify a program similar to the one from the
previous section, but where the number of producer and consumer threads
is not statically bounded. Fig. A.23 presents this program. It involves three
parties: the main thread, producer threads and consumer threads. The main
thread creates a shared buffer of size 1, generates a random number N > 0 and
spawns N producer and N consumer threads., which communicate via the shared
buffer. Each producer tries to push a single random number into the buffer. In
case the buffer is full, the producer busy-waits for it to become empty, i.e., it
busy-waits for a consumer to pop the number currently stored in the buffer.
After it pushed, the producer terminates. Each consumer tries to pop a single
number from the buffer. In case the buffer is empty, it waits for some producer
to push a number into the buffer. After it popped, the consumer terminates.

Threads Racing for Buffer Since the program is conceptionally similar to the
one from the previous section, the same holds for its termination proof. There
is, however, one fundamental difference. The previous program involved one
producer and one consumer. So, it was clear which thread would push the kth

element, set the kth push signal and discharge the corresponding obligation.
The same was true for the consumer and the pop signals. Now, N producers
and N consumers race for the buffer. We cannot statically determine which
ones will win. Therefore, we cannot statically decide which threads we should
delegate the push and pop obligations to.

Signals To solve this, we create N variations of every push and pop signal.
That is, we create signals skpush,i and skpop,i for 1 ≤ i, k ≤ N where i refers to the
i’s producer or consumer thread and k to the kth element pushed to or popped
from the buffer. We delegate the obligations for s1

push,i, . . . , s
N
push,i to the ith

producer and the obligations for s1
pop,i, . . . , s

N
pop,i to the ith consumer.

When the ith producer waits because the buffer is full and contains the kth

number, it sets all its remaining unset signals up to the kth one. That is, signals
skpush,i, . . . , s

N
push,i remain unset. (Reducing the number of obligations that a

producer holds while waiting for a consumer to pop, reduces the potential for
level conflicts and simplifies ordering the signals.) When the ith producer pushes
any number to the buffer, it sets all its remaining signals, before it terminates.
A consumer can use any unset skpush,j for any j to wait for the kth element to
arrive in the buffer. We proceed analogously with the consumers and their pop
signals. Similarly to the proof from the previous section, we include our signals

108 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

let N := randomNat + 1 in Random number of threads.
let buf := cons(−1) in Shared buffer.

Negative value ↔ empty.
let mut := new_mutex in
let c := cons(N) in
while (Main thread forks N producer

and N consumer threads.
fork (Producer

with mut await (Producer busy-waits for empty
buffer.

let b := [buf] in
if b < 0 then

[buf] := randomNat; Push random number to buffer.
b < 0

)
);
fork (Consumer

with mut await (Consumer busy-waits for
non-empty buffer.

let b := [buf] in
if b ≥ 0 then

[buf] := −1; Pop buffer value.
b ≥ 0

)
);
[c] :=[c] − 1;
c > 0

) do skip

Figure A.23: Program with statically unbounded number of threads
communicating via a shared buffer of size 1.

CASE STUDIES 109

VS-NewGCell
True⇛ ∃ℓ̂. ℓ̂ 7→ v̂

VS-SetGCell
ℓ̂ 7→ v̂ ⇛ ℓ̂ 7→ v̂′

Figure A.24: View shift rules for ghost variables.

in the lock invariant associated with the mutex that protects the shared buffer.
Thereby, we allow all threads to share the signals in a synchronised fashion.

Levels The ith producer uses some unset skpop,j to wait for the kth element to
be popped from the buffer. Meanwhile it holds obligations skpush,i, . . . , s

N
push,i.

Analogously, the ith consumer holds obligations skpop,i, . . . , s
N
pop,i while using

some unset skpush,j to wait for the kth element to be pushed. We assign one
common level Lkpush to all skpush,1, . . . , s

k
push,N and one common level Lkpop to all

skpop,1, . . . , s
k
pop,N. It must hold Lkpop < Ljpush for all j > k and Lkpush < Lhpop

for all h ≥ k. Hence, we chose Lkpush = 2 · k − 1 and Lkpop = 2 · k.

Ghost Variables In order to simplify the verification of this program, we
introduce ghost variables, which are standard [139, 103, 100]. Ghost variables
are ghost resources that behave like regular program variables, but since they
only exist on the verification level, they cannot affect the runtime behaviour.
We assume an infinite set of ghost locations LocsG with LocsG ∩ Locs = ∅ and a
set of ghost values ValuesG. We implement ghost variables in the form of ghost
heap cells and represent them by ghost points-to chunks ℓ̂ 7→ v̂. Fig. A.24
presents two new view shift rules for ghost variables. Rule VS-NewGCell
allows to create a new ghost variables and VS-SetGCell allows to change the
value of an existing one. Adding ghost variables does not affect the soundness
of our verification approach. In fact, the generalised logic we present and prove
sound in the technical report [151] (appendix § B) includes ghost variables. In
our termination proof, we introduce ghost variables wi and ri. Variable wi
tracks whether the ith producer has already pushed ("written") an element to
the buffer and ri tracks whether the ith consumer has already popped ("read")
an element from the buffer. These variables conveniently allow us to to refer to
the number of elements written to and read from the buffer in the lock invariant.
In Fig. A.25 – A.32, we present the full proof outline for our program from
Fig. A.23. We scaled the proof outlines down to fit them into the page layout.
You can find the original proof outlines in the extended version of the ghost
signal paper [152] and in the technical report [151].

110 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

{obs(∅)}

let N := randomNat + 1 in let buf := cons(−1) in PR-Let (2x)
& PR-Cons

let mut := new_mutex in let c := cons(N) in
PR-Let (2x)
& PR-NewMutex
& PR-Cons

∀ℓbuf , ℓmut, ℓc.

{obs(∅) ∗ N > 0 ∗ ℓbuf 7→ −1 ∗ uninit(ℓmut) ∗ ℓc 7→ N }
PR-ViewShift
& VS-GhostLoop
& VS-NewSignal

Lk
push := 2 · k − 1, Lk

pop := 2 · k for 1 ≤ k ≤ N

Creating
N · N push
and N · N pop
signals.

Later Lk
pop < L

j
push and Lk

push < Lh
pop must hold for j > k and h ≥ k. cf. Fig. A.31

and A.32.

∃id1
push,1, id1

pop,1, . . . , idN
push,N, idN

pop,N.

obs({[(id1
push,1, L1

push), (id1
pop,1, L1

pop), . . . , (idN
push,N, LN

push), (idN
pop,N, LN

pop),]})

∗ N > 0 ∗ ℓbuf 7→ −1 ∗ uninit(ℓmut) ∗ ℓc 7→ N

∗ ∗
i,k=1,...,N

signal((id
k
push,i

, L
k
push), False) ∗ signal((id

k
pop,i, L

k
pop, False)

PR-Exists

∀id1
push,1, id1

pop,1, . . . , idN
push,N, idN

pop,N.

sk
push,i

:= (idk
push,i

, Lk
push), sk

pop,i
:= (idk

pop,i
, Lk

pop) for 1 ≤ i, k ≤ N
∃id1

push,1, id1
pop,1, . . . , idN

push,N, idN
pop,N. obs({[s1

push,1, s1
pop,1, . . . , sN

push,N, sN
pop,N]})

∗ N > 0 ∗ ℓbuf 7→ −1 ∗ uninit(ℓmut) ∗ ℓc 7→ N

∗∗
i,k=1,...,N

signal(s
k
push,i

, False) ∗ signal(s
k
pop,i, False)

PR-ViewShift
& VS-GhostLoop
& VS-NewGCell

A consumer can use any unset sk
push,i

to wait for the kth number to be pushed.

When producer i pushes, it sets all s
j
push,i

. When it waits for a consumer to pop

the kth number, it sets all s
j
push,i

for j ≤ k and keeps obligations for j > k.

So, if k < N numbers have been pushed, there exists some i s.t. s
k+1
push,i

is unset.

∃ℓ̂w
1 , ℓ̂r

1, . . . , ℓ̂w
N , ℓ̂r

N. obs({[s1
push,1, s1

pop,1, . . . , sN
push,N, sN

pop,N]}) ∗ N > 0

∗ ℓbuf 7→ −1 ∗ uninit(ℓmut) ∗ ℓc 7→ N ∗ ∗
i=1,...,N̂

ℓ
w
i 7→ False ∗ ℓ̂

r
i 7→ False

∗ ∗
i,k=1,...,N

signal(s
k
push,i

, False) ∗ signal(s
k
pop,i, False)

PR-Exists

Ghost heap cell ℓ̂w
i

/ ℓ̂r
i

records whether prod./cons. i has already pushed/popped.

∀ℓ̂w
1 , ℓ̂r

1, . . . , ℓ̂w
N , ℓ̂r

N.
∃ℓ̂w

1 , ℓ̂r
1, . . . , ℓ̂w

N , ℓ̂r
N. obs({[s1

push,1, s1
pop,1, . . . , sN

push,N, sN
pop,N]}) ∗ N > 0

∗ ℓbuf 7→ −1 ∗ uninit(ℓmut) ∗ ℓc 7→ N ∗∗
i=1,...,N̂

ℓ
w
i 7→ False ∗ ℓ̂

r
i 7→ False

∗ ∗
i,k=1,...,N

signal(s
k
push,i

, False) ∗ signal(s
k
pop,i, False)

PR-ViewShift
& VS-SemImp
& VS-MutInit

m := (mut, 0)

Later m.lev < Lk
push and m.lev < Lk

pop must hold. cf. Fig. A.31
and A.32.

obs({[s1
push,1, s1

pop,1, . . . , sN
push,N, sN

pop,N]}) ∗ mutex(m, P)

N > 0 ∗ ℓbuf 7→ −1 ∗ uninit(ℓmut) ∗ ℓc 7→ N ∗∗
i=1,...,N

[1
2]̂ℓw

i
7→ False ∗ [1

2]̂ℓr
i

7→ False

∗∗
i,k=1,...,N

signal(s
k
push,i

, False) ∗ signal(s
k
pop,i, False)

For definition of
lock invariant P
cf. Fig. A.26.

. . .
Continued in
Fig. A.30

Figure A.25: Verification of program A.23: Initialisation.

CASE STUDIES 111

P ′(vbuf , W, R, w1, . . . , wN, r1, . . . , rN)

:= ℓbuf 7→ vbuf ∧ vbuf ∈ Z ∧ N > 0 Shared buffer.
Negative ↔ empty.

∗ ∗
i=1,...,N

[1
2]̂ℓw

i
7→ wi ∗ W =

∣
{i ∈ {1, . . . , N} | wi = True}

∣ Ghost value wi tracks
whether producer i
already pushed.
W : Number of elements

written to buffer.

∗ ∗
i=1,...,N

[1
2]̂ℓr

i
7→ ri ∗ R =

∣
{i ∈ {1, . . . , N} | ri = True}

∣ Ghost value ri tracks
whether consumer i
already popped.
R: Number of elements

read from buffer.
∗ (vbuf ≥ 0 → W > 0 ∧ R < N)
∗ (vbuf < 0 ↔ R = W) ∗ (vbuf ≥ 0 ↔ R = W − 1)

∗ ∗
i=1,...,N

k=W +1,...,N

signal(s
k
push,i

, wi) ∗ ∗
i=1,...,N

k=1,...,W

signal(s
k
push,i

, _)

Signals set by producers
& used by consumers
to wait when buffer is
empty.

∗ ∗
i=1,...,N

k=R+1,...,N

signal(s
k
pop,i, ri) ∗ ∗

i=1,...,N
k=1,...,R

signal(s
k
pop,i, _)

Signals set by consumers
& used by producers
to wait when buffer is
empty.

P := ∃vbuf ∈ Z. ∃W, R ∈ N. ∃w1, . . . , wN, r1, . . . , rN ∈ B.

P ′(vbuf , W, R, w1, . . . , wN, r1, . . . , rN)

Figure A.26: Verification of program A.23: Lock invariant.

Lf (c) := ℓc 7→ c ∧ 0 ≤ c ≤ N ∧ N > 0
Decreasing counter.
Prods. & cons.
c + 1, . . . , N already forked.

∗ obs({[sk
push,i

, sk
pop,i

| 1 ≤ i ≤ c ∧ 1 ≤ k ≤ N]}) Remaining obligations for threads
that have not been forked, yet.

∗∗
i=1,...,c

[1
2]̂ℓw

i
7→ False ∗ [1

2]̂ℓr
i

7→ False Ghost heap cells for unforked
consumers.

∗ [2·c
2·N]mutex(m, P) Partial mutex chunk for unforked

producers & consumers.

Figure A.27: Verification of program A.23: Fork loop invariant.

Li
p(O) := ∃npush. 1 ≤ npush ≤ N Lower bound for index of next element

that will be pushed by any thread.
∗ O = {[s

npush
push,i

, . . . , sN
push,i

]}

∗ [1
2]̂ℓw

i
7→ False

Figure A.28: Verification of program A.23: Loop invariant for producer i.

Li
c(O) := ∃npop. 1 ≤ npop ≤ N Lower bound for index of next element

that will be popped by any thread.
∗ O = {[s

npop
pop,i

, . . . , sN
push,i

]}

∗ [1
2]̂ℓr

i
7→ False

Figure A.29: Verification of program A.23: Loop invariant for consumer i.

112 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

. . .
Continuation of
Fig. A.25 .

∀ℓbuf , ℓmut, ℓc, id1
push,1, id1

pop,1, . . . , idN
push,N, idN

pop,N, ℓ̂w
1 , ℓ̂r

1, . . . , ℓ̂w
N , ℓ̂r

N.
obs({[s1

push,1, s1
pop,1, . . . , sN

push,N, sN
pop,N]}) ∗ mutex(m, P)

∗ ℓc 7→ N ∗∗
i=1,...,N

[1
2]̂ℓw

i
7→ False ∗ [1

2]̂ℓr
i

7→ False

 PR-ViewShift
& VS-SemImp

obs({[s1
push,1, s1

pop,1, . . . , sN
push,N, sN

pop,N]}) ∗ mutex(m, P)

∗ ℓc 7→ N ∗∗
i=1,...,N

[1
2]̂ℓw

i
7→ False ∗ [1

2]̂ℓr
i

7→ False Lf (N)

 For definition of
fork loop invariant
cf. Fig. A.27.

while (PR-While-Dec
∀vc.

{Lf (vc)}
fork (PR-Fork{

obs({[s1
push,vc

, . . . , sN
push,vc

]}) ∗ [1
N]mutex(m, P)

∗ [1
2]̂ℓw

vc 7→ False

}
. . .

Producer loop on
Fig. A.31.

{obs(∅) ∗[1
N]mutex(m, P) }

);

ℓc 7→ vc ∗∗
i=1,..., vc − 1

[1
2]̂ℓw

i
7→ False ∗ ∗

i=1,...,vc

[1
2]̂ℓr

i
7→ False

∗ [2·vc−1
2·N]mutex(m, P)

∗ obs

(
{[s1

push,vc
, . . . , sN

push,vc
]} ⊎ {[s1

pop,vc , . . . , sN
pop,vc]}

⊎ {[sk
push,i

, sk
pop,i

| 1 ≤ i ≤ vc − 1 ∧ 1 ≤ k ≤ N]}

)

fork (PR-Fork{
obs({[s1

pop,vc , . . . , sN
pop,vc]}) ∗ [1

N]mutex(m, P)

∗ [1
2]̂ℓr

vc 7→ False

}
. . .

Consumer loop on
Fig. A.32.

{obs(∅) ∗[1
N]mutex(m, P) }

);

ℓc 7→ vc ∗∗
i=1,..., vc − 1

[1
2]̂ℓw

i
7→ False ∗ [1

2]̂ℓr
i

7→ False

∗ [2·vc−2
2·N]mutex(m, P)

∗ obs

(
{[s1

pop,vc , . . . , sN
pop,vc]} ⊎

{[sk
push,i

, sk
pop,i

| 1 ≤ i ≤ vc − 1 ∧ 1 ≤ k ≤ N]}

)

[c] :=[c] − 1;

PR-Let
& PR-ReadHeapLoc
& PR-AssignToHeap
Remember that this
command is syntactic
sugar.

ℓc 7→ vc − 1 ∗∗
i=1,...,vc−1

[1
2]̂ℓw

i
7→ False ∗ [1

2]̂ℓr
i

7→ False

∗ [2·vc−2
2·N]mutex(m, P)

∗ obs({[sk
push,i

, sk
pop,i

| 1 ≤ i ≤ vc − 1 ∧ 1 ≤ k ≤ N]})

{Lf (vc − 1)}
c > 0 PR-Exp

{Lf (vc − 1)} PR-ViewShift
& VS-SemImp

{if vc − 1 > 0 then Lf (vc − 1) else obs(∅)}
) do skip
{ Lf (N) obs(∅) }

Figure A.30: Verification of program A.23: Fork loop.

CASE STUDIES 113

. . .
Continuation of
Fig. A.30

∀ℓbuf , ℓmut, ℓc, id1
push,1, id1

pop,1, . . . , idN
push,N, idN

pop,N, ℓ̂w
1 , ℓ̂r

1, . . . , ℓ̂w
N , ℓ̂r

N.vc.

{obs({[s1
push,vc

, . . . , sN
push,vc

]}) ∗ [1
N]mutex(m, P) ∗ [1

2]̂ℓw
vc 7→ False} PR-ViewShift

& VS-SemImp{
obs({[s1

push,vc
, . . . , sN

push,vc
]}) ∗ L

vc
p ({[s1

push,vc
, . . . , sN

push,vc
]})

∗ [1
N]mutex(m, P)

} For definition of
this producer’s
loop invariant L

vc
p (O)

cf. Fig. A.28.

m.lev = 0 < 2 · k − 1 = sk
push,vc

.lev for 1 ≤ k ≤ N Justification for
application of:

with mut await (PR-Await

∀O.

For definition of

lock invariant P & P̂
cf. Fig. A.26.

{obs(O ⊎ {[m]}) ∗ L
vc
p (O) ∗ P } PR-Exists

∀npush, vbuf , W, R, w1, . . . , wN, r1, . . . , rN.

P̂ := P ′(vbuf , W, R, w1, . . . , wN, r1, . . . , rN)

{obs({[s
npush
push,vc

, . . . , sN
push,vc

, m]}) ∗ [1
2]̂ℓw

vc 7→ False ∗ P̂ }
PR-ViewShift
& VS-GhostLoop
& VS-SetSignal

{obs({[s
max(npush,W + 1)

push,vc
, . . . , sN

push,vc
, m]}) ∗ [1

2]̂ℓw
vc 7→ False ∗ P̂ }

if b < 0 then PR-If
{ vbuf < 0 ∗ . . .}

[buf] := randomNat
PR-AssignToHeap
& PR-ViewShift
& VS-SemImp{

∃v′
buf . ℓbuf 7→ v′

buf ∧ v′
buf ≥ 0

∗ [1
2]̂ℓw

vc 7→ False ∗ [1
2]̂ℓw

vc 7→ wvc ℓ̂w
vc 7→ False ∗ . . .

}
PR-ViewShift
& VS-SetGCell

{̂ℓw
vc 7→ True ∗ . . .}

PR-ViewShift
& VS-GhostLoop
& VS-SetSignal

obs({[s
max(npush,W +1)
push,vc

, . . . , sN
push,vc

, m]})

∗ ∗
k=max(npush,W +1),...,N

signal(s
k
push,vc

, True) ∗ . . .

PR-ViewShift
& VS-SemImp
Define P rest

p
such that
(∃i.

signal(s
R+1
pop,i

, False)

∗ P rest
p)

⇛ P
∃O′. obs(O′ ⊎ {[m]})
∗ if vbuf < 0

then P ∗ O = ∅
else L

vc
p (O′) ∗ ∃i. signal(s

R+1
pop,i

, False) ∗ P rest
p

∗ L
R+1
pop ≺L O′ ∗ m.lev ≺L O′

 =: PostIfp

else PR-ViewShift
& VS-SemImp

{ vbuf ≥ 0 ∧ R = W − 1 ∗ obs({[s
max(npush,W +1)
push,vc

, . . . , sN
push,vc

, m]}) ∗ . . .} PR-ViewShift
& VS-SemImp

L
R+1
pop = 2 · (R + 1) = 2 · W

< 2 · max(npush, W + 1) − 1 ≤ Lk
push

for max(npush, W + 1) ≤ k ≤ N.

m.lev = 0 < Lk
push for any k.

R < N ∧ P̂ ⇒ ∃i. ri = False ∧∗
j=1,...,N

signal(s
R+1
pop,j

, rj)

⇒ ∃i. signal(s
R+1
pop,i

, False)

Justification of
else branch in PostIfp.

{PostIfp}

{ obs({[s
max(npush,W +1)
push,vc

, . . . , sN
push,vc

, m]}) ∗ [1
2]̂ℓw

vc 7→ False ∗ P̂ PostIfp }

b < 0 PR-Exp
{PostIfp}

){
∃O′. obs({[s1

push,vc
, . . . , sN

push,vc
]} O′) ∗ L

vc
p ({[s1

push,vc
, . . . , sN

push,vc
]})

∗ [1
N]mutex(m, P) ∗ O′ = ∅

}
PR-ViewShift
& VS-SemImp

{obs(∅)}

Figure A.31: Verification of program A.23: Producer loop.

114 GHOST SIGNALS: FORMALIZATION & CASE STUDIES

. . .
Continuation of
Fig. A.30 .

∀ℓbuf , ℓmut, ℓc, id1
push,1, id1

pop,1, . . . , idN
push,N, idN

pop,N, ℓ̂w
1 , ℓ̂r

1, . . . , ℓ̂w
N , ℓ̂r

N.vc.

{obs({[s1
pop,vc , . . . , sN

pop,vc]}) ∗ [1
N]mutex(m, P) ∗ [1

2]̂ℓr
vc 7→ False} PR-ViewShift

& VS-SemImp{
obs({[s1

pop,vc , . . . , sN
pop,vc]}) ∗ L

vc
c ({[s1

pop,vc , . . . , sN
pop,vc]})

∗ [1
N]mutex(m, P)

} For definition of
this consumer’s
loop invariant L

vc
c (O)

cf. Fig. A.29.

m.lev = 0 < 2 · k − 1 = sk
push,vc

.lev for 1 ≤ k ≤ N Justification for
application of:

with mut await (PR-Await

∀O.

For definition of

lock invariant P & P̂
cf. Fig. A.26.

{obs(O ⊎ {[m]}) ∗ L
vc
c (O) ∗ P } PR-Exists

∀npop, vbuf , W, R, w1, . . . , wN, r1, . . . , rN.

P̂ := P ′(vbuf , W, R, w1, . . . , wN, r1, . . . , rN)

{obs({[s
npop
pop,vc , . . . , sN

pop,vc , m]}) ∗ [1
2]̂ℓr

vc 7→ False ∗ P̂ }
PR-ViewShift
& VS-GhostLoop
& VS-SetSignal

{obs({[s
max(npop, R + 1)

pop,vc , . . . , sN
pop,vc , m]}) ∗ [1

2]̂ℓr
vc 7→ False ∗ P̂ } PR-ViewShift

& VS-SemImp

{ [1
2]̂ℓr

vc 7→ False ∗ [1
2]̂ℓr

vc 7→ rvc ℓ̂r
vc 7→ False ∧ rvc = False ∧ R < N ∗ . . .}

if b ≥ 0 then PR-If

{ vbuf ≥ 0 ∗ . . .}

[buf] := −1 PR-AssignToHeap{
ℓbuf 7→ −1 ∗ . . .

}
PR-ViewShift
& VS-SetGCell

{̂ℓr
vc 7→ True ∗ . . .}

PR-ViewShift
& VS-GhostLoop
& VS-SetSignal

obs({[s
max(npop,R+1)
pop,vc , . . . , sN

pop,vc , m]})

∗ ∗
k=max(npop,R+1),...,N

signal(s
k
pop,vc , True) ∗ . . .

PR-ViewShift
& VS-SemImp
Define P rest

c
such that
(∃i.

signal(s
W +1
push,i

, False)

∗ P rest
c)

⇛ P
∃O′. obs(O′ ⊎ {[m]})
∗ if vbuf ≥ 0

then P ∗ O = ∅
else L

vc
c (O′) ∗ ∃i. signal(s

W +1
push,i

, False) ∗ P rest
c

∗ L
W +1
push ≺L O′ ∗ m.lev ≺L O′

 =: PostIfc

else PR-ViewShift
& VS-SemImp

{ vbuf < 0 ∧ R = W < N ∗ obs({[s
max(npop,R+1)
pop,vc , . . . , sN

pop,vc , m]}) ∗ . . .} PR-ViewShift
& VS-SemImp

L
W +1
push = 2 · (W + 1) − 1 = 2 · (R + 1) − 1

< 2 · max(npop, R + 1) ≤ Lk
pop for max(npop, R + 1) ≤ k ≤ N.

m.lev = 0 < Lk
pop for any k.

W < N ∧ P̂ ⇒ ∃i. wi = False ∧∗
j=1,...,N

signal(s
W +1
push,j

, wj)

⇒ ∃i. signal(s
W +1
push,i

, False)

Justification of
else branch
in PostIfc.

{PostIfc}

{ obs({[s
max(npop,R+1)
pop,vc , . . . , sN

pop,vc , m]}) ∗ . . . PostIfc }

b ≥ 0 PR-Exp
{PostIfc}

){
∃O′. obs({[s1

pop,vc , . . . , sN
pop,vc]} O′) ∗ L

vc
c ({[s1

pop,vc , . . . , sN
pop,vc]})

∗ [1
N]mutex(m, P) ∗ O′ = ∅

}
PR-ViewShift
& VS-SemImp

{obs(∅)}

Figure A.32: Verification of program A.23: Consumer loop.

Appendix B

Ghost Signals: Generalised
Logic

This chapter formalizes a generalized version of the logic presented in chapter 3
and presents additional case studies. The contents of this chapter were previously
published as stand-alone technical report on Zenodo:

T. Reinhard and Bart Jacobs. Ghost Signals: Verifying
Termination of Busy Waiting (Technical Report). Zenodo, 2021.
https://doi.org/10.5281/zenodo.4775100

B.1 Universe

Throughout this work we assume the existence of the following sets:

• X : An infinite set of program variables.

• Locs: An infinite set of heap locations.

• LocsG: An infinite set of ghost locations.

• Levs, <L: An infinite, well-founded partially ordered set of levels.

• ∆, <∆: An infinite, well-founded partially ordered set of degrees.

• ID: An infinite set of IDs.

115

116 GHOST SIGNALS: GENERALISED LOGIC

• Θ: An infinite, totally ordered and well-founded set of thread IDs.

• Values: A set of values which includes:

– A unit value tt ∈ Values
– Booleans B = {True,False} ⊂ Values
– Heap locations Locs ⊂ Values

• ValuesG: A set of ghost values.

• Ops: A set of operations (i.e. partial functions) on values.

We denote program variables by x, heap locations by ℓ, ghost locations by ℓ̂,
levels by L, degrees by δ, IDs by id, thread IDs by θ, values by v, ghost values
by v̂, boolean by b and operations by op.

B.2 General

Definition B.2.1 (Projections). For any Cartesian product C =
∏
i∈I Ai and

any index k ∈ I, we denote the kth projection by πCk :
∏
i∈I Ai → Ak. We define

πCk ((ai)i∈I) := ak.

In case the domain C is clear from the context, we write πk instead of πCk .

In the following we define our notion of bags, in the literature also referred to
as multisets.
Definition B.2.2 (Bags). For any set X we define the set of bags Bags(X)
and the set of finite bags Bagsfin(X) over X as

Bags(X) := X → N,
Bagsfin(X) := {B ∈ Bags(X) | {x ∈ B | B(x) > 0} finite}.

We define union and subtraction of bags as
(B1 ⊎B2)(x) := B1(x) +B2(x),
(B1 \B2)(x) := max(0, B1(x) −B2(x)).

For finite bags where the domain is clear from the context, we define the following
set-like notation:

∅ := x 7→ 0,

{[x]} :=
{
x 7→ 1
y 7→ 0 for y ̸= x,

{[x1, . . . , xn]} :=
n⊎
i=1

{[xi]}.

SYNTAX 117

v ∈ Values x ∈ X op ∈ Ops

e ∈ Exps ::= x | v | e = e | ¬e | op(ē)
c ∈ Cmds ::= while c do skip | fork c |

let x := c in c | if c then c |
cons(e) | [e] | [e] := e |
new_mutex | acquire e | release e |
e |
consumeItPerm intermediate

representation

Figure B.1: Syntax.

We define the following set-like notations for element and subset relationship:

x ∈ B ⇔ B(x) > 0,
B1 ⊆ B2 ⇔ ∀x ∈ B1. B1(x) ≤ B2(x),
B1 ⊂ B2 ⇔ ∃C ⊆ B1. C ̸= ∅ ∧ B1 = B2 \ C.

For any bag B ∈ Bags(X) and predicate P ⊆ X we define the following
refinement:

{[x ∈ B | P (x)]} :=
{
x 7→ B(x) if P (x),
x 7→ 0 otherwise.

Definition B.2.3 (Disjoint Union). Let A,B be sets. We define their disjoint
union as

A ⊔B := A ∪B

if A ∩B = ∅ and leave it undefined otherwise.

B.3 Syntax

Definition B.3.1. We define the sets of commands Cmds and expressions Exps
according to the syntax presented in Figure B.1.

We define c ; c′ as shorthand for let x := c in c′ where x does not occur free
in c′ but let · ; · bind stronger. Further, we define e ̸= e′ as abbreviation for
¬(e = e′).

118 GHOST SIGNALS: GENERALISED LOGIC

let x := cons(0) in
let m := new_mutex in
fork (while (acquire m;

let y := [x] in
release m;
y = 0)

do skip);
acquire m;
[x] := 1;
release m

Figure B.2: Example Program.

B.4 Example

Figure B.2 presents the example program we plan to verify. For this example
we let Values include natural numbers.

B.5 Resources

In this section we define physical resources. We will use the physical resources
to define the semantics of our programming language.

Definition B.5.1 (Physical Resources). We define the set of physical resources
Rphys syntactically as follows:

rp ∈ Rphys ::= ℓ 7→ v | unlockedpRes(ℓ) | lockedpRes(ℓ)

ℓ ∈ Locs v ∈ Values

Definition B.5.2 (Physical Heaps). We define the set of physical heaps as

Heapsphys := Pfin(Rphys)

and the function locspRes : Heapsphys → Pfin(Locs) mapping physical heaps to
the sets of allocated heap locations as

locspRes(h) := {ℓ ∈ Locs | unlockedpRes(ℓ) ∈ h ∨ lockedpRes(ℓ) ∈ h ∨
∃v ∈ Values. ℓ 7→ v ∈ h}

We denote physical heaps by h.

SEMANTICS 119

B.6 Semantics

Definition B.6.1 (Evaluation of Closed Expressions). We define a partial
evaluation function [[·]] : Exps ⇀ Values on expressions by recursion on the
structure of expressions as follows:

[[v]] := v if v ∈ Values
[[e = e′]] := True if [[e]] = [[e′]] ̸= ⊥
[[e = e′]] := False if [[e]] ̸= [[e′]] ∧ [[e]] ̸= ⊥ ∧ [[e′]] ̸= ⊥
[[¬e]] := False if [[e]] = True
[[¬e]] := True if [[e]] = False
[[e]] := ⊥ otherwise

We identify closed expressions e with their ascribed value [[e]].

Definition B.6.2 (Evaluation Context). We define the set of evaluation contexts
EvalCtxts as follows:

E ∈ EvalCtxts ::= if □ then c | let x :=□ in c

c ∈ Cmds x ∈ X

For any c ∈ Cmds and E ∈ EvalCtxts, we define E[c] := E[□ 7→ c].

Note that for every c ∈ Cmds, E ∈ EvalCtxts, we have E[c] ∈ Cmds.

Definition B.6.3 (Single Thread Reduction Relation). We define a reduction
relation ⇝st for single threads according to the rules presented in Figure B.3. A
reduction step has the form

h, c⇝st h
′, c′, T

for a set of forked threads T ⊂ Cmds with |T | ≤ 1.

For simplicity of notation, we omit T if it is clear from the context that no
thread is forked and T = ∅.

Note that we do not provide a reduction rule for consumeItPerm, since we
only use it as an intermediate representation for the annotated reduction relation
presented in Section B.9.

Definition B.6.4 (Thread Pools). We define the set of thread pools TP as the
set of finite partial functions mapping thread IDs to threads:

TP := Θ ⇀fin (Cmds ∪ {term}).

120 GHOST SIGNALS: GENERALISED LOGIC

ST-Red-EvalCtxt
h, c⇝st h

′, c′, T

h,E[c]⇝st h
′, E[c′], T

ST-Red-Fork
h, fork c⇝st h, tt, {c}

(a) Basic Constructs.

ST-Red-While
h,while c do skip⇝st h, if c then while c do skip

ST-Red-IfTrue
h, if True then c⇝st h, c

ST-Red-IfFalse
h, if False then c⇝st h, tt

ST-Red-Let
h, let x := v in c⇝st h, c[x 7→ v]

(b) Control Structures.

ST-Red-Cons
ℓ ̸∈ locspRes(h)

h, cons(v)⇝st h ∪ {ℓ 7→ v}, ℓ

ST-Red-ReadHeapLoc
ℓ 7→ v ∈ h

h, [ℓ]⇝st h, v

ST-Red-Assign
h ⊔ {ℓ 7→ v′}, [ℓ] := v ⇝st h ⊔ {ℓ 7→ v}, tt

(c) Heap Access.

ST-Red-NewMutex
ℓ ̸∈ locspRes(h)

h,new_mutex⇝st h ∪ {unlockedpRes(ℓ)}, ℓ

ST-Red-Acquire
h ⊔ {unlockedpRes(ℓ)},acquire ℓ⇝st h ⊔ {lockedpRes(ℓ)}, tt

ST-Red-Release
h ⊔ {lockedpRes(ℓ)}, release ℓ⇝st h ⊔ {unlockedpRes(ℓ)}, tt

(d) Mutexes.

Figure B.3: Single thread reduction rules.

ASSERTIONS 121

TP-Red-Lift
P (θ) = c h, c⇝st h

′, c′, T

h, P
θ
⇝tp h

′, P [θ := c′] +tp T

TP-Red-Term
P (θ) = v

h, P
θ
⇝tp h, P [θ := term]

Figure B.4: Thread pool reduction rules.

The symbol term represents a terminated thread. We denote thread pools by P ,
thread IDs by θ and the empty thread pool by ∅tp, i.e.,

∅tp : Θ ⇀fin (Cmds ∪ {term}),
dom(∅tp) = ∅.

We define the operation +tp : TP × {C ⊂ Cmds | |C| ≤ 1} → TP as follows:

P +tp ∅ := P,
P +tp{c} := P [θnew := c] for θnew := min(Θ \ dom(P)).

Definition B.6.5 (Thread Pool Reduction Relation). We define a thread
pool reduction relation ⇝tp according to the rules presented in Figure B.4. A
reduction step has the form

h, P
θ
⇝tp h

′, P ′.

Definition B.6.6 (Reduction Sequence). Let (hi)i∈N and (Pi)i∈N be infinite
sequences of physical heaps and thread pools, respectively.

We call (hi, Pi)i∈N a reduction sequence if there exists a sequence of thread IDs
(θi)i∈N such that

hi, Pi
θi⇝tp hi+1, Pi+1

holds for every i ∈ N.

Definition B.6.7 (Fairness). We call a reduction sequence (hi, Pi)i∈N fair iff
for all i ∈ N and θ ∈ dom(Pi) with Pi(θ) ̸= term there exists some k ≥ i with

hk, Pk
θ
⇝tp hk+1, Pk+1.

B.7 Assertions

Definition B.7.1 (Fractions). We define the set of fractions as

F := {f ∈ Q | 0 < f ≤ 1}.

122 GHOST SIGNALS: GENERALISED LOGIC

Definition B.7.2 (Thread Phase IDs). We define the set of thread phase literals
as

T := {Forker, Forkee}.

We call a finite sequence of thread phase literals a phase ID and denote it by
τ ∈ T ∗. We write τ1 ⊑ τ2 to express that τ1 is a (non-strict) prefix of τ2.

Definition B.7.3. We define the sets of ghost signals S, obligations O, wait
permission Ω and iteration permissions Λ as follows:

S := ID × Levs,
O := (Locs ∪ ID) × Levs,
Ω := T ∗ × ID × ∆,
Λ := T ∗ × ∆.

We denote ghost signals by s, obligations by o, and bags of obligations by O. For
convenience of notation we define the selector function:

(id, L).id := L.

Definition B.7.4 (Assertions). We define the set of assertions A according
to the syntax presented in Figure B.5.1 Further, we define implication and
equivalence as the usual abbreviations:

a1 → a2 := ¬a1 ∨ a2,
a1 ↔ a2 := (a1 → a2) ∧ (a2 → a1).

Let (a(i))i∈I be a family of assertions indexed by some set I. We define
quantification over I as the following abbreviations:

∃i ∈ I. a(i) :=
∨

{a(i) | i ∈ I},
∀i ∈ I. a(i) := ¬∃i ∈ I.¬a(i).

We omit the index set I when its choice becomes clear from the context and
write ∃i. a(i) and ∀i. a(i) instead of ∃i ∈ I. a(i) and ∀i ∈ I. a(i), respectively.

Definition B.7.5 (Logical Resources). We define the set of logical resources
Rlog syntactically as follows:

rl ∈ Rlog ::= ℓ 7→ v | ℓ̂ 7→ v̂ | signallRes((id, L), b) |
uninitlRes(ℓ) | mutexlRes((ℓ, L), a) | lockedlRes((ℓ, L), a, f) |
phaselRes(τ) | obslRes(O) | wpermlRes(τ, id, δ) |
itpermlRes(τ, δ)

1That is, we define A as the least fixpoint of F where F (A) = {True, False} ∪ {¬a | a ∈
A} ∪ {a1 ∧ a2 | a1, a2 ∈ A} ∪ · · · ∪ {

∨
A′ | A′ ⊆ A} ∪ Since F is a monotonic function

over a complete lattice, it has a least fixpoint according to the Knaster-Tarski theorem [169].

ASSERTIONS 123

a ∈ A := True | False | ¬a |
a ∧ a | a ∨ a | a ∗ a | [f]ℓ 7→ v | [f]ℓ̂ 7→ v̂ |∨
A |

[f]uninit(ℓ) |
[f]mutex((ℓ, L), a) | [f]locked((ℓ, L), a, f) |
[f]signal((id, L), b) |
phase(τ) | obs(O) | wperm(τ, id, δ) | itperm(τ, δ)

f ∈ F v ∈ Values v̂ ∈ ValuesG ℓ ∈ Locs ℓ̂ ∈ LocsG

L ∈ Levs id ∈ ID b ∈ B = {True,False} δ ∈ ∆

A ⊆ A O ∈ Bags(O) τ ∈ T ∗

Figure B.5: Assertion syntax.

Further, we define the functions getHLocslRes : Rlog → Locs and getGLocslRes :
Rlog → Pfin(LocsG) mapping logical resources to their respective (either empty
or singleton) set of involved heap locations and ghost locations, respectively, as

getHLocslRes(ℓ 7→ v) := {ℓ},
getHLocslRes(uninitlRes(ℓ)) := {ℓ},
getHLocslRes(mutexlRes((ℓ, L), a)) := {ℓ},
getHLocslRes(lockedlRes((ℓ, L), a, f)) := {ℓ},
getHLocslRes(_) := ∅ otherwise,

getGLocslRes(ℓ̂ 7→ v̂) := {ℓ̂},
getGLocslRes(_) := ∅ otherwise.

Definition B.7.6 (Mutexes). We define the set of mutexes as M := Locs×Levs
and denote mutexes by m. For convenience of notation we define the selector
function

(ℓ, L).loc := ℓ.

Definition B.7.7 (Logical Heaps). We define the set of logical heaps as

Heapslog := Rlog → {q ∈ Q | q ≥ 0}.

We define the empty logical heap ∅log as the constant zero function

∅log : rl 7→ 0.
We denote logical heaps by H, point-wise addition by + and multiplication with
non-negative rationals by ·, i.e.,

(H1 +H2)(rl) := H1(rl) +H2(rl),
(q ·H)(rl) := q · (H(rl))

124 GHOST SIGNALS: GENERALISED LOGIC

for q ∈ Q with q ≥ 0. For convenience of notation we represent logical heaps
containing finitely many resources by sets of resources and define left-associative
functions +lh, −lh : Heapslog → Rlog → Heapslog as follows

{rl
1, . . . , r

l
n} :=

{
rl
i 7→ 1
x 7→ 0 if x ̸∈ {rl

1, . . . , r
l
n},

H +lh r
l := H[rl :=H(rl) + 1],

H −lh r
l := H[rl := max(0, H(rl) − 1)].

We give · a higher precedence than +, +lh and −lh.

Further, we define the function getGLocslh : Heapslog → P(LocsG) mapping
logical heaps to their respective set of allocated ghost locations as

getGLocslh(H) :=
⋃

rl∈Rlog

H(rl)>0

getGLocslRes(rl).

We call a logical heap H complete and write completelh(H) if it contains exactly
one obligations chunk and exactly one phase chunk, i.e., if there exist a bag of
obligations O and a phase ID τ with H(obslRes(O)) = 1 and H(phaselRes(τ)) = 1
and if there do not exist any bag of obligations O′ nor any phase ID τ ′ with
(i) O ̸= O′ and H(obslRes(O′)) > 0 or with (ii) τ ̸= τ ′ and H(phaselRes(τ ′)) > 0.

We call a logical heap H finite and write finitelh(H) if it contains only finitely
many resources, i.e., if the set {rl ∈ Rlog | H(rl) > 0} is finite.

We call a logical heap H consistent and write consistentlh(H) if (i) it contains
only full phase, obligations, wait and iteration permission chunks, i.e., if

H(phaselRes(τ)) ∈ N,
H(obslRes(O)) ∈ N,
H(wpermlRes(τ, id, δ)) ∈ N,
H(itpermlRes(τ, δ)) ∈ N

holds for all τ ∈ T ∗, O ∈ Bags(O), id ∈ ID and δ ∈ ∆ and if (ii) heap locations
and ghost locations are unique in H, i.e., if there are no rl

1, r
l
2 ∈ Rlog with

rl
1 ̸= rl

2, H(rl
1) > 0, H(rl

2) > 0 and with getHLocslRes(rl
1) ∩ getHLocslRes(rl

2) ̸= ∅
or getGLocslRes(rl

1) ∩ getGLocslRes(rl
2) ̸= ∅.

To simplify the specification of logical heaps containing only a single obligations
chunk with certain properties, we introduce the abbreviation

(H.obs = O) := (completelh(H) ∧ H(obslRes(O)) = 1).

Definition B.7.8 (Assertion Model Relation). We define a model relation
⊨A ⊂ Heapslog × A for assertions by recursion on the structure of assertions

PROOF RULES 125

H ⊨A True
H ̸⊨A False
H ⊨A ¬a if H ̸⊨A a
H ⊨A a1 ∧ a2 if H ⊨A a1 ∧ H ⊨A a2
H ⊨A a1 ∨ a2 if H ⊨A a1 ∨ H ⊨A a2
H ⊨A a1 ∗ a2 if ∃H1, H2 ∈ Heapslog.

H = H1 +H2 ∧
H1 ⊨A a1 ∧ H2 ⊨A a2

H ⊨A [f]ℓ 7→ v if H(ℓ 7→ v) ≥ f

H ⊨A [f]ℓ̂ 7→ v̂ if H(ℓ̂ 7→ v̂) ≥ f
H ⊨A

∨
A if ∃a ∈ A. H ⊨A a

H ⊨A [f]uninit(ℓ) if H(uninitlRes(ℓ)) ≥ f
H ⊨A [f]mutex(m,P) if H(mutexlRes(m,P)) ≥ f
H ⊨A [f]locked(m,P, fu) if H(lockedlRes(m,P, fu)) ≥ f
H ⊨A [f]signal(s, b) if H(signallRes(s, b)) ≥ f
H ⊨A phase(τ) if H(phaselRes(τ)) ≥ 1
H ⊨A obs(O) if H(obslRes(O)) ≥ 1
H ⊨A wperm(τ, id, δ) if H(wpermlRes(τ, id, δ)) ≥ 1
H ⊨A itperm(τ, δ) if H(itpermlRes(τ, δ)) ≥ 1

Figure B.6: Assertion model relation.

according to the rules presented in Figure B.6. We write H ⊨A a to express that
logical heap H models assertion a and H ̸⊨A a to express that H ⊨A a does not
hold.

B.8 Proof Rules

Definition B.8.1 (Level Ascriptions). We define a function lev : (ID ∪ Locs) ×
Levs → Levs as

lev((_, L)) := L.

Definition B.8.2 (View Shift). We define a view shift relation ⇛ ⊂ A × A
according to the rules presented in Figure B.7.

Definition B.8.3 (Proof Relation). We define a proof relation ⊢ ⊂ A ×
Cmds × (Values → A) according to the rules presented in Figures B.8 and B.9.

126 GHOST SIGNALS: GENERALISED LOGIC

VS-SemImp
∀H. consistentlh(H) ∧H ⊨A A ⇒ H ⊨A B

A⇛ B

VS-Trans
A⇛ C C ⇛ B

A⇛ B

VS-Or
A1 ⇛ B A2 ⇛ B

A1 ∨A2 ⇛ B

VS-NewSignal
L ∈ Levs

obs(O)⇛ ∃id. obs(O ⊎ {[(id, L)]}) ∗ signal((id, L),False)

VS-SetSignal
obs(O ⊎ {[s]}) ∗ signal(s,_)⇛ obs(O) ∗ signal(s,True)

VS-WaitPerm
δ′ <∆ δ

itperm(τ ′, δ)⇛ wperm(τ ′, id, δ′)

VS-Wait
τanc ⊑ τ ∀o ∈ O. lev(s) <L lev(o)

phase(τ) ∗ obs(O) ∗ wperm(τanc, s.id, δ) ∗ signal(s, b)
⇛ phase(τ) ∗ obs(O) ∗ wperm(τanc, s.id, δ) ∗ signal(s, b) ∗ (¬b ↔ itperm(τ, δ))

VS-SpecItPerm
τanc ⊑ τ

itperm(τanc, δ)⇛ itperm(τ, δ)

VS-SpecWaitPerm
τanc ⊑ τ

wperm(τanc, id, δ)⇛ wperm(τ, id, δ)

VS-WeakPerm
δ′ <∆ δ N ∈ N

itperm(τ ′, δ)⇛∗
1,...,N

itperm(τ ′, δ′)

VS-MutInit
L ∈ Levs

uninit(ℓ) ∗ P ⇛ mutex((ℓ, L), P)

VS-NewGCell
True⇛ ∃ℓ̂. ℓ̂ 7→ v̂

VS-SetGCell
ℓ̂ 7→ v̂ ⇛ ℓ̂ 7→ v̂′

Figure B.7: View shift rules.

ANNOTATED SEMANTICS 127

Note that our proof rules do not allow us to reason about the command
consumeItPerm, since we only use it as an intermediate representation during
reduction.

Lemma B.8.4. We can derive the proof rule presented in Figure B.10.

Proof. Trivial.

B.9 Annotated Semantics

Definition B.9.1 (Annotated Resources). We define the set of annotated
resources AnnoRes as follows:

ra ∈ AnnoRes ::= ℓ 7→ v | uninitaRes(ℓ) |
unlockedaRes((ℓ, L), a,H) | lockedaRes((ℓ, L), a, f) |
signalaRes((id, L), b)

Definition B.9.2 (Annotated Heaps). We define the set of annotated heaps as

Heapsannot := Pfin(AnnoRes),

the function locsah : Heapsannot → Pfin(Locs) mapping annotated heaps to the
sets of allocated heap locations as

locsah(ha) := {ℓ ∈ Locs | ∃v ∈ Values. ∃L ∈ Levs. ∃a ∈ A.
∃H ∈ Heapslog. ∃f ∈ F .
ℓ 7→ v ∈ ha ∨ uninitaRes(ℓ) ∈ ha ∨
unlockedaRes((ℓ, L), a,H) ∈ ha ∨
lockedaRes((ℓ, L), a, f) ∈ ha}

and the function idsah : Heapsannot → Pfin(ID) mapping annotated heaps to sets
of allocated signal IDs as

idsah(ha) := {id ∈ ID | ∃L ∈ Levs. ∃b ∈ B. signalaRes((id, L), b) ∈ ha}.

We denote annotated heaps by ha.

We call an annotated heap ha finite and write finiteah(ha) if there exists no chunk
unlockedaRes((ℓ, L), a,H) ∈ ha for which finitelh(H) does not hold.

Definition B.9.3 (Annotated Single Thread Reduction Relation). We define
a reduction relation ⇝ast for annotated threads according to the rules presented
in Figures B.11 and B.12. A reduction step has the form

ha, H, c⇝ast h
a′, H ′, c′, T a

128 GHOST SIGNALS: GENERALISED LOGIC

PR-Frame
⊢ {A} c {B}

⊢ {A ∗ F} c {B ∗ F}

PR-ViewShift
A⇛ A′ ∧ phase(τ) ⊢ {A′} c {B′} ∀τ ′.

(
B′ ∧ phase(τ ′) ∧ τ ⊑ τ ′ ⇛ B

)
⊢ {A} c {B}

PR-VS-Simp
A⇛ A′ ⊢ {A′} c {B′} B′ ⇛ B

⊢ {A} c {B}

PR-Exp
[[e]] ∈ Values

⊢ {True} e {λr. r = [[e]]}

PR-Exists
∀a ∈ A. ⊢ {a} c {B}

⊢ {
∨
A} c {B}

PR-Fork
⊢ {phase(τ.Forkee) ∗ obs(Of) ∗A} c {obs(∅)}

⊢ {phase(τ) ∗ obs(Om ⊎Of) ∗A} fork c {λr. phase(τ.Forker) ∗ obs(Om) ∗ r = tt}

(a) Basic proof rules.

PR-If
⊢ {A} cb {λb. C(b) ∧ (b = True ∨ b = False)}

⊢ {C(True)} ct {B} C(False)⇛ B

⊢ {A} if cb then ct {B}

PR-While

∀τit. τ ⊑ τit ⇒ ⊢
{

phase(τit) ∗ I(τit)
}
cb

λb. ∃τ ′

it, τanc. τanc ⊑ τ ′
it ∗ phase(τ ′

it)
∗ (b = True ∨ b = False)
∗ (b → itperm(τanc, δ) ∗ I(τ ′

it))
∗ (¬b → B(τ ′

it))

⊢ {phase(τ) ∗ I(τ)} while cb do skip {∃τ ′. τ ⊑ τ ′ ∗ phase(τ ′) ∗B(τ ′)}

PR-Let
⊢ {A} c {λr. C(r)} ∀v. ⊢ {C(v)} c′[x 7→ v] {B}

⊢ {A} let x := c in c′ {B}

(b) Control structures.

Figure B.8: Proof rules (part 1).

ANNOTATED SEMANTICS 129

PR-Acquire
m.lev ≺L O

⊢
{obs(O) ∗ [f]mutex(m,P)}

acquire m.loc
{λr. r = tt ∗ obs(O ⊎ {[m]}) ∗ locked(m,P, f) ∗ P}

PR-Release
obs(O) ∗A⇛ obs(O) ∗ P ∗B

⊢
{obs(O ⊎ {[m]}) ∗ locked(m,P, f) ∗A}

release m.loc
{λr. r = tt ∗ obs(O) ∗ [f]mutex(m,P) ∗B}

PR-NewMutex
⊢ {True} new_mutex {λℓ. uninit(ℓ)}

(a) Mutexes.

PR-Cons
⊢ {True} cons(v) {λℓ. ℓ 7→ v}

PR-ReadHeapLoc
⊢ {[f]ℓ 7→ v} [ℓ] {λr. r = v ∗ [f]ℓ 7→ v}

PR-AssignToHeap
⊢ {ℓ 7→ _} [ℓ] := v {λr. r = tt ∗ ℓ 7→ v}

(b) Heap access.

Figure B.9: Proof rules (part 2).

PR-While-Simp
τanc ⊑ τ

⊢ {phase(τ) ∗A} cb {λb. phase(τ) ∗ (b → itperm(τanc, δ) ∗A) ∗ (¬b → B)}
⊢ {phase(τ) ∗A} while cb do skip {phase(τ) ∗B}

Figure B.10: Derived proof rule.

130 GHOST SIGNALS: GENERALISED LOGIC

for a set of annotated forked threads T a ⊂ Heapslog × Cmds with |T a| ≤ 1.

It indicates that given annotated heap ha and a logical heap H, command c can
be reduced to annotated heap ha′, logical heap H ′ and command c′. The either
empty or singleton set T a represents whether a new thread is forked in this step.

For simplicity of notation we omit T a if it is clear from the context that no
thread is forked and T a = ∅.

Definition B.9.4 (Annotated Thread Pools). We define the set of annotated
thread pools TPa as the set of finite partial functions mapping thread IDs to
annotated threads:

TPa := Θ ⇀fin Heapslog × (Cmds ∪ {term}).

We denote annotated thread pools by P a and the empty thread pool by ∅atp, i.e.,

∅atp : Θ ⇀fin Heapslog × (Cmds ∪ {term}),
dom(∅atp) = ∅.

We define the modification operations +atp and −atp analogously to +tp and −tp,
respectively, cf. Definition B.6.4.

For convenience of notation we define selector functions for annotated threads
as

(H, c).heap := H,
(H, c).cmd := c.

Definition B.9.5 (Ghost Reduction Relation). We define a thread pool
reduction relation ⇝ghost according to the rules presented in Figures B.13
and B.14 to express ghost steps. A ghost reduction step has the form

ha, P a θ
⇝ghost h

a′, P a′.

We denote its reflexive transitive closure by ⇝∗
ghost.

Definition B.9.6 (Non-ghost Thread Pool Reduction Relation). We define
a thread pool reduction relation ⇝real according to the rules presented in
Figure B.15 to express real reduction steps. A reduction step has the form

ha, P a θ
⇝real h

a′, P a′.

Definition B.9.7 (Annotated Thread Pool Reduction Relation). We define
the annotated thread pool reduction relation ⇝atp as

⇝atp := ⇝ghost ∪⇝real .

ANNOTATED SEMANTICS 131

AST-Red-EvalCtxt
ha, H, c⇝ast h

a′, H ′, c′, T

ha, H,E[c]⇝ast h
a′, H ′, E[c′], T

AST-Red-Fork
ha, Hm + {phaselRes(τ), obslRes(Om ⊎Of)} +Hf , fork c
⇝ast ha, Hm + {phaselRes(τ.Forker), obslRes(Om)}, tt,

{({phaselRes(τ.Forkee), obslRes(Of)} +Hf), c)}

(a) Basic constructs.

AST-Red-While
ha, H,while c do skip
⇝ast ha, H, if c then (consumeItPerm; while c do skip)

AST-Red-IfTrue
ha, H, if True then c⇝ast h

a, H, c
AST-Red-IfFalse
ha, H, if False then c⇝ast h

a, H, tt

AST-Red-Let
ha, H, let x := v in c⇝ast h

a, H, c[x 7→ v]

(b) Control structures.

AST-Red-ConsumeItPerm
H(phaselRes(τ)) ≥ 1 τanc ⊑ τ

ha, H + {itpermlRes(τanc, δ)}, consumeItPerm⇝ast h
a, H, tt

(c) Intermediate representation.

AST-Red-Cons
ℓ ̸∈ locsah(ha)

ha, H, cons(v)
⇝ast ha ∪ {ℓ 7→ v}, H + {ℓ 7→ v}, ℓ

AST-Red-ReadHeapLoc
ℓ 7→ v ∈ ha

ha, H, [ℓ]⇝ast h
a, H, v

AST-Red-Assign
h ⊔ {ℓ 7→ v}, H + {ℓ 7→ v}, [ℓ] := v ⇝ast h ⊔ {ℓ 7→ v′}, H + {ℓ 7→ v′}, tt

(d) Heap access.

Figure B.11: Annotated single thread reduction rules (part 1).

132 GHOST SIGNALS: GENERALISED LOGIC

AST-Red-NewMutex
ℓ ̸∈ locsah(ha)

ha, H,new_mutex⇝ast h
a ∪ {uninitaRes(ℓ)}, H + {uninitlRes(ℓ)}, ℓ

AST-Red-Acquire
f ∈ F m.lev ≺L O

ha ⊔ {unlockedaRes(m, a,HP)},
H + {obslRes(O)} + f · {mutexlRes(m,P)},
acquire m.loc
⇝ast ha ⊔ {lockedaRes(m,P, f)},

H + {obslRes(O ⊎ {[m]}), lockedlRes(m,P, f)} +HP ,
tt

AST-Red-Release
HP ⊨A P consistentlh(HP)

∃O. H(obslRes(O)) ≥ 1 ∃τ. H(phaselRes(τ)) ≥ 1
ha ⊔ {lockedaRes(m,P, f)},
H + {obslRes(O ⊎ {[m]}), lockedlRes(m,P, f)} +HP ,
release m.loc
⇝ast ha ⊔ {unlockedaRes(m,P,HP)},

H + {obslRes(O)} + f · {mutexlRes(m,P)},
tt

(a) Mutexes.

Figure B.12: Annotated single thread reduction rules (part 2).

Definition B.9.8 (Annotated Reduction Sequence). Let (ha
i)i∈N and (P a

i)i∈N
be infinite sequences of annotated heaps and annotated thread pools, respectively.
Let sig : N⇀ S be a partial function mapping indices to signals.

We call ((ha
i , P

a
i)i∈N, sig) an annotated reduction sequence if there exists a

sequence of thread IDs (θi)i∈N such that the following holds for every i ∈ N:

• ha
i , P

a
i
θi⇝atp h

a
i+1, P

a
i+1

• If this reduction step results from an application of GTP-Red-Wait to
some signal s, then sig(i) = s holds and otherwise sig(i) = ⊥.

In case the signal annotation sig is clear from the context or not relevant, we
omit it and write (ha

i , P
a
i)i∈N instead of ((ha

i , P
a
i)i∈N, sig).

ANNOTATED SEMANTICS 133

GTP-Red-NewSignal
P a(θ) = (H + {obslRes(O)}, c) id ̸∈ idsah(ha)

H ′ = H + {signallRes((id, L),False), obslRes(O ⊎ {[id, L]})}

ha, P a θ
⇝ghost h

a ∪ {signalaRes((id, L),False)}, P a[θ := (H ′, c)]

GTP-Red-SetSignal
P a(θ) = (H + {signallRes(s,False), obslRes(O ⊎ {[s]})}, c)

H ′ = H + {signallRes(s,False), obslRes(O)}

ha ⊔ {signalaRes(s,False)}, P a θ
⇝ghost h

a ⊔ {signalaRes(s,True)}, P a[θ := (H ′, c)]

GTP-Red-WaitPerm
δ′ <∆ δ P a(θ) = (H + {itpermlRes(τ ′, δ)}, c)

ha, P a θ
⇝ghost h

a, P a[θ := (H + {wpermlRes(τ ′, id, δ′)}, c)]

GTP-Red-Wait
signalaRes(s,False) ∈ ha P a(θ) = (H, c)

H(phaselRes(τ)) ≥ 1 H(wpermlRes(τanc, s.id, δ)) ≥ 1 H(obslRes(O)) ≥ 1
τanc ⊑ τ ∀o ∈ O. lev(s) <L lev(O)

ha, P a θ
⇝ghost h

a, P a[θ := (H + {itpermlRes(τ, δ)}, c)]

GTP-Red-SpecItPerm
τanc ⊑ τ P a(θ) = (H + {itperm(τanc, δ)}, c)

ha, P a θ
⇝ghost h

a, P a[θ := (H + {itperm(τ, δ)}, c)]

GTP-Red-SpecWaitPerm
τanc ⊑ τ P a(θ) = (H + {wperm(τanc, id, δ)}, c)

ha, P a θ
⇝ghost h

a, P a[θ := (H + {wperm(τ, id, δ)}, c)]

GTP-Red-WeakItPerm
δ′ <∆ δ N ∈ N P a(θ) = (H + {itpermlRes(τ ′, δ)}, c)

ha, P a θ
⇝ghost h

a, P a[θ := (H +N · {itpermlRes(τ ′, δ′)}, c)]

GTP-Red-MutInit
P a(θ) = (H + {uninitlRes(ℓ)} +HP , c) HP ⊨A P consistentlh(HP)

∃O. H(obslRes(O)) ≥ 1 ∃τ. H(phaselRes(τ)) ≥ 1
H ′ = H + {mutexlRes((ℓ, L), HP)}

ha ⊔ {uninitaRes(ℓ)}, P a θ
⇝ghost h

a ⊔ {unlockedaRes((ℓ, L), a,HP)}, P a[θ := (H ′, c)]

Figure B.13: Ghost thread pool reduction rules (part 1).

134 GHOST SIGNALS: GENERALISED LOGIC

GTP-Red-NewGhostCell
ℓ̂ ̸∈ getGLocslh(H) P a(θ) = (H, c)

ha, P a θ
⇝ghost h

a, P a[θ := (H + {ℓ̂ 7→ v̂}, c)]

GTP-Red-MutateGhostCell
ℓ̂ ̸∈ getGLocslh(H) P a(θ) = (H + {ℓ̂ 7→ v̂}, c)

ha, P a θ
⇝ghost h

a, P a[θ := (H + {ℓ̂ 7→ v̂′}, c)]

Figure B.14: Ghost thread pool reduction rules (part 2)

RTP-Red-Lift
θf = min(Θ \ dom(P a)) P a(θ) = (H, c) ha, H, c⇝ast h

a′, H ′, c′, T a

ha, P a θ
⇝real h

a′, P a[θ := (H ′, c′)] +atp T
a

RTP-Red-Term
P a(θ) = (H, v) H.obs = ∅

ha, P a θ
⇝real h

a, P a −atp θ

Figure B.15: Non-ghost thread pool reduction rules.

We call (ha
i , P

a
i) an annotated machine configuration.

Lemma B.9.9 (Preservation of Finiteness). Let (ha
i , P

a
i)i∈N be an annotated

reduction sequence with finiteah(ha
0) and finitelh(P a

0 (θ).heap) for all θ ∈ dom(P a
0).

Then, finitelh(P a
i (θ).heap) holds for all i ∈ N and all θ ∈ dom(P a

i).

Proof. Proof by induction on i.

Lemma B.9.10 (Preservation of Completeness). Let (ha
i , P

a
i)i∈N be an

annotated reduction sequence with completelh(P a
0 (θ).heap) for all θ ∈ dom(P a

0).
Furthermore, let there be no chunk unlockedaRes(m,P,HP) ∈ ha

0 such that
HP (phaselRes(τ)) > 0 or HP (obslRes(O)) > 0 holds for any τ , O.

Then, completelh(P a
i (θ).heap) holds for every i ∈ N and every θ ∈ dom(P a

i).

Proof. Proof by induction on i.

ANNOTATED SEMANTICS 135

Definition B.9.11 (Fairness of Annotated Reduction Sequences). We call an
annotated reduction sequence (ha

i , P
a
i)i∈N fair iff for all i ∈ N and θ ∈ dom(P a

i)
with P a

i (θ).cmd ̸= term there exists some k ≥ i with

ha
k, P

a
k

θ
⇝real h

a
k+1, P

a
k+1.

Every thread of an annotated thread pool is annotated by a thread-local logical
heap that expresses which resources are owned by this thread. In the following
we define a function to extract the logical heap expressing which resources
are owned by threads of a thread pool (i.e. the sum of all thread-local logical
heaps).

Definition B.9.12. We define the function ownedResHeapatp : TPa → Heapslog

mapping annotated thread pools to logical heaps as follows:

P a 7→
∑

θ∈ dom(P a)

P a(θ).heap

Annotated resources representing unlocked locks, i.e., unlockedaRes(m, a,Ha),
contain a logical heap Ha that expresses which resources are protected by this
lock. In the following, we define a function that extracts a logical heap from an
annotated heap ha expressing which resources are protected by unlocked locks
in ha.

Definition B.9.13. We define the function protectedResHeapah : Heapsannot →
Heapslog mapping annotated heaps to logical heaps as follows:

For any annotated heap ha let

LockInvs(ha) := {[HP ∈ Heapslog | ∃m ∈ Locs× Levs. ∃P ∈ A.
unlockedaRes(m,P,HP) ∈ ha]}

be the auxiliary set aggregating all logical heaps corresponding to lock invariants
of unlocked locks stored in ha. We define protectedResHeapah as

ha 7→
∑

HP ∈ LockInvs(ha)

HP .

Definition B.9.14 (Compatibility of Annotated and Logical Heaps). We
inductively define a relation ∼ah lh ⊂ Heapsannot × Heapslog between annotated

136 GHOST SIGNALS: GENERALISED LOGIC

and logical heaps such that the following holds

∅ ∼ah lh ∅log,
ha ∪ {ℓ 7→ v} ∼ah lh H + {ℓ 7→ v},
ha ∪ {uninitaRes(ℓ)} ∼ah lh H + {uninitlRes(ℓ)},
ha ∪ {unlockedaRes(m,P,HP)} ∼ah lh H + {mutexlRes(m,P)} +HP ,
ha ∪ {lockedaRes(m,P, f)} ∼ah lh H + {lockedlRes(m,P, f)}

+ (1 − f) · {mutexlRes(m,P)},
ha ∪ {signalaRes(s, b)} ∼ah lh H + {signallRes(s, b)},
ha ∼ah lh H + {phaselRes(τ)},
ha ∼ah lh H + {obslRes(O)},
ha ∼ah lh H + {wpermlRes(τ, id, δ)},
ha ∼ah lh H + {itpermlRes(τ, δ)},
ha ∼ah lh H + {ℓ̂ 7→ v̂},

where ha ∈ Heapsannot and H ∈ Heapslog are annotated and logical heaps with
ℓ,m.loc ̸∈ locsah(ha), s.id ̸∈ idsah(ha) and ha ∼ah lh H.

We consider a machine configuration (ha, P a) to be consistent if it fulfils three
criteria: (i) Every thread-local logical heap is consistent, i.e., for all used
thread IDs θ, P a(θ).heap only stores full phase, obligations, wait permission and
iteration permission chunks. (ii) Every logical heap protected by an unlocked
lock in ha is consistent. (iii) ha is compatible with the logical heap that represents
(a) the resources owned by threads in P a and (b) the resources protected by
unlocked locks stored in ha.

Definition B.9.15 (Consistency of Annotated Machine Configurations). We
call an annotated machine configuration (ha, P a) consistent and write
consistentconf(ha, P a) if all of the following hold:

• consistentlh(P a(θ).heap) for all θ ∈ dom(P a),

• ∀m. ∀P. ∀HP . unlockedaRes(m,P,HP) ∈ ha → consistentlh(HP),

• ha ∼ah lh ownedResHeapatp(P a) + protectedResHeapah(ha).

Lemma B.9.16 (Preservation of Consistency). Let (ha
i , P

a
i)i∈N be an annotated

reduction sequence with consistentconf(ha
0, P

a
0). Then, consistentconf(ha

i , P
a
i) holds

for every i ∈ N.

Proof. Proof by induction on i.

HOARE TRIPLE MODEL RELATION 137

B.10 Hoare Triple Model Relation

Definition B.10.1 (Command Annotation). We define the predicate annotcmd ⊂
Cmds × Cmds such that annotcmd(c′, c) holds iff c′ results from c by removing
all occurrences of consumeItPerm.

Definition B.10.2 (Thread Pool Annotation). We define a predicate annottp ⊂
TPa × TP such that:

annottp(P a, P)
⇐⇒

dom(P a) = dom(P) ∧ ∀θ ∈ dom(P). annotcmd(P a(θ).cmd, P (θ))

Definition B.10.3 (Compatibility of Annotated and Physical Heaps). We
inductively define a relation ∼ah ph ⊂ Heapsannot × Rphys between annotated and
physical heaps such that the following holds:

∅ ∼ah ph ∅,
ℓ 7→ v ∪ ha ∼ah ph ℓ 7→ v ∪ h,

uninitaRes(ℓ) ∪ ha ∼ah ph unlockedpRes(ℓ) ∪ h,

unlockedaRes((ℓ, L), P,HP) ∪ ha ∼ah ph unlockedpRes(ℓ) ∪ h,

lockedaRes((ℓ, L), P, f) ∪ ha ∼ah ph lockedpRes(ℓ) ∪ h,

signalaRes(s, b) ∪ ha ∼ah ph h

where ha ∈ Heapsannot and h ∈ Heapsphys are annotated and physical heaps with
ha ∼ah ph h.

Definition B.10.4 (Safety). We define the safety predicate safe ⊆ Heapslog ×
Cmds coinductively as the greatest solution (with respect to ⊆) of the following
equation:

safe(H, c)
⇐⇒

completelh(H) →
∀P, P ′.∀θ ∈ dom(P).∀h, h′.∀P a.∀ha.

consistentconf(ha, P a) ∧ ha ∼ah ph h ∧
P (θ) = c ∧ P a(θ) = (H, c) ∧ annottp(P a, P) ∧ h, P

θ
⇝tp h

′, P ′ →
∃PG, P a′. ∃hG, ha′.

ha, P a
θ

⇝∗
ghost h

G, PG ∧ hG, PG θ
⇝real h

a′, P a′ ∧ annottp(P a′, P ′) ∧
ha′ ∼ah ph h

′ ∧
∀(Hf , cf) ∈ range(P a′) \ range(P a). safe(Hf , cf).

138 GHOST SIGNALS: GENERALISED LOGIC

Definition B.10.5 (Hoare Triple Model Relation). We define the model relation
for Hoare triples ⊨H ⊂ A × Cmds × (Values → A) such that:

⊨H {A} c {λr.B(r)}
⇐⇒

∀HF . ∀E. (∀v. ∀HB . HB ⊨A B(v) → safe(HB +HF , E[v]))
→ ∀HA. HA ⊨A A → safe(HA +HF , E[c])

We can instantiate context E in above definition to let x :=□ in tt, which
yields the consequent safe(HA + HF , let x := c in tt). Note that this implies
safe(HA +HF , c).

Lemma B.10.6 (Hoare Triple Soundness). Let ⊢ {A} c {B} hold, then also
⊨H {A} c {B} holds.

Proof. Proof by induction on the derivation of ⊢ {A} c {B}.

Theorem B.10.7 (Soundness). Let

⊢ {phase(τ) ∗ obs(∅) ∗
i= 1,...,N∗ itperm(τ, δi)} c {obs(∅)}

hold. There exists no fair, infinite reduction sequence (hi, Pi)i∈N with h0 = ∅
and P0 = {(θ0, c)} for any choice of θ0.

B.11 Soundness

In this section, we prove the soundness theorem B.10.7.

Lemma B.11.1 (Construction of Annotated Reduction Sequences). Suppose
we can prove ⊨H {A} c {obs(∅)}. Let HA be a logical heap with HA ⊨A A and
completelh(HA) and ha

0 an annotated heap with ha
0 ∼ah lh HA. Let (hi, Pi)i∈N be

a fair plain reduction sequence with ha
0 ∼ah ph h0 and P0 = {(θ0, c)} for some

thread ID θ0 and command c.

Then, there exists a fair annotated reduction sequence (ha
i , P

a
i)i∈N with P a =

{(θ0, (HA, c))} and consistentconf(ha
i , P

a
i) for all i ∈ N.

Proof. We can construct the annotated reduction sequence inductively from
the plain reduction sequence.

SOUNDNESS 139

Definition B.11.2 (Program Order Graph). Let ((ha
i , P

a
i)i∈N, sig) be an

annotated reduction sequence. Let Nr be the set of names referring to reduction
rules defining the relations⇝real,⇝ghost and⇝ast. We define the set of annotated
reduction rule names N a where GTP-Red-Wait is annotated by signals as

N a := (Nr \ {GTP-Red-Wait})
∪ ({GTP-Red-Wait} × S).

We define the program order graph G(((ha
i , P

a
i)i∈N, sig)) = (N, E) with root 0

where E ⊂ N × Θ ×N a × N.

A node a ∈ N corresponds to the sequence’s ath reduction step, i.e., ha
a, P

a
a

θ
⇝atp

ha
a+1, P

a
a+1 for some θ ∈ dom(P a

a). An edge from node a to node b expresses
that the bth reduction step continues the control flow of step a. For any ℓ ∈ N,
let θℓ denote the ID of the thread reduced in step ℓ. Furthermore, let na

ℓ denote
the name of the reduction rule applied in the ℓth step, in the following sense:

• If ha
ℓ, P

a
ℓ

θ
⇝atp h

a
ℓ+1, P

a
ℓ+1 results from an application of RTP-Red-Lift

in combination with single-thread reduction rule nst, then na
ℓ = nst.

• If ha
ℓ, P

a
ℓ

θ
⇝atp h

a
ℓ+1, P

a
ℓ+1 results from an application of GTP-Red-Wait,

then na
ℓ = (GTP-Red-Wait, sig(ℓ)).

• Otherwise, na denotes the applied (real or ghost) thread pool reduction
rule.

An edge (a, θ, na, b) ∈ N × Θ ×N a × N is contained in E if na = na
a and one of

the following conditions applies:

• θ = θa = θb and b = min({k > a | ha
k, P

a
k
θa⇝atp h

a
k+1, P

a
k+1}).

In this case, the edge expresses that step b marks the first time that thread
θa is rescheduled for reduction (after step a).

• dom(P a
a+1) \ dom(P a

a) = {θ} and
b = min {k ∈ N | ha

k, P
a
k

θ
⇝atp h

a
k+1, P

a
k+1}.

In this case, θ identifies the thread forked in step a. The edge expresses
that step b marks the first reduction of the forked thread.

In case the choice of reduction sequence ((ha
i , P

a
i)i∈N, sig) is clear from the

context, we write G instead of G(((ha
i , P

a
i)i∈N, sig)).

Observation B.11.3. Let (ha
i , P

a
i)i∈N be an annotated reduction sequence with

|dom(P a
0)| = 1. The sequence’s program order graph G((ha

i , P
a
i)i∈N) is a binary

tree.

140 GHOST SIGNALS: GENERALISED LOGIC

For any reduction sequence (ha
i , P

a
i)i∈N, the paths in its program order graph

G((ha
i , P

a
i)i∈N) represent the sequence’s control flow paths. Hence, we are going

to use program order graphs to analyse reduction sequences’ control flows.

We refer to a program order graph’s edges by the kind of reduction step they
represent. For instance, we call edges of the form (a, θ,ST-Red-While, b)
loop edges because they represent a loop backjump and edges of the form
(a, θ, (GTP-Red-Wait, s), b) wait edges. Wait edges of this form represent
applications of GTP-Red-Wait to signal s.

In the following, we prove that any path in a program order graph that does
not involve a loop edge is finite. This follows from the fact that the size of the
command reduced along this path decreases with each non-ghost non-loop step.

Lemma B.11.4. Let (ha
i , P

a
i)i∈N be a fair annotated reduction sequence.

Let p = (V,E) be a path in G((ha
i , P

a
i)i∈N). Let L = {e ∈ E | π3(e) =

AST-Red-While} be the set of loop edges contained in p. Then, p is infinite
if and only if L is infinite.

Proof. If L is infinite, p is obviously infinite as well. So, suppose L is finite.

For any command, we consider its size to be the number of nodes contained in
its abstract syntax tree. By structural induction over the set of commands, it
follows that the size of a command c = P a(θ).cmd decreases in every non-ghost
reduction step ha, P a θ

⇝atp h
a′, P a′ that is not an application of RTP-Red-Lift

in combination with AST-Red-While.

Since L is finite, there exists a node x such that the suffix p≥x starting at node
x does not contain any loop edges. By fairness of (ha

i , P
a
i)i∈N, every non-empty

suffix of p≥x contains an edge corresponding to a non-ghost reduction step. For
any edge e = (i, θ, n, j) consider the command ce = P a

i (θ).cmd reduced in this
edge. The size of these commands decreases along p≥x. So, p≥x must be finite
and thus p must be finite as well.

Corollary B.11.5. Let (ha
i , P

a
i)i∈N be a fair annotated reduction sequence. Let

p = (V,E) be a path in G((ha
i , P

a
i)i∈N). Let

C = {e ∈ E | π3(e) = AST-Red-ConsumeItPerm}

be the set of consume edges contained in p. Then, p is infinite if and only if C
is infinite.

Proof. Follows from Lemma B.11.4 by the fact that the set {e ∈ E | π3(e) =
AST-Red-While} is infinite if and only if C is infinite.

SOUNDNESS 141

Definition B.11.6. Let G = (V,E) be a subgraph of some program order graph.
We define the function waitEdgesG : S → P(E) mapping any signal s to the set
of wait edges in G concerning s as:

waitEdgesG(s) := {(a, θ, (GTP-Red-Wait, s′), b) ∈ E | s′ = s}.

Furthermore, we define the set SG ⊂ S of signals being waited for in G and its
subset S∞

G ⊆ SG of signals waited-for infinitely often in G as follows:

SG := {s ∈ S | waitEdgesG(s) ̸= ∅},
S∞
G := {s∞ ∈ SG | waitEdgesG(s∞) infinite}.

Definition B.11.7. Let (ha
i , P

a
i)i∈N be a fair annotated reduction sequence

and let G = (V,E) be a subgraph of the sequence’s program order graph. We
define the function itpermsG : E → Bagsfin(Λ) mapping any edge e to the
(potentially empty) finite bag of iteration permissions derived in the reduction
step corresponding to e as follows:

Let (i, θ, n, j) ∈ E be an edge.

• If n = (GTP-Red-Wait, s) for some signal s ∈ S, then the ith reduction
step spawns a single iteration permission (τ, δ), i.e.,
P a
i+1 = P a

i [θ := (P a
i (θ).heap + {itpermlRes(τ, δ)}, P a

i (θ).cmd)].
In this case, we define

itpermsG((i, θ, (GTP-Red-Wait, s), j)) := {[(τ, δ)]}.

• If n = GTP-Red-WeakItPerm, then the ith reduction step consumes
an iteration permission (τ ′, δ) and produces N permissions (τ ′, δ′) of
lower degree, i.e., P a

i (θ).heap = H + {itperm(τ ′, δ)} for some heap H and
P a
i+1 = P a

i [θ := (H ′, P a
i (θ).cmd)] for

H ′ = H +N · {itpermlRes(τ ′, δ′)}.

In this case, we define

itpermsG((i, θ,GTP-Red-WeakItPerm, j)) := {[(τ ′, δ′), . . . , (τ ′, δ′)︸ ︷︷ ︸
N times

]}.

• Otherwise, we define

itpermsG((i, θ, n, j)) := ∅.

Definition B.11.8 (Signal Capacity). Let (ha
i , P

a
i)i∈N be a fair annotated

reduction sequence and G = (V,E) be a subgraph of the sequence’s program

142 GHOST SIGNALS: GENERALISED LOGIC

order graph. We define the function sigCapG : (S \ S∞
G) × N → Bagsfin(Λ)

mapping signals and indices to bags of iteration permissions as follows:

sigCapG(s, i) := ⊎
(a,θ,n,b) ∈ waitEdgesG(s)

a≥ i

itpermsG((a, θ, n, b)).

We call sigCapG(s, i) the capacity of signal s at index i.

Note that the signal capacity above is indeed finite. For every G and every
signal s ∈ S \ S∞

G the set of wait edges waitEdgesG(s) is finite. Hence, the big
union above is a finite union over finite iteration permission bags.

Definition B.11.9 (Partial Order on Permissions). We define the partial order
on iteration permissions <Λ ⊂ Λ × Λ induced by <∆ such that

(τ1, δ1) <Λ (τ2, δ2) ⇐⇒ δ1 <∆ δ2.

Lemma B.11.10. The partial order <Λ is well-founded.

Proof. Follows directly from well-foundedness of <Λ.

Definition B.11.11 (Partial Order on Finite Bags). Let X be a set and
let <X ⊂ X × X a partial order on X. We define the partial order ≺X

⊂ Bagsfin(X) × Bagsfin(X) on finite bags over X as the Dershowitz-Manna
ordering [53] induced by <X :

A ≺X B ⇐⇒ ∃C,D ∈ Bagsfin(X). ∅ ≠ C ⊆ B
∧ A = (B \ C) ⊎D
∧ ∀d ∈ D. ∃c ∈ C. d <X c.

We define ⪯X ⊂ Bagsfin(X) × Bagsfin(X) such that

A ⪯X B ⇐⇒ A = B ∨ A ≺X B

holds.

Corollary B.11.12. The partial order ≺Λ ⊂ Bagsfin(Λ) × Bagsfin(Λ) is well-
founded.

Proof. Follows from [53] and Lemma B.11.10.

In the following, we view paths in a program order graph as single-branched
subgraphs. This allows us to apply above definitions on graphs to paths. In

SOUNDNESS 143

particular, this allows us to refer to the capacity of a signal s on a path p by
referring to sigCapp.

For the following definition, remember that a bag B ∈ Bags(X) is a function
B : X → N while a logical heap H ∈ Heapslog is a function H : Rlog →
Q≥0. Also remember the signatures ownedResHeapatp : TPa → Heapslog and
protectedResHeapah : Heapsannot → Heapslog.

Definition B.11.13. We define the functions itpermsconf : Heapsannot × TPa →
Bags(Λ) and wpermsconf : Heapsannot × TPa → Bags(Ω) mapping annotated
machine configurations to bags of iteration and wait permissions, respectively,
as follows:

itpermsconf(ha, P a)(τ, δ)
:=

⌊(
ownedResHeapatp(P a) + protectedResHeapah(ha)

)
(itpermlRes(τ, δ))

⌋
,

wpermsconf(ha, P a)(τ, id, δ)
:=

⌊(
ownedResHeapatp(P a) + protectedResHeapah(ha)

)
(wpermlRes(τ, id, δ))

⌋
.

Note that for consistent annotated machine configurations (ha, P a) the above
flooring is without any affect.

Corollary B.11.14. Let (ha
i , P

a
i)i∈N be an annotated reduction sequence such

that finiteah(ha
0) and finitelh(P a

0 (θ).heap) hold for every θ ∈ dom(P a
0).

Then, itpermsconf(ha
i , P

a
i) and wpermsconf(ha

i , P
a
i) are finite for every choice of

i ∈ N.

Proof. Follows by preservation of finiteness, Lemma B.9.9.

Lemma B.11.15. Let G((ha
i , P

a
i)i∈N) be a program order graph and let

p = (V,E) be a path in G with S∞
p = ∅. For every θ ∈ dom(P a

0) let
P a

0 (θ).heap be finite and complete. Further, let ha
0 be finite and contain no

chunks unlockedaRes(m,P,HP) where HP contains any phase or obligations
chunk.

Then, p is finite.

Proof. Assume p is infinite. We prove a contradiction by assigning a finite
capacity to every node along the path. Let θi be the ID of the thread reduced
in step i. For every θ ∈ dom(P a

r) the logical heap P a
0 (θ).heap is complete and

ha
0 contains no chunks unlockedaRes(m,P,HP) where HP contains any phase or

obligations chunk. By preservation of completeness, Lemma B.9.10, P a
i (θi).heap

144 GHOST SIGNALS: GENERALISED LOGIC

is also complete and hence it contains exactly one phase chunk phaselRes(τi).
That is, for every step i, the phase ID τi of the thread reduced in step i is
uniquely defined.

Consider the function nodeCap : V → Bagsfin(Λ) defined as

nodeCap(i) := {[(τanc, δ) ∈ itpermsconf(ha
i , P

a
i) | τanc ⊑ τi]}

⊎ ⊎
id∈ waitIDs(τi)

(τanc,id,δ) ∈ wpermsconf (h
a
i,P

a
i)

L∈ Levs

sigCapp((id, L), i).

where waitIDs(τi) := {id | ∃τanc. (τanc, id,_) ∈ wpermsconf(ha
i , P

a
i) ∧ τanc ⊑ τi}.

For every i ∈ V , the capacity of node i, i.e., nodeCap(i), is the union of two finite
iteration permission bags: (i) Above {[(τanc, δ) ∈ itpermsconf(ha

i , P
a
i) | τanc ⊑ τi]}

captures all iteration permissions contained in ha and P a
i that are qualified by

an ancestor τanc of phase ID τi and are hence usable by the thread reduced
in node i. This includes the permissions (τanc, δ) held by thread θi as well as
such (temporarily) transferred to another thread via a lock invariant. (ii) Below⊎ sigCapp((id, L), i) captures all iteration permissions that will be created
along the suffix of p that starts at node i by waiting for signals for which thread
θi already holds a wait permission (τanc, id, δ) in step i.

Note that for every i ∈ V , the bag of iteration permissions returned by
nodeCap(i) is indeed finite. The initial annotated heap and all initial thread-
local logical heaps are finite. This allows us to apply Corollary B.11.14, by
which we get that itpermsconf(ha

i , P
a
i) and wpermsconf(ha

i , P
a
i) are finite.

Since signal IDs are unique, for every fixed choice of i and id, there is at most
one level L, for which sigCapp((id, L), i) ̸= ∅. By assumption, along p all signals
are waited for only finitely often, i.e., S∞

p = ∅. Hence, also the big union

⊎ sigCapp((id, L), i) is defined and finite.

Consider the sequence (nodeCap(i))i∈V . Since every element is a finite bag of
permissions, we can order it by ≺Λ. We are going to prove a contradiction by
proving that the sequence is an infinitely descending chain.

Consider any edge (i, θ, n, j) ∈ E. There are only three cases in which
nodeCap(i) ̸= nodeCap(j) holds.

• n = GTP-Red-WaitPerm:
In this case, there are degrees δ, δ′ with δ′ <∆ δ, a signal s and N ∈ N for

SOUNDNESS 145

which we get

nodeCap(j) = (nodeCap(i) \ {[(τ ′, δ)]}) ⊎ {[(τ ′, δ′)︸ ︷︷ ︸
N times

]}.

That is, nodeCap(j) ≺Λ nodeCap(i).

• n = GTP-Red-WeakItPerm: Same as above.

• n = AST-Red-ConsumeItPerm:
In this case, we know that nodeCap(j) = nodeCap(i) \ {[(τanc, δ)]} ≺Λ
nodeCap(i) holds for some τanc and δ.

(Note that in case of n = GTP-Red-Wait, we have nodeCap(i) = nodeCap(j)
since

{[(τanc, δ) ∈ itpermsconf(ha
j , P

a
j) | τanc ⊑ τj]}

=
{[(τanc, δ) ∈ itpermsconf(ha

i , P
a
i) | τanc ⊑ τi]} ⊎ {[(τ, δ)]}

and

⊎ sigCapp((id, L), j) =
(⊎ sigCapp((id, L), i)

)
\ {[(τ, δ)]}

for some δ.) So, nodeCap is monotonically decreasing.

By assumption p is infinite. According to Corollary B.11.5 this implies that
the path contains infinitely many consume edges, i.e., edges with a labelling
n = AST-Red-ConsumeItPerm. Hence, the sequence (nodeCap(i))i∈V forms
an infinitely descending chain. However, according to Corollary B.11.12, ≺Λ is
well-founded. A contradiction.

Lemma B.11.16. Let (ha
i , P

a
i)i∈N be a fair annotated reduction sequence with

consistentconf(ha
0, P

a
0), P a

0 = {(θ0, (H0, c))}, completelh(H0), finitelh(H0) and with
finiteah(ha

0). Let H0 contain no signal or wait permission chunks. Further, let ha
0

contain no chunks unlockedaRes(m,P,HP) where HP contains any obligations,
phase or signal chunks. Let G be the program order graph of (ha

i , P
a
i)i∈N. Then,

S∞
G = ∅.

Proof. Suppose S∞
G ̸= ∅. Since Levs is well-founded, the same holds for the set

{lev(s) | s ∈ S∞}. Hence, there is some smin ∈ S∞ for which no z ∈ S∞ with
lev(z) <L lev(smin) exists.

Since neither the initial logical heap H0 nor any unlocked lock invariant
stored in ha

0 does contain any signals, smin must be created during the

146 GHOST SIGNALS: GENERALISED LOGIC

reduction sequence. The reduction step creating signal smin is an application
of GTP-Red-NewSignal, which simultaneously creates an obligation to
set smin. By preservation of completeness, Lemma B.9.10, every thread-
local logical heap P a

i (θ).heap annotating some thread θ in some step i is
complete. According to reduction rule GTP-Red-Wait, every wait edge
(a, θ, (GTP-Red-Wait, smin), b) implies together with completeness that in
step a (i) thread θ does not hold any obligation for smin (i.e. P a

a(θ).heap.obs = O
for some bag of obligations O with smin ̸∈ O) and (ii) smin has not been set,
yet (i.e. signalaRes(smin,False) ∈ ha

a). Hence, in step a another thread θob ̸= θ
must hold the obligation for smin (i.e. P a

a(θob).heap.obs = O for some bag
of obligations O with smin ∈ O). Since there are infinitely many wait edges
concerning smin in G, the signal is never set.

By fairness, for every wait edge as above, there must be a non-ghost reduction
step ha

k, P
a
k

θob⇝atp h
a
k+1, P

a
k+1 of the thread θob holding the obligation for smin

with k ≥ a. Hence, there exists an infinite path pob in G where each edge
(e, θob, n, f) ∈ edges(pob) concerns some thread θob holding the obligation for
smin. (Note that this thread ID does not have to be constant along the path,
since the obligation can be passed on during fork steps.)

The path pob does not contain wait edges (e, θob, (GTP-Red-Wait, s∞), f) for
any s∞ ∈ S∞, since reduction rule GTP-Red-Wait would (together with
completeness of P a

e (θob).heap) require s∞ to be of a lower level than all held
obligations. This restriction implies lev(s∞) <L lev(smin) and would hence
contradict the minimality of smin. That is, S∞

pob
= ∅.

By preservation of finiteness, Lemma B.9.9, we get that every logical heap
associated with the root of pob is finite. This allows us to apply Lemma B.11.15,
by which we get that pob is finite. A contradiction.

Lemma B.11.17. Let

⊨H {phase(τ0) ∗ obs(∅) ∗
i= 1,...,N∗ itperm(τ0, δi)} c {obs(∅)}

hold. There exists no fair, infinite annotated reduction sequence (ha
i , P

a
i)i∈N

with ha
0 = ∅, P a

0 = {(θ0, (H0, c))} and
H0 = {phaselRes(τ0), obslRes(∅), itpermlRes(τ0, δ1), . . . , itpermlRes(τ0, δN)}.

Proof. Suppose a reduction sequence as described above exists. We are going
to prove a contradiction by considering its infinite program order graph G.

According to Observation B.11.3, G is a binary tree with an infinite set of
vertices. By the Weak König’s Lemma [163] G has an infinite branch, i.e. an
infinite path p starting at root 0.

VERIFICATION EXAMPLE 147

The initial logical heap H0 is complete and finite and the initial annotated
machine configuration (ha

0, P
a
0) is consistent. By Lemma B.11.16 we know

that S∞
G = ∅. Since S∞

p ⊆ S∞
G , we get S∞

p = ∅. This allows us to apply
Lemma B.11.15, by which we get that p is finite, which is a contradiction.

Theorem B.10.7 (Soundness). Let

⊢ {phase(τ) ∗ obs(∅) ∗
i= 1,...,N∗ itperm(τ, δi)} c {obs(∅)}

hold. There exists no fair, infinite reduction sequence (hi, Pi)i∈N with h0 = ∅
and P0 = {(θ0, c)} for any choice of θ0.

Proof. Suppose a reduction sequence as described above exists. Since we can
prove ⊢ {phase(τ) ∗ obs(∅) ∗∗i= 1,...,N

itperm(τ, δi)} c {obs(∅)}, we can also conclude

⊨H {phase(τ) ∗ obs(∅) ∗∗i= 1,...,N
itperm(τ, δi)} c {obs(∅)} by Hoare triple soundness,

Lemma B.10.6. Consider the logical heap

H0 = {phaselRes(τ), obslRes(∅), itpermlRes(τ, δ1), . . . , itpermlRes(τ, δN)}

and the annotated heap ha
0 = ∅. It holds H0 ⊨A phase(τ) ∗ obs(∅) ∗∗i= 1,...,N

itperm(τ, δi), ha
0 ∼ah lh H0 and ha

0 ∼ah ph h0. This allows us to apply
Lemma B.11.1, by which we can construct a corresponding fair annotated
reduction sequence (ha

i , P
a
i)i∈N that starts with ha

0 = ∅ and P a
0 = {(θ0, (H0, c))}.

By Lemma B.11.17 (ha
i , P

a
i)i∈N does not exist. A contradiction.

B.12 Verification Example

We scaled all proof outlines presented in this section down to fit them into the
page layout. You can find the original proof outlines in the official version of
the technical report [151].

As in the paper body, we present the proof state in blue, applied proof and
view shift rules in purple, and abbreviations and definition in red. Since the
verification outlines we present in this section span multiple figures, we include
hints and explanations concerning other figures (e.g. a hint pointing to the
figure where an invariant was defined). To set these remarks and in general any
hints off from the essential parts of the proof, we present them in a grey and
italic font. We occasionally remind the reader of earlier proof steps performed
in a previous figure by repeating them in the same grey font at the beginning
of the current figure.

148 GHOST SIGNALS: GENERALISED LOGIC

Further, we highlight how our proof steps effect the proof state as follows:
Consider a proof state of the form {A ∗ ℓ 7→ v}. (i) When a proof step
adds a new chunk C, we highlight it in green , i.e. {A ∗ ℓ 7→ v ∗ C }.
(ii) When a proof step removes the chunk A, we highlight this change by
underlying the removed part of the assertion with a dark grey background,
i.e., { A ∗ ℓ 7→ v}. Note that in this case, the greyed out A ∗ is not a part
of the proof state anymore. (iii) When a proof step changes only part of a
chunk, we highlight this change in yellow . For instance, if the step changes
the value of heap location ℓ from v to v′, we highlight it in the resulting state
as {A ∗ ℓ 7→ v′ }.

B.12.1 Minimal Example

Figures B.16 and B.17 sketch the verification of the example program presented
in Figure B.2. For this verification we let the set of values Values include natural
numbers and choose Levs = ∆ = N.

B.12.2 Bounded FIFO

For this section, we let the set of values Values include natural numbers and
finite sequences, aka lists, of natural numbers. Further, the set of operations
Ops includes the canonical operations on natural numbers and lists, i.e., (i) <,
≤, − and (ii) list concatenation l1 · l2, prepending an element e :: l, getting the
head and tail of a list head(l) (defined for non-empty l), tail(l) and getting the
size of a list size(l). We denote the empty list by nil. We use the abbreviation
a R1 b R2 c for R1, R2 ∈ {<,≤} to denote a R1 b ∗ b R2 c. Furthermore, we
choose Levs = ∆ = N. Figure B.19 presents an example program involving a
bounded FIFO.

To simplify its verification, we refine the process of creating a new ghost signal,
i.e., we split it in two steps: allocating a new signal ID and initializing a signal.
To implement this, we replace view shift rule VS-NewSignal by the rules
VS-AllocSigID and VS-SigInit presented in Figure B.18. This way we can
fix the IDs of all the signals we need throughout the proof at its beginning.
This refinement does not affect the soundness of our verification approach.
Figures B.20 – B.30 sketch the program’s verification using fine-grained signals.

VERIFICATION EXAMPLE 149

{phase(()) ∗ obs(∅) ∗ itperm((), 1)}
let x := PR-Let & PR-VS-Simp & VS-SemImp

{ True ∗ phase(()) ∗ obs(∅) ∗ itperm((), 1)}
cons(0) PR-Cons & PR-Frame
{λℓ. ℓ 7→ 0 ∗ phase(()) ∗ obs(∅) ∗ itperm((), 1)}

in
∀ℓx. ℓx represents value bound to x.
{phase(()) ∗ obs(∅) ∗ itperm((), 1) ∗ ℓx 7→ 0 }
let m := PR-Let & PR-VS-Simp & VS-SemImp

{ True ∗ phase(()) ∗ obs(∅) ∗ itperm((), 1) ∗ ℓx 7→ 0}
new_mutex PR-NewMutex & PR-Frame
{λℓ. uninit(ℓ) ∗ phase(()) ∗ obs(∅) ∗ itperm((), 1) ∗ ℓx 7→ 0}

in
∀ℓm. ℓm represents value bound to m.
{phase(()) ∗ obs(∅) ∗ itperm((), 1) ∗ ℓx 7→ 0 ∗ uninit(ℓm) } PR-VS-Simp & VS-NewSignal & PR-Frame{

∃ids. signal((ids, 1), False) ∗ phase(()) ∗ obs({[(ids, 1)]})
∗ itperm((), 1) ∗ ℓx 7→ 0 ∗ uninit(ℓm)

}
PR-Exists

∀ids.{
∃ids. signal((ids, 1), False) ∗ phase(()) ∗ obs({[(ids, 1)]})

∗ itperm((), 1) ∗ ℓx 7→ 0 ∗ uninit(ℓm)

}
PR-VS-Simp & VS-SemImp{

∃vx. ℓx 7→ vx ∗ signal((ids, 1), vx ̸= 0)
∗obs({[(ids, 1)]}) ∗ itperm((), 1) ∗ uninit(ℓm)

}
P := ∃vx. ℓx 7→ vx

∗ signal((ids, 1), vx ̸= 0)

{ P ∗ phase(()) ∗ obs({[(ids, 1)]}) ∗ itperm((), 1) ∗ uninit(ℓm)} PR-VS-Simp & VS-MutInit & PR-Frame

{phase(()) ∗ obs({[(ids, 1)]}) ∗ itperm((), 1) ∗ mutex((ℓm, 0), P) } PR-VS-Simp & VS-SemImp{ phase(()) ∗ obs({[(ids, 1)]}) ∗ itperm((), 1)

∗ [1
2]mutex((ℓm, 0), P) ∗ [1

2]mutex((ℓm, 0), P)

}
fork PR-Fork & PR-Frame

{phase(τ.Forkee) ∗ obs(∅) ∗ itperm((), 1) ∗ [1
2]mutex((ℓm, 0), P)}

. . . ; Continued in Figure B.17.
{obs(∅)}

{phase(τ.Forker) ∗ obs({[(ids, 1)]}) ∗ [1
2]mutex((ℓm, 0), P)}

acquire m; PR-Acquire

{phase(τ.Forker) ∗ obs({[(ids, 1), (ℓm, 0)]}) ∗ locked((ℓm, 0), P, 1
2) ∗ P } PR-Exists

∀vx.{
phase(τ.Forker) ∗ obs({[(ids, 1), (ℓm, 0)]}) ∗ locked((ℓm, 0), P, 1

2)

∗ ∃vx. ℓx 7→ vx ∗ signal((ids, 1), vx ̸= 0)

}
[x] := 1; PR-AssignToHeap & PR-Frame{

phase(τ.Forker) ∗ obs({[(ids, 1), (ℓm, 0)]}) ∗ locked((ℓm, 0), P, 1
2)

∗ ℓx 7→ 1 ∗ signal((ids, 1), vx ̸= 0)

}
PR-VS-Simp & VS-SetSignal{

phase(τ.Forker) ∗ obs({[(ids, 1) , (ℓm, 0)]}) ∗ locked((ℓm, 0), P, 1
2)

∗ ℓx 7→ 1 ∗ signal((ids, 1), True)

}
PR-VS-Simp & VS-SemImp

{phase(τ.Forker) ∗ obs({[(ℓm, 0)]}) ∗ locked((ℓm, 0), P, 1
2) ∗ P }

release m PR-Release & PR-Frame

{phase(τ.Forker) ∗ obs((ℓm, 0) ∅) ∗ [1
2]mutex((ℓm, 0), P) ∗ P } PR-VS-Simp & VS-SemImp

{obs(∅)}

Figure B.16: Verification sketch of main thread of example program presented
in Figure B.2. For readability we omit information about a command’s return
value if it is not relevant to the proof.

150 GHOST SIGNALS: GENERALISED LOGIC

. . .
Continuation of
Figure B.16.

∀ℓx, ids.
ℓx , ids universally
quantified below

. . .
P :=
∃vx. ℓx 7→ vx ∗
signal((ids, 1), vx ̸= 0)

{phase(τ.Forkee) ∗ obs(∅) ∗ itperm((), 1) ∗ [1
2]mutex((ℓm, 0), P)} PR-VS-Simp

& VS-WaitPerm
& PR-Frame

{phase(τ.Forkee) ∗ obs(∅) ∗ itperm((), 1) wperm((), ids, 0) ∗ [1
2]mutex((ℓm, 0), P)}

while PR-While-Simp
{phase(τ.Forkee) ∗ obs(∅) ∗ wperm((), ids, 0) ∗ [1

2]mutex((ℓm, 0), P)}
acquire m; PR-Acquire

{phase(τ.Forkee) ∗ obs({[(ℓm, 0)]}) ∗ wperm((), ids, 0) ∗ locked((ℓm, 0), P, 1
2) ∗ P }

let y := PR-Let{
phase(τ.Forkee) ∗ obs({[(ℓm, 0)]}) ∗ wperm((), ids, 0) ∗ locked((ℓm, 0), P, 1

2)
∗ ∃vx. ℓx 7→ vx ∗ signal((ids, 1), vx ̸= 0)

}
PR-Exists
& PR-Frame
P

∀vx.
vx quantified in
local scope.

{ℓx 7→ vx}
[x]

{λr. r = vx ∗ ℓx 7→ vx} PR-VS-Simp
& VS-SemImp

{λr. ∃vx. r = vx ∗ ℓx 7→ vx}{
λ r . phase(τ.Forkee) ∗ obs({[(ℓm, 0)]}) ∗ wperm((), ids, 0) ∗ locked((ℓm, 0), P, 1

2)
∗ ∃vx. ℓx 7→ vx ∗ signal((ids, 1), vx ̸= 0) ∗ r = vx

}
P

in

∀vy.
vy represents value
bound to y.{

phase(τ.Forkee) ∗ obs({[(ℓm, 0)]}) ∗ wperm((), ids, 0) ∗ locked((ℓm, 0), P, 1
2)

∗ ∃vx. ℓx 7→ vx ∗ signal((ids, 1), vx ̸= 0) ∗ vx = vy

}
release m; PR-Release{

phase(τ.Forkee) ∗ obs({[(ℓm, 0) ∅]}) ∗ wperm((), ids, 0)

∗ locked((ℓm, 0), P, 1
2) ∗ ∃vx. ℓx 7→ vx ∗ signal((ids, 1), vx ̸= 0) ∗ vx = vy

}
Release view shift
PR-Exists

∀vx.
vx quantified in
local scope.{

phase(τ.Forkee) ∗ obs({[∅]}) ∗ wperm((), ids, 0)
∗ ∃vx. ℓx 7→ vx ∗ signal((ids, 1), vx ̸= 0) ∗ vx = vy

}
PR-VS-Simp
& VS-Wait
& PR-Frame{

phase(τ.Forkee) ∗ obs({[∅]}) ∗ wperm((), ids, 0)
∗ ℓx 7→ vx ∗ signal((ids, 1), vx ̸= 0) ∗ vx = vy ∗ (vx = 0 ↔ itperm(τ.Forker, 0))

}
PR-VS-Simp
& VS-SemImp{

phase(τ.Forkee) ∗ obs({[∅]}) ∗ wperm((), ids, 0) ∗ P

∗ (vy = 0 → itperm(τ.Forker, 0))

}
{

phase(τ.Forkee) ∗ obs({[(ℓm, 0) ∅]}) ∗ wperm((), ids, 0) ∗ [1
2]mutex((ℓm, 0), P)

∗ P ∗ (vy = 0 → itperm(τ.Forker, 0))

}
y = 0 PR-Exp

& PR-Frame{
λb. phase(τ.Forkee) ∗ obs(∅) ∗ wperm((), ids, 0) ∗ [1

2]mutex((ℓm, 0), P)

∗ (vy = 0 → itperm(τ.Forker, 0)) ∗ b = [[vy = 0]]

}
PR-VS-Simp
& VS-SemImp{

λb. phase(τ.Forkee) ∗ (¬b → obs(∅))
∗ (b → obs(∅) ∗ wperm((), ids, 0) ∗ [1

2]mutex((ℓm, 0), P) ∗ itperm(τ.Forker, 0))

}
do skip
{obs(∅)}

Figure B.17: Verification sketch of busy-waiting thread of example program
presented in Figure B.2. For readability we omit information about a command’s
return value if it is not relevant to the proof.

VERIFICATION EXAMPLE 151

VS-AllocSigID
True⇛ ∃id. uninitSig(id)

VS-SigInit
obs(O) ∗ uninitSig(id)
⇛ obs(O ⊎ {[(id, L)]}) ∗ signal((id, L),False)

Figure B.18: Fine-grained view shift rules for signal creation.

let fifo10 := cons(nil) in
let m := new_mutex in
let cp := cons(100) in
let cc := cons(100) in
fork (

while (
acquire m;
let f := [fifo10] in
if size(f) < 10 then (

let c := [cp] in
[fifo10] := f ·(c :: nil);
[cp] := c − 1

);
release m;
let c := [cp] in
c ̸= 0

) do skip;
);
while (

acquire m;
let f := [fifo10] in
if size(f) > 0 then (

let c := [cc] in
[fifo10] := tail(f);
[cc] := c − 1

);
release m;
let c := [cc] in
c ̸= 0

) do skip

Figure B.19: Example program with two threads communicating via a shared
bounded FIFO with maximal size 10. Producer thread writes numbers 100, . . . ,
1 to shared FIFO and busy-waits until FIFO is not full and next element can
be pushed. Consumer thread pops 100 numbers from FIFO and busy-waits for
next number to arrive.

152 GHOST SIGNALS: GENERALISED LOGIC

{phase(()) ∗ obs(∅) ∗ itperm((), 2)}

let fifo10 := cons(nil) in let m := new_mutex in PR-Let (2x)
& PR-Cons

∀ℓfifo10 , ℓm. & PR-NewMutex

{phase(()) ∗ obs(∅) ∗ itperm((), 2) ∗ ℓfifo10 7→ nil ∗ uninit(ℓm) }
PR-VS-Simp
& VS-AllocSigID
& PR-Exists (200x)

∀id1
pop, . . . id100

pop, id1
push, . . . , id100

push.

{ ∗i=1,...,100
uninitSig(idi

pop) ∗∗i=1,...,100
uninitSig(idi

push) ∗ . . .}

Li
pop := 102 − i, Li

push := 101 − i for 1 ≤ i ≤ 100

(Later L
i+10
pop < Li

push and Li
push < Li

pop must hold, cf. Figures B.27 and B.28.)

si
push := (idi

push, Li
push), si

pop := (idi
pop, Li

pop) for 1 ≤ i ≤ 100 PR-VS-Simp
& VS-SigInit{

uninitSig(id100
pop) ∗ uninitSig(id100

push) signal(s100
pop, False) ∗ signal(s100

push, False)

∗ obs({[s100
pop, s100

push]}) ∗ . . .

}
PR-VS-Simp
& VS-WeakPerm

{ itperm((), 2) ∗1,...,400
itperm((), 1) ∗ . . .} PR-VS-Simp

& VS-Wait
∗1,...,200

itperm((), 1)

∗ ∗1,...,200
itperm((), 1) ∗i=1,...,100

(wperm((), idi
pop, 0) ∗ wperm((), idi

push, 0))

∗ . . .

Later each thread uses∗1,...,100

itperm((), 1) to justify productive iterations.

let cp := cons(100) in let cc := cons(100) in PR-Let
& PR-Cons (2x)

∀ℓcp , ℓcc .

{ ℓcp 7→ 100 ∗ ℓcc 7→ 100 ∗ . . .} PR-VS-Simp
& VS-SemImp

phase(()) ∗ obs({[s100
push, s100

pop]}) ∗ [1
2]ℓcp 7→ 100 ∗ [1

2]ℓcc 7→ 100 ∗ uninit(ℓm)

∗∗i=1,...,100
(wperm((), idi

pop, 0) ∗ wperm((), idi
push, 0))

∗∗1,...,200
itperm((), 1) ∗ Pm

∗∗i=1,...,99
(uninitSig(idi

push) ∗ uninitSig(idi
pop))

For definition of
lock invariant Pm
cf. Figure B.22.
PR-VS-Simp
& VS-MutInit

mut := (ℓm, 0)
(Later lev(mut) < Li

push and lev(mut) < Li
pop must hold

for all 1 ≤ i ≤ 100, cf. Figures B.25 and B.28.)

{ uninit(ℓm) ∗ Pm mutex(mut, Pm) ∗ . . .} PR-VS-Simp
& VS-SemImp

phase(()) ∗ obs({[s100
push, s100

pop]}) ∗ [1
2]ℓcp 7→ 100 ∗ [1

2]ℓcc 7→ 100

∗∗1,...,200
itperm((), 1)

∗∗i=1,...,100
(wperm((), idi

pop, 0) ∗ wperm((), idi
push, 0))

∗∗i=1,...,99
(uninitSig(idi

push) ∗ uninitSig(idi
pop))

∗ [1
2]mutex(mut, Pm) ∗ [1

2]mutex(mut, Pm)

. . .

Continued in
Figure B.21.

Figure B.20: Verification example bounded FIFO, initialisation. To lighten the
notation, we do not show applications of the frame rule.

VERIFICATION EXAMPLE 153

. . . B.20 . . .
Continuation of
Figure B.20.

phase(()) ∗ obs({[s100
push, s100

pop]}) ∗ [1
2]ℓcp 7→ 100 ∗ [1

2]ℓcc 7→ 100 ∗∗1,...,200
itperm((), 1)

∗∗i=1,...,100
(wperm((), idi

pop, 0) ∗ wperm((), idi
push, 0))

∗∗i=1,...,99
(uninitSig(idi

push) ∗ uninitSig(idi
pop)) ∗ [1

2]mutex(mut, Pm) ∗ [1
2]mutex(mut, Pm)

fork (PR-Fork

phase((Forkee)) ∗ obs({[s100
push]}) ∗ [1

2]ℓcp 7→ 100 ∗∗i=1,...,100
itperm((), 1)

∗∗i=1,...,100
wperm((), idi

pop, 0) ∗∗i=1,...,99
uninitSig(si

push) ∗ [1
2]mutex(mut, Pm)

Resources
transferred to
producer thread.
PR-VS-Simp
& VS-SemImp

phase((Forkee)) ∗ obs({[s100
push]}) ∗ [1

2]ℓcp 7→ 100 ∗∗i=1,...,100
itperm((), 1)

∗∗i=1,...,100
wperm((), idi

pop, 0) ∗∗i=1,...,99
uninitSig(si

push) ∗ [1
2]mutex(mut, Pm)

∃vcp , Op. Lp(vcp , Op) ∗ vcp ̸= 0

For definition of
producer loop
invariant
Lp(n, O)
cf. Figure B.23.

. . . B.25 . . .
Producer loop on
Figure B.25.

{phase((Forkee)) ∗ ∃vcp , Op. Lp(vcp , Op) ∗ vcp ̸= 0 obs(∅) } PR-VS-Simp
& VS-SemImp

{ phase((Forkee)) ∗ obs(∅)}
);

phase(()) ∗ obs({[s100
push, s100

pop]}) ∗ [1
2]ℓcp 7→ 100 ∗ [1

2]ℓcc 7→ 100

∗∗1,...,100
itperm((), 1) ∗∗1,...,100

itperm((), 1)

∗∗i=1,...,100
wperm((), idi

push, 0) ∗∗i=1,...,100
wperm((), idi

pop, 0)

∗∗i=1,...,99
uninitSig(idi

pop) ∗∗i=1,...,99
uninitSig(idi

push)

∗ [1
2]mutex(mut, Pm) ∗ [1

2]mutex(mut, Pm)

Resources
remaining with
consumer thread.
PR-VS-Simp
& VS-SemImp

phase(())

∗ obs({[s100
pop]}) ∗ [1

2]ℓcc 7→ 100 ∗∗1,...,100
itperm((), 1)

∗∗i=1,...,100
wperm((), idi

push, 0)

∗∗i=1,...,99
uninitSig(idi

pop) ∗ [1
2]mutex(mut, Pm)

∃vcc , Oc. Lc(vcc , Oc) ∗ vcc ̸= 0

For definition of
consumer loop
invariant
Lc(n, O)
cf. Figure B.24.

. . . B.28 . . .
Consumer loop on
Fgure B.28.

{phase((Forker)) ∗ ∃vcc , Oc. Lc(vcc , Oc) ∗ vcc ̸= 0 obs(∅) } PR-VS-Simp
& VS-SemImp

{ phase((Forker)) ∗ obs(∅)}

Figure B.21: Verification example bounded FIFO, forking.

154 GHOST SIGNALS: GENERALISED LOGIC

P ′
m(vm

fifo10
) := ∃vm

cp , vm
cc .

[1
2]ℓcp 7→ vm

cp ∗ [1
2]ℓcc 7→ vm

cc ∗ 0 ≤ vm
cp ≤ 100 ∗ 0 ≤ vm

cc ≤ 100 Producer & consumer
counters.

∗ ℓfifo10 7→ vm
fifo10

∗ vm
cc = vm

cp + size(vm
fifo10

) ∗ 0 ≤ size(vm
fifo10

) ≤ 10 Bounded FIFO & its

∗ vm
fifo10

= (vcp + size(vm
fifo10

)) :: . . . :: (vcp + 1) :: nil relationship to counters.

∗
(

vm
cp > 0 → signal((id

vm
cp

push, L
vm

cp
push), False)

)
Signal set by producer.

∗
(

vm
cc > 0 → signal((id

vm
cc

pop, L
vm

cc
pop), False)

)
Signal set by consumer.

Pm := ∃vm
fifo10

. P ′
m(vm

fifo10
)

Figure B.22: Lock invariant

Lp(n, Op) := Loop invariant of
producer.

[1
2]ℓcp 7→ n ∗ 0 ≤ n ≤ 100 ∗ [1

2]mutex(mut, Pm)
∗ obs(Op) ∗ (n > 0 ↔ Op = {[sn

push]}) ∗ (n = 0 ↔ Op = ∅)

∗ ∗
1,...,n

itperm((), 1)

Iteration permissions
consumed by productive
loop iterations, i.e.,
by iterations which
decrease the producer
counter cp.

∗∗
i=1,...,100

wperm((), id
i
pop, 0)

Used to generate
iteration permissions
to justify unproductive
loop iterations.

∗ ∗
i=1,...,n−1

uninitSig(id
i
push)

Remaining allocated
signal IDs used to
initialize new signal
after next push.

Llocked
p (n, Op) := Shorthand for invariant

with acquired mutex.
[1

2]ℓcp 7→ n ∗ 0 ≤ n ≤ 100

∗ [1
2]mutex(mut, Pm) locked(mut, Pm, 1

2) ∗ obs(Op ⊎ {[mut]})

∗ (n > 0 ↔ Op = {[sn
push]}) ∗ (n = 0 ↔ Op = ∅)

∗ ∗
1,...,n

itperm((), 1) ∗∗
i=1,...,100

wperm((), id
i
pop, 0) ∗∗

i=1,...,n−1

uninitSig(id
i
push)

L

no:mutex
no:obs

p (n, Op) := ∃idn
push.

Shorthand for invariant
without mutex chunk
and without obligations
chunk

[1
2]ℓcp 7→ n ∗ 0 ≤ n ≤ 100 ∗ [1

2]mutex(mut, Pm) ∗ obs(Op)

∗ (n > 0 ↔ Op = {[sn
push]}) ∗ (n = 0 ↔ Op = ∅)

∗ ∗
1,...,n

itperm((), 1) ∗∗
i=1,...,100

wperm((), id
i
pop, 0) ∗∗

i=1,...,n−1

uninitSig(id
i
push)

Figure B.23: Producer’s loop invariant.

VERIFICATION EXAMPLE 155

Lc(n, Oc) := Loop invariant of
consumer.

[1
2]ℓcc 7→ n ∗ 0 ≤ n ≤ 100 ∗ [1

2]mutex(mut, Pm)
∗ obs(Oc) ∗ (n > 0 ↔ Oc = {[sn

pop]}) ∗ (n = 0 ↔ Oc = ∅)

∗ ∗
1,...,n

itperm((), 1)

Iteration permissions
consumed by productive
loop iterations, i.e., by
iterations which decrease
the consumer counter cc.

∗∗
i=1,...,100

wperm((), id
i
push, 0)

Used to generate iteration
permissions to justify
unproductive loop
iterations.

∗ ∗
i=1,...,n−1

uninitSig(id
i
pop)

Remaining allocated signal
IDs used to initialize new
signal after next pop.

Llocked
c (n, Op) := Shorthand for invariant

with acqiured mutex.
[1

2]ℓcc 7→ n ∗ 0 ≤ n ≤ 100

∗ [1
2]mutex(mut, Pm) locked(mut, Pm, 1

2) ∗ obs(Oc ⊎{[mut]})

∗ (n > 0 ↔ Oc = {[sn
pop]}) ∗ (n = 0 ↔ Oc = ∅)

∗ ∗
1,...,n

itperm((), 1) ∗∗
i=1,...,100

wperm((), id
i
push, 0)

∗ ∗
i=1,...,n−1

uninitSig(id
i
pop)

L

no:mutex
no:obs

c (n, Op) := ∃idn
pop.

Shorthand for invariant
without mutex chunk
and without obligations
chunk.[1

2]ℓcc 7→ n ∗ 0 ≤ n ≤ 100 ∗ [1
2]mutex(mut, Pm) ∗ obs(Oc)

∗ (n > 0 ↔ Oc = {[sn
pop]}) ∗ (n = 0 ↔ Oc = ∅)

∗ ∗
1,...,n

itperm((), 1) ∗∗
i=1,...,100

wperm((), id
i
push, 0)

∗ ∗
i=1,...,n−1

uninitSig(id
i
pop)

Figure B.24: Consumer’s loop invariant.

156 GHOST SIGNALS: GENERALISED LOGIC

∀ℓfifo10 , ℓm, ℓcp , ℓcc .

. . . Continuation of Figure B.21.
{phase((Forkee)) ∗ ∃vcp , Op. Lp(vcp , Op) ∗ vcp ̸= 0}

while (PR-While-Simp & PR-Exists (2x)
& PR-VS-Simp & VS-SemImpFor definition of producer loop invariant Lp(n, O), lock

∀vcp , Op. invariant Pm and variations cf. Figures B.23 and B.22.

{phase((Forkee)) ∗ ∃vcp , Op. Lp(vcp , Op) ∗ vcp ̸= 0 ∗ ∀o ∈ Op. lev(o) = L
vcp
push } Op = {[s

vcp
push]} ∨ Op = ∅

lev(mut) = 0 < 101 − vcp = L
vcp
push Justification for application of:

acquire m; PR-Acquire{
phase((Forkee)) ∗ Lp(vcp , Op) Llocked

p (vcp , Op) ∗ Pm ∗ vcp ̸= 0

∗ ∀o ∈ Op. lev(o) = . . .

}
PR-Exists

∀vm
fifo10

.

{ Pm P ′
m(vm

fifo10
) ∗ . . .}

let f :=[fifo10] in PR-Let
& PR-ReadHeapLoc

{phase((Forkee)) ∗ Llocked
p (vcp , Op) ∗ P ′

m(vm
fifo10

) ∗ vcp ̸= 0}

if size(f) < 10 then (PR-If

{ size(vm
fifo10

) < 10 ∗ phase((Forkee)) ∗ Llocked
p (vcp , Op) ∗ P ′

m(vm
fifo10

) ∗ vcp ̸= 0}

. . . B.26 . . . Production step presented on Figure B.26.

size(vm
fifo10

) < 10 ∗ phase((Forkee)) ∗ Llocked
p (vcp , Op) ∗ P ′

m(vm
fifo10

) ∗

∃v′
cp , O′

p. obs(O′
p ⊎ {[mut]}) ∗ locked(mut, Pm, 1

2) ∗ ∗ vcp ̸= 0

∗
(

size(vm
fifo10

) < 10 → L

no:mutex
no:obs

p (v′
cp , O′

p) ∗ Pm ∗ itperm((), 1)
)

∗
(

size(vm
fifo10

) = 10 → L

no:mutex
no:obs

p (vcp , Op) ∗ P ′
m(vm

fifo10
) ∗ O′

p = Op

)

Define PostIfp such that:

=

phase((Forkee))
∗ ∃v′

cp , O′
p.

obs(O′
p ⊎ {[mut]})

∗ locked(mut, Pm, 1
2)

∗ PostIfp

) else (

{ size(vm
fifo10

) = 10 ∗ phase((Forkee)) ∗ Llocked
p (vcp , Op) ∗ P ′

m(vm
fifo10

) ∗ vcp ̸= 0} PR-VS-Simp & VS-SemImp{
size(vm

fifo10
) = 10 ∗ phase((Forkee)) ∗ Llocked

p (vcp , Op) ∗ P ′
m(vm

fifo10
) ∗

vcp ̸= 0 ∃v′
cp , O′

p. obs(O′
p ⊎ {[mut]}) ∗ locked(mut, Pm, 1

2) ∗ PostIfp

}
);{

phase((Forkee)) ∗ Llocked
p (vcp , Op) ∗ P ′

m(vm
fifo10

) ∗ vcp ̸= 0

∃v′
cp , O′

p. obs(O′
p ⊎ {[mut]}) ∗ locked(mut, Pm, 1

2) ∗ PostIfp

}
PR-Exists (2x)

∀v′
cp , O′

p.

release m; Wait step presented on Figure B.27, i.e., view shift performed
after releasing mut but before consuming Pm. PR-Release & PR-Exists (2x)

∀τanc
p , δp.

let c :=[cp] in c ̸= 0 PR-Let & PR-ReadHeapLoc
& PR-Exp{

τanc
p ⊑ (Forkee) ∗ phase((Forkee))

∗ (v′
cp ̸= 0 → ∃vcp , Op. Lp(vcp , Op) ∗ vcp ̸= 0 ∗ itperm(τanc

p , δp))

∗ (v′
cp = 0 → obs(∅))

}
Reestablished loop invariant.

) do skip
{phase((Forkee)) ∗ ∃vcp . Lp(vcp) ∗ vcp ̸= 0 obs(∅) }

. . . Continued in Figure B.21.

Figure B.25: Verification example bounded FIFO, producer loop.

VERIFICATION EXAMPLE 157

∀ℓfifo10 , ℓm, ℓcp , ℓcc , vcp , Op, vm
fifo10

.

. . . Continuation of Figure B.25.

For definition of Pm, P ′
m(v), Llocked

p (n, O) and L

no:mutex
no:obs

p (n, O) cf. Figures B.22 and B.23.
{size(vm

fifo10
) < 10 ∗ phase((Forkee)) ∗ Llocked

p (vcp , Op) ∗ P ′
m(vm

fifo10
) ∗ vcp ̸= 0} PR-VS-Simp & VS-SemImp

[1
2]ℓcp 7→ vcp ∗ [1

2]ℓcp 7→ vm
cp ℓcp 7→ vcp ∗ vcp = vm

cp

∗ (vcp > 0 → signal(s
vcp
push, False)) signal(s

vcp
push, False)

∗ (vcp > 0 ↔ Op = {[s
vcp
push]}) ∗ (vcp = 0 ↔ Op = ∅) Op = {[s

vcp
push]}

∗ . . .

let c :=[cp] in PR-Let & PR-ReadHeapLoc
[fifo10] := f ·(c :: nil); [cp] := c − 1 PR-AssignToHeap (2x)

{ℓfifo10 7→ vm
fifo10

·(vcp :: nil) ∗ ℓcp 7→ vcp − 1 ∗ . . .} PR-VS-Simp & VS-SetSignal

{obs({[s
vcp
push, mut]}) ∗ signal(s

vcp
push, True) ∗ . . .} PR-VS-Simp & VS-SemImp

{ (vcp − 1 = 0 ∨ vcp > 0) ∗ . . .} PR-VS-Simp & VS-Or

case: vcp − 1 = 0 PR-VS-Simp & VS-SemImpLast iteration, nothing left to do.
phase((Forkee)) ∗ ∃v′

cp , O′
p. obs(O′

p ⊎ {[mut]}) ∗ locked(mut, Pm, 1
2)

∗ vcp ̸= 0

∗
(

size(vm
fifo10

) < 10 → L

no:mutex
no:obs

p (v′
cp , O′

p) ∗ Pm ∗ itperm((), 1)
)

∗
(

size(vm
fifo10

) = 10 → L

no:mutex
no:obs

p (vcp , Op) ∗ P ′
m(vm

fifo10
) ∗ O′

p = Op

)
 =

phase((Forkee))
∗ ∃v′

cp , O′
p.

obs(O′
p ⊎ {[mut]})

∗ locked(mut, Pm, 1
2)

∗ PostIfp

For definition of PostIfp
cf. Figure B.25.

case: vcp − 1 > 0 PR-VS-Simp & VS-SigInitMust create signal for next iteration. obs({[id
vcp −1
push , mut]}) ∗∗i=1,...,vcp −2

uninitSig(idi
push)

∗ uninitSig(id
vcp −1
push) signal(s

vcp −1
push , False) ∗ . . .

 PR-VS-Simp & VS-SemImp

{phase((Forkee)) ∗ ∃v′
cp , O′

p. obs(O′
p ⊎ {[mut]}) ∗ locked(mut, Pm, 1

2) ∗ PostIfp}

{phase((Forkee)) ∗ ∃v′
cp , O′

p. obs(O′
p ⊎ {[mut]}) ∗ locked(mut, Pm, 1

2) ∗ PostIfp}
. . . Continued in Figure B.25.

Figure B.26: Verification example bounded FIFO, producer thread’s production
step.

158 GHOST SIGNALS: GENERALISED LOGIC

∀ℓfifo10 , ℓm, ℓcp , ℓcc , vcp , Op, vm
fifo10

, v′
cp , O′

p.

. . .
Continuation of
Figure B.25.

For definition of Pm, P ′
m(v), Llocked

p (n, O), L

no:mutex
no:obs

p (n, O), PostIfp
cf. Figures B.22, B.23 and B.25.

{phase((Forkee)) ∗ obs(O′
p ⊎ {[mut]}) ∗ locked(mut, Pm, 1

2) ∗ PostIfp}

release m PR-Release allows view shift to happen after mutex mut
was released but before lock invariant Pm is consumed.

{phase((Forkee)) ∗ obs(O′
p ⊎{[mut]}) ∗ locked(mut, Pm, 1

2) ∗ PostIfp} PR-VS-Simp & VS-SemImp

{ (size(vm
fifo10

) < 10 ∨ size(vm
fifo10

) = 10) ∗ . . .} PR-VS-Simp & VS-Or

case: size(vm
fifo10

) < 10 Production step already performed,
nothing left to do.

{ size(vm
fifo10

) < 10 ∗ phase((Forkee)) ∗ obs(O′
p) ∗ PostIfp} PR-VS-Simp & VS-SemImp{

obs(O′
p) ∗ Pm ∗ ∃τanc

p , δp. τanc
p ⊑ (Forkee) ∗ phase((Forkee))

∗ L

no:mutex
no:obs

p (v′
cp , O′

p) ∗ itperm(τanc
p , δp)

} Define PostReleaseVSp
such that:
= {obs(O′

p) ∗ Pm
∗ PostReleaseVSp}

case: size(vm
fifo10

) = 10 No production step performed.
Must wait to generate permission.

{ size(vm
fifo10

) = 10 ∗ phase((Forkee)) ∗ obs(O′
p) ∗ PostIfp} PR-VS-Simp & VS-SemImp PostIfp L

no:mutex
no:obs

p (vcp , Op) ∗ P ′
m(vm

fifo10
) ∗ O′

p = Op = {[s
vcp
push]}

∗ obs({[s
vcp
push]}) ∗ vcp ̸= 0 ∗ phase((Forkee))

 PR-Exists (2x)
& PR-VS-Simp & VS-SemImp

∀vm
cp , vm

cc .

∃vm
cp . [1

2]ℓcp 7→ vcp ∗ [1
2]ℓcp 7→ vm

cp ∗ vcp = vm
cp

∗ vm
cc = vcp + 10

∗ ∃vm
cc . (vm

cc > 0 → signal(s
vm

cc
pop, False)) signal(s

vm
cc

pop, False)

∗∗i=1,...,100
wperm((), idi

pop, 0) ∗ obs({[s
vcp
push]}) ∗ phase((Forkee))

∗ . . .

PR-VS-Simp & VS-Wait

lev(s
vm

cc
pop) = L

vm
cc

pop = L
vcp +10
pop = 102 − (vcp + 10)

< 101 − vcp = L
vcp
push = lev(s

vcp
push)

Justification for application
of VS-Wait.

{ itperm((Forkee), 0) ∗ . . .} PR-VS-Simp & VS-SemImp

{obs(O′
p) ∗ Pm ∗ PostReleaseVSp}

phase((Forkee))∗ obs(O′
p)

∗ PostIfp ∗ (size(vm
fifo10

) < 10 ∨ size(vm
fifo10

) = 10)

∗ Pm ∗ PostReleaseVSp

 Conclusion of VS-Or
application.

{obs(O′
p) ∗Pm ∗ PostReleaseVSp} Lock invariant Pm consumed by PR-Release. PR-VS-Simp & VS-SemImp{

∃τanc
p , δp. τanc

p ⊑ (Forkee) ∗ phase((Forkee))
∗ (v′

cp ̸= 0 → ∃vcp , Op. Lp(vcp , Op) ∗ vcp ̸= 0 ∗ itperm(τanc
p , δp))

∗ (v′
cp = 0 → obs(∅))

}
Reestablished loop invariant.

. . .
Continued in
Figure B.25.

Figure B.27: Verification example bounded FIFO, producer’s wait step.

VERIFICATION EXAMPLE 159

∀ℓfifo10 , ℓm, ℓcp , ℓcc .

. . . Continuation of Figure B.21.
{phase((Forker)) ∗ ∃vcc , Oc. Lc(vcc , Oc) ∗ vcc ̸= 0}
while (PR-While-Simp & PR-Exists (2x)For definition of consumer loop invariant Lp(n, O), lock

∀vcc , Oc. & PR-VS-Simp & VS-SemImpinvariant Pm and variations cf. Figures B.24 and B.22.

{phase((Forker)) ∗ ∃vcp , Oc. Lc(vcc , Oc) ∗ vcc ̸= 0 ∗ ∀o ∈ Oc. lev(o) = L
vcc
pop } Oc = {[s

vcc
pop]} ∨ Oc = ∅

lev(mut) = 0 < 102 − vcc = L
vcc
pop Justification for application of:

acquire m PR-Acquire{
phase((Forker)) ∗ Lc(vcc , Oc) Llocked

c (vcc , Oc) ∗ Pm ∗ vcc ̸= 0

∗ ∀o ∈ Oc. lev(o) = . . .

}
PR-Exists

∀vm
fifo10

.

{ Pm P ′
m(vm

fifo10
) ∗ . . .}

let f :=[fifo10] in PR-Let & PR-ReadHeapLoc
{phase((Forker)) ∗ Llocked

c (vcc , Oc) ∗ P ′
m(vm

fifo10
) ∗ vcc ̸= 0}

if size(f) > 0 then (PR-If

{ size(vm
fifo10

) > 0 ∗ phase((Forker)) ∗ Llocked
c (vcc , Oc) ∗ P ′

m(vm
fifo10

) ∗ vcc ̸= 0}

. . . B.29 . . . Consumption step presented on Figure B.29.

size(vm
fifo10

) > 0 ∗ phase((Forker)) ∗ Llocked
c (vcc , Oc) ∗ P ′

m(vm
fifo10

) ∗

∃v′
cc , O′

c. obs(O′
c ⊎ {[mut]}) ∗ locked(mut, Pm, 1

2) ∗ ∗ vcc ̸= 0

∗
(

size(vm
fifo10

) > 0 → L

no:mutex
no:obs

c (v′
cc , O′

c) ∗ Pm ∗ itperm((), 1)
)

∗
(

size(vm
fifo10

) = 0 → L

no:mutex
no:obs

c (vcc , Oc) ∗ P ′
m(vm

fifo10
) ∗ O′

c = Oc

)

Define PostIfc such that:

=

phase((Forker))
∗ ∃v′

cc , O′
c.

obs(O′
c ⊎ {[mut]})

∗ locked(mut, Pm, 1
2)

∗ PostIfc

) else (

{ size(vm
fifo10

) = 0 ∗ phase((Forker)) ∗ Llocked
c (vcc , Oc) ∗ P ′

m(vm
fifo10

) ∗ vcc ̸= 0} PR-VS-Simp & VS-SemImp{
size(vm

fifo10
) = 0 ∗ phase((Forker)) ∗ Llocked

c (vcc , Oc) ∗ P ′
m(vm

fifo10
) ∗

vcc ̸= 0 ∃v′
cc , O′

c. obs(O′
c ⊎ {[mut]}) ∗ locked(mut, Pm, 1

2) ∗ PostIfc

}
);{

phase((Forker)) ∗ Llocked
c (vcc , Oc) ∗ P ′

m(vm
fifo10

) ∗ vcc ̸= 0

∃v′
cc , O′

c. obs(O′
c ⊎ {[mut]}) ∗ locked(mut, Pm, 1

2) ∗ PostIfc

}
PR-Exists (2x)

∀v′
cc , O′

c.

release m; Wait step presented on Figure B.30, i.e., view shift performed
after releasing mut but before consuming Pm. PR-Release & PR-Exists (2x)

∀τanc
c , δc.

let c :=[cc] in c ̸= 0 PR-Let & PR-ReadHeapLoc
& PR-Exp{

τanc
c ⊑ (Forker) ∗ phase((Forker))

∗ (v′
cc ̸= 0 → ∃vcp , Oc. Lc(vcc , Oc) ∗ vcc ̸= 0 ∗ itperm(τanc

c , δc))
∗ (v′

cc = 0 → obs(∅))

}
Reestablished loop invariant.

) do skip
{phase((Forker)) ∗ ∃vcp . Lc(vcp) ∗ vcc ̸= 0 obs(∅) }

. . . Continued in Figure B.21.

Figure B.28: Verification example bounded FIFO, consumer loop.

160 GHOST SIGNALS: GENERALISED LOGIC

∀ℓfifo10 , ℓm, ℓcp , ℓcc , vcc , Oc, vm
fifo10

.

. . . Continuation of Figure B.28.

For definition of Pm, P ′
m(v), Llocked

c (n, O) and L

no:mutex
no:obs

c (n, O) cf. Figures B.22
and B.24.
{size(vm

fifo10
) > 0 ∗ phase((Forker)) ∗ Llocked

c (vcc , Oc) ∗ P ′
m(vm

fifo10
) ∗ vcc ̸= 0} PR-Exists

∀vm
cc . PR-VS-Simp & VS-SemImp

[1
2]ℓcc 7→ vcc ∗ [1

2]ℓcc 7→ vm
cc ℓcc 7→ vcc ∗ vcc = vm

cc

∗ (vm
cc > 0 → signal(s

vm
cc

pop, False)) signal(s
vcc
pop, False)

∗ (vcc > 0 ↔ Oc = {[s
vcc
pop]}) ∗ (vcc = 0 ↔ Oc = ∅) Oc = {[s

vcc
pop]}

∗ . . .

let c :=[cc] in PR-Let & PR-ReadHeapLoc
[fifo10] := tail(f); [cc] := c − 1 PR-AssignToHeap (2x)

{ℓfifo10 7→ tail(vm
fifo10

) ∗ ℓcc 7→ vcc − 1 ∗ . . .} PR-VS-Simp & VS-SetSignal

{obs({[s
vcc
pop, mut]}) ∗ signal(s

vcc
pop, True) ∗ . . .} PR-VS-Simp & VS-SemImp

{ (vcc − 1 = 0 ∨ vcc > 0) ∗ . . .} PR-VS-Simp & VS-Or

case: vcc − 1 = 0 PR-VS-Simp & VS-SemImpLast iteration, nothing left to do.
phase((Forker)) ∗ ∃v′

cp , O′
c. obs(O′

c ⊎ {[mut]}) ∗ locked(mut, Pm, 1
2)

∗ vcc ̸= 0

∗
(

size(vm
fifo10

) > 0 → L

no:mutex
no:obs

c (v′
cp , O′

c) ∗ Pm ∗ itperm((), 1)
)

∗
(

size(vm
fifo10

) = 0 → L

no:mutex
no:obs

c (vcc , Oc) ∗ P ′
m(vm

fifo10
) ∗ O′

c = Oc

)
 =

phase((Forker))
∗ ∃v′

cc , O′
c.

obs(O′
c ⊎ {[mut]})

∗ locked(mut, Pm, 1
2)

∗ PostIfc

For definition of PostIfc
cf. Figure B.28.

case: vcc − 1 > 0 PR-VS-Simp & VS-SigInitMust create signal for next iteration. obs({[id
vcc −1
pop , mut]}) ∗∗i=1,...,vcc −1

uninitSig(idi
pop)

∗ uninitSig(id
vcc −1
pop) signal(s

vcc −1
pop , False) ∗ . . .

 PR-VS-Simp & VS-SemImp

{phase((Forker)) ∗ ∃v′
cc , O′

c. obs(O′
c ⊎ {[mut]}) ∗ locked(mut, Pm, 1

2) ∗ PostIfc}

{phase((Forker)) ∗ ∃v′
cc , O′

c. obs(O′
c ⊎ {[mut]}) ∗ locked(mut, Pm, 1

2) ∗ PostIfc}
. . . Continued in Figure B.28.

Figure B.29: Verification example bounded FIFO, consumer thread’s
consumption step.

VERIFICATION EXAMPLE 161

∀ℓfifo10 , ℓm, ℓcc , ℓcc , vcc , Oc, vm
fifo10

, v′
cc , O′

c.

. . . Continuation of Figure B.28.

For definition of Pm, P ′
m(v), Llocked

c (n, O), L

no:mutex
no:obs

c (n, O), PostIfc
cf. Figures B.22, B.24 and B.28.
{phase((Forker)) ∗ obs(O′

c ⊎ {[mut]}) ∗ locked(mut, Pm, 1
2) ∗ PostIfc}

release m PR-Release allows view shift to happen after mutex mut
was released but before lock invariant Pm is consumed.

{phase((Forker)) ∗ obs(O′
c ⊎{[mut]}) ∗ locked(mut, Pm, 1

2) ∗ PostIfc} PR-VS-Simp & VS-SemImp

{ (size(vm
fifo10

) > 0 ∨ size(vm
fifo10

) = 0) ∗ . . .} PR-VS-Simp & VS-Or

case: size(vm
fifo10

) > 0 Consumption step already performed, nothing left to do.

{ size(vm
fifo10

) > 0 ∗ phase((Forker)) ∗ obs(O′
c) ∗ PostIfc} PR-VS-Simp & VS-SemImp{

obs(O′
c) ∗ Pm ∗ ∃τanc

c , δc. τanc
c ⊑ (Forker) ∗ phase((Forker))

∗ L

no:mutex
no:obs

c (v′
cc , O′

c) ∗ itperm((), 1)

} Define PostReleaseVSc
such that:
= {obs(O′

c) ∗ Pm
∗ PostReleaseVSc}

case: size(vm
fifo10

) = 0 No production step performed.
Must wait to generate permission.

{ size(vm
fifo10

) = 0 ∗ phase((Forker)) ∗ obs(O′
c) ∗ PostIfc} PR-VS-Simp & VS-SemImp PostIfc L

no:mutex
no:obs

c (vcc , Oc) ∗ P ′
m(vm

fifo10
) ∗ O′

c = Oc = {[s
vcp
pop]}

∗ obs({[s
vcp
pop]}) ∗ vcc ̸= 0 ∗ phase((Forker))

 PR-Exists (2x)
& PR-VS-Simp & VS-SemImp

∀vm
cc , vm

cp .

∃vm
cc , vm

cp . [1
2]ℓcc 7→ vcc ∗ [1

2]ℓcc 7→ vm
cc ∗ vcc = vm

cc

∗ vcc = vm
cp + 0

(vm
cp > 0 → signal(s

vm
cp

push, False)) signal(s
vm

cp
push, False)

∗∗i=1,...,100
wperm((), idi

push, 0) ∗ obs({[s
vcc
pop]}) ∗ phase((Forker))

∗ . . .

PR-VS-Simp & VS-Wait

lev(s
vm

cp
push) = L

vm
cp

push = L
vcc
push = 101 − vcc < 102 − vcc

= L
vcc
pop = lev(s

vcc
pop)

Justification for application
of VS-Wait.

{ itperm((Forker), 0) ∗ . . .} PR-VS-Simp & VS-SemImp

{obs(O′
c) ∗ Pm ∗ PostReleaseVSc}

phase((Forker))∗ obs(O′
c)

∗ PostIfc ∗ (size(vm
fifo10

) < 10 ∨ size(vm
fifo10

) = 10)

∗ Pm ∗ PostReleaseVSc

 Conclusion of VS-Or
application.

{obs(O′
c) ∗Pm ∗ PostReleaseVSc} Lock invariant Pm consumed by PR-Release. PR-VS-Simp & VS-SemImp{

∃τanc
c , δc. τanc

c ⊑ (Forker) ∗ phase((Forker))
∗ (v′

cc ̸= 0 → ∃vcc , Oc. Lc(vcc , Oc) ∗ vcc ̸= 0 ∗ itperm(τanc
c , δc))

∗ (v′
cc = 0 → obs(∅))

}
Reestablished loop invariant.

. . . Continued in Figure B.28.

Figure B.30: Verification example bounded FIFO, consumer’s wait step.

Appendix C

Completeness Thresholds:
Formalization

This chapter formalizes the work described in chapter 4. The contents of this
chapter were published as technical report on arXiv:

T. Reinhard. Completeness Thresholds for Memory Safety of
Array Traversing Programs: Early Technical Report. arXiv, CoRR,
abs/2211.11885, 2022. https://doi.org/10.48550/arXiv.2211.11885

C.1 Introduction

In this early technical report on an ongoing project, we present – to the best
of our knowledge – the first study of completeness thresholds for memory
safety proofs. Specifically we consider heap-manipulating programs that iterate
over arrays without allocating or freeing memory. We present the first notion
of completeness thresholds for program verification which reduce unbounded
memory safety proofs to bounded ones. Moreover, we present some preliminary
ideas on how completeness thresholds can be computed for concrete programs.

Unbounded vs Bounded Proofs Memory safety is a very basic property we
want to hold for every critical program, regardless of its nature or purpose. Yet,
it remains hard to prove and in general requires us to write tedious, inductive

163

164 COMPLETENESS THRESHOLDS: FORMALIZATION

proofs. One way to automate the verification process is to settle on bounded
proofs and accept bounded guarantees.

Consider a program c that searches through an array of size s. An unbounded
memory safety proof for c would yield that the program is safe for any possible
input, in particular for any array size, i.e., ∀s. safe(c). A bounded proof
that only considers input sizes smaller than 10 would only guarantees that the
program is safe for any such bounded array, i.e., ∀s < 10. safe(c).

Completeness Thresholds Approximating unbounded proofs by bounded ones
is a technique often used in model checking. Hence, the relationship between
bounded and unbounded proofs about finite state transition systems has been
studied extensively [15, 40, 109, 28, 2, 87, 10, 126]. For a finite transition
system T and a property of interest ϕ, a completeness threshold is any number
k such that we can prove ϕ by only examining path prefixes of length k in
T , i.e., T |=k ϕ ⇒ T |= ϕ [40] 1. Over the years, various works characterised
over-approximations of least completeness thresholds for different types of
properties ϕ. These over-approximations are typically described in terms of key
attributes of the transition system T , such as the recurrence diameter [109].

Heap-manipulating programs are essentially infinite state transition systems.
Hence, in general, these key attributes are infinite. This vast structural difference
between the programs we are interested in and the transition systems for which
completeness thresholds have been studied prevents us from reusing any of the
existing definitions or results.

In § C.2 we start by presenting basic definitions and notations that are used
throughout this work. In § C.3 and § C.4 we present the syntax and semantics
of the programming language we consider. In § C.5 and § C.6 we formalise our
assertion language as well as the notion of memory safety we consider. Our
study of completeness thresholds relies on verification conditions, which we
define in § C.7. We introduce completeness thresholds and study their properties
in § C.8.

C.2 General Notation and Basic Definitions

The following definitions and notations will be used throughout this work.
1Note that the term completeness threshold is used inconsistently in literature. Some

papers such as [40] use the definition above, according to which completeness thresholds are not
unique. Others such as [109] define them as the minimal number k such that T |=k ϕ ⇒ T |= ϕ,
which makes them unique.

GENERAL NOTATION AND BASIC DEFINITIONS 165

Definition C.2.1 (Tuples). For any set X we denote the set of tuples over X
as

X∗ :=
⋃
n∈N

{(x1, . . . xn) | x1, . . . , xn ∈ X}.

We denote tuples by overlining the variable name, i.e., x ∈ X∗, except if it is
clear from the context.

Definition C.2.2 (Non-Empty Tuples). For any set X we denote the set of
non-empty tuples over X as

X+ := {t ∈ X∗ | len(t) > 0}.

Definition C.2.3 (Disjoint Union). Let A,B be sets. We define their disjoint
union as

A ⊔B := A ∪B

if A ∩B = ∅ and leave it undefined otherwise.

Notation C.2.4 (Homomorphic & Isomorphic). Let A,B be algebraic structures.
We define the following notations:

• A ∼ B expresses that A and B are homomorphic.

• A ≃ B expresses that A and B are isomorphic.

Remark C.2.5 (Canonical Homomorphism from Tuples to Sets). Let X be a
set. Then, X∗ with concatenation and P(X) with union are both monoids and
the canonical homomorphism from X∗ to P(X) is (x1, . . . , xn) 7→ {x1, . . . , xn}.

Definition C.2.6 (Congruence Relation between Tuples and Sets). Let X be
a set and let hX : X∗ → P(X) be the canonical homomorphism. We define the
congruence relation ∼=X ⊆ (X∗ × P(X)) ∪ (P(X) ×X∗) such that the following
holds for all t ∈ X∗ and all S ∈ P(X):

S ∼=X t ⇔ t ∼=X S ⇔ hX(t) = S

Whenever the base set X is clear from the context, we write ∼= instead of ∼=X .

166 COMPLETENESS THRESHOLDS: FORMALIZATION

C.3 Syntax

In this section we define the syntax of the programming language that we use
in the rest of this work.
Definition C.3.1 (Variables). We define X to be an infinite set of variable
symbols.

Our language allows for simple pointer arithmetic of the form ℓ+LocsZ Z where
ℓ is a heap location and Z is an offset.
Definition C.3.2 (Structured Heap Locations). We define the sets of heap
objects HObjs and heap indices HIdxs to be infinite sets with N ⊂ HIdxs.
Further, we define the set of heap locations as

Locs := HObjs×HIdxs.

We denote heap locations by ℓ, heap objects by o and heap indices by idx.

Definition C.3.3 (Unit Type). We define the unit type as Unit := {()}.

Definition C.3.4 (Types). We define the set of types Types syntactically as
follows:

T ∈ Types := Locs | HObjs | Z | B | Unit

Operations are pure functions that map inputs to output and cannot access the
heap.
Definition C.3.5 (Operations). We define Ops to be a set of operations with
Ops ⊆ {f : D → C | D ∈ Types∗, C ∈ Types} and with <, + ∈ Ops.

For each f : D → C ∈ Ops, we use the following notation dom(f) = D and
codom(f) = C.

While this work currently only deals with arrays, our plan is to investigate
completeness thresholds for programs that deal with arbitrary tree-like inductive
data structures. In order to keep the semantics of our language modular and to
allow for easy extensions, we introduce an unspecified set of heap commands
that captures the APIs of the data structures we are interested in.
Definition C.3.6 (Heap Commands). We define HCmds to be a set of symbols.
Every hc ∈ HCmds represents a command that accesses the heap.

Definition C.3.7 (Program syntax). We define the set of commands Cmds,
expressions Exps and values Values syntactically by the grammar presented in
Fig. C.1.

DYNAMIC SEMANTICS 167

ℓ ∈ Locs Heap locations
o ∈ HObjs Heap Objects
Z ∈ Z
b ∈ B
x ∈ X Variables
op ∈ Ops Primitive Operations
hc ∈ HCmds Heap Commands

v ∈ Values ::= ℓ | o | Z | b | () Values
e ∈ Exps ::= v | x | op(e) Expressions

c ∈ Cmds ::= e | let x := c in c |
if e then c else c |
while !e do c |
for x in [e to e] do c |
!e | !e := e | hc(e) Heap access

(a) Values, expressions and commands.
c; c′ := let x := c in c′ where x is not free in c′

if e then c := if e then c else ()

(b) Syntactic sugar.

Figure C.1: Program syntax.

C.4 Dynamic Semantics

In order to keep things simple, our language uses a heap but no store. Hence,
variables are actually constants that can be bound to values via let commands.
As a consequence, the entire evaluation state of a program is represented by
the heap and the program itself. Further, expressions are pure, hence their
evaluation does not depend on the heap.

Definition C.4.1 (Evaluation of Closed Expressions). We define a partial
evaluation function [[·]] : Exps ⇀ Values on expressions by recursion on the
structure of expressions as follows:

[[v]] := v if v ∈ Values,
[[op(e1, . . . , en)]] := op([[e1]], . . . , [[en]]) if ⊥ ̸∈ {[[e1]], . . . , [[en]]}

and ([[e1]], . . . , [[en]]) ∈ dom(op),
[[e]] := ⊥ otherwise.

168 COMPLETENESS THRESHOLDS: FORMALIZATION

We identify closed expressions e with their ascribed value [[e]].

Definition C.4.2 (Evaluation Context). We define the set of evaluation contexts
EvalCtxts syntactically as follows:

E ∈ EvalCtxts ::= let x :=□ in c

For any c ∈ Cmds and E ∈ EvalCtxts, we define E[c] := E[□ 7→ c].

Definition C.4.3 (Free Variables (Commands)). We define free variables in
the usual way. For any command c we denote the set of variables that occur
freely in c by freeVars(c).

Definition C.4.4 (Substitution (Commands)). We define substitution in the
usual way. For any command c, variable x and expression e, we denote the
result of substituting every free occurrence of x in c with e by c[x 7→ e]. Further,
we extend substitutions to tuples of variables and expressions in the canonical
way.

We explicitly model memory errors in our operational semantics. This way we
know that (i) any execution which ends in a value does not involve memory
errors and (ii) any execution that does involve memory errors ends in the
dedicated error state error.

Definition C.4.5 (Memory Errors). We denote the memory error state by error
and the set of potentially erroneous commands by Cmds+ := Cmds ∪ {error}.
We denote potentially erroneous commands by c+.

Heaps are finite collections of resources that can be manipulated by commands.

Definition C.4.6 (Physical Resources). We define the set of physical resources
Rphys syntactically as follows:

rp ∈ Rphys ::= ℓ 7→ v

ℓ ∈ Locs v ∈ Values

Definition C.4.7 (Physical Heaps). We define the set of physical heaps as

Heapsphys := Pfin(Rphys)

and the function locspRes : Heapsphys → Pfin(Locs) mapping physical heaps to
the sets of allocated heap locations as

locspRes(h) := {ℓ ∈ Locs | ∃v ∈ Values. ℓ 7→ v ∈ h}.

We denote physical heaps by h.

ASSERTION LANGUAGE 169

Definition C.4.8 (Basic Commands). We define the set of basic commands
BCmds syntactically as follows:

bc ∈ BCmds ::= e | let x := bc in bc |
if e then bc else bc |
while !e do bc |
for x in [e to e] do bc |
!e | !e := e

The set of basic commands is the subset of Cmds that consists exactly of those
commands that do not involve any heap command call hc(e). Remember that
the set of heap commands captures the APIs of data structures. We do not
want to change our operational semantics each time we want to consider a new
data structure. Hence, we assume that there exists an interpretation for each
heap command that describes its behaviour in terms of basic commands.

Assumption C.4.9 (Heap Command Interpretation). We assume that there
exists a function Ihcmds : HCmds → (BCmds × X ∗) that maps each heap
command to a basic command and a vector of variables. Further, for every
mapping of the form Ihcmds(hc) = (bc, (x1, . . . , xn)) the following two properties
hold:

•
∧
i̸=j

xi ̸= xj

• freeVars(bc) ⊆ {x1, . . . , xn}.

Definition C.4.10 (Command Reduction Relation). We define a command
reduction relation⇝cmd according to the rules presented in Fig. C.2. A reduction
step has the form

h, c⇝cmd h
′, c′.

We define ⇝∗
cmd as the reflexive transitive closure of ⇝cmd.

C.5 Assertion Language

In the previous sections we introduced heap commands that capture the APIs
of data structures. In a similar way, we introduce heap predicates that describe
their memory layout.

Assumption C.5.1 (Heap Predicates). We assume that there is a set of
symbols P . Every p ∈ P represents a predicate characterising the heap. Further,

170 COMPLETENESS THRESHOLDS: FORMALIZATION

CmdRed-EvalCtxt
h, c⇝cmd h

′, c′

h,E[c]⇝cmd h
′, E[c′]

CmdRed-EvalCtxt-Fail
h, c⇝cmd h

′, error
h,E[c]⇝cmd h

′, error

CmdRed-IfTrue
h, if True then ct else cf ⇝cmd h, ct

CmdRed-IfFalse
h, if False then ct else cf ⇝cmd h, cf

CmdRed-While
x ̸∈ freeVars(c)

h,while !ℓ do c⇝cmd h, let x :=!ℓ in if x then (c; while !ℓ do c)

CmdRed-For
h, for x in [n to n′] do c
⇝cmd h, if n ≤ n′ then (c; for x in [n+ 1 to n′] do c)

CmdRed-Let
h, let x := v in c⇝cmd h, c[x 7→ v]

CmdRed-ReadHeapLoc
ℓ 7→ v ∈ h

h, !ℓ⇝cmd h, v

CmdRed-ReadHeapLoc-Fail
ℓ ̸∈ locspRes(h)

h, !ℓ⇝cmd h, error

CmdRed-AssignHeapLoc
h ⊔ {ℓ 7→ _}, !ℓ := v ⇝cmd h ⊔ {ℓ 7→ v}, ()

CmdRed-AssignHeapLoc-Fail
ℓ ̸∈ locspRes(h)

h, !ℓ := v ⇝cmd h, error

CmdRed-Desugar-HeapCmdCall
Ihcmds(hc) = (bc, (x1, . . . , xn))

h, hc(v1, . . . , vn)⇝cmd h, bc[(x1, . . . , xn) 7→ (v1, . . . , vn)]

Figure C.2: Command reduction rules.

ASSERTION LANGUAGE 171

e ∈ Exps
p ∈ P
A ⊆ A

Index set I ⊆ Z

a ∈ A ::= True | False | e | ¬a | a ∧ a | a ∨ a | a ∗ a | a−∗ a |
e 7→ e | p(e) |

∨
A | □ a

(a) Assertion syntax.
a1 → a2 := ¬a1 ∨ a2
a1 ↔ a2 := (a1 → a2) ∧ (a2 → a1)
∃i ∈ I. a(i) :=

∨
{a(i) | i ∈ I}

∀i ∈ I. a(i) := ¬∃i ∈ I.¬a(i)

(b) Syntactic sugar.

Figure C.3: Assertions.

we assume that there is a function Ihpreds : P → P(Heapsphys × Values∗) that
maps each heap predicate symbol to a predicate over heaps and value tuples.

Definition C.5.2 (Assertions). We define the set of assertions A according to
the syntax presented in Figure C.3.

We omit the index set I in quantifications when its choice becomes clear from
the context and write ∃i. a(i) and ∀i. a(i) instead of ∃i ∈ I. a(i) and ∀i ∈ I. a(i),

Definition C.5.3. Assertion Model Relation We define the assertion model
relation ⊨A ⊆ Heapsphys × A by recursion over the structure of assertions
according to the rules presented in Fig. C.4.

Definition C.5.4 (Free Variables (Assertions)). We define the notion of free
variables for assertions analogously to that of commands (cf. C.4.3).

Definition C.5.5 (Substitution (Assertions)). We define substitution for
assertions analogously to substitution for commands (cf. C.4.4).

Notation C.5.6 (Free Variables (Tuples)). For convenience we define the
following notation for any tuple of commands and assertions (y1, . . . , yn) ∈
(Cmds ∪ A)∗:

freeVars(y1, . . . , yn) := freeVars(y1) ∪ · · · ∪ freeVars(yn).

172 COMPLETENESS THRESHOLDS: FORMALIZATION

h ⊨A True
h ̸⊨A False
h ⊨A e iff ∅ ⊨A [[e]]
h ⊨A ¬a iff h ̸⊨A a
h ⊨A a1 ∧ a2 iff h ⊨A a1 ∧ h ⊨A a2
h ⊨A a1 ∨ a2 iff h ⊨A a1 ∨ h ⊨A a2
h ⊨A a1 ∗ a2 iff ∃h1, h2. h = h1 ⊔ h2

∧ h1 ⊨A a1 ∧ h2 ⊨A a2
h ⊨A a1 −∗ a2 iff ∀h1. h1 ∩ h = ∅ ∧ h1 ⊨A a1

→ h1 ⊔ h ⊨A a2
h ⊨A ℓ 7→ v iff ℓ 7→ v ∈ h
h ⊨A p(e1, . . . , en) iff Ihpreds(p)(h, [[e1]], . . . , [[en]])
h ⊨A

∨
A iff ∃a ∈ A. h ⊨A a

h ⊨A □ a iff ∅ ⊨A a

Figure C.4: Assertion model relation. We write h ̸⊨A a if h ⊨A a does not hold.

Definition C.5.7 (Validity). Let a ∈ A be an assertion with freeVars(a) ∼= x =
(xi)i. For each i = 1, . . . , n, let Ti be the type of variables xi and let T = (Ti)i.
We call assertion a valid if the following holds:

∀h. ∀v ∈ T . h ⊨A a[x 7→ v]

We denote validity of a by writing ⊨A a.

C.6 Memory Safety

Definition C.6.1 (Memory Safety of Commands and Heaps). We define the
safety relation for commands safe ⊆ Heapsphys × Cmds as follows:

Let x = (xi)i ∼= freeVars(c) be the variables occurring freely in c. For each i, let
Ti be the type of variable xi and let T = (Ti)i. Then,

safe(h, c) ⇔ ∀v ∈ T . ¬∃h′. h, c[x 7→ v],⇝∗
cmd h

′, error

We say that a command c is safe under a physical heap h if safe(h, c) holds.

We consider a command safe under a heap if its execution does not lead to a
memory error. Note that a command’s execution can get stuck without any
memory error occurring. Such cases arise for not-well-typed commands such as

VERIFICATION CONDITIONS 173

if 13 then For this work, we only consider well-typed programs. Hence,
we do not care about cases in which a program gets stuck as long as no memory
error occurs.

Definition C.6.2 (Memory Safety of Commands and Assertions). We define
the safety relation for commands safeA ⊆ A × Cmds as follows:

Let x = (xi)i ∼= freeVars(a, c) be the variables occurring freely in a and c. For
each i, let Ti be the type of variable xi and let T = (Ti)i. Then,

safeA(a, c) ⇐⇒ ∀v ∈ T . ∀h.
(
h ⊨A a[x 7→ v] ⇒ safe(h, c[x 7→ v])

)
We say that a command c is safe under a assertion a if safeA(a, c) holds.

Notation C.6.3. We denote preconditions by M . Further, we aggregate
preconditions M and programs c into tuples {M} c.

C.7 Verification Conditions

A common approach in program verification is to derive a verification condition
vc from the program c and correctness property ϕ in question [71, 143]. Instead
of verifying the program directly, we prove the verification condition. In general,
vc describes an over-approximation of all possible program behaviours. The
process is sound iff truth of the verification condition indeed implies that our
program is correct, i.e., |= vc ⇒ c |= ϕ. We proceed analogously during our
study of completeness thresholds.

Definition C.7.1 (Verification Condition). We call an assertion vc ∈ A a
verification condition for {M} c if the following holds:

⊨A vc ⇒ safeA(M, c)

We denote verification conditions by vc.

Definition C.7.2 (Precise Verification Conditions). Let vc be a verification
condition for {M} c and let x ∈ freeVars(M, c) be a free variable of type T . We
call vc precise in x for {M} c if the following holds for every value v ∈ T :

safeA(M [x 7→ v], c[x 7→ v]) ⇒ ⊨A vc[x 7→ v]

Assumption C.7.3 (Array Predicate). We assume that there exists a predicate
symbol array ∈ P . We further assume that Ihpreds(array) ⊆ Heapsphys×HObjs×N
is the minimal relation for which the following holds:

Ihpreds(array)(h, a, s) ⇐⇒ h ⊨A ∗
0≤i<s

(a, i) 7→ _

174 COMPLETENESS THRESHOLDS: FORMALIZATION

We identify the assertion array(a, s) with the assertion ∗
0≤i<s

(a, i) 7→ _.

C.7.1 VC Generation

We use weakest liberal preconditions [71, 61] as verification conditions.

Definition C.7.4. Assertion Lambdas We define the set of assertion lambda
terms as Aλ := {λx. a | x ∈ X , a ∈ A}. For convenience we define the
notation λ_. a := λxfresh. a for xfresh ̸∈ freeVars(a).

We use assertion lambda terms λr.Q to denote postconditions referring to a
result value r.

Definition C.7.5. Weakest Liberal Precondition We define the weakest liberal
precondition function wlp : Cmds × Aλ → A by recursion over the structure of
commands as follows:

wlp(e, λr. Q) := Q[r 7→ e],
wlp(let x := c1 in c2, λr. Q) := wlp(c1, λx. wlp(c2, λr. Q)),
wlp(if e then ct else cf , λr. Q) := (e → wlp(ct, λr. Q))

∧ (¬e → wlp(cf , λr. Q)),
wlp(while !e inv I do c, λr. Q) := I

∗ □(I −∗ e 7→ _)
∗ □(I ∧ e 7→ True

−∗ wlp(c, λ_. I))
∗ (I ∧ e 7→ False −∗ Q),

wlp(for x in [e1 to e2] inv I do c, := I
λr. Q) ∗ □(∀x. e1 ≤ x < e2 ∧ I

−∗ wlp(c, λ_. I))
∗ (I −∗ Q),

wlp(!e, λr. Q) := ∃y. e 7→ y ∧Q[r 7→ y]
where y ̸∈ freeVars(e,Q),

wlp(!e1 := e2, λr. Q) := e1 7→ _ ∗ (e1 7→ e2 −∗Q),
wlp(hc(e), λr. Q) := wlp(bc[x 7→ e], λr. Q)

where Ihcmds(hc) = (bc, x)

Note that our weakest precondition for for loops does not allow the postcondition
to depend on the knowledge that any work was done. This simplified
precondition is sufficient to reason about the memory safety of array-traversing
programs that do not allocate nor free memory.

COMPLETENESS THRESHOLDS 175

C.8 Completeness Thresholds

Now that we have an intuition for what a completeness threshold should be and
for how we want to use it, let’s formalise this intuition.

Definition C.8.1 (Completeness Thresholds for Quantified Assertions). Let
Q ∈ {∀,∃} be a quantifier and let Qx ∈ T. a be a quantified assertion. Further,
let Q ⊆ T be a restriction of the domain of x. We call Q a completeness
threshold for a if the following holds:

⊨A Qx ∈ Q. a ⇒ ⊨A Qx ∈ T. a.

Definition C.8.2 (Completeness Thresholds for Programs). Let T be the
type of x in {M} c and let Q ⊆ T be a restriction of this type. We call Q a
completeness threshold for x in {M} c if the following holds:

∀v ∈ Q. safeA(M [x 7→ v], c[x 7→ v]) ⇒ ∀v ∈ T. safeA(M [x 7→ v], c[x 7→ v])

Theorem C.8.3 (Soundness). Let ∀x ∈ T. vc be a verification condition for
{M} c and let Q ⊆ T be a completeness threshold for vc. Further, let vc be
precise in x for {M} c. Then Q is a completeness threshold for {M} c.

Proof. Assume that ∀v ∈ Q. safeA(M [x 7→ v], c[x 7→ v]) holds. We have to
prove that the program is safe for the unrestricted domain, i.e., safeA(M, c).

Together with the precision of vc in x, this assumption implies ∀v ∈ Q. ⊨A
vc[x 7→ v] (cf. Def. C.7.2), which is equivalent to ⊨A ∀x ∈ Q. vc.

Q is a completeness threshold for vc. According to Def. C.8.1, this means
⊨A ∀x ∈ T. vc. Since the latter is a verification condition for {M} c, proposition
safeA(M, c) holds by Def. C.7.1. Hence, Q is a completeness threshold for
{M} c.

Finding completeness threshold for a non-precise verification condition ∀x. vc
does not allow us to conclude that we found a completeness threshold for the
actual program {M} c. However, as long as our ultimate goal is to verify the
program by proving an assertion A that is at least as strong as our verification
condition, i.e., A ⇒ ∀x. vc, we can leverage the completeness threshold. Hence,
it makes sense to first concentrate on completeness thresholds for verification
conditions. Later, we can try to relate our results to completeness thresholds
for programs.

Lemma C.8.4. Let ∀x ∈ T. a be an assertion. Let Q ⊆ T be such that

∀v1, v2 ∈ Q. (⊨A a[x 7→ v1] ⇔ ⊨A a[x 7→ v2]).

176 COMPLETENESS THRESHOLDS: FORMALIZATION

Then, for every q ∈ Q it holds that

⊨A ∀x ∈ (T \Q) ∪ {q}. a ⇔ ⊨A ∀x ∈ T. a.

Proof. Let q ∈ Q. With the assumption from the lemma, we get

∀v ∈ Q. (⊨A a[x 7→ q] ⇔ ⊨A a[x 7→ v])

and hence
⊨A a[x 7→ q] ⇔ ⊨A ∀x ∈ Q. a

Further, ∀x ∈ T. a is valid iff both ∀x ∈ (T \Q). a and ∀x ∈ Q. a are valid. As
we can reduce validity of the latter to validity of a[x 7→ q], we get

(⊨A ∀x ∈ (T \Q). a) ∧ (⊨A a[x 7→ q])
⇐⇒ (⊨A ∀x ∈ (T \Q). a) ∧ (⊨A ∀x ∈ Q. a)
⇐⇒ ⊨A ∀x ∈ T. a.

Corollary C.8.5. Let ∀x ∈ T. a be an assertion. Let Q ⊆ T be such that

∀v1, v2 ∈ Q. (⊨A a[x 7→ v1] ⇔ ⊨A a[x 7→ v2]).

Then, for every q ∈ Q, the set (T \ Q) ∪ {q} is a completeness threshold for
assertion a.

Proof. Follows from Lem. C.8.4 and Def. C.8.1.

Consider a verification condition ∀x ∈ T. vc and suppose we are interested in
a completeness threshold for x. By definition, the threshold is a restriction of
x’s domain, i.e., Q ⊆ T . The lemmas and corollary above show us that one
way forward is to identify a validity-preserving subset of T . That is, we need
to look for a subset Q ⊆ T of the domain within which the concrete choice for
x does not affect the validity of the verification condition. Once we got this,
we can collapse Q to any representative q ∈ Q and we found our completeness
threshold (T \Q) ∪ {q}.

Notice that validity preservation of domain restrictions is a transitive property.
Hence, we can easily turn the search for completeness thresholds for a fixed
variable into an iterative approach.

Lemma C.8.6 (Transitivity of Completeness Thresholds for Fixed Variable).
Let Q0, Q1, Q2 be sets with Q2 ⊆ Q1 ⊆ Q0. Let ai = ∀x ∈ Qi. a be assertions.
Let Q1 and Q2 be completeness thresholds for x in a0 and a1, respectively. Then,
Q2 is also a completeness threshold for x in a0.

COMPLETENESS THRESHOLDS 177

Proof. Since Q1 is a completeness threshold for x in a0 = ∀x ∈ Q0. a, we get

⊨A ∀x ∈ Q1. a ⇒ ⊨A ∀x ∈ Q0. a.

Since Q2 is a completeness threshold for x in a1 = ∀x ∈ Q1. a, we get

⊨A ∀x ∈ Q2. a ⇒ ⊨A ∀x ∈ Q1. a.

That is,

⊨A ∀x ∈ Q2. a ⇒ ⊨A ∀x ∈ Q1. a ⇒ ⊨A ∀x ∈ Q0. a

and hence Q2 ⊂ Q0 is a completeness threshold for x in a0 = ∀x ∈ Q0. a

Corollary C.8.7. Let T be a type and let (Qi)i be a family of sets with Q0 = T
and Qi+1 ⊆ Qi. Let (ai)i = (∀x ∈ Qi. a)i be a family of assertions such
that each Qi+1 is a completeness threshold for x in ai. Then, each Qi is a
completeness threshold for x in a0 = ∀x ∈ T. a.

Proof. Follows from Lem. C.8.6 by induction.

Consider a program that traverses an array a of size sa and an array b of size
sb. When we analyse the verification condition of this program we find that it
contains distinct parts that describe memory safety of the accesses to array a
and distinct parts for the accesses to b. Since both arrays describe separate
parts of the heap, we can bring the verification condition into a form that
reflects this. Thereby, we get a formula of the form vc ≡ vca ∗ vcb where vca
and vcb describe memory safety in respect to a and b, respectively.

Suppose, we want to find a completeness threshold for sa. In some cases, the
manipulation of both arrays is entangled which means that sa potentially affects
the validity of vcb. In such a case, we have no choice but to analyse the entire
formula to find our completeness threshold. However, often that’s not the case
and sa only shows up in the subformula vca that actually concerns array a. In
this case, it is sufficient to analyse vca in order to find a completeness threshold
for sa.

Lemma C.8.8 (Elimination). Let a, ax, a′ be assertions with ∀x ∈ T. a ≡ ∀x ∈
T. ax ∗ a′. Suppose the choice of x does not affect the validity of a′, i.e.,

∀v ∈ T. (⊨A a
′ ⇔ ⊨A a

′[x 7→ v]).

Let Q ⊆ T be a completeness threshold for x in ∀x ∈ T. ax. Then, Q is also a
completeness threshold for x in ∀x ∈ T. a.

178 COMPLETENESS THRESHOLDS: FORMALIZATION

Proof. Since Q is a completeness threshold for x in ∀x ∈ Q. ax, we get

⊨A ∀x ∈ Q. ax ∗ a′

⇒ ⊨A (∀x ∈ Q. ax) ∗ (∀x ∈ Q. a′)
⇒ ⊨A (∀x ∈ T. ax) ∗ (∀x ∈ Q. a′).

By using the assumption that the choice of x does not affect the validity of a′

we can conclude
⊨A (∀x ∈ T. ax) ∗ (∀x ∈ Q. a′)

⇒ ⊨A (∀x ∈ T. ax) ∗ (∀x ∈ T. a′)
⇒ ⊨A ∀x ∈ T. ax ∗ a′.

Corollary C.8.9 (VC Slicing). Let a, ax, a′ be assertions with ∀x ∈ T. a ≡
∀x ∈ T. ax ∗ a′. Suppose x is not free in a′. Let Q ⊆ T be a completeness
threshold for x in ∀x ∈ T. ax. Then, Q is also a completeness threshold for x
in ∀x ∈ T. a.

Proof. Follows from Lem. C.8.8.

C.8.1 Iteratively Extracting Completeness Thresholds

What we saw so far, gives us the tools to define an iterative process to extract
completeness thresholds.

Workflow C.8.10. Let {M} c be a program with variables x1, . . . , xn for which
we would like to extract completeness thresholds.

1. Compute a verification condition for {M} c, e.g., by using weakest
preconditions. The result has the form ∀x ∈ T . vc.

2. Iteratively extract completeness thresholds for each xi.
For all i ∈ {1, . . . , n}:

(a) Let Q ⊆ T be the completeness thresholds extracted so far. (Initially
Q = T .)

(b) Bring the verification condition into the form
∀x ∈ Q. vc ≡ ∀x ∈ Q. ∗0≤j≤m

vcj.

(c) Identify a subformula vc′ whose validity is not affected by the choice
of xi. Bring the verification condition into the form
∀x ∈ Q. vc ≡ ∀x ∈ Q. vci ∗ vc′.
In the remaining steps it suffices to analyse ∀x ∈ Q. vci.

COMPLETENESS THRESHOLDS 179

(d) Examine vci and extract a completeness threshold. This can either
be done purely manually or by identifying patterns for which we
previously proved that we can extract completeness thresholds.
This step yields a completeness threshold Q′

i which, in the worst case,
does not yield an improvement, i.e., Q′

i = Qi.
(e) Repeat this process iteratively until the extracted completeness

threshold does not improve in respect to the last iteration.

C.8.2 Iterating over Arrays

In the following, we study patterns encountered in verification conditions of
programs that iterate over arrays. The goal of this section is to formulate
reusable lemmas that allow us to automate the extraction of completeness
thresholds.

Lemma C.8.11 (VC-CT for Bounded, Unconditional Array Access). Let
Z, a, b ∈ Z be constants and vc(s) = ∀i ∈ Z. a ≤ i < s + b → 0 ≤ i + Z < s.
Then, for every q ∈ Z with q > a− b it holds that

⊨A ∀s ∈ Z. vc(s) ⇔ ⊨A vc(q)

That is, {q} is a completeness threshold for vc(s).

Proof. For s ≤ a− b it holds a ≤ i < s+ b ≡ False and hence vc(s) ≡ True.

For s > a− b we get:

vc(s) ≡ ∀i. a ≤ i < s+ b → 0 ≤ i+ Z < s
≡ ∀i. (a ≤ i < s+ b → 0 ≤ i+ Z) ∧ (a ≤ i < s+ b → i+ Z < s)
≡ ∀i. (a ≤ i → 0 ≤ i+ Z) ∧ (i < s+ b → i+ Z < s)
≡ ∀i. (a ≤ i → 0 ≤ i+ Z) ∧ ∀i. (i < s+ b → i+ Z < s)
≡ ∀i. (a ≤ i → 0 ≤ i+ Z) ∧ ∀i. (i < b → i+ Z < 0)
=: vc+

s does not occur in vc+ and, hence, the concrete value of s does not impact the
validity of vc+. By Lem. C.8.5, for any choice of q ∈ Z with q > l − r, the set
{q} is a completeness threshold for vc(s).

Appendix D

Generalising Completeness
Thresholds

In the previous chapters § 4 and § C we studied completeness thresholds for
memory safety proofs. In this chapter we drop this limitation and show that
we can straightforwardly generalise the theoretic foundations of our work to
arbitrary correctness properties.

D.1 Basic Definitions

Since we are generalising our work formalised in appendix § C, we reuse most
of that chapter’s definitions throughout this chapter. This includes but it
not limited to the definitions presented in § C.2. Deviations from previous
definitions are explicitly redefined.

Definition D.1.1 (Equivalence Classes). Let R ⊆ X × X be an equivalence
relation. For any x ∈ X, we define the notation

⟨x⟩R := {x′ ∈ X | R(x, x′)} ∈ X⧸R

We omit R whenever it is clear from the context and write ⟨x⟩ instead of ⟨x⟩R.

Definition D.1.2 (Equivalence Relation Refinement). Let R,S ⊆ X ×X be
equivalence relations. We call S a refinement of R if the following holds:

∀x ∈ X. ⟨x⟩S ⊆ ⟨x⟩R.

181

182 GENERALISING COMPLETENESS THRESHOLDS

Definition D.1.3 (Cover). Let X be a set. We call a family of subsets (Yi)i∈I
a cover of X if ⋃

i∈I
Yi = X.

Definition D.1.4 (Equivalence Cover). Let R ⊆ X × X be an equivalence
relation over a set X. We call a subset Y ⊆ X an R-cover of X if the family
(⟨y⟩R)y∈Y is a cover of X. When R is clear from the context or irrelevant, we
also call Y an equivalence cover of X.

Notation D.1.5 (Logical Term Operator Variables). We denote variables
ranging over quantifiers {∀,∃} by ∇. Likewise, we denote variables ranging
over the logical connectors {∧,∨} by ⊕.

D.2 Generalised Completeness Thresholds

In this chapter we treat correctness as an abstract property of programs. Hence,
the following definition of correctness encompasses both safety properties like
memory safety and liveness properties such as termination. Moreover, it also
covers more complex functional correctness properties.

Without loss of generality, we can assume that any correctness property ϕ is
given in prenex normal form ∇1 . . .∇n.ψ for quantifiers ∇ ∈ {∀,∃}. To simplify
the notation in subsequent definitions and lemmas, we call the quantifier-free
core a correctness predicate and denote it by ψ. Meanwhile, we call the full
correctness specification, where every variable except for the target program is
explicitly quantified, a correctness property and denote it by ϕ.

Definition D.2.1 (Correctness Predicate). Let X1, . . . , Xn be variable domains.
Let ψ(c, x1, . . . , xn) ⊆ Cmds ×X1 × · · · ×Xn be a predicate over commands and
typed values. We call ψ a correctness predicate.

⊨ ψ(c, v1, . . . , vn) means that every run of c[x1, . . . , xn 7→ v, . . . , vn] that takes
place under the conditions described by ψ is correct in some sense described
by ψ.

Definition D.2.2 (Correctness Property). Let ψ(c, x1, . . . , xn) ⊆ Cmds ×X1 ×
· · · ×Xn be a correctness predicate and let ∇1, . . . ,∇n ∈ {∀,∃} be quantifiers.
We call a predicate ϕ(c) ⊆ Cmds of the form

ϕ(c) := ∇1x1 ∈ X1. . . . ∇nxn ∈ Xn. ψ(c, x1, . . . , xn)

a correctness property. We write c ⊨ ϕ to express that ϕ(c) holds.

GENERALISED COMPLETENESS THRESHOLDS 183

The following definitions are straightforward generalisations of Def. C.7.1,
Def C.7.2, Def C.8.1, Def C.8.2.

Definition D.2.3 (Verification Condition). We call an assertion vc ∈ A a
verification condition for a correctness property ϕ if the following holds:

⊨A vc ⇒ c ⊨ ϕ

We call a VC precise in x for some correctness property ϕ if it does not over-
approximate the influence of x on ϕ. Note that precision is a significantly weaker
property than stating that the VC as a whole does not over-approximate.

Definition D.2.4 (Precise Verification Conditions). Let ∇x ∈ X. vc be a
verification condition for a correctness property ∇x ∈ X. ψ and a command c.
We call vc precise in x for ϕ and c if the following holds for every value v ∈ X:

c ⊨ ψ[x 7→ v] ⇒ ⊨A vc[x 7→ v]

We also say that vc does not over-approximate ψ and c with respect to x.

Definition D.2.5 (Completeness Thresholds for Quantified Assertions). Let
∇x ∈ X. a be a quantified assertion. Further, let Q ⊆ X be a subdomain. We
call Q a completeness threshold for x in a if the following holds:

⊨A ∇x ∈ Q. a ⇒ ⊨A ∇x ∈ X. a.

Observation D.2.6 (Trivial CTs for ∃-Assertions). For existentially quantified
assertions of the form ∃x ∈ X. a any subdomain Y ⊆ X is a completeness
threshold for x.

Definition D.2.7 (Completeness Thresholds for Correctness Properties and
Programs). Let ∇x ∈ X. ψ be a correctness property and c a comand. We call
a subdomain Q ⊆ X a completeness threshold for x in ψ if the following holds:

c ⊨ ∇x ∈ Q. ψ ⇒ c ⊨ ∇x ∈ X. ψ

Observation D.2.8 (Trivial CTs for ∃-Correctness-Properties). For existen-
tially quantified correctness properties of the form ∃x ∈ X. ψ any subdomain
Y ⊆ X is a completeness threshold for x.

Notation D.2.9. We denote completeness thresholds by Q and singleton ones
by {q}.

Terminology D.2.10. We call a completeness threshold minimal if it is
minimal wrt. ⊆.

184 GENERALISING COMPLETENESS THRESHOLDS

The following theorem states that precision in some variable x is a sufficiently
strong requirement to ensure the soundness of any CT for x extracted via the
precise VC.

Theorem D.2.11 (Soundness). Let ∇x ∈ X. vc be a verification condition
for a correctness property ∇x ∈ X. ψ and a command c. Let Q ⊆ X be a
completeness threshold for x in vc and let vc be precise in x. Then, Q is also a
completeness threshold for x in ψ.

Proof. We can summarize the proof with this commuting diagram:

c ⊨ ∇x ∈ Q. ψ c ⊨ ∇x ∈ X. ψ

∇v ∈ Q.
(
⊨A vc[x 7→ v]

)

⊨A ∇x ∈ Q. vc ⊨A ∇x ∈ X. vc

vc is precise in x, cf. Def. D.2.4

Q is CT for x in ψ, cf. Def. D.2.7

Q is CT for x in vc, cf. Def. D.2.5

vc is VC, Def. D.2.3

Assume that c ⊨ ∇x ∈ Q. ψ holds. We have to show that the correctness
predicate ψ holds for the unrestricted domain X, i.e., c ⊨ ∇x ∈ X. ψ.

By our assumption and the precision of vc in x (cf. Def. D.2.4), we get
∇v ∈ Q.

(
⊨A vc[x 7→ v]

)
, which is equivalent to ⊨A ∇x ∈ Q. vc. Since Q

is a completeness threshold for x in vc (cf. Def. D.2.5), the latter implies
⊨A ∇x ∈ X. vc. Further, ∇x ∈ X. vc is a verification condition for ∇x ∈ X. ψ.
Per Def. D.2.3, this means that c ⊨ ∇x ∈ X. ψ.

Lemma D.2.12 (Subdomain Reduction). Let ∇x ∈ X. a be an assertion. Let
Y ⊆ X be such that

∇v1, v2 ∈ Y. (⊨A a[x 7→ v1] ⇔ ⊨A a[x 7→ v2]).

Then, for every y ∈ Y it holds that

⊨A ∇x ∈ (X \ Y) ∪ {y}. a ⇔ ⊨A ∇x ∈ X. a.

Proof. Let y ∈ Y . With the assumption from the lemma, we get

∇v ∈ Y. (⊨A a[x 7→ y] ⇔ ⊨A a[x 7→ v])

and hence
⊨A a[x 7→ y] ⇔ ⊨A ∇x ∈ Y. a

GENERALISED COMPLETENESS THRESHOLDS 185

If ∇ = ∀, we get that ∇x ∈ X. a is valid iff both ∀x ∈ (X \Y). a and ∀x ∈ Y. a
are valid. In this case we define ⊕ := ∧. If ∇ = ∃, we get that ∇x ∈ X. a is
valid iff ∃x ∈ (X \ Y). a or ∃x ∈ Y. a is valid. In this case we define ⊕ := ∨.

As we can reduce validity of the ∇x ∈ Y. a to validity of a[x 7→ y], we get

(⊨A ∇x ∈ (X \ Y). a) ⊕ (⊨A a[x 7→ y])
⇐⇒ (⊨A ∇x ∈ (X \ Y). a) ⊕ (⊨A ∇x ∈ Y. a)
⇐⇒ ⊨A ∇x ∈ X. a.

Corollary D.2.13 (CT Extraction). Let ∇x ∈ X. a be an assertion. Let
Y ⊆ X be such that

∀v1, v2 ∈ Y. (⊨A a[x 7→ v1] ⇔ ⊨A a[x 7→ v2]).

Then, for every y ∈ Y , the set (X \ Y) ∪ {y} is a completeness threshold for
assertion a.

Proof. Follows from the Subdomain Reduction Lem. D.2.12 and Def. D.2.5.

This corollary shows that we can extract CTs by factoring out validity preserving
subdomains. Later on we will see that it is indeed sufficient to factor out
equivalence classes that capture all potential errors. For now, it is sufficient to
note that we can reduce CTs by dropping elements that provably do not cause
any errors.

Corollary D.2.14. Let ∇x ∈ X. a be an assertion. Let Y ⊆ X be such that

∀y ∈ Y. ⊨A a[x 7→ y].

Then, (X \ Y) is a completeness threshold for assertion a.

Proof. Let y ∈ Y . By Cor. D.2.13, the set (X \Y)∪{y} is a CT. By assumption,
⊨A a[x 7→ y]. Hence we get

∇x ∈ (X \ Y). a ⇒ ∇x ∈ (X \ Y ∪ {y}). a ⇒ ∇x ∈ X. a.

Intuitively, CTs are subdomains that cover all possible types of potential errors.
In the following, we formalise this intuition by describing them as covers of
(refinements of) a specific validity equivalence relation ≈x

a.

186 GENERALISING COMPLETENESS THRESHOLDS

Definition D.2.15 (Equivalence Relation for Assertion Arguments). Let a be an
assertion, x a variable with domain X. We define the the relation ≈x

a ⊆ X ×X
as follows:

v1 ≈x
a v2 ⇐⇒

(
⊨A a[x 7→ v1] ⇔ ⊨A a[x 7→ v2]

)
We omit the variable x whenever it is clear from the context and write ≈a.

Corollary D.2.16. For any choice of a and x, the relation ≈x
a is an equivalence

relation.

Theorem D.2.17 (Equivalence Cover CT). Let ∇x ∈ X. a be an assertion
and let Y ⊆ X be a ≈x

a-cover of X. Then, Y is a completeness threshold for x
in a.

Proof. Suppose the claim does not hold. By Obs. D.2.6 we know that ∇ = ∀.
Further, it must hold that ⊨A ∀x ∈ Y. a and there must exist a vX ∈ X for
which ̸⊨A a[x 7→ vX].

Since Y is a ≈x
a-cover of X, there exists a y ∈ Y with vX ∈ ⟨y⟩≈x

a
. By the

definition of ≈x
a we get ̸⊨A a[x 7→ y], which contradicts ⊨A ∀x ∈ Y. a.

Corollary D.2.18 (Refinement Cover CT). Let ∇x ∈ X. a be an assertion,
let ∼ be a ≈x

a-refinement and let Y ⊆ X be a ∼-cover of X. Then, Y is a
completeness threshold for x in a.

Proof. Since ∼ is a ≈x
a-refinement, every ∼-cover of X is also a ≈x

a-cover of X.
The rest follows by Theo. D.2.17.

Definition D.2.19 (VC Error Equivalence Class). Let ∇x ∈ X. a be an
assertion, let ∼ be a ≈x

a-refinement. For any v ∈ X, we call ⟨v⟩∼ a VC error
equivalence class if ̸⊨A a[x 7→ v].

Theorem D.2.20 (Error Cover CT). Let ∇x ∈ X. a be an assertion, let ∼ be
a ≈x

a-refinement and let Y ⊆ X cover all ∼-error equivalence classes. Then, Y
is a completeness threshold for x in a.

Proof. Let ⟨e1⟩∼, . . . , ⟨en⟩∼ be all the ∼-error equivalence classes. Without loss
of generality, we can choose the representatives such that ei ∈ Y for all i. Since
∼ is a ≈x

a-refinement, their union is exactly the ≈x
a-error equivalence class E.

(Note that ≈x
a is an equivalence relation with only two equivalence classes.) Let

s ∈ X \E be an element for which a holds. Then {e1, . . . , en, s} is a ≈x
a-cover.

By Theo. D.2.17 the set {e1, . . . , en, s} is a CT. By Cor. D.2.14 we know that
we can drop elements for which the VC holds. It follows that {e1, . . . , en} is a
CT. As {e1, . . . , en} ⊆ Y , we also know that Y is a CT.

GENERALISED COMPLETENESS THRESHOLDS 187

Lemma D.2.21 (Transitivity of Completeness Thresholds for Fixed Variable).
Let X0, X1, X2 be sets with X0 ⊇ X1 ⊇ X2. Let ai = ∇x ∈ Xi. a be assertions.
Let X1 and X2 be completeness thresholds for x in a0 and a1, respectively. Then,
X2 is also a completeness threshold for x in a0.

Proof. Since X1 is a completeness threshold for x in a0 = ∇x ∈ X0. a, we get

⊨A ∇x ∈ X1. a ⇒ ⊨A ∇x ∈ X0. a.

Since X2 is a completeness threshold for x in a1 = ∇x ∈ X1. a, we get

⊨A ∇x ∈ X2. a ⇒ ⊨A ∇x ∈ X1. a.

That is,

⊨A ∇x ∈ X2. a ⇒ ⊨A ∇x ∈ X1. a ⇒ ⊨A ∇x ∈ X0. a

and hence X2 ⊆ X0 is a completeness threshold for x in a0 = ∇x ∈ X0. a

Corollary D.2.22 (CT Refinement). Let X be a set and let (Yi)i be a family
of sets with Q0 = X and Qi ⊇ Qi+1. Let (ai)i = (∇x ∈ Qi. a)i be a family of
assertions such that each Qi+1 is a completeness threshold for x in ai. Then,
each Qi is a completeness threshold for x in a0 = ∀x ∈ T. a.

Proof. Follows from the Transitivity Lem. D.2.21 by induction.

Lemma D.2.23 (Elimination). Let a, ax, a′ be assertions with ∇x ∈ X. a ≡
∇x ∈ X. ax ∗ a′. Suppose the choice of x does not affect the validity of a′, i.e.,

∀v ∈ X. (⊨A a
′ ⇔ ⊨A a

′[x 7→ v]).

Let Q ⊆ X be a completeness threshold for x in ∀x ∈ X. ax. Then, Q is also a
completeness threshold for x in ∀x ∈ X. a.

Proof. Since Q is a completeness threshold for x in ∇x ∈ X. ax, we get

⊨A ∇x ∈ Q. ax ∗ a′

⇒ ⊨A (∇x ∈ Q. ax) ∗ (∇x ∈ Q. a′)
⇒ ⊨A (∇x ∈ X. ax) ∗ (∇x ∈ Q. a′).

By using the assumption that the choice of x does not affect the validity of a′

we can conclude
⊨A (∇x ∈ X. ax) ∗ (∇x ∈ Q. a′)

⇒ ⊨A (∇x ∈ X. ax) ∗ (∇x ∈ X. a′)
⇒ ⊨A ∇x ∈ X. ax ∗ a′.

188 GENERALISING COMPLETENESS THRESHOLDS

Corollary D.2.24 (VC Slicing). Let a, ax, a′ be assertions with ∇x ∈ X. a ≡
∇x ∈ X. ax ∗ a′. Suppose x is not free in a′. Let Q ⊆ X be a completeness
threshold for x in ∇x ∈ X. ax. Then, Q is also a completeness threshold for x
in ∇x ∈ X. a.

Proof. Follows from the Elimination Lem. D.2.23.

Bibliography

[1] AWS encryption sdk for Dafny. URL https://github.com/aws/aws-
encryption-sdk-dafny#aws-encryption-sdk-for-dafny. Accessed:
2023-10-18.

[2] Mohammad Abdulaziz, Michael Norrish, and Charles Gretton. Formally
verified algorithms for upper-bounding state space diameters. Journal of
Automated Reasoning, 61:485–520, 2018.

[3] Omar M. Alhawi, Herbert Rocha, Mikhail R. Gadelha, Lucas C. Cordeiro,
and Eddie Batista de Lima Filho. Verification and refutation of C programs
based on k-induction and invariant inference. Int. J. Softw. Tools Technol.
Transf., 23(2):115–135, 2021. doi: 10.1007/S10009-020-00564-1. URL
https://doi.org/10.1007/s10009-020-00564-1.

[4] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, 1985. ISSN 0020-0190. doi: https://doi.
org/10.1016/0020-0190(85)90056-0. URL https://www.sciencedirect.
com/science/article/pii/0020019085900560.

[5] Benjamin Aminof, Swen Jacobs, Ayrat Khalimov, and Sasha Rubin.
Parameterized model checking of token-passing systems. In Kenneth L.
McMillan and Xavier Rival, editors, Verification, Model Checking, and
Abstract Interpretation - 15th International Conference, VMCAI 2014,
San Diego, CA, USA, January 19-21, 2014, Proceedings, volume 8318 of
Lecture Notes in Computer Science, pages 262–281. Springer, 2014. doi:
10.1007/978-3-642-54013-4_15. URL https://doi.org/10.1007/978-
3-642-54013-4_15.

[6] Paul Ammann and Jeff Offutt. Introduction to Software Test-
ing. Cambridge University Press, 2008. ISBN 978-0-521-88038-1.
doi: 10.1017/CBO9780511809163. URL https://doi.org/10.1017/
CBO9780511809163.

189

https://github.com/aws/aws-encryption-sdk-dafny#aws-encryption-sdk-for-dafny
https://github.com/aws/aws-encryption-sdk-dafny#aws-encryption-sdk-for-dafny
https://doi.org/10.1007/s10009-020-00564-1
https://www.sciencedirect.com/science/article/pii/0020019085900560
https://www.sciencedirect.com/science/article/pii/0020019085900560
https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1017/CBO9780511809163

190 BIBLIOGRAPHY

[7] Andrew W. Appel and David McAllester. An indexed model of recursive
types for foundational proof-carrying code. ACM Trans. Program. Lang.
Syst., 23(5):657–683, September 2001. doi: 10.1145/504709.504712.

[8] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer,
Josiah Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy.
Semantic model and soundness of Verifiable C, page 362–362. Cambridge
University Press, 2014. doi: 10.1017/CBO9781107256552.046.

[9] Irina Mariuca Asavoae, Mihail Asavoae, and Adrián Riesco. Slicing from
formal semantics: Chisel - a tool for generic program slicing. Int. J. Softw.
Tools Technol. Transf., 20(6):739–769, 2018. doi: 10.1007/s10009-018-
0500-y. URL https://doi.org/10.1007/s10009-018-0500-y.

[10] Mohammad Awedh and F. Somenzi. Proving more properties with
bounded model checking. In CAV, 2004.

[11] Vasanth Balasundaram and Ken Kennedy. Compile-time detection of race
conditions in a parallel program. In Proceedings of the 3rd International
Conference on Supercomputing, pages 175–185, 1989.

[12] Thomas Ball and Sriram K. Rajamani. The slam project: Debugging
system software via static analysis. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’02, page 1–3, New York, NY, USA, 2002. Association for
Computing Machinery. ISBN 1581134509. doi: 10.1145/503272.503274.
URL https://doi.org/10.1145/503272.503274.

[13] Dirk Beyer and Matthias Dangl. Software verification with PDR: an
implementation of the state of the art. In Armin Biere and David
Parker, editors, Tools and Algorithms for the Construction and Analysis
of Systems - 26th International Conference, TACAS 2020, Held as
Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings,
Part I, volume 12078 of Lecture Notes in Computer Science, pages 3–
21. Springer, 2020. doi: 10.1007/978-3-030-45190-5_1. URL https:
//doi.org/10.1007/978-3-030-45190-5_1.

[14] Dirk Beyer, Nian-Ze Lee, and Philipp Wendler. Interpolation and SAT-
based model checking revisited: Adoption to software verification. CoRR,
abs/2208.05046, 2022. doi: 10.48550/arXiv.2208.05046. URL https:
//doi.org/10.48550/arXiv.2208.05046.

[15] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. In International Conference on
Tools and Algorithms for Construction and Analysis of Systems, 1999.

https://doi.org/10.1007/s10009-018-0500-y
https://doi.org/10.1145/503272.503274
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.1007/978-3-030-45190-5_1
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.48550/arXiv.2208.05046

BIBLIOGRAPHY 191

[16] Per Bjesse and Koen Claessen. Sat-based verification without state
space traversal. In Warren A. Hunt Jr. and Steven D. Johnson,
editors, Formal Methods in Computer-Aided Design, Third International
Conference, FMCAD 2000, Austin, Texas, USA, November 1-3, 2000,
Proceedings, volume 1954 of Lecture Notes in Computer Science, pages
372–389. Springer, 2000. doi: 10.1007/3-540-40922-X_23. URL https:
//doi.org/10.1007/3-540-40922-X_23.

[17] Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. Approximating
longest directed paths and cycles. In Josep Díaz, Juhani Karhumäki,
Arto Lepistö, and Donald Sannella, editors, Automata, Languages and
Programming: 31st International Colloquium, ICALP 2004, Turku,
Finland, July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in
Computer Science, pages 222–233. Springer, 2004. doi: 10.1007/978-3-540-
27836-8_21. URL https://doi.org/10.1007/978-3-540-27836-8_21.

[18] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. The
VerCors tool set: Verification of parallel and concurrent software. In Nadia
Polikarpova and Steve A. Schneider, editors, Integrated Formal Methods -
13th International Conference, IFM 2017, Turin, Italy, September 20-22,
2017, Proceedings, volume 10510 of Lecture Notes in Computer Science,
pages 102–110. Springer, 2017. doi: 10.1007/978-3-319-66845-1_7. URL
https://doi.org/10.1007/978-3-319-66845-1_7.

[19] Pontus Boström and Peter Müller. Modular verification of finite blocking in
non-terminating programs. In John Tang Boyland, editor, 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10,
2015, Prague, Czech Republic, volume 37 of LIPIcs, pages 639–663. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi: 10.4230/LIPIcs.
ECOOP.2015.639.

[20] Maha Boussabbeh, Mohamed Tounsi, Mohamed Mosbah, and Ahmed Hadj
Kacem. Formal proofs of termination detection for local computations by
refinement-based compositions. In Michael Butler, Klaus-Dieter Schewe,
Atif Mashkoor, and Miklos Biro, editors, Abstract State Machines, Alloy,
B, TLA, VDM, and Z, pages 198–212, Cham, 2016. Springer International
Publishing.

[21] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: Preventing data races and deadlocks. In
OOPSLA, 2002. doi: 10.1145/582419.582440.

[22] J. Boyland. Checking interference with fractional permissions. In SAS,
2003. doi: 10.1007/3-540-44898-5_4.

https://doi.org/10.1007/3-540-40922-X_23
https://doi.org/10.1007/3-540-40922-X_23
https://doi.org/10.1007/978-3-540-27836-8_21
https://doi.org/10.1007/978-3-319-66845-1_7

192 BIBLIOGRAPHY

[23] Marius Bozga, Peter Habermehl, Radu Iosif, Filip Konecný, and Tomás
Vojnar. Automatic verification of integer array programs. In Ahmed
Bouajjani and Oded Maler, editors, Computer Aided Verification, 21st
International Conference, CAV 2009, Grenoble, France, June 26 - July
2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer Science,
pages 157–172. Springer, 2009. doi: 10.1007/978-3-642-02658-4_15. URL
https://doi.org/10.1007/978-3-642-02658-4_15.

[24] Aaron R. Bradley. SAT-based model checking without unrolling. In Ranjit
Jhala and David A. Schmidt, editors, Verification, Model Checking, and
Abstract Interpretation - 12th International Conference, VMCAI 2011,
Austin, TX, USA, January 23-25, 2011. Proceedings, volume 6538 of
Lecture Notes in Computer Science, pages 70–87. Springer, 2011. doi:
10.1007/978-3-642-18275-4_7. URL https://doi.org/10.1007/978-3-
642-18275-4_7.

[25] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s
decidable about arrays? In E. Allen Emerson and Kedar S. Namjoshi,
editors, Verification, Model Checking, and Abstract Interpretation, 7th
International Conference, VMCAI 2006, Charleston, SC, USA, January
8-10, 2006, Proceedings, volume 3855 of Lecture Notes in Computer
Science, pages 427–442. Springer, 2006. doi: 10.1007/11609773_28. URL
https://doi.org/10.1007/11609773_28.

[26] S. Brookes and P. O’Hearn. Concurrent separation logic. ACM SIGLOG
News, 3:47–65, 2016. doi: 10.1145/2984450.2984457.

[27] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. Reasoning
about networks with many identical finite state processes. Inf. Comput.,
81(1):13–31, 1989. doi: 10.1016/0890-5401(89)90026-6. URL https:
//doi.org/10.1016/0890-5401(89)90026-6.

[28] Daniel Bundala, Joël Ouaknine, and James Worrell. On the magnitude of
completeness thresholds in bounded model checking. 27th Annual IEEE
Symposium on Logic in Computer Science, pages 155–164, 2012.

[29] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and
Andrew W. Appel. Vst-floyd: A separation logic tool to verify correctness
of C programs. J. Autom. Reason., 61(1-4):367–422, 2018. doi: 10.
1007/S10817-018-9457-5. URL https://doi.org/10.1007/s10817-018-
9457-5.

[30] Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat. Verifying
array manipulating programs with full-program induction. In Armin Biere
and David Parker, editors, Tools and Algorithms for the Construction and

https://doi.org/10.1007/978-3-642-02658-4_15
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/11609773_28
https://doi.org/10.1016/0890-5401(89)90026-6
https://doi.org/10.1016/0890-5401(89)90026-6
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5

BIBLIOGRAPHY 193

Analysis of Systems - 26th International Conference, TACAS 2020, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings,
Part I, volume 12078 of Lecture Notes in Computer Science, pages 22–
39. Springer, 2020. doi: 10.1007/978-3-030-45190-5_2. URL https:
//doi.org/10.1007/978-3-030-45190-5_2.

[31] Zhe Chen, Yi Gu, Zhiqiu Huang, Jun Zheng, Chang Liu, and Ziyi Liu.
Model checking aircraft controller software: a case study. Software:
Practice and Experience, 45(7):989–1017, 2015.

[32] Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem,
Felipe R. Monteiro, Daniel Schwartz-Narbonne, Serdar Tasiran, Michael
Tautschnig, and Mark R. Tuttle. Code-level model checking in the
software development workflow. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering
in Practice, ICSE-SEIP ’20, page 11–20, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450371230. doi: 10.1145/
3377813.3381347. URL https://doi.org/10.1145/3377813.3381347.

[33] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. In Martin Odersky and Philip Wadler,
editors, Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming (ICFP ’00), Montreal, Canada, September
18-21, 2000, pages 268–279. ACM, 2000. doi: 10.1145/351240.351266.
URL https://doi.org/10.1145/351240.351266.

[34] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Allen
Emerson and Aravinda Prasad Sistla, editors, Computer Aided Verification,
pages 154–169, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[35] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Allen
Emerson and Aravinda Prasad Sistla, editors, Computer Aided Verification,
pages 154–169, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[36] Edmund M. Clarke. Model checking – my 27-year quest to overcome
the state explosion problem. In Iliano Cervesato, Helmut Veith, and
Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, pages 182–182, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-89439-1.

[37] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic. In Dexter

https://doi.org/10.1007/978-3-030-45190-5_2
https://doi.org/10.1007/978-3-030-45190-5_2
https://doi.org/10.1145/3377813.3381347
https://doi.org/10.1145/351240.351266

194 BIBLIOGRAPHY

Kozen, editor, Logics of Programs, pages 52–71, Berlin, Heidelberg, 1982.
Springer Berlin Heidelberg.

[38] Edmund M. Clarke, Daniel Kroening, and Karen Yorav. Behavioral
consistency of C and verilog programs using bounded model checking.
In Proceedings of the 40th Design Automation Conference, DAC 2003,
Anaheim, CA, USA, June 2-6, 2003, pages 368–371. ACM, 2003. doi: 10.
1145/775832.775928. URL https://doi.org/10.1145/775832.775928.

[39] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for
checking ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors,
Tools and Algorithms for the Construction and Analysis of Systems,
10th International Conference, TACAS 2004, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume 2988 of
Lecture Notes in Computer Science, pages 168–176. Springer, 2004. doi:
10.1007/978-3-540-24730-2_15. URL https://doi.org/10.1007/978-
3-540-24730-2_15.

[40] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.
Completeness and complexity of bounded model checking. In International
Conference on Verification, Model Checking and Abstract Interpretation,
2004.

[41] Edmund M. Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut
Veith. Verification by network decomposition. In Philippa Gardner and
Nobuko Yoshida, editors, CONCUR 2004 - Concurrency Theory, 15th
International Conference, London, UK, August 31 - September 3, 2004,
Proceedings, volume 3170 of Lecture Notes in Computer Science, pages
276–291. Springer, 2004. doi: 10.1007/978-3-540-28644-8_18. URL
https://doi.org/10.1007/978-3-540-28644-8_18.

[42] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled,
and Helmut Veith. Model checking, 2nd Edition. MIT Press, 2018. ISBN
978-0-262-03883-6. URL https://mitpress.mit.edu/books/model-
checking-second-edition.

[43] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
VCC: A practical system for verifying concurrent C. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics, 22nd International Conference, TPHOLs
2009, Munich, Germany, August 17-20, 2009. Proceedings, volume 5674
of Lecture Notes in Computer Science, pages 23–42. Springer, 2009. doi:

https://doi.org/10.1145/775832.775928
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-28644-8_18
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition

BIBLIOGRAPHY 195

10.1007/978-3-642-03359-9_2. URL https://doi.org/10.1007/978-3-
642-03359-9_2.

[44] Byron Cook. Formal reasoning about the security of amazon web services.
In Hana Chockler and Georg Weissenbacher, editors, Computer Aided
Verification, pages 38–47, Cham, 2018. Springer International Publishing.
ISBN 978-3-319-96145-3.

[45] Thierry Coquand and Gérard Huet. The calculus of constructions.
Information and Computation, 76(2):95–120, 1988. ISSN 0890-5401.
doi: https://doi.org/10.1016/0890-5401(88)90005-3. URL https://www.
sciencedirect.com/science/article/pii/0890540188900053.

[46] Lucas C. Cordeiro and Bernd Fischer. Verifying multi-threaded software
using smt-based context-bounded model checking. In Richard N. Taylor,
Harald C. Gall, and Nenad Medvidovic, editors, Proceedings of the 33rd
International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , HI, USA, May 21-28, 2011, pages 331–340. ACM, 2011. doi:
10.1145/1985793.1985839. URL https://doi.org/10.1145/1985793.
1985839.

[47] The MITRE Corporation. Cwe-193: Off-by-one error, 2006. URL https:
//cwe.mitre.org/data/definitions/193.html.

[48] C. Cowan, F. Wagle, Calton Pu, S. Beattie, and J. Walpole. Buffer
overflows: attacks and defenses for the vulnerability of the decade. In
Proceedings DARPA Information Survivability Conference and Exposition.
DISCEX’00, volume 2, pages 119–129 vol.2, 2000. doi: 10.1109/DISCEX.
2000.821514.

[49] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.
Tada: A logic for time and data abstraction. In ECOOP 2014–Object-
Oriented Programming: 28th European Conference, Uppsala, Sweden, July
28–August 1, 2014. Proceedings 28, pages 207–231. Springer, 2014.

[50] Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and
Julian Sutherland. Modular termination verification for non-blocking
concurrency. In ESOP, volume 9632 of Lecture Notes in Computer Science,
pages 176–201. Springer, 2016. doi: 10.1007/978-3-662-49498-1_8.

[51] Pedro de Carvalho Gomes, Dilian Gurov, Marieke Huisman, and Cyrille
Artho. Specification and verification of synchronization with condition
variables. Sci. Comput. Program., 163:174–189, 2018. doi: 10.1016/
J.SCICO.2018.05.001. URL https://doi.org/10.1016/j.scico.2018.
05.001.

https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://www.sciencedirect.com/science/article/pii/0890540188900053
https://www.sciencedirect.com/science/article/pii/0890540188900053
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/1985793.1985839
https://cwe.mitre.org/data/definitions/193.html
https://cwe.mitre.org/data/definitions/193.html
https://doi.org/10.1016/j.scico.2018.05.001
https://doi.org/10.1016/j.scico.2018.05.001

196 BIBLIOGRAPHY

[52] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,
and Jakob von Raumer. The lean theorem prover (system description).
In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction -
CADE-25, pages 378–388, Cham, 2015. Springer International Publishing.

[53] N. Dershowitz and Z. Manna. Proving termination with multiset orderings.
In ICALP, 1979. doi: 10.1007/3-540-09510-1_15.

[54] Coq Developers. Coq website, 1989. URL https://coq.inria.fr/.
Accessed: 2023-11-07.

[55] FreeRTOS Developers. FreeRTOS website, 2003. URL https://www.
freertos.org. Accessed: 2023-11-01.

[56] FreeRTOS Developers. Repository of FreeRTOS’s TCP/IP stack, 2020.
URL https://github.com/FreeRTOS/FreeRTOS-Plus-TCP. Accessed:
2023-11-01.

[57] Lean Developers. Lean website, 1989. URL https://lean-lang.org/.
Accessed: 2023-11-07.

[58] David Dice, Virendra J. Marathe, and Nir Shavit. Lock cohorting:
a general technique for designing NUMA locks. In J. Ramanujam
and P. Sadayappan, editors, Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP
2012, New Orleans, LA, USA, February 25-29, 2012, pages 247–256.
ACM, 2012. doi: 10.1145/2145816.2145848. URL https://doi.org/10.
1145/2145816.2145848.

[59] David Dice, Virendra J. Marathe, and Nir Shavit. Lock cohorting: A
general technique for designing NUMA locks. ACM Trans. Parallel
Comput., 1(2):13:1–13:42, 2015. doi: 10.1145/2686884. URL https:
//doi.org/10.1145/2686884.

[60] Edsger W. Dijkstra. Notes on structured programming. 1970. URL
https://api.semanticscholar.org/CorpusID:8242220.

[61] Edsger W. Dijkstra. A discipline of programming. Pentice Hall, 1976.

[62] Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis.
Deny-guarantee reasoning. In Giuseppe Castagna, editor, Programming
Languages and Systems, 18th European Symposium on Programming,
ESOP 2009, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.
Proceedings, volume 5502 of Lecture Notes in Computer Science, pages
363–377. Springer, 2009. doi: 10.1007/978-3-642-00590-9_26. URL
https://doi.org/10.1007/978-3-642-00590-9_26.

https://coq.inria.fr/
https://www.freertos.org
https://www.freertos.org
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP
https://lean-lang.org/
https://doi.org/10.1145/2145816.2145848
https://doi.org/10.1145/2145816.2145848
https://doi.org/10.1145/2686884
https://doi.org/10.1145/2686884
https://api.semanticscholar.org/CorpusID:8242220
https://doi.org/10.1007/978-3-642-00590-9_26

BIBLIOGRAPHY 197

[63] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp
Rümmer. Software verification using k-induction. In Eran Yahav, editor,
Static Analysis - 18th International Symposium, SAS 2011, Venice, Italy,
September 14-16, 2011. Proceedings, volume 6887 of Lecture Notes in
Computer Science, pages 351–368. Springer, 2011. doi: 10.1007/978-3-642-
23702-7_26. URL https://doi.org/10.1007/978-3-642-23702-7_26.

[64] Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa
Gardner. Tada live: Compositional reasoning for termination of fine-
grained concurrent programs. ACM Trans. Program. Lang. Syst., 43(4):
16:1–16:134, 2021. doi: 10.1145/3477082. URL https://doi.org/10.
1145/3477082.

[65] Vijay Victor D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey
of automated techniques for formal software verification. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., 27(7):1165–1178, 2008. doi: 10.
1109/TCAD.2008.923410. URL https://doi.org/10.1109/TCAD.2008.
923410.

[66] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Efficient
implementation of property directed reachability. In Per Bjesse and
Anna Slobodová, editors, International Conference on Formal Methods
in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October
30 - November 02, 2011, pages 125–134. FMCAD Inc., 2011. URL
http://dl.acm.org/citation.cfm?id=2157675.

[67] E. Allen Emerson and Kedar S. Namjoshi. Reasoning about rings. In
Ron K. Cytron and Peter Lee, editors, Conference Record of POPL’95:
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, California, USA, January 23-25, 1995, pages
85–94. ACM Press, 1995. doi: 10.1145/199448.199468. URL https:
//doi.org/10.1145/199448.199468.

[68] Barry S. Fagin and Martin C. Carlisle. Provably secure DNS: A case
study in reliable software. In Hubert B. Keller, Erhard Plödereder, Peter
Dencker, and Herbert Klenk, editors, Reliable Software Technologies -
Ada-Europe 2013, 18th Ada-Europe International Conference on Reliable
Software Technologies, Berlin, Germany, June 10-14, 2013. Proceedings,
volume 7896 of Lecture Notes in Computer Science, pages 81–93. Springer,
2013. doi: 10.1007/978-3-642-38601-5_6. URL https://doi.org/10.
1007/978-3-642-38601-5_6.

[69] Justus Fasse and Bart Jacobs. Expressive modular verification of
termination for busy-waiting programs (talk). Iris Workshop 2023. URL
https://iris-project.org/workshop-2023/slides/fasse.pdf.

https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1145/3477082
https://doi.org/10.1145/3477082
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1145/199448.199468
https://doi.org/10.1145/199448.199468
https://doi.org/10.1007/978-3-642-38601-5_6
https://doi.org/10.1007/978-3-642-38601-5_6
https://iris-project.org/workshop-2023/slides/fasse.pdf

198 BIBLIOGRAPHY

[70] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 - where programs
meet provers. In Matthias Felleisen and Philippa Gardner, editors,
Programming Languages and Systems - 22nd European Symposium on
Programming, ESOP 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-
24, 2013. Proceedings, volume 7792 of Lecture Notes in Computer Science,
pages 125–128. Springer, 2013. doi: 10.1007/978-3-642-37036-6_8. URL
https://doi.org/10.1007/978-3-642-37036-6_8.

[71] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. In ACM-SIGACT Symposium
on Principles of Programming Languages, 2001.

[72] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for java. In
PLDI ’02, 2002. doi: 10.1145/512529.512558.

[73] Jason Franklin, Sagar Chaki, Anupam Datta, and Arvind Seshadri.
Scalable parametric verification of secure systems: How to verify
reference monitors without worrying about data structure size. In 31st
IEEE Symposium on Security and Privacy, SP 2010, 16-19 May 2010,
Berleley/Oakland, California, USA, pages 365–379. IEEE Computer
Society, 2010. doi: 10.1109/SP.2010.29. URL https://doi.org/10.
1109/SP.2010.29.

[74] Jason Franklin, Sagar Chaki, Anupam Datta, Jonathan M. McCune, and
Amit Vasudevan. Parametric verification of address space separation.
In Pierpaolo Degano and Joshua D. Guttman, editors, Principles of
Security and Trust, pages 51–68, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[75] Desheng Fu and Feiyue Shi. Buffer overflow exploit and defensive
techniques. 2012 Fourth International Conference on Multimedia
Information Networking and Security, pages 87–90, 2012. URL https:
//api.semanticscholar.org/CorpusID:41074172.

[76] Mikhail Y. R. Gadelha, Hussama Ibrahim Ismail, and Lucas C. Cordeiro.
Handling loops in bounded model checking of C programs via k-
induction. Int. J. Softw. Tools Technol. Transf., 19(1):97–114, 2017. doi:
10.1007/S10009-015-0407-9. URL https://doi.org/10.1007/s10009-
015-0407-9.

[77] Mikhail Y. R. Gadelha, Felipe R. Monteiro, Lucas C. Cordeiro, and
Denis A. Nicole. ESBMC v6.0: Verifying C programs using k-induction
and invariant inference - (competition contribution). In Dirk Beyer,

https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1109/SP.2010.29
https://doi.org/10.1109/SP.2010.29
https://api.semanticscholar.org/CorpusID:41074172
https://api.semanticscholar.org/CorpusID:41074172
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/s10009-015-0407-9

BIBLIOGRAPHY 199

Marieke Huisman, Fabrice Kordon, and Bernhard Steffen, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 25 Years
of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, Part III, volume 11429 of Lecture
Notes in Computer Science, pages 209–213. Springer, 2019. doi: 10.
1007/978-3-030-17502-3_15. URL https://doi.org/10.1007/978-3-
030-17502-3_15.

[78] Adam Geras, Michael R. Smith, and James Miller. A prototype empirical
evaluation of test driven development. 10th International Symposium
on Software Metrics, 2004. Proceedings., pages 405–416, 2004. URL
https://api.semanticscholar.org/CorpusID:18768790.

[79] Alexey Gotsman, Byron Cook, Matthew Parkinson, and Viktor Vafeiadis.
Proving that non-blocking algorithms don’t block. In Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’09, page 16–28, New York, NY, USA,
2009. Association for Computing Machinery. ISBN 9781605583792. doi:
10.1145/1480881.1480886. URL https://doi.org/10.1145/1480881.
1480886.

[80] Mohamed G. Gouda, Eric G. Manning, and Yao-Tin Yu. On the progress
of communications between two finite state machines. Inf. Control., 63
(3):200–216, 1984. doi: 10.1016/S0019-9958(84)80014-5. URL https:
//doi.org/10.1016/S0019-9958(84)80014-5.

[81] Susanne Graf and Hassen Saidi. Construction of abstract state graphs
with pvs. In Orna Grumberg, editor, Computer Aided Verification, pages
72–83, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. ISBN 978-3-
540-69195-2.

[82] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and
Yu Guo. Deep specifications and certified abstraction layers. In
Sriram K. Rajamani and David Walker, editors, Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, pages 595–608. ACM, 2015. doi: 10.1145/2676726.2676975. URL
https://doi.org/10.1145/2676726.2676975.

[83] Hui Guo, Chunyan Hou, Jinsong Wang, and Chen Chen. A k-
induction method extended with value analysis for C program safety
verification. In IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, TrustCom 2022, Wuhan,
China, December 9-11, 2022, pages 1072–1077. IEEE, 2022. doi: 10.

https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/978-3-030-17502-3_15
https://api.semanticscholar.org/CorpusID:18768790
https://doi.org/10.1145/1480881.1480886
https://doi.org/10.1145/1480881.1480886
https://doi.org/10.1016/S0019-9958(84)80014-5
https://doi.org/10.1016/S0019-9958(84)80014-5
https://doi.org/10.1145/2676726.2676975

200 BIBLIOGRAPHY

1109/TRUSTCOM56396.2022.00147. URL https://doi.org/10.1109/
TrustCom56396.2022.00147.

[84] Jafar Hamin and Bart Jacobs. Deadlock-free monitors. In ESOP, 2018.
doi: 10.1007/978-3-319-89884-1_15.

[85] Jafar Hamin and Bart Jacobs. Transferring Obligations Through
Synchronizations. In 33rd European Conference on Object-Oriented
Programming (ECOOP 2019), volume 134 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 19:1–19:58, 2019. ISBN 978-3-
95977-111-5. doi: 10.4230/LIPIcs.ECOOP.2019.19.

[86] Inzemamul Haque, Deepak D’Souza, Habeeb P, Arnab Kundu, and Ganesh
Babu. Verification of a generative separation kernel. In Dang Van Hung
and Oleg Sokolsky, editors, Automated Technology for Verification and
Analysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam,
October 19-23, 2020, Proceedings, volume 12302 of Lecture Notes in
Computer Science, pages 305–322. Springer, 2020. doi: 10.1007/978-3-030-
59152-6_17. URL https://doi.org/10.1007/978-3-030-59152-6_17.

[87] Keijo Heljanko, Tommi A. Junttila, and Timo Latvala. Incremental and
complete bounded model checking for full pltl. In International Conference
on Computer Aided Verification, 2005.

[88] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. Lazy abstraction. 37(1):58–70, jan 2002. ISSN 0362-1340. doi: 10.
1145/565816.503279. URL https://doi.org/10.1145/565816.503279.

[89] Joseph Herkert, Jason Borenstein, and Keith W. Miller. The boeing 737
MAX: lessons for engineering ethics. Science and Engineering. Ethics,
26(6):2957–2974, 2020. doi: 10.1007/s11948-020-00252-y. URL https:
//doi.org/10.1007/s11948-020-00252-y.

[90] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming,
Revised Reprint. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1st edition, 2012. ISBN 9780123973375.

[91] Michael Hilton, Jonathan Bell, and Darko Marinov. A large-scale study
of test coverage evolution. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE ’18,
page 53–63, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450359375. doi: 10.1145/3238147.3238183. URL
https://doi.org/10.1145/3238147.3238183.

[92] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12:576–580, 1968. doi: 10.1145/363235.363259.

https://doi.org/10.1109/TrustCom56396.2022.00147
https://doi.org/10.1109/TrustCom56396.2022.00147
https://doi.org/10.1007/978-3-030-59152-6_17
https://doi.org/10.1145/565816.503279
https://doi.org/10.1007/s11948-020-00252-y
https://doi.org/10.1007/s11948-020-00252-y
https://doi.org/10.1145/3238147.3238183

BIBLIOGRAPHY 201

[93] Krystof Hoder and Nikolaj S. Bjørner. Generalized property directed
reachability. In Alessandro Cimatti and Roberto Sebastiani, editors,
Theory and Applications of Satisfiability Testing - SAT 2012 - 15th
International Conference, Trento, Italy, June 17-20, 2012. Proceedings,
volume 7317 of Lecture Notes in Computer Science, pages 157–171.
Springer, 2012. doi: 10.1007/978-3-642-31612-8_13. URL https:
//doi.org/10.1007/978-3-642-31612-8_13.

[94] Aurélie Hurault and Philippe Quéinnec. Proving a non-blocking algorithm
for process renaming with TLA+. In Dirk Beyer and Chantal Keller,
editors, Tests and Proofs - 13th International Conference, TAP@FM
2019, Porto, Portugal, October 9-11, 2019, Proceedings, volume 11823 of
Lecture Notes in Computer Science, pages 147–166. Springer, 2019. doi:
10.1007/978-3-030-31157-5_10. URL https://doi.org/10.1007/978-
3-030-31157-5_10.

[95] Vinay M. Igure, Sean A. Laughter, and Ronald D. Williams. Security
issues in scada networks. Computers and Security, 25(7):498–506,
2006. ISSN 0167-4048. doi: https://doi.org/10.1016/j.cose.2006.03.
001. URL https://www.sciencedirect.com/science/article/pii/
S0167404806000514.

[96] Erdal Irmak and İsmail Erkek. An overview of cyber-attack vectors on
scada systems. In 2018 6th international symposium on digital forensic
and security (ISDFS), pages 1–5. IEEE, 2018.

[97] Bart Jacobs. Modular verification of liveness properties of the I/O behavior
of imperative programs. In ISoLA, 2020. doi: 10.1007/978-3-030-61362-
4_29.

[98] Bart Jacobs, editor. VeriFast 21.04. Zenodo, 2021. doi: 10.5281/zenodo.
4705416.

[99] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. Verifast: A powerful, sound, predictable,
fast verifier for C and Java. In M. Bobaru, K. Havelund, G.J. Holzmann,
and R. Joshi, editors, NASA Formal Methods (NFM 2011), volume 6617,
pages 41–55. Springer, 2011. ISBN 978-3-642-20397-8. doi: 10.1007/978-
3-642-20398-5_4. URL https://lirias.kuleuven.be/95720.

[100] Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper. Modular termination
verification of single-threaded and multithreaded programs. ACM Trans.
Program. Lang. Syst., 40:12:1–12:59, 2018. doi: 10.1145/3210258.

[101] Ranjit Jhala and Kenneth L. McMillan. Array abstractions from proofs.
In Werner Damm and Holger Hermanns, editors, Computer Aided

https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-030-31157-5_10
https://doi.org/10.1007/978-3-030-31157-5_10
https://www.sciencedirect.com/science/article/pii/S0167404806000514
https://www.sciencedirect.com/science/article/pii/S0167404806000514
https://lirias.kuleuven.be/95720

202 BIBLIOGRAPHY

Verification, 19th International Conference, CAV 2007, Berlin, Germany,
July 3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer
Science, pages 193–206. Springer, 2007. doi: 10.1007/978-3-540-73368-
3_23. URL https://doi.org/10.1007/978-3-540-73368-3_23.

[102] Taylor T. Johnson and Sayan Mitra. A small model theorem for
rectangular hybrid automata networks. In Holger Giese and Grigore
Rosu, editors, Formal Techniques for Distributed Systems - Joint 14th
IFIP WG 6.1 International Conference, FMOODS 2012 and 32nd IFIP
WG 6.1 International Conference, FORTE 2012, Stockholm, Sweden,
June 13-16, 2012. Proceedings, volume 7273 of Lecture Notes in Computer
Science, pages 18–34. Springer, 2012. doi: 10.1007/978-3-642-30793-5_2.
URL https://doi.org/10.1007/978-3-642-30793-5_2.

[103] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-
order ghost state. Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, 2016. doi: 10.1145/2951913.
2951943.

[104] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. J. Funct.
Program., 28:e20, 2018. doi: 10.1017/S0956796818000151.

[105] Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies
and sharing without restrictions. In Jayadev Misra, Tobias Nipkow, and
Emil Sekerinski, editors, FM 2006: Formal Methods, pages 268–283, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-37216-5.

[106] Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong Shao. Safety and
liveness of mcs lock—layer by layer. In Asian Symposium on Programming
Languages and Systems, 2017.

[107] Naoki Kobayashi. A new type system for deadlock-free processes. In
CONCUR, 2006. doi: 10.1007/11817949_16.

[108] Daniel Kroening. Computing over-approximations with bounded model
checking. In Armin Biere and Ofer Strichman, editors, Proceedings of the
Third International Workshop on Bounded Model Checking, BMC@CAV
2005, Edinburgh, UK, July 11, 2005, volume 144 of Electronic Notes in
Theoretical Computer Science, pages 79–92. Elsevier, 2005. doi: 10.1016/
J.ENTCS.2005.07.021. URL https://doi.org/10.1016/j.entcs.2005.
07.021.

[109] Daniel Kroening and Ofer Strichman. Efficient computation of recurrence
diameters. In Lenore D. Zuck, Paul C. Attie, Agostino Cortesi, and

https://doi.org/10.1007/978-3-540-73368-3_23
https://doi.org/10.1007/978-3-642-30793-5_2
https://doi.org/10.1016/j.entcs.2005.07.021
https://doi.org/10.1016/j.entcs.2005.07.021

BIBLIOGRAPHY 203

Supratik Mukhopadhyay, editors, Verification, Model Checking, and
Abstract Interpretation, 4th International Conference, VMCAI 2003, New
York, NY, USA, January 9-11, 2002, Proceedings, volume 2575 of Lecture
Notes in Computer Science, pages 298–309. Springer, 2003. doi: 10.1007/3-
540-36384-X_24. URL https://doi.org/10.1007/3-540-36384-X_24.

[110] Daniel Kroening, Joël Ouaknine, Ofer Strichman, Thomas Wahl, and
James Worrell. Linear completeness thresholds for bounded model
checking. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in
Computer Science, pages 557–572. Springer, 2011. doi: 10.1007/978-3-642-
22110-1_44. URL https://doi.org/10.1007/978-3-642-22110-1_44.

[111] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Trans. Software Eng., 3(2):125–143, 1977. doi: 10.1109/TSE.1977.229904.
URL https://doi.org/10.1109/TSE.1977.229904.

[112] Jacob Thamsborg Lars Birkedal, Kristian Støvring. The category-theoretic
solution of recursive metric-space equations. Theoretical Computer Science,
411(47):4102 – 4122, 2010. doi: 10.1016/j.tcs.2010.07.010.

[113] Mark Lawford and Alan Wassyng. Formal verification of nuclear systems:
Past, present, and future. In 1st International Workshop on Critical
Infrastructure Safety and Security (CrISS-DESSERT’11), volume 1, pages
43–51, 2012.

[114] Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. Flux:
Liquid types for rust. Proc. ACM Program. Lang., 7(PLDI), jun 2023.
doi: 10.1145/3591283. URL https://doi.org/10.1145/3591283.

[115] K. Leino and Peter Müller. A basis for verifying multi-threaded
programs. In ESOP ’09 Proceedings of the 18th European Symposium on
Programming Languages and Systems: Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, page 378,
March 2009. doi: 10.1007/978-3-642-00590-9_27.

[116] K. Rustan M. Leino. Dafny: An automatic program verifier for functional
correctness. In Edmund M. Clarke and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning - 16th International
Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised
Selected Papers, volume 6355 of Lecture Notes in Computer Science,
pages 348–370. Springer, 2010. doi: 10.1007/978-3-642-17511-4_20. URL
https://doi.org/10.1007/978-3-642-17511-4_20.

https://doi.org/10.1007/3-540-36384-X_24
https://doi.org/10.1007/978-3-642-22110-1_44
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1145/3591283
https://doi.org/10.1007/978-3-642-17511-4_20

204 BIBLIOGRAPHY

[117] K. Rustan M. Leino and Francesco Logozzo. Loop invariants on demand.
In Kwangkeun Yi, editor, Programming Languages and Systems, Third
Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005,
Proceedings, volume 3780 of Lecture Notes in Computer Science, pages
119–134. Springer, 2005. doi: 10.1007/11575467_9. URL https://doi.
org/10.1007/11575467_9.

[118] K. Rustan M. Leino, Peter Müller, and Jan Smans. Deadlock-free channels
and locks. In Proceedings of the 19th European Conference on Programming
Languages and Systems, ESOP’10, page 407–426, Berlin, Heidelberg, 2010.
Springer-Verlag. ISBN 3642119565. doi: 10.1007/978-3-642-11957-6_22.

[119] Ruy Ley-Wild and Aleksandar Nanevski. Subjective auxiliary state for
coarse-grained concurrency. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, page 561–574, New York, NY, USA, 2013. Association for
Computing Machinery. ISBN 9781450318327. doi: 10.1145/2429069.
2429134. URL https://doi.org/10.1145/2429069.2429134.

[120] Hongjin Liang and Xinyu Feng. A program logic for concurrent objects
under fair scheduling. In POPL, 2016. doi: 10.1145/2837614.2837635.

[121] Hongjin Liang and Xinyu Feng. Progress of concurrent objects with
partial methods. Proc. ACM Program. Lang., 2:20:1–20:31, 2017. doi:
10.1145/3158108.

[122] Didrik Lundberg, Roberto Guanciale, Andreas Lindner, and Mads Dam.
Hoare-style logic for unstructured programs. In Frank de Boer and Antonio
Cerone, editors, Software Engineering and Formal Methods, pages 193–213,
Cham, 2020. Springer International Publishing. ISBN 978-3-030-58768-0.

[123] Isabella Mastroeni and Damiano Zanardini. Data dependencies and
program slicing: from syntax to abstract semantics. In Robert
Glück and Oege de Moor, editors, Proceedings of the 2008 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-based Program
Manipulation, PEPM 2008, San Francisco, California, USA, January 7-8,
2008, pages 125–134. ACM, 2008. doi: 10.1145/1328408.1328428. URL
https://doi.org/10.1145/1328408.1328428.

[124] Umang Mathur, Adithya Murali, Paul Krogmeier, P. Madhusudan, and
Mahesh Viswanathan. Deciding memory safety for single-pass heap-
manipulating programs. Proc. ACM Program. Lang., 4(POPL):35:1–35:29,
2020. doi: 10.1145/3371103. URL https://doi.org/10.1145/3371103.

[125] John W McCormick and Peter C Chapin. Building high integrity
applications with SPARK. Cambridge University Press, 2015.

https://doi.org/10.1007/11575467_9
https://doi.org/10.1007/11575467_9
https://doi.org/10.1145/2429069.2429134
https://doi.org/10.1145/1328408.1328428
https://doi.org/10.1145/3371103

BIBLIOGRAPHY 205

[126] Kenneth L. McMillan. Interpolation and sat-based model checking. In
International Conference on Computer Aided Verification, 2003.

[127] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Trans. Comput.
Syst., 9(1):21–65, 1991. doi: 10.1145/103727.103729. URL https://doi.
org/10.1145/103727.103729.

[128] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Trans. Comput.
Syst., 9:21–65, 1991. doi: 10.1145/103727.103729.

[129] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of
the reliability of unix utilities. Commun. ACM, 33(12):32–44, dec 1990.
ISSN 0001-0782. doi: 10.1145/96267.96279. URL https://doi.org/10.
1145/96267.96279.

[130] Mark Moir and James H. Anderson. Wait-free algorithms for fast,
long-lived renaming. Science of Computer Programming, 25(1):1–39,
1995. ISSN 0167-6423. doi: https://doi.org/10.1016/0167-6423(95)
00009-H. URL https://www.sciencedirect.com/science/article/
pii/016764239500009H.

[131] Louise E. Moser. Data dependency graphs for ada programs. IEEE
Trans. Software Eng., 16(5):498–509, 1990. doi: 10.1109/32.52773. URL
https://doi.org/10.1109/32.52773.

[132] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Barbara
Jobstmann and K. Rustan M. Leino, editors, Verification, Model Checking,
and Abstract Interpretation, pages 41–62, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg. ISBN 978-3-662-49122-5.

[133] K. Mühlemann. Method for reducing memory conflicts caused by busy
waiting in multiple processor synchronisation. IEE Proceedings E -
Computers and Digital Techniques, 127(3):85–87, 1980. doi: 10.1049/ip-
e.1980.0017.

[134] Kedar S. Namjoshi. Symmetry and completeness in the analysis of
parameterized systems. In Byron Cook and Andreas Podelski, editors,
Verification, Model Checking, and Abstract Interpretation, pages 299–313,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[135] P. O’Hearn. A primer on separation logic (and automatic program
verification and analysis). In Software Safety and Security, 2012.

https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://www.sciencedirect.com/science/article/pii/016764239500009H
https://www.sciencedirect.com/science/article/pii/016764239500009H
https://doi.org/10.1109/32.52773

206 BIBLIOGRAPHY

[136] Peter W. O’Hearn. Separation logic. Commun. ACM, 62(2):86–95, 2019.
doi: 10.1145/3211968. URL https://doi.org/10.1145/3211968.

[137] Peter W. O’Hearn. Incorrectness logic. Proc. ACM Program. Lang., 4
(POPL), dec 2019. doi: 10.1145/3371078. URL https://doi.org/10.
1145/3371078.

[138] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In CSL, 2001. doi: 10.1007/3-
540-44802-0_1.

[139] S. Owicki and D. Gries. Verifying properties of parallel programs: an
axiomatic approach. Commun. ACM, 19:279–285, 1976.

[140] Paolo Panaroni, Giovanni Sartori, Fabrizio Fabbrini, Mario Fusani,
and Giuseppe Lami. Safety in automotive software: An overview of
current practices. In 2008 32nd Annual IEEE International Computer
Software and Applications Conference, pages 1053–1058, 2008. doi:
10.1109/COMPSAC.2008.139.

[141] Panos M. Pardalos and Athanasios Migdalas. A note on the complexity
of longest path problems related to graph coloring. Appl. Math. Lett.,
17(1):13–15, 2004. doi: 10.1016/S0893-9659(04)90003-1. URL https:
//doi.org/10.1016/S0893-9659(04)90003-1.

[142] D.Y.W. Park, U. Stern, J.U. Skakkebaek, and D.L. Dill. Java model
checking. In Proceedings ASE 2000. Fifteenth IEEE International
Conference on Automated Software Engineering, pages 253–256, 2000.
doi: 10.1109/ASE.2000.873671.

[143] Gaurav Parthasarathy, Peter Müller, and Alexander J. Summers. Formally
validating a practical verification condition generator. In International
Conference on Computer Aided Verification, 2021.

[144] Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan
Memarian, Peter Sewell, and Neel Krishnaswami. CN: verifying systems
C code with separation-logic refinement types. Proc. ACM Program.
Lang., 7(POPL):1–32, 2023. doi: 10.1145/3571194. URL https:
//doi.org/10.1145/3571194.

[145] Shengchao Qin, Guanhua He, Chenguang Luo, and Wei-Ngan Chin. Loop
invariant synthesis in a combined domain. In Jin Song Dong and Huibiao
Zhu, editors, Formal Methods and Software Engineering, pages 468–484,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

https://doi.org/10.1145/3211968
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
https://doi.org/10.1016/S0893-9659(04)90003-1
https://doi.org/10.1016/S0893-9659(04)90003-1
https://doi.org/10.1145/3571194
https://doi.org/10.1145/3571194

BIBLIOGRAPHY 207

[146] J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in cesar. In Mariangiola Dezani-Ciancaglini and Ugo Montanari,
editors, International Symposium on Programming, pages 337–351, Berlin,
Heidelberg, 1982. Springer Berlin Heidelberg.

[147] Tobias Reinhard. Completeness thresholds for memory safety of array
traversing programs: Early technical report. CoRR, abs/2211.11885,
2022. doi: 10.48550/arXiv.2211.11885. URL https://doi.org/10.
48550/arXiv.2211.11885.

[148] Tobias Reinhard and Bart Jacobs. VeriFast proof of safety for CLH lock.
2020. URL https://github.com/verifast/verifast/blob/master/
examples/busywaiting/clhlock/clhlock.c.

[149] Tobias Reinhard and Bart Jacobs. VeriFast proof of ter-
mination for consumer-producer problem with bounded FIFO.
2020. URL https://github.com/verifast/verifast/blob/master/
examples/busywaiting/bounded_fifo.c.

[150] Tobias Reinhard and Bart Jacobs. VeriFast proof of I/O liveness for a
simple server with a receiver and a responder thread communicating via
a shared buffer. 2020. URL https://github.com/verifast/verifast/
blob/master/examples/busywaiting/ioliveness/echo_live_mt.c.

[151] Tobias Reinhard and Bart Jacobs. Ghost signals: Verifying termination
of busy waiting (technical report). Zenodo, 2021. doi: 10.5281/zenodo.
4775181.

[152] Tobias Reinhard and Bart Jacobs. Ghost signals: Verifying termination
of busy waiting (extended version). CoRR, abs/2010.11762, 2021. URL
https://arxiv.org/abs/2010.11762.

[153] Tobias Reinhard, Mark Tuttle, and FreeRTOS team. VeriFast proof
of memory and thread safety of the FreeRTOS multicore scheduler.
URL https://github.com/Tobias-internship-AWS-2022/FreeRTOS-
Kernel/tree/verifast_switch_context/Test/VeriFast/tasks/
vTaskSwitchContext. Accessed: 2023-11-03.

[154] Tobias Reinhard, Amin Timany, and Bart Jacobs. A separation logic to
verify termination of busy-waiting for abrupt program exit. In Wytse
Oortwijn, editor, FTfJP 2020: Proceedings of the 22nd ACM SIGPLAN
International Workshop on Formal Techniques for Java-Like Programs,
Virtual Event, USA, July 23, 2020, pages 26–32. ACM, 2020. doi: 10.1145/
3427761.3428345. URL https://doi.org/10.1145/3427761.3428345.

https://doi.org/10.48550/arXiv.2211.11885
https://doi.org/10.48550/arXiv.2211.11885
https://github.com/verifast/verifast/blob/master/examples/busywaiting/clhlock/clhlock.c
https://github.com/verifast/verifast/blob/master/examples/busywaiting/clhlock/clhlock.c
https://github.com/verifast/verifast/blob/master/examples/busywaiting/bounded_fifo.c
https://github.com/verifast/verifast/blob/master/examples/busywaiting/bounded_fifo.c
https://github.com/verifast/verifast/blob/master/examples/busywaiting/ioliveness/echo_live_mt.c
https://github.com/verifast/verifast/blob/master/examples/busywaiting/ioliveness/echo_live_mt.c
https://arxiv.org/abs/2010.11762
https://github.com/Tobias-internship-AWS-2022/FreeRTOS-Kernel/tree/verifast_switch_context/Test/VeriFast/tasks/vTaskSwitchContext
https://github.com/Tobias-internship-AWS-2022/FreeRTOS-Kernel/tree/verifast_switch_context/Test/VeriFast/tasks/vTaskSwitchContext
https://github.com/Tobias-internship-AWS-2022/FreeRTOS-Kernel/tree/verifast_switch_context/Test/VeriFast/tasks/vTaskSwitchContext
https://doi.org/10.1145/3427761.3428345

208 BIBLIOGRAPHY

[155] John C. Reynolds. Separation logic: a logic for shared mutable data
structures. Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science, pages 55–74, 2002. doi: 10.1109/LICS.2002.1029817.

[156] Henry Gordon Rice. Classes of recursively enumerable sets and their
decision problems. Transactions of the American Mathematical society,
74(2):358–366, 1953.

[157] Grigore Roşu, Wolfram Schulte, and Traian-Florin Serbanuta. Runtime
verification of c memory safety. In Runtime Verification, 2009. URL
https://api.semanticscholar.org/CorpusID:1002782.

[158] Neha Rungta. A billion smt queries a day (invited paper). In Sharon
Shoham and Yakir Vizel, editors, Computer Aided Verification, pages 3–18,
Cham, 2022. Springer International Publishing. ISBN 978-3-031-13185-1.

[159] Reiner Sailer, Trent Jaeger, Enriquillo Valdez, Ramón Cáceres, Ronald
Perez, Stefan Berger, John Linwood Griffin, and Leendert van Doorn.
Building a mac-based security architecture for the xen open-source
hypervisor. In 21st Annual Computer Security Applications Conference
(ACSAC 2005), 5-9 December 2005, Tucson, AZ, USA, pages 276–285.
IEEE Computer Society, 2005. doi: 10.1109/CSAC.2005.13. URL
https://doi.org/10.1109/CSAC.2005.13.

[160] Harshad Sathaye, Domien Schepers, Aanjhan Ranganathan, and Guevara
Noubir. Wireless attacks on aircraft landing systems: Demo. In
Proceedings of the 12th Conference on Security and Privacy in Wireless
and Mobile Networks, WiSec ’19, page 295–297, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450367264. doi: 10.1145/
3317549.3326298. URL https://doi.org/10.1145/3317549.3326298.

[161] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. Secvisor: A
tiny hypervisor to provide lifetime kernel code integrity for commodity
oses. SIGOPS Oper. Syst. Rev., 41(6):335–350, oct 2007. ISSN 0163-
5980. doi: 10.1145/1323293.1294294. URL https://doi.org/10.1145/
1323293.1294294.

[162] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety
properties using induction and a sat-solver. In Warren A. Hunt Jr.
and Steven D. Johnson, editors, Formal Methods in Computer-Aided
Design, Third International Conference, FMCAD 2000, Austin, Texas,
USA, November 1-3, 2000, Proceedings, volume 1954 of Lecture Notes in
Computer Science, pages 108–125. Springer, 2000. doi: 10.1007/3-540-
40922-X_8. URL https://doi.org/10.1007/3-540-40922-X_8.

https://api.semanticscholar.org/CorpusID:1002782
https://doi.org/10.1109/CSAC.2005.13
https://doi.org/10.1145/3317549.3326298
https://doi.org/10.1145/1323293.1294294
https://doi.org/10.1145/1323293.1294294
https://doi.org/10.1007/3-540-40922-X_8

BIBLIOGRAPHY 209

[163] S. Simpson. Subsystems of second order arithmetic. In Perspectives in
mathematical logic, 1999. doi: 10.1017/CBO9780511581007.

[164] Rohit Sinha, Cynthia Sturton, Petros Maniatis, Sanjit A. Seshia, and
David A. Wagner. Verification with small and short worlds. In Gianpiero
Cabodi and Satnam Singh, editors, Formal Methods in Computer-Aided
Design, FMCAD 2012, Cambridge, UK, October 22-25, 2012, pages 68–77.
IEEE, 2012. URL https://ieeexplore.ieee.org/document/6462557/.

[165] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames:
Combining dynamic frames and separation logic. In Sophia Drossopoulou,
editor, ECOOP 2009 – Object-Oriented Programming, pages 148–172,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-
03013-0.

[166] Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler,
and Derek Dreyer. Conditional contextual refinement. Proc. ACM
Program. Lang., 7(POPL):1121–1151, 2023. doi: 10.1145/3571232. URL
https://doi.org/10.1145/3571232.

[167] Luca Spalazzi and Francesco Spegni. Parameterized model-checking of
timed systems with conjunctive guards. In Dimitra Giannakopoulou
and Daniel Kroening, editors, Verified Software: Theories, Tools and
Experiments - 6th International Conference, VSTTE 2014, Vienna,
Austria, July 17-18, 2014, Revised Selected Papers, volume 8471 of
Lecture Notes in Computer Science, pages 235–251. Springer, 2014. doi:
10.1007/978-3-319-12154-3_15. URL https://doi.org/10.1007/978-
3-319-12154-3_15.

[168] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert
Krebbers, Derek Dreyer, and Lars Birkedal. Transfinite iris: Resolving
an existential dilemma of step-indexed separation logic. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2021, page 80–95, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450383912. doi: 10.1145/3453483.3454031. URL https://doi.org/
10.1145/3453483.3454031.

[169] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955. doi: 10.2307/2963937.

[170] Joseph Tassarotti, Ralf Jung, and Robert Harper. A higher-order logic for
concurrent termination-preserving refinement. In Hongseok Yang, editor,
Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences

https://ieeexplore.ieee.org/document/6462557/
https://doi.org/10.1145/3571232
https://doi.org/10.1007/978-3-319-12154-3_15
https://doi.org/10.1007/978-3-319-12154-3_15
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3453483.3454031

210 BIBLIOGRAPHY

on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer
Science, pages 909–936. Springer, 2017. doi: 10.1007/978-3-662-54434-
1_34. URL https://doi.org/10.1007/978-3-662-54434-1_34.

[171] André Teixeira, György Dán, Henrik Sandberg, and Karl H. Johansson.
A cyber security study of a scada energy management system: Stealthy
deception attacks on the state estimator*. IFAC Proceedings Volumes, 44
(1):11271–11277, 2011. ISSN 1474-6670. doi: https://doi.org/10.3182/
20110828-6-IT-1002.02210. URL https://www.sciencedirect.com/
science/article/pii/S147466701645425X. 18th IFAC World Congress.

[172] Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Jonas Kast-
berg Hinrichsen, Léon Gondelman, Abel Nieto, and Lars Birkedal. Trillium:
Higher-order concurrent and distributed separation logic for intensional
refinement. Proc. ACM Program. Lang., (POPL), 2024.

[173] Alan Turing. Checking a large routine. In Report of a Conference on
High Speed Automatic Calculating Machines, pages 67–69, June 1949.

[174] Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and
hoare-style reasoning in a logic for higher-order concurrency. In Greg
Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston, MA, USA
- September 25 - 27, 2013, pages 377–390. ACM, 2013. doi: 10.1145/
2500365.2500600. URL https://doi.org/10.1145/2500365.2500600.

[175] Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal,
and Derek Dreyer. Logical relations for fine-grained concurrency. In
Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 343–356. ACM,
2013. doi: 10.1145/2429069.2429111. URL https://doi.org/10.1145/
2429069.2429111.

[176] Viktor Vafeiadis. Concurrent separation logic and operational semantics.
Electronic Notes in Theoretical Computer Science, 276:335–351, 2011.
ISSN 1571-0661. doi: 10.1016/j.entcs.2011.09.029. Twenty-seventh
Conference on the Mathematical Foundations of Programming Semantics
(MFPS XXVII).

[177] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee
and separation logic. In Luís Caires and Vasco T. Vasconcelos, editors,
CONCUR 2007 – Concurrency Theory, pages 256–271, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-662-54434-1_34
https://www.sciencedirect.com/science/article/pii/S147466701645425X
https://www.sciencedirect.com/science/article/pii/S147466701645425X
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1145/2429069.2429111

BIBLIOGRAPHY 211

[178] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
Peyton-Jones. Refinement types for haskell. SIGPLAN Not., 49(9):
269–282, aug 2014. ISSN 0362-1340. doi: 10.1145/2692915.2628161. URL
https://doi.org/10.1145/2692915.2628161.

[179] Alan Wassyng, Mark S. Lawford, and Thomas S.E. Maibaum. Software
certification experience in the canadian nuclear industry: Lessons for the
future. In Proceedings of the Ninth ACM International Conference on
Embedded Software, EMSOFT ’11, page 219–226, New York, NY, USA,
2011. Association for Computing Machinery. ISBN 9781450307147. doi:
10.1145/2038642.2038676. URL https://doi.org/10.1145/2038642.
2038676.

[180] Mark D. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):
352–357, 1984. doi: 10.1109/TSE.1984.5010248. URL https://doi.org/
10.1109/TSE.1984.5010248.

[181] Felix A. Wolf, Malte Schwerhoff, and Peter Müller. Concise outlines for
a complex logic: A proof outline checker for tada. In Marieke Huisman,
Corina Păsăreanu, and Naijun Zhan, editors, Formal Methods, pages
407–426, Cham, 2021. Springer International Publishing.

[182] Felix A Wolf, Malte Schwerhoff, and Peter Müller. Concise outlines for
a complex logic: a proof outline checker for tada. Formal Methods in
System Design, pages 1–27, 2023.

[183] Haoze Wu, Clark W. Barrett, and Nina Narodytska. Lemur: Integrating
large language models in automated program verification. CoRR,
abs/2310.04870, 2023. doi: 10.48550/ARXIV.2310.04870. URL https:
//doi.org/10.48550/arXiv.2310.04870.

[184] Qiwen Xu, Willem Paul de Roever, and Jifeng He. The rely-guarantee
method for verifying shared variable concurrent programs. Form. Asp.
Comput., 9(2):149–174, mar 1997. ISSN 0934-5043. doi: 10.1007/
BF01211617. URL https://doi.org/10.1007/BF01211617.

[185] Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang
Song, Shixing Yu, Saad Godil, Ryan Prenger, and Anima Anandkumar.
LeanDojo: Theorem proving with retrieval-augmented language models.
CoRR, abs/2306.15626, 2023. doi: 10.48550/arXiv.2306.15626. URL
https://doi.org/10.48550/arXiv.2306.15626.

[186] Zhe Zhou, Ashish Mishra, Benjamin Delaware, and Suresh Jagannathan.
Covering all the bases: Type-based verification of test input generators.
Proc. ACM Program. Lang., 7(PLDI), jun 2023. doi: 10.1145/3591271.
URL https://doi.org/10.1145/3591271.

https://doi.org/10.1145/2692915.2628161
https://doi.org/10.1145/2038642.2038676
https://doi.org/10.1145/2038642.2038676
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.48550/arXiv.2310.04870
https://doi.org/10.48550/arXiv.2310.04870
https://doi.org/10.1007/BF01211617
https://doi.org/10.48550/arXiv.2306.15626
https://doi.org/10.1145/3591271

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Leuven
reito.eu

	Abstract
	Beknopte samenvatting
	Contents
	Introduction
	State of the Art
	Deductive Liveness Verification of Concurrent Software
	Reducing Unbounded to Bounded Proofs

	Ghost Signals: Verifying Termination of Busy Waiting
	Introduction
	A Guide on Verifying Termination of Busy Waiting
	Simplest Setting: Thread-Safe Physical Signals
	Non-Thread-Safe Physical Signals
	Arbitrary Data Structures
	Signal Erasure

	A Realistic Example
	Specifying Busy-Waiting Concurrent Objects
	Tool Support
	Integrating Higher-Order Features
	Related & Future Work
	Conclusion

	Completeness Thresholds for Memory Safety of Array Traversing Programs
	Introduction
	Limitations of Bounded Proofs
	Completeness Thresholds
	Approximating CTs via Verification Conditions
	Modularity of Completeness Thresholds

	Conclusion
	Related Work
	Outlook

	Conclusion and Future Work
	Liveness Verification
	Completeness Thresholds

	List of Contributions
	Ghost Signals: Formalization & Case Studies
	General
	Language
	Logic
	Soundness
	Annotated Semantics
	Hoare Triple Model Relation
	Soundness Proof

	Case Studies
	Verification of Realistic Example
	Case Study: Statically Unbounded Number of Communicating Parties

	Ghost Signals: Generalised Logic
	Universe
	General
	Syntax
	Example
	Resources
	Semantics
	Assertions
	Proof Rules
	Annotated Semantics
	Hoare Triple Model Relation
	Soundness
	Verification Example
	Minimal Example
	Bounded FIFO

	Completeness Thresholds: Formalization
	Introduction
	General Notation and Basic Definitions
	Syntax
	Dynamic Semantics
	Assertion Language
	Memory Safety
	Verification Conditions
	VC Generation

	Completeness Thresholds
	Iteratively Extracting Completeness Thresholds
	Iterating over Arrays

	Generalising Completeness Thresholds
	Basic Definitions
	Generalised Completeness Thresholds

	Bibliography

