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Abstract. Knowledge graphs, which contain annotated descriptions of entities and their interrelations, are often generated using
rules that apply semantic annotations to certain data sources. (Re)using ontology terms without adhering to the axioms defined
by their ontologies results in inconsistencies in these graphs, affecting their quality. Methods and tools were proposed to detect
and resolve inconsistencies, the root causes of which include rules and ontologies. However, these either require access to the
complete knowledge graph, which is not always available in a time-constrained situation, or assume that only generation rules can
be refined but not ontologies. In the past, we proposed a rule-driven method for detecting and resolving inconsistencies without
complete knowledge graph access, but it requires a predefined set of refinements to the rules and does not guide users with
respect to the order the rules should be inspected. We extend our previous work with a rule-driven method, called Resglass, that
considers refinements for generation rules as well as ontologies. In this article, we describe Resglass, which includes a ranking
to determine the order with which rules and ontology elements should be inspected, and its implementation. The ranking is
evaluated by comparing the manual ranking of experts to our automatic ranking. The evaluation shows that our automatic ranking
achieves an overlap of 80% with experts ranking, reducing this way the effort required during the resolution of inconsistencies
in both rules and ontologies.
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1. Introduction

Knowledge graphs use ontologies to provide an-
notated descriptions of entities and their interrela-
tions [28]. The graphs can be published as Linked
Data [5] using the Resource Description framework
(RDF) [7] as data representation format.

Knowledge graphs are often generated from other
sources. For instance, the DBpedia knowledge graph is
generated from Wikipedia. A common way to generate
these knowledge graphs is by using rules. The rules at-
tach semantic annotations to data in those sources. The
semantic annotations are added using terms defined in
ontologies, such as classes, properties, and datatypes.
These rules thereby determine how individual data
fragments from the sources are modeled using specific
ontology terms during knowledge graph generation.

*Corresponding author. E-mail: pheyvaer.heyvaert@ugent.be.

The syntax and grammar of the rules are determined
by a knowledge graph generation language, such as
R2RML [8], RML [11], and SPARQL-Generate [23].

An ontology is a conceptualization, an intensional
semantic structure, which encodes the implicit rules
constraining the structure of a piece of reality [17].
Such implicit rules can be encoded as ontological ax-
ioms in OWL [26] and are henceforth referred to as
restrictions. For example, the domains and ranges of
properties are restricted to a set of classes. Such restric-
tions are either defined via the ontology term’s defini-
tions, e.g., a term is a class or a property, or via the in-
terpretation of the ontology’s axioms, e.g, domain and
range of a property, as restrictions [2, 22].

Inconsistencies are introduced in graphs when on-
tology terms are used without adhering to restric-
tions, and this affects the graphs’ quality. Possible root
causes for these inconsistencies include: (i) raw data
that contain inconsistencies [24]; (ii) rules that intro-
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duce new inconsistencies by, for example, not using
the suitable ontology terms [12, 27]; and (iii) ontol-
ogy definitions that do not model the domain as de-
sired [27]. In this work, we focus on the latter two root
causes which are related to the intrinsic dimension of
knowledge graph quality [11].

Previous research efforts introduced methods and
tools to identify inconsistencies in knowledge graphs [4,
22]. Although this enables resolving the inconsisten-
cies in the graph itself, it does not fix the root cause.
The same inconsistencies reappear when a new ver-
sion of a knowledge graph is generated. Thus, methods
and tools were developed to identify inconsistencies
in knowledge graph generation rules [12, 27]. Meth-
ods applied to generation rules find inconsistencies in
less time compared to solutions that work directly on
knowledge graphs, while they simultaneously identify
the rules and ontology definitions causing them [13].
For instance, there were 2,159 inconsistencies identi-
fied in the rules that define how the DBpedia knowl-
edge graph is generated from Wikipedia.

The rules or ontology definitions need to be refined
to resolve inconsistencies, but this is not straightfor-
ward. The situation aggravates when the set of rules
and their relationships grow, or multiple and more
complex ontologies are used. For instance, more than
1,300 of the more than 1,200,000 rules that generate
DBpedia are involved in at least 1 of the 2,159 identi-
fied inconsistencies. Which rules should users inspect
first when resolving these inconsistencies, considering
that updating a rule can resolve multiple inconsisten-
cies, but it can also create new ones? Furthermore,
a number of inconsistencies are best resolved by up-
dating the ontology definitions and not the rules [27].
Should a user inspect the rules or also the ontology
definitions, considering that inconsistencies might be
caused by both rules and ontology definitions?

We proposed a rule-driven method in previous work
to resolve inconsistencies by automatically refining
the corresponding generation rules [12]. Inconsisten-
cies are detected by analyzing primarily the rules, but
also the knowledge graphs. Predefined refinements are
automatically applied to resolve the inconsistencies.
However, our rules-driven method assumes that used
ontologies align with the user’s envisioned semantic
model, which is not always the case [27]. More, when
a high number of rules are involved in inconsistencies,
users have no insights regarding the order with which
rules should be inspected. This leads to the following
research question to improve the resolution process:

How can we score and rank rules and ontology
terms for inspection to improve the manual reso-
lution of inconsistencies?

In this work, we introduce a new method called Res-
glass that extends our rule-driven method [12] to ad-
dress this research question. The rules and ontology
terms are automatically ranked in order of inspection
based on a score that considers the number of incon-
sistencies a rule or ontology term is involved in. This
way, the automatic ranking accelerates the inconsisten-
cies resolution speed, as users do not need manually
provide a ranking anymore. Resglass consists of the
following steps:

1. (automatically) detect inconsistencies by analyz-
ing generation rules;

2. (automatically) cluster the rules;
3. (automatically) rank rules and ontology terms in

order of expected impact upon inspection;
4. (manually) refine rules and ontology terms;
5. (automatically) generate the knowledge graph;
6. (automatically) detect inconsistencies in this graph;
7. (manually) refine rules and ontologies terms.

This research question leads to the hypothesis:

An automatic inconsistency-driven ranking im-
proves, compared to a random ranking, by at least
20% the overlap with experts’ manual ranking.

Our novel contributions include in particular:

– an algorithm to rank rules in descending order of
number of inconsistencies they are involved in;

– an algorithm to rank ontology terms in descend-
ing order of number of inconsistencies they are
involved in;

– an implementation of the Resglass using an exist-
ing knowledge graph generation language, RML;

– an evaluation that shows how much our automatic
ranking improves the overlap to the experts’ rank-
ing, compared to a random ranking,

Our evaluation shows that our ranking improves the
overlap with experts’ ranking by 40% in the case of
rules and 20% in the case of ontology terms. Overall,
Resglass reduces the effort required during the resolu-
tion of inconsistencies in both rules and ontologies, be-
cause less manual effort is required from the experts,
leading to higher quality knowledge graphs in less time
and with less effort.
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Figure 1. River Thames and Cam Wikipedia infobox

Figure 2. Ghent and Brussels Wikipedia infobox

The remainder of this article is structured as follows:
In Section 2, we introduce our motivating use case. In
Section 3, we discuss the state of the art. In Section 4,
we elaborate on the Resglass and, in Section 5, on the
implementation. In Section 6, we present our evalua-
tion and, in Section 7, our conclusions.

2. Motivating use case

As motivating use case, we consider DBpedia.
The DBpedia knowledge graph is generated from
Wikipedia. The rules that define how to annotate the
Wikipedia infoboxes with classes and properties from
different ontologies, including the DBpedia, FOAF
and GS84 Geo Positioning ontologies are defined in

rules expressed in RML. However, inconsistencies ap-
pear in this knowledge graph [22] and are caused by
both rules and ontology definitions [27].

The two types of Wikipedia infoboxes in Figs. 1
and 2, provide details of two rivers (Thames and Cam)
and two cities (Ghent and Brussels). Each infobox
presents the relevant information about a single en-
tity based on a predefined infobox template. For ex-
ample, the infoboxes used for rivers follow the same
template1. The rules (Listing 1) annotate the data with
ontology definitions (Listing 2) that describe rivers,
palaces and cities, and generate the knowledge graph
(Listing 3). Inconsistencies can then be detected by
comparing the rules and ontologies definitions.

1st inconsistency: The triple in line 2 states that
_:b0 is the source position of river Thames and
the triple in line 5 states that _:b0 is of class
dbo:Place (see Listing 3). The same holds for river
Cam and its source position _:b1. However, the on-
tology defines that the class geo:SpatialThing,
and not dbo:Place, is in the range of the property
dbo:sourcePosition (see Listing 2).

2nd inconsistency: The triple in line 3 states that
_:b2 is the mouth position of river Thames and
the triple in line 8 states that _:b2 is of class
dbo:Place. However, the ontology defines that
the range of dbo:mouthPosition is the class
geo:SpatialThing.

3rd inconsistency: The triples in line 6 and 16 state
_:b0’s and _:b1’s latitude, respectively. However,
the ontology defines that geo:SpatialThing, and
not dbo:Place, is in the domain of geo:lat.

The 1st inconsistency is caused due to the combina-
tion of rules 21 and 38 (Listing 1). Rule 21 links rivers
with their locations via dbo:sourcePosition and
rule 38 annotates a location with the class dbo:Place.
This is not consistent with the ontology, as the class
geo:SpatialThing, and not dbo:Place, is in
the range of dbo:sourcePosition.

The 2nd inconsistency is caused due to the combina-
tion of rules 29 and 52. Rule 29 links rivers with their
locations via dbo:mouthPosition and rule 52
annotates a location with the class dbo:Place.
This is not consistent with the ontology, as class
geo:SpatialThing, and not dbo:Place, is in
the range of dbo:mouthPosition.

The 3rd inconsistency is caused due to the com-
bination of rules 38 and 43. Rule 38 annotates a lo-

1https://en.wikipedia.org/wiki/Template:Infobox_river

https://en.wikipedia.org/wiki/Template:Infobox_river
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cation with the class dbo:Place and rule 43 the
latitude of a location with the property geo:lat.
This is not consistent with the ontology, as class
geo:SpatialThing, and not dbo:Place, is in
the domain of geo:lat.

How should these inconsistencies be resolved? On
the one hand, which rules should be refined? Is it
one of the rules 21, 29, 38, 43, 52, or all of them?
How should they be refined: should the class in rule
38 be geo:SpatialThing or another class? What
are the effects of updating these rules? For instance,
this refinement would lead to other inconsistencies,
such as caused by rules 38 and 66 if the entity is
not longer annotated with the class dbo:Place.
On the other hand, if the ontology can be updated,
which definitions should be refined? How should the
definitions be refined: remove definitions 7, 9, and
13, or add other definitions to expand the range of
dbo:sourcePosition, dbo:mouthPosition,
and the domain of geo:lat?

Although we just discussed a small subset of the
rules and definitions of DBpedia, we already have a
number of different rules and definitions to consider
for inspection, and different approaches to resolve the
inconsistencies, which might introduce new inconsis-
tencies. This aggravates when we consider the whole
of DBpedia where more than 1,300 of the more than
1,200,000 rules are involved in at least one of the
2,159 inconsistencies, and where the DBpedia ontol-
ogy2 alone already consists of more than 700 classes
and more than 2,800 properties.

1 <#TriplesMap1> rr:subjectMap <#SM1>;
2 rr:predicateObjectMap
3 <#POM1>, <#POM2>, <#POM3>.
4
5 <#SM1> rr:template
6 "http://dbpedia.org/resource/{slug}".
7
8 <#POM1> rr:predicate rdf:type;
9 rr:objectMap <#OM1>.

10
11 <#OM1> rr:constant dbo:River.
12
13 <#POM2> rr:predicate foaf:name;
14 rr:objectMap [rml:reference "name"].
15
16 <#POM3> rr:predicateMap <#PM1>;
17 rr:objectMap[rr:joinCondition[
18 rr:child "slug"; rr:parent "slug";

2http://dbpedia.org/ontology/

19 rr:parentTriplesMap <#TriplesMap2>]].
20
21 <#PM1> rr:constant dbo:sourcePosition.
22
23 <#POM3> rr:predicateMap <#PM4>;
24 rr:objectMap[rr:joinCondition[
25 rr:child "slug"; rr:parent "slug";
26 rr:parentTriplesMap <#TriplesMap3>]].
27
28 <#PM4> rr:constant
29 dbo:mouthPositionPosition.
30
31 <#TriplesMap2>
32 rr:subjectMap[rr:termType rr:BlankNode].
33 rr:predicateObjectMap <#POM4>,<#POM5>.
34
35 <#POM4> rr:predicate rdf:type;
36 rr:objectMap <#OM2>.
37
38 <#OM2> rr:constant dbo:Place.
39
40 <#POM5> predicateMap <#PM2>;
41 rr:objectMap[rml:reference "latitude"].
42
43 <#PM2> rr:constant geo:lat.
44
45 <#TriplesMap3>
46 rr:subjectMap[rr:termType rr:BlankNode].
47 rr:predicateObjectMap <#POM6>,<#POM7>.
48
49 <#POM6> rr:predicate rdf:type;
50 rr:objectMap <#OM3>.
51
52 <#OM3> rr:constant dbo:Place.
53
54 <#POM7> predicateMap <#PM3>;
55 rr:objectMap[rml:reference "latitude_m"].
56
57 <#PM3> rr:constant geo:lat.
58
59 <#TriplesMap4>
60 rr:predicateObjectMap [
61 rr:predicateMap <#PM5>;
62 rr:objectMap[rr:joinCondition[
63 rr:child "slug"; rr:parent "slug";
64 rr:parentTriplesMap <#TriplesMap2>]].
65
66 <#PM5> rr:constant dbo:location.

Listing 1: Subset of example RML rules

1 dbo:River is a class
2 dbo:City is a class
3 dbo:River and dbo:City are disjoint

http://dbpedia.org/ontology/
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4 dbo:Place is a class
5 geo:SpatialThing is a class
6 dbo:location is a property
7 dbo:Place is in the range of dbo:location
8 dbo:sourcePosition is a property
9 geo:SpatialThing is in the range of dbo:sourcePosition

10 dbo:mouthPosition is a property
11 geo:SpatialThing is in the range of dbo:mouthPosition
12 geo:lat is a property
13 geo:SpatialThing is in the domain of geo:lat
14 geo:lat's object is of the datatype float

Listing 2: Ontology that describes people and furniture

1 dbr:river_thames a dbo:River;
2 dbo:sourcePosition _:b0;
3 dbo:mouthPosition _:b2.
4
5 _:b0 a dbo:Place;
6 geo:lat "51◦41'39\"N".
7
8 _:b2 a dbo:Place;
9 geo:lat "51◦29'56\"N".

10
11 dbr:river_cam a dbo:River;
12 dbo:sourcePosition _:b1;
13 dbo:mouthPosition _:b3.
14
15 _:b1 a dbo:Place;
16 geo:lat "52◦20'54\"N".
17
18 _:b3 a dbo:Place;
19 geo:lat "52◦20'54\"N".
20
21 dbr:ghent a dbo:City;
22 dbo:location [ a dbo:Place;
23 geo:lat "51◦2'60\"N" ].
24
25 dbr:brussels a dbo:City;
26 dbo:location [ a dbo:Place;
27 geo:lat "50◦50'60\"N" ].

Listing 3: Linked Data generated by applying the rules
in Listing 1 on the data in Figs. 1 and 2

3. Related work

Knowledge graphs can be generated via rules in dif-
ferent languages (see Section 3.1). These graphs can
contain inconsistencies, which can be detected by as-
sessing the graphs’ quality (see Section 3.2). Once

these inconsistencies are detected they are resolved to
improve the knowledge graph (see Section 3.3).

A number of research efforts assume that knowledge
graphs are materialized via the Resource Description
Framework (RDF) [7, 15]. RDF uses a graph-based
model with a set of triples as core structure. Each triple
consists of a subject, predicate, and object. A set of
triples are called an RDF graph.

3.1. Knowledge graph generation

Two approaches prevailed for knowledge graph gen-
eration from existing data sources: direct mapping and
custom rules. In the former case, the direct mapping
defines a simple transformation, providing a basis for
defining more complex transformations afterwards [3].
A Direct Mapping of relational data to RDF was rec-
ommended by W3C [3]. However, this recommenda-
tion only refers to data existing in relational databases
and requires defining rules later, e.g., using SPARQL
queries [29], to replace the original predefined annota-
tions with custom ones.

In the latter case, knowledge graph generation lan-
guages, e.g., the W3C recommended R2RML [8],
RML [11], and SPARQL-Generate [23], offer a declar-
ative way to define rules that specify how knowledge
graphs are generated from raw data. [R2]RML rules
are in RDF, forming themselves a knowledge graph,
i.e., the so-called rules knowledge graph (see Fig. 3).

Knowledge graphs are often constructed by consis-
tently applying the terms of certain ontologies, i.e., the
graphs respect the restrictions imposed by the defini-
tions in the ontologies. This is also applicable to rules
knowledge graphs, i.e., they need to be constructed so
that the knowledge graphs, which are generated by ex-
ecuting these rules, respect the restrictions imposed by
the used ontologies. However, consistently annotating
the existing data sources with ontology terms is not
always straightforward. Inconsistencies are introduced
when the rules are defined. Indicatively, the Seman-
tic Publishing Challenge required different solutions to
generate knowledge graphs from the CEUR-WS pro-
ceedings [14]. It was observed that, despite the fact
that these solutions were provided by Semantic Web
experts, the data was modeled differently and each so-
lution introduced different inconsistencies.

3.2. Knowledge graph quality assessment

There exists a number of methods to assess the
quality of knowledge graphs. On the one hand, there
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Figure 3. A knowledge graph needs to be consistent with regard to the used ontologies. Therefore, rules, which also form a knowledge graph,
also have to be consistent with regard to the same used ontologies.

are methods applied directly to the knowledge graph,
based on e.g., crowdsourcing [1], the comparison of
the results of queries [16, 22], inference rules [4, 27],
evolution analysis [30], or custom characteristics [25].
These methods have access to the complete knowledge
graph and can identify every inconsistency. However,
they require the graph to be available, which is not al-
ways possible in a time-constrained situation [13].

On the other hand, there are methods applied to the
rules that generate knowledge graphs, such as our pre-
vious work [12] which is based on the aforementioned
comparison of the results of queries originally applied
to the knowledge graph [22]. Such methods result in
faster execution times, but not all inconsistencies can
be identified, as some of them depend on the actual
data values in the graph.

Kontokostas et al. [22] introduced a list of common
patterns, which are called constraint types [6], that can
be used to detect inconsistencies in a knowledge graph.
These constraint types can also be used to find incon-
sistencies in rules for knowledge graph generation. As
these patterns were designed for the resulting knowl-
edge graph, not all of them can be applied to the rules.
More specific, when a pattern refers to specific val-
ues, then we can only identify inconsistencies when
the rules specify a constant value for these values, i.e.,
does not refer to actual data in the data source. For ex-
ample, if we have a constraint on the range of a prop-
erty’s numerical value, and the value in the knowledge
graph is based on a number in the existing data source,
then we cannot know if the number is within the in-
terval without inspecting the data source. However, we
know if a constant value is within the range, as this
constant value does not depend on the data source.

3.3. Inconsistency resolution

We can identify the following distinct approaches
for resolving inconsistencies, which assume RDF as
the means to represent knowledge graphs: inconsisten-
cies are resolved by updating (i) the knowledge graph
directly, i.e., triple-level, (ii) the rules that generate the
knowledge graph, i.e., rule-level, or (iii) the ontology
definitions, i.e., ontology-level.

3.3.1. Triple-level
Inconsistencies identified in knowledge graphs can

be resolved by refining the graphs directly. For RDF,
this means adding, removing, or refining certain triples.

Sieve [25] is a framework for quality assessment and
fusion of knowledge graphs. The quality assessment
task is realized through a flexible module, where users
can choose which characteristics of the data indicate
higher quality, how this quality is quantified, and how
it should be stored in the system. The output of this
task is a set of scores used during the fusion task. This
helps users in determining which data should be re-
moved or transformed.

CLAMS [16] is a system to discover and resolve in-
consistencies in knowledge graphs. It defines an incon-
sistency as a minimal set of triples that cannot coex-
ist. The system identifies all inconsistencies through
the execution of a set of queries. The involved triples
are ordered based on the number of inconsistencies
they participate in. Removing any triple from that set
will resolve the inconsistency. Users use the system’s
graphical user interface (GUI) to update or remove the
triples. The GUI allows seeing all inconsistencies that
a triple participates in and why it is part of a particular
inconsistency. Once a triple is updated or removed the
set of inconsistencies and involved triples are updated.
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These tools enable resolving inconsistencies in the
knowledge graph, but the inconsistencies in the rules
remain. Consequently, when regenerating the knowl-
edge graph with the unaltered rules, the same inconsis-
tencies will be present again.

3.3.2. Rule-level
Inconsistencies identified in knowledge graphs can

be resolved by refining the rules, instead of the gener-
ated graphs. Knowledge graph refinement through the
use of external methods [28], occurs when the source
of knowledge to refine the knowledge graph is not
part of the original knowledge graph. In our previ-
ous work [12], we proposed such a refinement where
the source of the knowledge is the ontologies and the
knowledge graph is the rules. Our uniform, iterative,
incremental assessment and refinement method for
RML rules produces a high-quality knowledge graph,
in the form of an RDF dataset (see bottom of Fig. 4).
It is created by applying the assessment process, nor-
mally applied to the knowledge graph, to the knowl-
edge graph generation rules. This allows discovering
inconsistencies, before the knowledge graph is gener-
ated. The rules assessment takes significant less time
compared to assessing the actual graph which might
take a considerable amount of time [13]. Indicatively,
assessing the knowledge graph of the English DBpe-
dia takes approximately 16 hours, assessing the knowl-
edge graph of the rules that generate the entire DBpe-
dia takes only 32 seconds. The method consists of the
following steps:

1. Inconsistencies are detected via the rules, as it
would have been done on the actual dataset.

2. Rules are automatically refined (step 2A at the
bottom of Fig. 4) and re-assessed to detect new
inconsistencies.

3. The refined version of the rules is used to generate
the knowledge graph.

4. The generated knowledge graph is assessed, using
the same quality assessment framework, to find
remaining inconsistencies.

5. Rules can be refined again to resolve these incon-
sistencies.

The same constraint types, normally applied to an
RDF dataset, are considered for the rules. For example,
instead of validating the predicate’s domain and range
against the triple’s subject and object respectively, we
validate the rules that define how the subject, predicate,
and object are generated. The properties and classes in

the rules are identified and their schemas are used to
generate test cases, as for the actual dataset.

We adjusted the assessment queries by Kontokostas
et al. [22] to apply them to the rules. However, some of
the constraint types normally applied to a dataset rely
on the final values or refer to the complete dataset and,
thus, can only be validated after the rules are executed.
For example, when the literal value of a certain prop-
erty is constrained within a given range. We refer to
the original work [22] which details how the violation
patterns are aligned to the rules that should be refined.

Although we introduced a rule-driven inconsistency
resolution method, the aforementioned two steps fo-
cus on [R2]RML [8, 11], while a similar method might
also be applied on knowledge graph generation rules
defined using a different language. More, it assumes
that the used ontologies correctly define the user’s
envisioned semantic model, which is not always the
case [27]. User intervention can be considered to de-
cide if the knowledge graph generation rules or on-
tologies need to be refined. However, the method does
not provide a way to guide users regarding which rules
should be inspected first and how these rules and on-
tologies can be refined.

3.3.3. Ontology-level
Paulheim [27] performed a data-driven analysis on

the DBpedia rules and concluded that refinements
might not only be needed on rules, but also on the on-
tology definitions. An overview of the steps followed
during his analysis can be found here and on the top of
Fig. 4:

1. Identifying and grouping inconsistencies. Re-
lation assertions and their subject’s and object’s
types are extracted from the knowledge graph.
The rules that contribute to these assertions and
types are identified. They are used, together with
the ontologies, to determine the inconsistencies
through reasoning, i.e., which combination of as-
sertions and types are inconsistent with respect to
the ontology definitions. All rules are marked that
contribute to a specific inconsistency. For each
rule, two counters are kept: how often the rule
generates an assertion involved in an inconsis-
tency (im, were m is a rule) and how often it does
not (cm).

2. Scoring inconsistencies. A score (score(m)) is
calculated for all rules as the harmonic mean
of the logarithmic support (logs(m)) and confi-
dence (c(m)). The logarithmic support is calcu-
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Figure 4. The top describes the steps (blue rectangles) followed during the analysis of DBpedia by Paulheim [27]. The bottom describes the steps
of our previous work [12] (green rectangles) and Resglass (purple rectangles), where steps 1, 3, 4 and 5 from our previous work are reused by
Resglass.

Table 1
Comparison of the required input, where they consider refinements, and for what rankings are provided of the different methods. "(x)" is used
when the input is not required at the start.

input refinements in ranking of
existing data knowledge graph rules ontologies rules ontologies rules ontologies

Dimou et al. [12] (x) (x) x x x

Paulheim [27] x x x x x x x

Resglass (x) (x) x x x x x x

lated as logs(m) = log(im+1)
log(N+1) and the confidence

as c(m) = im
im+cm

, were N is total number of state-
ments in the knowledge graph. The final score is
calculated as follows score(m) = 2·logs(m)·c(m)

logs(m)+c(m) .
3. Inspect top rules. The rules are ranked based

on the scores and the top rules are manually in-
spected to determine if the rules or ontology defi-
nitions should be refined.

4. Update rules or ontologies. The refinements are
applied, which results in refined rules and ontol-
ogy definitions. The process can be repeated to
determine and fix still remaining or newly iden-
tified inconsistencies using the refined rules and
ontology definitions.

These steps fill a gap in our previous work (see Ta-
ble 1), because it provides a set of top ranked rules
that should be manually inspected by an expert, sim-
ilar to Sieve and CLAMS. However, (i) these steps
were followed to provide a preliminary analysis, but
do not form a systematic method that improves our
original work on inconsistencies resolution [12]. For
instance, the knowledge graph and its generation rules
alignment are case specific, namely it is custom to the
DBpedia knowledge graph, thus, it can not be applied

beyond the scope of the explored use case. (ii) The
alignment among the knowledge graphs and rules that
generated them needs to be determined separately in
a dedicated module, as the provenance of the knowl-
edge graph needs to be reconstructed, but this might
not always be accurate or even possible; (iii) the steps
are limited to ranking rules and do not support ontol-
ogy terms ranking, but only refinements to ontology
definitions; and (iv) the complete knowledge graph is
needed which increases the execution time, making
this method unsuitable for use cases that deal with time
constraints [13].

Rashid et al. [30] provide a method on evolving
knowledge bases. His method looked into identify-
ing completeness issues using knowledge based evolu-
tion analysis, and consistency issues based on integrity
constraints. However, their method did not look into
addressing the results of quality assessment and, thus,
do not provide any suggestions with regard to the in-
consistencies resolution.

4. Resglass

We propose a new method called Resglass to re-
solve inconsistencies in knowledge graphs that occur
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due to the (i) rules that define how the graphs are gen-
erated, or (ii) ontology terms that annotate the data. To
achieve this, we extend our previous work on assess-
ing rules knowledge graph [12], by ranking the rules,
as proposed in the data-driven analysis [27] (see Sec-
tion 3.3.2), and by ranking the ontology terms (see Ta-
ble 1).

Resglass (i) detects inconsistencies by analyzing the
rules, instead of the knowledge graph; (ii) clusters the
rules involved in an inconsistency; (iii) ranks the rules
and ontology terms in the order that they should be in-
spected by experts; (iv) refines the rules and ontolo-
gies based on the refinements given by the experts;
(v) generates the knowledge graph; (vi) detects incon-
sistencies in the knowledge graph; and (vii) refines the
rules and ontologies based on these inconsistencies.
An overview of Resglass can be found here and at the
bottom of Fig. 4:

1 Rules inconsistency detection. We validate the
rules. The outcome is a set of inconsistencies and
the (combination of) rules and ontology terms in-
volved in these inconsistencies.

2 Rules and ontology definitions refinement.

2.1 Rules clustering. We cluster the rules per
entity, because rules concerning a single en-
tity impact each other, and, thus, their re-
finements too.

2.2 Rules and ontology terms ranking. We
calculate a score for each rules cluster and
ontology term. We use this score to provide
a ranking for the rules and ontology terms.

2.3 Rules and ontology definitions refine-
ment. We inspect the top rules and ontology
definitions that correspond with the terms
manually and apply necessary refinements.

3 Knowledge graph generation. We use the re-
fined rules and ontology definitions to generate
the knowledge graph.

4 Knowledge graph inconsistency detection. We
validate the knowledge graph. The outcome of
this step is a set of inconsistencies and the (com-
bination of) rules and ontology terms involved in
these inconsistencies.

5 Rules and ontology definitions refinement. We
further refine the rules and ontology definitions to
resolve the newly discovered inconsistencies.

In the remainder of this section, we provide a de-
tailed explanation of the aforementioned steps.

4.1. Rules inconsistency detection

We validate the rules to determine which inconsis-
tencies are present with respect to used ontologies (see
step 1 at the bottom of Fig. 4). This step is analogous
to the first step of our previous work and consists of
three substeps:

1 Instantiated constraints are generated by align-
ing the constraint types with the axioms from the
ontologies. This is done assuming that axioms
can be interpreted as constraints [22] (see Sec-
tion 3.2). This substep does not depend on how
the constraints are described, other constraints
can also be used, such as SHACL constraints [21].

2 Rules that could make an instantiated constraint
fail are grouped, based on the types of rules that
are involved in each constraint.

3 The groups are analyzed to assess if they respect
the related constraint. If this is not the case, an in-
consistency is found. For each inconsistency that
is present, we call the group of rules that cause it
the involved rules, and the related ontology terms
involved ontology terms.

Example Consider the axiom on line 13 in the on-
tology (see Listing 2). The corresponding instantiated
constraint is as follows: for every rule that annotates
an entity with the property geo:lat, there should ex-
ist a rule that annotates that same entity with the class
geo:SpatialThing. We determine all subsets of
rules that could lead to the failure of this constraint. In
our example we have two subsets: rules 38 and 43, and
52 and 57 (see Listing 1). The constraint fails because
the entity is annotated only with dbo:Place and not
geo:SpatialThing.

4.2. Rules and ontology definitions refinement

This step uses the knowledge about the inconsis-
tencies to refine the rules and ontology definitions
via three steps: rules clustering, rules and ontology
terms ranking, and rules and ontology definitions re-
finement. These steps are different from our previous
work where we use an automatic approach that applies
a set of predefined refinements to the rules (see Sec-
tion 3.3.2, steps 2A and 2B at the bottom of Fig. 4).

4.2.1. Rules clustering
The involved rules are clustered based on their con-

tribution to generate a knowledge graph from the dif-
ferent records, e.g., rows in a table or infoboxes in



10 P. Heyvaert et al. / Rule-driven inconsistency resolution for knowledge graph generation rules

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Wikipedia, in the same data source: the specific type
of the record to which a rule contributes is identified,
e.g., Wikipedia infoboxes that follow the river template
are a single type of record; followed by a grouping of
the rules per type of record, e.g., all rules that con-
tribute to the infoboxes of the river template are in the
same group. Clustering has been applied in other re-
search domain, such as information exploration [18].
For example, Web search results are clustered, based
on a set of similarities, to allow users to quickly browse
through the returned documents, because they are re-
lated to each other [19, 32]. We applied the same ap-
proach to rules where the similarity is determined by
the type of record. More specific, rules that contribute
to the same type of record are related to each other, i.e.,
other rules might affect the refinement that needs to be
applied to a rule. Therefore, we cluster the rules based
on the type of record, so that they can be inspected to-
gether.

Example Rules 21, 29, 38, 43, 52, and 57 are in-
volved in inconsistencies (see Listing 1). Rules 38 and
43 are related to the source locations. Rules 52 and 57
are related to the mouth locations. Rules 21 and 29 are
related to the river entities. This results in three clus-
ters: one with rules 38 and 43, one with rules 52, and
57 and one with rules 21 and 29.

4.2.2. Rules and ontology term ranking
Once the rules are clustered, we rank both the rules

and ontology terms to determine the order in which
they should be inspected. Thus, we need to define
a score to allow such ranking, similar to the score
used in the data-driven analysis of DBpedia (see Sec-
tion 3.3.3).

scorec(c) =
|Ic|
|I|

(1)

scoret(t) =
|It|
|I|

(2)

The scores are calculated based on the inconsisten-
cies in which the rules clusters and ontology terms are
involved. R is the set of all rules. C is the set of all
rules clusters. T is the set of all ontology terms. I is
the set of all inconsistencies. Ir is the set of inconsis-
tencies in which rule r is involved and r ∈ R . Ic is the
set of inconsistencies in which cluster c is involved,

i.e., Ic = {i|∃r : (r ∈ c ∧ i ∈ Ir)}. It is the set of
inconsistencies in which ontology term t is involved.

The score of a rules cluster c is defined as scorec(c)
(see Eq. (1)). It is calculated as the number of incon-
sistencies a cluster is involved in over the total number
of inconsistencies. The score of an ontology term t is
defined as scoret(t) (see Eq. (2)). It is calculated as the
number of inconsistencies an ontology term is involved
in over the total number of inconsistencies. Both scores
increase if the number of inconsistencies the rules clus-
ters and ontology terms are involved increases. As a
result, they will be ranked higher and inspected earlier
by experts. If two scores are equal, then determining
which cluster or term is ranked higher happens arbi-
trarily.

Example We calculate the scores for the three clus-
ters and the five ontology terms. For a cluster, we
count the unique inconsistencies in which its rules
are involved. The first cluster contains the rules 38
and 43, and the second cluster rules 52 and 57. Both
clusters are involved in one inconsistency, result-
ing in a scorec of 0.25 for both, as there are 4 in-
consistencies in total. The third cluster contains the
rules 21 and 29. Therefore, the number of incon-
sistencies is 2, resulting in a scorec of 0.50. This
means that the third cluster will be ranked before
the other two. Thus, experts will first inspect rules
21 and 29, because they are together involved in
the most inconsistencies and are related to the same
entity. The five ontology terms are dbo:Place,
dbo:sourcePosition, dbo:mouthPosition,
geo:lat, and geo:SpatialThing (see lines 4, 5,
8, 10, and 12 in Listing 2). dbo:sourcePosition
and dbo:mouthPosition are only involved in one
inconsistency. Therefore, their corresponding scoret

is 0.20. geo:lat is involved in two inconsisten-
cies. Therefore, its corresponding scoret is 0.40.
geo:SpatialThing and dbo:Place are involved
in all inconsistencies. Therefore, their correspond-
ing scoret is 1. This means that dbo:Place and
geo:SpatialThing will be ranked first, followed
by geo:lat. Note that clusters and terms can be
ranked in different ways when they have the same
score.

4.2.3. Rules and ontology definitions refinement
Once the rules are ranked, we select the top rules

clusters and ontology terms for inspection and deter-
mine which refinements should be applied, if any. The
inspection is done manually, because Resglass is de-
signed to help experts in determining the desired re-
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finements. Afterwards the rules and ontology defini-
tions can be validated again to detect remaining or
newly introduced inconsistencies, which restarts Res-
glass.

Example Assuming that we only inspect the top
rules cluster and ontology term. We start with the
rules, followed by the terms. We inspect rules 21
and 29 and observe that the link between a river
and its location of the source and mouth are cor-
rectly annotated using dbo:sourcePosition and
dbo:mouthPosition. Thus, we leave the rules un-
changed. We inspect dbo:Place and its correspond-
ing definitions 4 and 7 in the ontology. They state that
place is a class and in the range of dbo:location.
This is still correct and, thus, we leave the definition
unchanged. We inspect also geo:SpatialThing
and its corresponding definitions 5, 9, and 11, 13
in the ontology. We see that dbo:SpatialThing
is in the domain of dbo:sourcePosition and
dbo:mouthPosition, but the locations are anno-
tated with the class dbo:Place. One way to resolve
this issue is to remove the rules that annotes a loca-
tion with the class dbo:Place add a new rule that
annotates it with geo:SpatialThing.

Once the refinements are applied, we restart Res-
glass. We notice that a new inconsistency was intro-
duced, because we did remove the class dbo:Place
for a location, while this is class in the range of
dbo:location. This can be resolved by applying
another iteration of Resglass’ steps, resulting in, e.g.,
the annotation of entity with both classes dbo:Place
and geo:SpatialThing or creation of a ontology
definition that states that geo:SpatialThing is a
subclass of dbo:Place.

4.3. Knowledge graph generation

The knowledge graph is generated by applying the
semantic annotations to existing data sources via rules
(see step 3 at the bottom of Fig. 4). This graph does
not contain the inconsistencies resolved in the previ-
ous steps, because the refined rules and ontology defi-
nitions are used.

1 dbr:river_thames a dbo:River;
2 dbo:sourcePosition _:b0;
3 dbo:mouthPosition _:b2.
4
5 _:b0 a dbo:Place, geo:SpatialThing;
6 geo:lat "51◦41'39\"N".
7

8 _:b2 a dbo:Place, geo:SpatialThing;
9 geo:lat "51◦29'56\"N".

10
11 dbr:river_cam a dbo:River;
12 dbo:sourcePosition _:b1;
13 dbo:mouthPosition _:b3.
14
15 _:b1 a dbo:Place, geo:SpatialThing;
16 geo:lat "52◦20'54\"N".
17
18 _:b3 a dbo:Place, geo:SpatialThing;
19 geo:lat "52◦20'54\"N".
20
21 dbr:ghent a dbo:City;
22 dbo:location [ a dbo:Place;
23 geo:lat "51◦2'60\"N" ].
24
25 dbr:brussels a dbo:City;
26 dbo:location [ a dbo:Place;
27 geo:lat "50◦50'60\"N" ].

Listing 4: Knowledge graph generated by applying the
refined rules on the data in Figs. 1 and 2

Example We generate the knowledge graph based on
the refined rules and ontology definitions (see List-
ing 4). The triples stating that locations are also spatial
things are added, in accordance with the refinements
applied to the rules done in the previous step.

4.4. Knowledge graph inconsistency detection

The knowledge graph is validated to determine in-
consistencies (see step 4 at the bottom of Fig. 4). This
is analogous to our previous work and can be done via
a number of methods, such as the comparison of the re-
sults of queries and inference rules (see Section 3). In-
consistencies that could not be detected using the rules
can be detected in this step.

Example Triples 6, 9, 16, 19, 23, and 27 in Listing 4
state the latitude of the locations and cause six incon-
sistencies. The ontology definitions require latitude to
be given as a float (see line 14 in Listing 2), but this
is not the case, leading to a inconsistency every time
geo:lat is used.

4.5. Rules and ontology definitions refinement

Inconsistencies detected in the previous steps might
be resolved by refining the rules and ontology defini-
tions (see step 5B at the bottom Fig. 4). This is differ-
ent from the last step of our previous work, where only
the rules are refined (see step 5A in Fig. 4).
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Example Rules can be added to transform the lati-
tudes of locations for use with geo:lat instead of
the original, unchanged values.

5. Implementation

In this work, we use the RDF Mapping Language
(RML) [11] as the underlying knowledge graph gen-
eration language to apply Resglass (see Section 5.1),
because it is (i) an extension of R2RML [8], the only
W3C recommended knowledge graph generation lan-
guage (see Section 3.1); (ii) used in our previous
work [12] (see Section 3.3.2); and (iii) used during
the data-driven analysis of DBpedia [27] (see Sec-
tion 3.3.3). We describe the implementation of the Res-
glass’ steps (see Section 5.2). Note that we only dis-
cuss the first four steps, because the others are ana-
logue to the method of our previous work, and not
the ontology definitions, because these are indepen-
dent of the rules and, thus, the language. The com-
plete implementation is available at https://github.com/
RMLio/rule-driven-resolution.

5.1. RDF Mapping Language (RML)

RML is a declarative language to define how RDF
graphs are generated from existing data sources through
a set of rules. RML, as opposed to R2RML [8], does
not only support relational databases, but also data
in CSV, JSON and XML format, as well as files,
Web APIs, and so on. RML is extensible, i.e., to data
sources in other formats. We describe here the details
of the language that are relevant for this work. For the
full specification, we refer to http://rml.io/spec.html.
A subset of the corresponding RML rules for our mo-
tivating use case is given in Listing 1.

For every entity there is a corresponding Triples
Map (rr:TriplesMap): <#TriplesMap1> for
the rivers and <#TriplesMap2> for the source lo-
cations. The Term Maps define how the subjects, pred-
icates, and objects of the triples are generated: Sub-
ject Map, Predicate Object Map, Predicate Map, and
Object Map. The Subject Map (rr:SubjectMap)
defines how IRIs are generated for the RDF triples’
subjects via a template (rr:template). The Pred-
icate Object Maps define how the triples’ predicates
and objects are generated; each one requires at least
one Predicate and Object Map. In our example, for
<#TriplesMap1> we have three Predicate Object
Maps: class, link to the source location, and link to the

mouth location. For the Predicate Object Map that de-
fines the class, we use the rdf:type as the predicate
(rr:predicate). Note that the class in this example
does not depend on the data. Therefore, it is constant
(rr:constant in the Object Map). For the Predi-
cate Object Maps that annotate an entity with an at-
tribute, such as the latitude of a location, we use values
from the data (rml:reference in the Object Map)
instead of a constant.

5.2. Resglass

In this section, we discuss implementation of the
different steps of Resglass, including accompanying
examples. For this we rely on RML as our knowledge
graph generation language.

1. Rules inconsistency detection The inconsistencies
in RML rules are detected via a rule-based reasoning
system [4]. For each constraint type the corresponding
inference rules are created. The RML rules, ontologies,
and inference rules, which assess the constrains, serve
as the reasoning system’s input. The output is incon-
sistencies with references to the involved RML rules,
ontology terms and constraint types.

We rely on a rule-based reasoning system [4], in-
stead of an approach where the results of queries are
compared (see Section 3.2), which we used in our
previous work, for: (i) supporting [R2]RML shortcuts
via a custom entailment regime, (ii) finding implicit
inconsistencies, and (iii) determining the root cause.
[R2]RML defines many shortcuts to make it easier for
humans to write the rules. This means that different
rule sets can generate the same RDF dataset [8]. Thus,
every shortcut needs to be defined separately per con-
straint type in a queries execution approach.

By enabling a custom entailment regime via rule-
based reasoning, we can (i) define [R2]RML short-
cuts as custom concrete entailment regimes that can
be reused for different constraint types; (ii) detect im-
plicit inconsistencies if needed by including another
entailment regime [6]; and (iii) precisely determine
the root causes of individual inconsistencies using the
formal proof, even when including custom entailment
regimes, due to the formal logical framework of this
reasoning system. When using an approach where the
results of queries are compared, we need a different
system to reason over custom [R2]RML entailment
regimes. The connection with the original rules set is
lost and the original root cause cannot be found. How-
ever, accurately and correctly identifying root causes
across different rule sets important is for Resglass.

https://github.com/RMLio/rule-driven-resolution
https://github.com/RMLio/rule-driven-resolution
http://rml.io/spec.html
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example Consider the axiom on line 9 in the ontol-
ogy (Listing 2). The corresponding instantiated con-
straint is: for every combination of Term Maps (Predi-
cate Object Map, Predicate Map, and Object Map) that
annotates an entity with dbo:sourcePosition,
the object should refer to an entity with the class
geo:SpatialThing. Next, we determine all groups
of Term Maps that could lead to the failure of this con-
straint. In our example we have one group consisting of
<#PM1> and <#OM2>. The constraint fails as the lo-
cation entity is annotated with the class dbo:Place.

2. RML rules clustering The RML rules are clus-
tered by determining the Triples Map to which the
rules, i.e., Term Maps, correspond. This occurs be-
cause every entity is represented by a Triples Map
in the rules and every Term Map is related to at
least one Triples Map. If the rule is a Predicate Ob-
ject Map, we determine the corresponding Triples
Map via the rr:predicateObjectMap that de-
fines the relationship between the former and latter.
If the rule is a Subject Map, we determine the corre-
sponding Triples Map via the rr:subjectMap. If
the rule is a Predicate or Object Map, we determine
the Triples Map by first determining the corresponding
Predicate Object Map via the rr:predicateMap
and rr:objectMap, respectively. The correspond-
ing Triples Map of the identified Predicate Object Map
is determined as described earlier. If the rule is a
Triples Map, the corresponding Triples Map is itself.

example If we determine the clusters of the Term
Maps <#PM1>, <#PM2>, <#PM3>, <#PM4>, <#OM2>,
and <#OM3>, then we have three clusters. The first
corresponds with the Triples Map <#TriplesMap1>,
and contains <#PM1> and <#PM4>. The second cor-
responds with the <#TriplesMap2>, and contains
<#OM2> and <#PM2>. The third corresponds with
the <#TriplesMap3>, and contains <#OM3> and
<#PM3>.

3. RML rules ranking We calculate the score of ev-
ery rules cluster and ontology term to be able to rank
them. We iterate over each cluster, identified by the
Triples Map that represents an entity. We iterate over
every Terms Map that is in the cluster and count the
inconsistencies in which it is involved. Note that for
a single cluster we count an inconsistency only once,
even if two Term Maps are involved in the same in-
consistency. The score equals this count over the total
number of inconsistencies (see Eq. (1)). The ontology
terms ranking does not depend on the used language.
Thus, it is done as described in Section 4.2.2.

example The cluster of <#TriplesMap1> is in-
volved in two inconsistencies, and <#TriplesMap2>
and <#TriplesMap3> both in one. Thus, the scores
of these cluster are 0.50, 0.25, and 0.25, respectively,
analogues to our example in Section 4.2.2.

4. RML rules refinement Once the ranking is done,
experts inspect the top rules clusters, identified by the
Triples Maps, and apply the necessary refinements to
the RML rules. Note that the refinement of the ontol-
ogy definitions does not depend on the used language.
Thus, it is done as described in Section 4.2.3.

example Let’s assume that we only inspect the clus-
ter of <#TriplesMap2>. We inspect the Predicate
Maps <#OM2> and <#PM2>. One possibility is to re-
place <#OM2>with a new Object Map that annotates a
location with the class geo:SpatialThing. Once
the refinements are applied, we restart Resglass to de-
termine whether all inconsistencies are resolved or if
new inconsistencies were introduced.

5. Knowledge graph generation The knowledge graph
is generated by applying the semantic annotations to
the existing data sources via the RML rules. This graph
does not contain the inconsistencies resolved in the
previous steps, because the refined RML rules and on-
tology definitions are used (see Listing 4).

6. Knowledge graph inconsistency detection The
knowledge graph, which is an RDF graph, is val-
idated to determine inconsistencies. Inconsistencies
that could not be detected using rules can be detected
in this step. More, this step is independent of the
used language, i.e., RML, because only the knowledge
graph is used and not the rules.

example Triples Triples 6, 9, 16, 19, 23, and 27 in
Listing 4 state the latitudes and cause 6 inconsisten-
cies. The ontology definitions require the latitude to be
float (see line 14 in Listing 2), but this is not the case,
leading to an inconsistency.

7. RML rules refinement Inconsistencies detected in
the previous steps might be resolved by refining the
RML rules and ontology definitions.

example RML rules can be added to transform the
latitude of the locations instead of the original, un-
changed values. This is done by using a function
that returns the float version of a latitude. We use
the Function ontology [9] to declarative describe this
transformation in the RML rules [10]. For the lati-
tude in <#TriplesMap2>, we replace rule 41 with
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rr:objectMap <#parseLatitude>, and we
add the following rules:

1 <#parseLatitude>
2 fnml:functionValue [
3 rr:predicateObjectMap [
4 rr:predicate fno:executes;
5 rr:objectMap [
6 rr:constant ex:parseLatitude]];
7
8 rr:predicateObjectMap [
9 rr:predicate ex:inputString;

10 rr:objectMap [
11 rr:reference "latitude"]]].

The data of “latitude” is used as input for the func-
tion ex:parseLatitude3, which returns the float
version of a string. For a detailed description about
functions, we refer to https://w3id.org/function/.

6. Evaluation

We conducted a comparison to validate our hypoth-
esis (see Section 1). We compare the ranking of the
rules and ontology terms provided by experts to the
automated ranking provided by Resglass.

In Section 6.1, we elaborate on the evaluation
method, namely the procedure and participating ex-
perts. In Section 6.2, we discuss the results.

6.1. Method

In this section, we discuss the procedure followed
during our evaluation, together with the experts that
participated.

Procedure Experts on creation of ontologies and
knowledge graph generation languages were directly
contacted by the authors. Those who agreed, partook
in the following experiment: We selected 25 Wikipedia
infobox templates that are annotated with RML rules
to generate triples that are part of the DBpedia knowl-
edge graph. The templates selection was random but
we opted for the ones whose rules and ontology terms
were involved in at least one inconsistency.

Two lists were presented to the experts: (i) a list
with URLs of the Triples Maps that correspond with
the templates, and (ii) a list with URLs of the ontol-
ogy terms that are involved in at least one inconsis-

3ex is the prefix for the namespace http://example.com/

tency. We provided a file for each template containing
the inconsistencies in which the specific template is in-
volved. The file includes the type of inconsistency and
rules involved, together with the number of rules that
might be affected when the involved rule is updated.

The experts had two tasks: to rank the Triples Maps
and ontology terms in the order that they would inspect
them. The ranking was done by assigned a score to ev-
ery item in the two lists. The score is a number between
0 and 1 and multiple items can have the same scores.
When two items have the same score, both items are
equally important to be inspected. The full, detailed in-
structions and files given to the experts can be found at
https://doi.org/10.6084/m9.figshare.7410479.v2.

The random rankings were automatically gener-
ated by assigning an integer, representing the rank,
to each Triples Map and ontology term. The inte-
gers were randomly generated within the range of
1 and the total number of Triples Maps or ontol-
ogy terms. We generated 100 rankings for the Triples
Maps and 100 for the ontology terms. The correspond-
ing code can be found at https://github.com/RMLio/
rule-driven-resolution/tree/cluster/resglass-random.

Experts Three experts partook in the experiment,
their age range was 28 to 32. All were highly educated:
two had a PhD and one a master’s degree. They were
experts in knowledge graph generation rules and had
experience in the use and definition of ontologies.

6.2. Results

We compare the two rankings of each expert with
(i) our automatic rankings produced with Resglass and
with (ii) random rankings. The comparison is per-
formed using the Ranked-Bias Overlap (RBO) [31]. It
is a measure to compare two lists and returns a value
between 0 and 1. The measure allows ties of items
and puts more weight on the top-ranked items in a
list, which are not simultaneously supported by mea-
sures like Kendall’s tau [20] and Spearman’s rho. Ties
are possible in case two or more rules, i.e., Triples
Maps, or ontology terms are equally important to in-
spect. More weight is put on the top-ranked items. This
aligns with cases where experts fix a subset of the in-
consistencies, and then analyze the refined rules and
ontology definitions again to find the remaining, and
possibly, new inconsistencies.

The average overlap is 81% for the rules and 79%
for the ontology terms. The former means that there is
a large overlap between the experts’ manual ranking

https://w3id.org/function/
http://example.com/
https://doi.org/10.6084/m9.figshare.7410479.v2
https://github.com/RMLio/rule-driven-resolution/tree/cluster/resglass-random
https://github.com/RMLio/rule-driven-resolution/tree/cluster/resglass-random
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Table 2
Comparison of the experts’, Resglass, and random rankings showing
that Resglass has 80% overlap with the experts’ and that it improves
random rankings by a least 20%.

expert
RBO (%)

rules ontology term
Resglass random Resglass random

1 94 34 78 56

2 59 45 81 57

3 90 37 78 56

average 81 39 79 56

and our automatic ranking when more attention is put
to the top ranked rules then the lower ranked rules. The
latter means that again there is a large overlap between
the experts’ ranking and our automatic ranking.

Furthermore, our automatic ranking improves the
overlap with experts’ manual ranking with 41% for
rules and 23% for ontology terms, compared to a ran-
dom ranking. The RBO values for each expert’s rules
and ontology term rankings can be found in Table 2.

7. Conclusion

Knowledge graphs are often generated by apply-
ing generation rules that annotate data in existing data
sources with ontology terms. However, the knowledge
graphs might suffer from inconsistencies, which can
be introduced by the combination of rules and ontolo-
gies. These inconsistencies can be resolved by either
refining the rules or ontologies. In this article, we intro-
duce a rule-driven method called Resglass that ranks
the rules, via clustering, and ontology terms involved
in an inconsistency. The top rules and ontology terms
are inspected by experts and the necessary refinements
are applied to resolve the inconsistencies.

Refinements can be applied to both rules and ontol-
ogy terms to resolve the inconsistencies. Nevertheless,
experts need to carefully determine whether the former
or latter needs to be refined. For example, is it desired
to refine an ontology that models the data of a spe-
cific use case? Is it desired to keep to the ontology as
it is and refine the rules? Or should another ontology
be used instead of the current one? Resglass, includ-
ing the rankings, provides valuable insights to answer
these questions, such as the entities that need to most
attention when applying refinements, and the specific
ontology terms and definitions that are involved in a
lot of inconsistencies and, thus, might be problematic.

Our evaluation with experts shows that our ranking
has 80% overlap with the experts’ rankings for both
the rules and the ontology elements. Furthermore, our
ranking improves the overlap with experts’ with 41%
for rules and 23% for ontology terms, compared to
a random ranking. Thus, this evaluation provides evi-
dence towards the acceptance of our hypothesis.

The ranking proposed of Resglass can be used not
only by experts to explore manual refinements, but can
also be used to drive (semi-)automatic solution. For ex-
ample, this can be done by building on our previous
work were we proposed an automatic solution that re-
solve the inconsistencies by applying a predefined set
of refinements to the rules. The ranking, which is use
case-specific, can be used to make a more informed de-
cision regarding which refinements should be applied,
instead of solely relying on a predefined set, which is
created independent of the use case.
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