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Abstract—Eating speed is an important indicator that has been widely
scrutinized in nutritional studies. The relationship between eating speed
and several intake-related problems such as obesity, diabetes, and
oral health has received increased attention from researchers. How-
ever, existing studies mainly use self-reported questionnaires to ob-
tain participants’ eating speed, where they choose options from slow,
medium, and fast. Such a non-quantitative method is highly subjective
and coarse in individual level. In this study, we propose a novel approach
to measure eating speed in free-living environments automatically and
objectively using wrist-worn inertial measurement unit (IMU) sensors.
Specifically, a temporal convolutional network combined with a multi-
head attention module (TCN-MHA) is developed to detect bites (in-
cluding eating and drinking gestures) from free-living IMU data. The
predicted bite sequences are then clustered to eating episodes. Eating
speed is calculated by using the time taken to finish the eating episode
to divide the number of bites. To validate the proposed approach on
eating speed measurement, a 7-fold cross validation is applied to the
self-collected fine-annotated full-day-I (FD-I) dataset, and a hold-out
experiment is conducted on the full-day-II (FD-II) dataset. The two
datasets are collected from 61 participants in free-living environments
with a total duration of 513 h, which are publicly available. Experimental
results shows that the proposed approach achieves a mean absolute
percentage error (MAPE) of 0.110 and 0.146 in the FD-I and FD-II
datasets, respectively, showcasing the feasibility of automated eating
speed measurement. To the best of our knowledge, this is the first study
investigating automated eating speed measurement.

Index Terms—Eating speed, food intake monitoring, eating gesture
detection, inertial sensor, free-living

1 INTRODUCTION

Eating speed is considered as an important factor associated
with body mass index (BMI), obesity and diabetes, which
has been widely investigated [1]–[3]. Participants with faster
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eating speeds are considered more likely to have higher
BMI, a higher risk of obesity, diabetes, and cardiovascular
disease. Furthermore, deviations in eating speed are also
correlated with eating disorders [4]. Currently the most
popular method for investigating eating speed is through
self-reported questionnaires [2], [3]. In the work of Kudo et
al. [3], participants were asked to choose their own eating
speed from options such as slow, medium, and fast, by re-
sponding to questions like “How fast do you eat compared
to others around same ages? (Faster, Normal, Slower).”
The questionnaire based eating speed estimation is highly
subjective, and there is no standard reference to define an
appropriate objective eating speed. While self-reported eat-
ing speed may be sufficient at a group level, especially with
a large population, it is an unreliable approach to assess
an individual’s eating speed, particularly in the context of
precision healthcare [5]. There is a call for an automated and
objective approach to measure eating speed.

Recently, automated food intake monitoring has drawn
lots of attention, plenty of approaches haven been proposed
to detect bites [6]–[9] during meal sessions, detect eating
episodes in free-living scenarios [10], [11], and estimate
calorie intake using various sensors (e.g., inertial, camera,
microphone, proximity) and machine learning techniques.
However, to date, there has been no research that focus
on automated eating speed detection in free-living environ-
ments.

In this study, we use the term bite to refer to eating
gestures and drinking gestures. The definitions of eating
gestures and drinking gestures are consistent with the work
in [12]. Specifically, they are defined as the action of raising
the hand to the mouth with cutlery or a water container until
the hand is moved away from the mouth. The definition
of objective eating speed is the number of bites divided
by the time taken to finish the eating episode (bites/min)
[1], [13]. Based on this definition, a straightforward ap-
proach for eating speed estimation is to combine the bite
detection (to count the number of bites) and eating episode
localization (to obtain the time duration of the consumed
eating episode). However, the reason that hinder automated
eating speed estimation is two-fold: Firstly, existing bite
detection approaches only focus on in-meal scenarios, it
is challenging to detect bites in free-living environments.
Secondly, current eating episode localization approaches
cannot precisely segment the boundary of detected eating
episode, whereas eating speed detection requires accurate
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boundaries detection for each eating episode.
In this research, we extend the bite detection from in-

meal scenarios to free-living environments, and further
cluster the detected bite sequences into eating episodes, to
facilitate the automated eating speed estimation. The main
contributions of this research can be summarized as follows:

• A complete framework for eating speed measure-
ment in free-living environments is proposed: A
sequence-to-sequence (seq2seq) temporal convolu-
tional network combined with a multi-head atten-
tion (TCN-MHA) model is designed to process in-
ertial measurement unit (IMU) data for detecting
food intake gestures and segmenting the time in-
terval of intake gestures in free-living environments.
The obtained bite sequences are clustered into eat-
ing episodes to calculate eating speed. To our best
knowledge, this is the first work to automatically
estimate eating speed in free-living environments.

• An intensive comparison between our approach and
existing works has been implemented. Five existing
deep learning models are implemented for compar-
ison. Additionally, the proposed eating speed mea-
surement method is validated in two studies: 7-fold
cross validation on the well-annotated FD-I dataset,
and a hold-out validation on the coarsely annotated
FD-II dataset.

• We make two datasets collected in this study publicly
available1. Specifically, the FD-I dataset contains IMU
data collected from 34 participants in free-living en-
vironments with fine annotation. This is the first full-
day IMU dataset that contains eating and drinking
gesture annotations not only during meal sessions,
but also outside of meal sessions. The FD-II dataset
serves as a hold-out dataset, containing IMU data
from 27 participants in free-living environments.

2 RELATED WORK

Automated eating speed detection relies on two essential
tasks: bite detection to count the number of bites and eating
episode detection to predict the duration of each meal. In
this section, we firstly introduce existing approaches for in-
meal bite detection; then, we discuss eating episode detec-
tion approaches. Thirdly, we present a few studies measur-
ing eating speed objectively (but not automated). Finally,
deep learning models for time-series signal processing are
introduced.

2.1 Bite Detection

Bite detection has been widely investigated using various
sensors. Cameras have been used to detect bites [14], [15]
and food types [7] by analyzing video signals. Acoustic sen-
sors can be used for this task through processing chewing
sounds [8]. Mertes et al. [16] developed a strain gauge-based
smart plate to detect bites based on the weight change of
food. In our recent work [12], a novel FMCW radar-based
system was proposed for in-meal bite detection. This system
was validated using our public Eat-Radar dataset, which

1. We plan to add the link of this dataset in the revision stage.

includes 70 meals from 70 participants. The photoplethys-
mography (PPG) sensor [17] and electromyography (EMG)
sensor [18] have also been explored for bite detection. Apart
from these sensors, to date, the wrist-worn IMU sensor is
a popular choice for bite detection because of its least bur-
densome and most acceptable. Dong et al. [19] developed a
rule-based approach to detect bite using the rotation velocity
of wrist. Shen et al. [20] further evaluated Dong’s approach
on Clemson dataset containing 488 eating episodes. Kyritsis
et al. [6] proposed an end-to-end based approach using a
convolutional neural network and long-short-term-memory
network hybrid model (CNN-LSTM) model to detect bite
automatically on FIC dataset. Rouast et al. [21] further de-
veloped single-stage ResNet based CNN-LSTM architecture
for bite detection on the OREBA dataset, which contains
100 meals. Wei et al. [22] developed an energy-efficient ap-
proach, specifically, an optimized multicenter classifier (O-
MCC) and an Android application, to detect intake gestures
with low inference time.

The aforementioned bite detection approaches have
shown promising performances. However, it should be
noted that these approaches only focus on bite detection in-
meal sessions (10-20 min). Although such in-meal detection
is the key and fundamental element in food intake mon-
itoring, a more challenging but meaningful scenario, bite
detection in free-living environments (≥ 6 h), has yet to be
broadly investigated. There are several obstacles impeding
the detection in free-living environments. Firstly, it is trou-
blesome to obtain bite-level annotation information outside
meal sessions. Secondly, in the scale of full-day duration,
bites are extremely sparse, leading a highly imbalanced
dataset compared to in-meal datasets, making bite detection
more challenging.

2.2 Eating Episodes Detection

Eating episodes detection is another popular research topic
in food intake monitoring. Such a system mainly focus on
the detection of eating episodes under free-living environ-
ments. A standard process pipeline involves cutting the full-
day data into minute-level segments, and machine learning
is used to predict if each segment belongs to eating episode
or not. Sharma et al. [10] collected a data set contains 354
days of 6-axis IMU data from 351 subjects. The IMU sensor
were mounted on the dominant wrist. Doulah et al. [11]
developed the AIM-2 system, a pair of eyeglasses mounted
with a camera, and a 3-axis accelerometer to detect eating
episodes. The AIM-2 was validated on a dataset collected
from 30 volunteers.

Unlike the above methods that directly predict eating
episodes, another routine is first to detect basic elements
of eating episode such as chewing, swallowing, and hand-
to-mouth events, and then combine them together as an
eating episode using various merging techniques. Bedri et
al. [23] proposed the FitByte eyeglass-based system to detect
eating/drinking events and eating episodes. They detected
the episodes by merging any detected intakes that are within
5 minutes from each other. Zhang et al. [24] developed
Necksense system to detect chewing sequences, then clus-
tered the detected sequences into eating episodes using a
density-based spatial clustering of applications with noise
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Fig. 1. Examples of wrist-worn IMU data collection. Two IMU sensors were mounted on both hands. Participants completed their daily activities
without restriction. This figure only shows the food intake related scenes, their other daily activities, such as studying, walking, talking, running,
cooking, were recorded by IMU sensor as well.

(DBSCAN) algorithm [25]. Kyritsis et al. [6] first detected
bites on FreeFIC dataset, then applied a Gaussian filter on
the bite sequence to generate meal regions. It should be
noted that the model used to detect bites is trained on
in-meal FIC dataset, there is no bite-level label in FreeFIC
dataset, so the bite detection performance is unclear on
FreeFIC dataset.

2.3 Eating Speed Estimation
Two studies have been found to objectively (but not auto-
mated) measure eating speed. Woodward et al. [5] provided
a 550 g meal to each participant and used a stopwatch
to record the meal time. Their experiment was conducted
in lab environments. Alshurafa et al. [13] measured eating
speed by using wearable fish-eye camera in free-living
environments. A trained annotator manually counted the
number of intake gestures, selected the boundaries of meal
sessions by viewing the video. The eating speed was then
calculated by using meal duration to divide the number
of bites. The aforementioned approaches require manual
processing, which are time-consuming and labor-intensive.

2.4 Temporal Sequence Models
The commonly used model in intake gesture detection is
CNN with recurrent neural networks (CNN-RNNs). In this
architecture, CNN is typically used to extract features from
time-series data, and the feature sequences are then fed into
RNNs to process temporal dependencies. Although RNNs
can effectively process time-series data, they struggle to
memorize long-term interdependencies due to the gradient
vanishing problem. Two solutions have been proposed in
the literature: the temporal convolutional network (TCN)
and self-attention.

2.4.1 TCN
Lea et al. [26] proposed the TCN by utilizing dilated con-
volution and residual connection. Stacking a series of con-
volution layers with different dilation factors enables the
model to incorporate short-term and long-term dependen-
cies. Additionally, dilated convolutional layers increase the
length of receptive fields without substantially increasing
the number of parameters. Due to its superiority, studies
have been conducted to further evolve the architecture (e.g.

MS-TCN [27], MS-GCN [28]) and to exploit it into various
scenarios.

2.4.2 Self-Attention

The self-attention module was proposed by Vaswani et
al. [29] to compose the transformer architecture in natural
language processing (NLP) domain, showcasing its superior
ability. Motivated by its success, several approaches have
been proposed by integrating the self-attention mechanism
into CNN and RNN architectures to further improve the
capability of time-series signal modeling [30], [31].

3 METHODS

3.1 Sensors

As this experiment aims to record data in free-living envi-
ronments, food intake events can happen with both hands,
thus, two shimmer3 IMU wristbands2 were mounted on
both hands of participants. The battery duration of shim-
mer3 IMU is 24 h, which satisfies the requirement of this
experiment. The sampling frequency was set to 64 Hz.
The 3-axis accelerometer and 3-axis gyroscope units were
activated to generate 6 channels IMU data. The data were
stored in SD card of shimmer, and can be downloaded into
laptop via Consensys software3 for further data processing.
A camera was used to record the experiment for annotation.
The sensor deployment and data collection example are
shown in Fig. 1.

3.2 Full-Day Data Collection

This research was approved by the ethical committee of
KU Leuven with project number: G-2021-4025-R4. Informed
consent was obtained from all participants. Two datasets
were collected for this study, namely the well-annotated full-
day-I (FD-I) dataset, and hold-out full-day-II (FD-II) dataset.
There is no participants overlap among the two datasets.

2. https://shimmersensing.com/product/shimmer3-imu-unit/
3. https://shimmersensing.com/product/consensyspro-software/
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3.2.1 FD-I Dataset
The FD-I dataset contains 34 days of IMU data from 34
participants (6 of them are from our previous study on
drinking activity detection [32]). On the data collection day,
our research assistants met the participant, instructed the
participant to wear IMU wristbands. Participants were free
to engage in their normal daily activities. The daily activity
of each participant was recorded by a camera for annotation.
Experiment locations contained participant’s home (apart-
ments, student residence), restaurants, library, university
learning center, and campus rest areas. Our research assis-
tants were responsible for the recording when participants
change their locations to ensure that all eating and drinking
gestures were captured. There were no limitations on the
participants’ activity during data collection. At least one
meal was collected from each participant, and the mini-
mum data collection duration was 6 h. Both eating alone
and social eating scenarios were included in the dataset.
The participants received restaurant voucher (20 euro) as
experiment compensation after the data collection. A total
of 251 h two-hand IMU data were collected, which contains
74 eating episodes, with 4,568 eating and 1,100 drinking
gestures. The dataset contains four eating styles including
forks & knives, chopsticks, spoon, and hands.

3.2.2 FD-II Dataset
The FD-II dataset contains 27 days of IMU data from 27
participants. The experiment protocol was the same as the
FD-I dataset. However, in this dataset, only meal sessions
were recorded by cameras (Some videos were collected by
participants’ own smartphones). All other eating/drinking
gestures outside of meal sessions were not recorded. There-
fore, the ground truth information only contains the bite
information during meals and the meal boundaries. The FD-
II dataset is considered as a hold-out dataset, which contains
48 meals with 2,723 eating gestures (including four eating
styles) over a total duration of 262 h.

3.3 Datasets for Training-Only
The FD-I and FD-II datasets are highly unbalanced, with the
target classes (eating and drinking) being the minority. To
further include more target data, we included two datasets
containing IMU data collected in meal sessions, specially,
the self-collected meal-only (MO) dataset and the external
OREBA dataset [33] as part of the training set.

3.3.1 Meal-Only Dataset
The MO dataset contains 48 meal sessions from 48 partici-
pants, with a total of 2,894 eating and 763 drinking activities.
It should be noted that part of this dataset was collected
together with our previous Eat-Radar project [12] and there
is no participant overlap between MO and FD datasets.

3.3.2 Public OREBA Dataset
The OREBA dataset [33] contains 100 meal sessions data
from 100 participants, with 4,496 eating and 406 drinking
gestures. The data were collected from both hands using
two IMU wristbands. It should be noted that the coordinate
system (direction of x, y, and z axis) of the sensor used in
OREBA is the same as ours, allowing us to integrate this
data into the training set.

TABLE 1
Full Day Datasets Statistics

Parameter FD-I FD-II

# Participants 34 27
# Days 34 27
# Eating episodes 74 52
# Eating gestures 4,568 2,723
# Drinking gestures 1,100 -
Mean day duration (h) 7.40±2.13 9.71±3.79
Duration ratio of other : eating : drinking 142.52 : 2.51 : 1 116.43 : 1 : -

3.4 Annotation
3.4.1 Bite Annotation
Video recordings were viewed to annotate bites via ELAN
[34]. The data were labeled into 3 classes, eating gesture,
drinking gesture, and others. Three trained annotators la-
beled the datasets, with each annotator assigned to a specific
portion of the dataset. The first author rechecked the anno-
tation and made corrections when necessary. All annotators
followed the same annotation instructions.

3.4.2 Eating Episodes Annotation
After annotating all the eating/drinking gesture from all-
day data, the first eating gesture in an eating episode
signifies the beginning boundary of the eating episode, and
the last eating gesture in an eating episode is considered the
ending boundary of the episode.

In free-living environments, it is normal for people to
eat snacks outside meal sessions. However, snack eating ex-
hibits high variability compared to meal eating. Some snack
eating has frequent bites in very short duration, while other
snack eating occurs over a longer period with a very low
frequency (only one bite in several minutes). This variability
makes the detection of snack session difficult; therefore, we
focus on eating episodes that last at least 3 min. Snacking
sessions with duration less than 3 min were neglected in
this step.

3.4.3 Ground Truth Eating Speed
After annotating both eating gestures and eating episodes,
we derived the number of bites in each eating episode
and the duration of each respective eating episode. Con-
sequently, the ground truth eating speed is obtained by
computing the ratio of the number of bites in the eating
episode and the time taken to finish the episode. The unit of
eating speed is bites per minute (bite/min).

3.5 Data Preprocessing
Existing approaches in free-living environments typically
process IMU data from the dominant hand, assuming that
people only use one hand for daily food intake. However,
in real-life, both hands can be used for eating food or
drinking water, as illustrated in Fig. 2. Considering the IMU
waveform for eating with left and right hand differs, we
applied the two-hand combination method that combines
hand mirroring and temporal concatenation to process two-
hand IMU data, which was validated in our previous study
[35]. The hand mirroring method has been applied in mul-
tiple IMU-based bite detection studies when the participant
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is left hand dominant, which involves flipping the direction
of ax (in accelerometer), gy and gz (in gyroscope). The
hand-mirrored left hand IMU data were than concatenated
after right hand data. Hence, the preprocessed data have 6
channels, and the data length of each recording is doubled,
as shown in Fig. 3. Meanwhile, to reduce the computation
cost, the data were downsampled to 16 Hz.

3.6 Deep Learning Model

To explore the potential of utilizing both TCN and attention,
the proposed TCN-MHA architecture is comprised of three
parts: the TCN module using dilated convolution layer
to process multi-scale temporal patterns, the multi-head
attention (MHA) module to further focus on representative
temporal features to improve the performance, and the fully
connected network (FCN) to generate predictions, as shown
in Fig. 4.

3.6.1 TCN Module
The TCN distinguishes classical CNN by using dilated
convolutions [26]. A series of dilated convolution layers
are stacked together to compose the TCN module. Each
layer involves conv1d with a dilation factor dl = 2l−1

(1 ≤ l ≤ L), where l, L are the number of the current
layer and total layers, respectively. A residual connection is
also applied in each layer to combine the input features of
current layer and the processed features. The stacked dilated
layers increased the receptive field without substantially
increasing the number of parameters, allowing the TCN to
effectively capture long-term temporal dependencies. The
structure is shown in Fig. 4 (a). Given the input sequences
X ∈ RT×Cin , a 1 × 1 convolution layer is first applied to

adjust the dimension to T × Cm, where Cin is the input
dimension, and Cm equals to the number of kernels in each
dilated convolution layer (the number of kernels of each
conv layer is the same). After L dilated conv layers, the
output of the TCN module is X1 ∈ RT×Cm .

3.6.2 MHA Module
The MHA module is an essential component of the Trans-
former [29], showcasing considerable efficacy in capturing
relationships within time sequence signals. Before being fed
into the attention module, the positional encoding is added
to the input feature map. The attention mechanism is con-
sidered as a mapping among the query (Q = X1WQ), key
(K = X1WK ), and value (V = X1WV ), where X1 ∈ RT×din

signifies the input of the module (din = Cm), WQ,WK and
WV ∈ Rdin×dmodel , with din representing the dimension of
the output sequence from the TCN model, and dmodel de-
noting the dimension of the attention module. The formula
of the attention calculation is presented as follows:

Att(Q,K, V ) = Softmax

(
QK⊤

√
dmodel

)
V (1)

The aforementioned computation involves a singular
attention graph; however, multi-head attention employs
multiple attention graphs to further learn attention maps
across diverse aspects. The parameter h denotes the number
of heads, signifying the quantity of attention graphs in use.

MHA(Q,K, V ) = Concat(SA1, . . . , SAh)W
O

where SAi = Att(QWQ
i ,KWK

i , V WV
i )

(2)

where WO ∈ Rh·dh×dmodel , WQ
i , WK

i and WV
i ∈

Rdmodel×dh , and dh denotes the dimension of each indi-
vidual head in the attention mechanism, here we keep
dh = dmodel/h.

3.6.3 FCN Module
The output of the MHA module is fed into the final
FCN classifier block containing 2 linear layers, yielding
Y ∈ RT×Cout , where Cout is the number of classes.

3.6.4 Loss Function
The model’s loss function comprises both classification and
smoothing loss. Specifically, the classification loss is imple-
mented through a cross-entropy loss, while the smoothing
loss involves a truncated mean squared error (MSE) cal-
culated over sample-wise log-probabilities. Details on the
integrated loss function can be referenced in [27].

3.6.5 Implementation Details
The TCN-MHA model is implemented within the PyTorch
framework. Following each dilated layer, a dropout rate of
30% is applied. Based on experiments, the TCN module
is constructed with a total of 9 layers, with each layer
comprising 64 kernels. For the MHA module, 8 attention
heads are employed, with each head characterized by a
dimension of 16, resulting in a model dimension of 128
(dmodel=128). The first layer of the FCN has 64 neurons
with ReLU activation, the last layer contains 3 neurons with
Softmax activation. For model training, an Adam optimizer
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Fig. 4. The architecture of the proposed TCN-MHA model. Figure (a) shows the overall architecture of the model. The processed IMU data are first
fed into the TCN module, followed by further processing of the TCN module’s output through the Attention block. Finally, the FCN block is applied to
process the output of the attention block to generate predictions. Figure (b) represents the architecture of TCN module. The architecture of attention
block is illustrated in Figure (c). Figure (d) explains the mechanism of the multi-head attention module. dl signifies the dilated factor, where l denotes
the layer order, L represents the total number of TCN layers, h represents the number of attention heads.

is utilized with a learning rate set to 0.0005. It is important to
note that the model exhibits a temporal lag in its predictions
due to its non-causal nature. This temporal delay can be
quantified by dividing half of the receptive field by the
sampling frequency (0.5×1023/16=32s). The window length
of input data is set to 60 s accordingly.

All experiments for training, validation, and testing were
carried out on a computational node equipped with an Intel
18-core Xeon Gold 6140 CPUs@2.3 GHz (Skylake) with 5 GB
RAM per core, and two NVIDIA P100-SXM2-16 GB GPUs
provided by Vlaams Supercomputer Centrum (VSC) 4.

3.7 Bite Detection

The argmax is applied on the probability sequence gen-
erated by the TCN-MHA model to yield point-wise pre-
dictions. In order to mitigate the impact of noise in the
predictions, adjacent bites intervals with identical values
that are within 0.5 s are consolidated. After that, bites with
duration less than 1 s are excluded. Subsequently, we obtain
a set of detected bites B = {b1, b2, ...bN}, where each bi
corresponds to the interval [tli, t

r
i ] (1 ≤ i ≤ N ) representing

the left and right temporal boundaries of the i-th bite, N
denotes the total number of detected bites. It should be
noted that the value of the interval distinguishes the type
of bite (Eating: 1, Drinking: 2).

4. See https://www.vscentrum.be/
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Fig. 5. The DBSCAN clustering example for eating episode detection.

3.8 Eating Episode Detection

In bite detection step, to achieve data uniformity, the data
from the left hand is hand mirrored and then temporally
concatenated after right hand data. Prior to meal session
detection, the output data is divided into to two sub-
sequences (left hand and right hand), then an OR operation
is applied to integrate bites from both hands. As eating
episodes mainly involves eating gestures, all detected drink-
ing gestures are removed in this step.

The predicted bite sequence is then clustered by 1D
density-based spatial clustering of applications with noise
algorithm (1D-DBSCAN) [25] to compose eating episodes.
The DBSCAN identifies clusters based on the density of
points. The function sklearn.cluster.DBSCAN is employed
with an epsilon parameter set to 3 min and a minimum
samples parameter set to 5. In our case, the distance be-
tween two bites is the temporal proximity between the bites.
Subsequently, sparse bites are filtered as noise, while bites
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Fig. 6. Examples of segment-wise evaluation. When the evaluated class
is drinking gesture, eating gestures are categorized as other, and vice
versa.

sequence with high density are clustered together to com-
pose eating episodes, as shown in Fig. 5. After clustering, we
follow the same operations in [6], [36] to merge very close
eating episodes and remove very short episodes. Specifi-
cally, if the distance between two eating episodes is less than
3 min, they are merged into one episode. Additionally, if the
duration of the episode is less than 3 min after merging,
the eating episode is removed. Finally, we obtain a set of
detected eating episode M = {m1,m2, ...mZ}, where each
mj corresponds to the interval [tlj , t

r
j ] (1 ≤ j ≤ Z) that

corresponds the left and right boundaries of j-th eating
episode, Z denotes the total number of detected eating
episodes.

3.9 Eating Speed Estimation
After yielding eating episodes from the previous step, eating
speeds are obtained by utilizing the previously detected bite
set B and the eating episode set M. The eating episode
detection algorithm predicts the start point tlj and end
point trj of the j-th eating episode. If the detected bite bi
falls within the interval of the eating episode, this bite is
considered to belong to that eating episode. At the end,
the number of bites divided by the duration of the eating
episode gives the eating speed.

4 EVALUATION AND EXPERIMENT

4.1 Evaluation Criteria
4.1.1 Evaluation on Bite Detection
The output of the proposed seq2seq model is point-wise
multi-class prediction. As bite-related datasets are normally
unbalanced, we choose to use the index Cohen Kappa [37]
to represent the performance of point-wise classification.
Although such results can indicate the performance of the
model, it should be noted that the purpose of bite detection
is to count the number of bites, whereas point-wise results
are unable to reveal such information. To address this issue,
we use a segment-wise evaluation method to evaluate the
bite detection, which has been applied in previous study
[12]. Fig. 6 shows examples of this evaluation. The eval-
uation method involves two steps. Firstly, the intersection
over union (IoU) between each predicted bite and ground
truth bite is calculated, as shown in Fig. 6 C1-C3. Secondly,
the calculated IoU is compared to a selected threshold k to
determine segment-wise true positive (TP), false negative
(FN) and false positive (FP). Subsequently, the segmental
F1-score is calculated for each class (eating and drinking).

The segment-wise evaluation scheme allows for short
temporal shifts between ground truth and prediction, which
maybe caused by annotation variability. Meanwhile, it fur-
nishes straightforward information including the number
of detected bites. Furthermore, by adjusting the threshold k,
we can evaluate not only the detection performance, but also
the segmentation performance. In this study, two thresholds
are selected as 0.1 and 0.5.

4.1.2 Evaluation on Eating Episode Detection

The evaluation of eating episode detection mainly focuses
on two aspects, specifically, the detection performance (how
many eating episodes are detected), and the segmenta-
tion performance (how well the boundaries of each eat-
ing episode are determined). Therefore, the aforementioned
segment-wise evaluation method is also used for eating
episode detection (k = 0.5). Additionally, for each predicted
eating episode, we utilize the IoU score to evaluate the
segmentation performance.

4.1.3 Evaluation on Eating Speed Estimation

The mean absolute percentage error (MAPE) is used to
evaluate the deviation between the estimated speed and the
ground truth speed.

MAPE =
1

z

z∑
i=1

∣∣∣∣ ŝi − si
si

∣∣∣∣× 100% (3)

where z is the total number of truly detected meals (TP),
ŝi and si represent the estimated eating speed and ground
truth eating speed, respectively.

For statistical quantitative analysis, the Pearson correla-
tion coefficient (PCC) is also calculated to assess the corre-
lation of the predicted eating speed with the ground truth
objectively.

PCC =

∑z
i=1(si − s̄)(ŝi − ¯̂s)√∑z

i=1(si − s̄)2 ·
∑z

i=1(ŝi − ¯̂s)2
(4)

where s̄ and ¯̂s represent the mean value of the ground truth
speed and estimated speed, respectively. It should be noted
that the MAPE and PCC are only calculated among eating
speeds of successfully detected eating episodes.

4.2 Models for Benchmarking

To evaluate the efficacy of the proposed method, exist-
ing models for bite detection were chosen as comparative
benchmarks. Specifically, the CNN-LSTM [6], ResNet-LSTM
[21], and MS-TCN [32] were chosen. Additionally, the bidi-
rectional type of LSTM layer (BiLSTM) was used to replace
the LSTM layer to compose the CNN-BiLSTM and ResNet-
BiLSTM models as extra models. All of these models can
learn temporal context from time-series input data and have
demonstrated their capability in human activity recognition.
It should be noted that the output of these models are point-
wise probabilities.
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Fig. 7. The scatter plot for eating speed on FD-I dataset.
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Fig. 8. The bar plot for eating speed on FD-I dataset.

5 EXPERIMENTAL RESULTS

5.1 Experiments on FD-I Dataset

5.1.1 Bite Detection

The bite detection in free-living settings was tested on FD-
I dataset. The 7-fold cross validation was used on FD-I
dataset. The split of this dataset was on participant-level
to avoid information leakage between the train set and
test set. As mentioned in Section III-C, the FD-I dataset
is highly unbalanced, hence, the MO and OREBA datasets
were included as part of the training set. Results are shown
in Table 2. For point-wise results, TCN-MHA obtained the
highest kappa score (0.735). For segment-wise results, the
TCN-MHA also achieved the highest F1-score for eating
with the value of 0.849 and 0.781, for k = 0.1 and k = 0.5,
respectively. However, MS-TCN yielded a higher F1-score
for drinking compared to TCN-MHA (0.906→0.902, for
k = 0.1).

5.1.2 Eating Episode Detection

The predicted bite sequences from previous step were clus-
tered into eating episodes using the DBSCAN-based algo-
rithm. The results of eating episodes detection are shown

TABLE 2
Bite Detection Performance on FD-I Dataset

Data Model Point-wise Segmental Eating F1-score Segmental Drinking F1-score
Kappa k = 0.1 k = 0.5 k = 0.1 k = 0.5

FD-I

CNN-LSTM 0.557 0.738 0.583 0.811 0.619
CNN-BiLSTM 0.666 0.788 0.694 0.859 0.762
ResNet-LSTM 0.630 0.753 0.626 0.791 0.682
ResNet-BiLSTM 0.704 0.790 0.701 0.849 0.779
MS-TCN 0.702 0.824 0.761 0.906 0.853
TCN-MHA 0.735 0.849 0.781 0.902 0.858

in Table 3. Among the 74 ground truth eating episodes, the
TCN-MHA successfully detected 64 sessions with a mean
IoU of 0.899.

5.1.3 Eating Speed
For eating speed estimation, the MAPE and PCC are shown
in Table 3. The TCN-MHA model had the least MAPE of
0.110; the highest PCC value of 0.925. The scatter plots are
drawn to graphically demonstrate the correlation between
predicted and ground truth eating speed in the FD-I dataset
(Fig. 7). Most eating episodes had an eating speed falling
into the range of 2-6 bite/min. Additionally, the result for
each individual episode on TCN-MHA model has been
shown in Fig. 8.

5.2 Experiments on FD-II Dataset
To further validate the proposed method on eating speed
measurement, the FD-II was used as the hold-out dataset.
We utilized two in-meal datasets (OREBA, MO) and the FD-
I dataset to train our model, then used the entire FD-II as
the test set. It should be noted that we were only able to
measure the eating speed during meal sessions, as we lack

TABLE 3
Eating Episode Detection and Eating Speed Performance on FD-I

Dataset.

Data Model Eating Episodes Detection Eating Speed
TP FP FN F1 IoU MAPE PCC

FD-I

CNN-LSTM 60 0 14 0.896 0.900 0.238 0.696
CNN-BiLSTM 63 1 11 0.913 0.895 0.202 0.789
ResNet-LSTM 65 6 9 0.897 0.863 0.197 0.782
ResNet-BiLSTM 64 6 10 0.889 0.864 0.155 0.829
MS-TCN 62 0 12 0.912 0.881 0.151 0.827
TCN-MHA 64 0 10 0.928 0.899 0.110 0.925
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TABLE 4
In-meal Bite Detection, Eating Episode Detection and Eating Speed Performance on FD-II Dataset

Data Model Eating Gesture F1-scorea Eating Episodes Detection Eating Speed
k = 0.1 k = 0.5 TP FP FN F1 IoU MAPE PCC

FD-II

CNN-LSTM 0.731 0.555 43 53 9 0.581 0.746 0.231 0.683
CNN-BiLSTM 0.783 0.622 47 35 5 0.701 0.786 0.173 0.860
ResNet-LSTM 0.752 0.584 48 42 4 0.676 0.809 0.201 0.780
ResNet-BiLSTM 0.798 0.650 49 26 4 0.766 0.827 0.142 0.910

(Hold-out) MS-TCN 0.814 0.636 47 22 5 0.777 0.831 0.155 0.886
TCN-MHA 0.820 0.651 48 7 4 0.897 0.841 0.146 0.924

a The eating segmental F1-scores in FD-II dataset only show the results of bite detection in meal sessions. Eating
gestures from the outside of meals are not labelled, hence is unable to be evaluated.
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Fig. 9. The scatter plot for eating speed on FD-II dataset.

labels for out-of-meal sessions. Hence, we did not evaluate
the predicted snack sessions (eating episodes with duration
less than 7 min). The performance of in-meal bite detection,
meal detection, and speed measurement are shown in Table
4. For in-meal bite detection, the TCN-MHA model yielded
the highest segmental F1-score with 0.820 when k = 0.1. The
TCN-MHA obtained the best performance in meal detec-
tion, which successfully detected 48 meal sessions (7 FPs, 4
FNs), with an F1-score of 0.897 and a mean IoU of 0.841. For
eating speed measurement, the TCN-MHA had the MAPE
of 0.146 and the PCC of 0.924. The ResNet-BiLSTM had the
highest number of TP meals, however the number of FPs
was also higher than that of the TCN-MHA. Scatter plots to
show the deviation between predicted and true eating speed
(only for meal sessions) in the FD-II dataset are shown in
Fig. 9.

6 DISCUSSION

In this study, we first tested several models on free-living
datasets (FD-I and FD-II) for bite detection. Results from
Table 2 show that bite detection in free-living environments
is feasible. Meanwhile, Table 3 also indicates a tendency for
models to overlook certain eating episodes, as evidenced by
a higher number of FNs compared to FPs. Upon comparing
the output and the annotation video, we found that FNs
are mainly from snack sessions, implying that the clustering
of snack sessions is more challenging than detecting meals.
One reason is that the eating patterns of snacking can vary
widely in terms of frequency and duration, making it dif-
ficult to cluster all snacking gestures into specific episodes.
Other eating episode detection studies also suffer from this
[10], [38].

When comparing our work to prior studies on food
intake monitoring in free-living environments (as shown in
Table 5), the dataset exhibits a comparable size to others,

except for the dataset used by Sharma et al. [10], [44], which
is substantially larger than the rest. However, it’s worth
noting that existing free-living datasets mainly focus on
eating episode detection, which only requires labeling the
starting and ending times of eating episodes. In contrast, our
data for eating speed measurement requires bite-level anno-
tation, which demands additional efforts for data collection
and annotation. The detection granularity of this study is
shown in Fig. 10. Meanwhile, compared to eyeglass-based
and necklace based approaches focusing on mouth-throat
movements for food intake monitoring, one limitation of
wristband-based approach is that we need to wear IMUs
on both hands. Wearing the IMU only on the dominant
hand may lead to the omission of some eating or drinking
gestures in free-living environments, as illustrated in Fig. 2.
However, the advantage of the wrist-worn IMU sensor lies
in its wide integration into smartwatch products, making it
more readily accepted by users compared to other solutions.
Table 5 can also show the prevalence of wrist-worn IMU.

In food intake monitoring, several wrist-worn IMU
based bite detection datasets have been published, however,
they are only used separately to benchmark performance
of different models. In this study, we examined the fea-
sibility of combining different datasets for training. When
performing bite detection on the FD-I dataset, our own
MO dataset and the external public OREBA dataset were
included as part of training set. This is the first attempt
to integrate different datasets for food intake monitoring,
resulting in a 0.7% increase of F1-score in bite detection,
3.4% increase of PCC in eating speed detection. However, it
is important to note that the prerequisite of this integration
is that the coordinates of the IMU sensors used in both
datasets are the same. The coordinates of IMU in OREBA
datasets were adjusted to make sure the orientation of x, y,
z axis of the two datasets were consistent (ours is depicted
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TABLE 5
Existing studies on Food Intake Monitoring in Free-living Environment

Work Positiona Sensorb # Participants # Days # Hours Eating Episode Bite annotation Eating
detection & detectionc speed

Dong et al. (2014) [39] P1 S1 43 43 449 ✓ - -
Fontana et al. (2014) [40] P1, P2, P3 S2, S3, S4 12 12 - ✓ - -
Thomaz et al. (2015) [41] P1 S1 8 37 - ✓ - -
Mirtchouk et al. (2017) [38] P1, P2, P4 S1, S5 11 25 257 ✓ - -
Bedri et al. (2017) [36] P2, P5 S1, S5, S6 10 - 45 ✓ - -
Sen et al. (2018) [42] P1 S1, S7 9 - 52 ✓ - -
Schiboni et al. (2018) [43] P1 S1 7 35 345 - ✓ -
Sharma et al. (2020) [10], [44] P1 S1 351 351 4,068 ✓ - -
Doulah et al. (2020) [11] P4 S2, S7, S8 30 60 - ✓ - -
Zhang et al. (2020) [24] P5 S1, S6, S9 20 - 271 ✓ - -
Bedri et al. (2020) [23] P4 S1, S6, S7 23 8 91 ✓ ✓ -
Kyrtisis et al. (2020) [6] P1 S1 12 12 113 ✓ - -
Ours P1 S1 61 61 513 ✓ ✓ ✓

a P1: Wrist, P2: Ear, P3: Chest, P4: Head, P5: Neck.
b S1: IMU, S2: Accelerometer, S3: Piezo, S4: RF, S5: Microphones, S6: Proximity, S7: Camera, S8: Flex, S9: Light.
c It should be noted that some approaches use in-meal datasets to train the model to detect bite, then use the trained model to process

free-living datasets, but these free-living datasets do not contain bite-level label, so they are considered no bite detection & evaluation in
free-living scenarios.

(min)

(s)

Prediction:  1: Eating
2: Drinking

Acc-Y
Acc-X

Acc-Z

GT Eating
GT Drinking

Left Hand Bite Detection

(min)

Right Hand Bite Detection

(min)

GT Meal
Predicted MealMeal Detection

Fig. 10. The 2 h IMU data segment from both hands and the corresponding bite and meal detection examples. Additionally, a 2-min in-meal segment
is also selected to show the detailed bite detection.

in Fig. 1). Meanwhile, the two-hand combination method
also facilitates the training of multiple datasets, as it allows
one-hand datasets and two-hands datasets. Specifically, to
handle data from both hands in free-living environments,
we applied the hand mirroring + temporal concatenation
method to combine IMU data from two hands. This solution
also remains flexibility to process data from single hand
IMU.

To assess the model’s complexity, the number of pa-
rameters for each model and their floating point operations
(FLOPs) are indicated in Table 6. The number of parameters
in ResNet-(Bi)LSTM-based models were significantly larger
than CNN-LSTM (0.134 M) and TCN-MHA models (0.203

M). Additionally, a test was carried out to assess the latency
for processing 1 min data using the TCN-MHA model.
Utilizing a laptop equipped with an Intel Core i7 10750 CPU
@2.6 GB, 6 cores (no GPU configuration), the TCN-MHA
required 37.61 ms to generate predictions.

The proposed wrist-worn IMU-based approach has the
potential to replace the questionnaire-based eating speed
surveys in nutrition studies, which offers more accurate
quantitative results, thereby advancing the analysis of the
correlation between eating speed and obesity-related prob-
lems. Additionally, such an eating behavior-related digital
biomarker can be applied to individuals interested in doc-
umenting their daily dietary habits for long-term dietary
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Fig. 11. The minute-level eating speed distribution from one participant in FD-I dataset.

TABLE 6
Model Complexity

Model #Paras (M) # FLOPs (G)

CNN-LSTM 0.134 0.129
CNN-BiLSTM 0.241 0.233
ResNet-LSTM 3.078 2.955
ResNet-BiLSTM 3.415 3.280
MS-TCN 0.298 0.284
TCN-MHA 0.203 0.194

TABLE 7
Minute-level Eating Speed

Model FD-I FD-II
MAPE PCC MAPE PCC

CNN-LSTM 0.256 0.702 0.304 0.650
CNN-BiLSTM 0.221 0.781 0.272 0.758
ResNet-LSTM 0.246 0.747 0.326 0.710
ResNet-BiLSTM 0.219 0.793 0.273 0.797
MS-TCN 0.184 0.805 0.224 0.816
TCN-MHA 0.181 0.840 0.212 0.834

health assessment.
This study mainly focus on eating speed measurement

for each eating episode, resulting in an averaged speed per
episode, which is a well-accepted definition. Additionally,
we also explored the feasibility of measuring minute-level
eating speed. To achieve this, the number of detected bites
in each minute is considered as minute-level eating speed.
Fig. 11 shows the minute-level eating speed distribution
through one day. Results are shown in Table 7. The TCN-
MHA had the MAPE of 0.181 and the PCC of 0.840 on FD-I,
and had the MAPE of 0.212 and the PCC of 0.834 on FD-
II. The meal-level eating speed represents a holistic view
of an eating session, whereas minute-level speed provides
insights into eating patterns at a more granular level and
is suitable for studying immediate speed changes during
a meal. On the other hand, the performance of minute-
level speed detection (Table 7) implies that the minute-level
eating speed detection is more challenging compared to
meal-level speed detection.

This research utilized IMU wristband to measure eating
speed in free-living environment. The results were promis-
ing, however, it should be noted that the proposed method
were based on off-line processing. To maximize its appli-
cation scenarios, it is worthwhile to exploit the feasibility of
implementing this method to smartwatch-smartphone setup
for daily eating speed monitoring. Another limitation is that
obtaining fine-annotated ground truth data is troublesome.
In our approach, research assistants had to follow partic-

ipants activities to record videos. Existing wearable-based
cameras [13] can be used for recording to minimize the
effort in future study. Furthermore, to quantify the actual
food intake, the wearable IMU system has the potential to
be combined with the smart plate [16] and the smart snack
box [45] to estimate the calorie intake in real life.

7 CONCLUSION

In this work, we presented a comprehensive framework
for automated measurement of eating speed in free-living
environments. To the best of our knowledge, this is the first
of its kind. This framework has the potential to extend the
application scope of the automated food intake monitoring
field. The framework mainly relies on two essential parts:
bite detection and eating episode detection in free-living
environments. The success of bite detection paves the way
for eating episode detection and segmentation, resulting in a
good capability for eating speed measurement. The hold-out
experiments further underscore its robustness in meal-level
eating speed detection.

ACKNOWLEDGMENT

The authors thank the participants involved in the experi-
ments for their dedicated contributions of time and effort.

REFERENCES

[1] E. Kolay et al., “Self-reported eating speed is associated with
indicators of obesity in adults: A systematic review and meta-
analysis,” Healthc., vol. 9, no. 11, pp. 1–18, 2021.

[2] S. Sasaki, A. Katagiri, T. Tsuji, T. Shimoda, and K. Amano, “Self-
reported rate of eating correlates with body mass index in 18-y-old
Japanese women,” Int. J. Obes., vol. 27, no. 11, pp. 1405–1410, 2003.

[3] A. Kudo et al., “Fast eating is a strong risk factor for new-onset
diabetes among the Japanese general population,” Sci. Rep., vol. 9,
no. 1, pp. 1–8, Dec. 2019.

[4] P. Fagerberg et al., “Fast eating is associated with increased bmi
among high-school students,” Nutrients, vol. 13, no. 3, pp. 1–19,
2021.

[5] E. Woodward, J. Haszard, A. Worsfold, and B. Venn, “Comparison
of self-reported speed of eating with an objective measure of
eating rate,” Nutrients, vol. 12, no. 3, pp. 18–24, 2020.

[6] K. Kyritsis, C. Diou, and A. Delopoulos, “A data driven end-to-
end approach for in-the-wild monitoring of eating behavior using
smartwatches,” IEEE J. Biomed. Heal. Informatics, vol. 25, no. 1, pp.
22–34, 2020.

[7] J. Qiu, F. P. W. Lo, S. Jiang, Y. Y. Tsai, Y. Sun, and B. Lo, “Counting
bites and recognizing consumed food from videos for passive
dietary monitoring,” IEEE J. Biomed. Heal. Informatics, vol. 25, no.
5, pp. 1471–1482, 2021.

[8] K. S. Lee, “Joint audio-ultrasound food recognition for noisy
environments,” IEEE J. Biomed. Heal. Informatics, vol. 24, no. 5, pp.
1477–1489, 2020.



12

[9] M. Tufano, M. Lasschuijt, A. Chauhan, E. J. M. Feskens, and
G. Camps, “Capturing eating behavior from video analysis: A
systematic review,” Nutrients, vol. 14, no. 22. pp. 1–14, 2022.

[10] S. Sharma and A. Hoover, “Top-Down detection of eating episodes
by analyzing large windows of wrist motion using a convolutional
neural network,” Bioengineering, vol. 9, no. 2, pp. 20–23, 2022.

[11] A. Doulah, T. Ghosh, D. Hossain, M. H. Imtiaz, and E. Sazonov,
“‘Automatic ingestion monitor version 2’ - A novel wearable
device for automatic food intake detection and passive capture
of food images,” IEEE J. Biomed. Heal. Informatics, vol. 25, no. 2, pp.
568–576, 2021.

[12] C. Wang, T. S. Kumar, W. De Raedt, G. Camps, H. Hallez, and B.
Vanrumste, “Eat-Radar: Continuous Fine-Grained Intake Gesture
Detection Using FMCW Radar and 3D Temporal Convolutional
Network with Attention,” IEEE J. Biomed. Heal. Informatics, doi:
10.1109/JBHI.2023.3339703.

[13] N. Alshurafa, S. Zhang, C. Romano, H. Zhang, A. F. Pfammatter,
and A. W. Lin, “Association of number of bites and eating speed
with energy intake: Wearable technology results under free-living
conditions,” Appetite, vol. 167, no. September 2020, p. 105653, 2021.

[14] P. V. Rouast and M. T. P. Adam, “Learning deep representations
for video-based intake gesture detection,” IEEE J. Biomed. Heal.
Informatics, vol. 24, no. 6, pp. 1727–1737, 2020.

[15] C. Wang, T. S. Kumar, G. Markvoort, H. Hallez, and B. Van-
rumste, “Eating activity monitoring in home environments us-
ing smartphone-based video recordings,” in 2022 International
Conference on Digital Image Computing: Techniques and Applications
(DICTA), 2022, pp. 1–5.

[16] G. Mertes, L. Ding, W. Chen, H. Hallez, J. Jia, and B. Vanrumste,
“Measuring and localizing individual bites using a sensor aug-
mented plate during unrestricted eating for the aging population,”
IEEE J. Biomed. Heal. Informatics, vol. 24, no. 5, pp. 1509–1518, 2020.

[17] V. Papapanagiotou, C. Diou, L. Zhou, J. Van Den Boer, M. Mars,
and A. Delopoulos, “A novel chewing detection system based on
PPG, audio, and accelerometry,” IEEE J. Biomed. Heal. Informatics,
vol. 21, no. 3, pp. 607–618, 2017.

[18] R. Zhang, S. Bernhart, and O. Amft, “Diet eyeglasses: Recognising
food chewing using EMG and smart eyeglasses,” in BSN 2016 -
13th Annual Body Sensor Networks Conference, 2016, pp. 7–12.

[19] Y. Dong, A. Hoover, J. Scisco, and E. Muth, “A new method
for measuring meal intake in humans via automated wrist mo-
tion tracking,” Appl. Psychophysiol. Biofeedback, vol. 37, no. 3, pp.
205–215, 2012.

[20] Y. Shen, J. Salley, E. Muth, and A. Hoover, “Assessing the accuracy
of a wrist motion tracking method for counting bites across
demographic and food variables,” IEEE J. Biomed. Heal. Informatics,
vol. 21, no. 3, pp. 599–606, 2017.

[21] P. V. Rouast and M. T. P. Adam, “Single-stage intake gesture
detection using CTC loss and extended prefix beam search,” IEEE
J. Biomed. Heal. Informatics, vol. 25, no. 7, pp. 2733–2743, 2021.

[22] B. Wei, S. Zhang, X. Diao, Q. Xu, Y. Gao, and N. Alshurafa, “An
end-to-end energy-efficient approach for intake detection with low
inference time using wrist-worn sensor,” IEEE J. Biomed. Heal.
Informatics, vol. 27, no. 8, pp. 3878–3888, 2023.

[23] A. Bedri, D. Li, R. Khurana, K. Bhuwalka, and M. Goel, “FitByte:
Automatic diet monitoring in unconstrained situations using mul-
timodal sensing on eyeglasses,” in the CHI Conference on Human
Factors in Computing Systems, 2020, pp. 1–12.

[24] S. Zhang et al., “NeckSense: A multi-sensor necklace for detecting
eating activities in free-living conditions,” Proc. ACM Interactive,
Mobile, Wearable Ubiquitous Technol., vol. 4, no. 2, 2020, pp. 1–26.

[25] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proc. 2nd Int. Conf. Knowl. Discovery Data Mining, Port-
land, OR, USA, Aug. 1996, pp. 226–231.

[26] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager,
“Temporal convolutional networks for action segmentation and
detection,” In Proc. 30th IEEE Conf. Comput. Vis. Pattern Recognition
(CVPR), 2017, pp. 1003–1012.

[27] Y. A. Farha and J. Gall, “MS-TCN: Multi-stage temporal convolu-
tional network for action segmentation,” In Proc. 32th IEEE Conf.
Comput. Vis. Pattern Recognition (CVPR), 2019, pp. 3570–3579.

[28] B. Filtjens, B. Vanrumste, and P. Slaets, “Skeleton-based action
segmentation with convolutional neural networks,” IEEE Trans.
Emerg. Top. Comput., vol. PP, pp. 1–11, 2022.

[29] A. Vaswani et al., “Attention is all you need,” in Proc. Neural Inf.
Process. Syst. (NIPS), Long Beach, CA, USA, vol. 30, 2017, pp. 1–11.

[30] Y. Luo, J. Li, K. He, and W. Cheuk, “A hierarchical attention-based
method for sleep staging using movement and cardiopulmonary
signals,” IEEE J. Biomed. Heal. Informatics, vol. 27, no. 3, pp.
1354–1363, 2022.

[31] S. P. Singh, M. K. Sharma, A. Lay-Ekuakille, D. Gangwar, and S.
Gupta, “Deep convLSTM with self-attention for human activity
decoding using wearable sensors,” IEEE Sens. J., vol. 21, no. 6, pp.
8575–8582, 2021.

[32] C. Wang, T. S. Kumar, W. De Raedt, G. Camps, H. Hallez, and
B. Vanrumste, ”Drinking gesture detection using wrist-worn IMU
sensors with multi-stage temporal convolutional network in free-
living environments,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. (EMBC), 2022, pp. 1778–1782.

[33] P. V. Rouast, H. Heydarian, M. T. P. Adam, and M. E. Rollo,
“OREBA: A dataset for objectively recognizing eating behavior
and associated intake,” IEEE Access, vol. 8, pp. 181955–181963,
2020.

[34] H. Sloetjes and P. Wittenburg, “Annotation by category - ELAN
and ISO DCR,” In Proc. 6th Int. Conf. Lang. Resour. Eval. Lr., 2008,
pp. 816–820.

[35] C. Wang et al., “Intake Gesture Detection With IMU Sensor in Free-
Living Environments: The Effects of Measuring Two-Hand Intake
and Down-Sampling,” in 2023 IEEE 19th International Conference
on Body Sensor Networks (BSN), 2023, pp. 1–4.

[36] A. Bedri et al., “EarBit: Using wearable sensors to detect eating
episodes in unconstrained environments,” Proc. ACM Interactive,
Mobile, Wearable Ubiquitous Technol., vol. 1, no. 3, 2017, pp. 1–20.

[37] J. Cohen, “A coefficient of agreement for nominal scales,” Educ.
Psychol. Meas., vol. 20, no. 1, pp. 37–46, 1960.

[38] M. Mirtchouk, D. Lustig, A. Smith, I. Ching, M. Zheng, and S.
Kleinberg, “Recognizing eating from body-worn sensors: Combin-
ing free-living and laboratory data,” Proc. ACM Interactive, Mobile,
Wearable Ubiquitous Technol., vol. 1, no. 3, 2017, pp. 1–20.

[39] Y. Dong, J. Scisco, M. Wilson, E. Muth, and A. Hoover, “Detecting
periods of eating during free-living by tracking wrist motion,”
IEEE J. Biomed. Heal. Informatics, vol. 18, no. 4, pp. 1253–1260, 2014.

[40] J. M. Fontana, M. Farooq, and E. Sazonov, “Automatic ingestion
monitor: A novel wearable device for monitoring of ingestive
behavior,” IEEE Trans. Biomed. Eng., vol. 61, no. 6, pp. 1772–1779,
2014.

[41] E. Thomaz, I. Essa, and G. D. Abowd, “A practical approach for
recognizing eating moments with wrist-mounted inertial sensing,”
UbiComp 2015 - Proc. 2015 ACM Int. Jt. Conf. Pervasive Ubiquitous
Comput., 2015, pp. 1029–1040.

[42] S. Sen, V. Subbaraju, A. Misra, R. Balan, and Y. Lee, “Annapurna:
Building a real-world smartwatch-based automated food journal,”
19th IEEE Int. Symp. a World Wireless, Mob. Multimed. Networks,
WoWMoM 2018, 2018, pp. 1–6.

[43] G. Schiboni and O. Amft, “Sparse natural gesture spotting in free
living to monitor drinking with wrist-worn inertial sensors,” Proc.
Int. Symp. Wearable Comput. ISWC, 2018, pp. 140–147.

[44] S. Sharma, P. Jasper, E. Muth, and A. Hoover, “The impact of
walking and resting on wrist motion for automated detection of
meals,” ACM Trans. Comput. Healthc., vol. 1, no. 4, 2020, pp. 1-19.

[45] F. J. de Gooijer, A. van Kraaij, J. Fabius, S. Hermsen, E. J. M. Fes-
kens, and G. Camps, “Assessing snacking and drinking behavior
in real-life settings: Validation of the SnackBox technology,” Food
Qual. Prefer., vol. 112, no. May, p. 105002, 2023.


	Introduction
	Related work
	Bite Detection
	Eating Episodes Detection
	Eating Speed Estimation
	Temporal Sequence Models
	TCN
	Self-Attention


	Methods
	Sensors
	Full-Day Data Collection
	FD-I Dataset
	FD-II Dataset

	Datasets for Training-Only
	Meal-Only Dataset
	Public OREBA Dataset

	Annotation
	Bite Annotation
	Eating Episodes Annotation
	Ground Truth Eating Speed

	Data Preprocessing
	Deep Learning Model
	TCN Module
	MHA Module
	FCN Module
	Loss Function
	Implementation Details

	Bite Detection
	Eating Episode Detection
	Eating Speed Estimation

	Evaluation and Experiment
	Evaluation Criteria
	Evaluation on Bite Detection
	Evaluation on Eating Episode Detection
	Evaluation on Eating Speed Estimation

	Models for Benchmarking

	Experimental Results
	Experiments on FD-I Dataset
	Bite Detection
	Eating Episode Detection
	Eating Speed

	Experiments on FD-II Dataset

	Discussion
	Conclusion
	References

