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Vanessa Coola,c,, Claus Claeysa,c, Hervé Denayera,c, Frank Naetsa,c, Elke Deckersb,c

aKU Leuven, Department of Mechanical Engineering, Division LMSD, Celestijnenlaan 300 - box
2420, Heverlee, Belgium

bKU Leuven Campus Diepenbeek, Department of Mechanical Engineering, Wetenschapspark 27, 3590
Diepenbeek, Belgium

cFlanders Make@KU Leuven, Belgium

Abstract

In industry, an increasing pressure is perceived to obtain dynamical systems which are
light-weight, load-carrying and achieve excellent noise and vibration properties. Sandwich
panels with specifically designed structural-acoustic cores have shown potential to recon-
cile these conflicting requirements. Optimization techniques can be used to automate the
design process while making a trade-off between the conflicting requirements. This work
proposes a methodology to easily validate the sound transmission loss (STL) of 2D struc-
tures. The experimental validation considers a thin slice of the extruded 2D topology as
an input and by a purely structural excitation and measurement, the STL is obtained.
This enables a fast validation of novel sandwich core designs without the need to go to 3D
simulations, fabrication and measurements. In this manuscript, the experimental valida-
tion is demonstrated for a sandwich core design coming out of a topology optimization
framework which achieves a high STL by a mode-conversion effect. The methodology
can equally well be applied to validate a 2D design obtained via other strategies. The
near-2D finite sample is fabricated, tested and compared to two reference cases being
the equivalent mass and double mass case. These two cases are selected to show the
performance of the optimized design while still being lightweight. An excellent match
is achieved between the numerically and experimentally obtained STL performance for
the specific design considered, demonstrating the validity of the experimental validation
technique and confirming the mode-conversion effect to achieve high STL.
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1. Introduction

Light-weight, self-supporting and good noise, vibration and harshness (NVH) proper-
ties, those are the three conflicting requirements dynamical systems often need to comply
to nowadays. To achieve this, innovative structures are needed that make a trade-off be-
tween the different requirements. Over the past decades, sandwich panels have shown5
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their potential in achieving this compromise in a wide range of applications, ranging
from aerospace to construction industry. Depending on the targeted requirements, the
nature of sandwich panel core differs. Sandwich panels with air or foam cores target su-
perior sound transmission loss (STL) [1], while structural cores are investigated towards
their high stiffness to mass ratio [2]. More recently, research is done towards the vibro-10

acoustic performance of sandwich panels with structural cores such that they consider
all three conflicting requirements [3]. In [4], the STL of sandwich panels with corrugated
cores is investigated, while in [5] sandwich panel cores are presented combining all three
requirements. Several works, e.g. [6–9], have investigated the influence of the core topol-
ogy of the sandwich panel on the vibro-acoustic performance. Often periodicity is used15

while designing these sandwich structures, i.e. a certain supercell which consists of a
partition of sheet and core is repeated in the plate direction [10].

To design these structures which comply with the different conflicting requirements,
optimization techniques are important enablers. The optimization of sandwich panels
to their vibro-acoustic performance has been studied by many researchers and can be20

categorized in three groups: (i) parameter optimization which optimizes the thickness
and material of the homogeneous core and face sheets [11], (ii) size optimization which
optimizes the geometrical parameters of corrugated, honeycomb or truss cores, e.g. [12–
15] and (iii) topology optimization in which the core can converge to any topology,
e.g. [5, 16–18]. From the optimized sandwich structures, mostly designs resulting from25

parameter or size optimization are experimentally validated on 3D panels, e.g. [12], while
experimental validation of topology optimized sandwich panels is scarce. Only recently,
Wang et al. [19] experimentally validated a topology optimized core. However, while
their optimization is done in 2D, it was necessary to execute the experiment with a
3D panel resulting in effects during the experiment not considered in the optimization.30

Therefore, this work focuses on the direct experimental validation of designs coming out
of 2D optimization frameworks. This enables a fast and early validation of novel sandwich
core designs and verification of the underlying exploited phenomena, avoiding the need to
execute 3D optimization, simulations or manufacturing. More specifically, the focus is put
on the experimental validation of topology optimized 2D sandwich structures since the35

topology optimization gives the user the most design freedom. The framework of Cool et
al. [5] is of interest since it recently obtained novel sandwich cores which comply with the
three conflicting requirements of being light-weight, having a good stiffness and obtaining
a high STL in the targeted frequency ranges. Additionally, the physical phenomena to
achieve the high STL, namely a mode-conversion effect, is not yet experimentally proven.40

Note that also in other fields of application, the experimental validation of topology
optimized structures is limited and has only raised attention in recent years. Several 2D
optimized structures are experimentally validated, e.g. concrete beams to their static
stiffness [20], buckling tests are done on functionally graded lattices [21] and magnetic
active structures [22]. Also the experimental validation of optimized thermal [23] and45

water wave [24] cloaking designs is shown recently. In [25], acoustic topology optimized
metasurfaces are tested for reflective wavefront modulation. The 2D optimized structures
are experimentally validated on a near-2D structure which exists of the 2D design while
this is extended with a limited thickness in the third direction.

50

Regarding the experimental validation of the STL of finite structures, denoted the
finite STL further on, a quick and easy set-up to validate optimized 2D structures is
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lacking. Current techniques for measuring the STL can be generally divided into on the
one hand methods originating from building acoustics, which consider larger (single or
double panel) plates and diffuse field acoustic excitations, and on the other hand methods55

derived to investigate smaller samples under normal or specific oblique incidence.
In the first category, three groups of techniques can be specified: (i) Firstly, the

most widely used set-up to measure the STL of a panel-like structure is the two-room
method [26, 27]. The investigated plate is mounted between an anechoic and reverberant
room. By placing a source in the reverberant chamber and microphones in both cham-60

bers, the STL can be computed [12]. (ii) Secondly, the STL can be determined using a
sound intensity measurement while the panel is mounted at one or between two closed
rooms [27]. In this case, the panel is excited by an acoustic source at one side and the
desired output surface is scanned with a sound intensity probe to determine the STL [27].
The disadvantage of above mentioned techniques is that the panel needs to be mounted65

such that no transmission occurs via the flanking paths. (iii) Thirdly, to overcome the
limitations of difficult mounting requirements, techniques exploiting correlation and the
Fourier-transform have been proposed [28, 29]. These techniques have the advantage
that the panel does not have to be mounted between two separate rooms since the differ-
ent transmission paths can be detected. However, the difference in energy between the70

different transmission paths needs to be large enough.
In the second category, again three groups of methods have been developed: (i) Firstly,

for 1D normal plane wave propagation, transmission tube measurements can be used [30].
This method considers a small sample to characterize the STL of the entire structure. The
method has several disadvantages. It is limited to normal acoustic excitations, it is not75

straightforward to install the sample in the set-up and to control its boundary conditions,
which can have a major impact on the results. Additionally, because of the small sample
size, the modal behavior of the panel is not considered during the analysis. (ii) Secondly,
several Fourier-based techniques exist to perform reflection and transmission measure-
ments in waveguides. In [31], it is proposed to use microphones at the input and output80

side of the sample together with a modal decomposition and Fourier-Lommel transform
to experimentally determine the reflection and transmission. (iii) Finally, Zhang et. al [32]
recently proposed a method to determine the absorption and transmission coefficient of
materials using the modal decomposition method in a rectangular waveguide. This tech-
nique can enable the computation of the characteristic STL of the material. The last two85

techniques fail, however, at the cut-on frequencies of the waveguide.
Although various techniques exist to experimentally determine the STL, almost all

methods are proposed for 3D panels. Moreover, the experimental set-ups require an
acoustic excitation and/or an acoustic output measurement. The described techniques
above are, therefore, cumbersome to adapt to the validation of near-2D structures since90

a 2D acoustic wave field is practically hard to achieve, acoustic leakage in the third di-
rection is difficult to avoid, etc. This shows the need for an experimental set-up to verify
the STL of near-2D structures enabling a fast and early validation of novel proposed
(optimized) sandwich core designs.

95

This work focuses on the experimental validation of the 2D finite STL of novel (opti-
mized) vibro-acoustic sandwich panels. Firstly, a methodology is presented to experimen-
tally determine the 2D finite STL with an effective, yet simple, purely structural set-up
using a near-2D sample. Secondly, with the proposed methodology, the sandwich core
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designs resulting from a previously proposed vibro-acoustic topology optimization frame-100

work [5] are experimentally validated. More specifically, the exploited mode-conversion
effect to achieve high STL in the targeted frequency range is experimentally shown. After
numerically investigating the optimized design in terms of performance and robustness
towards the geometry and material properties, the structure is fabricated, measured and
compared to two reference cases consisting of the equivalent mass and double mass beam105

case. With the executed experiments, the effectiveness of the proposed experimental val-
idation is shown and the mode-conversion effect, specifically observed in the investigated
sandwich structure, is experimentally proven.

The rest of this paper is structured as follows. Sec. 2 gives an overview of the prob-110

lem under investigation. Sec. 3 elaborates on the applied topology optimization on the
supercell level with the infinite STL as objective and discusses its results. In Sec. 4 the
STL of the finite structure is investigated, as will be present in reality. Finally in Sec. 5,
a methodology is proposed to experimentally determine the 2D finite STL after which
the experimental validation is described and discussed. Conclusions are given in Sec. 6.115

2. Problem description

A 2D finite sandwich panel is envisaged consisting of two structural plates with a
vibro-acoustic core in between which is a repetition of a number of supercells (nsc),
schematically visualized in Fig. 1a. The sandwich panel is surrounded at the top and
bottom by two-dimensional infinite acoustic half spaces consisting of the same fluid (den-120

sity ρa = 1.225 kg/m3 and speed of sound ca = 340 m/s). The structure is excited by an
incident plane acoustic pressure wave at the bottom with amplitude Pi and acoustic wave
number ka = ω/ca, with ω (rad/s) the radial frequency. This results in a transmitted
wave at the top with amplitude Pt and reflected wave at the bottom with amplitude Pr.
The three zeroth order acoustic waves are given in the frequency domain by:125

pi(x, y) = Pie
i(−kxx−kyy), pt(x, y) = Pte

i(−kxx−kyy), pr(x, y) = Pre
i(−kxx+kyy), (1)

in which kx = kasin(θ), ky = kacos(θ) represent the trace wavenumbers, θ is the angle of
incidence and the term eiωt is excluded for convenience. Note that for non-homogeneous
structures, higher order acoustic harmonics are present as well. In this work, only the
first harmonic is considered which is valid under the assumptions that the structure is
weakly periodic and subwavelength [33]. The performance indicator of interest is the STL130

which is defined by the ratio of the transmitted to incident pressure amplitude [1]:

STL(ω, θ) = −10 log10 (τ(ω, θ)), τ(ω, θ) =

∣∣∣∣Pt

Pi

∣∣∣∣2 , (2)

in which τ is denoted by the sound power transmission coefficient.

In a first step, the sandwich panel will be optimized using the topology optimization
framework of [5]. The optimization is executed on the supercell level (see Fig. 1b) while135

assuming infinite periodicity in the x-direction. This choice is made since it leads to
a decreased computational cost for the optimization. The supercell has a dimension of
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Figure 1: Schematic overview of problem under investigation. a) Finite 2D sandwich panel consisting of
five supercells. b) Supercell representing the corresponding infinite periodic sandwich structure.

Lx × Ly and is discretized with the finite elements (FE) technique using bilinear square
plane strain elements for the structural domain (Ωs), while using linear elements for the
acoustic domain (Ωa). The mesh consists of a rectangular grid with Nx ×Ny elements.140

Assuming time-harmonic motion, this results in the following system of equations [1]:−ω2
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in which the subscripts s, a denote the structural and acoustic domain, respectively.
M,K,S represent the mass, stiffness and coupling matrices. Each node consists of three
degrees-of-freedom (DOFs), being the x- and y-displacement, denoted as the vector u
over all nodes, and the pressure, denoted as the vector p over all nodes. q, f , e represent,145

respectively, all DOFs of the supercell, the internal forces and external forces. The infinite
periodicity is mathematically applied using the Bloch-Floquet boundary conditions [34].
Using a periodicity matrix Λ, the nodal DOFs are related to the periodic DOFs vector q̂
which only contains the left and interior DOFs (cf. Fig. 1b) using the constant λx = e−iµx

with µx = kxLx. This results in a modified system of equations:150

(K̂− ω2M̂)q̂ = ê, K̂ = ΛHKΛ, M̂ = ΛHMΛ, ê = ΛHe, (4)

see [35] for details. Using this equation, the infinite STL corresponding to the supercell
structure can be computed using the WFE technique [5, 33]. For this, the surrounding
acoustic halfspaces are modeled using an analytical formulation, while continuity con-
ditions are applied to translate the structural displacement into the required pressure
information. The reader is referred to [5] for a more detailed description of the infinite155

STL calculation.

The specific case under investigation in this work consists of a supercell with dimen-
sions 50×55 mm, while the thickness of the plates is considered equal to 2.5 mm. The FE
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have a size of 0.417 mm such that the mesh is sufficiently accurate for both the acoustic160

and solid waves in the frequency range considered. The material for the structural part
is polymethyl methacrylate (PMMA), from which the material properties are taken over
from [36], i.e. a Young’s modulus E = 4.85(1 + 0.05i) GPa in which the complex part
represent the structural damping, a density ρs = 1188.35 kg/m3, and Poisson’s ratio
ν = 0.31. The fluid characteristics in the core are equal to the surrounding fluid, while165

a small ratio of acoustic damping is included in the core by using a complex speed of
sound: ρa = 1.225 kg/m3 and ca = 340(1 + 2 · 10−4i) m/s.

3. Topology optimization

In this work, the supercell core, representing the infinite sandwich panel, is optimized
using the topology optimization framework of [5]. The applied topology optimization170

framework is presented in detail in [5] and here only used to obtain an optimized sandwich
structure design for the specific case under investigation. This section gives first a brief
overview of the applied framework, after which the results are discussed for the case of
the specific geometrical and material properties as given before. The section ends with
an investigation towards the robustness of the optimized design.175

3.1. Optimization framework overview

The core of the sandwich panel is optimized using a gradient-based density topology
optimization framework [5]. The supercell is discretized with a structured FE mesh, while
each element is controlled with a design variable ξ which ranges from 0, representing fluid,
to 1, representing solid. A total of Ne variable are considered in the optimization. The180

vibro-acoustic coupling in the core is considered during the optimization using the method
by Jensen [37]. As usual in topology optimization, the design variable field (ξ) will be
projected onto the required physical density field ξP which determines the stiffness and
mass matrices to execute the FE analysis and obtain the desired objective and constraints.
In this work, a robust formulation [38] is used, meaning that in each iteration, three185

designs are investigated: an eroded (e), blueprint (b) and dilated (d) design. This leads
to a minmax problem in which the worst case of the three designs drives the optimization.
See Appendix A for details on the conversion from ξ to ξP , the robust formulation and
the construction of the system matrices. The distribution of material (ξ) will be optimized
during the optimization to maximize the STL in the frequency range of interest. Two190

constraints are as well added to the optimization: (i) a constraint on the volume usage
(vd,P ) in the design domain and (ii) a constraint on the static compliance (θst) when a
distributed force is added at the top side and the bottom side is constrained. The second
constraint is added to ensure that the top and bottom panel remain connected [5]. The
optimization problem which is solved reads as follows:195 

min
ξ∈RNe

max(−STLe(∆ω, θ),− STLb(∆ω, θ),−STLd(∆ω, θ))

s.t. vd,P/V − 1 ≤ 0

θst/µstθ̂st − 1 ≤ 0

0 ≤ ξ ≤ 1,

(5)
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a)

b)

c)

Figure 2: Result of the topology optimization framework. a) The optimized blueprint design. b) The
corresponding infinite STL considering both with and without air in the core. Plotted together with the
equivalent mass and full beam design. c) The vibration displacement of the optimized design at 2625 Hz.

in which ∆ω represent the frequency range of interest, STL(∆ω, θ) is the combined STL
over the frequency range of interest determined with a numerical integration technique,
V is the maximum allowed volume fraction, θ̂st is the static compliance of a full solid
design (all design variables equal to 1) and µst determines the maximum allowable static
compliance. Elaborate details on the construction of the optimization problem can be200

found in [5].

With the geometrical and discretization choices of previous section, 14400 design
variables are considered during the optimization. The other framework choices are as
follows: V = 0.5 representing 50% material usage with respect to a full solid beam205

with the same dimensions, θst = 10, θ = 0o representing normal incidence and ∆ω lays
between 2500 Hz and 2750 Hz in which 12 equidistant evaluations are considered during
the optimization. The other optimization specific parameters are taken over from [5].
Note that during the discussion of the results in the rest of this manuscript, a broader
frequency range is plotted, ranging from 100 Hz till 4000 Hz.210

3.2. Result

Running the optimization framework with the specific geometrical, material and op-
timization parameters as stated before, the blueprint design of Fig. 2a is obtained. It
consists of a straight connection between the top and bottom panel, a second more
sloped, slender connection and a curved horizontal connection between the two. The infi-215

nite STL of this design is computed while on the one hand considering the vibro-acoustic
core and on the other hand while only modeling the structural part and neglecting the
acoustic part in the core (Fig. 2b). On top of that, the infinite STL of the equivalent mass
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case (solid design with supercell dimensions 50 × 27.5 mm) and the double mass case,
denoted as the full beam case (solid design with supercell dimensions 50 × 55 mm) are220

plotted. From this, two observations can be made. (i) The optimized design shows a high
STL in the frequency range of optimization. It outperforms both the equivalent mass
case and full beam case by 17.59 dB and 11.73 dB (at 2625 Hz), respectively. Note that
the full beam case has twice the mass of the optimized case. (ii) As shown in [5, 39], it is
required to consider the acoustic parts in the core during the topology optimization, since225

otherwise the acoustic path can have a non-negligible impact during the post-processing
of the designs. Therefore, a vibro-acoustic optimization is performed in this work. In
this particular final optimized design, it is the structural transmission path in the core
which is the path of least resistance, cf. Fig. 2b. Only at higher frequencies (> 3500 Hz),
two acoustic resonances (3710 Hz and 3845 Hz) are perceived. Since this is outside the230

frequency range which is optimized, the post-processing of this structure can be done
on a purely structural core, neglecting the acoustic part in the core. For this reason, the
acoustic part is not considered in the rest of this manuscript. Note that this comes with
the limitation that the proposed methodology is only valid for structures in which the
structural part of the sandwich core is the dominant transmission path [39].235

The high STL is enabled due to two principles [5]. (i) The mass-spring-mass frequency
of the design occurs before the frequency range of optimization, leading to a mode-
cancelling principle in the sandwich panel [40]. (ii) Also a mode-conversion occurs, as
can be seen in the vibration amplitude plot in Fig. 2c. The mode conversion enables the240

conversion of the bending in the bottom panel to a mainly in-plane compression motion
of the top panel. These effects can also be perceived in the 1D structural dispersion
curves of the supercell. The dispersion curves are obtained by computing the eigenvalues
of Eq. (4) [35]. In this work, the inverse approach is used in which the propagation
constant λx is imposed and the system is solved towards the frequency ω. The resulting245

dispersion curves and four wave modes are visualized in Fig. 3. Starting from zero, a
bending mode (i) and compression mode (ii) occur, visualized in Fig. 3b. At 2065 Hz,
the second bending mode cuts-on, a typical phenomenon at the decoupling of a double
panel [1]. This cut-on results in a dip in the corresponding STL (cf. Fig. 2b). Next, it is
seen that in the frequency range where the STL peak occurs, a mode veering is present250

in the dispersion curves [41]. The mode veering shows there is a coupling between the
compression and bending mode. This can also be seen in the wave mode plots in Fig. 3b.

3.3. Robustness

In the literature, the influence of various parameters, i.e. geometrical and material
properties, on the vibro-acoustic performance of sandwich panels has been studied for255

various sandwich core designs, e.g. [6, 42, 43] and references therein. In this section,
the robustness of the STL performance of the optimized design of previous section is
investigated since this work aims to execute an experimental validation in which several
uncertainties are present. First of all, manufacturing tolerances exist, therefore Sec. 3.3.1
investigates the robustness of the STL performance towards changes in the geometry.260

Secondly, the material properties may deviate from the ones used in the optimization,
therefore Sec. 3.3.2 briefly investigates the robustness towards changes in the material.
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Figure 3: Structural dispersion curve results of the optimized design. a) 1D dispersion curve with in
yellow the frequency band that is optimized. b) Visualization of four modes (using five supercells) of
the dispersion curves. The coloring indicates the magnitude of the displacement with red being largest
and blue lowest.

3.3.1. Robustness towards geometry

In the optimization framework, a robust formulation using an eroded, blueprint and
dilated design is applied, mainly for regularization purposes [5, 38]. However, due to265

this formulation, also a performance robustness towards the geometry, or in other words
manufacturing tolerances, is embedded. Fig. 4a shows the eroded, blueprint and dilated
design next to each other. It can be seen that the three designs represent the same
topology while the eroded is more slender than the blueprint design and the dilated is
thicker than the blueprint design. The difference between eroded-blueprint and blueprint-270

dilated is between one and two discretization elements, resulting in an absolute difference
of 0.4 − 0.8 mm at the boundaries of the geometry. Note that the number of element
difference between the three designs can be tuned by changing the specific filtering prop-
erties of the double filtering technique [5, 44].

275

Fig. 4b shows the corresponding STL performance of the eroded, blueprint and di-
lated design. A number of observations can be made. Firstly, it is seen that the STL
performance in the optimized frequency range is high for all three designs. This entails
that if due to manufacturing tolerances, the design is more eroded or dilated with respect
to the blueprint design, still an excellent performance will be obtained in the envisaged280

frequency range. Secondly, the STL curves all have a similar course, only with a shift
in frequency. The eroded design is shifted to lower frequencies, while the dilated design
is shifted to higher frequencies. This can be understood because the eroded design will
have a slightly smaller mass and stiffness, while the dilated design has a slightly higher
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a)

b)

Eroded Blueprint Dilated

Figure 4: Investigation of robustness to STL performance towards manufacturing tolerances. a) The
eroded, blueprint and dilated design resulting from the optimization. b) The corresponding STL perfor-
mance.

mass and stiffness with respect to the blueprint design. Overall, it can be concluded that285

the optimized design is robust towards small changes in the geometry.

3.3.2. Robustness towards material properties

In view of a physical realization, it is of interest to investigate the performance of
the design with respect to perturbations of the material properties since another batch
of the material can show changes in the properties. The infinite STL of the optimized290

blueprint design is each time computed while one of the material properties (Young’s
modulus, density, Poisson’s ratio and structural damping) is changed with an increase
or decrease of 10%.

The results are shown in Fig. 5. Firstly, it can be seen that with the possible per-295

turbations, in all cases a high STL performance is achieved in the frequency range of
interest. However, due to the changes, a frequency shift of the STL peak is observed
and the highest STL changes slightly. More specifically, it can be said that the struc-
tural damping and Poisson’s ratio have a negligible effect with respect to a change in
the Young’s modulus and density. As expected from standard structural dynamics and300

due to the modal behavior in the optimized frequency range, a change in structural
damping will only lead to a small shift in frequency, while mainly a shift (0.42 dB) is
obtained in STL level. A decrease in Poisson’s ratio will lead to a shift of 30 Hz towards
lower frequencies while the level does not change. A similar trend is seen for a change in
the Young’s modulus while bigger shifts occur, namely a decrease in Young’s modulus305
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a) b)

c) d)

Young’s modulus Density

Poisson’s ratio Structural damping

Figure 5: Investigation of robustness to STL performance towards several material uncertainties:
a) Young’s modulus, b) density, c) Poisson’s ratio, d) structural damping.

leads to a shift of 140 Hz to lower frequencies while the maximum STL level lowers with
0.42 dB. An increase leads to a shift to higher frequencies with 125 Hz while the level
increases with 0.42 dB. The shift in frequencies is to be expected since a lower Young’s
modulus leads to a less stiff design resulting in a shift to lower frequencies of the decou-
pling frequency (as observed in the STL curve). The behavior of the density perturbation310

is the opposite to the Young’s modulus. Now a 10% decrease leads to a shift of 125 Hz in
higher frequencies and a lowering of the maximum STL level with 0.42 dB. This change
in behavior is explainable since a decrease of mass leads generally to a higher frequency
content. Overall, it can be concluded from this study that the optimized design is robust
towards possible perturbations in the material properties.315

4. Finite STL

Now that the optimized design is obtained on the supercell level, this section inves-
tigates the STL when considering a finite number of supercells. In Sec. 4.1, the applied
methodology to compute the finite STL is given after which the STL is investigated with
an increasing number of optimized supercells in Sec. 4.2.320

4.1. Methodology

Fig. 6a shows the problem overview to compute the finite STL. A finite beam is excited
at the bottom by a plane wave, after which the sound radiated by the beam is determined
using the Rayleigh integral [1]. Specifically, the radiated sound is computed by integrating
over a half-circle at a distance RR which is large enough to represent the far field (kaRR ≫325

1). The problem is translated to the numerical problem visualized in Fig. 6b in which the
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Figure 6: Finite STL calculation. a) Problem description. b) Numerical model and design in Matlab.
c) Numerical model and design in Comsol. d) Comsol verification with acoustic excitation and output.

acoustic halfspaces are, as before, modeled using an analytical formulation. Next to the
Rayleigh integral, other techniques exist to compute the finite STL while not explicitly
evaluating the acoustic halfspaces [45]: (i) the equivalent radiated power in which the
fluid’s characteristic impedance is used, (ii) the elementary radiator approach [46] and330

(iii) an approximation based on the volume velocity [47].

Using the Rayleigh integral, at the input side (y = 0), the incident power on the finite
structure can be easily computed since the sound intensity of the incident plane wave
equals |pi|2 /2ρaca and is parallel to the propagating wave [48]:335

Wi(ω) =
Lxnsc |pi|2 cos(θ)

2ρaca
. (6)

Next, the acoustic plane wave excitation is translated into equivalent nodal forces on
the (flat) interface of the structure. By assuming the back-coupling (from structure to
acoustics) is negligible, the system is excited by a blocked pressure wave with amplitude
2Pi [49, 50]. The consistent external nodal forces are lumped on the transverse DOFs j
at the bottom of the structure as:340

ejf (xj) = 2Piαje
−i(kxxj) j ∈ [1 . . . N b

f ], (7)

in which N b
f is the number of transverse DOFs at the bottom and αj represent the

relation between the distributed pressure and the nodal force and can be computed
using the element shape functions. For a rectangular regular interface mesh, αj is the
same for all nodes and equals Lx/Nx, except on the boundaries where it is Lx/2Nx. This
external excitation is now used to solve the system of equations of the finite part, which345

is given by: (
Kf − ω2Mf

)
uf = ef , (8)
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with Kf ,Mf the structural stiffness and mass matrices of the finite part and uf the
displacement DOFs. Note that this could also be a vibro-acoustic system when including
the acoustic parts in the core of the sandwich panel. As discussed before, the acoustic
part in the core is negligible for the particular design under investigation.350

At the output side (y = Ly), the transmitted power will be determined using the
Rayleigh integral [1, 12]. After solving Eq. (8), the sound pressure in the far field radiated
from the beam can be determined from the vibrations of the top surface of the beam [1].
More specifically, the transmitted pressure at a radius RR is computed by integrating355

over the top surface of the beam xt as:

pt(RR, ϕR, ω) =
ρaω

2

∫ nscLx

0

vfH
2
0 (ka|r−rt|)dxt ≈

ρaω

2
∆xt

nt∑
m=1

vm
f H2

0 (ka|r−rmt |) (9)

in which H2
0 is the Hankel function of zeroth order and second kind, vf = iωuf is the

transverse surface velocity, rt = (xt, Ly) represents the coordinate on the top of the beam
and r = (xr, yr) represents the coordinate on the half-circle and is fully determined by RR

and ϕR. Note that practically, this integral is approximated by a numerical integration360

scheme in which nt represent the number of considered output observation points, ∆xt

the distance between consecutive points and the superscript m indicates the evaluation
of the variable at point m. Next, the time-averaged acoustic intensity of the transmitted
wave can be computed as:

It(RR, ϕR, ω) =
1

2
ℜ
(
pt(RR, ϕR, ω)v

H
r (RR, ϕR, ω)

)
≈ 1

2ρaca
|pt(RR, ϕR, ω)|2 , (10)

in which vHr is the complex conjugate of the radial component of the fluid particle velocity365

and is approximated in the far field by vHr = pHt /ρaca. Finally, the total acoustic radiated
power by the beam is obtained by integrating the average acoustic intensity over the half-
circle in the far field:

Wt(RR, ω) =

∫ π

0

It(RR, ϕR)RRdϕR, (11)

similar as before, a numerical integration technique is used to approximate this continu-
ous integral. Finally, the STL of the finite structure can be computed by the ratio of the370

transmitted to incident power, τ = Wt/Wi and filling this into Eq. (2).

4.2. Result and discussion

First of all, the implementation and validity of the 2D Rayleigh integral is verified with
the commercial software Comsol Multiphysics after which the STL of the finite structure
is investigated with an increasing number of supercells nsc. A finite case with nsc = 9375

is selected for the verification while the supercell is slightly shifted to have a closed left
and right edge (as shown in Fig. 6b). Note that for the verification, the number of nsc

may be chosen randomly. As a first verification, the optimized design obtained in Matlab
is smoothened and loaded into Comsol. With this structure, the Matlab implementation
is imitated (Fig. 6c) by performing a purely structural analysis with a force input as380

given in Eq. (7). After the calculation, the corresponding velocities at the top side are
extracted from Comsol and used in Eqs.(9-11) to compute the corresponding STL. As
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a) b) c)

Figure 7: Verification of the Matlab implementation for a finite case with 9 supercells using the com-
mercial software Comsol Multiphysics with an acoustic/structural input/output for a) the optimized
structure, b) the equivalent mass case and c) the full plate.

a second verification, the STL is computed entirely in Comsol using an acoustic input
and acoustic output. The schematic of the numerical model is visualized in Fig. 6d. The
finite structure has an acoustic space at the bottom under which a perfectly matched layer385

(PML) is modeled to remove any reflections. The top acoustic halfspace is also entirely
modeled with acoustic elements and a non-reflective boundary condition is applied in
terms of an impedance boundary to limit the computational cost. Next, the STL is
computed by integrating over the output pressure (po) at the non-reflective boundary Sa

and the background pressure (pb) at the input side Ss:390

STLComsol = 10 log10

(∫
Sa

|po| dSa∫
Ss

|pb| dSs

)
. (12)

The results for the optimized design, equivalent mass case and full beam case are shown
in Fig. 7. It can be seen that for the equivalent mass case and the full beam case a perfect
match is achieved. For the optimized design, both Comsol simulations are correspond-
ing indicating that the STL computation using a purely structural simulation is a good
approximation of the acoustic excitation and output. The STL achieved with Matlab cor-395

responds also very well with the Comsol verification, the slight shift in frequency is due
to (i) the smoothening of the design from the structured design representation in Matlab
to the body-fitted design representation in Comsol and (ii) the deletion of the remaining
intermediate design variables, denoted gray-values, in the topology optimization to the
full black and white design in Comsol.400

Now that the methodology is verified, the finite STL is investigated for an increasing
number of supercells (nsc). The number of supercells is increased starting from three up
until a repetition of 60 supercells, leading to a finite part with a length of 0.15 m to 3 m,
respectively. The resulting finite STL is plotted in Fig. 8 together with the corresponding405

infinite STL of the optimized structure, the equivalent mass case and full beam case. First
of all, what can be seen, is that even with only three supercells, the optimized design
outperforms the infinite full beam case in the targeted frequency range. Next, it is seen
that with an increase of nsc, the STL performance increases towards the infinite STL.
Asymptotically, for nsc going to infinite, the infinite STL performance will be obtained410
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Figure 8: Investigation of the finite STL with an increasing number of supercells and free boundary
conditions at the left and right boundary. The infinite STL for the optimized design, equivalent mass
case and full mass case are plotted as a reference.

again. The decrease in STL performance when going to a finite structure was expected
and is explained due to two effects. (i) Firstly, in the finite structure, edge effects will be
present at the left and right edge of the structure. Sangiuliano et al. [51] discussed the
effect of finiteness to a locally resonant metamaterial beam. It was concluded that due
to the edge effects, resonant modes of the finite structure could appear in the bandgap415

leading to a decrease of the performance. Although this particular design does not rely
on a bandgap, a similar phenomenon will occur in which sound radiation can appear
at the edges of the beam which is not present in the infinite counterpart. (ii) Secondly,
the optimized structure plays upon the assumption of infinite periodicity by exploiting
a veering effect between the bending and translational mode (cf. Sec. 3.2). The smaller420

the finite counterpart, the less this can be exploited by the finite modes leading to a
decreased STL performance. Finally, note that here the left and right edge of the finite
part have free boundary conditions. The finite STL will change when fixed or sliding
boundary conditions are applied. More specifically, a stiffening of the finite structure will
lead to a shift to higher frequencies of the STL peak and a decrease in maximum achieved425

STL. Since the aim of this work is to experimentally validate the optimized STL effect,
it is opted to work with free boundary conditions. Moreover, the nsc is chosen equal to
nine as a trade-off between the STL performance and dimensions of the finite sample.
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Ratio 1-1 Ratio 4-1 Ratio 4-4

Figure 9: Reasoning to experimentally determine the 2D STL with a purely structural input and output.
From left to right, first the input is approximated with a coarser discretization. Next, the velocity at
the top is integrated using a coarser sampling.

5. Experimental validation

This section gives an overview of the experimental validation. Firstly, a methodology430

is presented to experimentally determine the 2D finite STL in Sec. 5.1, after which the
set-up is discussed in Sec. 5.2. Next, a discussion of the results is given in Sec. 5.3.

5.1. Experimental STL calculation based on vibration measurements

In Sec. 4.1 it is shown numerically that the 2D STL can be determined using a purely
structural excitation and structural output. For this, the plane wave excitation is lumped435

to the transverse DOFs at the bottom of the structure, while the transmitted pressure
is computed using the transverse velocity DOFs at the top. Following this reasoning, the
2D STL could experimentally be determined if all frequency response functions (FRFs)
between the input excitation and output observation points are known. However, to
make this practically feasible in an experimental setting, the number of input and out-440

put points needs to be decreased, as demonstrated in Fig. 9. More specifically, the input
plane wave will be lumped at a small number of excitation points at the bottom of the
structure, while the output velocity will only be analyzed using again a coarse number of
observation points. The influence of coarsening the grid of observation points has been
briefly discussed in previous works for 3D plates, e.g. [46, 52]. In this section, the focus445

is on the influence of coarsening both the grid of excitation and of observation points to
approximate the STL of 2D finite structures.

At the input side (y = 0), the plane wave excitation can be lumped at the bottom of
the beam at less DOFs than present in the FE discretization, cf. Fig. 9 step one. More450

specifically, if a ratio Rb is used, the plane wave excitation is translated to a structural
input force at N b

f/R
b equidistant transverse DOFs at the bottom with an amplitude

given as:
ejf (xj) = Rb2Piαje

−i(kxxj) j ∈ [1 . . . N b
f/R

b]. (13)

Note that (i) the total input force is the same due to the scaling, (ii) this reasoning can
be followed for normal and oblique incident plane waves.455

Next, at the output side, the transmitted pressure is computed out of a numerical
integration of the transverse velocity (cf. Eq. (9)). The number of used observation points
nt can again be coarsened, using a ratio factor of Rt (see Fig. 9 step two). This leads to
the following adaptation of the numerical integration scheme:

pt(RR, ϕR, ω) ≈
ρaω

2
Rt∆xt

nt/R
t∑

m=1

vm
f H2

0 (ka|r− rmt |). (14)
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(i) (ii)
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Figure 10: Verification of the approximate STL calculation on a) the optimized structure, b) the equiv-
alent mass and c) the full beam. i) Investigation of the required bottom ratio with a zoom shown in the
subplots. ii) Investigation of the required top ratio.

The accuracy of the rectangle rule for numerical integration depends on the accuracy of460

the piecewise constant approximation of the velocity at the top panel. The same holds
for the discretization of the continuous pressure load on the bottom panel. In both cases,
the required number of sampling points depends on the wavelength of the relevant wave
types, similar to the well-known six elements per wavelength rule-of-thumb in dynamic
FE analyses. Hence, the choice for the ratio Rb and Rt will be dependent on the dy-465

namics present in the system and is investigated for the optimized design, equivalent
mass case and full beam case. For convenience, the notation Ratio Rb-Rt is used in what
follows, while Ratio 1-1 denotes no extra coarsening of the bottom and top occurs.

First the result of the optimized design is discussed. In Fig. 10a.i, the influence of470

increasing Rb is shown, with a zoombox at the optimized frequency range. Overall, a good
estimate of the STL can be obtained till a ratio of Rb = 60, meaning the input pressure
wave is discretized with only 19 discrete nodal forces. It is observed (by comparing e.g.
the ratio of Rb = 40 and Rb = 60) that the STL slightly drops in the optimized frequency
range with an increase of Rb while shifting the peak to the lower frequencies. For higher475

Rb values, larger discrepancies are visible. An Rb = 40 is used in this work since it ensures
that the difference due to the coarsening of the input results in a STL difference of less
than 1 dB. Note that an Rb = 40 means that the plane acoustic wave is approximated
by 28 distinct point force excitations. Next, in Fig. 10a.ii, the influence of the choice of
Rt is further investigated with the choice of Rb = 40. The approximation of the STL480

drops with an increase of Rt, as expected, since an increase of Rt leads to a coarser

17



approximation of the velocity field at the top. Overall, however, it can be said that the
coarsening of the top part has a smaller influence than the coarsening of the bottom part.
Again, to limit the change in STL to 1 dB, an Rt of 40 is selected for this optimized
design.485

In Fig. 10b and Fig. 10c, the references cases are investigated for an increase in Rb and
Rt. The conclusions are very similar to the optimized design. Overall, an almost exact
estimate of the STL is obtained with the largest investigated Rb-value of 120, meaning
the input is approximated with 10 discrete nodal forces. In the equivalent mass case it is
seen that a coarsening of the input and output leads to an increase in the STL. For the490

high Rb-values, small discrepancies start to occur at 1495 Hz and 3385 Hz. These are cor-
responding to the second and third bending eigenfrequency of the finite structure. For a
uniform excitation, these are non-efficient radiation modes since a zero net displacement
occurs. However, due to the coarse discretization of the excitation, these eigenfrequencies
are not uniformly excited anymore along the structure leading to a non-negligible effect495

in the STL. In the full beam case, a small anti-resonance is present in the frequency range
that was optimized. Here the increase of Rb and Rt leads to a decrease of the frequency
in that region. As for the optimized case, the increase of Rb has more influence than an
increase of Rt. Overall, even for the largest Rb and Rt values investigated, namely a ratio
of 120, an approximation of the STL with an error smaller than 2 dB is obtained. In this500

work, a bottom and top ratio of 40 is selected for both reference cases to be consistent
with the optimized case.

Now that the ratios are known, the experiment can be conducted. Practically, this
goes as follows. Each input point will be structurally excited separately with a point load.505

For the choice of Rb = 40, this means 28 excitation points. For each of these excitation
points, the normal velocity at the determined output points will be measured. With the
choice of Rt = 40, this results in a measurement at 28 output points. More specifically, the
FRF between all input and output points is experimentally measured after which these
are combined by (i) scaling it with the right excitation force (cf. Eq. (13)), (ii) multiplying510

it with the thickness in the z-direction of the third dimension, (iii) summing all resulting
velocity outputs at each observation point for all excitation points. The third step is
possible by the linearity of the system:

ef =
∑
m

emf , uf =
∑
m

um
f ,

(
Kf − ω2Mf

)
um
f = emf . (15)

Note that if a nonlinear system would be under investigation, the excitations cannot
be done separately while the output measurements can still be done with a roving ac-515

celerometer technique. This, however, will make the technique cumbersome to execute.

Before proceeding to the execution of the measurements and after running the topol-
ogy optimization, a numerical procedure has to be followed. (i) Firstly, it needs to be
checked that the structural path in the core is the dominant path. (ii) Next, the amount520

of supercells should be chosen to represent the finite part, cf. Fig. 8. (iii) Finally, the
ratios Rb and Rt need to be selected with a numerical analysis as discussed in this section.
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Property Initial Updated % change Updating method

Density [kg/m3] 1188.35 1177.16 -0.94 Weighing
Young’s modulus [GPa] 4.85 4.83 -0.457 Modal updating

Poisson’s ratio [-] 0.31 0.345 +11.3 Modal updating
Structural damping [-] 0.05 0.0466 -6.8 Half power bandwidth

Table 1: Results of the updating of the PMMA properties.

a) b) c)

Figure 11: Finite STL result with a ratio of 40-40 for the a) optimized design, b) equivalent mass and
c) full beam. Each design is computed with the initial and updated material properties, as given in
Tab. 1.

5.2. Set-up

Before executing the experiment, the PMMA parameters are updated by weighting
and performing a modal updating of a PMMA panel with dimensions 120× 180× 8 mm.525

Note that a thickness of 8 mm is selected to minimize the amount of out-of-plane modes
in the samples under investigation. The modal updating is performed in Siemens NX
while considering the frequencies and modeshapes of the first six free-free modes. The
numerical model used for the updating consists of a shell CQUAD4 mesh with a size of
5 mm. After the updating, the average mismatch between the numerical model and the530

measurements is 0.401%. The modal damping is estimated by the half power bandwidth
method. Tab. 1 gives an overview of the initial and updated material parameters and
the percentage change. It is seen that mainly the Poisson’s ratio and structural damping
coefficient are changed, while the density and Young’s modulus have a change smaller
than 1%. Fig. 11 shows the finite STL of the three designs computed with the initial and535

updated material properties. As expected from Sec. 3.3, the change in material properties
only has a small influence on the performance. In the rest of the manuscript, the updated
material properties are applied in the shown numerical simulations.

Next, the experimental set-up is discussed as shown in Fig. 12a. The tested samples540

are visualized in Fig. 12b together with the corresponding dimensions and the weight of
the samples. The samples are manufacturing using a laser cutting process. Note that for
the optimized design, the dilated design is used during the laser cutting process since the
laser will erode the structure. By selecting the dilated design, the manufactured design
will lay close to the blueprint design. The sample under investigation is freely hinged at545
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Figure 12: Overview of the experiment. a) The experimental set-up with the optimized design suspended.
b) The optimized design sample, equivalent mass sample and full plate sample with corresponding
dimensions.

the top left (x = 0, y = Ly) and top right (x = Lxnsc, y = Ly) corners, this was done
by making two holes of 1.5 mm in diameter in the structures which were made at 3 mm
and 6 mm from the edges. The force input is given at the bottom of the structure with
an automatic hammer of the type NV Tech SAM 1. The automatic hammer is preferred
above a shaker due to the lightweight character of the structures. The hammer is always550

positioned such that the excitation occurs perpendicular to the bottom of the structure
and on the middle line. For the response measurements, a 1D lightweight accelerometer
(type PCB35A24 with a weight of 0.8 g) is attached to the top of the structure. A
laser vibrometer is not suitable due to the hinged free-free construction. For the data
acquisition a Simcenter Scadas Mobile device is used in combination with the Siemens555

LMS Test.Lab version 2021.2 software for the signal processing. During the experiment
a combined roving hammer and roving accelerometer strategy is applied such that all
bottom points are excited and all resulting top points are measured. More specifically,
each input point is excited separately and as many times as there are output points
because for each excitation point, the acceleration is measured at the different output560

points in a consecutive fashion.

5.3. Results and discussion

This section provides a discussion of the results. Firstly, Sec. 5.3.1 discusses the
results of both references cases, after which the results of the optimized design are given
in Sec. 5.3.2.565

5.3.1. Equivalent mass and full beam

Fig. 13a shows the numerically obtained (with ratio 40 − 40) and measured STL
for the equivalent mass case and the full beam case. The summed velocities vf at all
28 output points due to excitation at all 28 input points can be found in Appendix
B, Figs. B.16,B.17. An excellent match is seen between the numerical and measured570

results, validating the proposed methodology and set-up. Some artifacts can be observed
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Figure 13: Results of the experiment for the equivalent mass case and full beam case. a) The numerical
STL with ratio 40 − 40 and the experimental result. b) Five bending modes obtained with Matlab at
(i) 293 Hz, (ii) 788 Hz, (iii) 1495 Hz, (iv) 2372 Hz and (v) 3384 Hz. The red shows the beam without
displacement, while the black visualizes the beam with displacement.

in the equivalent mass cases, indicated with (i)-(v) in Fig. 13a. These spurious peak-dip
appear around the frequencies where the 2D free bending eigenmodes can be found in
the numerical model Fig. 13b. In the numerical model, the contribution of the large
eigenmodes displacement is not seen in the STL since an overall zero-displacement takes575

place. However, due to small measurement errors and noise in the experiment, the zero-
net displacement is approximately zero leading to a small dip-peak behavior. For the full
beam case, similar observations can be made. A good STL approximation is obtained
and small dip-peak behaviors are seen in the experimental result around the bending
eigenmodes of the plate, which will now occur at higher frequencies with respect to the580

equivalent mass case.

5.3.2. Optimized design

In this section, the results of the experiment on the optimized design are discussed.
The obtained velocity measurements at each output point are given in Appendix B.
From the velocity plots, it can be seen that the velocity outputs contain much more585

dynamics than in the references cases. However, still a good match between the numerical
computations and the measurements is obtained. Also note that the velocity outputs have
a minimum which is an order of magnitude smaller than the minimum of the reference
cases. Using these velocity outputs, the resulting STL is shown in Fig. 14a together with
the numerically obtained result. For convenience, the results of the equivalent mass and590

full beam are repeated here. A good match is perceived between the experimental data
and the numerical data. The results show that the optimized design obtains a higher
experimental STL than the two reference cases in the optimized frequency range. The
optimized design outperforms the equivalent mass case with an average of 8 dB and peak
of 11 dB in the targeted frequency range, while it outperforms the full beam case with an595

average of 3 dB and maximum of 6 dB. Note that since only information in the targeted
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Figure 14: Results of the experiment for the optimized design. The numerical STL with ratio 40−40 and
the experimental result (together with the references cases). The yellow band indicates the numerically
optimized frequency range.

frequency range of 2500 − 2750 Hz is provided to the optimizer, it cannot be expected
that the optimized design outperforms the reference cases outside of this region. A ripple
is observed in the experimentally obtained STL. This can be understood similarly to
the spurious peak-dip behaviors in the previous section. Due to the complexity of the600

structure, many bending modes are present in the structure. However, still a very good
match is obtained with the 2D numerical data.

Next, it is investigated what happens if not the entire length is excited, i.e. not all
28 points are considered during the STL computation. This study is possible due to the
specific construction of the experiment. The STL is computed when only points 1 − 7,605

1− 14, 1− 21 or all input points are excited (see results in Fig. 15). Physically, this can
be interpreted as if only 1/4, 1/2, 3/4 or the entire length of the beam is excited by a
plane wave. From this study, the following insights are obtained: (i) the measurement and
numerical simulation correspond well for the different cases, making this an interesting
test to verify the experiment, (ii) the optimized effect is fully exploited when the entire610

beam is excited, or with other words, the combination of all output velocities enable a
cancellation effect leading to the high STL.

Overall, it can be concluded that the numerically optimized effect is clearly visible in
the experiment and optimized beam outperforms both references cases on average with
more than 8 dB and 3 dB, respectively, for the equivalent mass case and full beam case615

in the targeted frequency range.
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Figure 15: Numerical and measured STL result for an increasing amount of considered excitation points.
Plotted together with both reference cases. The yellow band indicated the numerically optimized fre-
quency range.

6. Conclusion

This work proposes an experimental validation for the 2D finite STL of sandwich pan-
els. In a first step, a supercell is optimized which represent an infinite periodic sandwich
beam. This is done with a gradient-based vibro-acoustic topology optimization frame-620

work using the robust formulation. In post-processing, it is shown that the optimized
design achieves a high STL in the optimized frequency range and outperforms both the
equivalent mass case and full beam case which has a double mass. The high STL is
achieved by both a mode-cancelling and mode-conversion effect. Also the robustness of
the optimized design in terms of the geometry (or manufacturing tolerances) and mate-625

rial properties is investigated showing a shift in frequency can occur while the optimized
effect remains visible. Next, the finite STL is investigated using the 2D Rayleigh integral.
When going from infinite to finite, a decrease in achieved STL is perceived, mainly due
to edge effects. However, already with three supercells, the design outperforms both ref-
erence cases numerically. The more supercells are considered, the closer the performance630

reaches the infinite one.
In view of executing an experimental validation, a methodology is presented to calcu-

late the 2D STL with a purely structural experiment, i.e. by means of structural excita-
tions and response measurements on a limited set of excitation and measurements points.
This is possible by exploiting the linearity of the system. Next, the optimized design, the635

equivalent mass and the full beam case (with twice the mass as the optimized design)
are fabricated and tested. The experimental results show a good match with the numer-
ical simulation, proving the optimized design outperforms both reference cases with an
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average of 8 dB and 3 dB, respectively, in the optimized frequency range. Furthermore,
the numerically perceived optimized effects, i.e. the employed mode-conversion effect of640

the particular investigated sandwich design, are experimentally validated. Small artifacts
are present in the experimental results which are explained by the bending modes.

In conclusion, a fast experimental validation technique is proposed with which 2D
sandwich designs can be experimentally validated showing the structure’s potential for
achieving extraordinary acoustic insulation in various applications.645
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Appendix A. Topology optimization framework650

This appendix gives further information regarding the optimization framework. A
complete description can be found in [5].

Appendix A.1. From design variables to physical density fields

The topology optimization uses the variables ξ internally as design variables. The
physical density fields, representing the design, are obtained using a sequence of density655

filters and Heaviside projections. More specifically, a robust formulation is used which
employs an eroded (e), blueprint (b) and dilated (d) design [38] while these are obtained
with the double filtering technique of [44]. The density filtering [53] is defined as follows:

ξ̃e =

∑Ne

i=1 w(ξ
e − ξi)ξi∑Ne

i=1 w(ξ
e − ξi)

, w(ξe − ξi) = max
(
0, R− ||ξe − ξi||2

)
, (A.1)

and represents an averaging of the element design variables over a certain radius R. The
Heaviside projection [54] is used to push the variables towards black and white (1 and660

0) values and is given by:

ξ̄e =
tanh(ηβ) + tanh((ξe − η)β)

tanh(ηβ) + tanh((1− η)β)
, (A.2)

in which η is the projection level and β is the projection strength. The physical density
fields are now obtained using the following operations:

ξ
Eq. (A.1)−→

R1

ξ̃
Eq. (A.2)−→

η1,β1

¯̃
ξ

Eq. (A.1)−→
R2

˜̃̄
ξ

Eq. (A.2)−→
(ηe,ηb,ηd),β2

(
¯̄̃
ξ̃e,

¯̄̃
ξ̃b,

¯̄̃
ξ̃d) = (ξe,P, ξb,P, ξd,P),

(A.3)
with (ηe, ηb, ηd) = (ηb +∆η, ηb, ηb−∆η). The result after the operations are the physical
eroded, blueprint and dilated design fields.665
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Appendix A.2. Obtaining the system matrices
Having the physical design fields, the material characteristics per element (Young’s

modulus Ee, density ρes, bulk modulus of the fluid κe and density of the fluid ρea) are
obtained with selected interpolation technique. In this work, the RAMP interpolation
method is employed [55] together with a linear interpolation to obtain the material670

properties per element: 
Ee(ξeP) = Ev +

ξeP
1+q(1−ξeP) (E − Ev),

ρes(ξ
e
P) = ρv + ξeP(ρs − ρv),

1
κe(ξeP) =

1
κ + ξeP(

1
κr

− 1
κ ),

1
ρe
a(ξ

e
P)

= 1
ρa

+
ξeP

1+q(1−ξeP) (
1
ρr

− 1
ρa
),

(A.4)

in which Ev, ρv, κr and ρr are artificial material properties to avoid numerical problems
in the optimization. Using these material properties, the mass, stiffness and coupling
matrices of Eq. (3) are obtained by summing over all element contributions:

Ks =

Ne∑
e=1

Ee(x, y)Ke
s, Ms =

Ne∑
e=1

ρes(x, y)M
e
s,

Ka =

Ne∑
e=1

1

ρea(x, y)
Ke

a, Ma =

Ne∑
e=1

1

κe(x, y)
Me

a,

Sp =

Ne∑
e=1

(1− ξeP)S
e, Su =

Ne∑
e=1

ξeP(S
e)T .

(A.5)

Note that the vibro-acoustic coupling in the core is considered during the optimization675

using the method by Jensen [37]. Now that the system matrices are known, the objective
and constraints can be computed.

Appendix A.3. Optimization problem
Due to the robust formulation, a minmax optimization problem is obtained, cf. Eq. (5).

This is rewritten towards a bounded formulation:680 

min
ξ∈RNe ,z

z

s.t. − STLe(∆ω, θ)

C
+ 1− z ≤ 0

−STLb(∆ω, θ)

C
+ 1− z ≤ 0

−STLd(∆ω, θ)

C
+ 1− z ≤ 0

vd,P/V − 1 ≤ 0

θst/µstθ̂st − 1 ≤ 0

z ≥ 0, 0 ≤ ξ ≤ 1,

(A.6)

in which C represents a scaling factor to have a normalization of the constraints, chosen
as 200 in this work. Note that the volume constraint is computed on the dilated design
while the static stiffness constraint is evaluated for the eroded design. This optimization
problem is solved using the Method of Moving Asymptotes [56].
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Appendix B. Velocity plots685

Figs. B.16-B.18 show the measured and numerically obtained velocity at each output
point summed over all input points for the equivalent mass, full beam and optimized
case, respectively.

Figure B.16: Numerical and measured velocity at every output point for the equivalent mass, obtained
by summing up all velocities at that point over the different excitation points.
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Figure B.17: Numerical and measured velocity at every output point for the full beam, obtained by
summing up all velocities at that point over the different excitation points.

27



Figure B.18: Numerical and measured velocity at every output point for the optimized case, obtained
by summing up all velocities at that point over the different excitation points.
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