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Abstract. This work presents a reference solution for a typical soil-pile interaction problem, by
means of a Physics Informed Neural Network (PINN). Advanced elastodynamic solutions for
pile response can perform as scoping tools in early design stage and complement finite element
simulations serving as “benchmark” solutions to allow the verification of more complex dy-
namic numerical models. Their intrinsic theoretical interest lies in tackling the Sturm-Liouville
(SL) boundary value problem, which in presence of soil inhomogeneity is not straightforward,
and can yield solutions only for specific types of soil inhomogeneity. Inspired by the recent
advancements in scientific machine learning in a wide range of scientific disciplines, an ap-
plication of a PINN to Soil-Structure Interaction (SSI) is presented herein. In this respect,
eigenvalues and eigenfunctions of a SL operator, which arises in the classic elastic solution
of a single axially loaded pile embedded in inhomogeneous soil deposit, are obtained. PINNs
are physically motivated neural networks, in the sense that natural constraints such as physical
laws, boundary conditions or other physical properties are embedded in either the cost func-
tion or the architecture of the network, to form a data-efficient universal function approximator.
Moreover, their versatility (high adaptability to a wide range of problems), their straightforward
extension to higher dimensions and, their meshfree nature (free from geometrical restrictions
imposed by conventional numerical methods), can render them a valuable asset in the SSI toolkit
of geotechnical engineers.
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1 INTRODUCTION

The analysis of pile foundations under axial load is an important topic in geotechnical en-
gineering, and consequently there are several methods available for this purpose, each with its
advantages and limitations. The selection of a suitable method depends on the complexity of the
problem in question, the accuracy of the analysis, and the soil type. Current, commonly used,
methods for determining pile settlements can be classified into four main groups: (A) experi-
mental methods, which can provide direct measurement of the pile capacity and settlement, and
can be used to validate the results of theoretical methods; such method can be expensive and
time-consuming. (B) semi-empirical methods, which are relatively simple methods, to predict
pile settlements in a wide range of soil conditions, yet its accuracy depends on calibration with
field data. (C) numerical methods, such as the widely used finite element method, which can
account for soil non-linearity, and can handle a variety of structure-soil configurations. Such
methods require the use of specialized software and significant computational resources, es-
pecially for dynamic analyses. (D) elastic analytical models, which assume that the soil and
the pile behave elastically, and could be used for preliminary design calculations, accounting
implicitly for the effects of soil non-linearity by pertinent modifications of soil stiffness. An
additional benefit of such methods is that they can act as complementary tools to finite element
simulations, serving as benchmark solutions to allow the verification of more complex dynamic
numerical models, and safeguard the design process from systemic risk caused by uncertainty
in simulations.

With reference to models in group (D), a promising family of analytical models are those
often referred to as Tajimi formulations, and are associated with the approximate continuum
models of Matsuo and Ohara [1] and Tajimi [2]. Such models treat the pile as a rod or beam,
following the classical strength-of-materials solution and assume perfect bonding at the soil-
pile interface. The soil is modelled as an approximate continuum of the Tajimi type; yet retains
the three-dimensional features of the problem. The number of dependent variables is reduced
by eliminating certain stress and displacement components in the governing equations in the
soil medium. The solution is then expressed in terms of ”soil modes” or eigenfunctions along
the vertical spatial coordinate. A number of closed form solutions for homogeneous soils have
been obtained by means of this approach for piles (e.g., [3,4, 5, 6,7, 8,9, 10, 11]) and retaining
walls (e.g., [12, 13, 14]). A detailed description of the advantages of this family of models
against numerical solutions and simplified approaches is presented in Anoyatis et al. [11], for
axially-loaded piles embedded in inhomogeneous soils.

An added, less explored, yet powerful advantage of models within group (D) is that they
can serve as a valuable tool in the development and application of Physics-Informed Neural
Networks (PINNs); whenever available, analytical models, can provide a useful tool to assess
PINN’s performance. PINNSs is a framework that combines physics-based models with neural
networks to solve complex problems. They were introduced in the seminal work of Raissi,
Perdikaris and Karniadakis [15], and, since then, they have attracted the increasing attention of
the Scientific Machine Learning community. PINNs can be seen as a powerful alternative to
provide numerical solutions by means of training a neural network, which respects the physical
laws of the problem at hand, as described by the pertinent partial differential equations (PDEs).
PINNSs’ ability to provide solutions to PDEs and eigenvalue problems has been tested to a series
of works (e.g., [15, 16, 17, 18, 19]).

Evidently, since PDEs are fundamental to the description of a wide range of physical pro-
cesses, PINNs have the potential to become a valuable tool for scientists and engineers, in
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particular where less data are available. This is achieved due to PINNs being physically mo-
tivated and requiring no external data, since training can be performed in terms of generated
data samples. Another key advantage compared to traditional numerical differential equation
solvers is that PINNs are inherently mesh-free, and can generate solutions that are readily dif-
ferentiable, contrary to solutions at specified grid points. Being mesh-free adds to the flexibility
of PINNSs, rendering them applicable to a wide range of problems, including those with complex
geometries or multi-physics problems. Further, in the same spirit, PINNs can be more robust
to changes in geometry or boundary conditions of a problem, as they are not tied to a specific
mesh. This also means that the computational time needed to solve a problem using PINNs can
be significantly reduced, rendering them as a computationally efficient alternative to available
and commonly used finite element method. As a final remark, PINNs can help reduce modeling
errors, in particular where the underlying physics of a system are not well understood. This is
because PINNs can be intrinsically trained on experimental or simulation data, which allows
for the experimental or simulation error to be accounted for in the model.

VA 2
P
E,d
IS
|z
N v
~ w(z
~ (2) u, (1, 2)
<)
! )
C I O'Z(T, Z)
T 4
l_‘-Q -
= ezl soil
<4 element
Il
i~ Ty (1, 2)
N
<&
Gs(2),vs

Y,

soil-pile properties and geometry

Figure 1: Stresses and displacements in a Tajimi type continuum.

Soil inhomogeneity is expressed via a depth-dependent soil shear modulus G4(z) which
obeys a power law variation with depth; n and b = (G,/Gg)"/™ are dimensionless inhomo-
geneity factors, GG, and G4p are the soil shear moduli at the surface and the base of the soil
deposit, respectively.

Gy(2) = G [b+ (1 =)= ] (1)

As shown in [11], handling an inhomogeneous soil medium of the Tajimi type is not straight-
forward; application of the orthogonality identity of the soil modes is used to satisfy the perfect
bonding condition at the pile-soil interface. The solution is expressed in the form of series and
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can handle different types of soil inhomogeneity using natural soil “modes” (eigenfunctions),
and associated “eigenvalues”, to describe the attenuation of soil displacement with depth and
radial distance from the pile. The series’ coefficients are coupled and are obtained as solutions
to a set of simultaneous algebraic equations of rank equal to the number of modes considered in
the analysis. The eigenvalues are obtained as the roots of of an algebraic non-linear equation,
which especially in presence of dynamic loads, becomes an intricate task [20]. Herein a PINN
is constructed to obtain the eigenfunctions and eigenvalues of the problem (Fig. 1).

2 THE ANALYTICAL MODEL

Key to the Tajimi approach in axial mode is the physically motivated assumption that the
vertical normal and vertical shear stresses in the soil are controlled exclusively by the vertical
soil displacement component. This reduces the two equations of classical axisymmetric elas-
ticity to one [11] (Fig. 1). Thus, the equilibrium of vertical forces acting on a soil element in
axisymmetric mode yields the following partial differential

o(rr) N do
or "9

=0 2)

where 7 = 7,,(r, z) is the vertical shear stress and 0 = 0,(r, z) is the vertical normal stress.
The stress-displacement relations in an axisymmetric Tajimi type continuum are obtained as

0
olr,2) ~ =12 G(2) 5 )
and 5
7(r,2) &= —Gy(2) a—z 4)

where u = u(r, z) is the vertical soil displacement and 75 = /(2 — v5)/(1 — 2v;) is a dimen-
sionless compressibility parameter, which accounts, indirectly, for the effect of vanishing the
horizontal soil displacement on soil stresses, and depends solely on Poisson ratio v, [4]. Sub-
stituting Equations (3) and (4) into (2), the equilibrium equation is written in terms of displace-
ments. The solution is then obtained using the method of separation of variables, which enables
the decomposition of the governing partial differential equation into the pair of ordinary differ-
ential equations. The equation which involves the independent variable 2 is a Sturm-Liouville
(SL) equation with variable coefficients, and its solution depends on the functional form G(z).

d (Gy(z) dd 5 [(Gs(2) _
E(GSH E>+G<GSH><1>_0, 2 e [0, H] 5)

Finding the distinct values a,, (m = 1,2, 3,...), for which nontrivial solutions exist, is part of
the SL theory. a,,’s are referred to as the eigenvalues of the boundary-value problem. Solutions
to Equation (5) are the eigenfunctions ® = &,,,(z) (i.e., soil modes), which satisfy the boundary
conditions of the problem i.e., stress-free soil surface and zero displacements at the base. In
the next section a PINN is constructed to obtain the eigenfunctions and eigenvalues of the SL
problem, by considering the properties of SL operators. According to the Universal Approx-
imation Theorem, any continuous function can be approximated using a neural network [21].
In this spirit, Hornik et al. demonstrated that neural networks can approximate any measurable
function [22]. The special case of linear variation of shear modulus with depth and zero shear
modulus at the surface is investigated in this work i.e., b = 0 and n = 1 in Equation (1).
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3 THE NEURAL NETWORK

A fully-connected feed-forward Neural Network (NN) i.e., N¥ : R — R is employed to
solve the SL problem. The NN transforms the input data to an output which approximates each
eigenfunction ®,,. An input z € R is successively propagated through L layers of neurons.
Each neuron applies an affine transformation, followed by a nonlinear activation function. The
training points are uniformly generated within the interval [0, H], to effectively create an one-
dimensional grid. The grid points created within each training iteration are slightly perturbed to
capture extra points within the interval. This allows the network to train with additional points
on top of the initial uniformly distributed points. A Neural Network with three hidden layers
of 30 neurons each, and a trigonometric activation function sinx are selected. The input of
each hidden layer is further fed directly to the next hidden layer. This way a Residual Network
(ResNet) structure is created, where each layer is itself a block. The ResNet structure is quite
ordinary in the context of deep learning. It usually aims to fix the problem of vanishing or
exploding gradient, which is common in image recognition tasks [23]. Despite the radically
different nature of the problem at hand, the ResNet structure turned out to be fruitful. The
output of the NN can be written as:

N(z) = N*(z0), 06 € © (6)

The set of all weights span the parameter space O, whilst the tunable parameters 6 update
iteratively during training. The training strategy lies in tuning the parameters § and minimise a
Residual Loss Ly on the given data:

Find 0" € © : 6" = argmin Ly (7)
9

The ADAM optimizer, a learning rate equal to 1072, and a loss function with four different
terms are adopted to train the Neural Network. All four terms are essential for the successful
training of the network. Each one accomplishes a specific task, which is explained in detail in
the next subsections.

3.1 The parametric function

To enforce the boundary conditions, a parametric trick, commonly used in PINNs is adopted
(e.g., [19, 24]): for Dirichlet and homogeneous boundary conditions, the output N is multiplied
with a suitable function g(z). In the same fashion, to implement the mixed boundary conditions
for the problem examined, ®’s are described as follows:

®(z) = tanh(z — H) |(tanh(z — H) — 2 tanh(—H)) N + tanh(—H) tanh(z) 88—]: (8)

This way the boundary conditions are enforced directly to the output. This is commonly referred
to as hard constraint, in contrast to soft constraints imposed via loss functions.

3.2 The loss function
The following loss function is adopted:
L = Mpr Lpg + Avorm Lnorm + ABol LBol + Aslide Lside )

where DFE is the differential equation error, norm is the normalization error, Bol refers to the
nodes error, and Slide is the slide loss.
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Differential equation error The following loss function is considered, which complies with
the requirement for @ to satisfy Equation (5)

Hrd (Gy(z) do , Go(2) 17
Lpg = /O [E(GSH E) + a Con @} dz (10)

where a? is given by the Rayleigh quotient:

2 /H Go(2) (2—‘5)2@.

@’ = —0
/ Gy(2) ®*dz
0

(11)

Normalization error The normalization loss enforces a non-zero solution and the eigenfunc-
tion’s squared integral to be finite. This way it prevents the network from discovering trivial
eigenfunctions and eigenvalues:

H 2
Loorm = <1—/ C;S—(HZ)CI)QCZZ> (12)
0 S

Nodes error In principle, the aforementioned steps should help discover the first eigenfunc-
tion. The challenge lies in guiding the NN to discover the higher eigenfunctions. In the work
of Jin et al. this is achieved by considering the inherent orthogonality identity of the eigenfunc-
tions of SL problems [19]. In this work a more efficient alternative is adopted. According to
the SL theorem, the m-th eigenfunction ®,,, has exactly m nodes in (0, H) [25]. For a regular
SL problem it can be proven that there is a sign alternation of ®,,,; between two successive
nodes of ®,,,Vm € N. This means that ¢,,,; has a node within that interval [25]. It can
be shown that for Neumann boundary conditions, there is at least one node of ®,,,; between
the corresponding endpoint and the closest ®,, root. In this work, an approach inspired by the
root-finding Bisection method is employed to discover the nodes accounting for the alternating
positive and negative behavior of the eigenfunction [26]. Thus, one can set:

m+1
LEr™ = @ (20) Pomsa (2i41) + [P (20) P (2041)) (13)
1=0
where z1, .. ., 2, are the nodes of ®,,,, and {zo, 2,11} = {0+¢, H —e}, e < 1. By minimising

the loss term expressed by Equation (13) to zero, the network reproduces a function with a node
within each desired interval.

Slide loss The last term is expressed by the following equation:

a?

m+1 m

Lyge = 7 — (14)
m+1

In fact this is not a conventional loss term; it is not possible to minimize such term, since that
would require the eigenvalue to become infinite. Instead, it is used herein to guide the neu-
ral network to search for eigenvalues greater than the previously obtained ones. This becomes
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increasingly important for eigenvalues of higher modes. It is common knowledge that find-
ing functions with high frequency components is not an easy task for neural networks [27].
For the problem at hand, such term creates some kind of inverse-squared slide in terms of the
eigenvalue, which along with the other loss terms, enables the network to capture the more
complicated, excited eigenfunctions.

Each loss term is multiplied by a suitable factor to ensure that they balance well with each
other. Then the network parameters are updated to minimize all of them. The integrals in
the loss functions are calculated using the Monte Carlo integration [28]. This way the Mean
Squared Error (MSE) is reduced, following previous works on PINNs [15, 19, 29].

4 RESULTS

The neural network architecture consists of 3 blocks with 30 neurons each. Results are
presented for the special case of b = 0 and n = 1, which correspond to piles in Gibson soil with
zero stiffness at the soil surface. The terms in Equation (9) are selected as: Apg = 1, Ayorm = 1,
ABol = 10° and A\, = 10*. Comparisons of the neural network predictions with results obtained
from the semi-analytical model by Anoyatis et al. [11], demonstrate the predictive power of the
proposed method.

Table 1 presents the results of the first fifteen eigenvalues a,,. The comparisons between the
actual eigenvalues ay,,. obtained from the semi-analytical model by Anoyatis ef al. [11], and
the eigenvalues ayy obtained from the proposed neural network are in excellent agreement.

m-th eigenvalue | Gyye aANN M x 107°
true
1 2405 | 2.405 0.0
2 5.520 | 5.521 18
3 8.654 | 8.655 11
4 11.792 | 11.793 0.8
5 14.931 | 14.932 0.6
6 18.071 | 18.073 11
7 21.212 | 21.213 0.4
8 24.352 | 24.355 12
9 27.493 | 27.495 0.7
10 30.635 | 30.637 0.6
11 33.776 | 33.778 0.5
12 36.917 | 36.920 0.8
13 40.058 | 40.062 0.9
14 43200 | 43.204 0.9
15 46.341 | 46.345 0.8

Table 1: Results of the first fifteen eigenvalues a,,. Comparison between the actual eigenvalues
ayrue Obtained from the semi-analytical model by Anoyatis et al. [11], and the eigenvalues axx
obtained from the proposed neural network. b = 0, n = 1 in Eq. (1)

Figures 2 and 3 plot the eigenfunctions for the 1st-2nd-3rd and 11th-12th-13th soil modes,
respectively. The predictions from the proposed PINN are compared against results from the
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analytical model [11]. An excellent agreement is observed for all cases investigated, which
demonstrate the accuracy of the proposed method.

ayy=2.405, found at epoch 430

—— PINN
= = Analytical model

= 1 1 1 1 1

ayny=5.521, found at epoch 660

-1 1 1 1 1

I—

~b.0 0.2 0.4 0.6 0.8 1.0

ayn=8.655, found at epoch 3991

Normalized depth 7

Figure 2: Profiles of the first three eigenfunctions ®,, ®,, 3. Comparisons between the pro-
posed neural network approach and results from the analytical model by Anoyatis et al. [11].

Figures 4 presents the evolution of loss functions and eigenvalues with epochs, for the first
three modes (m = 1,2, 3, sub-figures (a) and (c)) and higher modes (m = 11,12, 13, sub-
figures (b) and (d)). In machine learning an epoch refers to the one entire passing of training
data through the algorithm. It can be seen as a hyperparameter that determines the process
of training the machine learning model. Each time a data set passes through an algorithm,
completes an epoch. In both cases examined (low and high modes), the neural network detects
the correct eigenvalue, and starts to build the corresponding suitable eigenfunction. It is evident
that higher modes require training using a larger number of epochs.

S SUMMARY AND CONCLUDING REMARKS

This study investigates the use of Physics-Informed Neural Networks (PINNs) as a method
for solving classical problems in geotechnical engineering. For this reason, a soil-pile inter-
action problem for which an analytical model of the Tajimi type for the soil has been recently
developed by some of the Authors, is selected [11]. The analytical approach extends the model
proposed by Mylonakis [3], following the seminal work of Nogami & Novak [4] for end-bearing
piles, to vertically inhomogeneous soils. Fundamental to the semi-analytical approach is the so-
lution of the boundary value problem; the calculation of the eigenvalues and the corresponding
eigenfunctions (soil modes). The eigenvalues are obtained as the roots of of an algebraic non-
linear equation, which especially in dynamic regime can be a challenging task [20].
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ayy=33.778, found at epoch 19059
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Figure 3: Profiles of higher eigenfunctions ®,;, ®,5, ®;5. Comparisons between the proposed
neural network approach and results from the analytical model by Anoyatis ef al. [11].

Herein a PINN is constructed to obtain the eigenfunctions and eigenvalues of the problem
for an axially-loaded, end-bearing pile embedded in Gibson soil, by considering the properties
of Sturm-Liouville operators. The ADAM optimizer, a learning rate equal to 1072, and a loss
function with four different terms are adopted to train the neural network. For the cases exam-
ined, it has been demonstrated that the PINN can be seen as a powerful alternative to provide
numerical solutions by means of training a neural network, which respects the physical laws
of the soil-pile interaction problem, as described by the governing partial differential equation.
The predictive power of the proposed neural network based approach is demonstrated via the
excellent agreement between proposed PINN results and results obtained from the existing an-
alytical method in terms of both eigenvalues and eigenfunctions. It is also evident that higher
modes require training using a larger number of epochs.

Overall, it is shown that analytical approach can be a valuable tool in the development and
application of PINNSs, allowing physical laws and relationships to be incorporated into machine
learning models, which in turn lead to accurate and efficient predictions. Combining the power
of neural networks with the precision of analytical models, render PINNs an attractive and
promising alternative to predict the behavior of more complex foundation systems i.e., complex
geometry, soil non-linearity, dynamic analyses without the need for expensive simulations or
(limited) experimental data. It is though fair to mention that PINNSs are a relatively new method
and further systematic exploration is required. Nevertheless they are likely to play an increas-
ingly important role in the development of advanced methodologies and scientific understanding
in the coming years.
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Figure 4: Evolution of loss functions and eigenvalues a,,,’s during training, measured in epochs.
(a)-(c)m = 1,2,3; (b)-(d) m = 11,12, 13. Subfigures (c) and (d) show comparisons against
the actual eigenvalues ay,, as obtained from the analytical solution by Anoyatis et al. [11].
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