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Abstract We discuss how to learn non-recursive directed probabilistic logical models from
relational data. This problem has been tackled before by upgrading the structure-search
algorithm initially proposed for Bayesian networks. In this paper we show how to upgrade
another algorithm for learning Bayesian networks, namely ordering-search. For Bayesian
networks, ordering-search was found to work better than structure-search. It is non-obvious
that these results carry over to the relational case, however, since there ordering-search needs
to be implemented quite differently. Hence, we perform an experimental comparison of these
upgraded algorithms on four relational domains. We conclude that also in the relational
case ordering-search is competitive with structure-search in terms of quality of the learned
models, while ordering-search is significantly faster.

Keywords statistical relational learning· probabilistic logical models· inductive logic
programming· Bayesian networks· probability trees· structure learning

1 Introduction

There is an increasing interest in probabilistic logical models as can be seen from the variety
of formalisms that have recently been introduced for representing such models. Many of
these formalisms deal with directed models that are upgrades of Bayesian networks to the
relational case. Learning algorithms have been developed for several such formalisms [12,
15,19]. Most of these algorithms are essentially upgrades of the traditionalstructure-search
algorithm for Bayesian networks [13].

An alternative algorithm for learning Bayesian networks, more recent than structure-
search, isordering-search[22]. Ordering-search is based on the fact that it is relatively
easy to learn a Bayesian network if an ordering on the random variables is given (because
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this eliminates the possibility of cycles; this was for instance the idea behind the seminal
K2 learning algorithm [3]). However, usually the best ordering is not known in advance.
Hence, the idea behind ordering-search is to perform a heuristic search through the space
of possible orderings to find the best ordering. Teyssier andKoller [22] experimentally
compared ordering-search to structure-search for learning Bayesian networks. They found
that ordering-search is competitive with structure-search in terms of quality of the learned
Bayesian networks, while ordering-search is usually faster.

Unlike structure-search, ordering-search has not yet beenupgraded to the relational case.
The good performance of ordering-search for Bayesian networks motivates us to perform
this upgrade, and to investigate whether also in that case ordering-search still performs well
as compared to structure-search. This is an interesting question since it is non-obvious that
the efficiency advantage of ordering-search over structure-search as observed for Bayesian
networks also holds in the relational case. The reason for this is that ordering-search needs to
be implemented quite differently in the relational case dueto the fact that simple conditional
probability tables can no longer be used (see Section 6.1.5).

1.1 Contributions

The main contributions of this work are three-fold. First, we upgrade the ordering-search
algorithm towards learning non-recursive directed probabilistic logical models. Second, we
discuss the relation of the resulting algorithm to the original ordering-search algorithm and
to several algorithms for learning recursive dependencies. Third, we experimentally compare
our ordering-search algorithm to the upgraded structure-search algorithm on four relational
domains. We use the formalism Logical Bayesian Networks [6]but the proposed approach
is also applicable to related formalisms such as Probabilistic Relational Models [10,12],
Bayesian Logic Programs [15,16] and Relational Bayesian Networks [14].

Part of this work has been published before [9]. This paper extends our previous work in
three ways. First, we included a discussion of some properties of Logical Bayesian Networks
that are relevant for learning, and how to deal with them. Second, we included a discussion
of the relation of our ordering-search algorithm for Logical Bayesian Networks to related al-
gorithms (namely the original ordering-search algorithm and several algorithms for learning
directed probabilistic logical models with recursive dependencies). Third, we extended the
experimental analysis in several respects (we added two real-world datasets, we performed a
more detailed analysis of running times of the algorithms, we report learning curves, and we
give examples of learned dependencies). Apart from the above extensions, this paper also
provides some more details on several issues.

1.2 Structure of the paper

This paper is structured as follows. We first discuss some preliminaries in Section 2. Then
we review Logical Bayesian Networks in Section 3 and discusssome relevant properties in
Section 4. We discuss the setting of learning non-recursiveLogical Bayesian Networks in
Section 5 and the corresponding ordering-search and structure-search algorithms in Section
6. We experimentally compare these algorithms in Section 7.In Section 8 we briefly discuss
learning recursive models. Finally, in Section 9 we conclude.
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2 Preliminaries

We first discuss some preliminaries about Bayesian networks[13] and logic programming
[17].

2.1 Bayesian Networks

A Bayesian networkis a compact specification of a joint probability distribution on a set
of random variables (in this paper we only consider discreterandom variables). A Bayesian
network consists of a qualitative part and a quantitative part. The qualitative part is adirected
acyclic graph, the so-called ‘structure’ of the Bayesian network. The nodes in this graph
represent random variables, and the directed edges specify(in)dependencies between the
random variables: each variable is conditionally independent of its non-descendants given
its parents. Essentially, the parents of a variable can be seen as the ‘direct influences’ of
that variable. The quantitative part of a Bayesian network is a set ofconditional probability
distributions (CPDs). Concretely, each variableX needs a CPD that specifies the probability
distribution ofX given its parents (i.e., for each joint state of the parents of X, this CPD
specifies a probability distribution on the possible valuesof X). CPDs can be represented
in several ways. Two popular formats areconditional probability tables[13] andprobability
trees[11].

When learning Bayesian networks from data, the goal is usually to find the structure
and CPDs that maximize a certain scoring criterion, such as likelihood or the Bayesian
Information Criterion [13].

2.2 Logic Programming

A predicaterepresents a property or relation and is denoted asp/n, wherep is the name and
n is the number of arguments or arity. Arguments of predicatesare calledterms, and can be
constants (denoted by lower-case symbols), variables (denoted by upper-case symbols) or
compound objects. Anatom is a predicate together with the right number of arguments. A
literal is an atom or a negated atom. A term, atom or literal isground if it does not contain
any variables. A (ground)substitutionis an assignment of (ground) terms to variables and
the result of applying a substitutionθ to a literal (or conjunction of literals)l is denoted
by lθ. An interpretationof a set of logical predicates is an assignment of a truth value to
each ground atom that is built from these predicates and thathas arguments belonging to the
considered domain of discourse.

A definite clauseis of the formhead ← body, wherehead is an atom andbody is a
conjunction of atoms (all free variables in the clause are implicitly universally quantified).
A definite logic programis a finite set of definite clauses. Theleast Herbrand modelof a
definite logic program is an interpretation of all predicates used in the program in which
all the clauses of the program are satisfied. Practically speaking, the least Herbrand model
captures the semantics of a logic program.
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3 Logical Bayesian Networks

We now review Logical Bayesian Networks by means of an example. We also define the
notion of recursive and non-recursive Logical Bayesian Networks, and briefly discuss the
relation of Logical Bayesian Networks to some other probabilistic logic formalisms.

3.1 Logical Bayesian Networks: Example

A Logical Bayesian Networkor LBN [6] is essentially a specification of a Bayesian network
conditioned on some logical input predicates that describethe domain of discourse. For
instance, when modelling the well-known ‘university’ domain [12], we would use predicates
student/1, course/1, prof /1, teaches/2 and takes/2 with their obvious meanings. The
semantics of an LBN is that, given an interpretation of theselogical predicates, the LBN
induces a particular Bayesian network (see below).

In LBNs random variables are represented as ground atoms built from certain special
predicates, theprobabilistic predicates. For instance, ifintelligence/1 is a probabilistic
predicate then the atomintelligence(ann) is called a probabilistic atom and represents a
random variable. Apart from sets of logical and probabilistic predicates, an LBN basically
consists of three parts: a set of random variable declarations, a set of dependency statements,
and a set of logical CPDs. The former two together determine the structure of the induced
Bayesian network, while the logical CPDs quantify the dependencies in this structure.

3.1.1 The Structure of the Induced Bayesian Network

For a given interpretation of the logical predicates, the random variable declarations in an
LBN determine the set of random variables (nodes) in the induced Bayesian network, while
the dependency statements determine the dependencies (edges). Together, this fully deter-
mines the structure of the induced Bayesian network.

Random variable declarations are of the formrandom(p)← body, whererandom/1 is
a logical predicate (which cannot be used outside of the random variable declarations),p is
a probabilistic atom andbody is a conjunction of logical atoms. For the university domain,
the random variable declarations are the following.

random(intelligence(S)) <- student(S).
random(ranking(S)) <- student(S).
random(difficulty(C)) <- course(C).
random(rating(C)) <- course(C).
random(ability(P)) <- prof(P).
random(popularity(P)) <- prof(P).
random(grade(S,C)) <- takes(S,C).
random(satisfaction(S,C)) <- takes(S,C).

Informally, the first clause, for instance, should be read as“ intelligence(S) is a random vari-
able ifS is a student”. Assuming that the interpretation of the logical predicates is defined by
a set of definite clauses, these clauses together with the random variable declarations form
a definite logic program, therandom variable declaration program, that defines the random
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variables in the induced Bayesian network1. Formally, there is a random variablea for every
atomrandom(a) in the least Herbrand model of the random variable declaration program.

Dependency statements are of the formhead | body ← context, wherehead is a prob-
abilistic atom,body is a conjunction of probabilistic atoms andcontext is conjunction of
logical literals. If the context is empty (or ‘true’) we omitit from the notation and write
head | body. The dependency statements for the university domain are the following.

grade(S,C) | intelligence(S), difficulty(C).
ranking(S) | grade(S,C).
satisfaction(S,C) | grade(S,C).
satisfaction(S,C) | ability(P) <- teaches(P,C).
rating(C) | satisfaction(S,C).
popularity(P) | rating(C) <- teaches(P,C).

Informally, the first statement, for instance, should be read as “the grade of a studentS for
a courseC depends on the intelligence ofS and the difficulty ofC” and the last statement
as “the popularity of a professorP depends on the rating of a courseC if P teachesC”.
Formally, a dependency statementa | a1, . . . an ← context specifies thataiθ is a parent
of aθ in the induced Bayesian network ifθ is a ground substitution for which the conjunc-
tion random(a)θ, random(a1)θ, . . . random(an)θ, contextθ is true in the least Herbrand
model of the random variable declaration program. Note thatthis implies that a dependency
statement with multiple probabilistic atoms in the body (such as the first statement) only
‘fires’ if all atoms in the body are indeed random variables.

To make this more concrete, consider the following interpretation of the logical predi-
cates (specified as a set of facts for these predicates).

student(mike). student(emma).
prof(john).
course(ai). course(ml).
takes(emma,ai). takes(emma,ml). takes(mike,ai).
teaches(john,ai). teaches(john,ml).

Given an LBN with the above random variable declarations anddependency statements, the
structure of the induced Bayesian network for this interpretation is shown in Figure 1. The
random variables (nodes) in this network are determined by the random variable declara-
tions, the dependencies (edges) by the dependency statements.

3.1.2 Quantifying the Dependencies

To quantify the dependencies specified by the dependency statements, LBNs associate with
each probabilistic predicate a so-called logical CPD. These logical CPDs can be used to
determine the CPDs in the induced Bayesian network.

We represent logical CPDs under the form of logical probability trees in TILDE [7]
(as an alternative to the combining rules used in some other formalisms [14,16,15,19]).
The leaves of the tree for a probabilistic atomptarget contain probability distributions on
the values ofptarget. The internal nodes of the tree contain a) tests on the valuesof a
probabilistic atom, b) conjunctions of logical literals orc) combinations of the two. In order

1 This can be extended to clauses and random variable declarations with negativeliterals in the body if
care is taken that the resulting program has a unique two valued model, i.e., that the well-founded model is
two valued.
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intelligence(mike)intelligence(emma) difficulty(ai)difficulty(ml)

grade(mike,ai)grade(emma,ml) grade(emma,ai)

ranking(emma) ranking(mike)ability(john)

satisfaction(mike,ai)satisfaction(emma,ml) satisfaction(emma,ai)

rating(ml) rating(ai)

popularity(john)

Fig. 1 The structure of the induced Bayesian network for our running example.

teaches(P, C), ability(P ) = low

grade(S, C) = high grade(S, C) = low

high: 0.2 low: 0.8 high: 0.1 low: 0.9 high: 0.7 low: 0.3 high: 0.9 low: 0.1

Fig. 2 Example of a logical CPD forsatisfaction(S, C). Tests in internal nodes are binary. When a test
succeeds the left branch is taken, when it fails the right branch is taken. Note that internally in TILDE, tests
like grade(S, C) = low are represented asgrade(S, C, low).

for the tree for a probabilistic atomptarget to be consistent with the dependency statements,
the tree can of course only test on probabilistic atoms that are parents ofptarget according
to the dependency statements. An example of a tree forsatisf action(S,C) is shown in
Figure 2. Recall that according to the dependency statements, satisf action(S,C) depends
on grade(S,C), and onability(P ) whereP teachesC.

Note that we cannot simply use conditional probability tables as a format for represent-
ing CPDs in LBNs since they are too restrictive. One problem is that conditional probability
tables cannot deal with a variable number of inputs (as occurs for instance when the ranking
of a student depends on his grades for all courses taken, and the number of courses per stu-
dent can vary). Logical probability trees in TILDE can deal with a variable number of inputs
because the tests in the internal nodes are first-order queries. As shown by Van Assche et al.
[23], this makes it possible to express selection (for instance, does there exist a course for
which the student has a high grade), aggregation (for instance, is the average of all grades
of the student high) and combinations of the two.
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satisfaction/2

intelligence/1 difficulty/1

grade/2ability/1

rating/1

popularity/1

ranking/1

Fig. 3 The predicate dependency graph of the LBN for the universitydomain.

3.2 Recursive and Non-recursive Logical Bayesian Networks

Thepredicate dependency graphof an LBN is the graph that contains a node for each proba-
bilistic predicate and an edge from a nodep1 to a nodep2 if the LBN contains a dependency
statement with predicatep2 in the head andp1 in the body. The predicate dependency graph
of the LBN for the university domain is shown in Figure 3.

An LBN is callednon-recursiveif its predicate dependency graph is acyclic andrecur-
siveotherwise. Note that for non-recursive LBNs the induced Bayesian network (for any
interpretation of the logical predicates) is always acyclic. For recursive LBNs, the induced
network can be cyclic or acyclic depending on the interpretation of the logical predicates. If
it is cyclic then the semantics of the LBN with respect to thatinterpretation is left undefined.

3.3 Related Probabilistic Logic Formalisms

The formalism of LBNs is closely related to other probabilistic logic formalisms that are
based on Bayesian networks. Some of the many such formalismsare Probabilistic Rela-
tional Models [12], Bayesian Logic Programs [16] and Relational Bayesian Networks [14].
Like LBNs, most of these formalisms make a distinction between a qualitative part (such as
the random variable declarations and dependency statements in LBNs), and a quantitative
part (such as the logical CPDs in LBNs). For each of these formalisms, the representation for
thequalitative partis somewhat different. For some more details on this issue, we refer to
Fierens et al. [6]. However, the main difference between LBNs and other probabilistic logic
formalisms based on Bayesian networks might be in thequantitative part. To the best of our
knowledge, LBNs is the only such formalism that useslogical probability treesto quantify
the dependencies. Most other formalisms instead use some kind of combining rules (such as
noisy-or) [16] or combination functions [14]. Our motivation for using logical probability
trees in LBNs is the success of probability trees as a format for specifying CPDs in Bayesian
networks [11]. The advantage of probability trees is that they can compactly represent CPDs
that exhibit context-specific independencies, which makesit possible to learn more accurate
Bayesian networks [11] and speed up probabilistic inference [1]. By using logical probabil-
ity trees in LBNs, we essentially upgrade this approach to the relational case.
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4 Properties of Logical Bayesian Networks

In this section we discuss two properties of LBNs that have todo with cases in which depen-
dency statements can be rewritten into other dependency statements, leading to an equivalent
LBN. (We call two LBNs equivalent if, for any possible interpretation of the logical predi-
cates, their induced Bayesian network for that interpretation is the same.)

1. A dependency statement with multiple atoms in the body canbe rewritten into a set
of dependency statements each with only one atom in the body.We call this process
‘decomposing’ the dependency statement.

2. Some dependency statements are redundant or contain redundant literals in the context.
Such redundant statements or literals can be removed.

Both these properties arerelevant with respect to learning.

1. The first property implies that we can restrict the hypothesis space to LBNs with depen-
dency statements with only one atom in the body (since any other LBN is equivalent to
such an LBN).

2. The second property is useful to simplify learned dependency statements.

We will make use of these two observations in Section 6.
Below we only discuss these two properties for LBNs in which the random variable

declarations are disjoint(the head of any random variable declaration does not unify with
the head of any other random variable declaration). The reason for this is that these prop-
erties are most easily formulated for such LBNs and that onlyconsidering such LBNs is
no restriction: any set of non-disjoint random variable declarations can be translated into
an equivalent set of disjoint random variable declarationsby introducing an extra logical
predicate.

Example 1 (Disjoint random variable declarations)The following two random variable
declarations are not disjoint.

random(ranking(S)) <- bachelor_student(S).
random(ranking(S)) <- master_student(S).

If we include the following clauses

student(S) <- bachelor_student(S).
student(S) <- master_student(S).

as background knowledge in the random variable declarationprogram, then we can replace
the two original random variable declarations by the following one.

random(ranking(S)) <- student(S).
⊓⊔

4.1 Decomposing Dependency Statements

We now show that a dependency statement with multiple atoms in the body can be decom-
posed into an equivalent set of dependency statements each with only one atom in the body.
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Theorem 1 (Decomposing dependency statements)Consider an LBNL1 containing a
dependency statement of the form

a | a1, . . . , an ← c. n ≥ 2.

LetL2 be the LBN obtained by replacing this dependency statement by the following set of
dependency statements
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:

a | a1 ← c, b1.
...

a | ai ← c, bi.
...

a | an ← c, bn.

wherebi is the conjunction of the bodies of the random variable declarations with the atoms
a1, . . . , ai−1, ai+1, . . . , an in the head.

ThenL1 andL2 are equivalent.

We prove this theorem in Appendix A.1.
The intuition behind this decomposition is best explained in two steps.

1. Recall that a dependency statement of the form

a | a1, . . . , an ← c. n ≥ 2

only ‘fires’ if all atoms in the body are defined as random variables (Section 3.1.1).
Hence, such a dependency statement can be replaced by the following set of ‘decom-
posed’ dependency statements.
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:

a | a1 ← c, random(a2), . . . , random(an).
...

a | ai ← c, random(a1), . . . , random(ai−1), random(ai+1), . . . , random(an).
...

a | an ← c, random(a1), . . . , random(an−1).

The function of the extrarandom/1 atoms in the context of these decomposed de-
pendency statements is to ensure that these statements fire if and only if the original
dependency statement fires too.

2. For each of these decomposed dependency statements, we can replace all therandom/1

atoms in the context by their definition as given by the randomvariable declarations (in
logic programming terminology, this is calledunfolding the random/1 atoms). The
result of this step is the set of dependency statements givenby Theorem 1.

We now illustrate this using two examples.

Example 2 (Decomposing dependency statements)Consider again the LBN for our running
example, in particular the following random variable declarations and dependency state-
ment.

random(intelligence(S)) <- student(S).
random(difficulty(C)) <- course(C).
random(grade(S,C)) <- takes(S,C).
grade(S,C) | intelligence(S), difficulty(C).
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In a first step, this dependency statement can be decomposed into the two following
statements.

grade(S,C) | intelligence(S) <- random(difficulty(C)).
grade(S,C) | difficulty(C) <- random(intelligence(S)).

In a second step, we can replace therandom/1 atoms in the context by their definition
as given by the random variable declarations.

grade(S,C) | intelligence(S) <- course(C).
grade(S,C) | difficulty(C) <- student(S).

⊓⊔

Example 3 (Decomposing dependency statements (2))As a more advanced example, con-
sider the following random variable declarations and dependency statement.

random(ranking(S)) <- student(S).
random(intelligence(S)) <- student(S).
random(thesis_score(S)) <- student(S), in_master(S).
ranking(S) | intelligence(S), thesis_score(S).

The dependency statement only fires if both intelligence andthesis-score are defined as
random variables. Note that ranking and intelligence are defined for students but thesis-
score is defined only for particular students, namely masterstudents. Hence, the dependency
statement only fires for master students.

In a first step, this dependency statement can be decomposed as follows.

ranking(S) | intelligence(S) <- random(thesis_score(S)).
ranking(S) | thesis_score(S) <- random(intelligence(S)).

In a second step, we can again replace therandom/1 atoms by their definition.

ranking(S) | intelligence(S) <- student(S), in_master(S).
ranking(S) | thesis_score(S) <- student(S).

In the next section we show how these statements can be further simplified. ⊓⊔

4.2 Redundancy in Dependency Statements

We now show that some LBNs contain redundant dependency statements, or redundant lit-
erals in the context of the dependency statements. The definitions below are relative to some
set of random variable declarations, but we leave this set implicit.

Definition 1 (Redundant dependency statement)We call a dependency statement of the
form

a | a1, . . . , an ← c1.

redundantwith respect to another dependency statement with the same head and body but
contextc2 if the conjunctionrandom(a), random(a1), . . . , random(an), c1 impliesc2.

The intuition behind this definition is the following. The condition in this definition is such
that the second dependency statement (withc2 in the context) fires whenever the first state-
ment fires. Since both statements have the same head and body,this makes the first statement
redundant.
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Definition 2 (Redundant context literal) We call a literall in the context of a dependency
statement of the form

a | a1, . . . , an ← c, l.

(with c being a conjunction of logical literals)redundantif the conjunctionrandom(a),

random(a1), . . . , random(an), c implies l.

The following theorem shows that removing redundant dependency statements or re-
dundant literals preserves the semantics of an LBN.

Theorem 2 (Redundancy in dependency statements)Consider an LBNL1 and an LBN
L2 obtained by removing redundant dependency statements and/or redundant context liter-
als fromL1. ThenL1 andL2 are equivalent.

We prove this theorem in Appendix A.2.
We now illustrate this by continuing Example 3.

Example 4 (Redundant context literal)Consider the random variable declarations and de-
pendency statements obtained in Example 3.

random(ranking(S)) <- student(S).
random(intelligence(S)) <- student(S).
random(thesis_score(S)) <- student(S), in_master(S).
ranking(S) | intelligence(S) <- student(S), in_master(S).
ranking(S) | thesis_score(S) <- student(S).

In both dependency statements, the literalstudent(S) is redundant. The intuition is that
these statements only fire ifranking(S) is a random variable, which requires thatS is
a student (according to the random variable declaration ofranking(S)). Hence we can
remove these literals from the context.

ranking(S) | intelligence(S) <- in_master(S).
ranking(S) | thesis_score(S).

Note that the second statement does not specify in the context that S should be a master
student. This is indeed not needed since thesis-score is only defined for master students and
hence the statement only fires for master students anyway. ⊓⊔

In this example only redundant literals occurred. An example where redundant statements
occur can be found later in this paper (Section 6.1.4).

5 Learning Non-recursive Logical Bayesian Networks: The Learning Setting

We now discuss the problem of learning LBNs from relational data. In this paper we focus
on learningnon-recursiveLBNs. We briefly discuss learning recursive models in Section 8.

The learning task that we consider can be summarized as follows.

– Given:
– a set of random variable declarations,
– a scoring criterion,
– a dataset.

– Find: the LBN (i.e., dependency statements and logical CPDs) thatmaximizes the score
on the dataset.
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Note that we assume that the random variable declarations are given. This is similar to the
learning setting for Probabilistic Relational Models, where the relational schema is given
[10,12]. As a scoring criterion we use theBayesian Information Criterion (BIC)[7,13], but
our algorithms can be used with any other decomposable scoring criterion as well (in terms
of LBNs, a scoring criterion is decomposable if the score of an LBN can be written as the
sum of local scores for each of the logical CPDs in that LBN).

The data that we learn from is a dataset ofmega examples(terminology adopted from
Mihalkova et al. [18]). Each mega example is a set of connected pieces of information. For
instance, in a dataset about the inheritance of genes among family members, each mega ex-
ample would correspond to one particular family; in a dataset for the university domain, each
mega example corresponds to one particular collection of students, professors and courses
with all their relations and properties. We assume that megaexamples are mutually inde-
pendent. Learning from a dataset consisting of independentmega examples (as opposed to
learning from a single relational database) is useful for instance for cross validation. We use
the term ‘mega example’ rather than simply ‘example’ because, as we will see later, each
mega example can give rise to multiple smaller examples for learning logical CPDs.

In our learning setting, each mega example consists of two parts: a logical part and a
probabilistic part. The logical part consists of an interpretation of the logical predicates.
The probabilistic part consists of an assignment of values to all ground random variables (as
determined by the random variable declarations). This is similar to the data used for learning
Bayesian Logic Programs [5] or Relational Bayesian Networks [14].

Example 5Consider a simplified variant of the university domain in which we consider
only students and courses (but no professors) and use only four probabilistic predicates
(ranking/1, dif f iculty/1, rating/1 and grade/2). The logical part of a mega example
would then specify all students and courses, and which students take which courses. This
could for instance look as follows.

student(s1). student(s2).
course(c1). course(c2).
takes(s1,c1). takes(s2,c1). takes(s2,c2).

The probabilistic part of a mega example specifies a value forall random variables for that
mega example. This could for instance look as follows.

ranking(s1)=high ranking(s2)=mid
difficulty(c1)=mid difficulty(c2)=high
rating(c1)=low rating(c2)=mid
grade(s1,c1)=high grade(s2,c1)=mid grade(s2,c2)=low

⊓⊔

6 Learning Non-recursive Logical Bayesian Networks: The Algorithms

We now discuss the algorithms for learning non-recursive LBNs. We first show how to up-
grade the ordering-search algorithm for Bayesian networkstowards non-recursive LBNs.
Next, we briefly discuss a structure-search algorithm for LBNs that is similar to existing
learning algorithms for other probabilistic logic formalisms. Finally, we briefly discuss how
both algorithms can be implemented in an efficient way. To stress the difference with Logical
Bayesian Networks we will sometimes refer to ordinary Bayesian networks as ‘proposi-
tional’ Bayesian networks.
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6.1 Ordering-search

First we briefly discuss ordering-search for the propositional case. Then we discuss the case
of LBNs, and the differences between the two.

6.1.1 Ordering-search for Propositional Bayesian Networks

Ordering-search for propositional Bayesian networks [22]is based on two observations.

– It is relatively easy to learn a Bayesian network if an ordering on the random variables
is given.

– Usually the best ordering is not known in advance. Hence a search through the space of
possible orderings needs to be carried out to find the best ordering.

We now explain this further.
Given an orderingon the random variables, it is relatively easy to learn the best Bayesian

network consistent with that ordering (by consistent we mean that the parents of a variable
X should all precedeX in the ordering). Given such an ordering, and provided that the
scoring criterion used is decomposable, the learning task decomposes: to find the Bayesian
network with the highest score we simply need to find for each random variable separately
the CPD with the maximal local score. Note that the function of the ordering is to eliminate
the possibility of cycles (if we would not take into account an ordering, learning each CPD
separately would very likely lead to cycles in the network, which is not allowed). Note that
in principle the parents for a variableX could be all the variables that precedeX in the
ordering. However, this would lead to a ‘fully-connected’ network, which is undesirable.
Hence, the approach of Teyssier and Koller [22] is to look forthe bestk parents forX
(they use at mostk=4). They do this by considering all possible parent sets of size k (i.e.,
all subsets of sizek of the set of variables that precedeX in the ordering). For each such
set they compute the score of the resulting CPD. They then select the highest scoring CPD,
and use this as the final CPD forX. The parents ofX are then the variables that occur in
that CPD. This procedure is applied in turn to each random variableX, yielding a complete
Bayesian network.

Using the above strategy, the score of the resulting networkdepends heavily on the
ordering that is used. However, usuallythe optimal ordering is not known in advance. Hence,
the idea of ordering-search is to search through the space oforderings, for each ordering
applying the above procedure for finding the CPDs (we discussthe search process in more
detail for LBNs below). At the end, the best ordering is retained, and the Bayesian network
for that ordering is returned as the final network.

Teyssier and Koller [22] experimentally compared ordering-search and structure-search
for propositional Bayesian networks and found that ordering-search is always at least as
good and usually faster. As an explanation they note that thespace of orderings is smaller
than the space of structures, and that ordering-search doesnot need acyclicity tests, which
are costly if there are many variables.

6.1.2 Ordering-search for Logical Bayesian Networks

Until now ordering-search has not yet been upgraded to the case of non-recursive directed
probabilistic logical models2. The above conclusions from the propositional case motivated

2 Note that ordering-search is mainly relevant for directed models, and not for undirected models such as
Markov Logic Networks [21] (since the point of ordering-search is to avoid directed cycles).
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us to consider this. We now show how to upgrade ordering-search towards learning non-
recursive LBNs.

Similar to the case of propositional Bayesian networks, it is easy to learn a non-recursive
LBN when anordering on the probabilistic predicatesis given. Again the learning task de-
composes: we can learn for each probabilistic predicate separately the logical CPD. To learn
the logical CPD for a predicatep, we learn a logical probability tree for predictingp. This
procedure is applied in turn to each probabilistic predicatep, yielding a set of logical CPDs.
As we explain below, the dependency statements can be extracted from these logical CPDs
in a post-processing step. Recall from the previous sectionthat in the propositional case
some care needs to be taken to ensure that the resulting network is not fully-connected. In
our learning algorithm for LBNs, this is accomplished in a quite simple way. This is due
to the fact that we use logical probability trees as CPDs, andthat learning algorithms for
decision trees are typically ‘selective’ (if we learn a decision tree with as input a number
of predicates, then the learned tree will typically only contain tests on some of these predi-
cates). Hence, to learn the tree for a predicatep, we simply supply all predicates preceding
p in the ordering as inputs to the learning algorithm, and let the learning algorithm select
which of these predicates are really relevant for predicting p. The selectivity of the tree
learning algorithm then ensures that we do not obtain a ‘fully-connected’ LBN.

The above strategy requires an ordering on the probabilistic predicates. When the opti-
mal ordering is not known in advance, we need to search over possible orderings. Obviously
exhaustive search is infeasible, so some kind of heuristic search is needed. Like Teyssier and
Koller [22] in the propositional case, we essentially perform hill-climbing through the space
of all orderings. Concretely, we start from a random ordering and compute thescore for this
ordering (i.e., the score of the LBN learned using this ordering). Then we consider all candi-
date orderings in the neighbourhood of the initial ordering, and select the ordering with the
highest score. Using this ordering as the new ordering, we repeat the same procedure, and
so on until we obtain no more improvements. We then use the logical CPDs learned for the
final ordering as the final logical CPDs3. This algorithm is summarized in Figure 4.

% start with a random ordering:
Ocurrent = random ordering on the probabilistic predicates
computescore(Ocurrent)
% search for a better ordering:
repeat until convergence

for each Ocand ∈ neighbourhood(Ocurrent)
compute∆score(Ocand) = score(Ocand)− score(Ocurrent)

end for
if max(∆score(Ocand)) > 0

Ocurrent = argmax(∆score(Ocand))
end if

end repeat
% extract the dependency statements from the logical CPDs learned for the final ordering:
for each probabilistic predicatep

extract dependency statements from the logical CPD forp learned usingOcurrent

end for

Fig. 4 The ordering-search algorithm for learning LBNs.

3 Since the initial ordering might influence the final result (because the algorithm only converges to a
local optimum), it could be useful to perform random restarts, i.e., multiple runs with different initial random
orderings. However, in our experiments we found the gain of this to be very small. This not only holds for the
above ordering-search algorithm, but also for the structure-search algorithm that we discuss later.
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In the above algorithm the neighbourhood of an ordering is defined as the set of order-
ings that can be obtained by swapping a pair of adjacent predicates in that ordering (this is
similar to what is done for propositional Bayesian networks[22]). Note that the size of the
neighbourhoods isn − 1, with n the number of probabilistic predicates (because there are
n− 1 different possibilities for swapping adjacent predicatesin an ordering). Since the size
of the neighbourhoods is equal to the branching factor of thesearch, this implies thatthe
branching factor of ordering-search is linear in the numberof probabilistic predicates. This
will turn out to be important in our experiments.

Below we explain how to learn and score logical CPDs (when we know the set of
predicates that are used as in input for the logical CPD), andhow to extract dependency
statements from a logical CPD. At the end, we also discuss some differences between our
ordering-search algorithm for LBNs and the algorithm for propositional Bayesian networks.

6.1.3 Learning Logical CPDs

We represent logical CPDs as logical probability trees likethe tree in Figure 2 (p. 6). Such
trees can be learned using any of the standard probability tree algorithms in TILDE [7].
The only two issues are which scoring criterion to use for thetrees, and how to construct
the datasets for learning the trees. In this paper we use the Bayesian Information Criterion
(BIC) [7,13] for scoring the trees. We now explain how we construct the datasets.

To learn a logical CPD for a target predicateptarget we need a dataset of labelled ex-
amples which can be derived from the mega examples in the original dataset. In general, a
single mega example can give rise to multiple examples in thedataset for the logical CPD
since there can be multiple ground atoms for the predicateptarget in the mega example.
Concretely, each random variable (ground probabilistic atom) X built from ptarget in each
mega examplem leads to one examplee in the dataset for the logical CPD. This examplee

is labelled with the value ofX in m and consists of the part ofm that is relevant forX.

Example 6Consider the logical CPD for the probabilistic predicatedif f iculty/1 in the uni-
versity domain. Note that each random variable fordif f iculty/1 in each mega example
corresponds to a particular course. Hence, each courseC in each mega examplem gives
rise to another examplee in the dataset for this logical CPD. Such an examplee contains all
information from the mega examplem that is about the courseC or about a student linked
to C (for instance through thetakes/2 relation).

Concretely, the simplified mega example given in Example 5 contains two courses and
hence leads to two examples in the dataset for the logical CPDfor dif f iculty/1. The first
example is about coursec1, is labelled with ‘difficulty=mid’ and looks as follows.

course(c1).
student(s1). student(s2).
takes(s1,c1). takes(s2,c1).

ranking(s1)=high ranking(s2)=mid
rating(c1)=low
grade(s1,c1)=high grade(s2,c1)=mid

The second example is about coursec2, is labelled with ‘difficulty=high’ and looks as fol-
lows.

course(c2).
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student(s2).
takes(s2,c2).

ranking(s2)=mid
rating(c2)=mid
grade(s2,c2)=low

⊓⊔

6.1.4 Extracting Dependency Statements from a Logical CPD

The result of the search over orderings is the set of logical CPDs that was learned for the final
ordering. To obtain a complete LBN, we still need to determine the dependency statements.
It turns out that the dependency statements can be extractedfrom the logical CPDs (this is
a generalization of the fact that the directed acyclic graphof a Bayesian network can be
extracted from the CPDs in that network). Below we explain how to do this for a logical
CPD specified as a logical probability tree. To obtain a complete LBN, this procedure needs
to be applied to the logical probability tree for each probabilistic predicate.

When extracting dependency statements from a logical probability tree with as target the
probabilistic atomptarget, we want to find a set of statements that is consistent with thetree
(i.e., the tree should never test any probabilistic atom that is not a parent ofptarget according
to the set of statements). We do this by creating a dependencystatement for each test on a
probabilistic atom in each internal node of the tree. Call the atom that is testedptest and the
nodeN . In the most general case, apart from the test onptest, the nodeN can contain a
number of tests on other probabilistic atoms and a conjunction l of logical literals. We then
create a dependency statement of the formptarget | ptest ← l, path(N), wherepath(N)

is a conjunction of logical literals that describes the pathfrom the root toN . Each node on
this path can contribute a number of logical literals topath(N). A succeeded node (i.e., a
node for which the succeeding branch of the tree was chosen inthe path) contributes all
logical literals that it contains. A failed node that does not contain any tests on probabilistic
atoms contributes the negation of all its logical literals.A failed node that contains a test
on a probabilistic atom does not contribute to the path (letting such a node contribute the
negation of its logical literals could be inconsistent since we cannot be sure that the logical
literals caused the failure, rather than the probabilistictests).

After we applied the above procedure to extract all dependency statements, we simplify
those statements by removing redundant literals and redundant statements (Section 4.2).

Example 7Consider the probability tree shown in Figure 2 (p.6). For this tree,ptarget is
satisf action(S,C). For the root node,ptest is ability(P ), l is teaches(P,C) and the path is
empty. For the internal node below the root to the left,ptest is grade(S,C), l is empty and
the path isteaches(P,C). For the node below the root to the right,ptest is grade(S,C) and
l and the path are both empty. The three resulting dependency statements for these nodes are
respectively the following.

satisfaction(S,C) | ability(P) <- teaches(P,C).
satisfaction(S,C) | grade(S,C) <- teaches(P,C).
satisfaction(S,C) | grade(S,C).

The second statement can be removed since it is redundant with respect to the third state-
ment. ⊓⊔
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Note that with the above approach we never learn dependency statements with multiple
atoms in the body. This is no restriction since we have shown in Section 4.1 that each such
LBN is equivalent to an LBN with dependency statements with only one atom in the body,
which can be learned. Also note that in the above procedure for extracting the dependency
statements from a logical probability tree, the probabilistic atoms in the internal nodes never
contribute topath(N) for a nodeN . The reason for this is thatpath(N) is the context of the
dependency statement and the context can only contain logical literals but no probabilistic
atoms. This implies that generally not all independence information specified in a logical
probability tree can be captured by the dependency statements. This is not surprising: it also
holds in the propositional case (for instance, a CPD under the form of a probability tree
can capture context-specific independence while the structure of a Bayesian network cannot
[1]).

6.1.5 Differences between Ordering-search for LBNs and Propositional Ordering-search

Two obvious differences between ordering-search for LBNs and ordering-search as pro-
posed by Teyssier and Koller [22] for propositional Bayesian networks are that for LBNs
we use orderings on the set of probabilistic predicates (instead of on the set of random
variables), and the extraction of the structure from the CPDs is more complex.

A third and more important difference is that we uselogical probability trees as CPDs
whereas Teyssier and Koller useconditional probability tables. Recall that for LBNs we
cannot use conditional probability tables since they are too restrictive (Section 3.1.2). How-
ever, for propositional Bayesian networks it would be possible to use (propositional) proba-
bility trees instead of conditional probability tables. Such an approach would have both an
advantage and a disadvantage with respect to efficiency:

– The advantage of using probability trees is that we need to learn fewer CPDs than when
using conditional probability tables. This is a consequence of the fact that probability
trees are selective but conditional probability tables arenot.
Suppose that we are given an ordering and a random variableX for which we need to
learn the CPD. Using probability trees, we simply learn a CPDwith as input all random
variables precedingX in the ordering, and we let the decision tree learning algorithm
select from all these variables the relevant ones. Using tables, selecting from all the
variables the relevant ones is more complex because tables are not selective. Hence, the
approach of Teyssier and Koller is to put an upper boundk on the number of inputs
for the CPDs. Concretely, they compute the score of all CPDs for X that have at most
k random variables (from all the variables precedingX in the ordering) as inputs, and
then determine the parents ofX as all random variables that are used in the highest
scoring CPD. The drawback of this is that there are many such CPDs. Hence this is
computationally only feasible for smallk (Teyssier and Koller use at mostk = 4).

– The disadvantage of using probability trees is that learning a single CPD is compu-
tationally less efficient than when using conditional probability tables (with an upper
bound on the number of inputs).
Using tables with an upper boundk on the number of inputs allows Teyssier and Koller
to compute beforehand the sufficient statistics for all CPDsthat could ever be needed
during the search over orderings. As a consequence, the actual search over orderings
becomes very fast. In contrast, when using probability trees it is not efficient to learn all
CPDs beforehand. Hence, in our ordering-search algorithm for LBNs we do not learn
probability trees beforehand but learn them on the fly as theyare needed.
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To summarize, using probability trees instead of conditional probability tables has two
opposing effects: fewer CPDs need to be learned, but learning a single CPD is less efficient.
It is unclear what the combined effect of these two opposing effects is since this has not yet
been studied. Although using conditional probability tables in LBNs is not an option (since
they are too restrictive), this issue is nevertheless relevant for our work: it implies that it is
non-obvious that the efficiency advantage of ordering-search over structure-search that was
observed by Teyssier and Koller [22] also holds in the case ofLBNs. This is part of our
motivation for experimentally comparing ordering-searchand structure-search for LBNs in
Section 7.

6.2 Structure-search

We now discuss structure-search. First we briefly discuss the propositional case, then we
discuss the case of LBNs.

6.2.1 Structure-search for Propositional Bayesian Networks

Structure-search (also known as DAG-search) is the most well-known and most straight-
forward approach for learning propositional Bayesian networks [13]. It is based on two
observations.

– It is relatively easy to learn the CPDs in a Bayesian network if the structure of the
network (the directed acyclic graph) is given.

– If the best structure is not known in advance, a search through the space of possible
structures needs to be carried out to find the best structure.

6.2.2 Structure-search for Logical Bayesian Networks

The structure-search algorithm for propositional Bayesian networks has already been up-
graded to the relational case for several formalisms [10,12,15,16,19]. The algorithm that
we use for LBNs is very similar to these existing upgrades, inspecific the algorithm for
learning Probabilistic Relational Models [10,12].

One possible approach to structure-search for LBNs would beto define refinement op-
erators for sets of dependency statements, and use these operators to organize the search. To
avoid double computations in the learning process, we wouldthen have to take into account
possible redundancy in the dependency statements (see Section 4.2). However, for learning
non-recursive models, a more simple approach can be taken: we can search in the space of
predicate dependency graphs instead of in the space of dependency statements. Recall from
Section 3.2 that a predicate dependency graph specifies for each predicate on which other
predicates it depends but not exactly how. Hence, when searching in the space of predicate
dependency graphs, redundancy is less of a problem, and hence the search process is easier
to implement.

Our structure-search algorithm for LBNs is basically hill-climbing in the space of predi-
cate dependency graphs. To learn the logical CPD for a predicatep, given a predicate depen-
dency graphS, we simply learn a logical probability tree for predictingp with as input all
predicates that are parents ofp in S. When we found the final predicate dependency graph
and the corresponding logical CPDs, we extract the dependency statements from these log-
ical CPDs in exactly the same way as in our ordering-search algorithm (Section 6.1.4). The
resulting structure-search algorithm for LBNs is summarized in Figure 5.
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% start with a random structure:
Scurrent = random predicate dependency graph
computescore(Scurrent)
% search for a better structure:
repeat until convergence

for each Scand ∈ neighbourhood(Scurrent)
compute∆score(Scand) = score(Scand) − score(Scurrent)

end for
if max(∆score(Scand)) > 0

Scurrent = argmax(∆score(Scand))
end if

end repeat
% extract the dependency statements from the logical CPDs learned for the final structure:
for each probabilistic predicatep

extract dependency statements from the logical CPD forp learned usingScurrent

end for

Fig. 5 The structure-search algorithm for learning LBNs.

To find the initial predicate dependency graph in the above algorithm, we borrow some
elements from our ordering-search algorithm. Specifically, we generate a random initial
ordering, learn logical CPDs for this ordering, and extractthe predicate dependency graph
from these logical CPDs (this amounts to simply checking which predicates are used inside
which logical CPDs)4.

In the above algorithm the neighbourhood of a predicate dependency graphS is defined
as the set of all acyclic graphs that can be obtained by adding, deleting or reversing an edge
in S. Note that the number of possibilities to add an edge in a predicate dependency graph
is in general quadratic in the number of probabilistic predicates. Hencethe branching factor
of structure-search is quadratic in the number of probabilistic predicates. Recall that it was
linear for ordering-search (Section 6.1.2, p. 13).

We also implemented an extension to the above structure-search algorithm for LBNs,
namely lookahead: with lookahead we not only try adding one edge but also adding two
edges with the same head during a single refinement step. The experimental results were
rather discouraging, however: lookahead does not significantly improve the quality of the
learned models (in terms of test log-likelihood or number ofdependency statements), but
significantly slows down the algorithm [8]. Hence, we do not consider this extension further.

6.3 Efficiently Implementing the Algorithms

We now briefly show some optimizations that can be used to implement the above algorithms
for learning LBNs efficiently, provided that the scoring criterion is decomposable. These
optimizations apply equally well to the propositional caseas to the case of LBNs. In fact, in
the propositional case they are entirely standard [13].

When using a decomposable scoring criterion, the ordering-search and structure-search
algorithms can be implemented quite efficiently because decomposability has two beneficial
effects on the computation of the score-change for a candidate ordering (∆score(Ocand) in
the algorithm of Figure 4) or candidate structure (∆score(Scand) in Figure 5).

4 In our experiments, we use the same random initial ordering for ordering-search and structure-search.
Hence, both algorithms always start from the same point. This ensures that an experimental comparison of
both algorithms evaluates the search process itself and notthe starting point of the search.
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– Locality: the score-change for a candidate ordering/structure onlydepends on the score
of the logical CPDs that are different for the candidate ordering/structure than for the
current ordering/structure. For ordering-search and structure-search there are at most
two such logical CPDs5. Hence, score-changes can be computed quite efficiently.

– Reusability: many of the score-changes that are computed during one iteration of the
loop (the “repeat” in Figure 4 or 5) are still valid during thenext iteration and can be
reused. To be precise, a score-change due to a modificationm1 is still valid after a
modificationm2 to the current ordering/structure if and only if the set of probabilistic
input predicates that is changed bym1 was not changed bym2.

7 Experiments

We now experimentally compare the above algorithms for learning LBNs (ordering-search
and structure-search). We discuss the datasets, the experimental setup and the results.

7.1 Datasets

We perform experiments on four relational domains: the synthetic university domain used
before in our examples, and three real-world datasets (IMDB, UWCSE and WebKB) that
are popular benchmarks in the field of statistical relational learning.

For thesynthetic university domainwe generated datasets with a varying number of
mega examples from the LBN given in Section 3. The logical part of each mega example was
specified by hand (it contains 20 students, 10 courses, 5 professors and their relationships).
The probabilistic part of each mega example was constructedby sampling from the given
LBN. Each mega example corresponds to 230 random variables.We generated datasets of
5, 10, 15, 31, 62, 125 and 250 mega examples (we refer to these datasets as ‘Univ5’ to
‘Univ250’).

TheUWCSE dataset[21] contains information about 140 graduate students, 52 profes-
sors and 132 courses at a computer science department. The dataset consists of five mega
examples, each corresponding to a specific research area. Since in this dataset relations are
of special importance6, we incorporate them into the probabilistic model. In LBNs this can
be accomplished by simply modelling them as probabilistic predicates. In total, we use three
logical predicates (student/1, prof /1 andcourse/1) and ten probabilistic predicates with
the following random variable declarations.

random(phase_in_PhD(S)) <- student(S).
random(year_in_PhD(S)) <- student(S).
random(student_nb_publications(S)) <- student(S).
random(position(P)) <- prof(P).
random(prof_nb_publications(P)) <- prof(P).

5 For ordering-searchthere areexactly twosuch logical CPDs since a new candidate ordering is obtained
by swapping two adjacent predicates in the current orderingand this influences only the logical CPDs for these
two predicates. Forstructure-searchthere areat most twosuch logical CPDs since a new candidate predicate
dependency graph is obtained by adding/deleting/reversing an edge in the current graph, and adding/deleting
an edge influences only the logical CPD for the predicate thatthe edge points to, while reversing an edge
influences the logical CPDs for both predicates involved.

6 For instance, this dataset has been used for supervised learning with the ‘advised by’ relation as the target
[21].
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Table 1 Dataset characteristics: total number of random variables, number of mega examples, number of
probabilistic predicates.

Dataset #Variables #MegaExamples #ProbPredicates
Synthetic Univ 1150 to 57500 5 to 250 8

IMDB 2852 5 7
UWCSE 9607 5 10
WebKB 78132 4 5

random(level(C)) <- course(C).
random(teaches(P,C)) <- prof(P), course(C).
random(assistant(S,C)) <- student(S), course(C).
random(advised_by(S,P)) <- student(S), prof(P).
random(co_author(S,P)) <- student(S), prof(P).

Of course, since this is a real-world dataset the true dependency statements are unknown.
The IMDB datasetwas extracted from the internet movie database (www.imdb.com).

The dataset that we use (by Mihalkova et al. [18]) contains information about 20 movies, 236
actors and 32 directors. This information is divided over five mega examples. We use three
logical predicates (actor/1, director/1 and movie/1) and seven probabilistic predicates
with the following random variable declarations.

random(gender(A)) <- actor(A).
random(comedy(D)) <- director(D).
random(crime(D)) <- director(D).
random(drama(D)) <- director(D).
random(worked_for(A,D)) <- actor(A), director(D).
random(acts(A,M)) <- actor(A), movie(M).
random(directs(D,M)) <- director(D), movie(M).

The WebKB datasetis about people (faculty or students), courses and projectsat the
computer science departments of four universities [4]. Thedataset that we use [18] con-
tains information about 746 people, 163 courses and 80 projects, divided over four mega
examples (each corresponding to a different university). We use three logical predicates
(person/1, project/1 and course/1) and five probabilistic predicates with the following
random variable declarations.

random(faculty(P)) <- person(P).
random(student(P)) <- person(P).
random(has_project(P,Pr)) <- person(P), project(Pr).
random(assistant(P,C)) <- person(P), course(C).
random(prof(P,C)) <- person(P), course(C).

The main characteristics of the above datasets are summarized in Table 1.

7.2 Experimental Setup

For all experiments we performed five-fold cross validation(except for WebKB we per-
formed four-fold cross validation since this dataset contains only four mega examples). For
the synthetic university domain, mega examples were divided over equal-sized folds ran-
domly. For the real world datasets, each fold corresponds toone mega example. We report
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the average results over the folds and use two-tailed pairedt-tests (withα=0.05) to assess
the significance of differences between two algorithms.

We use four evaluation criteria:normalized test log-likelihood(the log-likelihood on the
test data divided by the number of mega examples),normalized train score(the score on
the training data divided by the number of mega examples; while not important in itself it
can give some insight into the degree of overfitting of an algorithm), number of dependency
statements learned(smaller is usually better because of ease of interpretation) andrunning
time.

For the synthetic university domain we know the true LBN thatgenerated the data.
Hence, we can use as a fifth evaluation criterion the degree towhich a learned LBN matches
this true LBN. A simple measure for this would be the number ofdependency statements
that the true LBN has in common with the learned LBN. However,the problem with this is
that generally it is even in theory not possible to learn the true direction of each dependency
statement from data7. Hence, instead we measure the maximum overlap between the true
LBN and the Markov equivalence classClearned of the learned LBN (we look for the LBN
in Clearned that has the most directions in common with the true LBN). We refer to this as
thenumber of correct dependencies learned.

For all evaluation criteria we report the results for the twoalgorithms. For test log-
likelihood and train score we additionally report the results for the ‘empty LBN’ as a base-
line. With an ‘empty LBN’ we mean an LBN with no dependency statements, this is the
LBN according to which all random variables are independent.

7.3 Experimental Results

We now report our experimental results. First we focus on thecomparison of the two algo-
rithms, ordering-search (OS) and structure-search (SS). Then we analyze the running times
of both algorithms in more detail. Finally we briefly show some of the dependencies learned
on the real-world datasets.

7.3.1 Ordering-Search versus Structure-Search

Our experimental results for OS and SS are given in Table 2 andsummarized in Table 3. An
entry in the latter table (for a particular evaluation criterion and dataset) has the following
meaning: if one of the two algorithms is significantly betterthan the other we show the
best algorithm; if there is no statistically significant difference between the two algorithms
we fill in “/”. Note that for the real-world datasets we cannotmeasure the number of correct
dependencies learned since we do not know the true LBN for these datasets. For the synthetic
university domain we also plotted the results as a function of dataset size in Figure 6.

In terms of quality of the learned LBNs, the main conclusion from our results is that OS
and SS are competitive with each other.

– For none of the datasets there is a significant difference intest log-likelihood between
OS and SS (see Table 3). In terms of train score, SS performs significantly better than

7 With the direction of a dependency statement we mean which atom is in the head and which in the body.
The reason why this cannot always be learned from data is similar to the reason why the true direction of
an edge in a Bayesian network cannot always be learned (each Bayesian network has aMarkov equivalence
class, which is a set of networks that all have the same score but different directions for some of the edges
[2].
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Table 2 Detailed experimental results. For each dataset the best results are shown in bold.

Dataset Method LogLik(Test) Score(Train) #Statements #CorrectDepend Time
Univ5 OS -1.3789 -1.3485 9.0 3.4 35s
Univ5 SS -1.3750 -1.3365 9.8 4.4 137s
Univ5 empty -1.4799 -1.4989 - - -
Univ10 OS -1.3669 -1.3524 9.8 4.6 42s
Univ10 SS -1.3461 -1.3410 9.4 5.0 134s
Univ10 empty -1.4722 -1.4880 - - -
Univ15 OS -1.3444 -1.3415 8.6 4.4 51s
Univ15 SS -1.3328 -1.3305 9.6 5.0 164s
Univ15 empty -1.4697 -1.4792 - - -
Univ31 OS -1.3083 -1.3135 8.8 5.6 55s
Univ31 SS -1.3023 -1.3060 9.6 6.6 168s
Univ31 empty -1.4575 -1.4647 - - -
Univ62 OS -1.3051 -1.3097 11.2 5.8 78s
Univ62 SS -1.2973 -1.3012 10.4 6.6 262s
Univ62 empty -1.4554 -1.4595 - - -
Univ125 OS -1.2905 -1.2959 8.8 5.8 120s
Univ125 SS -1.2828 -1.2861 8.2 6.8 407s
Univ125 empty -1.4562 -1.4586 - - -
Univ250 OS -1.3001 -1.3035 9.8 5.6 194s
Univ250 SS -1.2894 -1.2913 7.6 6.8 586s
Univ250 empty -1.4561 -1.4573 - - -
IMDB OS -0.7975 -0.7620 7.8 - 95s
IMDB SS -0.8782 -0.7785 7.2 - 378s
IMDB empty -0.9265 -0.8975 - - -

UWCSE OS -0.4288 -0.3539 15.2 - 135s
UWCSE SS -0.4160 -0.3489 14.6 - 535s
UWCSE empty -0.4631 -0.3961 - - -
WebKB OS -0.0702 -0.0694 7.3 - 251s
WebKB SS -0.0709 -0.0693 7.3 - 565s
WebKB empty -0.0808 -0.0791 - - -

Table 3 Significance of differences between results for OS and SS. Both OS and SS have significantly better
test log-likelihood and train score than the empty LBN in allcases (this is not shown in the table).

Dataset (#Vars) LogLik(Test) Score(Train) #Statements #CorrectDepend Time
Univ5 / / / / OS
Univ10 / / / / OS
Univ15 / / / / OS
Univ31 / / / / OS
Univ62 / / / / OS
Univ125 / / / SS OS
Univ250 / / / SS OS
IMDB / / / - OS

UWCSE / SS / - OS
WebKB / / / - OS

OS in one case (the UWCSE dataset), but this difference on training data does not carry
over to the test data. As expected, OS and SS always perform better than the empty LBN
(in terms of test log-likelihood and train score).
The evolution of test log-likelihood and train score as a function of the dataset size for
the synthetic university domain (Figure 6) is as expected: both improve rapidly when
initially increasing the dataset size but this improvementslows down when moving to
bigger datasets, and likelihood and score seem to saturate.The figure also shows that
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Fig. 6 Results for OS and SS on synthetic university datasets of varying size. For train score and test log-
likelihood we also show the results for the empty LBN.

the differences between OS and SS are very small as compared to the differences with
the empty LBN.

– For none of the datasets there is a significant difference in thenumber of dependency
statementslearned by OS and SS (see Table 3). Also, the evolution of the number of
dependency statements as a function of the dataset size (Figure 6) does not show any
clear trends.

– Since for the synthetic university domain we know the true LBN, we can measure the
number of correct dependencieslearned by OS and SS. SS learns significantly more
correct dependencies in two cases while the opposite never occurs. The evolution of the
number of correct dependencies learned as a function of the dataset size (Figure 6) is
as expected: it increases rapidly when initially increasing the dataset size and then sat-
urates. For sufficiently big datasets, SS learns nearly all seven true dependencies while
OS does slightly worse with on average 5.7 true dependencies. We had a closer look at
the experiments with the biggest dataset sizes in which not all seven true dependencies
were learned and found that the problem was always in having the wrong direction for a
dependency but never in ‘missing’ a dependency (i.e., all true ‘undirected’ dependencies
are always learned but sometimes a dependency is learned in the wrong direction even
though the two directions are not Markov equivalent). This can also explain why the
above differences in the number of correct dependencies learned between OS and SS do
not lead to significant differences in test log-likelihood.

The results forrunning time show that OS is always significantly faster than SS. On
the synthetic university domain, running time behaves linearly in the dataset size for both
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OS and SS (Figure 6), but nevertheless running time is alwayssignificantly smaller for OS
than for SS, with differences between a factor 3.0 and 3.9. Also on the real-world datasets
the running time is always significantly smaller for OS, withdifferences between a factor
2.3 and 4.0. We analyze the reason for these differences between OS and SS in more detail
in the next section.

Since OS is competitive with SS in terms of quality of the learned LBNs, and OS is sig-
nificantly faster, we conclude that overall OS is preferableto SS for learning non-recursive
LBNs.

7.3.2 Analysis of Running Times

In this section we analyze the running time of both algorithms in more detail by decompos-
ing it into the running times of the main different steps in the algorithms. Such an analysis
has not been made before for ordering-search (also not in thepropositional case).

The total running timeTtotal of the ordering-search and structure-search algorithms can
be decomposed as follows8

Ttotal = Tinit + Tfirst + Trest,

whereTinit denotes the initialization time (the time for learning and scoring all logical
CPDs for the initial ordering/structure),Tfirst denotes the time for the first iteration (i.e.,
the first execution of the repeat loop of the algorithms) andTrest denotes the time for all
other iterations. The reason for considering the first iteration separately is that it typically
takes a lot longer than any of the other iterations since all the score-changes needed in the
first iteration effectively have to be computed, while in thenext iterations most of them can
be reused without extra computation (see Section 6.3). LetI denote the number of iterations
not including the first one. If we define the average time per iteration (not including the first
one) asTavg = Trest/I, we can rewrite the total running time as follows.

Ttotal = Tinit + Tfirst + Tavg × I

Our experimental results for each of the above measures are shown in Table 4. Note that
Tinit is the same for both algorithms. Hence, below we only discussTtotal, Tfirst, Tavg

andI.
Recall from the previous section that the total running time, Ttotal, was always signif-

icantly lower for OS than for SS with differences being between a factor 2.3 and 4.0. This
can be explained as follows.

– Thetime for the first iteration , Tfirst, is always significantly lower for OS than for SS.
This was expected since in the first iteration all elements ofthe neighbourhood of the
initial ordering/structure have to be scored and the size ofthe neighbourhood, and hence
the branching factor of the search, is smaller for OS than forSS(linear in the number
of probabilistic predicates for OS but quadratic for SS, seeSections 6.1 and 6.2). In our
experiments the difference inTfirst between OS and SS goes from a factor 1.7 to 4.1.

– Theaverage time per iteration(not including the first one),Tavg, is also always signif-
icantly lower for OS than for SS. This was expected for the same reasons as forTfirst

above. In our experiments the difference inTavg between OS and SS goes from a factor
1.8 to 3.8.

8 The time needed for the final step of extracting the dependency statements from the logical CPDs can be
ignored since it is very small (it does not depend on the dataset size).
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Table 4 Detailed timings.

Dataset Method Ttotal Tinit Tfirst Trest I Tavg

Univ5 OS 35s 7s 15s 13s 2.4 6s
Univ5 SS 137s 7s 60s 70s 5.8 12s
Univ10 OS 42s 7s 20s 15s 2.0 7s
Univ10 SS 134s 7s 69s 57s 4.2 13s
Univ15 OS 51s 8s 18s 24s 3.0 8s
Univ15 SS 164s 8s 73s 83s 5.8 14s
Univ31 OS 55s 10s 24s 20s 2.2 9s
Univ31 SS 168s 10s 85s 73s 4.6 16s
Univ62 OS 78s 13s 31s 34s 2.8 12s
Univ62 SS 262s 13s 101s 147s 6.2 24s
Univ125 OS 120s 18s 45s 57s 3.2 19s
Univ125 SS 407s 18s 161s 228s 4.4 56s
Univ250 OS 194s 33s 89s 71s 2.2 33s
Univ250 SS 586s 33s 246s 307s 4.8 66s
IMDB OS 95s 25s 52s 18s 2.0 9s
IMDB SS 378s 25s 214s 139s 4.0 34s

UWCSE OS 135s 27s 61s 46s 2.4 20s
UWCSE SS 535s 27s 279s 229s 4.6 52s
WebKB OS 251s 60s 58s 133s 4.0 33s
WebKB SS 565s 60s 98s 407s 5.8 71s

– The conclusions about thenumber of iterations I are less clear. In six casesI is signifi-
cantly lower for OS than for SS, while in the remaining four cases there is no significant
difference.

We conclude that the main reason why OS is faster than SS, is that OS has a smaller branch-
ing factor (linear in the number of probabilistic predicates, while it is quadratic for SS).

7.3.3 Learned Dependencies on Real-World Datasets

For each real-world dataset we investigated the learned dependency statements. Most of
the dependencies that were frequently learned (for both algorithms and the various folds
in the cross validation) confirm our intuitions about these datasets (the true dependencies
are of course unknown for these datasets). Some examples of such dependencies, and their
common sense interpretations obtained by investigating the corresponding logical CPDs, are
the following.

– IMDB dataset:
– comedy(D) depends ondrama(D):

The corresponding logical CPD specifies that, if a director is into drama, he is less
likely to be into comedy.

– acts(A,M) depends onworked f or(A,D) anddirects(D, M):
An actor is likely to be in a movie if he worked for a director who directs that movie.

– gender(A) depends onworked f or(A,D) anddrama(D):
An actor is more likely to be male if he worked for a director who is into drama.

– UWCSE dataset:
– student nb publications(S) depends onyear in PhD(S):

A student is more likely to have many publications if he is in ahigher year.
– prof nb publications(P ) depends onadvised by(S,P ):

A professor is more likely to have many publications if he advises more students.
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– assistant(S,C) depends onadvised by(S,P ) andteaches(P,C):
A student is more likely to be the teaching assistant for a course if he is advised by
a professor who teaches that course.

– assistant(S,C) depends onlevel(C):
A student is more likely to be the teaching assistant for a course if the level of the
course is lower (the possible levels are undergraduate, advanced undergraduate and
graduate). This can be explained by the fact that the lower the course level, the more
teaching assistants a course has on average (this is indeed the case for the courses in
the dataset).

– WebKB dataset:
– f aculty(P ) depends onstudent(P ):

If a person is not a student, then he is very likely to be faculty.
– student(P ) depends onhas project(P, Proj):

The more projects a person has, the less likely he is to be a student (and hence the
more likely he is to be faculty).

8 Learning Recursive Directed Probabilistic Logical Models

In this paper we focussed on learning non-recursive models.We now briefly discuss some of
the approaches that can be taken if one presumes that the datacontains recursive dependen-
cies. A major concern when learning recursive directed models is to ensure that, although
the model is cyclic at the predicate level, it is always acyclic at the ground level. We can
distinguish two scenarios depending on how much prior knowledge is available about the
presumed recursive dependencies.

8.1 Prior Knowledge about Guaranteed Acyclic Relationships

When one knows that there are recursive dependencies and hassome prior knowledge or
assumptions about which relations (modelled as logical predicates) determine the recursive
dependencies, learning can actually be very similar to learning in the non-recursive case.
Getoor et al. [12] took this perspective when developing thelearning algorithm for Proba-
bilistic Relational Models. To accommodate for dependencies that are cyclic at the predicate
level but acyclic at the ground level they let the user define aguaranteed acyclic relationship
(GAR). For instance, to allow that some properties of a person depend on these properties
for his ancestors, the ancestor relation should be defined asthe GAR. Similarly, to allow
that some properties of a paper (for instance the topic or length) depend on these properties
for the papers published earlier by the same author, the published-earlier relation should be
defined as the GAR. Getoor et al. then apply structure-searchand use the information about
the GAR during the acyclicity checks to deduce that certain cycles at the predicate level are
legal [12].

The algorithm of Getoor et al. is very similar to the structure-search algorithm used
for LBNs in this paper. Hence the approach of using a GAR can bedirectly applied to
our structure-search algorithm as well. Moreover, the sameapproach can also be applied to
our ordering-search algorithm for LBNs. This actually requires no changes to our ordering-
search algorithm but only requires to adapt the declarativelanguage bias for the logical
CPDs. When learning the logical CPD for a predicatep, the probabilistic input predicates
for the CPD would be
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– all predicates that precedep in the current ordering, with the restriction thatp must not
depend on these predicates through the inverse of the GAR (for instance, if the GAR is
the published-earlier relation, then the inverse is the published-later relation),

– p itself and all predicates that followp in the ordering, with the restriction thatp can
only depend on these predicates through the GAR.

8.2 No Prior Knowledge

When one does not have enough prior knowledge about the data to find a GAR, more com-
plicated approaches need to be taken. When applying structure-search, one can use the tech-
niques developed for Bayesian Logic Programs [15,16]. The idea is that the learning algo-
rithm searches itself for the logical relations that determine the recursion, and that acyclicity
of a candidate model is checked at the ground level for each example (i.e., acyclicity is
checked for the induced Bayesian network for each example).The main drawback of this
approach is that the acyclicity checks can be computationally very expensive since the cost
depends on the number of examples and the size of the examples. This is different from
the non-recursive case where acyclicity of each candidate model only needs to be checked
once at the predicate level, and hence the cost is independent of the number or size of the
examples.

An alternative approach is to usegeneralized ordering-search[20], an algorithm that we
developed especially to learn recursive dependencies. In generalized ordering-search we use
orderings on ground probabilistic atoms (instead of on predicates, as we do in this paper).
In principle, generalized ordering-search can also be usedto learnnon-recursiveLBNs but
in this respect it has a number of disadvantages as compared to the algorithm proposed in
this paper. One disadvantage is that it does not learn an LBN ‘in closed form’: it does not
learn a set of dependency statements but rather a proceduraldescription of how to determine
the induced Bayesian network given any possible interpretation of the logical predicates.
Another disadvantage is that it deviates quite far from the propositional ordering-search
algorithm. For instance, when applied on propositional data generalized-ordering search
does not correspond to the original propositional ordering-search algorithm, while this is
the case for the algorithm in this paper. This might make generalized-ordering search harder
to understand for people familiar with the propositional ordering-search algorithm.

9 Conclusion

We upgraded the ordering-search algorithm for Bayesian networks towards non-recursive
directed probabilistic logical models. We experimentallycompared the resulting algorithm
with a more traditional structure-search algorithm on fourrelational domains. The results
show that ordering-search is competitive with structure-search in terms of quality of the
learned models. Also, ordering-search is significantly faster than structure-search due to a
smaller branching factor. We conclude that ordering-search is a good alternative to structure-
search for learning non-recursive directed probabilisticlogical models.
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A Proofs for Section 4

In this appendix we prove the theorems given in Section 4.

A.1 Decomposing Dependency Statements

We now prove Theorem 1 (p. 9) about the decomposition of dependency statements with multiple atoms
in the body. As explained in Section 4.1, this decompositioncan be accomplished in two steps. Since the
correctness of the second step (replacingrandom/1 atoms by their definitions) is straightforward, we only
prove the correctness of the first step.

Let L1 be an LBN, and letD be a dependency statement inL1 of the forma | a1, . . . an ← c, with
n ≥ 2. LetL2 be the LBN obtained by replacingD in L1 by the following set of decomposed dependency
statements.

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

a | a1 ← c, random(a2), . . . , random(an).
...

a | ai ← c, random(a1), . . . , random(ai−1), random(ai+1), . . . , random(an).
...

a | an ← c, random(a1), . . . , random(an−1).

Call this setDdecomp. We need to prove thatL1 andL2 are equivalent. This means that, for any interpreta-
tion of the logical predicates, the set of random variables,the parent relation and the CPDs are the same for
L1 as forL2. Note that

– The set of random variables is the same since it only depends on the random variable declarations and
these are common to both LBNs.

– A random variableapar is a parent ofachild only if it is ‘caused’ to be a parent by some dependency
statement. Hence, proving that the parent relation is the same for both LBNs requires proving that the
original dependency statementD causesapar to be a parent ofachild if and only if some decomposed
dependency statement inDdecomp causes this.

– If the parent relation is the same, it follows that the CPDs are also the same (since, given the parent
relation, the CPDs only depend on the logical CPDs and these are common to both LBNs).

The above means that we need to prove that the original dependency statementD causesapar to be a parent
of achild if and only if some decomposed dependency statement inDdecomp causes this. We now prove this
in the two directions. We user(.) as shorthand notation forrandom(.).

– Assume thatD causesapar to be a parent ofachild. This implies that there exists a grounding substitu-
tion θ such thatDθ is of the formachild | a

′

1
, . . . , a′

i−1
, apar , a′

i+1
, . . . , a′

n ← c′ for whichc′ is true
and for whichr(.) is true for all ground probabilistic atoms in the head and body. Hence, in the ground
statementachild | apar ← c′, r(a′

1
), . . . , r(a′

i−1
), r(a′

i+1
), . . . , r(a′

n) the context is true andr(.)
is true for the ground probabilistic atoms in the head and body. This ground statement is an instance of
the dependency statementa | ai ← c, r(a1), . . . , r(ai−1), r(ai+1), . . . , r(an) under the substitution
θ, which is inDdecomp. HenceDdecomp causesapar to be a parent ofachild.

– Assume that a dependency statementDdecomp in Ddecomp causesapar to be a parent ofachild and
that Ddecomp is of the forma | ai ← c, r(a1), . . . , r(ai−1), r(ai+1), . . . , r(an). This implies
that there exists a grounding substitutionθ such thatDdecompθ is of the formachild | apar ←
c′, r(a′

1), . . . , r(a′

i−1
), r(a′

i+1
), . . . , r(a′

n) for which r(achild) is true,r(apar) is true and the con-
text c′, r(a′

1
), . . . , r(a′

i−1
), r(a′

i+1
), . . . , r(a′

n) is true. Hence, in the ground statementachild |

a′

1
, . . . , a′

i−1
, apar , a′

i+1
, . . . , a′

n ← c′, the context is true andr(.) is true for all ground probabilistic
atoms in the head and body. This ground statement is an instance of the dependency statementD under
the substitutionθ. HenceD causesapar to be a parent ofachild.

A.2 Removing Redundancy in Dependency Statements

We now prove Theorem 2 (p. 11) about removing redundancy in dependency statements. First we prove that
removing a redundant dependency statement from an LBN yields an equivalent LBN. Next we prove that
the same holds for removing a redundant context literal in a dependency statement. We again user(.) as
shorthand notation forrandom(.).
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– Redundant dependency statement:
Consider an LBN that contains a dependency statement of the form

a | a1, . . . , an ← c1

which is redundant with respect to another dependency statement in the LBN with the same head
and body but contextc2. This first dependency statement (with contextc1) fires if the conjunction
r(a), r(a1), . . . , r(an), c1 is true. According to the definition of redundancy, this implies thatc2 is
true, and hence also the conjunctionr(a), r(a1), . . . , r(an), c2 is true. This implies that the second
dependency statement fires. This proves that, whenever the first dependency statement fires, the second
fires as well. Since both statements have the same head and body, this makes the first statement obsolete.
Hence removing the first dependency statement from the LBN yields an equivalent LBN.

– Redundant literal:
Consider a dependency statement of the form

a | a1, . . . , an ← c, l

with c a conjunction of logical literals andl a logical literal. Suppose thatl is redundant in this depen-
dency statement. We refer to the dependency statement obtained by removingl from the context as the
‘reduced’ statement. This reduced statement fires if the conjunction r(a), r(a1), . . . , r(an), c is true.
According to the definition of redundancy, this implies thatl is true, and hence also the conjunction
r(a), r(a1), . . . , r(an), c, l is true, and the original statement fires too. This shows thatif the reduced
statement fires, then the original statement fires too. Obviously, if the original statement fires, then the
reduced statement fires too (since the context of the reducedstatement is a subset of the context of
the original statement). Hence, we conclude that the reduced statement fires if and only if the original
statements fires. Since both statements also have the same head and body, they are equivalent. Hence
removing the redundant literal from the original statementyields an equivalent LBN.


