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Abstract: Ontologies have the potential to play an important role in the cybersecurity landscape as
they are able to provide a structured and standardized way to semantically represent and organize
knowledge about a domain of interest. They help in unambiguously modeling the complex rela-
tionships between various cybersecurity concepts and properties. Leveraging this knowledge, they
provide a foundation for designing more intelligent and adaptive cybersecurity systems. In this work,
we propose an ontology-based cybersecurity framework that extends well-known cybersecurity
ontologies to specifically model and manage threats imposed on applications, systems, and services
that rely on artificial intelligence (AI). More specifically, our efforts focus on documenting prevalent
machine learning (ML) threats and countermeasures, including the mechanisms by which emerging
attacks circumvent existing defenses as well as the arms race between them. In the ever-expanding Al
threat landscape, the goal of this work is to systematically formalize a body of knowledge intended
to complement existing taxonomies and threat-modeling approaches of applications empowered by
Al and to facilitate their automated assessment by leveraging enhanced reasoning capabilities.
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1. Introduction

In the cybersecurity domain, ontologies can play a pivotal role by enabling a structured
and standardized representation and organization of important or strategic knowledge
within the domain. A key benefit of ontologies is that they are able to semantically model,
document, and reason upon often implicit or obscure relationships among diverse con-
cepts and properties that characterize the continuously evolving cybersecurity landscape.
By leveraging ontologies, cybersecurity professionals can establish a common language
and terminology to articulate the multifaceted perspectives of security, such as emerging
threats and relevant mitigations. These structured representations and terminologies not
only enhance communication among cybersecurity professionals, but they also enable
comprehensive knowledge management via a machine-interpretable specification with
support for automated reasoning. For example, during an incident response, ontologies
can help in organizing and categorizing information related to security incidents when
sharing this information with other stakeholders. This information includes details about
the attack vectors, compromised systems, and the tactics, techniques, and procedures
(TTPs) employed by threat actors. One of the first cybersecurity ontologies in this domain
that integrates well-known security standards for information sharing and exchange, such
as STIX (https://oasis-open.github.io/cti-documentation/stix/intro.html (accessed on 23
January 2024)), is the Unified Cybersecurity Ontology (UCO) [1].

In this research, we focus on a specific class of attacks, particularly security and privacy
threats targeted at artificial intelligence (Al) components integrated into contemporary
systems, services, and applications. The integration of machine learning (ML) and deep
learning (DL) increases the attack surface of existing systems beyond those of traditional
cyberattacks (e.g., brute-force password attacks, SQL injection, zero-day exploits). The
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goal of the adversary is to compromise the ML-based decision-making process embedded
within the application or to disclose sensitive information pertaining to the data upon
which the ML model was trained. A widely recognized classification system within the
domain of adversarial ML is MITRE ATLAS (Adversarial Threat Landscape for Artificial-
Intelligence Systems) [2]. The objective of this living knowledge base of adversary tactics
and techniques is to increase awareness regarding known vulnerabilities and emerging
threats in Al-enabled systems. The MITRE ATLAS taxonomy draws inspiration from and
complements the tactics, techniques, and procedures (TTPs) from the MITRE ATT&CK
framework [3,4].

The challenge that we address focuses on the limitations of current taxonomies and
threat modeling methodologies for ML-based applications. Taxonomies offer a hierarchical
structure to categorize concepts and knowledge about threats, adversarial tactics, and
mitigations. These models do not have the expressiveness necessary for in-depth analysis
and automated reasoning about both attacks and defenses, particularly in the context of
the ongoing arms race between them [5,6]. This challenge becomes more pronounced
as the body of knowledge, including the academic literature, on the Al threat landscape
continues to grow at an unprecedented rate. Instead, our goal is to document important
concepts in ontologies. Ontologies go beyond classification by offering a semantically
richer machine-interpretable specification language with support for automated reasoning.
Hence, the primary objective of this work is to systematically encode a comprehensive
body of knowledge from the scientific literature to augment the current taxonomies, such as
MITRE ATLAS, with the state of the art. By doing so, we aim to streamline the automated
assessment of the attack surface of Al-enabled applications by leveraging enhanced reason-
ing capabilities, and to contribute to a more robust understanding of the challenges posed
by emerging Al risks and threats to the development of enhanced defense mechanisms and
an overall improvement of the security posture of these applications.

The remainder of this paper is structured as follows. In Section 2, we review relevant
related work on the use of ontologies in the cybersecurity domain along with efforts to
establish a framework for machine learning security. Section 3 discusses our methodology
on how we extend existing ontologies to document attacks and defenses for ML-based
applications. We evaluate and validate our approach in Section 4 from both a qualitative
and quantitative perspective. We summarize our contributions and offer suggestions for
further research in Section 5.

2. Related Work

In this section, we review relevant related works on cybersecurity taxonomies and
ontologies, including those that focus on Al threats, and complementary threat modeling
approaches. Additionally, we discuss how approaches have been used in key applica-
tion domains.

2.1. Security Taxonomies and Ontologies

Syed et al. [1] propose the Unified Cybersecurity Ontology (UCO), which aims to
enhance cyber situational awareness and to facilitate information sharing by incorporating
data and knowledge schemas from various cybersecurity systems and widely adopted cy-
bersecurity standards. UCO provides comprehensive coverage and has been systematically
aligned with publicly available cybersecurity ontologies. To demonstrate the added value
of the UCO ontology, the authors present and validate a prototype system complemented
with concrete use cases.

Onwubiko presents an ontology called CoCoa [7], an acronym for “Cybersecurity
Operations Centre Ontology for Analysis Process”. This process ontology is aligned with
the NIST cybersecurity framework (see https:/ /www.nist.gov/cyberframework (accessed
on 23 January 2024)) with the objective to offer cybersecurity analysts in security operations
centers (5OCs) enhanced operational situational awareness of monitored assets, potential
threats, and vulnerabilities, the compromise path, and the attack surface. To realize this, the
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proposed process ontology goes beyond mere log collection and specifically focuses on the
analysis of five information sources, namely: (1) events and logs, (2) network information,
(3) structured digital feeds, (4) semi and unstructured feeds, and (5) threat intelligence.

Mozzaquatro et al. [8] present an ontology-based framework tailored to Internet of
Things (IoT) cybersecurity with the objective to propose adequate security services for
specific threats. The framework has a two-phase approach: (1) design time—constructing
security services in light of existing enterprise processes; and (2) run time—real-time
monitoring of the IoT environment for threats and vulnerabilities, as well as proactive
countermeasures to adapt existing services. The authors define and instantiate the IoTSec
ontology and evaluate its feasibility via an ontology assessment and a case study featuring
an industrial implementation.

Martins et al. [9] take a different perspective and focus on the complexity of cyber-
security in large enterprises and the interdisciplinary nature of its management. Their
research offers three key contributions. Firstly, it includes a literature review of cybersecu-
rity ontologies. Secondly, it classifies these works based on key characteristics to facilitate a
systematic comparison. Lastly, the paper analyzes the results, identifies gaps, and proposes
good practices in ontology engineering for cybersecurity to achieve solutions that are better
aligned with organizational needs.

2.2. Threat Modeling and Assessment of ML-Based Systems

In their report, ENISA [10] provides a taxonomy for ML algorithms, as well as a
detailed analysis of threats and security controls in well-known standards. Their report
covers key data types used by ML algorithms, the nature of training (supervised or unsu-
pervised), and the importance of both accuracy and explainability for users. The report
then conducts a comprehensive analysis of threats that target ML systems, including data
poisoning, adversarial attacks, and data exfiltration. Additionally, it evaluates contem-
porary security controls from widely adopted standards, such as ISO 27001 [11] and the
NIST Cybersecurity Framework, and maps them to the core functionalities of ML systems
they aim to protect. Their analysis reveals that traditional security controls, while highly
effective for information systems, require complementary security controls tailored to ML
functionalities. Based on a systematic review of the relevant academic literature, the report
presents a comprehensive list of security controls specifically for ML systems, such as the
inclusion of adversarial examples in training datasets to make ML models more robust.

Introduced in June 2021, MITRE ATLAS [2] serves as a living knowledge base of
adversarial ML tactics, techniques, and case studies. It targets cybersecurity experts, data
scientists, and organizations with the objective to raise awareness about recent advance-
ments in attacks and defenses related to adversarial ML. The information repository is
structured within the framework known as Adversarial Tactics, Techniques, and Com-
mon Knowledge (ATT&CK) for Al This framework establishes a standardized method
for delineating and classifying adversarial techniques and for recognizing and mitigating
vulnerabilities in Al systems.

Tidjon et al. [12] highlight that the ML embedded in critical systems is an attractive
target for adversaries employing diverse tactics, techniques, and procedures (TTPs) to
compromise the confidentiality, integrity, and availability of ML systems. Their empirical
study of 89 real-world ML attack scenarios, 854 ML repositories from GitHub, and the
Python Packaging Advisory database aims to create a better understanding of the nature
of ML threats, with the objective to identify common mitigation strategies. Their results
highlight convolutional neural networks (CNNs) as frequently targeted models, identify
vulnerable ML repositories, and report on the most common vulnerabilities, targeted ML
phases, models, and TTPs.

Mauri et al. [13] acknowledge the same concerns as those mentioned in the previous
work and argue that, as ML-based systems become more prevalent, the need for a tailored
threat modeling approach for the AI-ML pipeline is crucial. The paper introduces STRIDE-
Al an asset-centered methodology for assessing the security of AI-ML systems, and
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potential failure modes in assets across their life-cycle. The objective of STRIDE-AI is to
help ML practitioners with selecting effective security controls to safeguard ML assets,
which the authors illustrate with a real-world use case from the TOREADOR H2020 project.

2.3. Bridging the Gap

The challenge that we address in this work revolves around the limited expressiveness
of current taxonomies and threat modeling methodologies for Al-enabled systems and
applications to effectively analyze and reason in an automated manner about both offensive
and defensive strategies, as well as the ongoing arms race between them. This challenge
becomes increasingly prominent as the body of knowledge on adversarial ML continues
to expand at an unprecedented pace. The objective of our research is to semantically
structure this body of knowledge with an ontology-based cybersecurity framework that
enhances rather than replaces existing taxonomies and threat modeling methodologies for
Al-empowered applications and to facilitate their automated assessment by harnessing
advanced reasoning capabilities, particularly in the context of an ever-expanding Al threat
landscape.

3. Methodology

Our methodology is based on a three-step approach. Firstly, we review and analyze
key taxonomies that align with our requirements and that can be augmented towards our
needs. In the second step, we enrich these selected taxonomies by transforming them
into semantically enhanced ontologies to facilitate automated reasoning. Subsequently,
we extend these ontologies by incorporating specific concepts and relationships to unam-
biguously document the domain of ML attacks and defenses. Finally, in the third step, we
instantiate the refined ontology by integrating well-known instances of ML threats and
corresponding countermeasures, as well as the arms race between them.

3.1. Analysis of the Base Taxonomies and Ontologies

The MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge)
framework is a knowledge base that is used to describe the actions, behaviors, and in-
tentions of cyber adversaries. It is a comprehensive collection of tactics, techniques, and
procedures (TTPs) that adversaries use in the real world to achieve their objectives across
different stages of the cyber attack life cycle.

¢ Tactics: High-level description that encompasses a series of behaviors and actions
utilized by the adversary to accomplish a particular goal.

e Techniques: More detailed guidelines and intermediate methods outlining the imple-
mentation of a tactic.

*  Procedures: Low-level, step-by-step description of the activities within the context of
a technique to carry out an attack tactic, including the tools or methods used by the
threat actor to effectively accomplish their goals.

The MITRE ATT&CK framework is organized into threat matrices, with each matrix
focusing on a specific platform, such as Enterprise, Mobile, and Industrial Control Systems
(ICSs). It is continuously updated to reflect the evolving landscape of cyber threats and
adversary techniques.

Our ontological framework is grounded in the MITRE ATT&CK framework, chosen
not only for its widespread adoption in the industry but also for its versatility in addressing
adversarial ML threats via the complementary MITRE ATLAS taxonomy. The ATT&CK
framework has been extended to encompass the unique challenges posed by adversarial ML.
This alignment allows us to effectively capture and analyze the distinct tactics, techniques,
and procedures employed in this evolving threat landscape.

3.1.1. MITRE ATT&CK in STIX 2.1 Format

The MITRE ATT&CK dataset is accessible in the Structured Threat Information Expres-
sion (STIX) 2.1 [14] format, a language and serialization format specifically designed for
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exchanging cyber threat intelligence. STIX serves as a machine-readable format that facili-
tates access to the detailed ATT&CK knowledge base. ATT&CK employs a combination of
pre-defined and customized STIX objects to implement ATT&CK concepts, as documented
at https:/ /github.com/mitre-attack /attack-stix-data/blob/master /USAGE.md (accessed
on 23 January 2024). In our research, we utilized version 14.1 released on 16 November
2023, which can be found at https://github.com/mitre-attack/attack-stix-data (accessed
on 23 January 2024). Processing these JSON files is fairly trivial with the Python stix2
(version 3.0.1) package (see https://github.com/oasis-open/cti-python-stix2 (accessed
on 23 January 2024)), as shown in Appendix A in Listing A1, and the Python mitreattack-
python (version 3.0.2) package (see https:/ /github.com/mitre-attack /mitreattack-python
(accessed on 23 January 2024)), as shown in Listing A2. Both code snippets filter the first
entry in the MITRE ATT&CK (version 14.1) Enterprise knowledge base that matches a set
of two constraints.

3.1.2. From STIX 2.1 JSON Collections to Semantically Enriched Ontology Representation

The MITRE ATT&CK knowledge base for the Enterprise, Mobile, and ICS domains is
represented in STIX 2.1 JSON collections. This particular JSON file format is easily machine-
readable and queryable but lacks the expressiveness to represent complex relationships
between ATT&CK concepts as well as the capacity for automated reasoning. To address
this limitation, we transform the JSON dataset into a semantic representation. A similar
effort was undertaken before as part of the UCO ontology [1], which provides an ontology
specification for the STIX 2.0 standard (accessible at https:/ /github.com /Ebiquity /Unified-
Cybersecurity-Ontology /blob/master/stix/stix2.0/stix2.ttl (accessed on 23 January 2024)).

In our approach, we build upon the Web Ontology Language (OWL) representation
of the STIX 2.1 standard produced by the OASIS Threat Actor Context (TAC) Technical
Committee, accessible at https:/ /github.com/oasis-tcs/tac-ontology (accessed on 23 Jan-
uary 2024). As documented by the OASIS TAC TC (see https:/ /github.com/oasis-tcs/tac-
ontology/blob/master/docs/gh-docs/stix-spec.md (accessed on 23 January 2024)), the
content of the STIX 2.1 specification is more aptly suited for a property graph representation
rather than a semantic graph representation due the use of relationship nodes between
STIX objects. Consequently, the committee has undertaken various efforts to represent the
STIX 2.1 specification in multiple forms, allowing for a comprehensive semantic graph
representation. By relying on their work, our framework is now able to semantically reason
with ATT&CK concepts in a more sophisticated manner.

3.2. Ontological Extensions for ML Attacks and Defenses

In order to attain both syntactic and semantic interoperability, we first reintroduce
the mapping of MITRE ATT&CK concepts onto the STIX 2.1 semantic graph represen-
tation. This involves, among other tasks, the definition and alignment of new semantic
concepts and relationships. We therefore enhance the STIX Semantic Extension Ontology
(see https:/ /github.com/oasis-tcs/tac-ontology/blob/master/docs/gh-docs/stix-semex.
md (accessed on 23 January 2024)) so that the MITRE ATT&CK knowledge base can be
examined by a description logic reasoner such as HermiT [15] or ELK [16]. A subset of our
ATT&CK Semantic Extension Ontology in Turtle format is shown in Listing 1 and illustrates
how we mapped ATT&CK concepts onto the STIX semantic graph representation.

The complete specification for our MITRE ATT&CK Semantic Extension Ontology can
be accessed through the following link: https://people.cs.kuleuven.be/~davy.preuveneers/
ns/cti/attack-semex.rdf (accessed on 23 January 2024). Currently, it encompasses and maps
4 object properties, 22 data properties, and 14 classes. Additionally, we have developed a
Python application utilizing the mitreattack-python (version 3.0.2) package to transform
the complete STIX-based ATT&CK (version 14.1) Enterprise knowledge base from JSON
format into a semantic representation. The Turtle format representation of technique T1111
can be found in part in Listing 2.
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Listing 1. Subset of our MITRE ATT&CK Semantic Extension Ontology in Turtle format.

© W N G e W N =

1

-
=

12

-
@

14
15
16

@prefix :

@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix

<https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-semex#> .
cti: <http://docs.oasis-open.org/ns/cti#> .

owl: <http://www.w3.0rg/2002/07/owl#> .

rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

xml: <http://www.w3.0rg/XML/1998/namespace> .

xsd: <http://www.w3.0rg/2001/XMLSchema#> .

rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

stix: <http://docs.oasis-open.org/ns/cti/stix#> .

stix-semex: <http://docs.oasis-open.org/ns/cti/stix-semex#> .
data-marking: <http://docs.oasis-open.org/ns/cti/data-marking#> .

@base <https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-semex#> .

<https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-semex> rdf:type owl:0ntology ;

owl:imports <http://docs.oasis-open.org/ns/cti/stix-semex> .

17 # Object properties

18
19
20
21
22
23
24
25
26

rtactic_

refs rdf:type owl:0bjectProperty ;
rdfs:range :Tactic .

:x_mitre_modified_by_ref rdf:type owl:0bjectProperty ;

rdfs:range cti:Identity .

27 # Data properties

28
29
30
31
32
33
34
35
36

:x_mitre_collection_layers rdf:type owl:DatatypeProperty ;

rdfs:range xsd:string .

:x_mitre_detection rdf:type owl:DatatypeProperty ,

owl:FunctionalProperty ;
rdfs:range xsd:string .

37 :x_mitre_is_subtechnique rdf:type owl:DatatypeProperty ;

38
39
40
41
42
43

rdfs:range xsd:boolean .

# Classes

44 :Matrix rdf:type owl:Class .

45

46 :Tactic rdf:type owl:Class .

47
48
49
50
51

:Technique rdf:type owl:Class .

:Mitigation rdf:type owl:Class .

52 stix:AttackPattern owl:equivalentClass :Technique .

53

54 stix:CourseOfAction owl:equivalentClass :Mitigation .

55

56 :SubTechnique rdf:type owl:Class ;

57
58
59
60
61

rdfs:subClassOf :Technique ,
[ rdf:type owl:Restriction ;
owl:onProperty :x_mitre_is_subtechnique ;
owl:hasValue "true"~"xsd:boolean

1
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Listing 2. Instantiating MITRE ATT&CK technique T1111 (see https:/ /attack.mitre.org/techniques/
T1111 (accessed on 23 January 2024)) with our ATT&CK Semantic Extension Ontology.

1 @refix : <https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-semex#> .
2 @refix cti: <http://docs.oasis-open.org/ns/cti#> .

3 @refix owl: <http://www.w3.0rg/2002/07/owl#> .

4 @prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

5 @prefix xml: <http://www.w3.0rg/XML/1998/namespace> .

6 @refix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

7 @refix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

8 @prefix stix: <http://docs.oasis-open.org/ns/cti/stix#> .

9 @prefix stix-semex: <http://docs.oasis-open.org/ns/cti/stix-semex#> .

10 @prefix data-marking: <http://docs.oasis-open.org/ns/cti/data-marking#> .

11 @base <https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-semex#> .

13 <https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-semex> rdf:type owl:0Ontology ;
14 owl:imports <http://docs.oasis-open.org/ns/cti/stix-semex> .

16 :attack-pattern--dd43c543-bb85-4a6f-aabe-160d90d06a49 rdf:type owl:NamedIndividual ,

17 attack-semex:Technique ;
18 cti:external_references :external_reference--46e7b238-dcea-4121-99ee-23d5c3827dae ,
19 rexternal_reference--67b54962-33e8-4dbf-ad13-f4d25941194a ,
20 :external_reference--9ed23d0d-b28c-40el-8aa4-4dbb925fd43a ,
21 :external_reference--cal662b9-fb12-4978-a814-bad02d51312b ;

22 data-marking:object_marking_refs :marking-definition--fa42a846-8d90-4e51-bc29-71d5b4802168 ;
23 stix:kill_chain_phases :kill_chain_phase--5e6568d4-5020-43bb-aedc-ba2abbbf79c3 ;

24 attack-semex:x_mitre_modified_by_ref :identity--c78cb6e5-0c4b-4611-8297-d1b8b55e40b5 ;

25 cti:created "2017-05-31T21:31:23.195Z2"""xsd:dateTime ;

26 cti:description "Adversaries may target multi-factor authentication (MFA) mechanisms, ..." ;
27 cti:id "attack-pattern--dd43c543-bb85-4a6f-aabe-160d90d06a49" ;

28 cti:modified "2023-05-09T14:00:00.188Z"~"xsd:dateTime ;

29 cti:name "Multi-Factor Authentication Interception" ;

30 cti:spec_version "2.1" ;

31 cti:type "attack-pattern" ;

32 attack-semex:x_mitre_attack_spec_version "3.1.0" ;

33 attack-semex:x_mitre_contributors "John Lambert, Microsoft Threat Intelligence Center" ;
34 attack-semex:x_mitre_data_sources "Driver: Driver Load"

35 "Process: 0S API Execution" ,

36 "Windows Registry: Windows Registry Key Modification" ;
37 attack-semex:x_mitre_deprecated "false"”~"xsd:boolean ;

38 attack-semex:x_mitre_detection "Detecting use of proxied smart card connections by an ..." ;
39 attack-semex:x_mitre_domains "enterprise-attack" ;

40 attack-semex:x_mitre_is_subtechnique "false"~"xsd:boolean ;

41 attack-semex:x_mitre_platforms "Linux" ,

2 "Windows"

43 "mac0S" ;

44 attack-semex:x_mitre_version "2.1"

47 :external_reference--46e7b238-dcea-4121-99ee-23d5c3827dae rdf:type owl:NamedIndividual ,

48 cti:ExternalReference ;
49 cti:external_id "T1111" ;
50 cti:source_name "mitre-attack" ;

51 cti:url "https://attack.mitre.org/techniques/T1111"~"xsd:anyURI .

52

53 :identity--c78cb6e5-0c4b-4611-8297-d1b8b55e40b5 rdf:type owl:NamedIndividual ,

54 cti:Identity .

55

56 :kill_chain_phase--5e6568d4-5020-43bb-aedc-ba2abbbf79c3 rdf:type owl:NamedIndividual ,

57 stix:KillChainPhase ;
58 stix:kill_chain_name "mitre-attack" ;
59 stix:phase_name "credential-access"

60 ...

The MITRE ATT&CK (version 14.1) knowledge base, including its three threat matrices,
has undergone conversion into the Turtle and Resource Description Framework (RDF)
format, a W3C standard for describing web resources and data interchange. This facilitates
straightforward reasoning and querying using the Protégé (version 5.6.3) tool [17], a tool
primarily used for building and managing ontologies:
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1.  Enterprise Threat Matrix:

e Turtle format: https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-
semex-enterprise.ttl (accessed on 23 January 2024)

*  RDF format: https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-
semex-enterprise.rdf (accessed on 23 January 2024)

2. Industrial Control Systems (ICSs) Threat Matrix:

*  Turtle format: https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-
semex-ics.ttl (accessed on 23 January 2024)

e  RDF format: https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-
semex-ics.rdf (accessed on 23 January 2024)

3.  Mobile Threat Matrix:

¢ Turtle format: https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-
semex-mobile.ttl (accessed on 23 January 2024)

. RDF format: https:/ /people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-
semex-mobile.rdf (accessed on 23 January 2024)

We implement the same transformation of the MITRE ATLAS Data v4.5.1 (see https://
github.com /mitre-atlas/atlas-data (accessed on 23 January 2024)), which includes 14 tactics,
46 techniques, 36 sub-techniques, 20 mitigations, and 22 case studies. Despite adhering
to the same design principles as the MITRE ATT&CK framework, this knowledge base
is presented in YAML format [18], as illustrated in Appendix B in Listing A3 for the
Reconnaissance (AML.TA0002) tactic.

Fortunately, the transformation of MITRE ATLAS into the STIX format has already
been carried out by the ATLAS Navigator Data project, accessible at https://github.com/
mitre-atlas/atlas-navigator-data (accessed on 23 January 2024), offering an ATLAS-only
STIX representation and one that incorporates and references the MITRE ATT&CK Enter-
prise knowledge base. We used the latter to create a semantically enriched knowledge base
in Turtle format and RDF format:

¢ Turtle format: https:/ /people.cs.kuleuven.be/~davy.preuveneers/ns/cti/atlas-attack-
semex-enterprise.ttl (accessed on 23 January 2024)

. RDF format: https:/ /people.cs.kuleuven.be/~davy.preuveneers/ns/cti/atlas-attack-
semex-enterprise.rdf (accessed on 23 January 2024)

3.3. Instantiating the Augmented Ontology for Al-Powered Applications

While MITRE ATLAS proves to be a valuable resource, it is not without practical limi-
tations when serving as the cornerstone of an ontology-based cybersecurity framework that
aims to automate the vulnerability assessment in a continuously evolving threat landscape
of novel ML attacks and defenses. One notable limitation is that it lacks practical and
detailed information about threats and mitigations, especially in a machine interpretable
manner. To illustrate, the tactic ‘Reconnaissance” (AML.TA0002) includes the technique
‘Search for Victim’s Publicly Available Research Materials” (AML.T0000) along with the sub-
technique ‘Journals and Conference Proceedings’ (AML.T0000.000). The sub-technique is
shown in Appendix B in Listing A4 and is available at https://atlas.mitre.org/techniques/
AML.T0000.000 (accessed on 23 January 2024).

One of the shortcomings is that this body of knowledge remains too high-level to be
practically useful for automated reasoning. Indeed, a tactic is the highest-level description
of an adversary’s behavior, while techniques give a more detailed description of behavior
in the context of a tactic, and procedures an even lower-level, highly detailed description in
the context of a technique [19]. The STIX representation of MITRE ATLAS is confined to
tactics and techniques only, which proves inadequate for encapsulating the core nature of
threats posed to ML-based systems and applications. It lacks the incorporation of detailed
low-level procedures. In contrast, the YAML representation of ATLAS encompasses 22 case
studies that document procedures delineating each step of a specific attack. An example is
the “Evasion of Deep Learning Detector for Malware C&C Traffic’ (AML.CS0000) case study,
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available at https:/ /atlas.mitre.org/studies/ AML.CS0000/ (accessed on 23 January 2024),
which provides associated tactics and techniques. It is noteworthy, however, that these
textual descriptions are designed mainly for human analysts or security experts and do not
facilitate machine interpretation. Furthermore, a given procedure may contain references
to scientific papers or URLs pointing to the associated paper or relevant software code.
Unfortunately, instead of citing a scientific paper by its distinctive digital object identifier
(DOIY), the publication is referenced in plain text, leaving it susceptible to potential textual
mismatches.

Furthermore, the momentum of adversarial ML is propelled by a surge of conference
and journal papers proposing novel attacks and adversarial techniques ranging from simple
data manipulations to more sophisticated methods that leverage intricate knowledge of
model architectures. Other references lead to blog posts, news articles, or project pages
that might lack the essential details required for replicating an attack or devising a new
mitigation strategy. As a result, deriving the interconnection between old and new attacks,
as well as understanding how novel attacks compromise established defenses, based on
just these references is a non-trivial task.

Simultaneously, the surge in proposed defense strategies reflects the urgency to miti-
gate the risks associated with adversarial attacks. Mitigations are also covered in MITRE
ATLAS, as depicted in Appendix B in Listing A5 for the ‘Model Hardening” (AML.M0003)
mitigation. However, the landscape of adversarial ML is marked by an inherent cat-and-
mouse game, where the introduction of new defenses often prompts the generation of
more sophisticated attacks. This arms race raises questions about the long-term efficacy
of existing defenses and emphasizes the need for a continuous reassessment of security
measures.

Unfortunately, the MITRE ATLAS knowledge base does not indicate which mitiga-
tions have been broken by new attacks. Indeed, while the mitigation of ‘Model Harden-
ing’ (AML.MO0003) proves effective against ML attack techniques like ‘Evade ML Model’
(AML.T0015) and ‘Erode ML Model Integrity” (AML.T0031), a more detailed depiction of
these attacks and defenses, along with the ongoing arms race between them, is essential.
Such a nuanced representation is crucial for evaluating the current and future vulnerability
status of a given application.

As a result, we have implemented an ontological extension specifically designed to
articulate individual attacks and defenses at the procedure level, providing a more detailed
and structured description within the context of a technique or a mitigation. Additionally,
it organizes relevant scientific literature in a structured semantic manner, facilitating the
seamless reconstruction of timelines involving attacks, mitigations, and subsequent new
attack developments. Where relevant, we reuse established ontologies. For example, to
document the scientific literature, citations, and cross-references, we adopt the Semantic
Publishing and Referencing (SPAR) ontologies [20]. The case study mentioned earlier
(i.e., “Evasion of Deep Learning Detector for Malware C&C Traffic’ (AML.CS0000), see
https:/ /atlas.mitre.org/studies/ AML.CS0000/ (accessed on 23 January 2024)), mentions
the scientific reference [21] as follows:

Le, Hung, et al. "URLNet: Learning a URL representation with deep learning for
malicious URL detection.” arXiv preprint arXiv:1802.03162 (2018).

The semantic equivalent documented with the SPAR ontologies is shown in Appendix C
in Listing A6. These ontologies offer the benefit of reusable definitions of authors with
multiple scientific references, or show how subsequent research builds upon earlier contri-
butions. The latter is exemplified by the study on GramBeddings [22] citing URLNet [21]
for comparison, showcasing the extension of prior work. Other methods in the Citation
Typing Ontology (CiTO) to refer to previous research beyond usesMethodIn include supports,
updates, usesDataFrom, extends, disputes, ... (see https://sparontologies.github.io/cito/
current/cito.html (accessed on 23 January 2024)).

With our approach to semantically modeling in more detail the MITRE ATLAS pro-
cedures, as shown in Figure 1, we can document how, for example, certain mitigations
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are confirmed to work on other datasets, how new attacks or mitigations improve on the
same datasets, how attacks break existing mitigations, or vice versa. The additional benefit
compared to the case studies in the YAML-based MITRE ATLAS knowledge base is that
the insights into new attacks and defenses can be reasoned upon for other case studies. The
specification is available in Turtle format and RDF format at:

e Turtle format: https:/ /people.cs.kuleuven.be/~davy.preuveneers/ns/cti/atlas-semex-
procedure.ttl (accessed on 23 January 2024)

¢  RDF format: https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/atlas-semex-
procedure.rdf (accessed on 23 January 2024)

TestSet ValiationSet
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RawData ﬁ
Evaluation

™., Subolass of 31888 Of gypciass of
Subclassof % | ;

TrainingSet
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> -
g
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(external)

’
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ResearchPaper
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improves_attack

Procedure
next_phase
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Figure 1. Semantically extending the MITRE ATLAS procedures to model the interplay between
attacks and mitigations, as well as the associated scientific literature.

3.4. Implementation

The implementation of our ontology-based cybersecurity framework for Al-enabled
systems and applications leverages the aforementioned STIX-based representation of the
MITRE ATLAS Navigator Data v4.5.1 and the MITRE ATT&CK (version 14.1) Enterprise
knowledge base. Furthermore, we instantiate the above ontologies with several scientific
publications in the realm of adversarial ML, both offensive and defensive research, to ana-
lyze and reason upon concrete use cases. This adversarial ML knowledge base documents
metadata and insights from about 60 scientific papers (see Listings 3 and 4). Obviously,
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the addition of new literature on adversarial ML is a continuous work-in-progress. How-
ever, the number of entries should be sufficient to ascertain the practical feasibility and
computational impact of reasoning upon this knowledge base.

Listing 3. Semantic representation of an adversarial ML defense research paper (i.e., Li et al. [23]).

1 @prefix : <https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/atlas-semex-paper#> .

2 @prefix atlas-semex-procedure: <https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/atlas-semex-
procedure#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

:xin_1i rdf:type atlas-semex-procedure:Author ;
foaf:name "Xin Li" ;

foaf:givenName "Xin" ;

10 foaf:familyName "Li"

3
4
5
6
7
8
9

12 :fuxin_1i rdf:type atlas-semex-procedure:Author ;
13 foaf:name "Fuxin Li" ;

14 foaf:givenName "Fuxin" ;

15 foaf:familyName "Li"

17 :arxiv rdf:type foaf:0rganization ;
18 foaf:name "arXiv"

20 :1612.07767 rdf:type fabio:ResearchPaper ;

21 dcterms:creator :xin_li, :fuxin_li ;

22 fabio:hasURL "http://arxiv.org/abs/1612.07767""~"xsd:anyURI ;

23 fabio:hasPublicationYear "2016"~"xsd:gYear ;

24 dcterms:publisher :arxiv ;

25 dcterms:title "Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics" .

Listing 4. Modeling ML attacks and defenses.

1 @refix : <https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/experiment#> .

2 @prefix attack-semex: <https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/attack-semex#> .

3 @prefix atlas-semex-procedure: <https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/atlas-semex-

4 procedure#> .

5 @prefix atlas-semex-paper: <https://people.cs.kuleuven.be/~davy.preuveneers/ns/cti/atlas-semex-paper#> .

:LilLl6e rdf:type attack-semex:Mitigation ;

# extends base MITRE ATLAS mitigation: ’Input Restoration’ (AML.M0O10)

10 atlas-semex-procedure:extends atlas-semex:course-of-action--0df12e98-f47a-4126-8512-ff573cbfb6ea ;
11 # extends base MITRE ATLAS mitigation: ’Adversarial Input Detection’ (AML.MOO15)

12 atlas-semex-procedure:extends atlas-semex:course-of-action--37862c51-9708-45b5-b5a9-2ced6b96a68f ;
13 # title: 'Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics’

14 atlas-semex-procedure:scientific_ref atlas-semex-paper:1612.07767 .

16 :CarliniWl?7 rdf:type attack-semex:Technique ;

17 # extends base MITRE ATLAS attack: ’Evade ML Model’ (AML.T0015)

18 atlas-semex-procedure:extends atlas-semex:attack-pattern--dbd25a74-6024-4e30-9ba2-20428a447b70 ;
19 # title: 'Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods’

20 atlas-semex-procedure:scientific_ref atlas-semex-paper:1705.07263 ;

21 atlas-semex-procedure:uses_dataset atlas-semex-procedure:mnist ;

22 atlas-semex-procedure:uses_dataset atlas-semex-procedure:cifarl® ;

23 atlas-semex-procedure:has_threatmodel atlas-semex-procedure:perfect_knowledge_adversary ;

24 atlas-semex-procedure:breaks_mitigation :LilL1l6e ;

We will illustrate the continuous arms race of adversarial attacks and defenses in an
image classification context. One of the many mitigations against misclassification or eva-
sion proposed in the ATLAS framework is ‘Input Restoration” (AML.M0010). The objective
is to preprocess the inference data, i.e., the input image, in order to eliminate or reverse
any potential adversarial perturbations. The ATLAS knowledge base on this mitigation
(see https:/ /atlas.mitre.org/mitigations/ AML.M0010 (accessed on 23 January 2024)) offers
no suggestions on how exactly to accomplish this. Similar observations can be made for
other mitigation strategies, such as “Adversarial Input Detection” (AML.M0015). Our goal


https://atlas.mitre.org/mitigations/AML.M0010

Future Internet 2024, 16, 69

12 of 23

is to offer a knowledge base that is more detailed by complementing these mitigations with
semantic references to scientific works, including the relationships between them.

For example, Li et al. [23] introduced a method involving a straightforward 3 x 3 aver-
age filter for image blurring prior to classification. The concept behind this simple defense is
to mitigate adversarial examples created through the fast gradient sign attack [24]. Numer-
ous other defenses have been proposed in the literature. Nonetheless, as underscored by
Carlini and Wagner [25], the identification of adversarial examples proves to be a nontrivial
task. They assessed 10 proposed defenses, revealing their susceptibility to white-box at-
tacks. This was accomplished by formulating defense-specific loss functions, subsequently
minimized using a strong iterative attack algorithm. Employing these methodologies on
the CIFAR-10 dataset, they demonstrated an adversary’s ability to generate imperceptible
adversarial examples for every defense.

Whereas the previous works focused on evasion attacks and defenses, a similar arms
race is happening for other types of ML attacks. As inspiration, we explore the poisoning
attack survey by Cina et al. [26]. In this extensive survey, the authors offer a thorough
systematization of poisoning attacks and defenses in ML, scrutinizing over 100 papers
published in the field over the past 15 years. Their approach begins by categorizing
prevailing threat models and attacks, followed by the systematic organization of existing
defenses.

Rather than explaining attacks and defenses in detail and how they were subsequently
broken, our goal is to incorporate the knowledge about these attacks and defenses into our
ontology-based cybersecurity framework with the following steps:

1.  Semantically describe the ML pipeline, including the type of inputs and outputs.

2. Semantically describe the dataset artifacts used in the attack/defense experiments.

3. Semantically describe the threat model (e.g., black box vs. white box access to model).

4. Semantically describe each scientific publication on adversarial attacks and defenses
using the SPAR ontologies, as illustrated earlier in Listings A6, 3, and 4.

5. Semantically link the publication with the ML pipeline, the threat model, as well as
the corresponding techniques or mitigations of MITRE ATLAS.

6.  Semantically link how defenses have been broken with new attacks, or vice versa, with
our proposed MITRE ATLAS Semantic Extension Ontology, as depicted in Figure 1.

To evaluate, a variety of queries can be directed to the description logic reasoner to so-
licit information. Typically, these description logic queries are expressed in the Manchester
OWL (Web Ontology Language) syntax [27], as illustrated in Figure 2. The queries may
pertain to specific defenses that have been compromised, reported attacks for particular
input data modalities (e.g., malware), operations of attacks within a black-box threat model
context, identification of authors employing specific datasets, and similar topics of interest.

Query: Return attacks that broke any mitigation
Manchester OWL Syntax: (breaks_mitigation some Mitigation)

Query: Return attacks that broke a specific mitigation (i.e., Li et al. 2016)
Manchester OWL Syntax: (breaks_mitigation value LiL16e)

Query: Return mitigations that extend the base MITRE ATLAS mitigation with name
‘Adversarial Input Detection’ (i.e., https:/ /atlas.mitre.org/mitigations/ AML.M0015)

Manchester OWL Syntax: (extends some (name value “Adversarial Input Detection”))

Figure 2. DL query examples in Manchester OWL syntax. The outputs are individuals that can be
subsequently queried for more details [23].

In addition to analyzing the knowledge base with the Protégé tool [17], we have
developed—as part of the Horizon Europe KINAITICS project (see https:/ /kinaitics.eu
(accessed on 23 January 2024))—a proof-of-concept software framework to raise the level of
abstraction for end-users and facilitate the collaboration with other security tools by offering
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the knowledge base and reasoning capabilities through a RESTful interface. This framework
comprises a Java-based Spring Boot (version 3.2.2) back-end application and an HTML5
user interface built with Bootstrap (version 5.3.2), as illustrated in Figure 3, and running on
top of Open]DK (version 17.0.9). The back end utilizes OWL reasoners and their descriptive
logic (DL) capabilities to assess the vulnerability of a specific Al-enabled application
through predefined DL queries declared in the Manchester OWL syntax. The aspiration
is to further enhance the proof-of-concept implementation by incorporating a dashboard
interface akin to the MITRE ATLAS Navigator (see https://atlas.mitre.org/navigator/
(accessed on 23 January 2024)).

KULEUVEN DistriN=t Log About Menu~

KINAITICS ATLAS Semantic Extensio {

Tactics, threats and procedures for adversarial machine learning

Vulnerabilty Assessment

Knowledge Base: MITRE ATLAS v4.5.1 v

OWL Reasoner: ELK v0.5.0 (OWL 2 EL) v

Query: (breaks_mitigation some (breaks_attack some Technique)) Run
Example queries:

Framework:

\M\ No file selected. Upload

Log

{
"datetime": "2024-01-24T13:50:06.817+01:00",
"mem": 1402,
"response™: {
"Instances": [
"CarLiniW17"

1
"Query": "(breaks_mitigation some (breaks_attack some Technique))"
}
"ms": 204,

"timestamp": 1706100606817,
"statusCode": 200,
"status": "success"

b

%NAITl cS Copyright © 2023-2024, Davy Preuveneers, DistriNet, KU Leuven "= Funded by the European Union
Al -

Figure 3. Spring Boot-based cybersecurity framework for vulnerability assessment with MITRE
ATLAS semantic extensions.

4. Evaluation

In this section, we validate our cybersecurity framework by leveraging the knowledge
bases mentioned earlier and illustrate the main benefits as well as the practical feasibility
of our framework to reason upon a large body of knowledge. Our framework and the
benchmark application are executed in Ubuntu (version 23.10), operating on an HP ZBook
Power 15.6 inch G8 Mobile Workstation PC featuring an 11th Gen Intel Core i7-11800H
running at 2.30 GHz and 32 GB RAM.

4.1. Qualitative Evaluation: Adaptability of the Cybersecurity Framework

Modifying, adding, or removing an attack or defense is facilitated through instanti-
ating ontology classes and properties. The ontology-based approach of our cybersecurity
framework enables the incorporation of new attacks and defenses without necessitating
changes to the software (see Figure 3). The rationale behind embedding a description
logic-based ontology reasoner into our software, as opposed to implementing rigid if-
then-else rules, is two-fold. Firstly, the reasoner infers implicit interdependencies between
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attacks and defenses by leveraging semantic relationships, a task not easily achieved with
hard-coded if-then-else rules. Secondly, the ontology readily accommodates the addition
of new knowledge, thereby enhancing the adaptability of our cybersecurity framework
to new attacks and defenses, albeit at the expense of an ontology reasoner being more
computational intensive than a lightweight rule engine.

Additionally, the ontology reasoner can also be used to explain certain inferences, such
as depicted in Figure 4 with the Protégé tool for the Manchester OWL query in Figure 5.
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Figure 4. Explaining the results of Manchester OWL queries.

Query: The arms race of mitigations against attacks that are subsequently broken again

Manchester OWL Syntax: (breaks_mitigation some (breaks_attack some Technique))

Figure 5. DL query examples in Manchester OWL syntax. The outputs are individuals that can be
subsequently queried for more details.

The ability to explain inferences offers transparency about how query results are
derived from the underlying knowledge base. Security analysts can gain a deeper un-
derstanding of the relationships and dependencies among different entities and concepts
within the adversarial ML domain. By explaining inferences, they can gain insights into the
hidden or inferred relationships, helping them discover new knowledge without explicitly
encoding it in the ontology.

Also, when inconsistencies or unexpected inferences arise, the analysts can use the on-
tology reasoner to diagnose and trace the root cause of the issues. This helps in identifying
and rectifying errors in the ontology or refining the knowledge representation.

4.2. Quantitative Evaluation: Performance

The backbone of our ontology-based cybersecurity framework is powered by an
OWL 2 reasoner. Therefore, the careful selection of an optimal implementation of such a
reasoner is paramount. We initially selected the HermiT ontology reasoner because of its
strong compliance with the OWL 2 DL (description logic) specification and its efficient
reasoning capabilities [28]. Additionally, the Protégé tool comes with HermiT pre-installed.
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Our objective is to achieve a query response time below 3 s, deemed reasonable from a
usability perspective. We then carried out performance assessments of our REST-based
framework, deploying all components on a single system to minimize the impact of network
latencies that would otherwise arise when submitting queries and retrieving the results.

4.2.1. Experimental Setup

With a basic shell script that invokes the curl command line utility, we orchestrated
the execution of 100 REST requests within distinct query categories against our framework,
subsequently assessing the corresponding response times. The queries were systematically
categorized into three complexity tiers, determined by query length and depth. Presented
below are examples representing each complexity category of queries:

* Simple queries: class instances or property restrictions

- ResearchPaper
- (breaks_mitigation value Lil.16e)
—  (breaks_mitigation some Mitigation)

*  Normal queries: nested property restrictions

—  (extends some (name value “Adversarial Input Detection”))
- (breaks_mitigation some (breaks_attack some Technique))
-  (breaks_attack some (breaks_mitigation value LiL.16€))

¢  Complex queries: multi-nested property restrictions and conjunctions

—  ((extends some (external_references some (external_id value “AML.T0015")))
and (breaks_mitigation value LiL.16¢))

-  (breaks_mitigation some (breaks_attack some (breaks_mitigation some
(breaks_attack some Technique))))

—  ((extends some (name value “Evade ML Model”)) and (has_threatmodel value
perfect_knowledge_adversary) and (uses_dataset value cifar10))

We will carry out two types of experiments, the first one without including the ex-
tensive MITRE ATT&CK (version 14.1) Enterprise knowledge base. As a result, if a query
filters instances of the class Technigue, it will not process those covered by the ATT&CK
Enterprise knowledge base, only those covered by the ATLAS knowledge base. In the
second experiment, we will include the ATT&CK Enterprise data, expecting that this will
increase memory usage, computational complexity, as well the query response times.

4.2.2. HermiT Reasoner: Query Response Times

Figure 6 depicts the response times in milliseconds for our knowledge base, without
loading MITRE ATT&CK (version 14.1) Enterprise. The box plot lines depict the median
(50%), upper quartile (75%), and lower quartile (25%), while the average is represented
by the green diamond, and outliers (if any) are denoted by white circles. The average
response times fall below 3 s. The maximum heap memory usage by our Spring Boot-based
framework is about 255 MB.
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Figure 6. HermiT query response times without the MITRE ATT&CK Enterprise knowledge base.
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Upon incorporating MITRE ATT&CK (version 14.1) Enterprise into our knowledge
base and maintaining the same set of queries, there is a substantial impact on resource
utilization. Note how the overall heap memory usage increases from 255 MB to 3490 MB.
Due to response times exceeding several hours, even for a single straightforward query,
we were unable to finish the 100 queries for each complexity category. It became evident
that the efficiency of the HermiT reasoner did not meet our expectations. However, if
the security analyst’s needs are limited to the MITRE ATLAS knowledge base enriched
with our ontologies and semantic references to the scientific literature, HermiT remains a
sufficiently capable reasoner.

4.2.3. Openllet Reasoner: Query Response Times

After replacing the HermiT reasoner in our cybersecurity framework with the Openllet
OWL 2 DL reasoner (version 2.6.5) (see https:/ /github.com/Galigator/openllet (accessed
on 23 January 2024)), we observed a significant enhancement in query response times,
improving by at least an order of magnitude. We conducted the same experiments as
before. Figure 7 illustrates the query response times without the ATT&CK Enterprise
knowledge base, while Figure 8 presents the results when incorporating the ATT&CK
Enterprise knowledge base. The maximum heap memory usage is 313 MB and 13,297 MB,
respectively.
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Figure 7. Openllet query response times without the MITRE ATT&CK Enterprise knowledge base.
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Figure 8. Openllet query response times with the MITRE ATT&CK Enterprise knowledge base.

The presented performance benchmarks affirm the practical viability of our approach,
even though more intricate queries may experience a higher query response time when
applied to a sizable knowledge base. Nevertheless, if the focus of the security analyst
is solely on managing ML attacks and defenses—i.e., excluding the traditional tactics,
techniques, and procedures from MITRE ATT&CK—then the overhead can be further
minimized. Nonetheless, given the expanding scientific literature and knowledge base on
adversarial ML, careful monitoring is essential to uphold query response times below an
acceptable threshold.

4.2.4. ELK Reasoner: Query Response Times

The Protégé tool also ships with the ELK reasoner [16]. The main difference with the
two previous OWL reasoners is that ELK is an OWL 2 EL reasoner. It is more restrictive in
that it limits the use of certain OWL constructs, such as disjunctions and certain types of
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cardinality restrictions. It is designed to provide a good balance between expressivity and
computational tractability. This makes ELK well-suited for scalable reasoning over large
ontologies.

We replicate the same pair of experiments conducted previously. The response times
for queries using ELK reasoner (version 0.5.0) are illustrated in Figures 9 and 10 for both
scenarios. The maximum heap memory usage is 207 MB and 2361 MB, respectively. Evi-
dently, the ELK reasoner emerges as the top-performing choice, showcasing query response
times consistently below 1 s.
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Figure 9. ELK query response times without the MITRE ATT&CK Enterprise knowledge base.
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Figure 10. ELK query response times with the MITRE ATT&CK Enterprise knowledge base.

For the kinds of queries included in our experiments, we did not observe any im-
pact from the restrictions imposed by the OWL 2 EL reasoner. Consequently, the ELK
reasoner has not only demonstrated practical feasibility but has also indicated that the
knowledge base can be further extended without causing significant concerns about query
response times.

4.3. Discussion and Limitations

Our cybersecurity framework and proof-of-concept implementation meets the targeted
objectives, but it is not without its limitations. While we are able to model new knowledge
about ML attacks and defenses, including the arms race between them, it is very difficult
to take into account the probabilistic nature of ML. Indeed, outcomes of attacks and
defenses are measured by probabilities (for example, for a given ML model, dataset and
implemented defenses, one previously successful attack may now only succeed in 10%
of the cases, whereas a new one may have a higher attack success rate), and this poses a
non-trivial difficulty in representing how well a defense can mitigate an attack, or vice
versa. Quantifying the efficacy of either an attack or a defense, and subsequently engaging
in reasoning based on these metrics, falls outside the realm of this research.

Our framework draws significant inspiration from the MITRE ATT&CK and ATLAS
knowledge bases, but that also limits its scope. For example, an Al system that makes
automated decisions without human intervention or processes sensitive data may raise
important privacy and ethics concerns. Extending our framework with a knowledge base and
reasoning capabilities for these kinds of privacy threats is an opportunity for further research.

Our design choices have led to a distinct separation between the ontology classes
‘Technique’ (also known as ‘AttackPattern” in STIX language) and ‘Mitigation” (also known
as ‘CourseOfAction’ in STIX language). However, in specific application scenarios, ad-
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versarial ML attacks can transition from being considered attacks to serving as defense
mechanisms. For instance, a technique designed to generate an adversarial example of a
person’s picture could be categorized as an impersonation attack if the goal is to deceive
the ML classifier of a face recognition system [29] to gain unauthorized access. Interestingly,
the same method can be employed as a defense strategy against mass surveillance when
the objective is to mislead the face recognition model into identifying the adversarial face
example as someone else [30]. The classification of a method as either an attack or a defense
depends on the stakeholder’s perspective, whether it be the developer of the security
system or the individual whose picture is involved. The current framework lacks support
for this multi-stakeholder perspective.

5. Conclusions

In this research, we enhance existing cybersecurity ontologies to address the unique
challenges of applications, systems, and services that heavily rely on Al including ML
and DL, for their decision-making processes. Our primary focus is on semantically docu-
menting prevalent threats in the realm of ML and formulating effective countermeasures.
This includes an exploration of the mechanisms through which emerging attacks can po-
tentially break existing defenses, along with the ongoing arms race between these threats
and defenses.

Our cybersecurity framework draws inspiration from the MITRE ATT&CK and ATLAS
knowledge bases. While these taxonomies provide a hierarchical structure to categorize
concepts related to adversarial behavior, they face difficulties in expressing complex re-
lationships and in effectively reasoning about both attacks and defenses. This challenge
becomes particularly pronounced in the dynamic context of the ongoing arms race between
adversarial techniques and defensive measures. Our solution can systematically formalize
a comprehensive body of knowledge. This knowledge is tailored to augment existing
taxonomies and threat modeling approaches, specifically for applications powered by
Al Leveraging advanced semantic reasoning capabilities, our framework facilitates the
automated assessment of these applications. Moreover, through experimental performance
benchmarks with our framework, we not only showcased its practical feasibility but also
revealed that the computational impact of employing sophisticated ontology reasoners is
within acceptable bounds.

As next steps, we plan to continually expand the knowledge base with new attacks
and defenses found in the scientific literature. Other application areas we aim to include
are the MITRE ATT&CK knowledge bases and threat matrices for Mobile and Industrial
Control Systems (ICSs), especially when they cover Al-related threats and defenses [31,32].
Additionally, we plan to enhance the front end of our framework, offering an enriched
user interface akin to well-known threat navigator dashboards. This continuous process
ensures that the knowledge base behind our framework remains up-to-date, adaptable,
and accessible in a user-friendly manner in an ever-evolving landscape of cybersecurity
threats and defenses of Al-enabled systems and applications.
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Appendix A. Processing the STIX 2.1 Knowledge Base with Python

Listings A1 and A2 show how to process STIX 2.0 JSON files, respectively, with the

Python stix2 (version 3.0.1) package and the Python mitreattack-python (version 3.0.2)
package.

Listing A1. Processing the ATT&CK (version 14.1) Enterprise knowledge base in STIX format and
filtering the first entry with an external reference to https://attack.mitre.org/techniques/T1111
(accessed on 23 January 2024).

® NG ok W N =

from stix2 import MemoryStore
from stix2 import Filter

src = MemoryStore()
src.load_from_file("enterprise-attack/enterprise-attack-14.1.json")

t1111 = src.query([ Filter("external_references.external_id", "=", "T1111"),
Filter("type", "=", "attack-pattern") 1)[0]
print(tl1111)

Listing A2. Processing the ATT&CK (version 14.1) Enterprise knowledge base in STIX format with
the mittreattack-python (version 3.0.2) instead of the stix2 (version 3.0.1) package.

1
2
3
4
5

6
7
8
9

from mitreattack.stix20 import MitreAttackData

mitre_attack_data = MitreAttackData("enterprise-attack/enterprise-attack-14.1.json")
for attack_pattern in mitre_attack data.get_objects_by_type("attack-pattern"):
for external_reference in attack_pattern["external_ references"]:

if "external_id" in external_reference and external_reference["external_id"] == "T1111":
t1111 = attack_pattern
break
print(tl1111)

Appendix B. YAML Representation of ATLAS Tactics, Techniques, and Mitigations

Listings A3, A4, and A5 respectively depict a tactic, technique, and mitigation from

the MITRE ATLAS knowledge base in YAML format.

Listing A3. YAML description of one of the tactics in the ATLAS Machine Learning Threat Matrix.

1

- id: AML.TA0002

name: Reconnaissance

object-type: tactic

ATT&CK-reference:
id: TAG0O43
url: https://attack.mitre.org/tactics/TA0043/

description: 'The adversary is trying to gather information about the machine
learning system they can use to plan future operations.

Reconnaissance consists of techniques that involve adversaries actively or passively
gathering information that can be used to support targeting.

Such information may include details of the victim organization‘s machine learning
capabilities and research efforts.

This information can be leveraged by the adversary to aid in other phases of

the adversary lifecycle, such as using gathered information to obtain relevant

ML artifacts, targeting ML capabilities used by the victim, tailoring attacks

to the particular models used by the victim, or to drive and lead further Reconnaissance
efforts.
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Listing A4. YAML description of the Journals and Conference Proceedings (AML.T0000.000) sub-
technique in MITRE ATLAS.

1 - id: AML.T0000.000

2
3
4
5
6
7
8
9

10
11
12
13
14
15

name: Journals and Conference Proceedings

object-type: technique

description: ’'Many of the publications accepted at premier machine learning conferences
and journals come from commercial labs.

Some journals and conferences are open access, others may require paying for
access or a membership.

These publications will often describe in detail all aspects of a particular
approach for reproducibility.

This information can be used by adversaries to implement the paper.

’

subtechnique-of: AML.T0000

Listing A5. YAML description of the Model Hardening (AML.M0003) mitigation in MITRE ATLAS.

1
2
3
4
5
6
7
8
9

- id: AML.M00O3

name: Model Hardening

object-type: mitigation

category:

- Technical - ML

ML-lifecycle:

- Data Preparation

- ML Model Engineering

description: ’'Use techniques to make machine learning models robust to adversarial
inputs such as adversarial training or network distillation.’

techniques:

- id: AML.T0015
use: 'Hardened models are more difficult to evade.’

- id: AML.T0031
use: 'Hardened models are less susceptible to integrity attacks.’

Appendix C. Semantic Representation of Scientific Literature

Listing A6 illustrates how scientific literature is semantically represented with the

SPAR ontologies.
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Listing A6. Semantic representation of scientific literature and newer work.

© W N G e W N =

1
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

=

55
56
57
58
59
60
61
62
63
64
65

@prefix :

@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix

<http://www.sparontologies.net/example/> .

application: <http://purl.org/NET/mediatypes/application/> .
fabio: <http://purl.org/spar/fabio/> .

frbr: <http://purl.org/vocab/frbr/core#> .

prism: <http://prismstandard.org/namespaces/basic/2.0/> .
rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

xsd: <http://www.w3.0rg/2001/XMLSchema#> .

dcterms: <http://purl.org/dc/terms/> .

foaf: <http://xmlns.com/foaf/0.1/> .

cito: <http://purl.org/spar/cito/> .

:urlnet2018 rdf:type fabio:ResearchPaper ;
dcterms:creator :hungle, :quangpham, :doyensahoo, :stevenchhoi ;
frbr:realization :urlnet2018-version-of-record .

:urlnet2018-version-of-record rdf:type fabio:Article ;
dcterms:title "URLNet: Learning a URL Representation with Deep Learning for Malicious URL Detection" ;
fabio:hasPublicationYear "2018"~"xsd:gYear ;
prism:doi "10.48550/arXiv.1802.03162"
frbr:embodiment :pdf .

:pdf rdf:type fabio:DigitalManifestation ;
dcterms:publisher :arxiv ;
dcterms:format application:pdf ;
prism:publicationDate "2018-03-02"""xsd:date .

rarxiv rdf:type foaf:0rganization ;
foaf:name "arXiv"

rhungle

rdf:type foaf:Person ;

foaf:name "Hung Le"
foaf:givenName "Hung" ;
foaf:familyName "Le"

:quangpham rdf:type foaf:Person ;
foaf:name "Quang Pham" ;
foaf:givenName "Quang" ;
foaf:familyName "Pham"

:doyensahoo rdf:type foaf:Person ;
foaf:name "Doyen Sahoo"
foaf:givenName "Doyen" ;
foaf:familyName "Sahoo"

:stevenchhoi rdf:type foaf:Person ;
foaf:name "Steven C.H. Hoi"
foaf:givenName "Steven" ;
foaf:familyName "Hoi"

:grambeddings2023 rdf:type fabio:ResearchPaper ;
frbr:realization :grambeddings2023-version-of-record .

:grambeddings2023-version-of-record rdf:type fabio:JournalArticle ;
dcterms:title "GramBeddings: A New Neural Network for URL Based Identification of Phishing Web Pages
Through N-gram Embeddings" ;
fabio:hasPublicationYear "2023"~"xsd:gYear ;
prism:doi "10.1016/j.cose.2022.102964"

:grambeddings2023 cito:usesMethodIn :urlnet2018 .
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