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Abstract— Sleep abnormalities can have severe health
consequences. Automated sleep staging, i.e. labelling the
sequence of sleep stages from the patient’s physiolog-
ical recordings, could simplify the diagnostic process.
Previous work on automated sleep staging has achieved
great results, mainly relying on the EEG signal. How-
ever, often multiple sources of information are available
beyond EEG. This can be particularly beneficial when the
EEG recordings are noisy or even missing completely.
In this paper, we propose CoRe-Sleep, a Coordinated Rep-
resentation multimodal fusion network that is particularly
focused on improving the robustness of signal analysis
on imperfect data. We demonstrate how appropriately han-
dling multimodal information can be the key to achieving
such robustness. CoRe-Sleep tolerates noisy or missing
modalities segments, allowing training on incomplete data.
Additionally, it shows state-of-the-art performance when
testing on both multimodal and unimodal data using a
single model on SHHS-1, the largest publicly available
study that includes sleep stage labels. The results indicate
that training the model on multimodal data does positively
influence performance when tested on unimodal data. This
work aims at bridging the gap between automated analysis
tools and their clinical utility.

Index Terms— Sleep staging, multimodal fusion, imper-
fect modalities, incomplete data.

I. INTRODUCTION

SLEEP is vital for our well-being. It has been linked to
various brain and mental health diseases [11], particu-

larly in the elderly population [39]. Sleep studies typically
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involve recording patients’ sleep using various sensors in a
clinical setting. These sensors measure various physiological
signals, such as Electroencephalogram (EEG), Electrocar-
diogram (ECG), Electrooculogram (EOG), Electromyogram
(EMG) and respiration.

During the analysis of the patient’s sleep, a sleep stage label
is given to every 30 seconds for the duration of the recording.
The American Academy of Sleep Medicine (AASM) scoring
standard [7] recommends assigning the following labels for
adult sleep: Wake, Rapid Eye Movement (REM) and the three
sleep phases N1, N2, and N3 related to lighter and deeper
sleep. Extracting such a sequence of sleep labels (which is
called the hypnogram) is time-consuming for experts, hence
research focuses on automating it.

Previous research on automating sleep staging has primarily
focused on using a single modality, EEG. Initial approaches
used handcrafted features [1], [4], [18], [29], based on prior
knowledge about the characteristics of EEG. Recent methods
employ Neural Networks (NNs) to automatically extract these
features, for example with Convolutional NNs (CNN) [56],
[57], [59], Recurrent NNs (RNN) [42], [44], Transformers
(TF) [17], [25], [43], [45], [57] and more [22], [40].

Efforts have been made to exploit the use of multimodal
input for sleep staging. Multimodal data, obtained from
different sources, offer interrelated observations of the under-
lying phenomenon. They potentially contain complementary
information for the identification of the underlying data distri-
bution [24], [49]. Concatenating EEG, EOG, and EMG signals
as model input, instead of EEG alone, has been shown to
slightly improve performance in previous studies [42], [44].
However, there has been limited research on how to optimize
the available multimodal input. It remains crucial how different
combining methods (fusion approaches) could improve results.

Multimodal information can be beneficial for sleep staging.
While exploiting multimodal input might only marginally
outperform the best single modality (i.e. the EEG), it might
enhance the robustness of the system when this single modality
fails. For example, when EEG is noisy or missing, multimodal
processing can lead to more accurate results than relying on
EEG alone.

Missing and noisy data have been handled with imputation
and denoising strategies respectively. Imputing missing values
has been widely explored in statistics either for a few missing
values [12], [51] or for higher dimensional data [9], [13], [15],
[26], [55], [62], [63]. Recently, imputation has been achieved
by masking the missing data with a learnable embedding [37],
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[54], allowing the network to interpolate the values based on
the remaining input. In the case of noisy samples, data are
retained but there might be ambiguity about the amount of
useful information they contain. Previous approaches facing
noisy EEG include either an explicit [8], [21], [35] EEG-
tailored denoising pre-phase or a more generic implicit one [6].
We will demonstrate here that multimodality can face both
missing and noisy modality issues in an elegant way.

Multimodal models can fuse the multiple input data in
various ways. Fusing data at the input-level, by projecting it
onto a new dimensional space, is called Early fusion [2]. This
has been the most common approach in previous sleep staging
research. Such casting on a new space can be challenging
especially if modalities differ significantly in dimensionality
and sampling rate [49]. Fusing on the decision-level by
an ensemble of single-modality networks has been a more
straightforward designing approach [10], however, it reduces
the multimodal collaboration. Such approaches are called Late
fusion. Intermediate solutions include fusing the modalities
before the classifier, referred to as Mid-Late fusion [14].
Despite being simplistic, this distinction based on the point
of multimodal fusion seems to apply to the vast majority of
multimodal architectures.

A further distinction of Late/Mid-Late models is whether
they include communication among the modality-specific parts
of networks and various ways have been used for such com-
munication. CoRe-Sleep, the multimodal network introduced
in this paper, falls into this category allowing mid-late fusion
to have coordinated representations [5]. Most works follow the
general framework of aggregating information from one part
of the network and transmitting it in a compressed form to the
others. This can achieved for example with the summation of
intermediate CNN channels [19], the exchange of intermediate
representations [61], any of the Squeeze and Excite gates [33]
or cross-attention weights [27], [28], [31], [58], [64]. The latter
approach will also be exploited by CoRe-Sleep.

A. Our Contribution
We propose CoRe-Sleep, a multi-modal model for sleep

staging. The model is based on a TF backbone encoder [16],
[60], the coordinated representations multimodal fusion and is
trained with a multi-task objective. CoRe-Sleep’s TF encoder
uses an 8-layer of inner-outer block structure similar to
SleepTransformer. The inner TF block processes the features
extracted from Short-Time Fourier Transform (STFT) within a
30-second window, while the outer TF block maps interactions
between the aggregated features of several sequential win-
dows, 21 in this case (10.5 minutes) following [43] and [44].
Four TF blocks are used, one for each of the unimodal and
multimodal processing of each modality. In the multimodal
blocks, pairwise cross-attention is added as means of commu-
nication between modalities, similar to [27], [28], and [64],
to ensure the coordination of the modalities. The model is
trained using multiple supervised losses for the unimodal
and multimodal predictions, and a self-supervised objective
for aligning the unimodal representations, following previous
works in vision and text [28], [48].

The architectural choices and the training objective of
CoRe-Sleep led to the four benefits emerging:

• State-of-the-art results when trained and tested with EEG
and EOG modalities on the largest public dataset, the
Sleep Heart Health Study (SHHS).

• Robustness to missing modalities during inference;
Improved performance compared to solely EEG-trained
models and its own unimodal equivalent when tested with
only one modality. Training with both modalities benefits
unimodal testing.

• Robustness to highly noisy data when it is present in one
of the modalities.

• Ability to train even with missing-modality data, i.e.
allowing for the use of patient recordings that include
only one modality.

The rest of the paper is organised as follows. In Section II,
we present the dataset and the methods used in CoRe-Sleep
and we introduce the experiments. In Section III, we describe
and discuss the results, comparing our method with previ-
ous state-of-the-art and additional benchmark models. Lastly,
we conclude the article in Section IV.

II. DATA & METHODS

This section presents the architecture of the multimodal
fusion network CoRe-Sleep and its multi-task objective.
We begin by providing a brief overview of the largest publicly
available dataset that is used in all our subsequent experiments.

A. Data

SHHS [46], [65]. Initially intended to determine cardiovas-
cular and other consequences of sleep-disordered breathing,
SHHS consists of two rounds of recordings. We experiment
with data from the first round, recorded between 1995-1998
(SHHS-1). It contains 5.791 subjects aged from 39 to 90 and
includes several modalities. We will use the EEG (C4-A1)
sampled at 125Hz, and EOG (L-R) sampled at 50Hz. Scoring
was completed using the Rechtschaffen and Kales (R&K)
guideline [50]. Following previous work, we merge stages N3
and N4 into the N3 stage, while Movement and Unscored
labels were discarded.

To preprocess the data a series of steps has been followed.
Initially, we load the signals and labels. Following previous
works [44], we discard patients’ recordings that do not contain
windows with labels from each of the five classes. We also
discard segments from the beginning and the end of the
recording if the number of wake stage windows is greater than
the windows of another stage. More specifically we discard
#wake−#2nd dominant

2 from each side. EEG and EOG are resam-
pled at 100Hz and filtered with a bandpass FIR on [0.3, 40] Hz
and on [0.3, 23] Hz. The signals are transformed with STFT
using 2-second time bins with 1-second overlap and 256 points
hamming window, resulting in 128-dimension features. Then
we create the 30-second windows without overlap with their
corresponding label, using the majority policy when more than
one class is presented within the 30-seconds. Finally, we split
the patients of the dataset using a random split of 70-30%
for the train-test set and keep 100 patient recordings from the
training as the validation set.
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Fig. 1. CoRe-Sleep: Coordinated Representation -based multimodal fusion model for Sleep Staging a) The general layout of the model is illustrated.
Each modality (Electroencephalography (EEG) and Electroculography (EOG)) is processed by its unimodal encoder to create the corresponding
unimodal representations, which are then fed to the multimodal encoder. The multimodal encoders cross-attend with the unimodal representation
of the other modality, creating the multimodal representation. Supervised losses are calculated based on each representation (EEG, EOG, and
multimodal). The model also uses a self-supervised alignment loss between the unimodal representations, as in [47]. The dashed lines represent
the shared weight connections of the Feed-Forward (FF) and the Self-Attention weights. b)This figure shows a unimodal and a multimodal encoder
with their components. The input data has both inner and outer dimensions, which are processed by their respective N-layers Transformer (TF)
blocks. To summarize the inner sequence, a learnable class embedding [CLS] is utilized. The outputs of the inner and outer TF of one modality are
used to cross-attend the multimodal representation of the other modality, leading to the coordinated representations.

B. Transformer Backbone
The TF backbone is the TF encoder described in [60]. The

encoder is responsible for processing the input sequence. The
TF encoder consists of multiple layers, each with two com-
ponents. The first is the multi-head self-attention (SA), which
allows different parts of the input sequence to interact. The
second is a fully connected feed-forward (FF) network, which
applies a non-linear transformation to each position in the
sequence. Both components have a residual connection and a
(post-) layer normalization [3]. The equations describing such
a TF encoder are:

atth(Xm) = softmax(
W K

h Xm(W Q
h Xm)⊺

√
dk

)W V
h Xm (1)

S A(Xm) = concat[att1(Xm), .., attH (Xm)]W O (2)
Zm = layernorm(Xm + S A(Xm)) (3)

F F(Zm) = max(0, Zm W F
1 + bF

1 )W F
2 + bF

2 (4)
output = layernorm(Zm + F F(Zm)) (5)

Input modality Xm ∈ Rbatch×sequence× f eatures is a batch
of a sequence of features. The weights of the SA component
have dimensions W K

h and W Q
h ∈ Rdmodel×dk , W V

h ∈ Rdmodel×du ,
W O

∈ RHdu×dmodel and dmodel = 128, H = 8, dk = 16,
du = 128. Briefly, we explain the role of each component in

TF. The SA allows for measuring pairwise similarity between
all the feature vectors in the sequence, re-weighting them
to favour those with greater similarity. The utilization of
multi-head facilitates the extraction of numerous interactions
among different parts of the sequence. For the FF a two-
layer multi-layer perception (MLP) with the Rectified Linear
Unit (ReLU) [34] as activation function has been used, with
weights W F

1 ∈ Rdmodel , W F
2 ∈ Rd f f ×dmodel , biases bF

1 ∈ Rd f f ,
bF

2 ∈ Rdmodel and dimensionality d f f = 1024. The point-wise
FF is responsible for processing each feature vector of the
sequence independently of the others.

C. CoRe-Sleep Architecture
CoRe-Sleep’s architecture utilizes the TF backbone and the

multimodal fusion of coordinated representations. Initially,
we describe the encoder for a single modality and subse-
quently, we proceed with the multimodal part of the network.

In CoRe-Sleep architecture, the inner-outer framework
described in Section I is used, similar to [43], [44], and [56].
Each modality has its own unimodal encoder which is an
8-layer TF encoder. The first 4-layers are processing the
inner sequence, finding the interactions between the features
extracted from STFT within the 30-second windows. After-
wards, the inner sequence features are aggregated. The last
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4-layers of the TF encoder process the outer sequence i.e., the
interactions between these aggregated features of neighbouring
windows. We allow for a maximum of 21 sequential windows,
following [43] and [44], but recent works indicate that even
greater numbers could be beneficial [41]. The Inner-Outer
scheme is visualised in Figure 1b.

CoRe-Sleep’s unimodal encoder is similar to SleepTrans-
former [43] with two modifications:

1) It uses a learnable embedding, for the class [CLS],
for aggregating inner-sequence features instead of a
separate attention module. This allows more interaction
via multi-head attention and multi-layer aggregation.

2) It uses learnable relative positional embeddings [53]
instead of absolute sinusoidal ones. These allow the
model to learn dependencies between positions in the
feature sequence and are more efficient because they are
incorporated into the attention mechanism.

These changes result in a small improvement. The unimodal
encoder’s output is utilized by a predictor and together they
form the unimodal equivalent network, which is discussed in
later sections.

To achieve multimodal fusion, we exploit coordinated rep-
resentations. Coordinated representation is a mid-late fusion
scheme, where each modality has a separate network stream,
with established communication between them. We first cal-
culate the inner and outer sequence feature representations of
each modality with the modality-specific unimodal encoders
as described above. We then feed each modality’s inner and
outer representation to the corresponding multimodal encoder
branches of the other modality, see Figure 1a. The weights
of SA and FF are shared among the multimodal and the
unimodal encoders of each modality. The multimodal encoders
have the same structure as the unimodal encoders with an
additional cross-attention (CA) component to let one modal-
ity affect the representation of the other, similar to [27],
[28], [58], [60], and [64]. The CA component allows the
pairwise similarities between the sequence steps of the two
modalities X1, X2 to affect the importance by re-weighting
one of them. The equations describing the CA component
are:

c-atth(X1|X2) = softmax(
W K

h X1(W Q
h X2)

⊺

√
dk

)W V
h X1 (6)

CA(X1|X2) = cat[c-att1(X1|X2), .., c-attH (X1|X2)]W O

(7)

The matrices W K
h , W Q

h , W V
h , W O have the same dimen-

sionality as in the TF encoder described in II-B, but they
don’t share the same weight values. being the same set of
parameters. The CA component is placed between the SA
and the FF block of each layer. Multiple sequential CAs
can be used to extend CoRe-Sleep on more than two input
modalities. The output of each multimodal encoder, which is
dedicated to one modality, can be considered the representation
of the corresponding modality grounded on (influenced by)
the remaining modalities. The final representation based on
all modalities is a summation of the different grounded mul-
timodal representations. Such summation allows all predictors

to have the same number of parameters and possibly share
them among the predictors of each modality.

D. Training Objectives

The model jointly optimizes three distinct loss functions,
see Figure 1a. The two of them are supervised Cross-Entropy
(CE) losses, from the predictions of the unimodal and the
multimodal network’s output. The third is a self-supervised
alignment (AL) loss between the two modalities.

1) Alignment Loss (AL): It exploits the fact that EEG and
EOG signals are measured at the same time, allowing to cast
this as a self-supervised task of predicting which 30-second
windows of one modality corresponds to the other modality.
This is motivated by literature on vision-text integration [27],
[28], [47], [64], where images align with captions and the
task is to match them. CoRe-Sleep compares each window’s
unimodal representation with those of other modalities to
predict matching pairs, with each representation being ded-
icated to a single window. Among various possible losses
like InfoNCE [36] or Triplet loss [52], we opt for the
approach in [47] due to its scalability and simplicity. We frame
the problem as a double classification task, where each
modality is tasked with predicting its position in the other
modality.

2) Multi-Supervised Loss (MS): CoRe-Sleep’s architec-
ture creates both unimodal and multimodal representations.
MS loss is the summation of supervised losses arising from
placing additional predictors to each unimodal representation.
It reduces the competing effects of each modality [20] by
allowing the worse-performing modality to affect proportion-
ally the total loss. MS loss enforces the network to be able to
perform well with all modalities present as well as with each
modality separately. In CoRe-Sleep the multiple predictions
come at minimal computational overhead.

Given a training set of patients full night recordings, the
goal is to identify the sleep label y for each 30-second
window. The patient recordings are segmented in windows to
create the dataset X = ({X1

1, ..X
1
M }, .., {X L

1 , ..X L
M }) where M

denotes the number of modalities, in this paper M = 2 and
L the total number of windows in the dataset. Each X l

m ∈

RT ×D and m = 1, .., M contains the frequency features with
resolution D = 128 extracted from STFT where a smaller
window of 2 seconds with a 1-second overlap is applied.
It results in T = 29 feature vectors representing a 30-second
window.

Sequential windows include useful information therefore we
preserve such information by processing multiple neighbour-
ing windows together. Following the inner-outer framework,
we process first the within-window features {X l

1, .., X l
M } ∈

RM×T ×D , aggregating information on the output of the inner
∈ RM×1×D . Subsequently, we map the interaction between
neighbouring windows on the outer sequence. To achieve that
we take sequential windows of the same recording, allowing
for a maximum of 21 sequential windows following [43]
and [44]. Each model f trained in the experiments dedicates a
subpart of its total parameters θ for each of the modalities m,
denoted as θm . Each such subpart of the network calculates the



844 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

unimodal predictions used to calculate the MS loss. In conclu-
sion following [47], the alignment loss is obtained by summing
up the CE losses, where the predictions are calculated using
the outer product of pairwise unimodal representations, and
the targets are set to the identity matrix I . Intuitively AL
tries to predict which window of one modality belongs to
the other. The target of AL loss is the outer sequence length,
so the AL loss has a different magnitude than the rest of the
losses, therefore we include a scaling parameter λA = 0.1.
We observed model performance is not sensitive to small
changes on λA; however this still might not be the optimal
value.

The final training objective L(X, y/ fθ ) is a sum of the
previously mentioned:

L(X, y| fθ ) = CE( fθ (X), y)+MS(X, y| fθ )

+ AL(X | fθ ) (8)

with M S(X, y| fθ )) =

M∑
m=1

C E( fθm (xi ), y) and (9)

AL(X | fθ )) = λA

M∑
m=1

M∑
j=1

m ̸= j

CE( fθm (Xm) fθ j (X j )
⊺, I )

(10)

Each of the aformentioned losses consists of one or multiple
CE terms. Cross-Entropy measures the difference between the
predicted probability distribution outputted by the network and
the ground-truth probability distribution. When applied along
softmax on the logit outputs of a neural network CE is a
logistic loss and has been shown to be Bayes consistent [66],
meaning that a model that minimizes CE, essentially, will
minimize the zero-one classification loss. The mean of the
zero-one classification loss is accuracy. Therefore, minimizing
CE loss will allow the model to maximize its accuracy on the
classification task. The equation of Cross-Entropy loss in N
multiclass classification is:

C E(y, p) = −

N∑
i

(yi · log(pi )) (11)

E. Architecture Benchmarks (Early & Mid-Late Fusion)
We introduce here two benchmark models which along

with previous state-of-the-art from literature we compare
with CoRe-Sleep. These models assist in illustrating the
benefits of the multimodal fusion architecture and the training
objectives. We take two of the uttermost cases, the Early
and the Mid-Late fusion. As the name suggests, the former
fuses multimodal input before encoding and the latter trains
modality encoders separately and only fuses them before the
predictor, see Figure 2.

Early fusion is a model structure that has no modality-
specific processing and data are merged (by concatenation)
before the model in the data-level. Only preprocessing steps
are distinctive between the two modalities. The same TF
blocks are processing both modalities by considering them
parts of the sequence both in inner and outer parts. That

Fig. 2. a) Mid-Late fusion scheme (MS + AL): Each modality has its
own encoder and information gets only merged before the multimodal
predictor. The Mid-Late model refers to the model trained solely on
the Multimodal loss, while the models incorporating MS and AL are
explicitly identified. Similar to CoRe-Sleep, this Mid-Late fusion scheme
can derive both unimodal and multimodal predictions in a single forward
pass. b) Early fusion scheme (MS + AL): In the Early model, both EEG
and EOG embeddings are processed by a shared encoder to calculate
the multimodal loss. The Early model is defined again without the MS
and AL losses. Unlike the Mid-Late scheme, the Early model requires
two forward passes to compute the unimodal representations.

allows each modality to attend to each other and creates the
fonts to identify better multimodal interactions. TF distinguish
the time relationships with the positional encoding. Similarly,
to achieve the discrimination between the two modalities we
sum another learnable embedding unique for every modal-
ity [32]. We note that Early fusion requires more than one
forward pass to obtain the unimodal representations, hence
reducing the inference speed.

Mid-Late fusion is the architecture where each modality
has its own unimodal encoder which produces the unimodal
representations and by just summing them up we get the
multimodal as well. Incorporating additional classifiers on
the unimodal representations enables us to calculate the MS
loss. For the AL loss, we once again utilize the unimodal
representations, but those preceding the Outer TF of the
unimodal encoder. The rationale behind this choice is to ensure
that each representation contains information solely about the
respective window, without incorporating information from
neighboring ones that would make the alignment a trivial
task. We define Mid-Late fusion as the model architecture
without these additional losses. Finally, both unimodal and
multimodal predictions can be acquired with a single forward
pass.

On top of these benchmark models, we define CoRe,
the model with the same architecture as CoRe-Sleep but
trained without the additional training objectives MS and AL.
CoRe follows the Mid-Late model of creating a separate
encoder for each modality but with established communication
between them. CoRe, Early and Mid-Late models have the
same TF backbone and inner-outer logic in each of their
blocks. In all models, the final multimodal representation
is created by summing the two unimodal representations.
A learnable class embedding [CLS] is utilised to aggregate
inner-sequence information, following [16]. Each model is
trained on the multimodal predictor CE loss and the two
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TABLE I
THE TABLE COMPARES THE UNIMODAL AND MULTIMODAL PERFORMANCE OF THE CORE, EARLY, AND MID-LATE ARCHITECTURES ON THE

SHHS-1 DATASET. SYSTEMATICALLY AL AND MS LOSSES ARE ADDED UNTIL CORE-SLEEP ACHIEVES THE BEST RESULTS OVERALL. ALL

MODELS ARE TRAINED ON EEG & EOG AND TESTED ON EEG (MIDDLE), EOG (RIGHT) OR BOTH (LEFT). WE PERFORM TRAINING THREE

TIMES WITH DIFFERENT DATASET SPLITS TO REPORT VARIANCE. RESULTS FROM THE LITERATURE ON THIS DATASET ARE ADDED BELOW THE

DASHED LINE. METRICS USED: ACCURACY, COHEN’S KAPPA, MACRO-F1. WITH BOLD ARE THE BEST PERFORMING MODELS

IN EACH SUB-BLOCK AND WITH BLUE BOLD THE BEST PERFORMING MODEL COMPARED TO ALL THE REST

additional losses (MS and AL) are gradually added to show
their benefit.

F. Implementation
All our models are implemented in PyTorch [38] and they

have been trained on a single GPU node. We use Adam [23]
optimizer with the learning rate and the weight decay being
1e-4. We train with batch size 16 and outer sequence 21
[43], resulting in 336 sleep labels per batch. We validate our
models every 400 optimization steps. We also use a cosine
annealing [30] scheduler with a maximum learning rate of
0.03 and 20k warm-up optimization steps. We consider a
model converged when it has not been improved in the last
100k optimization steps (approximately 9 epochs) and then we
apply early stopping.

Each unimodal and multimodal encoder has an inner and
outer block of TF, each with 4 layers of post-normalization
TF. Relative positional embedding [53] is only added to key
vectors in attention components. Models have 128-dimensional
input, 8 attention heads, 1024-dimensional MLP for FF, and
2-layer MLP for predictors all with 0.3 dropout probability.
Weights are shared among the SA and FF parts of the unimodal
and multimodal encoders.

G. Experiments
To explore the robustness of the model to noisy modalities,

a subset of SHHS-1, where one of the modalities is highly
noisy, is extracted. Such noisy cases can be identified by
thresholding the difference in STD of EEG and EOG modal-
ities. The STD is evaluated on large chunks of 10 minutes

to avoid picking artefacts. Only the patients that present
corruption in over 40% of the recording are kept, to avoid
picking patients with noise segments at the beginning or end
of a recording where sensors might not yet be attached or
have been detached. This subsampling is applied three times,
once for each split of the dataset with [17, 20, 11] patients
having over 40% noisy EEG and [10, 4, 3] having over 40%
noisy EOG on the different spits. Notably, EEG, the dominant
modality for sleep staging, appears to contain more long noisy
periods. We test the models on these sets of patients to evaluate
robustness to noisy modalities.

CoRe-Sleep is capable of also being trained with modality-
incomplete data. The motivation of this last experiment is to
examine the behaviour of the model under such unimodal data
additions. CoRe-Sleep is trained from scratch with an initial
subset of 100 multimodal patients and a variable number of
unimodal ones (either from EEG, EOG or both). Only on
the initial 100, are the MS and AL losses calculated. When
both unimodal modalities are added they don’t belong to the
same patient. The experiment is repeated three times adding
gradually patients with EEG, EOG or from both modalities.

III. RESULTS AND DISCUSSION
This section demonstrates the contribution of each compo-

nent in the multimodal fusion in standard, missing-modality
and noisy scenarios, and analyses the behaviour of our model
trained on incomplete multimodal data.

A. Multimodal
Results on training and testing CoRe-Sleep and the bench-

mark models (Early and Mid-Late) with multimodal input
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Fig. 3. This figure provides an illustration of a patient from SHHS-1 whose EEG modality was highly corrupted in the second half of the recording.
The top section of the figure displays the EEG (C4-A1) and EOG (L-R) signals, with a sudden increase in the standard deviation of the EEG signal
indicating the presence of noise. The two rows below show the class predictions (hypnogram) of the unimodal EEG and EOG models, as well
as the multimodal EEG-EOG CoRe-Sleep model. Notably, in the highly noisy area, the EEG model performed poorly, while the multimodal model
remained robust by leveraging the information provided by the EOG.

show that optimizing the multimodal fusion leads to outper-
forming previous state-of-the-art by a small margin, as shown
in the first column of Table I. All models, namely Early, Mid-
Late and Core, performed similarly when no additional losses
were added. However, adding the AL loss improved the per-
formance of Early and Core, which are the models that include
attention interactions between the two modalities. MS loss
contributes consistently to all three models. We demonstrate
that CoRe-Sleep performs similarly to Early (when MS +

AL are added), which is the model that allows the maximum
interactions between modalities.

B. Missing Modality
One of the main advantages of CoRe-Sleep is its ability

to handle missing modalities. In this second experiment, the
already trained models are evaluated in scenarios where only
one of the two modalities is present. The second and third
columns of Table I display the missing modality scenario
experimental results. Mid-Late fusion performs the best with-
out the additional losses. This is expected, the model which has
fewer interactions between modalities and each of its encoders
is focused on a single modality, to not be affected as much
absence of one modality. We note that when a modality is
absent, the multimodal components of the network are not
used; instead, only the unimodal encoders and classifiers are
utilized.

We observe how the models behave when extra losses are
included. Each model shows a distinct response to the addition
of AL loss. In Mid-Late it has a small contribution. In CoRe,
when used without MS, it assists in balancing the performance
between the two modalities. AL in the Early model deteriorates
both the performances of EEG and EOG. However, when
combined with MS, all models exhibit improved performance.
Meanwhile, MS loss has a consistent effect on all models,
indicating that each modality has to perform on each own as
well. All models benefit from MS loss, with more effect on

CoRe and Early. CoRe-Sleep’s performance exceeds both in
scenarios of missing EEG or EOG over all the other models.
It even slightly outperforms its unimodal equivalent and the
previous state-of-the-art models that have been trained solely
on the present modality.

The contribution of this experiment is twofold. Firstly,
it shows that the multimodal fusion and the multi-task objec-
tive can strengthen the model’s ability to perform inference
with a subset of the modalities given during training. This
addition makes CoRe-Sleep able to overcome issues such as
sensor detachment, device deficiency or lack of all recording
modalities. Secondly, the results show that, as CoRe-Sleep
multimodal training surpasses its unimodal equivalent models
both for EEG and EOG, unimodal models in general can
benefit from multimodal training.

C. Noisy Modalities
A patient in this subset is visualised in Figure 3. After

almost two and a half hours, the EEG begins to behave
irregularly, highly likely because the electrode is getting
detached. The predictions of unimodal EEG in that area
can be seen below in blue. When the recording is noisy,
the predictions are clearly wrong as continuous Wake is
predicted. The CoRe-Sleep model is less affected by noise
in the EEG data, as it adapts its predictions based on infor-
mation contained in the EOG. Evidently, the predictions of
unimodal EOG and CoRe-Sleep in the noisy area display great
similarities.

In general, testing on the subset of noisy patients leads to
decreased performance in all models. However, such imper-
fect data quality does occur in real life. Table II shows an
overview of the performance on the noisy subset. Since EEG
is more often the broken modality in the subset, its unimodal
equivalent model performs substantially worse than the EOG
one. Models Early and CoRe underachieve in comparison
to using EOG only. On the contrary, Mid-Late shows some
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Fig. 4. CoRe-Sleep was trained using a sub-group of 100 multimodal patients who had both EEG and EOG, as well as some unimodal patients who
only had EEG or EOG: a) We add patients who provide only EEG, as well as an equal number of patients who provide only EOG. We consistently
observe an improvement in the performance of both multimodal and unimodal predictors. b) We add patients who provide only EEG. A decrease
of EOG predictor performance is noted. c) We add patients who provide only EOG. Consistently here, we notice a decrease in the performance of
the modality that was not provided. All experiments have been repeated three times with different dataset splits to obtain the shown variance.

TABLE II
COMPARISON OF MODEL PERFORMANCE (ACCURACY, COHEN’S κ AND

MACRO-F1) ON SUBSET OF NOISY SHHS-1 PATIENTS

further robustness to noisy cases. The Mid-Late model has
separate encoders for each modality, allowing one to remain
uninfluenced by the noisy behaviour of the other. It’s the same
property that allows it to do well in the missing modality
scenario. Adding AL and MS losses benefits all three models.
Only in the case of Mid-Late, we see some declined behaviour
when both are added compared with adding only the MS loss.
CoRe-Sleep manages to perform close to Mid-Late model
exhibiting robustness in the noisy modality scenario. The
added value of using multimodal fusion is highlighted since
the predictions based on noisy modality can be amended by
the non-noisy ones. Finally, the literature benchmark evaluated
on multimodal data, XSleepNet, is an early fusion approach
and clearly underperforms in this subset.

Evaluating a model solely on data that has been carefully
screened and excludes any noise or missing modalities, as is
often the case with datasets, may not accurately reflect the

full capabilities of the model. Testing the models on missing
or noisy modalities can give a further less biased impression
of the models’ abilities.

D. Training With Incomplete Data
In the last experiment, the ability of CoRe-Sleep to be

trained with the assistance of large sets of modality-incomplete
data is examined. In Figure 4, three different training scenarios
are presented. In each scenario, we train models with a
different number of training patients. Every model has the
same 100 multimodal patients from which both MS and AL
loss are calculated. Furthermore, unimodal patients are added
gradually, either from both modalities or from solely EEG
or EOG in Figures 4a, 4b and 4c respectively. For those
additional patients, we calculate only the unimodal loss with
respect to the included modality. We emphasize that, similar
to the missing modalities, when training with these additional
patients, only the unimodal parts are utilized, while the mul-
timodal parts and the CA components remain inactive. The
generalization performance on the test set is measured for each
step. In this experiment, parameter sharing among predictors
facilitated faster and more stable convergence, particularly
in situations where data was limited in size.

Three major findings can be observed:
1) When the number of additional unimodal patients is

close to the number of initial multimodal ones (in
this case 100) then all three predictors increase their
performance. This can be seen in all three experiments.

2) Adding the same number of unimodal patients from both
modalities, without being the same patients, favours all
three predictors even when adding unimodal ones out-
match by far the initial multimodal ones (see Figure 4a).

3) The performance of the other modality deteriorates
when adding unimodal patients in much larger num-
bers than the initial multimodal ones, as shown in
Figures 4b and 4c.

With this experiment, we show that patients’ recordings
with missing modalities can be included in the training and
help to improve overall model performance. Adding uni-
modal data should be carefully exploited at a large scale
(greater magnitudes than multimodal data), especially in cases
where inference should come separately from both modalities.
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CoRe-Sleep can leverage all available data making it more
flexible for real-world scenarios.

IV. CONCLUSION

We propose CoRe-Sleep, a multimodal model that is able
to perform inference on incomplete multimodal data and that
shows robustness to missing modalities. CoRe-Sleep exceeds
by a small margin previous state-of-the-art results in both
multimodal and unimodal settings. Trained with a multi-
task loss, it shows robustness in noisy modality scenarios.
We compare against other architectures to reveal the properties
of the Coordinate Representation fusion and the chosen multi-
task loss. As noisy recordings cannot be avoided in real life,
this work could be a significant step towards automating sleep
staging in clinical settings.

Our study highlights two key insights regarding multi-
modal machine learning. Firstly, training models with multiple
modalities can yield performance improvements, even when
testing only involves a subset of the modalities. Contrary to
common practice, training models on the specific modalities
that will be present during testing may not always lead
to optimal performance. Secondly, our findings suggest that
including training data points that lack some of the modalities
can benefit model performance. These insights can inform the
development of more effective multimodal machine learning
approaches for a wide range of applications.
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