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Abstract—Packaging applications in containers and managing
them dynamically using a cluster orchestrator is the de-facto
approach for deployment of cloud-native applications. When
containers run inside virtual machines (VMs) to protect infras-
tructural assets, network policies (NPs) at the container layer and
security groups (SGs) at the VM layer provide complementary
firewall mechanisms that strengthen defenses against lateral
movement of attackers. However, least-privilege NPs at the
container layer may not always be consistent with statically
defined, over-permissive SGs at the VM layer. This is especially a
problem with low-latency configuration of container networking
solutions that requires every opened container protocol, port
and traffic direction also to be opened at the VM layer. In any
post-exploitation scenario where attackers escape from within an
already compromised or infected container, such over-permissive
SGs do not prevent the attacker from spreading across VMs to
find powerful tokens for accessing the cluster orchestrator. In
this paper, we introduce GrassHopper (GH), a fast and dynamic
cross-layer enforcement approach for NPs, which automatically
generates SG configurations from dynamically verified NPs.
Given the low-latency context, the design of GH must ensure
that dynamically generated SG rules are applied fast before the
newly scheduled containers become ready to serve traffic. We
evaluate GH on a Kubernetes cluster running on OpenStack.
For a wide range of relevant low-latency applications and cluster
setups, GH can reduce the network attack surface between
VMs at a ratio of 75-t0-99% while causing no application level
performance overhead with respect to latency, throughput, and
CPU utilization.

Index Terms—container orchestration, kubernetes, network
isolation, network policies, security groups

I. INTRODUCTION

Containerization and edge computing are vital to support
ultra-low-latency and ultra-high-reliability applications such as
vehicle-to-everything (V2X) or remote surgery [1]. While edge
computing effectuates lower latencies and increased connectiv-
ity for applications, containers allow for compartmentalization
as well as scalable and fast deployment of microservices.
Unlike virtual machines (VMs), containers are lightweight and
highly portable. However, to provide defense-in-depth for such
applications, containers typically run inside VMs to protect
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not only the application workloads but also the infrastructural
assets of edge and cloud providers.

Container-based network policies (NPs) can be used to
restrict communication between containers according to the
principle of least-privilege [2]. At the VM level, connectiviy
is usually configured using security groups (SGs) that are
attached to VM nodes and govern communication with other
groups. It is desirable to also configure SGs according to
the least-privilege principle in order to prevent unnecessary
network attack surface between VMs. Indeed, without such
measures, in the event of a container escape [3], [4], an
attacker may move laterally across worker nodes and, e.g.,
obtain API tokens stored in these VMs that give the attacker
access to the API of the control plane of the cluster [5].

The common way to configure the VM network for a
container orchestrator like Kubernetes (K8s) is to only open
those ports and protocols that are required for having an
operational container network and cluster control plane, which
reduces the attack surface sufficiently. However, opening only
such discrete ports is not a feasible solution for low-latency
applications which require container network plugins to be
configured without use of network packet encapsulation [6]. In
such low-latency network configuration, which works within a
single Layer 3 subnet, the original IP packets of the containers
are directly sent via the Layer 2 protocol of the VM network,
and therefore, a static SG would need to allow all ports and
transport protocols that could be used by containers on all the
VMs all the time. This leads to an unnecessarily large network
attack surface for malicious actors. In fact, a truly least-
privilege solution would only open connections between VM
nodes if they host containers that require these connections
according to their NPs.

In this paper, we introduce GrassHopper (GH), a solution
for cross-layer enforcement of NPs in response to dynamic
container scheduling. When a new container, say p, is being
scheduled on a VM, say N, GH retrieves on-the-fly verified
NPs applicable to p and then automatically generates a con-
sistent and least-privilege set of SG rules for VM N so that



N may only communicate with VMs that run containers for
which communication with p is allowed, and only using the
specified traffic direction, ports, and protocols. When an NP is
added, GH dynamically verifies this NP and then consistently
enforces it upon all deployed VMs.

This mechanism strengthens isolation between containers,
micro-services, and applications that are hosted on the same
cluster but do not need to communicate with each other, e.g.,
due to program logic or because they belong to different
tenants. Traditionally, such an isolation could be achieved by
assigning workloads of different tenants to statically isolated
groups of nodes container placement rules. Our solution, in
contrast, automatically and dynamically enforces VM network
isolation as defined by NPs on the container orchestration
level. As such, it enables better resource utilization and
relieves the cloud administrator from the error-prone, manual
process of defining static SG rules.

The dynamic SG management by GH involves time-
consuming SG operations, e.g., the creation of a SG, addition
of a firewall rule to a SG, or attachment of a SG to a VM. All
these operations must be completed before a new container is
fully started, because traffic to and from it will otherwise be
blocked. The latency of the overall auto-generation process is
thus important, especially when applications are continuously
redeployed or when containers are dynamically autoscaled
across VMs [7], [8], [9]. We designed GH in a way that
minimizes the number of time-consuming SG operations and
ensures that such timing constraints can be met for current
container orchestrators. This means that GH does not introduce
any application performance overhead or additional latency.

To summarize, this paper makes the following contributions:

« We motivate the importance of in-depth defenses
against post-exploitation scenarios with concrete evi-
dence of container-level vulnerabilities and concrete post-
exploitation attack scenarios that allow taking over the
entire VM network and cluster.

« We present an efficient algorithm for generating least-
privilege SG rules from dynamically verified NPs and
container scheduling. The design of this algorithm is in-
formed by a study of what are the most time-efficient SG
operations of modern ipset or eBPF based firewalls.

« We demonstrate the applicability of GH by implement-
ing it on top of K8s, a popular container orchestration
framework, and by evaluating it on two container network
plugins for KS8s, three different applications, and the
Openstack cloud platform, which has defined the de-facto
standardized SG API for all major IaaS cloud providers.

The next section gives background on K8s, NPs, and SGs.
In Sect. III we further motivate the need for GH, whose
design is explained in Sect. IV. We describe our prototype
implementation for K8s and OpenStack in Sect. V and evaluate
it experimentally in Sect. VI. Related work is discussed in
Sect. VII before we conclude in Sect. VIII.

II. BACKGROUND

In this section we briefly introduce Kubernetes NPs and
cloud SGs.

Kubernetes Networking and NPs: K8s manages con-
tainerized applications automatically and dynamically. In K8s,
containerized applications run in pods, the smallest unit of ex-
ecution that consists of one or more tightly coupled containers.
Pods are hosted on physical or VM nodes, a group of which
forms a K8s cluster. By default, all pods in the cluster are
non-isolated, accepting all traffic. This is precarious from a
security perspective, especially in mutually distrusting multi-
tenant clusters. K8s thus provides configurable NPs to restrict
communication among pods or tenants by controlling traffic
flow at layers 3, 4, (or 7 if used with Cilium or a service
mesh).

A NP comprises mainly a select part specifying pods
subject to the policy rules and an allow part specifying
allowed traffic. Given the ephemeral nature of pod IPs, NPs
use pod labels to select pods or namespaces in the cluster,
and ipBlocks for external connectivity [10]. K8s needs a
Container Networking Interface (CNI) network plugin for
policy enforcement, and in this paper Calico and Cilium CNI
plugins were used because they support extended Berkeley
Packet Filter (eBPF) technology for fast policy enforcement,
and without the use of high overhead network encapsulation
techniques such as VXLAN or IP-in-IP [6]. Without network
encapsulation, IP packets at the container layer are directly
wrapped in Ethernet packets of the VM layer. For this to work,
each VM of the cluster must belong to the same subnet and
be configured to accept packets with a target IP address that
is not one of their own. Based on the routing table of each
VM, as configured by the CNI plugin, incoming IP packets
are then directly routed to the appropriate Pod.

NPs inconsistency and misconfigurations: NPs are not
attacker-proof as any misconfiguration or inconsistency therein
can be exploited by bad actors to gain illicit access to
containerized applications, leading to data breaches, service
interruptions, or cluster compromise. Various approaches al-
ready exist to prevent inadvertent exposure of the containerized
applications due to errors in manual configuration of NPs. For
example Kano[11] can be used to verify against misconfigura-
tions such as policy conflict, redundancy, and violation of the
least privilege principle. Bastion [12] is another approach that
enforces minimal privileges from a graph of inter-dependent
microservices.

SGs: All mainstream cloud platforms and public cloud
providers offer the notion of SGs to support configurable inter-
VM isolation. Openstack defined the de-facto standardized SG
API for all major IaaS cloud providers. A SG in OpenStack
consists of a set of network access filter rules that allow traffic
based on port, protocol, IP address or remote SG. The latter
notion of remote SG abstracts over IP addresses and instead
allows filter rules to refer to other VMs by means of a name.
As stated above, by sending container-level transport protocol
packets directly over the L2 layer of the VM network, every



port and protocol in the transport header of these packets must
be allowed by the default SG of all cluster nodes, for both
egress and ingress traffic, to and from the entire CIDR range
of the container network, or by recursively setting itself as
remote SG.

III. MOTIVATION

The increased adoption of containerization is accompanied
by increased attacks on containerized applications with many
potential flaws and vulnerabilities stemming directly from
images provided to users from repositories [13]. A study [14]
found out that both official and community images contain
more than 180 vulnerabilities on average, with more than 80%
of the images having at least one high severity vulnerability. A
more recent analysis [3] shows an increase in such vulnerabili-
ties to 460 per image, all susceptible to exploitation by remote
attackers to execute arbitrary code in the container or to store
arbitrary files in the system. According to [4], 82% of certified
images contain at least one high or critical vulnerability while
it was also found that almost 51% of the Docker Hub images
have exploitable critical vulnerabilities [15] and 10-15% of
the Docker daemons that were exposed to the internet could
be accessed without authentication [16]. A review of Docker
CVEs from 2017 to 2021 [17] found privilege escalation and
code execution as the most common vulnerability types, both
commonly used in conjunction with or to cause a breakout
into the host OS.

Judging from these results, it is clear that vulnerabilities in
containers and their runtimes exist and will likely be exploited
by external attackers to gain a foothold on cloud computing
infrastructure. Hence it is all the more important that post-
exploitation defenses are in place so that even after a container
is infected or a privilege escalation occurs, infection cannot
spread to compromise the entire cluster.

To motivate our defense-in-depth solution further we assume
the following vulnerabilities in a given K8s cluster:

1) Default SG settings are used for VMs allowing all worker
nodes to communicate with each other (using a static
range of all ports and protocols required at the container-
level).

2) A pod can be accessed by the attacker via the pod
network, i.e., they may schedule a malicious pod of their
own or an existing pod contains a remotely exploitable
software vulnerability that allows for a remote code
execution attack [18], [19].

3) The cluster is susceptible to container breakouts, i.e.,
containerized applications may escalate privileges to ac-
cess the host node. This may principally be achieved
in three ways [20]: a) exploiting zero-day vulnerabilities
or unpatched CVEs of the container runtime [21], [22],
[23], [24]; b) exploiting permissive pod access control
configurations towards the underlying host system [25].
Strict deny-all pod access controls towards the underlying
operating system are not practical since many containers
require specific capabilities, privileges, or system calls
for their intended functionality [26], [27]; c) exploiting
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Fig. 1: Attack scenario 1: Assuming that the attacker has
gained access to a pod vulnerable to container escape.

vulnerabilities in the host operating system kernel that
are exposed inside of the container [28].

The above setting gives the attacker a foothold on the
cluster. From a pod, the quickest route to compromise the
cluster is to take control over the API server after a container
escape, e.g., by exploiting a vulnerability of the server [29],
or by leveraging privileges and credentials of powerful pods
running on the same node [30]. However, such powerful pods
may not always be present on a given node, requiring lateral
movement to explore other worker nodes of the cluster as
shown in Fig. 1. As the default SG configuration allows all
nodes to communicate with each other, an adversary may
spread to other nodes using a number of methods: 1) abuse
suitable credentials found on the host, e.g., ssh keys; 2) spawn
malicious processes on worker nodes to effectively open port
ranges and protocols that are allowed by the default SG
settings, either directly or via a a reverse shell attack [31];
3) if local kubelet K8s agents are not properly protected via
authentication and authorization the attacker may use it to send
malicious API requests to other nodes, e.g., to leak creden-
tials or scan for vulnerable pods. Even if authentication is
enabled, kubelet authorization may still be misconfigured [32]
and certificates found at the current host may be sufficient
to authenticate against the remote kubelet’s API; 4) attack
bare-metal or containerized networked applications running on
the other nodes, trying to achieve remote code execution. In
all cases, after getting access to another node, more privilege
escalations may be necessary to get full control but as we
discussed above, suitable software vulnerabilities are likely to
be present.

In a second scenario the attacker has gained access to a
container but does not escape from it; instead from within the
container’s scope, the attacker scans for nodes whose kubelet
agents have no proper API authentication and authorization in
place. When such a vulnerable node is discovered, it is also
possible to retrieve all its pods’ tokens that enable authen-
tication to the cluster API server [33]. This attack scenario
cannot be viably prevented by means of a global NP that
isolates all pods from the CIDR of the node network, except
the master node. This is because we have found that such NP
configuration gives errors with mandatory K8s features such as
Services of type NodePort and LoadBalancer [34],



and also with the reachability of any pod listening directly on
the node network.

All of the scenarios above would benefit from a least-
privilege, in-depth enforcement of container NPs, as such a
mechanism may drastically reduce the network attack surface,
blocking superfluous ports and protocols or even removing
unnecessary access to neighboring nodes entirely. Besides,
the automatic generation of least-privilege SGs from container
NPs and pod placement simplifies cluster administration and
avoids potential inconsistencies and misconfiguration.

IV. GRASSHOPPER DESIGN

This section presents the main idea and the methodology
underlying GH, elaborating the process of verification of NPs
and automatic generation and configuration of SGs from NPs.

A. Preliminaries

In the context of this work, pods scheduled on a cluster
are represented by the set of labels that are associated with
the pod. Labels should be interpreted as the typical key-
value pairs used by K8s to tag and match pods. If the
NPs matching the pod labels include matching IP blocks for
external communication, protocols, or ports, these are as well
taken into consideration in the generation of SGs. Network
policies are then signified by the set of labels they select (select
set) and a set of traffic rules specifying allowed ingress or
egress for a set of labels (allow set) or IP blocks along with
respect to a range of ports. For SGs generated by our approach
from NPs, we need to store a name and a number of remote
SG rules that allow, for a given port range, ingress from or
egress to other SGs (remotes) or IP blocks.

A pod p; can then communicate with a pod po, if there
exist policies poly, poly in the cluster such that pol; allows
egress from some labels of p; to some of the labels of ps and
pol, allows ingress to py from p; according to the pod labels.
On the virtualization layer, a node N; may communicate
with Ny, if there exist SGs sgi,sg$ and sgb, sg§ attached
to the respective nodes, such that sgb allows ingress from
sg$ and sg§ allows egress to sgh. Note that this means
that communication between nodes need not be governed by
a single pair of attached groups (sg;,sg,) with matching
ingress and egress rules, but can be distributed across separate
pairs (sgi,sgb) and (sg$, sg$) of attached groups. Above we
described connectivity as prescribed by NPs using sets of
labels, in short label sets. In our approach, ports, protocols, or
IP Blocks from the NPs are added to the corresponding created
SGs as necessary. With low-latency configuration of network
plugins, ports and protocols are the same on the container and
virtualization layer (cf. Sect.I and II).

B. Goals

The main goal of GH is to ensure the consistency between
communication rules established by SGs in OpenStack and the
NPs of K8s. Moreover, the SG configuration should follow the
least privilege principle that no unnecessary communication
may be allowed. Formally, we aim for the following properties:

TABLE [: Judging a new policy pol with given select and
allow set if a policy with select set {a, b} and allow set {z, y}
already exists, meaning that pods with both labels a and b may
already communicate with pods that have both labels x and y
through at least some of the ports specified by pol. Below, ¢
and z are new labels, different from a, b and x, y, respectively.
All allow sets specify the same traffic type (ingress or egress).

[ Select set [ Allow set | Judgement |
a,b} z,y} redundant
a,b} z} conflict
a,b} z,y,z} | redundant
a,b} z} OK
a z,y} conflict
a z} conflict
a T,y,2} OK
{a} {z} OK
{a,b,c} {z,y} redundant
{a,b,c} {z} OK
{a,b,c} {z,y,z} | redundant
{a,b,c} {z} OK
{c} any OK

1) Correctness: If ingress or egress is allowed for a pod p
from or to a pod q or IP block I, the same type of traffic
must also be allowed between the node hosting p and the
node hosting ¢, or addresses I, respectively.

2) Least privilege: Ingress or egress is only allowed between
two worker nodes if they host pods between which a
matching NP allows such traffic. SG rules only allow a
node N to communicate with an IP block [ if there is
a pod p scheduled on N and a matching NP allows the
same type of traffic between p and I.

Note that traffic in the above definitions is restricted to the
port ranges allowed by the respective NPs. Moreover, there is a
caveat to the least-privilege goal: cloud platform administrators
may define additional remote SG rules that are not directly
related to the K8s data plane, but needed for other workloads
running on the nodes. We assume here that such additional
SGs and their rules do not interfere with our goals.

Non-functional requirements for our approach include:
1) the configuration of SGs is automatic without need for
manual intervention, and 2) the mechanism does not introduce
significant additional latency to the system.

In the design we describe in the remainder of this section,
the K8s NPs are considered the base truth for its operation.
This is justified because in modern cloud-native computing
and software-defined networking, distributed applications are
defined at the container orchestration level by the developers
and the underlying virtualization infrastructure should enable
running the desired deployment in a zero-touch fashion. Ad-
ditionally, GH first verifies new NPs for misconfigurations
similar to the NP checker Kano [11].

C. Policy checks

Before handling a newly installed NP, GH checks it for mis-
configuration against the set of existing policies. In particular,
three different types of errors are considered:



TABLE II: SG operations time (ms) in the OpenStack control
plane or the total time until the VM becomes reachable in the
data plane. The latter is measured for attachment of SGs and
adding of rules to attached SGs.

. Noof SGs |y [ 10 |50 | 100
Operation
Creation of SG 44 61.5 | 337 | 649
Addition of Rules to SG (not attached) 74 | 62 381 698
Attachment of SG to a node 6.8 | 54.1 327 | 547
Addition of Rules to SG (attached) 72 | 55 335 | 709
Detachment of SG from a node 7.3 | 53.6 | 314 | 564
Removal of Rules from SG (not attached) 5.6 | 56 293 | 603
Removal of Rules from SG (attached) 56 | 44 275 | 610
Deletion from OpenStack 53 | 98.6 | 751 | 1548

1) policy conflict: a policy conflicts with an existing one
when it weakens that one’s traffic restrictions for the same
type of traffic, i.e., it allows the same traffic for a subset
of the select label set, or it allows access to a superset
of pods for the same select label set, or a combination of
both (cf. Table I for an illustrating example).

2) policy redundancy: a new policy is considered redundant
when pods selected and corresponding connections al-
lowed by it are completely covered under the connections
allowed by an existing one (cf. Table I).

3) broad access permissions: overly permissive network
policies specify connections from or to a wide range of
pod labels, IP addresses or unnecessary ports, potentially
violating the least privilege principle. Here, we define
permissions of a policy too broad, if it selects all possible
label sets, expressed in K8s by an empty selector.

Our approach for generating SGs rejects such offending
policies. However, a conflicting or redundant policy pol may
become non-offending and relevant at some later point, when
the active policy that was offended by pol is removed. In
principle we could then process such policies, however this
might make it hard for an administrator to analyze the system
and debug policies. Hence, we dismiss this option here and
just report an error if policy checks fail.

Moreover, whether policies are in conflict or redundant
depends on the order in which they are applied in the cluster.
For instance, assume policy pol with select label set {a,b}
and allow label set {z,y}, i.e., it allows pods with labels a
and b to have ingress from or egress to pods that have both
labels = and y. If a conflicting policy, e.g., the one with select
set {a, b} and allow set {z} from Table I, was applied before
pol, the former would be accepted, while pol would be judged
redundant. Similarly, scheduling a redundant policy before pol,
would make pol conflicting.

D. Design motivation and idea

Managing SGs involves execution of several time-intensive
operations that may differ for different cloud providers. Ta-
ble II shows the results for a closed lab OpenStack private
cloud that has been used for evaluating GH. These results
highlight the time intensity of creating and deleting SGs,
compared to the lower times needed for adding/removing
rules to a SG and attaching/detaching a SG. Contemporary
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Fig. 2: Policy to SG mapping

cloud platforms rely on ipset for the iptables firewall
or on eBPF that do not require costly operations such as a
reload iptables command [35] when adding rules to
an already attached SG. As a result, no impact on data plane
application performance is expected when adding or removing
rules to already attached SGs. The measurements in Table II
and evaluation in Section VI-A confirm this.

Our design aims to reduce the number of SG creations
and deletions by mapping several NPs to a single SG cor-
responding to a common selected label set. Hence, excessive
SG creation and deletion, e.g., a dedicated SG per K8s NP,
is avoided. Nevertheless, for a different setting than given by
Table 11, a different SG optimization strategy may be needed.

E. Labels-SG Hashmap

The core component of GH is a hashmap Map that records
metadata for a given label set L, namely 1) the name s of the
corresponding SG, 2) all policies selecting L including their
allow sections with information about the traffic direction,
ports, and protocols for targeted label sets or CIDRs, 3) all
nodes that host pods matching L, 4) if s is targeted as a remote
SG by some other SG. Entry Map(L) thus represents a SG,
to which remote SG rules are added for different NPs that all
select the same label set L. Label sets are represented here as
an ordered string concatenation of all contained labels.

Figure 2 illustrates how GH leverages the different sections
of a NP to create new SGs. Given the K8s NP test-policy
allows TCP ingress on port X from pod B to pod A and
TCP egress on port Y from A to pod C. In response, SGs
SG-A, SG-B and SG-C are created and SG-A is augmented
with rules targeting SG-B and SG-C as remote SGs. As pod
A is deployed on node A, the corresponding hashmap entry
for its select set, Map(’keysA:valuesA’), contains SG name
SG-A, policy test-policy, and node A, but is not marked as
a remote SG (as opposed to entries for 'keysB:valuesB’ and
“keysC:valuesC’).

FE. Least-Privilege SG Management

To support least privilege network permissions, GH assumes
that there is a permanent DenyAll K8s NP in place that restricts
any communication between pods. GH further assumes that
all default SGs are removed from the cluster, except for the
baseline absolutely necessary for operating the cluster, e.g.,
those allowing communication between the master and the
worker nodes or those unrelated to the K8s data plane.



At run-time, GH monitors the deployed pods and NPs and
reacts to changes. At each such event, Algorithm 1 traverses
the various sections of the resources (pod or NP) and looks up
metadata in the hashmap to decide the course of action, i.e.,
whether to add, remove, attach, detach, or modify SGs.

Adding a NP: When a new NP pol is added, we first
check if it violates the constraints outlined in Sect. IV-B and, if
80, record it in a special Offenders database without processing
it further. Otherwise, we consider the newly added policy’s
select and allow sections separately. For every label set L;
specified in the allow section a single remote SG that is named
after L, is created and attached to all nodes with matching
pods. The hashmap is updated to reflect all changes. If a
SG already exists for L;, it is just marked as a remote SG.
Similarly, for the select label set S, we only create a new SG
s if it does not exist yet in Map. We then add rules to s in
correspondence with the rules of pol which are guaranteed to
be unique, thanks to our redundancy checks.

Removing a NP: When a NP pol is removed, we essen-
tially undo this addition of rules and delete all rules due to pol
from the corresponding SG. We can also detach and delete a
SG s if there are no more rules in s and s does not act as a
remote SG of other SGs. When deleting s, we also need to
consider deleting its remote SGs, unless they are still needed
to implement other NPs.

Adding a pod: When a new pod p is added to the cluster
on node N, we need to attach all SGs which match with the
label set of p (if the SGs are not yet attached to V) and we
record N in the hashmap entry for each such SG.

Removing a pod: Conversely, when a pod is deleted, we
only detach a matching SG if that pod was the last on its node
matching the corresponding label set of that SG. Migrating a
pod to a different node is considered a deletion followed by
an addition of that same pod in our algorithm.

Node ports: In K8s, a collection of pods can be exposed
as a cloud native application to the outside world or other
applications running on the same cluster by means of service
IPs [34]. Besides NPs, our approach also needs to take into
account the addition and removal of services which can come
in three different flavors. First, a cluster IP is used for exposing
pods for intra-cluster traffic. No additional measures for such
cluster IPs. This is because on each node runs a reverse
proxy that translates locally sent packets with a service IP
as destination into packets with a Pod IP.

Secondly exposing pods as a service to both intra-cluster
and external traffic can be achieved by assigning it a dedicated
node port. As K8s assumes this port to be open on all nodes,
GH complies by adding a corresponding rule to the baseline
SG. A third option is to expose pods via an external load
balancer provided by a cloud provider. Additional measures
neither must be taken because K8s requires that such external
load balancer registers a node port with the cluster for every
exposed loadbalancer IP.

Algorithm 1 SG Configuration Algorithm

1: Procedure NEWSG(Label set L)

2: Create new security group SG-L and record in Map(L)

3: For all pods p matched by L: Attach SG-L to node of
p and record that node in Map(L)

4. Procedure REMOVESG(Label set L)

5: if Map(L) records no policies selecting L then

6: Detach SG-L from all nodes recorded in Map(L)
and delete SG-L

7: Remove entry Map(L)

8: else
Mark SG-L as NOT a remote SG in Map(L)

10: MAIN EVENT LOOP
11: while true do
12: if New policy pol with select set S is added then
. pol is too permissive, redundant,
or in conflict (cf. Table I)
14: Move pol into Offenders database, report
error, return to main event loop

then

15: if entry Map(S) does not exist yet then

16: CALL NEWSG(S) to create SG-S

17: Record pol in Map(S)

18: for each rule r of pol with Allow set A do

19: if entry Map(L) does not exist yet then

20: CALL NEWSG(A) to create SG-A

21: Mark SG-A as a remote SG in Map(A)

22: Set SG-A as remote for SG-S with traffic

type and ports according to r
23: if Policy pol with select set S is deleted then

24 Remove pol from Map(S)

25: for each Allow set L of pol do

26: if no other policy has L as Allow set then

27: CALL REMOVESG(L)

28: if SG-S not marked as remote SG in Map(S) then
29: CALL REMOVESG(S)

30: else

31: Remove in SG configuration all remotes

from SG-S that are uniquely required by pol
32: if Pod p is launched on node NV then

33: for all Label sets M in Map that match p do

34: if NV is not recorded in Map(M) then

35: Attach SG-M to node N and record N
in Map(M)

36: if Pod p is removed from node N then

37: for all Label sets M in Map that match p do

38: if no other pod on N matches M then

39: Detach SG-M from node N and remove

N from Map(M)

V. IMPLEMENTATION

Based on the design presented above, we introduce the im-
plementation of GrassHopper [36] as a python library running
on the master node of a K8s cluster on top of OpenStack. GH
is invoked on K8s API server events pertaining to the creation,
removal, or update of pods, NPs, or node ports to consistently
update the OpenStack security groups.

Figure 3 shows an overview of the GH implementation,
realizing the design described above. The HashMap is the
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Fig. 3: GH design overview
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NP, | {server} ING : {keyB:valueB},EG : {keyB:valueB}

Fig. 4: NPs for server setup with 2 client pods, both are
allowed ingress (ING) from and egress (EG) to the server.

central data structure implementing the Map concept as de-
fined in Section IV-E. It manages per unique label set an SG
metadata record. To store different NPs in such record, we
use a second nested hash map based on policy names. All
hash maps allow an O(1) look-up time complexity. The key
string used in HashMap is an alphabetically sorted string of
concatenated key :value pairs.

There are mainly four steps involved in the operation of
GH: 1) The KubeWatcher watches the K8s API server for
events pertaining to NPs, pods, or node ports and records such
changes in the Cluster state. 2) The WatchDog watches the
Cluster state for changes. If a NP is created, this module
invokes the PolicyChecker to verify the consistency of the
new policy with already existing policies before invoking
the Matcher. Inconsistent NPs are recorded in the Offender
data structure and reported to the cluster admin. 3) If a pod,
node port, or verified NP is added or removed, the WatchDog
invokes the Matcher which reads the HashMap and the Cluster
state data structures and then executes the GH algorithm
(Sect. IV-F). 4) HashMap updates are delegated to the Security
Group Module which also performs all SG operations via the
OpenStack interface. A SG (rule) is created only if there are
matched pods in the cluster, thus no unnecessary SGs (rules)
are created.

GH attaches SGs to the node the moment KubeWatcher
detects the K8s scheduler node decision, thereby running SG
configurations in parallel with pod starting process. Conse-

TABLE III: Latency of SG operations for Fig. 4 policies
applied in a netperf application

time (s)

3to4

0.263 (addition of NP1)
0.186 (addition of NP2)

0.622 (addition of NP3)

operation
Time for pod ready

Create and attach SG for NP1 and NP2

Creating and attaching SG for NP3
Adding rules to SG for NP1

Adding rules for NP4 to SG for NP3
Adding rules to SG for NP2

0.249 (addition of NP4)

quently, as long as the time to configure a SG does not exceed
the time to start a pod, the effect of GH on the application is
completely curtailed. This starting time, which was on average
4 seconds in our evaluation (cf. Table IV), can be considerable,
especially in the case of cold starts and aggressive auto-
scaling [8]. However, given that research on reducing cold
starts may continuously improve the state-of-the-art, the design
methodology of GH has been based on reducing the number
of time-costly SG operations as much as possible.

There is a specific performance and security optimization in
the current implementation that ensures that mutually depend-
ing Openstack rules are added to SGs in an all-or-nothing
fashion. To this end, a HashMap entry e also stores which
other entries refer to e. For example, in Figure 4, NPs NP,
and NP5 are both needed to enable communication from a
client to a server pod. After all, both an egress to the server
pod and an ingress to the client are needed. Assume that at a
time NP; has been created, but NP3 does not exist yet. Then,
only SG for NP, is created and attached, but no rules are
added, yet . When NP3 is added, its remotes will match NP,
whose remotes now matches NP3 and rules will be added
to the SG for NP3 and to the already created SG for NP,
(cf. Table III). Similarly, when one of the policies is deleted,
the remotes associated with these policies will be removed.

VI. EXPERIMENTATION AND EVALUATION

We evaluated GH’s performance, security, and efficiency in
reducing node connectivity. The results are discussed below.



A. Performance Evaluation

In this section we present the results of the performance
evaluation of GH. We evaluated GH for three synthetic ap-
plications: Netperf [37], an adaptive Software-as-a-Service
(SaaS) application [38], and Teastore application [39], on
two eBPF Container Network Interface (CNI) plugins Calico
and Cilium. Both Calico and Cilium were configured to
run in native mode using pure layer 3 networking without
encapsulation.

1) Experiment Settings: The testbed used for running all
the experiments is an isolated part of a private OpenStack
cloud, version 21.2.4. We run containers on top of Open-
Stack because it is not only the standard for private clouds
and the most widely deployed open source cloud computing
software, but also the foundation for public clouds [40]. The
OpenStack cloud consists of a master-worker architecture with
two controller machines, and droplets on which VMs can
be scheduled. The droplets have 2 x Intel(R) Xeon(R) CPU
E5-2660 v3 @ 2.60 GHz (10 cores, 20 threads) 128 GB
RAM. Each droplet has two 10 Gbit network interfaces and is
configured with ipset enabled. The K8s cluster used in the
evaluation was deployed using Kubeadm, running K8s version
1.23.1 and consists of one master node and eight worker
nodes. All nodes have 4 vCPUs and 8 GB RAM, and all were
deployed on the same physical droplet to eliminate variations
in network delay.

a) Netperf evaluation: With the netperf application, we
used netperf TCP stream mode for throughput and CPU
utilization measurements, and request-response (RR) mode for
end-to-end latency measurements. We configured netperf for
a test length of 120 seconds with the goal of 99% confidence
level that the measured mean values are within +/- 2.5% of
the mean values of another sample of the same population. In
this evaluation, we connected to the pods directly using their
IP addresses.

b) SaaS application evaluation: The SaaS application
used for evaluating GH is written in C++ and is based
on the COMITRE approach [41]. It provides a REST API
(SaaS API) to which users can send requests. With every
user belonging to a tenant, each request has a tenantld field
so that the application can retrieve the tenant-specific con-
figuration. Parameters can be configured separately for each
tenant to determine which resource types (CPU, memory or
disk I/0) will be mainly stressed [38]. For this evaluation,
CPU resource was stressed. The default auto-scaler in K8s,
Horizontal Pod Autoscaler (HPA) [7], was configured to keep
average CPU usage of the service’s Pods around 50% so that
auto-scaling happens aggressively when the request rate is
linearly increased. The SaaS application is configured to run
for 600 seconds for each request rate. Unlike netperf, for this
application, pods run behind the built-in K8s load balancer.

c) Teastore evaluation: The Teastore benchmark [39]
provides a microservice based software application consisting
of five services in additon to a registry necessary for service
discovery. The five services include a WebUI providing the
user interface serving Java Server Pages and images provided

TABLE IV: SG operation times (s) by GH for netperf and
SaaS application.

SaaS

3t04

0.357 (first SaaS pod on node x)
0.084 (first scaled pod on node y)
0.075 (second scaled pod on node z)

0.05 0.05

netperf

3t04

0.234  (server pod)
0.333 (two client pods)

Time for pod ready

Create and attach
SG to node

Detach and remove
from node

TABLE V: System-wide average CPU and Memory utilization
for the master node as observed during the evaluation of
netperf and saas applications.

Application Netperf SaaS

No GH | GH GH+fly | No GH | GH GH+ly
Average CPU usage 10.03% | 10.18% | 10.90% | 10.52% | 10.96% | 11.13%
Average Memory usage | 20.27% | 20.31% | 20.34% | 19.21% | 20.12% | 20.28%

by Image provider service, an Auth service for the verification
of login and session data of a user, the Recommender service
which uses a rating algorithm to recommend products for the
user to purchase, and the Persistence service providing access
to and caching for the store’s relational database. For this
evaluation, we measured the total average and median response
times for all the services, and the total requests per second and
each measurement was repeated 20 times.

2) Evaluation Results: In the evaluation, we measure the
performance without GH (No GH), performance with GH
(GH) and the performance of GH when arbitrary pods and NPs
are added to the cluster requiring several SGs to be created
during the experiment (GH+fly). We answer the following
questions regarding GH’s performance:

Qnl. How does GH impact the performance of KS8s appli-
cations with respect to end-to-end latency, throughput,
and resource utilization?

How much time does GH take to configure (or remove)
least privilege SGs on addition (or removal) of an NP
or a Pod scheduling decision?

What is the performance impact on container applica-
tions when other pods, their NPs, and subsequent SGs,
are periodically added by GH?

Qn2.

Qn3.

With respect to Qnl, we compare the Netperf, SaaS, and
Teastore applications performance without GH to that with
GH running in the cluster. The results as observed in Fig. 5,
Fig. 6, and Fig. 7 show that GH does not affect application
performance for both Calico and Cilium CNI plugins. Since
GH runs on the master node, we observed (as shown in
Table V) a negligible increase in the average CPU and memory
usage of the master node for the GH and GH-+fly scenarios as
compared to the no GH scenario.

To answer Qn2, we measure the time taken by GH to detect
the addition of a new resource to the K8s API, get required
resource information, match and lookup the resource, create a
SG and/or add rules, and attach the SG to the pertinent node.
As observed in Table IV, this time was less than 0.4 seconds
when creating a pod for the first time and even less when
pods are scaled. The time for scaled pods is lower because no
new SG is created when pods are replicated. Rather, the SG
stored in the hashmap corresponding to the first pod is attached
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Fig. 5: The netperf evaluation shows no performance overhead by GH, i.e. error bars, which indicate margin of error, overlap.
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Fig. 7: Teastore application evaluation; error bars indicate standard deviation

to the new nodes hosting the replicated pods. Additionally,
we measured the time taken by GH to look up a SG in
the hashmap and detach it from the pertinent node when a
resource is deleted from the cluster. This time (cf. Table IV)
is around 0.05 seconds. Finally Table III shows the efficiency
of adding rules to an already created SG (rather than creating
and attaching a new SG). Overall, the results in both tables IV
and III indicate that SG configuration time was much lower
than the 3 to 4 seconds that application pods took to start
up and become ready to serve requests. Considering that GH
operations run in parallel with pod start-up, this shows that a
SG will be configured before the pod is ready, thereby steering
clear of affecting application performance.

To answer Qn3, we repeated the evaluations for Qnl while
periodically adding new pods with their corresponding NPs
to the cluster. A total of 40 pods and 80 NPs was added

during each run of the experiment, with a new SG created
and attached to the pertinent node for each pod policy pair.
The results of this experiment are indicated under the ‘GH+{ly’
labeled results of Fig. 5, Fig. 6, and Fig. 7. With the exception
of a slight increase in the CPU utilization of the local node
(node hosting the server pod) owing to CPU consumed by
added pods, there was no observed impact on application
performance. This further demonstrates that GH can configure
SGs to multiple applications without affecting their perfor-
mance.

B. Security Validation

This section uses the second attack scenario introduced in
Sect. III where an attacker exploits an accessible kubelet API
to gain access to the cluster API server. As explained before,
we assume that authentication and authorization of the kubelet



root@gh-test-7ffd97df99-45xtb:/# kubeletctl scan -i --cidr $NODE_NETWORK

Nodes with opened Kubelet API

NODE IP

-

https://172.17.124.39:10250

2 | https://172.17.124.31:10250

(a) Vulnerable kubelet APIs

root@gh-test-7ffd97df99-45xtb:/# kubeletctl scan rce -i -s $VULNERABLE KUBELET API

Node with pods vulnerable to RCE

NODE IP PODS NAMESPACE CONTAINERS RCE

-

172.17.124.31 | calico-node-6wkhc kube-system | calico-node | +

(b) Exposed vulnerable Pods

2. Pod: calico-node-6wkhc

Namespace: kube-system

Container: calico-node

Url: https://172.17.124.31:10250/run/kube-system/calico-node-6wkhc/calico-node

Output:
eyJhbGci0iJSUzIINiIsImtpZCI6ITVXNnpVNOCczQXIXTTIOSWdpQVFHZVQ2NWZIdUIHbO9COHIBQjR1b0
cnZpY2VhY2NvdW50Tiwia3ViZXJuZXR1cy5pby9zZXJ2aWNTYWNjb3VudC9uYW11c3BhY2Ui0iJrdwWJ L)

(c) Powerful token for API server access

root@gh-test-7ffd97df99-45xth:/# kubeletctl scan -i --cidr $NODE NETWORK
root@gh-test-7ffd97df99-45xtb:/# kubeletctl scan token -i -s $VULNERABLE KUBELET API
[*] Failed to get pods from: 172.17.124.31

[*] Failed to get pods from Node and run command, exiting

(d) Scanning with kubeletct]l blocked by GH

Fig. 8: Without GH, an attacker is able to detect a node/VM
with a vulnerable kubelet API from within any pod (cfr. Fig.
a) and search for vulnerable pods (Fig. b) or powerful API
server tokens (Fig. ¢). With GH, the attacker is unable to do
this within any pod that cannot communicate with any pod
on that vulnerable VM (Fig. d); if NPs allow the attacker to
communicate with other pods on that VM, the VM is already
compromised regardless of the kubelet API vulnerability.

agent on a worker node is not functioning correctly, e.g., due
to a configuration error.

An attacker who managed to compromise an existing pod
or deploy a malicious pod on a random worker node scans
for K8s nodes with an unprotected kubelet API by means of
the kubeletctl tool [33], which returns all insecure kubelets in
the cluster as shown in Fig. 8a. Then, as observed in Fig. 8b,
he is able to see all pods running on the node hosting the
insecure kubelet API. Alternatively, as observed in Fig. 8c,
the attacker can also find powerful API server tokens of
trampoline pods [5] on that node, by means of which he can
get access to the API server with the goal to retrieve cluster-
admin privileges.

With GH, even if the attacker has a foothold in the cluster
and runs arbitrary code in a pod on a worker node, scanning for
nodes with insecure kubelet API or searching for the pods that
are vulnerable to remote code execution will return no results
for dynamically isolated nodes as explained by Fig. 8d.

C. Reduction of network attack surface

To evaluate the effectiveness of GH for representative clus-
ter setups and workloads, this section analyzes the reduction of
the network attack surface as a ratio of the connectivity density
(CD) achieved with GH in comparison to a statically defined
SG for all nodes of the K8s cluster. C'D equals the number
of opened directed connections between any pair of nodes
of the cluster. A statically defined SG for N cluster nodes
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90% R
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Fig. 9: Reduction rate for the network attack surface with
scheduling complexity constant d=2

(CDyoiir) corresponds to opening P ports of M application
components of A applications at a cluster, and allowing all
possible connections between any pair of its /N nodes in both
directions (cfr. Eq. 1). For GH, we compute the CD by deriving
common Directed Acyclic Graph (DAG) properties for call
graphs of micro-service (MSs), found in two recent studies by
Alibaba [42] and ByteDance [43]. Both studies show that the
average call graph within an MS application can be represented
as one long chain of nested MSs or as a full binary tree, both of
which have M — 1 edges between M MSs. While a call graph
is just a dynamic subset of a full dependency graph, we think
M — 1 is the correct measure for more traditional multi-tier
applications. Moreover we assume that I different instances of
the same MS are always replicated across different nodes for
reasons of reliability. Thus, C' D¢ g can be defined accordingly
to Eq. 2. Note that a fair comparison entails accounting for
the following two calculations. Firstly, one requires to assume
a fully-loaded K8s cluster; to this end, we define capacity C'
as the number of pods that a single node can maximally hold.
The number of nodes N is then computed as shown in Eq.
3; we add here a constant d to account for pods that cannot
be scheduled on available nodes due to pod (anti-)affinity
constraints. Secondly, in Eq. 2, when N is smaller than M,
some MSs of the same application will be scheduled on the
same node. Therefore we have to take the minimum of /N and
M to have a worst-case upper bound for C'D¢ . Finally, the
reduction rate is defined by Eq. 4 as the ratio of the former
CD values.

)]
2)

N
CD,,,OGH:ZX(2>><A><M><P

CDgg = (min(N,M) —1) x I2 x P x A

N:maz(]’%]+d,]) (3)
Reductionrate = (1 — ChcH ) x 100 (4)
CDnoGH

The maximums for parameters C, I, M and A, for d = 2,
have been determined based on relevant literature: M = 25—1
([43] observed a maximum depth of 5 for the call graph);
C = 110 pods per node[44]; I = 3 (most production, i.e.
low-latency service-oriented workloads at Google[45] have
less than 3 instances per service); given these maximums,



and given K8s clusters can maximally comprise N = 5000
nodes, it follows that A = 5911. When d = 2, Figure 9
shows a 94% reduction rate when setting all parameters to
the following base values: C = 30, M = 7, I = 2, and
A = 10. Varying each parameter individually in steps of 20%
from their base value results then in reduction rates between
75% and 99%. An exhaustive analysis does show that GH may
perform below 75% reduction rate for applications of which
the MSs have a substantial amount of instances replicated (i.e.,
a high I > d), and only for certain combinations of M, A and
C, namely when (M ~ IVN ~ [)AAxM < C. Low-latency
applications rarely follow such an application scaling pattern
as motivated by the above established parameter maximums,
in particular I set to 3.

VII. RELATED WORK

State-of-the-art solutions for managing consistency of net-
work security policies across different system layers em-
ploy a verification approach [46], [47], [11] for detecting
inconsistencies but lack procedures for reinforcing consistency
in a fully automated manner. Existing container networking
solutions [48], [12], [49] and policy generators [50] do not
support consistency between NPs and SGs or only do so
for external cluster traffic, not intra-cluster traffic [49]. Some
microsegmentation vendors [51] allow dividing a K8s cluster
in different static segments, but this segmentation of VMs is
not informed by or verified against container-level NPs and
scheduling decisions. We elaborate upon these differences of
GH in the following subsections.

a) Verification of container-based NPs: As already stated
in Sect. IV, GH is inspired by the policy checker Kano [11]
to verify K8s NPs against inconsistencies, duplication and
violation of the principle of least privilege. Although Kano
does not itself preserve consistency with SGs, Kano can be
extended with such facility.

b) Multi-level consistency management: NFVGuard [46]
verifies the security of multi-layer Network Functions Virtual-
ization across an OpenStack platform. It employs verification
as the main mechanism which requires a planning component
to resolve inconsistencies. For latency-sensitive applications
that must be scaled up dynamically, such a component would
take take too long. GH thus uses an enforcement approach
which does not delay auto-scaling of pods.

c) Least-privilege NP generators: Bastion [12] has de-
veloped support for generating least-privilege NPs for micro-
services based application from higher-level service interaction
graphs. AutoArmor [50] generates inter-service access policies
for Istio and K8s by static code analysis. While these works do
not generate SG configurations at the cloud level as GH does,
they offer a complementary defense by relying on OS-based
firewalls for DoS attacks.

d) Microsegmentation: Microsegmentation hinders lat-
eral movement of an attacker within a cloud-based appli-
cation using fine-grained and distributed firewall rules. All
major microsegmentation platforms such as Cisco ACI [52],
VMware NSX [53], Paloalto’s PrismaCloud [51] and Illumio’s

Core [54] support integration with K8s. GH has two unique
features that are not present in these platforms: 1) GH supports
dynamic orchestration of SGs so that if a Pod is scheduled on
a VM that is not reachable, a least privilege SG configuration
will be attached to the VM on the fly. In opposition, all mi-
crosegmentation platforms separate VM-based and K8s-based
firewall rules in different domains that are not dynamically
coordinated as GH does. 2) The on-the fly generation of SG
configurations without delaying pod readiness is not supported
in these platforms. Here the readiness of a pod is delayed until
firewall rules have propagated to all its peers. For example,
a policy convergence controller in Illumio [55] defaults to a
configurable delay between 0 and 300 seconds with a default
of 15 seconds.

e) Cloud providers: AWS’ Elastic K8s Service (EKS)
offer SGs for pods [48] to govern intra-cluster communication
and egress communication with AWS services. This solution
does not preserve consistency with K8s-native NPs nor is it
generally portable to other K8s vendors. In opposition, GH
preserves such consistency and is also fully portable across
K8s vendors and CNI networking plugins. Network plugins
such as Calico Enterprise [49] also integrate K8s NPs and SGs
but only concerning traffic from within a cluster to services
running outside the cluster.

VIII. CONCLUSION

In this paper we have argued that in the domain of ultra-
reliable and low-latency cloud-native systems, there is an
inherent conflict between fast container networking and re-
duction of the network attack surface at the VM level by
means of manually defined SGs. Indeed, container network
solutions without network encapsulation require that every
opened container protocol and ports must also be opened
at the VM level. Therefore, to reduce the network attack
surface at the VM level, least-privilege SGs must be adapted
depending on the dynamic placement of containers on VMs.
This adaption must be performed faster than the time it takes
for the new container to come online. We have proposed GH,
a novel cross-layer enforcement approach to generate VM-
level SGs from at-run-time verified container-level NPs. We
have implemented and evaluated GH on top of a K8s cluster
running on OpenStack. Evaluation through experimentation
and analysis has shown that for a wide range of cluster
setups and low-latency applications, the network attack surface
between VMs can be reduced at a ratio of 75-t0-99% at
zero cost, i.e there is no significant overhead on any relevant
metric for container application performance. These results
confirm the efficiency and applicability of GH for ultra-
reliable and low-latency cloud-native systems. As future work,
we plan to design continuous verification and resolution of
consistency between K8s NPs, VM-level security policies and
pod scheduling decisions. These mechanisms, which have to
detect and resolve conflicts as quickly as possible not to delay
pod readiness, are useful in K8s clusters where the cluster
administrator and the tenants, who manage applications in
different K8s namespaces, do not trust each other.
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