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Abstract We discuss how to learn non-recursive directed probaiilistjical models from
relational data. This problem has been tackled before byadg the structure-search
algorithm initially proposed for Bayesian networks. Instipaper we show how to upgrade
another algorithm for learning Bayesian networks, nametienng-search. For Bayesian
networks, ordering-search was found to work better tharcgire-search. It is non-obvious
that these results carry over to the relational case, hawsinee there ordering-search needs
to be implemented quite differently. Hence, we perform greeixnental comparison of these
upgraded algorithms on four relational domains. We coreltidht also in the relational
case ordering-search is competitive with structure-$ear¢erms of quality of the learned
models, while ordering-search is significantly faster.

Keywords statistical relational learningprobabilistic logical models inductive logic
programming Bayesian networksprobability trees structure learning

1 Introduction

There is an increasing interest in probabilistic logicabiels as can be seen from the variety
of formalisms that have recently been introduced for regrésg such models. Many of
these formalisms deal with directed models that are upgrati8ayesian networks to the
relational case. Learning algorithms have been developesefveral such formalisms [12,
15,19]. Most of these algorithms are essentially upgrafidsedraditionalstructure-search
algorithm for Bayesian networks [13].

An alternative algorithm for learning Bayesian networkgjrenrecent than structure-
search, isordering-search[22]. Ordering-search is based on the fact that it is redfiv
easy to learn a Bayesian network if an ordering on the randanables is given (because
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this eliminates the possibility of cycles; this was for arste the idea behind the seminal
K2 learning algorithm [3]). However, usually the best ordgrie not known in advance.
Hence, the idea behind ordering-search is to perform a $teusearch through the space
of possible orderings to find the best ordering. Teyssier l&olier [22] experimentally
compared ordering-search to structure-search for leguBayesian networks. They found
that ordering-search is competitive with structure-deancterms of quality of the learned
Bayesian networks, while ordering-search is usually faste

Unlike structure-search, ordering-search has not yet bpgraded to the relational case.
The good performance of ordering-search for Bayesian mésumotivates us to perform
this upgrade, and to investigate whether also in that cateriog-search still performs well
as compared to structure-search. This is an interestingtiquesince it is non-obvious that
the efficiency advantage of ordering-search over struetaagch as observed for Bayesian
networks also holds in the relational case. The reasonifistkthat ordering-search needs to
be implemented quite differently in the relational case tuée fact that simple conditional
probability tables can no longer be used (see Section 6.1.5)

1.1 Contributions

The main contributions of this work are three-fold. Firsg wpgrade the ordering-search
algorithm towards learning non-recursive directed prdlisic logical models. Second, we
discuss the relation of the resulting algorithm to the odiordering-search algorithm and
to several algorithms for learning recursive dependentiaisd, we experimentally compare
our ordering-search algorithm to the upgraded structaegeh algorithm on four relational
domains. We use the formalism Logical Bayesian Networkd{f]the proposed approach
is also applicable to related formalisms such as Prob#bilgelational Models [10,12],
Bayesian Logic Programs [15, 16] and Relational Bayesiamwblés [14].

Part of this work has been published before [9]. This papearels our previous work in
three ways. First, we included a discussion of some pragseofiLogical Bayesian Networks
that are relevant for learning, and how to deal with themo8dcwe included a discussion
of the relation of our ordering-search algorithm for LogiBayesian Networks to related al-
gorithms (namely the original ordering-search algorithmd aeveral algorithms for learning
directed probabilistic logical models with recursive degencies). Third, we extended the
experimental analysis in several respects (we added twovarld datasets, we performed a
more detailed analysis of running times of the algorithmesyeport learning curves, and we
give examples of learned dependencies). Apart from theeabgiensions, this paper also
provides some more details on several issues.

1.2 Structure of the paper

This paper is structured as follows. We first discuss somkngireries in Section 2. Then

we review Logical Bayesian Networks in Section 3 and dissasse relevant properties in
Section 4. We discuss the setting of learning non-recuiisbgical Bayesian Networks in

Section 5 and the corresponding ordering-search and stassearch algorithms in Section
6. We experimentally compare these algorithms in Sectidm Section 8 we briefly discuss
learning recursive models. Finally, in Section 9 we conelud



2 Preliminaries

We first discuss some preliminaries about Bayesian netwj@®{sand logic programming
[17].

2.1 Bayesian Networks

A Bayesian networks a compact specification of a joint probability distrilmtion a set
of random variables (in this paper we only consider disartelom variables). A Bayesian
network consists of a qualitative part and a quantitativie pae qualitative part is directed
acyclic graph the so-called ‘structure’ of the Bayesian network. Theeasoth this graph
represent random variables, and the directed edges sg@pifigpendencies between the
random variables: each variable is conditionally indepenaf its non-descendants given
its parents. Essentially, the parents of a variable can ée ae the ‘direct influences’ of
that variable. The quantitative part of a Bayesian netwsik $et otonditional probability
distributions (CPDs)Concretely, each variabl€ needs a CPD that specifies the probability
distribution of X given its parents (i.e., for each joint state of the pareftX pthis CPD
specifies a probability distribution on the possible valags). CPDs can be represented
in several ways. Two popular formats a@nditional probability table$13] andprobability
trees[11].

When learning Bayesian networks from data, the goal is bstmlifind the structure
and CPDs that maximize a certain scoring criterion, suchkatHood or the Bayesian
Information Criterion [13].

2.2 Logic Programming

A predicaterepresents a property or relation and is denoteg/aswherep is the name and

n is the number of arguments or arity. Arguments of predicatesallederms and can be
constants (denoted by lower-case symbols), variablesofddrby upper-case symbols) or
compound objects. Aatomis a predicate together with the right number of arguments. A
literal is an atom or a negated atom. A term, atom or litergirundif it does not contain
any variables. A (groundubstitutionis an assignment of (ground) terms to variables and
the result of applying a substitutiohto a literal (or conjunction of literals) is denoted

by 16. An interpretationof a set of logical predicates is an assignment of a truthevédu
each ground atom that is built from these predicates andh#saarguments belonging to the
considered domain of discourse.

A definite clauses of the formhead « body, wherehead is an atom andody is a
conjunction of atoms (all free variables in the clause anglicitly universally quantified).
A definite logic programis a finite set of definite clauses. Theast Herbrand modedf a
definite logic program is an interpretation of all predisatessed in the program in which
all the clauses of the program are satisfied. Practicallglspg, the least Herbrand model
captures the semantics of a logic program.



3 Logical Bayesian Networks

We now review Logical Bayesian Networks by means of an example also define the
notion of recursive and non-recursive Logical Bayesianwets, and briefly discuss the
relation of Logical Bayesian Networks to some other proligth logic formalisms.

3.1 Logical Bayesian Networks: Example

A Logical Bayesian Networsr LBN [6] is essentially a specification of a Bayesian network
conditioned on some logical input predicates that desdtieedomain of discourse. For
instance, when modelling the well-known ‘university’ domgl2], we would use predicates
student /1, course/1, prof /1, teaches/2 andtakes/2 with their obvious meanings. The
semantics of an LBN is that, given an interpretation of theggcal predicates, the LBN
induces a particular Bayesian network (see below).

In LBNs random variables are represented as ground atortisfionn certain special
predicates, therobabilistic predicatesFor instance, ifintelligence/1 is a probabilistic
predicate then the atommtelligence(ann) is called a probabilistic atom and represents a
random variable. Apart from sets of logical and probahdigredicates, an LBN basically
consists of three parts: a set of random variable declaigtiset of dependency statements,
and a set of logical CPDs. The former two together deterntieestructure of the induced
Bayesian network, while the logical CPDs quantify the delesries in this structure.

3.1.1 The Structure of the Induced Bayesian Network

For a given interpretation of the logical predicates, thedmm variable declarations in an
LBN determine the set of random variables (nodes) in thedadBayesian network, while
the dependency statements determine the dependencies)etiogether, this fully deter-
mines the structure of the induced Bayesian network.

Random variable declarations are of the fot@mdom (p) < body, whererandom/1 is
a logical predicate (which cannot be used outside of thearmneariable declarationsy,is
a probabilistic atom antbdy is a conjunction of logical atoms. For the university domain
the random variable declarations are the following.

randon(intelligence(S)) <- student(S).
random(ranki ng(S)) <- student(S).
random(di fficulty(C) <- course(Q).
random(rating(C)) <- course(Q).
random(ability(P)) <- prof(P).
random(popul arity(P)) <- prof(P).
random(grade(S,C)) <- takes(S, C.
randon(sati sfaction(S,C) <- takes(S, C.

Informally, the first clause, for instance, should be redd@as:lligence(S) is a random vari-

able if S is a student”. Assuming that the interpretation of the labjizedicates is defined by
a set of definite clauses, these clauses together with tidemanariable declarations form
a definite logic program, theandom variable declaration progranthat defines the random



variables in the induced Bayesian networkormally, there is a random variahidor every
atomrandom(a) in the least Herbrand model of the random variable dectargtrogram.

Dependency statements are of the fdread | body < context, wherehead is a prob-
abilistic atom,body is a conjunction of probabilistic atoms amdntext is conjunction of
logical literals. If the context is empty (or ‘true’) we omittfrom the notation and write
head | body. The dependency statements for the university domain artofowing.

grade(S,C | intelligence(S), difficulty(Q.
ranki ng(S) | grade(S, 0.

satisfaction(S,C | grade(S, C.
satisfaction(S,C | ability(P) <- teaches(P, C).
rating(C) | satisfaction(S, C).

popularity(P) | rating(C <- teaches(P, Q.

Informally, the first statement, for instance, should balres “the grade of a studeftfor
a courseC' depends on the intelligence Sfand the difficulty ofC” and the last statement
as “the popularity of a professdr depends on the rating of a courSeif P teachesC”.
Formally, a dependency statement a1,...an « context specifies that,;0 is a parent
of af in the induced Bayesian networkdfis a ground substitution for which the conjunc-
tion random(a)8, random(ay)9, .. .random(an)8, contextd is true in the least Herbrand
model of the random variable declaration program. Notettiiaimplies that a dependency
statement with multiple probabilistic atoms in the bodycfsas the first statement) only
‘fires’ if all atoms in the body are indeed random variables.

To make this more concrete, consider the following intetgdren of the logical predi-
cates (specified as a set of facts for these predicates).

st udent (m ke) . st udent (enma) .

pr of (j ohn).

course(ai). course(m).

t akes(enmg, ai ) . t akes(emma, m ). t akes(m ke, ai ).
t eaches(j ohn, ai). t eaches(j ohn, m ).

Given an LBN with the above random variable declarationsdamendency statements, the
structure of the induced Bayesian network for this inteigiien is shown in Figure 1. The
random variables (nodes) in this network are determinechbyrandom variable declara-
tions, the dependencies (edges) by the dependency statemen

3.1.2 Quantifying the Dependencies

To quantify the dependencies specified by the dependengystats, LBNs associate with
each probabilistic predicate a so-called logical CPD. €Hegical CPDs can be used to
determine the CPDs in the induced Bayesian network.

We represent logical CPDs under the form of logical proligbttees in TLDE [7]
(as an alternative to the combining rules used in some otirendlisms [14,16,15, 19]).
The leaves of the tree for a probabilistic at@m4.: contain probability distributions on
the values ofpsurge¢. The internal nodes of the tree contain a) tests on the vailfies
probabilistic atom, b) conjunctions of logical literals@rcombinations of the two. In order

1 This can be extended to clauses and random variable démteratith negativeliterals in the body if
care is taken that the resulting program has a unique twegdatoodel, i.e., that the well-founded model is
two valued.
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Fig. 1 The structure of the induced Bayesian network for our rupexample.

’ teaches(P, C), ability(P) = low ‘

’ grade(S, C) = high ‘ ’ grade(S,C) = low ‘

(high: 0.2 low: O.ED (high: 0.1 low: O.ED (high: 0.7 low: 0.39 (high: 0.9 low: 0.1)

Fig. 2 Example of a logical CPD fosatisfaction(S, C). Tests in internal nodes are binary. When a test
succeeds the left branch is taken, when it fails the righhdiras taken. Note that internally inidDE, tests
like grade(S, C') = low are represented ggade(S, C, low).

for the tree for a probabilistic atom,4e: t0 be consistent with the dependency statements,
the tree can of course only test on probabilistic atoms treaparents 0pqrger according

to the dependency statements. An example of a treedtsf action(S,C) is shown in
Figure 2. Recall that according to the dependency statemertisf action(S,C) depends
ongrade(S, C), and onability(P) whereP teaches’.

Note that we cannot simply use conditional probability ¢stds a format for represent-
ing CPDs in LBNs since they are too restrictive. One problethat conditional probability
tables cannot deal with a variable number of inputs (as sdouinstance when the ranking
of a student depends on his grades for all courses takenhamiiber of courses per stu-
dent can vary). Logical probability trees inLDE can deal with a variable number of inputs
because the tests in the internal nodes are first-orderegudts shown by Van Assche et al.
[23], this makes it possible to express selection (for msta does there exist a course for
which the student has a high grade), aggregation (for inetdm the average of all grades
of the student high) and combinations of the two.



Fig. 3 The predicate dependency graph of the LBN for the univedsityiain.

3.2 Recursive and Non-recursive Logical Bayesian Networks

Thepredicate dependency grapfian LBN is the graph that contains a node for each proba-
bilistic predicate and an edge from a nggdeto a nodep- if the LBN contains a dependency
statement with predicat® in the head ang; in the body. The predicate dependency graph
of the LBN for the university domain is shown in Figure 3.

An LBN is callednon-recursivef its predicate dependency graph is acyclic aaclr-
sive otherwise. Note that for non-recursive LBNs the induced é&ign network (for any
interpretation of the logical predicates) is always aaydtor recursive LBNs, the induced
network can be cyclic or acyclic depending on the interpieteof the logical predicates. If
it is cyclic then the semantics of the LBN with respect to thtgrpretation is left undefined.

3.3 Related Probabilistic Logic Formalisms

The formalism of LBNs is closely related to other probabitisogic formalisms that are
based on Bayesian networks. Some of the many such formalisenProbabilistic Rela-
tional Models [12], Bayesian Logic Programs [16] and Relai Bayesian Networks [14].
Like LBNs, most of these formalisms make a distinction betwa qualitative part (such as
the random variable declarations and dependency statermehBNs), and a quantitative
part (such as the logical CPDs in LBNs). For each of thesedbsms, the representation for
the qualitative partis somewhat different. For some more details on this isseeefer to
Fierens et al. [6]. However, the main difference between EBNd other probabilistic logic
formalisms based on Bayesian networks might be irgthentitative part To the best of our
knowledge, LBNs is the only such formalism that ukmgcal probability treego quantify
the dependencies. Most other formalisms instead use sard@kcombining rules (such as
noisy-or) [16] or combination functions [14]. Our motivati for using logical probability
trees in LBNs is the success of probability trees as a fororatgdecifying CPDs in Bayesian
networks [11]. The advantage of probability trees is thayttan compactly represent CPDs
that exhibit context-specific independencies, which métkesssible to learn more accurate
Bayesian networks [11] and speed up probabilistic infeedtf By using logical probabil-
ity trees in LBNs, we essentially upgrade this approach¢adhational case.



4 Properties of Logical Bayesian Networks

In this section we discuss two properties of LBNs that hawdotwith cases in which depen-
dency statements can be rewritten into other dependenteyrsats, leading to an equivalent
LBN. (We call two LBNs equivalent if, for any possible integpation of the logical predi-
cates, their induced Bayesian network for that interpitdas the same.)

1. A dependency statement with multiple atoms in the bodykEmamewritten into a set
of dependency statements each with only one atom in the Mdycall this process
‘decomposing’ the dependency statement.

2. Some dependency statements are redundant or contairdesduiterals in the context.
Such redundant statements or literals can be removed.

Both these properties arelevant with respect to learning

1. The first property implies that we can restrict the hypsiispace to LBNs with depen-
dency statements with only one atom in the body (since argraBN is equivalent to
such an LBN).

2. The second property is useful to simplify learned depeoylstatements.

We will make use of these two observations in Section 6.

Below we only discuss these two properties for LBNs in whicl random variable
declarations are disjoin{the head of any random variable declaration does not unify w
the head of any other random variable declaration). Theore&w this is that these prop-
erties are most easily formulated for such LBNs and that aplysidering such LBNs is
no restriction: any set of non-disjoint random variableldestions can be translated into
an equivalent set of disjoint random variable declaratiopsntroducing an extra logical
predicate.

Example 1 (Disjoint random variable declarationghe following two random variable
declarations are not disjoint.

randon(ranki ng(S)) <- bachel or _student(S).
random(ranki ng(S)) <- naster_student(S).

If we include the following clauses

student (S) <- bachel or _student (S).
student (S) <- naster_student(S).

as background knowledge in the random variable declargtiogram, then we can replace
the two original random variable declarations by the follugvone.

random(ranking(S)) <- student(S).

4.1 Decomposing Dependency Statements

We now show that a dependency statement with multiple atartisei body can be decom-
posed into an equivalent set of dependency statements étlchnly one atom in the body.



Theorem 1 (Decomposing dependency statement€pnsider an LBNZ; containing a
dependency statement of the form

alai,...,an —c. n>2.

Let £, be the LBN obtained by replacing this dependency statenyettielfollowing set of
dependency statements
alay < cbi.

al|a; — ¢ b;.

al|an < ¢, bn.

whereb; is the conjunction of the bodies of the random variable datians with the atoms
Alyens j—1,QAi4715---,0n in the head.
Then£; and £, are equivalent.

We prove this theorem in Appendix A.1.
The intuition behind this decomposition is best explainethio steps.

1. Recall that a dependency statement of the form
alai,...,an—c. n>2

only ffires’ if all atoms in the body are defined as random Jalga (Section 3.1.1).
Hence, such a dependency statement can be replaced by ldweirigl set of ‘decom-
posed’ dependency statements.

a | a1 < c,random(az),...,random(an).
a | a; — ¢,random(ay),...,random(a;—1),random(a;+1), ..., random(an).
a | an < ¢,random(ay),...,random(an,—1).

The function of the extraandom/1 atoms in the context of these decomposed de-

pendency statements is to ensure that these statementsdire only if the original
dependency statement fires too.

2. For each of these decomposed dependency statements) veplzece all theandom /1
atoms in the context by their definition as given by the randanable declarations (in
logic programming terminology, this is callathfolding the random/1 atoms). The
result of this step is the set of dependency statements fiydmeorem 1.

We now illustrate this using two examples.

Example 2 (Decomposing dependency statem@uis$ider again the LBN for our running
example, in particular the following random variable deafns and dependency state-
ment.

randon(intelligence(S)) <- student(S).
randon(difficulty(C) <- course(C.
random(grade(S,C)) <- takes(S, C.

grade(S,C) | intelligence(S), difficulty(Q.
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In a first step, this dependency statement can be decompotethe two following
statements.

grade(S,C | intelligence(S) <- random(difficulty(C)).
grade(S,C) | difficulty(C <- randon(intelligence(S)).

In a second step, we can replace thedom /1 atoms in the context by their definition
as given by the random variable declarations.

grade(S,C) | intelligence(S) <- course(Q.
grade(S,C | difficulty(C) <- student(S).

0O

Example 3 (Decomposing dependency statement#\&3% more advanced example, con-
sider the following random variable declarations and ddpany statement.

random(ranking(S)) <- student(S).
random(intelligence(S)) <- student(S).

randon(t hesis_score(S)) <- student(S), in_master(S).
ranki ng(S) | intelligence(S), thesis_score(S).

The dependency statement only fires if both intelligence thedis-score are defined as
random variables. Note that ranking and intelligence afeneé for students but thesis-
score is defined only for particular students, namely mastetents. Hence, the dependency
statement only fires for master students.

In a first step, this dependency statement can be decompsdeitbavs.

ranki ng(S) | intelligence(S) <- random(thesis_score(S)).
ranki ng(S) | thesis_score(S) <- random(intelligence(S)).

In a second step, we can again replacerthelom /1 atoms by their definition.

ranki ng(S) | intelligence(S) <- student(S), in_master(S).
ranki ng(S) | thesis_score(S) <- student(S).

In the next section we show how these statements can berfgithplified. O

4.2 Redundancy in Dependency Statements

We now show that some LBNs contain redundant dependen@nstats, or redundant lit-
erals in the context of the dependency statements. Thetitaibelow are relative to some
set of random variable declarations, but we leave this sgli¢ih

Definition 1 (Redundant dependency statement)Ve call a dependency statement of the
form
alai,...,an < cj.

redundantwith respect to another dependency statement with the seatwdnd body but
contextey if the conjunctionrandom(a), random(ay), . . ., random(an), c1 impliescs.

The intuition behind this definition is the following. Therddition in this definition is such
that the second dependency statement (witim the context) fires whenever the first state-
ment fires. Since both statements have the same head andibsdyakes the first statement
redundant.
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Definition 2 (Redundant context literal) We call a literall in the context of a dependency
statement of the form
alai,...,an < cl.

(with ¢ being a conjunction of logical literalsedundantif the conjunctionrandom/(a),
random(ay), ...,random(an), cimpliest.

The following theorem shows that removing redundant depecyl statements or re-
dundant literals preserves the semantics of an LBN.

Theorem 2 (Redundancy in dependency statement§onsider an LBNZ; and an LBN
L, obtained by removing redundant dependency statementsranredundant context liter-
als from£;. ThenZ; and £, are equivalent.

We prove this theorem in Appendix A.2.
We now illustrate this by continuing Example 3.

Example 4 (Redundant context liter&pnsider the random variable declarations and de-
pendency statements obtained in Example 3.

random(ranki ng(S)) <- student(S).

random(intelligence(S)) <- student(S).

random(t hesi s_score(S)) <- student(S), in_master(S).
ranking(S) | intelligence(S) <- student(S), in_nmaster(S).
ranki ng(S) | thesis_score(S) <- student(S).

In both dependency statements, the litesialdent(S) is redundant. The intuition is that
these statements only fire #finking(S) is a random variable, which requires thgtis

a student (according to the random variable declarationaefing(S)). Hence we can
remove these literals from the context.

ranking(S) | intelligence(S) <- in_naster(S).
ranki ng(S) | thesis_score(S).

Note that the second statement does not specify in the domi&ixS should be a master
student. This is indeed not needed since thesis-scoreyiglefined for master students and
hence the statement only fires for master students anyway. O

In this example only redundant literals occurred. An exanvphere redundant statements
occur can be found later in this paper (Section 6.1.4).

5 Learning Non-recursive Logical Bayesian Networks: The Larning Setting

We now discuss the problem of learning LBNs from relatioretbd In this paper we focus
on learningnon-recursivedLBNs. We briefly discuss learning recursive models in Secsio
The learning task that we consider can be summarized asvillo

— Given:
— a set of random variable declarations,
— a scoring criterion,
— a dataset.
— Find: the LBN (i.e., dependency statements and logical CPDs)haimizes the score
on the dataset.



12

Note that we assume that the random variable declaratiengiaen. This is similar to the
learning setting for Probabilistic Relational Models, whé¢he relational schema is given
[10,12]. As a scoring criterion we use tBayesian Information Criterion (BIQy, 13], but
our algorithms can be used with any other decomposablengcoriterion as well (in terms
of LBNs, a scoring criterion is decomposable if the scorerof BN can be written as the
sum of local scores for each of the logical CPDs in that LBN).

The data that we learn from is a datasetradga example@erminology adopted from
Mihalkova et al. [18]). Each mega example is a set of conwlegieces of information. For
instance, in a dataset about the inheritance of genes araamnly inembers, each mega ex-
ample would correspond to one particular family; in a datisehe university domain, each
mega example corresponds to one particular collectionuofestts, professors and courses
with all their relations and properties. We assume that neegenples are mutually inde-
pendent. Learning from a dataset consisting of independegg examples (as opposed to
learning from a single relational database) is useful fetance for cross validation. We use
the term ‘mega example’ rather than simply ‘example’ beeaas we will see later, each
mega example can give rise to multiple smaller examplesfmning logical CPDs.

In our learning setting, each mega example consists of twis:pa logical part and a
probabilistic part. The logical part consists of an intetption of the logical predicates.
The probabilistic part consists of an assignment of valaed ground random variables (as
determined by the random variable declarations). Thisidai to the data used for learning
Bayesian Logic Programs [5] or Relational Bayesian Netw¢ik].

Example 5Consider a simplified variant of the university domain in gthiwe consider
only students and courses (but no professors) and use omtypfobabilistic predicates
(ranking/1, difficulty/1, rating/1 and grade/2). The logical part of a mega example
would then specify all students and courses, and which stadake which courses. This
could for instance look as follows.

student (sl). student (s2).
course(cl). course(c2).
t akes(s1,cl). t akes(s2,cl). t akes(s2,c2).

The probabilistic part of a mega example specifies a valualfesandom variables for that
mega example. This could for instance look as follows.

ranki ng(s1)=hi gh ranki ng(s2)=nid
difficulty(cl)=md difficulty(c2)=high
rating(cl) =l ow rating(c2)=md
grade(sl, cl) =hi gh grade(s2,cl)=nid grade(s2, c2) =l ow
]

6 Learning Non-recursive Logical Bayesian Networks: The Adorithms

We now discuss the algorithms for learning non-recursivélEBW\e first show how to up-

grade the ordering-search algorithm for Bayesian netwtow&rds non-recursive LBNs.
Next, we briefly discuss a structure-search algorithm foNEBhat is similar to existing

learning algorithms for other probabilistic logic formstis. Finally, we briefly discuss how
both algorithms can be implemented in an efficient way. Tesstthe difference with Logical
Bayesian Networks we will sometimes refer to ordinary Bémsetworks as ‘proposi-

tional’ Bayesian networks.
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6.1 Ordering-search

First we briefly discuss ordering-search for the proposéi@ase. Then we discuss the case
of LBNs, and the differences between the two.

6.1.1 Ordering-search for Propositional Bayesian Netvgork

Ordering-search for propositional Bayesian networks [2Bjased on two observations.

— ltis relatively easy to learn a Bayesian network if an ondigron the random variables
is given.

— Usually the best ordering is not known in advance. Hence @lsebrough the space of
possible orderings needs to be carried out to find the bestiogd

We now explain this further.

Given an orderingn the random variables, itis relatively easy to learn trst Bayesian
network consistent with that ordering (by consistent we mbat the parents of a variable
X should all precedex in the ordering). Given such an ordering, and provided that t
scoring criterion used is decomposable, the learning taskmposes: to find the Bayesian
network with the highest score we simply need to find for eactdom variable separately
the CPD with the maximal local score. Note that the functibthe ordering is to eliminate
the possibility of cycles (if we would not take into account@dering, learning each CPD
separately would very likely lead to cycles in the networkjah is not allowed). Note that
in principle the parents for a variabl€ could be all the variables that precedein the
ordering. However, this would lead to a ‘fully-connectedtwork, which is undesirable.
Hence, the approach of Teyssier and Koller [22] is to looktfe bestk parents forX
(they use at most=4). They do this by considering all possible parent setdzef /s (i.e.,
all subsets of sizé of the set of variables that precedein the ordering). For each such
set they compute the score of the resulting CPD. They thertsiéle highest scoring CPD,
and use this as the final CPD faf. The parents of are then the variables that occur in
that CPD. This procedure is applied in turn to each randonabkerX, yielding a complete
Bayesian network.

Using the above strategy, the score of the resulting netwlepends heavily on the
ordering that is used. However, usualhe optimal ordering is not known in advand¢ence,
the idea of ordering-search is to search through the spaoedefings, for each ordering
applying the above procedure for finding the CPDs (we disthessearch process in more
detail for LBNs below). At the end, the best ordering is ne¢al, and the Bayesian network
for that ordering is returned as the final network.

Teyssier and Koller [22] experimentally compared ordessegrch and structure-search
for propositional Bayesian networks and found that ordgsearch is always at least as
good and usually faster. As an explanation they note thasphee of orderings is smaller
than the space of structures, and that ordering-searchrabe®ed acyclicity tests, which
are costly if there are many variables.

6.1.2 Ordering-search for Logical Bayesian Networks

Until now ordering-search has not yet been upgraded to tbe eBnon-recursive directed
probabilistic logical modefs The above conclusions from the propositional case metivat

2 Note that ordering-search is mainly relevant for directestlats, and not for undirected models such as
Markov Logic Networks [21] (since the point of ordering-sgais to avoid directed cycles).
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us to consider this. We now show how to upgrade orderingekemwards learning non-
recursive LBNs.

Similar to the case of propositional Bayesian networks, ésy to learn a non-recursive
LBN when anordering on the probabilistic predicatés given. Again the learning task de-
composes: we can learn for each probabilistic predicateraggy the logical CPD. To learn
the logical CPD for a predicate we learn a logical probability tree for predictipg This
procedure is applied in turn to each probabilistic predipayielding a set of logical CPDs.
As we explain below, the dependency statements can be &driiom these logical CPDs
in a post-processing step. Recall from the previous sechiahin the propositional case
some care needs to be taken to ensure that the resultingrikeésamot fully-connected. In
our learning algorithm for LBNSs, this is accomplished in atgwsimple way. This is due
to the fact that we use logical probability trees as CPDs,thatllearning algorithms for
decision trees are typically ‘selective’ (if we learn a démn tree with as input a number
of predicates, then the learned tree will typically only t@in tests on some of these predi-
cates). Hence, to learn the tree for a predigatee simply supply all predicates preceding
p in the ordering as inputs to the learning algorithm, andHetlearning algorithm select
which of these predicates are really relevant for predictinThe selectivity of the tree
learning algorithm then ensures that we do not obtain ayfcatinnected’ LBN.

The above strategy requires an ordering on the probabifistidicates. When the opti-
mal ordering is not known in advance, we need to search owsilgle orderings. Obviously
exhaustive search is infeasible, so some kind of heuristicch is needed. Like Teyssier and
Koller [22] in the propositional case, we essentially parfdill-climbing through the space
of all orderings Concretely, we start from a random ordering and computsdbee for this
ordering (i.e., the score of the LBN learned using this ardgr Then we consider all candi-
date orderings in the neighbourhood of the initial orderengd select the ordering with the
highest score. Using this ordering as the new ordering, weatthe same procedure, and
so on until we obtain no more improvements. We then use thedb@PDs learned for the
final ordering as the final logical CPB)sThis algorithm is summarized in Figure 4.

% start with a random ordering:
Ocurrent = random ordering on the probabilistic predicates
computescore(Ocurrent)
% search for a better ordering:
repeat until convergence
for each O qna € neighbourhood(Ocurrent)
computeAscore(Ogqng) = score(Oeqng) — score(Ocurrent)
end for
if maz(Ascore(Ocgna)) > 0
Ocurrent = argmax(Ascore(Ocand))
end if
end repeat
% extract the dependency statements from the logical CRiDsdd for the final ordering:
for each probabilistic predicate
extract dependency statements from the logical CPR fearned usin®current
end for

Fig. 4 The ordering-search algorithm for learning LBNs.

3 Since the initial ordering might influence the final resule¢ause the algorithm only converges to a
local optimum), it could be useful to perform random restare., multiple runs with different initial random
orderings. However, in our experiments we found the gaihisfto be very small. This not only holds for the
above ordering-search algorithm, but also for the streessarch algorithm that we discuss later.
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In the above algorithm the neighbourhood of an ordering fsdéd as the set of order-
ings that can be obtained by swapping a pair of adjacentqatdi in that ordering (this is
similar to what is done for propositional Bayesian netwd2&]). Note that the size of the
neighbourhoods is — 1, with n the number of probabilistic predicates (because there are
n — 1 different possibilities for swapping adjacent predicatean ordering). Since the size
of the neighbourhoods is equal to the branching factor ofsdach, this implies thahe
branching factor of ordering-search is linear in the numleéprobabilistic predicatesThis
will turn out to be important in our experiments.

Below we explain how to learn and score logical CPDs (when wewkthe set of
predicates that are used as in input for the logical CPD),levd to extract dependency
statements from a logical CPD. At the end, we also discus siifferences between our
ordering-search algorithm for LBNs and the algorithm fasgwsitional Bayesian networks.

6.1.3 Learning Logical CPDs

We represent logical CPDs as logical probability trees tiletree in Figure 2 (p. 6). Such
trees can be learned using any of the standard probabiity dfgorithms in TLDE [7].
The only two issues are which scoring criterion to use forttees, and how to construct
the datasets for learning the trees. In this paper we usedhedgan Information Criterion
(BIC) [7,13] for scoring the trees. We now explain how we d¢and the datasets.

To learn a logical CPD for a target predicatg,-q.: We need a dataset of labelled ex-
amples which can be derived from the mega examples in thaalidataset. In general, a
single mega example can give rise to multiple examples ird#taset for the logical CPD
since there can be multiple ground atoms for the predipaie,: in the mega example.
Concretely, each random variable (ground probabilisteratX built from piqrge: in €ach
mega examplen leads to one examplein the dataset for the logical CPD. This example
is labelled with the value ok in m and consists of the part af that is relevant forx .

Example 6 Consider the logical CPD for the probabilistic predicétif iculty/1 in the uni-
versity domain. Note that each random variable défif iculty/1 in each mega example
corresponds to a particular course. Hence, each cdaliiseeach mega example gives
rise to another examplein the dataset for this logical CPD. Such an examptentains all
information from the mega exampie that is about the coursg or about a student linked
to C (for instance through thekes/2 relation).

Concretely, the simplified mega example given in ExamplerBaios two courses and
hence leads to two examples in the dataset for the logical foPifficulty/1. The first
example is about cours#, is labelled with ‘difficulty=mid’ and looks as follows.

course(cl).

student (sl1). student (s2).
takes(s1,cl). takes(s2,cl).
ranki ng(s1) =hi gh ranki ng(s2)=nid

rating(cl) =l ow
grade(sl, cl) =hi gh grade(s2,cl)=md

The second example is about couegeis labelled with ‘difficulty=high’ and looks as fol-
lows.

course(c2).
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student (s2).
takes(s2,c2).

ranki ng(s2)=nid
rating(c2)=md
grade(s2, c2) =l ow

6.1.4 Extracting Dependency Statements from a Logical CPD

The result of the search over orderings is the set of logidd€that was learned for the final
ordering. To obtain a complete LBN, we still need to detemrtime dependency statements.
It turns out that the dependency statements can be extriotedhe logical CPDs (this is
a generalization of the fact that the directed acyclic graph Bayesian network can be
extracted from the CPDs in that network). Below we explaio o do this for a logical
CPD specified as a logical probability tree. To obtain a ceteplBN, this procedure needs
to be applied to the logical probability tree for each pralistic predicate.

When extracting dependency statements from a logical pitityaree with as target the
probabilistic atonp;..4e¢, We want to find a set of statements that is consistent witkrétee
(i.e., the tree should never test any probabilistic atornithaot a parent of;..¢e: according
to the set of statements). We do this by creating a dependgatgment for each test on a
probabilistic atom in each internal node of the tree. Caldtom that is testegl.s; and the
node N. In the most general case, apart from the tespgg;, the nodeN can contain a
number of tests on other probabilistic atoms and a conjanétdf logical literals. We then
create a dependency statement of the f@iges | prest — I, path(N), wherepath(N)
is a conjunction of logical literals that describes the dadim the root toN. Each node on
this path can contribute a number of logical literalgt@h(N). A succeeded node (i.e., a
node for which the succeeding branch of the tree was chos#reipath) contributes all
logical literals that it contains. A failed node that does$ cantain any tests on probabilistic
atoms contributes the negation of all its logical literéisfailed node that contains a test
on a probabilistic atom does not contribute to the pathirfigtsuch a node contribute the
negation of its logical literals could be inconsistent simge cannot be sure that the logical
literals caused the failure, rather than the probabiliststs).

After we applied the above procedure to extract all deperystatements, we simplify
those statements by removing redundant literals and reshtirsiatements (Section 4.2).

Example 7 Consider the probability tree shown in Figure 2 (p.6). Fas thee,piarget iS
satisfaction(S, C). For the root noden;es: is ability(P), I isteaches(P, C) and the path is
empty. For the internal node below the root to the left,: is grade(S, C), I is empty and
the path igeaches(P, C). For the node below the root to the rightes: is grade(S,C) and

[ and the path are both empty. The three resulting dependésteyrents for these nodes are
respectively the following.

satisfaction(S,C | ability(P) <- teaches(P,C).
satisfaction(S,C | grade(S,C <- teaches(P,C).
satisfaction(S,C | grade(S, C.

The second statement can be removed since it is redunddntesipect to the third state-
ment. ]
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Note that with the above approach we never learn dependéateyments with multiple
atoms in the body. This is no restriction since we have show®eiction 4.1 that each such
LBN is equivalent to an LBN with dependency statements witly @ne atom in the body,
which can be learned. Also note that in the above procedurextoacting the dependency
statements from a logical probability tree, the probatidiatoms in the internal nodes never
contribute topath(N) for a nodeN. The reason for this is thatith (V) is the context of the
dependency statement and the context can only contairaldgerals but no probabilistic
atoms. This implies that generally not all independencerinétion specified in a logical
probability tree can be captured by the dependency stateniris is not surprising: it also
holds in the propositional case (for instance, a CPD undeifdhm of a probability tree
can capture context-specific independence while the steiof a Bayesian network cannot

[1]).

6.1.5 Differences between Ordering-search for LBNs angb@&siional Ordering-search

Two obvious differences between ordering-search for LBNg ardering-search as pro-
posed by Teyssier and Koller [22] for propositional Bayasi@tworks are that for LBNs
we use orderings on the set of probabilistic predicatese@usof on the set of random
variables), and the extraction of the structure from the €RDnore complex.

A third and more important difference is that we Usgical probability trees as CPDs
whereas Teyssier and Koller usenditional probability tables. Recall that for LBNs we
cannot use conditional probability tables since they aneéstrictive (Section 3.1.2). How-
ever, for propositional Bayesian networks it would be palssio use (propositional) proba-
bility trees instead of conditional probability tables.cBian approach would have both an
advantage and a disadvantage with respect to efficiency:

— The advantage of using probability trees is that we needamléewer CPDs than when
using conditional probability tables. This is a consequent the fact that probability
trees are selective but conditional probability tables ace.

Suppose that we are given an ordering and a random vatkalite which we need to
learn the CPD. Using probability trees, we simply learn a @®D as input all random
variables preceding in the ordering, and we let the decision tree learning alori
select from all these variables the relevant ones. UsingdaBelecting from all the
variables the relevant ones is more complex because talele@bselective. Hence, the
approach of Teyssier and Koller is to put an upper bokdrwh the number of inputs
for the CPDs. Concretely, they compute the score of all CRDxfthat have at most
k random variables (from all the variables preceditdn the ordering) as inputs, and
then determine the parents &f as all random variables that are used in the highest
scoring CPD. The drawback of this is that there are many stlRBsCHence this is
computationally only feasible for small(Teyssier and Koller use at most= 4).

— The disadvantage of using probability trees is that leagnansingle CPD is compu-
tationally less efficient than when using conditional proitity tables (with an upper
bound on the number of inputs).

Using tables with an upper bouridon the number of inputs allows Teyssier and Koller
to compute beforehand the sufficient statistics for all CHias$ could ever be needed
during the search over orderings. As a consequence, thal agarch over orderings
becomes very fast. In contrast, when using probabilitystieis not efficient to learn all
CPDs beforehand. Hence, in our ordering-search algoritmb.BNs we do not learn
probability trees beforehand but learn them on the fly as ¢iheyneeded.
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To summarize, using probability trees instead of condétigurobability tables has two
opposing effects: fewer CPDs need to be learned, but lepengingle CPD is less efficient.
It is unclear what the combined effect of these two opposiferts is since this has not yet
been studied. Although using conditional probability &shin LBNs is not an option (since
they are too restrictive), this issue is nevertheless aglefor our work: it implies that it is
non-obvious that the efficiency advantage of orderingedeaver structure-search that was
observed by Teyssier and Koller [22] also holds in the caseBis. This is part of our
motivation for experimentally comparing ordering-seaaciu structure-search for LBNs in
Section 7.

6.2 Structure-search

We now discuss structure-search. First we briefly discusgptbpositional case, then we
discuss the case of LBNs.

6.2.1 Structure-search for Propositional Bayesian Neksor

Structure-search (also known as DAG-search) is the mogtkmwelvn and most straight-
forward approach for learning propositional Bayesian woeks [13]. It is based on two
observations.

— It is relatively easy to learn the CPDs in a Bayesian netwbitke structure of the
network (the directed acyclic graph) is given.

— If the best structure is not known in advance, a search thrdlg space of possible
structures needs to be carried out to find the best structure.

6.2.2 Structure-search for Logical Bayesian Networks

The structure-search algorithm for propositional Bayesiatworks has already been up-
graded to the relational case for several formalisms [1A3,26,19]. The algorithm that
we use for LBNs is very similar to these existing upgradessgacific the algorithm for
learning Probabilistic Relational Models [10, 12].

One possible approach to structure-search for LBNs woulit lokefine refinement op-
erators for sets of dependency statements, and use thasgoppeo organize the search. To
avoid double computations in the learning process, we witigld have to take into account
possible redundancy in the dependency statements (séerb5&@). However, for learning
non-recursive models, a more simple approach can be talenawsearch in the space of
predicate dependency graphs instead of in the space of depgnstatements. Recall from
Section 3.2 that a predicate dependency graph specifieadbr@edicate on which other
predicates it depends but not exactly how. Hence, when lsiegrin the space of predicate
dependency graphs, redundancy is less of a problem, ané Heneearch process is easier
to implement.

Our structure-search algorithm for LBNs is basically kiilnbing in the space of predi-
cate dependency graphs. To learn the logical CPD for a @sicgiven a predicate depen-
dency graphs, we simply learn a logical probability tree for predictipgvith as input all
predicates that are parentsyoin S. When we found the final predicate dependency graph
and the corresponding logical CPDs, we extract the depegdegatements from these log-
ical CPDs in exactly the same way as in our ordering-seagdrighm (Section 6.1.4). The
resulting structure-search algorithm for LBNs is summedin Figure 5.
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% start with a random structure:
Scurrent = random predicate dependency graph
computescore(Scurrent)
% search for a better structure:
repeat until convergence
for each S.qnq € neighbourhood(Scurrent)
computeAscore(Scand) = score(Seand) — score(Scurrent)
end for
if maz(Ascore(Scand)) >0
Scurrent = argmaz(Ascore(Seand))
end if
end repeat
% extract the dependency statements from the logical CRibsdd for the final structure:
for each probabilistic predicate
extract dependency statements from the logical CPp fearned usingcurrent
end for

Fig. 5 The structure-search algorithm for learning LBNs.

To find the initial predicate dependency graph in the abogerahm, we borrow some
elements from our ordering-search algorithm. Specifically generate a random initial
ordering, learn logical CPDs for this ordering, and exttaet predicate dependency graph
from these logical CPDs (this amounts to simply checkingchigredicates are used inside
which logical CPDs).

In the above algorithm the neighbourhood of a predicate midgrecy grapts is defined
as the set of all acyclic graphs that can be obtained by addeigting or reversing an edge
in S. Note that the number of possibilities to add an edge in aipateldependency graph
is in general quadratic in the number of probabilistic pcatks. Hencéhe branching factor
of structure-search is quadratic in the number of probaiidi predicatesRecall that it was
linear for ordering-search (Section 6.1.2, p. 13).

We also implemented an extension to the above structurefsedgorithm for LBNs,
namely lookahead: with lookahead we not only try adding cihgeebut also adding two
edges with the same head during a single refinement step.xXpegimental results were
rather discouraging, however: lookahead does not significémprove the quality of the
learned models (in terms of test log-likelihood or numbedependency statements), but
significantly slows down the algorithm [8]. Hence, we do nmigider this extension further.

6.3 Efficiently Implementing the Algorithms

We now briefly show some optimizations that can be used todmepht the above algorithms
for learning LBNs efficiently, provided that the scoringterion is decomposable. These
optimizations apply equally well to the propositional casdo the case of LBNs. In fact, in
the propositional case they are entirely standard [13].

When using a decomposable scoring criterion, the ordes@ageh and structure-search
algorithms can be implemented quite efficiently becausemposability has two beneficial
effects on the computation of the score-change for a catedatdering Ascore(Ocqng) IN
the algorithm of Figure 4) or candidate structurksore(S.q,q) in Figure 5).

4 In our experiments, we use the same random initial ordengifdering-search and structure-search.
Hence, both algorithms always start from the same points €hsures that an experimental comparison of
both algorithms evaluates the search process itself anth@astarting point of the search.
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— Locality. the score-change for a candidate ordering/structure defends on the score
of the logical CPDs that are different for the candidate ordgstructure than for the
current ordering/structure. For ordering-search andcsira-search there are at most
two such logical CPD%s Hence, score-changes can be computed quite efficiently.

— Reusability many of the score-changes that are computed during oraiderof the
loop (the “repeat” in Figure 4 or 5) are still valid during thext iteration and can be
reused. To be precise, a score-change due to a modificatiois still valid after a
modificationms to the current ordering/structure if and only if the set aflgabilistic
input predicates that is changed#y was not changed bis.

7 Experiments

We now experimentally compare the above algorithms fomiegrLBNs (ordering-search
and structure-search). We discuss the datasets, the mgetal setup and the results.

7.1 Datasets

We perform experiments on four relational domains: thelsstit university domain used
before in our examples, and three real-world datasets (IMD®/CSE and WebKB) that
are popular benchmarks in the field of statistical relafitesning.

For thesynthetic university domaiwe generated datasets with a varying number of
mega examples from the LBN given in Section 3. The logical peeach mega example was
specified by hand (it contains 20 students, 10 courses, Bgsofs and their relationships).
The probabilistic part of each mega example was construpgeshmpling from the given
LBN. Each mega example corresponds to 230 random variablegienerated datasets of
5, 10, 15, 31, 62, 125 and 250 mega examples (we refer to tletaseats as ‘Univs’ to
‘Univ250).

The UWCSE datas€gP1] contains information about 140 graduate students,réfep-
sors and 132 courses at a computer science department. Esetdeonsists of five mega
examples, each corresponding to a specific research anez. i8ithis dataset relations are
of special importance we incorporate them into the probabilistic model. In LBKistcan
be accomplished by simply modelling them as probabilistedjrates. In total, we use three
logical predicatess{udent/1, prof /1 andcourse/1) and ten probabilistic predicates with
the following random variable declarations.

randonm( phase_in_PhD(S)) <- student(S).
randon(year _i n_PhD(S)) <- student(S).
random(student _nb_publications(S)) <- student(S).
random(position(P)) <- prof(P).

randon( prof _nb_publications(P)) <- prof(P).

5 Forordering-searchthere areexactly twosuch logical CPDs since a new candidate ordering is obtained
by swapping two adjacent predicates in the current ordenmtthis influences only the logical CPDs for these
two predicates. Fastructure-searclthere areat most twaosuch logical CPDs since a new candidate predicate
dependency graph is obtained by adding/deleting/rev@@medge in the current graph, and adding/deleting
an edge influences only the logical CPD for the predicate ttimedge points to, while reversing an edge
influences the logical CPDs for both predicates involved.

6 Forinstance, this dataset has been used for superviseihigavith the ‘advised by’ relation as the target
[21].
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Table 1 Dataset characteristics: total number of random varialsiember of mega examples, number of
probabilistic predicates.

Dataset #Variables #MegaExamples  #ProbPredicates
Synthetic Univ 1150 to 57500 5to0 250 8
IMDB 2852 5 7
UWCSE 9607 5 10
WebKB 78132 4 5

random(l evel (C)) <- course(Q.

random(t eaches(P,C)) <- prof(P), course(C.
randon( assi stant (S,C)) <- student(S), course(C).
random(advi sed_by(S,P)) <- student(S), prof(P).
random(co_aut hor (S, P)) <- student(S), prof(P).

Of course, since this is a real-world dataset the true degreydstatements are unknown.
TheIMDB datasetwas extracted from the internet movie database\( i ndb. com).
The dataset that we use (by Mihalkova et al. [18]) contaif@rination about 20 movies, 236
actors and 32 directors. This information is divided ovee fivega examples. We use three
logical predicatesdctor/1, director/1 and movie/1) and seven probabilistic predicates

with the following random variable declarations.

random(gender (A)) <- actor(A).

random(conedy(D)) <- director(D).
random(crime(D)) <- director(D).

random(drama(D)) <- director (D).

random(wor ked_for (A, D)) <- actor(A), director(D).
randon{acts(A, M) <- actor(A), novie(M.
randon(directs(D,M) <- director(D), novie(M.

The WebKB dataseis about people (faculty or students), courses and propctise
computer science departments of four universities [4]. Tagset that we use [18] con-
tains information about 746 people, 163 courses and 80 gisyjdivided over four mega
examples (each corresponding to a different universityd. (e three logical predicates
(person/1, project/1 and course/1) and five probabilistic predicates with the following
random variable declarations.

random(faculty(P)) <- person(P).

randon(student(P)) <- person(P).

random( has_project (P, Pr)) <- person(P), project(Pr).
random(assi stant (P, C)) <- person(P), course(C).
random(prof (P, C)) <- person(P), course(C).

The main characteristics of the above datasets are sunadaniZable 1.

7.2 Experimental Setup

For all experiments we performed five-fold cross validat{ercept for WebKB we per-

formed four-fold cross validation since this dataset cimstanly four mega examples). For
the synthetic university domain, mega examples were diviokeer equal-sized folds ran-
domly. For the real world datasets, each fold correspondsi¢omega example. We report
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the average results over the folds and use two-tailed p&itests (witha=0.05) to assess
the significance of differences between two algorithms.

We use four evaluation criterianrmalized test log-likelihoo@the log-likelihood on the
test data divided by the number of mega exampleg)malized train scoréthe score on
the training data divided by the number of mega exampleslewttt important in itself it
can give some insight into the degree of overfitting of an @tlgm), number of dependency
statements learnesmaller is usually better because of ease of interprefasindrunning
time

For the synthetic university domain we know the true LBN thaherated the data.
Hence, we can use as a fifth evaluation criterion the degreditth a learned LBN matches
this true LBN. A simple measure for this would be the numbedependency statements
that the true LBN has in common with the learned LBN. Howetleg, problem with this is
that generally it is even in theory not possible to learn the tlirection of each dependency
statement from dafaHence, instead we measure the maximum overlap betweenute t
LBN and the Markov equivalence claSg,,,-».q Of the learned LBN (we look for the LBN
in Cieqrneq that has the most directions in common with the true LBN). ¥ferto this as
thenumber of correct dependencies learned

For all evaluation criteria we report the results for the talgorithms. For test log-
likelihood and train score we additionally report the réstr the ‘empty LBN’ as a base-
line. With an ‘empty LBN’ we mean an LBN with no dependencytstaents, this is the
LBN according to which all random variables are independent

7.3 Experimental Results

We now report our experimental results. First we focus orctivaparison of the two algo-
rithms, ordering-search (OS) and structure-search (S We analyze the running times
of both algorithms in more detail. Finally we briefly show soof the dependencies learned
on the real-world datasets.

7.3.1 Ordering-Search versus Structure-Search

Our experimental results for OS and SS are given in Table Zamnarized in Table 3. An
entry in the latter table (for a particular evaluation aita and dataset) has the following
meaning: if one of the two algorithms is significantly bettlean the other we show the
best algorithm; if there is no statistically significantfdience between the two algorithms
we fill in “/”. Note that for the real-world datasets we cannotasure the number of correct
dependencies learned since we do not know the true LBN feettiatasets. For the synthetic
university domain we also plotted the results as a functicataset size in Figure 6.

In terms of quality of the learned LBNs, the main conclusiamf our results is that OS
and SS are competitive with each other.

— For none of the datasets there is a significant differen¢esinlog-likelihood between
OS and SS (see Table 3). In terms of train score, SS perfogngisantly better than

7 With the direction of a dependency statement we mean whash & in the head and which in the body.
The reason why this cannot always be learned from data idasitoi the reason why the true direction of
an edge in a Bayesian network cannot always be learned (e@sn network hasMarkov equivalence
class which is a set of networks that all have the same score bigtrelift directions for some of the edges

2.
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Table 2 Detailed experimental results. For each dataset the badtsere shown in bold.

Dataset Method LogLik(Test) Score(Train) #Statements r#@tDepend Time

Univs oS -1.3789 -1.3485 9.0 3.4 35s
Univs SS -1.3750 -1.3365 9.8 4.4 137s
Univ5 empty -1.4799 -1.4989 - - -
Univ10 oS -1.3669 -1.3524 9.8 4.6 42s
Univ10 SS -1.3461 -1.3410 9.4 5.0 134s
Univ10 empty -1.4722 -1.4880 - - -
Univl5 oS -1.3444 -1.3415 8.6 4.4 51s
Univl5 SS -1.3328 -1.3305 9.6 5.0 164s
Univls empty -1.4697 -1.4792 - - -
Univ31l oS -1.3083 -1.3135 8.8 5.6 55s
Univ31 SS -1.3023 -1.3060 9.6 6.6 168s
Univ31 empty -1.4575 -1.4647 - - -
Univ62 oS -1.3051 -1.3097 11.2 5.8 78s
Univ62 SS -1.2973 -1.3012 10.4 6.6 262s
Univ62 empty -1.4554 -1.4595 - - -
Univl25 oS -1.2905 -1.2959 8.8 5.8 120s
Univl25 SS -1.2828 -1.2861 8.2 6.8 407s
Univ125 empty -1.4562 -1.4586 - - -
Univ250 oS -1.3001 -1.3035 9.8 5.6 194s
Univ250 SS -1.2894 -1.2913 7.6 6.8 586s
Univ250 empty -1.4561 -1.4573 - - -
IMDB oS -0.7975 -0.7620 7.8 - 95s
IMDB SS -0.8782 -0.7785 7.2 - 378s
IMDB empty -0.9265 -0.8975 - - -
UWCSE oS -0.4288 -0.3539 15.2 - 135s
UWCSE SS -0.4160 -0.3489 14.6 - 535s
UWCSE empty -0.4631 -0.3961 - - -
WebKB oS -0.0702 -0.0694 7.3 - 251s
WebKB SS -0.0709 -0.0693 7.3 - 565s
WebKB empty -0.0808 -0.0791 - - -

Table 3 Significance of differences between results for OS and St 88 and SS have significantly better
test log-likelihood and train score than the empty LBN incalées (this is not shown in the table).

Dataset (#Vars) LogLik(Test) Score(Train) #Statements ori&tDepend Time

Univs / / / / [oF]
Univl10 / / / / oS
Univl5 / / / / oS
Univ3l / / / / oS
Univ62 / / / / oS

Univ125 / / / SS 0s
Univ250 / / / SS 0s
IMDB / / / - oS
UWCSE / SS / - oS
WebKB / / / - oS

OS in one case (the UWCSE dataset), but this difference onirtgedata does not carry
over to the test data. As expected, OS and SS always perfdten tfean the empty LBN

(in terms of test log-likelihood and train score).

The evolution of test log-likelihood and train score as acfion of the dataset size for
the synthetic university domain (Figure 6) is as expectadh improve rapidly when

initially increasing the dataset size but this improvensotvs down when moving to
bigger datasets, and likelihood and score seem to satliagefigure also shows that
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Fig. 6 Results for OS and SS on synthetic university datasets gfngsize. For train score and test log-
likelihood we also show the results for the empty LBN.

the differences between OS and SS are very small as compuatied differences with
the empty LBN.

— For none of the datasets there is a significant differenckantmber of dependency

statementslearned by OS and SS (see Table 3). Also, the evolution of tineber of
dependency statements as a function of the dataset sia&r¢F6y does not show any
clear trends.

Since for the synthetic university domain we know the trueN.Bre can measure the
number of correct dependenciedearned by OS and SS. SS learns significantly more
correct dependencies in two cases while the opposite necers The evolution of the
number of correct dependencies learned as a function ofataset size (Figure 6) is
as expected: it increases rapidly when initially incregghre dataset size and then sat-
urates. For sufficiently big datasets, SS learns nearlyea#irs true dependencies while
OS does slightly worse with on average 5.7 true dependentie$ad a closer look at
the experiments with the biggest dataset sizes in whichlhséeen true dependencies
were learned and found that the problem was always in hatimgvtong direction for a
dependency but never in ‘missing’ a dependency (i.e., & undirected’ dependencies
are always learned but sometimes a dependency is learnkd wrong direction even
though the two directions are not Markov equivalent). Thas also explain why the
above differences in the number of correct dependenciesdddetween OS and SS do
not lead to significant differences in test log-likelihood.

The results forunning time show that OS is always significantly faster than SS. On

the synthetic university domain, running time behavesdlilyein the dataset size for both
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OS and SS (Figure 6), but nevertheless running time is alwigysficantly smaller for OS
than for SS, with differences between a factor 3.0 and 3.90 Ah the real-world datasets
the running time is always significantly smaller for OS, witifferences between a factor
2.3 and 4.0. We analyze the reason for these differenceebat®S and SS in more detail
in the next section.

Since OS is competitive with SS in terms of quality of the hest LBNs, and OS is sig-
nificantly faster, we conclude that overall OS is preferabl8S for learning non-recursive
LBNs.

7.3.2 Analysis of Running Times

In this section we analyze the running time of both algorghmmore detail by decompos-
ing it into the running times of the main different steps ie #dgorithms. Such an analysis
has not been made before for ordering-search (also not jprdpositional case).

The total running tim&,,;,; of the ordering-search and structure-search algorithms ca
be decomposed as follofvs

Tiotal = Tinit + Tfirst + Trest,

whereT;,;; denotes the initialization time (the time for learning amdring all logical
CPDs for the initial ordering/structure]y;;,.s; denotes the time for the first iteration (i.e.,
the first execution of the repeat loop of the algorithms) @ngd; denotes the time for all
other iterations. The reason for considering the first itenaseparately is that it typically
takes a lot longer than any of the other iterations sincehallscore-changes needed in the
first iteration effectively have to be computed, while in tlext iterations most of them can
be reused without extra computation (see Section 6.3)I Hehote the number of iterations
not including the first one. If we define the average time g@ation (not including the first
one) asluvg = Trest/I, We can rewrite the total running time as follows.

Tiotal = Tinit + Tfirst + Tavg X I

Our experimental results for each of the above measuresharensin Table 4. Note that
Tini¢ is the same for both algorithms. Hence, below we only dis@uss;, Tfirst, Tavg
andl.

Recall from the previous section that the total running tiffig;,;, was always signif-
icantly lower for OS than for SS with differences being betwe factor 2.3 and 4.0. This
can be explained as follows.

— Thetime for the firstiteration , T;,.., is always significantly lower for OS than for SS.
This was expected since in the first iteration all elementhefneighbourhood of the
initial ordering/structure have to be scored and the sizeeheighbourhood, and hence
the branching factor of the search, is smaller for OS thanS&(linear in the number
of probabilistic predicates for OS but quadratic for SS,Seetions 6.1 and 6.2). In our
experiments the difference iry;,,; between OS and SS goes from a factor 1.7 to 4.1.

— Theaverage time per iteration(not including the first one) .4, is also always signif-
icantly lower for OS than for SS. This was expected for theesagasons as fdfy;,.;
above. In our experiments the differencelin,4 between OS and SS goes from a factor
1.8t03.8.

8 The time needed for the final step of extracting the dependstatements from the logical CPDs can be
ignored since it is very small (it does not depend on the éatizge).
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Table 4 Detailed timings.

Dataset Method Tyotal Tinit Tfirst Trest 1 Tavg

Univs oS 35s 7s 15s 13s 2.4 6s
Univs SS 137s 7s 60s 70s 5.8 12s
Univ10 oS 42s 7s 20s 15s 2.0 7s
Univl0 SS 134s 7s 69s 57s 4.2 13s
Univl5 oS 51s 8s 18s 24s 3.0 8s
Univls SS 164s 8s 73s 83s 5.8 14s
Univ31 oS 55s 10s 24s 20s 2.2 9s
Univ31 SS 168s 10s 85s 73s 4.6 16s
Univ62 oS 78s 13s 31s 34s 2.8 12s
Univ62 SS 262s 13s 101s 147s 6.2 24s
Univ125 0s 120s 18s 45s 57s 3.2 19s
Univl25 SS 407s 18s 161s 228s 4.4 56s
Univ250 [0 194s 33s 89s 71s 2.2 33s
Univ250 SS 586s 33s 246s 307s 4.8 66s
IMDB oS 95s 25s 52s 18s 2.0 9s
IMDB SS 378s 25s 214s 139s 4.0 34s
UWCSE oS 135s 27s 61s 46s 2.4 20s
UWCSE SS 535s 27s 279s 229s 4.6 52s
WebKB oS 251s 60s 58s 133s 4.0 33s
WebKB SS 565s 60s 98s 407s 5.8 71s

— The conclusions about tleimber of iterations I are less clear. In six caséss signifi-
cantly lower for OS than for SS, while in the remaining fousesthere is no significant
difference.

We conclude that the main reason why OS is faster than SSti©® has a smaller branch-
ing factor (linear in the number of probabilistic predicgtevhile it is quadratic for SS).

7.3.3 Learned Dependencies on Real-World Datasets

For each real-world dataset we investigated the learnedndigmcy statements. Most of
the dependencies that were frequently learned (for botbrittigns and the various folds

in the cross validation) confirm our intuitions about thesgadets (the true dependencies
are of course unknown for these datasets). Some examplestofiependencies, and their

common sense interpretations obtained by investigatimgdiresponding logical CPDs, are
the following.

— IMDB dataset:
— comedy(D) depends odrama(D):
The corresponding logical CPD specifies that, if a directanio drama, he is less
likely to be into comedy.
— acts(A, M) depends omworked_for(A, D) anddirects(D, M):
An actor is likely to be in a movie if he worked for a director evtlirects that movie.
— gender(A) depends omorked_for(A, D) anddrama(D):
An actor is more likely to be male if he worked for a directoranl into drama.
— UWCSE dataset:
— student_nb_publications(S) depends omear_in_PhD(S):
A student is more likely to have many publications if he is imigher year.
— prof _nb_publications(P) depends omdvised_by(S, P):
A professor is more likely to have many publications if heiads more students.
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— assistant(S, C') depends omdvised_by(S, P) andteaches(P,C):
A student is more likely to be the teaching assistant for asmif he is advised by
a professor who teaches that course.

— assistant(S, C) depends otevel (C):
A student is more likely to be the teaching assistant for asmif the level of the
course is lower (the possible levels are undergraduatenaed undergraduate and
graduate). This can be explained by the fact that the loveecdlirse level, the more
teaching assistants a course has on average (this is irtteeedde for the courses in
the dataset).

— WebKB dataset:

— faculty(P) depends oBtudent(P):
If a person is not a student, then he is very likely to be facult

— student(P) depends othas_project(P, Proj):
The more projects a person has, the less likely he is to bederstgand hence the
more likely he is to be faculty).

8 Learning Recursive Directed Probabilistic Logical Modek

In this paper we focussed on learning non-recursive modédsiow briefly discuss some of
the approaches that can be taken if one presumes that theosi#éns recursive dependen-
cies. A major concern when learning recursive directed isodeto ensure that, although
the model is cyclic at the predicate level, it is always aicyat the ground level. We can
distinguish two scenarios depending on how much prior kadge is available about the
presumed recursive dependencies.

8.1 Prior Knowledge about Guaranteed Acyclic Relationship

When one knows that there are recursive dependencies argbhmeesprior knowledge or
assumptions about which relations (modelled as logicalipa¢es) determine the recursive
dependencies, learning can actually be very similar tanlagrin the non-recursive case.
Getoor et al. [12] took this perspective when developingléiaening algorithm for Proba-
bilistic Relational Models. To accommodate for dependesithat are cyclic at the predicate
level but acyclic at the ground level they let the user defigeaxanteed acyclic relationship
(GAR) For instance, to allow that some properties of a personrikpa these properties
for his ancestors, the ancestor relation should be defingdea&AR. Similarly, to allow
that some properties of a paper (for instance the topic gthtgrdepend on these properties
for the papers published earlier by the same author, thegal-earlier relation should be
defined as the GAR. Getoor et al. then apply structure-seardhuse the information about
the GAR during the acyclicity checks to deduce that certgates at the predicate level are
legal [12].

The algorithm of Getoor et al. is very similar to the struetsearch algorithm used
for LBNs in this paper. Hence the approach of using a GAR cadlitectly applied to
our structure-search algorithm as well. Moreover, the sappeoach can also be applied to
our ordering-search algorithm for LBNs. This actually riegs no changes to our ordering-
search algorithm but only requires to adapt the declardéimguage bias for the logical
CPDs. When learning the logical CPD for a predicat¢he probabilistic input predicates
for the CPD would be
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— all predicates that precegen the current ordering, with the restriction thamust not
depend on these predicates through the inverse of the GARhéiance, if the GAR is
the published-earlier relation, then the inverse is thdighid-later relation),

— pitself and all predicates that follow in the ordering, with the restriction thatcan
only depend on these predicates through the GAR.

8.2 No Prior Knowledge

When one does not have enough prior knowledge about thealfitedta GAR, more com-
plicated approaches need to be taken. When applying stedsearch, one can use the tech-
niques developed for Bayesian Logic Programs [15,16]. @ka is that the learning algo-
rithm searches itself for the logical relations that defesthe recursion, and that acyclicity
of a candidate model is checked at the ground level for eaample (i.e., acyclicity is
checked for the induced Bayesian network for each exampla.main drawback of this
approach is that the acyclicity checks can be computatiomaty expensive since the cost
depends on the number of examples and the size of the exarijpissis different from
the non-recursive case where acyclicity of each candidatehonly needs to be checked
once at the predicate level, and hence the cost is indepenfite number or size of the
examples.

An alternative approach is to ugeneralized ordering-seardR0], an algorithm that we
developed especially to learn recursive dependenciegrerglized ordering-search we use
orderings on ground probabilistic atoms (instead of on ipegds, as we do in this paper).
In principle, generalized ordering-search can also be ts&shrnnon-recursiveLBNs but
in this respect it has a number of disadvantages as compated algorithm proposed in
this paper. One disadvantage is that it does not learn an iBbkldsed form’: it does not
learn a set of dependency statements but rather a procegsciption of how to determine
the induced Bayesian network given any possible interfioetaf the logical predicates.
Another disadvantage is that it deviates quite far from thepgsitional ordering-search
algorithm. For instance, when applied on propositionakdggneralized-ordering search
does not correspond to the original propositional ordesiegrch algorithm, while this is
the case for the algorithm in this paper. This might make gdized-ordering search harder
to understand for people familiar with the propositionalening-search algorithm.

9 Conclusion

We upgraded the ordering-search algorithm for Bayesiawar&s towards non-recursive
directed probabilistic logical models. We experimentaiympared the resulting algorithm
with a more traditional structure-search algorithm on foelational domains. The results
show that ordering-search is competitive with structiearsh in terms of quality of the
learned models. Also, ordering-search is significantlyefathan structure-search due to a
smaller branching factor. We conclude that ordering-$e&ra good alternative to structure-
search for learning non-recursive directed probabilisiiical models.
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A Proofs for Section 4

In this appendix we prove the theorems given in Section 4.

A.1 Decomposing Dependency Statements

We now prove Theorem 1 (p. 9) about the decomposition of digregy statements with multiple atoms
in the body. As explained in Section 4.1, this decompositian be accomplished in two steps. Since the
correctness of the second step (replagingdom /1 atoms by their definitions) is straightforward, we only
prove the correctness of the first step.

Let £; be an LBN, and leD be a dependency statementdn of the forma | a1, ...an < ¢, with
n > 2. Let L2 be the LBN obtained by replacin® in £; by the following set of decomposed dependency
statements.

a | a1 < ¢,random(az2), ...,random(ay).
a | a; « ¢,random(ai), ...,random(a;_1),random(a;y+1),...,random(an).
a | an «— ¢,random(ay),...,random(an—1).

Call this setDgecomp- We need to prove that; and L2 are equivalent. This means that, for any interpreta-
tion of the logical predicates, the set of random varialiles parent relation and the CPDs are the same for
L1 as forLo. Note that

— The set of random variables is the same since it only depemdseorandom variable declarations and
these are common to both LBNs.

— Arandom variabley,qr is a parent ofi.p44 Only if it is ‘caused’ to be a parent by some dependency
statement. Hence, proving that the parent relation is theedfar both LBNs requires proving that the
original dependency statemebtcauses:,q to be a parent of..;;;4 if and only if some decomposed
dependency statementTPye o, Causes this.

— If the parent relation is the same, it follows that the CPDs @so the same (since, given the parent
relation, the CPDs only depend on the logical CPDs and thesecanmon to both LBNS).

The above means that we need to prove that the original depepdtatemend causes,q to be a parent
of acpi14 if and only if some decomposed dependency statemeRin,,,, causes this. We now prove this
in the two directions. We use(.) as shorthand notation fenndom(.).

— Assume thatD causesiyq- to be a parent od.p;4. This implies that there exists a grounding substitu-
tion ¢ such thatD0 is of the formacpiia | a4, - -+, @iy, apar, aj, 4, -, a;, « ¢ forwhichc’ is true
and for whichr(.) is true for all ground probabilistic atoms in the head andybéténce, in the ground
statementicnig | apar — ¢',7(ay), ..., r(a;_1),7(aj ), .., r(a;,) the context is true ane(.)
is true for the ground probabilistic atoms in the head and/b®His ground statement is an instance of
the dependency statement a; < ¢,r(a1),...,7(ai—1),7(ait+1),...,7(an) under the substitution
0, which is inDgecomp- HENCED gecormp CAUSESLpqr- 1O bE a parent Odicpq.

— Assume that a dependency statemBnt..ormp iN Dgecomp CAUSESIpqr tO be a parent ofi.pi14 and
that Dgecomyp is Of the forma | a; «— c¢,7(a1),...,7(a;i—1), r(ai+1),...,7(an). This implies
that there exists a grounding substitutirsuch thatDjecomp0 is of the formacpiig | apar —
dyr(al), ..., r(a;_y),r(ajyq), - -, r(ay) for whichr(acpia) is true,r(apar) is true and the con-
text ¢/, r(a}), ...,r(al_y), r(agﬂ), ...,r(al,) is true. Hence, in the ground statement,;;q |
ay,...,a;_, apar, a;+1, ...,a, < ¢, the context is true anc.) is true for all ground probabilistic
atoms in the head and body. This ground statement is an @gstirihe dependency statemdntunder
the substitutiorf. HenceD causesiyq to be a parent oficp14.

A.2 Removing Redundancy in Dependency Statements

We now prove Theorem 2 (p. 11) about removing redundancypemtency statements. First we prove that
removing a redundant dependency statement from an LBNsyiidequivalent LBN. Next we prove that
the same holds for removing a redundant context literal ie@eddency statement. We again u$e as
shorthand notation farandom(.).
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— Redundant dependency statement:
Consider an LBN that contains a dependency statement obthe f

alai,...,an < ci

which is redundant with respect to another dependencynsgégiein the LBN with the same head
and body but contex¢e. This first dependency statement (with contexj fires if the conjunction
r(a),r(a1),...,r(an),c1 is true. According to the definition of redundancy, this imeplthatcs is
true, and hence also the conjunctiotu), 7(a1),...,r(an), c2 is true. This implies that the second
dependency statement fires. This proves that, whenevershedpendency statement fires, the second
fires as well. Since both statements have the same head apdiisdnakes the first statement obsolete.
Hence removing the first dependency statement from the LBNlyian equivalent LBN.

— Redundant literal:
Consider a dependency statement of the form

alai,...,an < c,l

with ¢ a conjunction of logical literals antla logical literal. Suppose thatis redundant in this depen-
dency statement. We refer to the dependency statemenheditay removing from the context as the
‘reduced’ statement. This reduced statement fires if thguoction r(a), r(a1), ..., r(an), c is true.
According to the definition of redundancy, this implies thas true, and hence also the conjunction
r(a),r(a1),...,r(an), ¢,lis true, and the original statement fires too. This showsitliae reduced
statement fires, then the original statement fires too. Qislypif the original statement fires, then the
reduced statement fires too (since the context of the redstz@ement is a subset of the context of
the original statement). Hence, we conclude that the retist@ement fires if and only if the original
statements fires. Since both statements also have the saieahé body, they are equivalent. Hence
removing the redundant literal from the original statemgelds an equivalent LBN.



