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Abstract

This paper analyzes M&A patterns of R&D projects in the antidiabetics industry. For
this purpose, we construct a database with all corporate individual antidiabetics R&D
projects over the period 1997 - 2017, and add detailed information on firms’ technology
dimension using patent information, next to their position in product markets. This
allows us to identify the identity of targets and acquirers (who), the timing of acquisi-
tions along the R&D process (when), and which type of R&D projects changes hands
in terms of technology novelty (what). The main results can be summarized as follows.
First, most of the action in M&As is in early R&D stages, still far from product markets.
Second, most of the early-stage projects that change hands are high-risk/high-gain novel
projects. Third, the industry leaders in the product markets are rather inactive in ac-
quiring those novel early-stage projects. The likely acquirers of such projects are small
or pipeline firms. Our results put in perspective the narrative that large incumbents
acquire small targets with low-risk projects close to product launch.
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1 Introduction

It has recently been documented that firms that exert market power grab larger mar-

ket shares, i.e., the so-called “superstar firm” phenomenon (Autor et al., 2020). For

example, for the US economy, De Loecker et al. (2020) show that there is a realloca-

tion of economic activity from low to high markup firms. Related, that same study

documents that during the period from 1985 to 2016, global M&A activity increased

more than tenfold, while the aggregate markup increased with about thirty percentage

points, suggesting that firms with initially high market power are becoming larger and

more powerful through acquisitions. These trends, i.e., a higher concentration and

rising markups, are especially perceived in industries where technological change and

innovation are most intense (Diez et al., 2018).

Competition authorities have taken notice and are adapting their merger guidelines.

Among others, two of the largest jurisdictions, the EU and US, have taken action.

The competition arm of the European Commission, the Directorate of Competition

(DGComp) updated its merger guidelines in 2021.1 The Federal Trade Commission

(FTC) and Department of Justice (DoJ) announced in January 2022 a joint initiative

to conduct a comprehensive analysis of their merger guidelines.2 Both jurisdictions

include, as a key new element, the topic of mergers and “potential competitors” or

“nascent competitors,” and deals where large incumbents take over small promising

targets to impact future competition. These deals may have stayed “under the radar”

of competition authorities in the past as these targets are often too small in terms of

revenues, or have no revenue at all when their products are still in the R&D stages.

Besides the digital industries, also the pharmaceutical industry is a key industry

in terms of innovation and R&D spending (Grassano et al., 2021). It is also high

on the agenda (competition-) policy wise. Recent merger cases in Europe show that

1http://competitionlawblog.kluwercompetitionlaw.com/2021/04/01/eu-commission-launches-
major-merger-control-reform/

2https://www.reuters.com/legal/transactional/back-drawing-board-ftc-doj-rethink-merger-
guidelines-2022-03-07/
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enforcers are increasingly paying attention to the innovation dimension.3 The FTC

and DGComp, together with the UK Competition and Markets Authority and Cana-

dian competition authorities, initiated in May 2021 a multilateral working group on

pharmaceutical mergers on how to improve decision making in the area.4

Empirical academic research on M&As and innovation in pharma is following suit.

Earlier research looking at the innovative performance of merged pharmaceutical com-

panies typically discovered a negative relationship. Ornaghi (2009) found merged phar-

maceutical companies to have on average a worse performance than the control group

of non-merging pharma firms. Haucap et al. (2019) observed that not only average

patenting and R&D of the merged entity declines in post-merger periods, but also of

its rivals. More recently, the most interesting study is Cunningham et al. (2021). The

paper finds that an incumbent – i.e., a company that has already launched a drug –

when acquiring projects, has a higher likelihood to terminate potentially future com-

peting projects in development. So-called “killer acquisitions” comprise about 5%-7%

of the M&As in their sample.

However, while the above-cited research has a clear idea on how product markets

can be defined and potential entrants therein can be identified, it is typically less

focused on characterizing the technology dimensions. Indeed, most research on the

topic of M&As and innovation in the pharmaceutical industry measures innovation at

the firm-level using simple (citation-weighted) patent counts or R&D spending (e.g.,

Ornaghi, 2009; Haucap et al., 2019).

This paper aims to analyze M&A patterns along the innovation process in more

detail. Therefore, it zooms in on the antidiabetics industry. We focus on the market

for antidiabetic drugs because it is a large and growing market where we observe signif-

icant activity both in terms of innovation and M&As. By focusing on one therapeutic

3In May 2021, the European Commission (EC) fined the company Merck KGAA EUR 7.5m for a
failure to disclose an R&D project while pursuing the acquisition of Sigma-Aldritch in 2015 (European
Commission, 2021)

4https://competition-policy.ec.europa.eu/index/news/multilateral-working-group-
pharmaceutical-mergers-launches-joint-public-consultation-2021-05-11 en
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market, we are better able to connect numerous data-sources. However, as we further

will illustrate, the framework we develop can be extended to other pharmaceutical

markets. In particular, we construct a unique database with all corporate R&D activi-

ties for individual antidiabetics projects over the period 1997 - 2017. We add not only

information on firms’ position in product market segments, but also information on the

technology characteristics of the projects and the involved firms, using detailed patent

information. This allows us to identify the product and technology market position of

targets and acquirers (who), the timing of acquisitions along the R&D process (when),

and which type of R&D projects changes hands in terms of novelty (what). For the

latter, we focus particularly on novel projects which have a high-risk profile, but if

successful, can become the next disruptive breakthrough.

Our main results can be summarized as follows. First off, most of the action in

M&As is in the early R&D stages, when projects are still far from being launched in

a product market. Indeed, we find that 50% of acquisitions occur in the earliest (and

most uncertain) stage of development., i.e., the preclinical stage (before the clinical

trials have started). The majority of these deals take place between purely research-

focused pipeline firms, which do not yet have any marketed antidiabetic drugs. Second,

based on patent data, we can classify most of the early-stage projects that change hands

as highly technologically novel, i.e., with a potential of high gains but with a high-risk

profile. And third, the industry leaders in the antidiabetics product markets are rather

inactive in acquiring projects. Our results show that the transaction landscape is rich

and varied, going beyond the narrative that large incumbents acquire small targets

with projects close to product launch. Rather technology uncertainty (early stages)

and technological profile (high-risk/high-gain novelty) of projects are found to be key

aspects of M&As in pharmaceutical markets. Although with high risk of failure and still

far from the market, how these acquired high-risk/high-gain novel projects will evolve

differently when acquired may nevertheless drastically impact future competition.

The rest of the paper is organized as follows. Section 2 gives a brief background on

R&D in the pharmaceutical industry. Section 3 presents the data and construction of
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variables. Section 4 describes the empirical implementation and section 5 presents the

results. Lastly, section 6 concludes.

2 R&D in the pharmaceutical industry

The process of developing a new drug is uncertain, lengthy, and expensive. Drug

development is funnel-shaped with many potential drug candidates entering the devel-

opment process but only very few being successful. In our sample, only 4% of projects

are launched. The development process is also lengthy. The average duration from the

start of development to approval for our sample is almost 14 years.5 The probability

of success decreases and the costs of development increase as a project progresses. In

the early stages, the probability of failure is very high, but the developmental costs are

relatively low. There is a steep increase in costs when the drug is tested in large-scale

later-stage clinical trials.

High costs of R&D and public disclosure of information through clinical trials create

strong incentives to patent early. Patent filing mostly (but not exclusively) happens

already before the drug enters into clinical trials. Companies file patents covering

the drug’s active ingredient, formulation and composition, as well as method of use.

Patents are thus a relevant information base to assess the technology characteristics of

projects.

3 Data

For each project, the innovation process centers around its therapeutic area - the dis-

ease the molecule or protein should target (e.g., Diabetes type II) - and its “Mechanism

of action” (MoA), i.e., the biochemical process through which the drug produces the

5These figures are consistent with other studies. Pammolli et al. (2011) finds that only 6% of
molecules pass the testing phases. Branstetter et al. (2014) report that the total development cycle
takes, on average, nearly 12 years.
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desired effect in the body.6 Each project goes through a clearly defined set of develop-

ment milestones to be eventually approved (pre-clinical, Phase I, Phase II and Phase III

clinical trials) (FDA, 2018).7 Public disclosure of these milestones and the correspond-

ing data is required by the FDA.8 This allows the progression of each project to be

tracked from its inception until termination (if unsuccessful) or launch (if successful).

We use information at the project-level on patents and development milestones

being reached, matched with (changes in) ownership data. Achieving this level of

granularity involves substantial manual input. Our analysis, therefore, looks at one

disease: diabetes. This approach can nonetheless be generalized across the pharma

sector.

Diabetes is a widespread, chronic and rapidly rising condition (mostly type II dia-

betes, which is much more common than type I).9 It has no cure and must be managed

by life-long therapy. However, any therapy loses its pharmacological efficiency as the

body gradually adapts to the treatment and becomes less responsive. Patients thus

increasingly need new treatment options. The nature of the disease, together with its

increasing market size, creates incentives for companies to be present in this market

and develop new antidiabetics. The antidiabetic market has indeed been subject to

substantial innovation activity over the period studied. The number of new drugs

launched in the US market increased from 13 to 76 between 1997 and 2017. A few

players dominate the market: Novo Nordisk is number one in terms of sales, and a few

6For example, a DPP-IV inhibitor is a particular MoA used to treat diabetes. These drugs inhibit
the DPP-4 enzyme, thereby stimulating the secretion of insulin. This lowers the levels of glucose in
the blood.

7Each drug begins with discovery and development in a laboratory. Once a drug candidate has
been identified, researchers undertake pre-clinical studies using laboratory experiments and testing in
animal subjects. If promising, the drug candidate progresses to three phases of testing in humans. In
Phase I, the safety of the drug is tested with a small sample (ca. 20-100) of healthy individuals. In
Phase II, the effect of the drug is tested in relatively small groups of people (ca. 50-300). Phase III
trials test efficacy on large groups of subjects (ca. 300-3,000 or more).

8The information submission requirements for clinical trials is described in Section 801 of the Food
and Drug Administration Amendments Act of 2007.

9The therapeutic market of antidiabetics is large and growing. In 2021, approximately 537 mil-
lion adults were living with diabetes worldwide. This is projected to rise to 783 million by 2045
(International Diabetes Federation, 2021).
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more companies have an average product market share of more than 10 % (Aventis,

Eli Lily, Hoechst Marion Roussel, Merck & Co, Sanofi). However, a large share of the

patents of the market leaders are expiring between 2018 – 2024.10 With new biomedical

technologies (like gene editing) fast developing, there is room for radically new projects

from new players. Finally, M&A activity in the antidiabetics market is high. Taken

together, this market provides an excellent setting to explore the M&A activities and

how these link to innovation.

3.1 Data sources and data construction

The backbone of our dataset is the Pharmaprojects database from Citeline which pro-

vides a comprehensive list of global R&D activity in the pharmaceutical industry at

the project level.11 We identify all projects related to the treatment of diabetes, which

results in a sample of 2711 projects for the period 1997-2017.

While providing information on drug names and sponsors, the Pharmaprojects

database lacks information on the progression of projects. This information is avail-

able in the AACT database.12 This database lists every study registered at Clinical-

Trials.gov – a repository of clinical studies conducted around the world. We match

these studies to the Pharmaprojects sample, using fuzzy string matching on sponsor

and drug names. This information allows us to identify the start and end dates of

the phases each project has passed.13 In this way, we re-construct the development

histories for 2378 projects (88% of projects).14

10The percentage of patents to expire by Novo Nordisk is 80%, of Eli Lilly 70%, of Sanofi 70%, and
of Merck & Co. 60% (EvaluatePharma, 2018).

11Pharmaprojects is a commonly used database for studying the pharma sector. For example
Adams and Brantner (2006); Kyle (2007); Blume-Kohout and Sood (2013); Branstetter et al. (2014)
and Cunningham et al. (2021) all use Pharmaprojects data.

12Available at https://aact.ctti-clinicaltrials.org/
13In cases where complete histories could not be established, we impute the missing dates by

estimating a log-normal distribution of duration per phase and randomly draw a project’s phase
duration from the estimated distribution. For each such imputation, we manually check that the
sequence of development milestones is not violated.

14The remaining 12% are not matched due to a lack of information, as for some projects the
Pharmaprojects database does not provide sufficient detail to make a link to the trials registry.
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We identify changes of ownership for each project in our database by carefully un-

winding the sequence of each project’s consecutive owners.15 To do so, we take the

text information on project developers provided in the Pharmaprojects database as

the starting point and apply text mining, algorithmic disambiguation, fuzzy string

matching, and manual checks. To complement and verify that these changes indeed re-

flect ownership changes as opposed to name changes, we match relevant firms with the

databases Zephyr and SDC Platinum. Manual checks and additional desktop searches

for every company were performed to ensure correctness and completeness. The own-

ership changes considered in our analyses exclude large conglomerate transactions -

situations where one big pharma company acquires another one. We exclude such

cases since these deals are unlikely to relate specifically to diabetes R&D, and are thus

not representative in explaining the transaction dynamics in antidiabetics.16

3.2 Construction of key variables

Leveraging the database described above, we construct variables that are central to

our analysis. The construction of these key variables is described below.

3.2.1 Firm types

Our data comprises over 900 different pharmaceutical companies that have projects

in the antidiabetics R&D pipeline during our sample period. These firms are very

heterogeneous in terms of their size and previous experience (both in R&D and in

marketing drugs). To understand which types of firms engage in M&A transactions,

we cluster firms into bins (“firm types”). Our aim is to assign firms to bins such that

firms in the same bin are similar in their capabilities, financial resources, and incentives

to engage in M&As, and dissimilar across bins. We combine two dimensions, firm size

and market incumbency.
15These ownership changes not only include mergers and acquisitions, but also deals involving sales

of divisions, product lines, or individual assets.
16In unreported results, we check that the robustness of the results presented in this paper remains

qualitatively the same when these transactions are included.

7



Size, our first bin-dimension, matters in the context of M&A decisions, as larger

firms have deeper financial pockets and can benefit from economies of scale and scope

when in clinical trials, obtaining regulatory approval, and also production and commer-

cialization capacity and expertise (Arroyabe, 2021; Bena and Li, 2014; Danzon et al.,

2007; Szücs, 2014). Big firms may find it disadvantageous to engage in an R&D race

with small firms, but instead, gain access to innovation through acquisitions (Phillips

and Zhdanov, 2013). From a small firm’s perspective, a company can struggle in later

phases of innovation, because of its lack of financial and commercialization capabili-

ties. Therefore, selling out might be the most straightforward to get its products to

market (Comanor and Scherer, 2013). Incumbency, our second bin-dimension, might

impact acquisition motives as incumbents could have different incentives in comparison

to non-incumbents, related to defending or expanding their current market position.

We define big firms as having a market share in the whole pharmaceutical industry

of at least 1% on average during the entire sample period.17 This group includes firms

typically thought of as “big pharma” such as Johnson & Johnson and Pfizer. Using

incumbency as a second bin dimension, we further split up this group into leaders,

big incumbents and big non-incumbents. Incumbents, as opposed to non-incumbents,

have at least one antidiabetic drug on the market. “Leaders” are incumbents with

a significant market share in diabetes treatments. The antidabetics market has tra-

ditionally been dominated by just a handful of firms, with Novo Nordisk as largest,

Sanofi, Merck & Co., Eli Lilly, Aventis, Hoechst Marion Roussel each having on average

a market share in antidiabetics of at least 10% over the sample period (which is also

much higher than the other firms with launched antidiabetics).

Small firms are defined as having at least one launched product in any pharma-

17We compute market shares using the 2003-2018 R&D Scoreboard data published by the European
Commission (Hernández et al., 2014). For 1000 large firms (and 2500 firms in later years), the
scoreboard data contains information on revenues and R&D spending categorized by sector. This
allows us to approximate the market share of firms within the pharmaceutical sector for the large
players. In the years before 2003 where data is not available, we search for this information in
company reports. If the information could not be found, we set the values to those in the first 2003
Scoreboard report.
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ceutical market, but having less than 1% market share on average during the entire

sample period. We also split this group into small incumbents and non-incumbents. A

few firms in the pharmaceutical industry, typically bio-pharma companies, have grown

rapidly over the last 20 years (e.g., Gilead and Teva). We separate out these fast-

growing companies and label these as “stars,” where we define fast-growing as having a

market share in pharma below 0.75% on entry into the sample and above 1% at sample

end. None of these stars are yet incumbents in the antidiabetics market.

Finally, a large group consists of those firms that do not have any launched drugs

(in any pharmaceutical market) and are purely engaged in R&D activities in the an-

tidiabetics market, “pipeline firms.” Since this is a large and heterogeneous group –and

where we cannot make further cuts based on revenues– we use the filing date of a firm’s

first patent to split pipeline firms into two more homogeneous groups. In particular,

“young pipelines” are defined as those firms with a first patent filing less than five year

ago and “mature pipelines” are all firms with a first patent filing more than five years

ago.18 Table B.3 in Appendix B gives examples of firms belonging to every bin.

3.2.2 Technology novelty of projects

Projects differ in terms of their technological risks and their potential impact. Of

particular interest are the projects that have the potential to generate the next break-

through blockbuster drugs. Projects which have a high technology novelty, using new

or previously unconnected pieces of knowledge, can bring new breakthrough solutions

to the market, challenging incumbent market positions (Christensen, 2013; Fleming,

2001; Hall and Lerner, 2010). But they do so typically at a higher risk of failure,

facing more uncertainty with their novel, unproven approach. They are thus “high-

risk/high-gain.” Foster et al. (2015) show that research introducing new combinations

of chemicals is more likely to become highly cited, but also displays a higher variance

18After five years, a young pipeline firm switches to the mature pipeline bin in our data. Given
that this switch is only based on the passage of time, such switching can be considered exogenous.
We also adopted an alternative threshold of three years; results remain robust to this definition.
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with regards to their citations. Krieger et al. (2018) show that riskier innovation makes

drug candidates less likely to be approved by the FDA, but conditional on approval,

these drugs are more valuable and earn higher revenues. Huvaj and Johnson (2019)

show for firms in the medical device industry that large organizations are less likely to

pursue more novel innovations.

Although all inventions have to be novel to be granted a patent, we use a more

explicit measure for technology novelty, proxying for the high-risk/high-gain profile of

projects. In particular, we use the Novelty in Technological Origins (NTO) indicator

developed by Verhoeven et al. (2016) on the projects’s patents in our sample.19 This

indicator measures the ex-ante technological novelty of a patent by assessing the extent

to which a patent sources knowledge from previously unconnected fields.20 Verhoeven

et al. (2016) check in their data that NTO patents have indeed a higher dispersion of

forward citations received, and are more likely to be among the least cited and the

most cited patents, confirming their high-risk/high-gain profile. We consider a project

to be high-risk/high-gain novel if at least one of the project’s patents scores on the

NTO indicator.21

3.2.3 Development stage

To analyze the timing dimension of M&As, we distinguish between preclinical, early

(Phase I), and late (Phase II and Phase III) development stages. We group the two

19Alternative measures of drugs’ novelty used are, for example, previous deployments of a drug’s
mechanism of action Dranove et al. (2020). Alternatively, Krieger et al. (2018) define a drug as novel if
it is molecularly distinct from prior candidates. Verhoeven et al. (2016) verify that the NTO measure
correlates with several existing constructs. Cunningham (2017) finds that a third of US medical
start-ups produced novel products. In this work, a patent is novel if (i) it is the first instance of a
(new) technology (USPTO subclass) on a patent, or (ii) it is the first instance of a particular pairwise
combination of existing technologies on patents.

20In practice, a patent scores on NTO if it combines its own International Patent Classification code
(IPC) and an IPC code from its referenced patents that has not yet occurred in the years previous to
the application year of the patent.

21Since the probability to score on novelty mechanically increases with a rising number of assigned
patents, we control for the number of project’s assigned patents in the regression analysis. For the
projects that don’t change ownership, we use the patents assigned before entering clinical trials to
define novelty; for the acquired projects, we use all patents up to an M&A event to assess their novelty.
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smaller samples, Phase II and III. Both stages are aimed at testing the safety and

efficacy profile of a drug and are frequently run in parallel with each other. We do not

consider the launched phase, as it is very different from the R&D phases and not the

focus of this study.

We trace each project per phase. A project is dropped from our database after

the phase in which it was discontinued (if unsuccessful) or until launch (if successful).

A project can thus contribute at most three observations (Pre-clinical, Early, and

Late). The final database amounts to 2916 project-phase observations relating to 1860

projects. The sample contains 1787 preclinical projects. As projects progress, their

number gradually reduces. Only 659 projects move to Phase I and 462 progress beyond

phase I (with only 53 projects in phase III). Figure E.5 in Appendix E illustrates the

funnel structure of the antidiabetics R&D.

3.3 Final database

For our final dataset of 1860 projects, of which 172 change ownership, we have the

identity of targets and acquirers (who), the timing of acquisitions along the R&D

process (when), and which type of R&D projects changes hands in terms of novelty

(what). In Appendix D, we provide an example of a project in our sample with all

dimensions of the data and with the variables defined in the previous sections.

Table 1 presents some first key summary statistics by various splits of the sample for

the observations with and without ownership change (“M&A” vs “No M&A”). There

are 186 ownership changes relating to 172 underlying projects. This represents 7% of

observations and 10% of projects.22 The first panel on timing (when) shows that many

projects already change hands in the initial stages of the development process - 56%

of projects are acquired while in the preclinical phase, and another 25% are acquired

when in the early clinical stage, while they are lowest in the last clinical stage at 19%

(although p-values do not pick up strong statistical differences between the percentage
22Note that the ownership changes include full M&As, affecting all projects of the target company

but also partial ownership changes involving a portion of target’s projects.
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of acquired vs. non-acquired projects in each phase).

[Insert Table 1 about here]

Leaders are significantly less likely to be involved in acquiring projects (3% of

projects experiencing M&As; see second panel). In contrast, stars are significantly

more likely to be acquirers, as are small non-incumbent firms. The latter are the largest

set of acquirers in our sample (30%). For targets (third panel), not surprisingly, small

non-incumbents (32%), mature pipelines (38%), and young pipelines (25%) are the

most common types. Only small non-incumbents and mature pipelines are statistically

over-represented as targets.

Finally (last panel), NTO projects are no “outliers” in our sample, i.e., the overall

share of projects which are novel is high (1071 out of 2730 observations). These rates

are not unusual for the pharma sectors.23 In any case, the share of NTO projects is

significantly higher among the projects that changed hands (55%) compared to the

share among projects that did not change hands (39%). In the following section, we

further detail these descriptives and test them in an econometric framework.

4 Empirical implementation

Our main analysis on who acquires whom, and what when, is centered around simple

linear probability models where we control for various company characteristics, project

characteristics, and fixed effects with the aim to better isolate the key drivers of M&As

in the antidiabetics market. The generic regression we estimate has the following form:

Prob(Dep.V arit = 1) = α + βXit + γFE + ϵit. (1)

The exact specification of dependent and independent variables depends on the

question at hand. For example, when analyzing who is a likely acquirer, the dependent
23For example, Krieger et al. (2018) use novelty derived from the chemical dissimilarity between

projects and find that between 45% and 55% of projects are novel, depending on the size of the
originating firm.
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variable is a binary indicator that equals one for a project (i) and phase (t) affected

by an ownership change and zero otherwise, while the vector X contains then binary

indicators for the acquirer types. The associated β coefficients indicate which acquirer

types are positively or negatively associated with the likelihood of an ownership change.

The vector FE used across specifications includes fixed effects for the time point

when the project is initiated (“cohort fixed effects”), the project’s mechanism of action

(MoA), the project’s technological area, and the geographical location of the company.

The first set of fixed effects, cohort fixed effects, group together projects initiated

around the same time in order to control for time and/or technological trends. The

sample is split into seven cohorts in three-year windows (1997-1999, 2000-2002,...).

The second set of fixed effects controls for the MoA of a project, determining how

a drug produces its effect in the body. From a development perspective, significant

heterogeneity exist between various MoAs in the underlying technology, success rate

and the extent of R&D activity within an MoA. From a demand-side perspective, MoAs

are closely linked to the side effects and suitability of treatment in different patient

populations (Berger and Iyengar, 2011; Association et al., 2019; Chaudhury et al.,

2017). For this reason, drugs with the same MoA are often considered to be more

substitutable, and hence MoAs are often used to delineate antitrust product markets

for launched drugs. To capture these differences, we introduce 19 MoA fixed effects

into our regressions.24

The third set of 48 fixed effects captures differences between the technological areas,

as indicated by the IPC subgroup codes of the patents assigned to projects (for example,

A61P). Since a project typically relates to many technological areas, it will usually score

on more than one of these fixed effects.25

24A total of 389 different MoAs are present in our sample. Since the number of MoAs is high and
many MoAs contain only a very low number of projects, we introduce separate fixed effects only for
the 17 largest MoAs where at least 30 projects were developed during our sample period. All other
MoAs are aggregated into a single “rest” category, representing one MoA fixed effect. A last MoA
fixed effect is then included for all projects with unknown MoA. Approximately 14% of the projects
are combinatory, relying on two MoAs and 1% of projects rely on 3 MoAs. In these cases, projects
can be be included in multiple categories.

25Similarly to MoAs, many technological areas contain only very few projects. We thus introduce
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Finally, the last set of fixed effects refers to the geographical regions where targets

and acquirers originate from to capture any different transaction propensities.26

We employ ordinary least squares (OLS) as the primary estimation method. Where

our sample size or econometric specification allows, we also test the robustness of these

estimates by estimating logistic regressions. Standard errors are clustered at the project

level as the strong path-dependence of the pharmaceutical R&D process makes the

independence of individual project-level error terms unlikely.27

5 Results

We examine which firms are the acquirers and which firms are the targets (who) in 5.1.

Conditioning on a project changing ownership, we thereafter continue by investigating

the matching between acquirers and targets, i.e., who acquires who (5.2). Section 5.3,

in turn, looks at the role of the timing of the change of ownership (when). Section

5.4, finally, investigates the role of a project’s NTO characteristics in the ownership

changes (what).

5.1 Who acquires and who sells?

Table 2 (Column 1) investigates acquirer types in a regression framework, using our

size-incumbency bins and with the acquiring status dummy as dependent variable. We

take big incumbents as the base category, as these are in light of the current debate

a natural benchmark (Cunningham et al., 2021; Argentesi et al., 2021; Gautier and

Lamesch, 2021). In line with the descriptive analysis, the table shows that compared

separate fixed effects only for the 47 largest technological IPC classes where at least 100 projects were
developed during our sample period. All the remaining IPC subgroups are aggregated into a single
category. Overall, we thus have 48 IPC fixed effects.

26Carril-Caccia et al. (2022) show that the number and value of M&As between same-country firms
are five times larger than between firms of different countries. We introduce fixed effects for regions
depending on a company’s headquarters. These regions include South-East Asia (Japan, China, India,
Singapore and Taiwan), Europe, Northern America (Canada and the US), and the rest of the world.

27Our results are robust to the clustering of errors at the firm level.
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to big incumbents, leaders are significantly less likely to acquire projects (at 1% sig-

nificance level), whereas stars appear more likely acquirers (at 1% significance level).

Furthermore, and also surprisingly confirming the descriptives, small companies and

mature pipeline firms are as likely to acquire projects as big incumbents (their coeffi-

cients are not significant).

Also, the regression results with the target status dummy as dependent variable

in Table 2 echo the insights from the summary statistics (Column 2). Using young

pipelines as the base category, small companies and mature pipeline firms are signif-

icantly more likely to be targets. This result is non-trivial as it indicates that the

acquirers in our sample prefer somewhat more seasoned targets, i.e., either more ma-

ture pipelines or small companies, already having a launched product in a pharma

market. All other types of companies (grouped here into one bin), are less likely to be

sellers of projects as compared to young pipelines.

[Insert Table 2 about here]

5.2 Who acquires whom?

In this section, we focus on the sample of the 186 ownership changes to analyze the

pairing between acquirers and targets. The majority of deals (63%) take place among

small non-incumbents and pipelines as targets and acquirers (see Figure A.1 in the

Appendix), which is why we take those bins as separate dependent variable in Table 3.

Table 3 reports regressions estimating which type of targets are taken over by

which types of acquirers (where we take big incumbents as benchmark). Column (1)

investigates which type of firms acquire small non-incumbent targets. The analysis

indicates that, relative to the base group (big incumbents), the big non-incumbents

are the most likely acquirers of small non-incumbents. Pipeline firms, on the other

hand, are less likely to acquire small non-incumbents. Column (2) looks at which

firms are more likely acquirers of mature pipelines. Here small firms and pipeline

firms are more likely acquirers than big incumbents. In Column (3) we focus on who
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acquires the young pipeline firms. The results show that relative to big incumbents, big

non-incumbents and small firms are significantly less likely to acquire young pipeline

firms. Other pipelines, on the other hand, are not significantly less likely than big

incumbents to acquire. Thus, mature pipeline firms are relatively more attractive

targets for pipeline firms and small firms, while young pipeline firms are less attractive

targets for big non-incumbents, who prefer small firms as targets.

[Insert Table 3 about here]

5.3 Who acquires when?

When looking at who acquires when, we see in column (1) of Table 4 that compared to

big incumbents, stars, small firms, and mature pipelines are significantly more likely

to acquire projects in the preclinical phase, where these preclinical projects are high

risk with high probability, as it is uncertain they will reach final stages.28 In contrast,

in column (2), we see that the big non-incumbents are more likely to acquire late (as

compared to big incumbents). These firms are most likely to enter into the antidiabetics

by acquiring close-to-launch projects.

[Insert Table 4 about here]

5.4 What is transacted?

5.4.1 Who holds NTO projects?

On the question of what is transacted, we look at whether a project is novel, reflecting

its high-risk/high-gain profile. To this end, we first examine who is likely to develop

NTO projects by regressing our binary NTO indicator on the firm type bins in Table 5.29

The results in column (1) indicate that projects with NTO patents are more likely to
28The descriptive statistics of Table A.2 confirm these results.
29As additional controls we include the number of patents assigned to a particular project (before a

transaction occurs) and an indicator for projects with no assigned patents, as this affects the likelihood
of scoring on NTO.
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be owned by small non-incumbents and mature pipeline firms. This is very much in

line with the lower incentives for incumbents, large or small, leader or not, to launch

novel innovations, potentially cannibalising existing projects.

[Insert Table 5 about here]

5.4.2 When are NTO projects bought?

Table 6 tests whether and when NTO projects are bought. First, NTO projects are

more likely to be taken over in general (column 1). Having an NTO profile is a strong

predictor of transaction activity, as the NTO status is associated with a 3.6 percentage

point increase in the probability of being acquired (50% increase in the probability

to be taken over relative to baseline probability), as potential high-gain projects are

interesting to acquire, despite their higher risk. When timing is interacted with the

NTO status (column 2), we see that NTO projects are more likely to be acquired in

the preclinical and early stages, and not in the late stage, further enforcing the risk

status of these transactions. Non-NTO projects, when acquired, are significantly less

likely to be acquired in preclinical phases (column 2). These are the low risk targets,

both in terms of what and when.

[Insert Table 6 about here]

5.4.3 Who acquires and who sells NTO projects?

Given that small non-incumbent firms and especially mature pipeline firms are more

likely to be the originators of NTO projects, we explore whether these projects are

more likely to be involved in a transaction. Table 7 analyses which types of firms are

likely to buy (column 1) or sell (column 2) NTO projects in transactions where they

are involved.

As acquirers, only stars and mature pipelines are more likely to acquire NTO

projects, relative to big incumbents (column 1). Big non-incumbents and leaders are
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not more likely to acquire NTO projects. Looking at the identity of the targets (column

2), we see that mature pipeline firms as targets are significantly more likely to involve

NTO projects, compared to young pipeline firms, whereas other firm types are not.

[Insert Table 7 about here]

So far, we found that mature pipelines are more likely to hold and sell NTO projects.

Second, NTO projects are found to be more likely to change hands in the earlier phases.

Third, mature pipelines and star firms are most likely to acquire NTO projects. Table 8

brings all these findings together. Column (1) looks into how the matches between

target and acquirer differ for transactions involving NTO projects compared to others.

The results show that deals of mature pipelines as target and acquirer are significantly

more likely to involve NTO projects. Also when star firms acquire mature pipeline

projects, they are more likely to involve NTO projects. Column 2 in Table 8 shows that

these significant differences in matches involving NTO projects are primarily happening

in the pre-clinical phase.

[Insert Table 8 about here]

To conclude, projects with an NTO profile are more likely candidates for ownership

changes. These projects are likely to originate from mature pipeline firms and change

ownership at the beginning of their development in the preclinical stage. NTO projects

seem to play a distinctive role in the acquisition strategies of star firms which acquire

targets owning such projects, and are especially central to transactions between mature

pipeline firms, but are less on the radar of the large incumbents, including the leaders.

6 Conclusion

This paper takes a dive into the R&D activities of the companies working towards

developing antidiabetic drugs and explores the changes in ownership of these R&D

projects. Our dataset tracks ownership changes for all antidiabetic projects between
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1997-2017, along with their progression through the R&D pipeline. We look at the

market and technology profiles of the acquirers and their targets (who) and the timing

of their acquisition decisions (when). We further examine in detail the technological

characteristics of the projects changing hands (what). More specifically, we characterize

the breakthrough nature of the R&D projects and their high-risk/high-gain profile

as proxied by the technological novelty of the projects. To characterize projects in

terms of their technology novelty and high-risk/high-gain profile, we use project-patent

technology links.

Our results show that the M&A transaction landscape is more rich and varied

than typically commented. Most of the changes in ownership happen already in the

early preclinical stages when projects are still far from being launched into the product

market and have high failure rates. Most of these deals occur between small and

pipeline firms, which do not yet have any marketed antidiabetic drugs. Also stars,

i.e., fast-growing biopharma companies not yet selling antidiabetic drugs, are active as

acquirers in these early stages. Novel projects, which are more likely to originate in

pipeline firms, are more likely to change ownership, and this early on while still in the

preclinical stage, again with the involvement of pipeline companies and stars as most

likely acquirers.

In contrast, the industry leaders in the antidiabetics product markets are rather

inactive in acquiring projects, challenging the narrative that large incumbents acquire

small targets with projects close to product launch to neutralize future competition.

Instead, non-incumbent pharma companies are relatively more active as large acquirers,

driven by a motive to enter the attractive antidiabetics market. They do so mostly

in later stages and avoid acquiring the novel projects, i.e., their acquisitions typically

seem to have a lower risk profile.

Taken together, our findings highlight the key roles that technology uncertainty

(early stages) and technological profile (novelty) of projects play in M&As in phar-

maceutical markets, affecting the risk/reward motives of ownership changes and thus

their likely impact. These technology dimensions are largely neglected by academic re-
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searchers and policymakers. Their current focus on acquisitions by big incumbents of

projects close to the market seems thus too narrow. We argue that one should broaden

the scope of investigations when studying the interaction of M&As and innovation,

i.e., to include also the transactions between small and pipeline companies typically

occurring in the early stages.

Future work should consider the (innovation) implications of the multiple early-

stage acquisitions of novel projects by mature pipelines and stars. Although these

projects, being high risk, may have a high probability of not making it to market, their

potential breakthrough nature calls for a careful analysis of the impact of a change

in ownership on their pathway to success. On the one hand, the potential for killer

acquisitions, typically only associated with large incumbent acquirers, could also be

present in transactions with small innovative firms in the early R&D stages. On the

other hand, the uncertainty around early-stage novel projects might lead to many of

these acquisitions ending in failure without a killer motive. Furthermore, some of

these transactions might yield positive outcomes due to synergies, as small innovative

acquirers are also more likely to have a novel project portfolio.

Finally, while the current paper focuses on antidiabetics, given the data require-

ments, this exercise can in principle be expanded to other pharmaceutical markets to

broaden and generalize the scope of the analysis and our findings.
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Figures and Tables

Tab. 1: Summary statistics

No event Event Difference
Count Mean Count Mean p-value

Timing:
Preclinical 1687 0.62 104 0.56 0.12
Early 612 0.22 47 0.25 0.39
Late 431 0.16 35 0.19 0.31

Acquirer:
Leader 325 0.12 6 0.03 0.00
Big inc 334 0.12 25 0.13 0.64
Big non-inc 220 0.08 22 0.12 0.12
Star 16 0.01 10 0.05 0.00
Small inc 21 0.01 1 0.01 0.68
Small non-inc 543 0.20 56 0.30 0.00
Mature pip 575 0.21 45 0.24 0.34
Young pip 696 0.25 21 0.11 0.00

Target:
Leader 323 0.12 2 0.01 0.00
Big inc 334 0.12 1 0.01 0.00
Big non-inc 222 0.08 3 0.02 0.00
Star 16 0.01 1 0.01 0.93
Small inc 21 0.01 3 0.02 0.37
Small non-inc 543 0.20 59 0.32 0.00
Mature pip 575 0.21 70 0.38 0.00
Young pip 696 0.25 47 0.25 0.95

Project characteristics:
NTO 1071 0.39 102 0.55 0.00
Observations 2730 2730 186 186 2916
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Tab. 2: Who acquires and who sells?

(1) (2)
Who acquires Who sells

Leader -0.069∗∗∗

(0.018)
Big non-inc 0.017

(0.023)
Star 0.292∗∗∗

(0.104)
Leader/Big/Star -0.066∗∗∗

(0.011)
Small 0.012 0.043∗∗

(0.020) (0.017)
Mature pip -0.016 0.042∗∗∗

(0.020) (0.015)
Young pip -0.061∗∗∗

(0.018)
Cohort FE Yes Yes
MoA FE Yes Yes
Country FE Yes Yes
Obs 2916 2916
Adj. R2 0.042 0.046
Base Big inc Young pip

Note: This table presents the OLS estimates of the likelihood to acquire projects (column 1) and
to sell projects (column 2). The dependent variable is a binary indicator equal to one for project
i in phase t if it was acquired and zero otherwise. For acquirers, small incumbents and small non-
incumbents are aggregated, due to a low number of observations. For targets, leaders, big incumbents,
big-non incumbents, and stars are aggregated. Errors are clustered at the project level and displayed
in parentheses. Table A.1 in Appendix A shows that these results are robust when employing logit
estimation or clustering standard errors at the firm level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Tab. 3: Who acquires whom?

(1) (2) (3)
T is small non-inc T is mature pip T is young pip

Leader -0.249 0.394∗ -0.053
(0.246) (0.236) (0.280)

Big non-inc 0.278∗∗ 0.106 -0.270∗∗

(0.140) (0.113) (0.122)
Star -0.086 0.097 0.020

(0.182) (0.195) (0.211)
Small -0.056 0.455∗∗∗ -0.275∗∗

(0.138) (0.119) (0.121)
Mature pip -0.347∗∗∗ 0.615∗∗∗ -0.174

(0.112) (0.115) (0.125)
Young pip -0.302∗∗ 0.402∗∗ -0.021

(0.128) (0.165) (0.158)
Cohort FE Yes Yes Yes
MoA FE Yes Yes Yes
Country FE A+T Yes Yes Yes
Obs 186 186 186
Adj. R2 0.306 0.145 0.171
Base Big inc Big inc Big inc

Note: This table presents the OLS estimates of the likelihood to acquire projects of a particular
target type. For acquirers, small incumbents and small non-incumbents are aggregated, due to a low
number of observations. In column (1), the dependent variable equals one if the target is a small
non-incumbent and zero otherwise. In column (2), the dependent variable equals one if the target is
a mature pipeline firm and zero otherwise. In column (3), the dependent variable equals one if the
target is a young pipeline firm and zero otherwise. For acquirers, small incumbents and small non-
incumbents are aggregated, due to a low number of observation. Errors are clustered at the project
level and displayed in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

26



Tab. 4: Who acquires when?

(1) (2)
Preclinical Late

Leader 0.119 0.285
(0.229) (0.225)

Big non-inc 0.127 0.228∗

(0.170) (0.134)
Star 0.464∗∗∗ -0.042

(0.154) (0.108)
Small 0.329∗∗ -0.114

(0.133) (0.096)
Mature pip 0.256∗ -0.048

(0.133) (0.103)
Young pip 0.049 0.009

(0.158) (0.112)
Cohort FE Yes Yes
MoA FE Yes Yes
Country FE Yes Yes
Obs 186 186
Adj. R2 0.196 0.201
Base Big inc Big inc

Note: This table presents the OLS estimates of the likelihood to acquire projects in a particular
development phase. In column (1), the dependent variable equals one if the project was taken over in
preclinical phase and zero otherwise. In column (2), the dependent variable equals one if the project
was taken over in the late phase and zero otherwise. Small incumbents and small non-incumbents are
aggregated, due to a low number of observations. Errors are clustered at project level and displayed
in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Tab. 5: Who holds which projects?

(1)
NTO

Leader 0.070
(0.047)

Big non-inc 0.068
(0.046)

Star 0.136
(0.169)

Small inc 0.157
(0.111)

Small non-inc 0.080∗

(0.042)
Mature pip 0.084∗∗

(0.041)
Young pip 0.036

(0.039)
Cohort FE Yes
MoA FE Yes
Country FE Yes
IPC Yes
Patent nb. Yes
No patents Yes
Obs 2916
Adj. R2 0.347
Base Big inc

Note: This table presents the OLS estimates of the likelihood to own NTO projects. The dependent
variable is a binary indicator for the NTO indicator. Errors are clustered at project level and displayed
in parentheses. The results are robust to clustering of errors at the firm level (unreported). Logit
estimates produce similar results (unreported). ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Tab. 6: What is acquired and when?

(1) (2)
What What and when

NTO 0.036∗∗∗ -0.016
(0.012) (0.028)

Preclinical -0.042∗∗

(0.021)
Early -0.031

(0.023)
NTO × Preclinical 0.063∗∗

(0.029)
NTO × Early 0.055∗

(0.033)
Cohort FE Yes Yes
MoA FE Yes Yes
Country FE Yes Yes
IPC Yes Yes
Patent nb. Yes Yes
No patents Yes Yes
Obs 2916 2916
Adj. R2 0.045 0.046
Base Late

Note: This table presents the OLS estimates of the likelihood of when NTO projects are acquired.
The dependent variable is a binary indicator equal to one if project i was acquired in phase t and
zero otherwise. Errors are clustered at the project level and displayed in parentheses. The results are
robust to the clustering of errors at the firm level and logit specifications (unreported). ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Tab. 7: Who acquires and who sells NTO projects?

(1) (2)
Who acquires NTO Who sells NTO

Leader 0.030
(0.258)

Big non-inc 0.073
(0.189)

Star 0.451∗

(0.262)
Leader/Big/Star 0.358

(0.225)
Small 0.138 0.207∗

(0.134) (0.115)
Mature pip 0.270∗ 0.308∗∗∗

(0.138) (0.099)
Young pip 0.019

(0.213)
Cohort FE Yes Yes
MoA FE Yes Yes
Country FE Yes Yes
IPC Yes Yes
Patent nb. Yes Yes
No patents Yes Yes
Obs 186 186
Adj. R2 0.303 0.323
Base Big inc Young pip

Note: This table presents the OLS estimates of the likelihood to buy (column 1) or sell (column 2)
NTO projects. The dependent variable equals one if the acquired (sold) project was an NTO project
and zero otherwise. For acquirers, small incumbents and small non-incumbents are aggregated, due
to a low number of observations. For targets, leaders, big incumbents, big-non incumbents, and stars
are aggregated. Errors are clustered at the project level and displayed in parentheses. The results are
robust to the clustering of errors at the firm level (unreported). ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Tab. 8: Which matches are more likely for NTO projects?

(1) (2)
NTO NTO in preclin

A mature pip + T mature pip 0.261∗∗ 0.262∗∗

(0.122) (0.124)
A star + T mature pip 0.775∗∗∗ 0.793∗∗∗

(0.214) (0.190)
A other + T mature pip 0.127 0.028

(0.101) (0.097)
Cohort FE Yes Yes
MoA FE Yes Yes
Country FE Yes Yes
IPC Yes Yes
Patent nb. Yes Yes
Obs 186 186
Adj. R2 0.333 0.326
Base All other combinations All other combinations

Note: This table presents the OLS estimates of how likely a particular match of acquirer and target
is for NTO projects. In column (1), the dependent variable equals one if the acquired project was an
NTO project and zero if the acquired project was not an NTO project. In column (2), the dependent
variable equals one if the acquired project was an NTO project in the preclinical phase and zero
otherwise. Errors are clustered at the project level and displayed in parentheses. The results are
robust to the clustering of errors at the firm level (unreported). ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix

A Robustness checks and extensions

Fig. A.1: Who acquires whom?

Notes: The figure shows which acquirers buy projects of which targets. The numbers indicate
the number of projects changing hands, colored depending on the frequency (186 in total).

32



Tab. A.1: Robustness: Who acquires and who sells?

Logit Cluster SE: Firm
(1) (2) (3) (4)

Acquirers Targets Acquirers Targets
Leader -1.608∗∗∗ -0.069∗∗∗

(0.507) (0.015)
Big non-inc 0.221 0.017

(0.328) (0.029)
Star 1.945∗∗∗ 0.292∗∗

(0.604) (0.129)
Leader - Star -2.316∗∗∗ -0.066∗∗∗

(0.425) (0.015)
Small 0.149 0.598∗∗ 0.012 0.043∗

(0.292) (0.236) (0.021) (0.022)
Mature pip -0.233 0.580∗∗∗ -0.016 0.042∗∗

(0.312) (0.208) (0.020) (0.020)
Young pip -1.222∗∗∗ -0.061∗∗∗

(0.350) (0.016)
Cohort FE Yes Yes Yes Yes
MoA FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Obs 2916 2916 2916 2916
Pseudo R2 0.106 0.140
Adj. R2 0.042 0.046
Base Big-inc Young pip Big-inc Young pip

Note: This table presents robustness checks of the likelihood to acquire projects (odd columns) or
sell projects (even columns). Columns (1) and (2) use a logistic regression instead of OLS. Columns
(3) and (4) cluster standard errors at the firm level (instead of at the project level), allowing for a
correlation within firms. The dependent variable in each column is a binary indicator equal to one
if project i was acquired in phase t (treated) and zero otherwise. Aggregation of bins follows the
baseline specification. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Tab. A.2: Who acquires when?

Acquirer Preclinical Early Late Total
Leader 4 (67%) 0 (0%) 2 (33%) 6 (100%)

4% 0% 6% 3%
Big inc 10 (40%) 12 (48%) 3 (12%) 25 (100%)

10% 26% 9% 13%
Big non-inc 9 (41%) 3 (14%) 10 (45%) 22 (100%)

9% 6% 29% 12%
Star 8 (80%) 1 (10%) 1 (10%) 10 (100%)

8% 2% 3% 5%
Small inc 1 (100%) 0 (0%) 0 (0%) 1 (100%)

1% 0% 0% 1%
Small non-inc 31 (55%) 16 (29%) 9 (16%) 56 (100%)

30% 34% 26% 30%
Mature pipeline 31 (69%) 8 (18%) 6 (13%) 45 (100%)

30% 17% 17% 24%
Young pipeline 10 (48%) 7 (33%) 4 (19%) 21 (100%)

10% 15% 11% 11%
Total 104 (56%) 47 (25%) 35 (19%) 186 (100%)

100% 100% 100% 100%
Note: This table presents when each type of acquirer takes over projects.
The even rows give the number of acquired projects in each phase to-
gether with the share of phases of each acquirer’s type transactions in
parentheses (row-wise percentages). The odd rows give the share of
the different types of acquirers on the transaction within a given phase
(column-wise percentages).
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Fig. A.2: When are NTO projects bought?

Note: The figure shows which acquirers buy NTO projects of which targets. In the left panel,
the numbers represent counts of ownership changes involving the NTO projects (102 in total).
In the right panel, the numbers represent counts of ownership changes involving the NTO
projects in the preclinical phase (58 in total). Colouring depends on observed frequency.
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B Examples of companies in the bins

Tab. B.3: Examples of firms in the bins

Bin Number of firms Examples (up to 10 firms)
Leaders 7 Aventis, Eli lilly, Hoechst Marion Roussel, Merck

& Co., Novo Nordisk, Sanofi, Sanofi-Aventis
Big incumbents 11 Astrazeneca, Bayer, Boehringer Ingelheim,

Bristol-Myers Squibb, Glaxosmithkline, Johnson
& Johnson, Merck kgaa, Pfizer, Roche, Takeda

Big non-incumbents 19 Abbott, American Home Products, Astellas
Pharma, Daiichi Sankyo, Glaxo Wellcome,
Glaxosmithkline, Johnson & Johnson, Sanofi-
Synthelabo, Schering-Plough, Wyeth

Stars 8 Allergan, Biogen, Biogen Idec, Celgene, Gilead
Sciences, Shire, Teva, Valeant Pharmaceuticals

Small incumbents 10 Ajinomoto, Amylin, Andrx, Depomed, Mannkind,
Mitsubishi Tanabe Pharma, Nektar Therapeutics,
Pharmacia, Veroscience, Zealand pharma

Small non-incumbents 195 Alexion, Baxter International, Chiron, Eisai, Kos
Pharmaceuticals, Mochida, Solvay, Pliva, Warner-
Lambert, Tanabe Seiyaku

Mature pipelines 300 Genmedica, Kemia, Develogen, Olipass, Catabasis
pharmaceuticals, Genmedica, Alize Pharma, Bio-
cure Pharma, Cloud Pharmaceuticals, Insmed

Young pipelines 408 Escoublac, Halsa, Hanall Biopharma, Limer-
ick Biopharma, Energesis Pharmaceuticals, Mi-
tochon Pharmaceuticals, Hansoh Pharmaceuti-
cals, Crititech, Kinex Pharmaceuticals, Sprint Bio-
science

Note: The table provides examples of companies in each bin. The total number of
companies in the bin is indicated in column 2 and up to 10 examples are provided.
Firms might appear in multiple bins if they switch bins over time. Some listed firms
do not exist today as they have been incorporated into other firms through M&A deals
between 1997 and 2017.
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C Patent matching
This appendix is a guide to matching patents to antidiabetic projects. According to our knowledge,

there is no publicly available database providing project-patent links beyond launched drugs. The pri-

vate databases, on the other hand, do not provide sufficient coverage (e.g. Cortellis) are in-transparent

as to how they assign patents to projects.

C.1 Patent databases

We focus on US patents exclusively. Three sources of patent data are used: the USPTO patent

database30, PATSTAT database, and the LENS patent database.31 In these databases, we particularly

utilize the information regarding patent application dates, patent grant dates, information on patent

extensions, priority dates, IPC patent classes, patent families, patent assignees, and backward patent

references.

Our matching starts by establishing so called ‘candidate patent sets’ for each of the 2387 projects

in the sample. The candidate patent set contains all granted US patents of the firms that were involved

in the development of a project (originator, the final owner, and all owners in the chain in between)

and that were filed for between the initiation date and the discontinuation date of a project (retrieved

from the progression through clinical trials).32 To narrow down the patent universe to technologies

which plausibly relate to pharmaceutical markets and drug development, we follow Schmoch (2008)

and own analysis based on the FDA’s Orange book and consider only patents with at least one IPC

subclass in A61K, A61M, A61P, C07C, C07D, C07F, C07K, C07H, C08F, C08G, C12N or C12P. After

this step, each project has a set of patents filed for during its lifetime and belonging to the relevant

firms - so called candidate set - in which we look for the patents relevant for a specific project.

There are two major issues when searching for patents belonging to a specific project. First, there

is significant heterogeneity between the projects in our sample, ranging from small molecule drugs

to large molecule drugs. Second, a substantial number of projects in the Pharmaprojects database

30Available at https://patentsview.org/download/data-download-tables
31Available at https://lens.org
32To identify the patents belonging to each candidate set, we perform fuzzy string matching on

the company names and patent assginee names. To improve precision of the matching routine, we
first standardize the names. We remove the legal forms of companies, clean the names from non-
alphanumerical characters, remove generic words and combinations of words that do only distinguish
separate legal entities, but refer to the same underlying company (eg ’pharmaceutical products’,
’intellectual properties’, ’healthcare systems’). After this, we standardize the company names by
taking the first word of the company’s name, keeping the most numerous one and using it to substitute
the other names referring to that company. Following the fuzzy string-matching routine, we manually
checked the correctness on a random sub-sample of firms. The procedure yielded a minimum of false
matches.
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misses information along the relevant dimensions. Our matching procedure therefore consists of several

complementary approaches that try to overcome these issues.

C.2 Chemistry matching

Patents for ‘small molecule’ or chemical drugs are matched based on their chemical properties. Using

the Surechem33 database and various identifiers (CAS numbers, SMILES Chemical structures, and

UNII identifiers), we link project’s underlying chemical compounds to PubChem34. PubChem contains

information on the patents protecting specific molecules for some chemical entities. If we find an

overlap between the ’candidate set’ and the set of patents retrieved from PubChem, we consider these

patents as assigned to a project35. This procedure results in 411 matches which are excluded from

further matching.

C.3 Gene matching

Patents for ’large molecule’ or biological drugs are matched based on gene sequences. Since the early

1990s, US patent applications claiming genes as intellectual property must disclose the exact DNA

or protein sequences claimed in the text of the patent. The sequences are listed in USPTO patent

applications in a standard format, labelled with the text ’SEQ ID NO’. Bio-informatics methods can

be used to compare these sequences against the census of human genome to annotate each sequence

with standard gene identifiers. In turn, these can be linked to outside databases, including the

Pharmaprojects database.

We broadly follow the methodology suggested in Sampat and Williams (2019). First, we extract

standard gene identifiers (known under Entrez gene ID) from the Pharmaprojects database. Using the

GeneBank generated crosswalks36, we connected each of the gene IDs to a list of mRNA, RNA and

protein RefSeq accession/version numbers and extracted the corresponding nucleotide sequences from

the GeneBank’s webpage, including start and end positions of the chain in the sequence, if applicable.

To capture the full universe of known sequences relating to a particular gene ID, we utilize both the

sequences relating to the annotated human genome as well as the sequences maintained independently

33SureChEMBL provides free access to chemical data extracted from the patent literature. Avail-
able here: ftp://ftp.ebi.ac.uk/pub/databases/chembl/SureChEMBL/

34PubChem is a publicly available, open chemistry database at the National Institutes of Health
(NIH). Available here: https://pubchemdocs.ncbi.nlm.nih.gov/downloads

35If match on company level is found but the patent lies outside of the development window of a
project, we check whether other member of the patent’s family lies in the development window of a
project. If so, this is considered a match as well.

36Available here: ftp://ftp.ncbi.nih.gov/refseq/release/release-catalog/release97.accession2geneid.gz
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of the annotated genome.

Following the methodology pioneered by Jensen and Murray (2005), we use the BLAST (Basic

Local Alignment Search Tool) search engine to compare the above sequences to census of sequences

disclosed in the US patents. To arrive at the true set of matches, we only consider blast matches with

an E-value of less than 1e-5037. This yields a final mapping between projects and patents referring

to the respective gene via the disclosed sequences. Again, we only consider patents as assigned to a

project when they fall within the development window and belong to one of the relevant firms. This

procedure results in 222 matches which are excluded from further matching.

C.4 MoA keyword matching

We complement the two above approached by text analysis using the mechanism of action (MoA). For

projects with known MoA, we first perform cleaning to standardize MoA names,38 obtaining a set of

tokens (”keywords”). Using a combination of TF-IDF algorithm and a manual check, we also retrieve

all relevant synonyms relating to a particular MoA39 and add those to the relevant ”keywords”. To

find the counterparts of these ”keywords” in patents and establish matches, we utilize a database

of Arts et al.. Arts et al. (2021) pre-process the text in the patents by concatenating the title and

abstract and claims text, lowercasing the text, tokenizing all words, and eliminating stop words based

on a manually compiled list, removing words with only one character, numbers, and words that appear

only once across all patents. We pair a patent to a project if all MoA ”keywords” or an abbreviation

are found in a patent document. We then check that only patents are kept that belong to the relevant

firms and which were applied for during the development window of a drug project. This procedure

results in 487 matches which are excluded from further matching.

C.5 Remaining matching

If no match for a project has been found so far, we proceed by various plausible exclusion restrictions.

For example, projects with a single patent in the candidate set are considered matched. Similarly, all

patents are assigned to a project if the firm had only one project under development. We also matched

37Sampat and Williams (2019) use an E-value of exactly 0. However, we apply less strict threshold
as it was confirmed by bio-informatics specialist that our threshold level is commonly applied in the
field and a threshold of strict zero might be too restrictive.

38This includes tokenization, removal of special characters or words comprised of single letter only,
and stemming using Porter’s stemmer.

39For example, the MoA ”glucagon-like peptide” is often only mentioned using its abbreviation
glp1 or glp-1. The fibroblast growth factor 21 is known under fgf21 or fgf-21. The DPP-IV mentioned
above is sometimes referred to as DPP-4, DPP4 or dipeptidyl peptidase 4 inhibitor.
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projects to 0 patents if a firm had no US granted patent (we checked all these instances manually to

verify the absence of the US patents). Lastly, the 93 launched projects were matched to patents based

on information in the FDA’s Orange Book. In total, this yielded an additional 660 matches.

The remaining set of 570 unmatched projects were checked manually. For each of these projects,

patent text was compared to the above project’s properties (where available). We hired a chemistry

student to then read these text fields, compare those, and decide which patents from the set of

candidate patents should be relevant for a particular project. This resulted in another 161 matched

project. We drop the final unmatched projects from our sample. This leaves us with a final sample

of 1941 matched projects and 437 unmatched projects, representing a match rate of 81%. A total of

4999 patents were assigned to the projects.

C.6 Summary statistics on matching

Although the Orange Book only considers drugs that were eventually launched on the market, and

thus only captures the most selective subset of successful projects not representative of the entire

pipeline, it is currently the only source of information on patent-project links. Below, we present

basic descriptive statistics to put the results of the matching procedure into a perspective.

Tab. C.4: Comparison of patent statistics between the Orange Book and the matched
project sample

Matched sample
Patents Projects

Mean - projects per patent 1.8 Mean - patents per project 4.32
Max - projects per patent 25 Max - patents per project 113
Share of patents with single assigned project 67.3 Share of projects with single assigned patent 38.14

Share of projects with no assigned patent 9.64
Orange Book

Patents Projects
Mean - projects per patent 1.95 Mean - patents per project 10.91
Max - projects per patent 12 Max - patents per project 46
Share of patents with single assigned project 66.16 Share of projects with single assigned patent 9.76

Share of projects with no assigned patent 0

Since a project can have more than one patent assigned, we are presenting a project level and a patent

perspective in Table C.4. Overall, the presented figures lend credibility to the outcome of the patents

matching. Form the patent level perspective, the average number of projects assigned per patent

amounts to 2 across both samples and in both cases with around 67% of patents assigned to a single
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project. From the project level perspective, a project has on average 4.32 patents in the matched

sample and almost 11 patent in the Orange book. Considering that the matched sample includes

much broader set project in earlier development phases, a much higher fraction of the projects have

only a single patent assigned compared to the Orange Book (38% in the matches sample vs. 10% in

the Orange Book). This result should be expected since it indicates that successful projects that are

launched to the market have substantial patent protection, with none of the launched drugs being

unpatented. On average, in line with the findings of Argente et al. (2019), average number of patents

per project in the matched sample is lower than in the Orange Book sample.

The Figure C.3 provides a comparison between the types of patents that were assigned to the

projects (lower part) and how these compare to the Orange book (upper part). Using IPC classification

subgroups level (the most granular classification available in the IPC classification), we plot the

distributions of the occurrence of the IPC classes in the two sets. We should expect that whilst the

matched sample will include many more IPC categories compared to the Orange Book due to the

dispersion of the pipeline R&D activities, as least the top classes in both sets should be similar if

properly assigned.

The distribution of the matched sample is indeed much broader compared to the Orange Book,

and each IPC subgroup occurs less frequently. For example, the most frequent subgroup A61P 3/10

occurs in more than 25% of patents in the Orange Book and in slightly more than 6% of cases in the

matched sample. However, comparing the ordering of the different IPC subgroups, we can find that

among the most 5 frequent groups in each sample, 3 subgroups are shared and have high relevance to

diabetes drugs: A61P 3/10 - drugs for hyperglycaemia, e.g. antidiabetics, A61K 38/28 - insulins, and

A61K 38/28 - Mixtures of active ingredients without chemical characterization, e.g. antiphlogistics

and cardiaca. In addition, third most frequent subgroups in the matched sample - A61K 38/26 - refers

to Glucagons. This shows that the matched patents indeed relate closely to diabetes and at least the

most frequent technological subgroups closely mirror the sample of drugs launched on the market.
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Fig. C.3: Distribution of IPC subgroups in Orange Book and matched samples
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D Illustrative example
Figure D.4 uses the drug project colesevelam hydrochloride (brand name: Welchol) as an example to

illustrate how all dimensions connect together. Colesevelam hydrochloride is an HMG-CoA reductase

inhibitor that has a dual effect of (i) lowering cholesterol and (ii) reducing blood glucose levels (White,

2014). The development of colesevelam hydrochloride was initiated by Geltex, a small non-incumbent,

in the year 2000. Based on the 10 US patent families protecting the compound at the beginning of

its development (before entering the clinical trials), the project was identified as novel, as at least

one of its patent got the NTO label. While still in the preclinical stage, the project was acquired

by Genzyme, another small non-incumbent. Shortly before launch, i.e., in the “late phase,” it was

acquired by Sanofi, labeled a “leader” in our setting. Whenever a project changes hands, we code it

as an event that takes on the value of 1.

Fig. D.4: Project example and relevant variables

As illustrated in Table D.5, the drug Welchol adds three observations to the database. The first

observation is made before the acquisition by Genzyme in the preclinical phase (2000h1). The second

is made at the beginning of the early phase (Phase I) in 2002h1. The third and last is made before

the acquisition of the drug by Sanofi (2010h2).

Tab. D.5: Database extract

Drug ID Phase Date type Event Acquiror A bin Target T bin NTO Patents

4827 Preclin 1/07/2000 A 1 Genzyme Small non-inc Geltex Small non-inc 1 10
4827 Early 1/01/2002 0 Genzyme Small non-inc Genzyme Small non-inc 1 11
4827 Late 1/01/2011 A 1 Sanofi Leader Genzyme Small non-inc 1 11

43



E Funnel structure of R&D

Fig. E.5: R&D Funnel

Note: Each bar shows the number of projects developed in each phase by type of firm.
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