
Available online at www.sciencedirect.com

Procedia CIRP 00 (2024) 000–000 www.elsevier.com/locate/procedia

10th CIRP Conference on Assembly Technology and Systems

APLAN: open assembly planning framework in FreeCAD
Martijn Cramera,b,, Karel Kellensa,b, Eric Demeestera,b

aKU Leuven, Diepenbeek Campus, Dept. Mechanical Engineering, Research unit ACRO, B-3000 Leuven, Belgium
bFlanders Make @ KU Leuven, B-3001 Heverlee, Belgium

* Corresponding author. Tel.: +32-11-751-780. E-mail address: martijn.cramer@kuleuven.be

Abstract

In the latest decade, the consumer’s desire for personalisation has clearly taken off, challenging manufacturers to diversify their product portfolio
while maintaining the same (or near) mass-produced prices. As a result, production is nowadays geared towards low volumes with high variety for
which adaptive assembly systems are required. Hence, being able to automatically map out the assembly of complex products yields significant
strategic advantages over competing manufacturers. Although a wide range of assembly sequencing algorithms have been developed in the
past, researchers and companies still experience intellectual and financial thresholds to applying these software packages themselves. Either the
algorithms have to be largely re-engineered from scientific literature, or are offered as part of costly commercial CAD software in the form of
plugins and add-ons. However, in some cases, the developed source code is made publicly available via online collaboration platforms though in
a variety of programming languages and often requiring the cumbersome installation of additional software libraries.

Out of these needs, the proposed APLAN module arose: a software framework allowing developers to share their (dis)assembly planning
algorithms in a centralised, uniform manner through the open-source 3D parametric modelling software FreeCAD. As impetus, several in-house
developed algorithms for determining topological and geometrical (dis)assembly constraints are included as well as an academic (dis)assembly
planner. Previously, such algorithms had to be executed via the terminal, after which the extensive liaison, blocking, and AND/OR graphs were
outputted as text or static images. Through APLAN, users are now able to inspect and edit these graphs interactively and dynamically. To conclude,
this manuscript finally reports on the benchmarking of the aforementioned connection and obstruction detectors, and their academic and industrial
application for human-robot collaboration.

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer review under the responsibility of the scientific committee of the 10th CIRP Conference on Assembly Technology and Systems.

Keywords: mass customisation; assembly sequence generation; liaison graph; blocking graph; AND/OR graph

1. Introduction

In order to stay ahead of the intense competition, companies
are nowadays compelled to speed up the pace and scale at which
new products are being launched [1]. On top of this, product
personalisation is experiencing a surge, forcing manufacturers
to expand their offerings and comply with individual customer
needs [2]. Due to this ever-evolving market, today’s industry is
characterised by high-mix, low-volume production demanding
frequent changeovers and reconfigurable assembly lines.

Furthermore, products are outdating faster compared to the
past. Together with the growing awareness and legislation
for the sustainable use of natural resources, the repair, re-
manufacturing and recycling of end-of-life goods figure high
on the agenda. In order to carefully recover precious materials
and reusable parts, thoughtful disassembly is key [3].

Unsurprisingly, in both academia and the industry, flexible
and configurable (dis)assembly technologies are rapidly gain-
ing attention. Instead of ad hoc or experience-based solutions,
automated software tools are being developed to plan for the
most optimal (dis)assembly sequence given a variety of ob-
jectives. These computer-aided planners all unite in that they
exploit the designer’s knowledge embedded in a product’s 3D
models; how this product and assembly information (PAI) is
extracted from these models is what sets them apart.

1. External or file-based methods [4] aim to derive the infor-
mation necessary for assembly planning from neutral CAD file
formats, e.g. STEP, IGES and QIF. Due to their standardisation,
virtually every contemporary CAD software supports these in-
teroperable data formats. File-based approaches, therefore, do
not depend on a single proprietary CAD application. However,
during conversion the data present in the system’s native file
format might not be entirely transferred. This is defined by the
international standard of the neutral format and the software2212-8271© 2024 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer review under the responsibility of the scientific committee of the 10th CIRP Conference on Assembly Technology and Systems.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cramer et al. / Procedia CIRP 00 (2024) 000–000 2

vendor’s compliance [5]. Besides, in order to parse machine-
readable files like STEP, one often must rely upon dedicated
libraries such as STEPcode, OntoSTEP [6, 7] and JSDAI [8],
or CAD kernels including OCCT [9, 10] and ACIS.

2. Internal or interface methods [4] try to capture as much of
the valuable designer knowledge as possible by directly inter-
acting with the CAD system’s application programming inter-
face (API). In this way, thorough access is provided to a wealth
of PAI without intermediate conversion steps. However, due to
a lack of consensus among CAD software developers, today’s
interfaces are neither generic nor accessible via the same pro-
gramming language or library. Hence, internal tools mostly end
up being tailored to a particular—often costly and proprietary—
CAD package such as Autodesk Inventor [11], Dassault’s CA-
TIA [12, 13] and SolidWorks [10, 14], or PTC CREO [15, 16],
of which some license advanced API access separately.

Furthermore, it has been noticed that these tools, whether
file or interface-based, are rarely made openly available com-
pelling interested users to largely recreate the developed PAI
extractors and assembly sequencing algorithms from scientific
literature. In some cases, source code is shared via online col-
laboration platforms, e.g. [13], though scattered across separate
code repositories, in different programming languages, and of-
ten requiring the installation of extra software packages.

The assembly planning framework outlined in this research
aims to address these hurdles. Indeed, by creating a module or
add-on to existing CAD software, users can benefit from com-
prehensive accessibility to the PAI housed within that CAD sys-
tem, similarly to interface methods but without being restricted
by the API. By opting for FreeCAD [17]—a well-established
open-source 3D parametric modeller carried by an extensive de-
velopers community—similar independence as external meth-
ods is provided without resorting to commercial software.

Two recent initiatives sharing similarities with the presented
APLAN module are ASPIP [18] and CAASP [19]. Both also
aim at providing the industry with a graphical software applica-
tion for CAD-based assembly sequence generation. However,
ASPIP only supports topological constraints. Moreover, these
two apps do not appear to be publicly available. The authors
expect that due to its open-sourceness, APLAN will contribute
to future researchers sharing their assembly planners in a cen-
tralised, ready-to-use way without users needing to install addi-
tional libraries or delve into the source code themselves.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses the building blocks that make up the presented
framework. To curb the combinatorial complexity related to as-
sembly planning, it is essential to set constraints. Therefore,
Section 3 elaborates on the solvers available through APLAN
to automatically determine the assembly’s topological and ge-
ometrical constraints together with two in-house developed re-
finement methods for accelerating this search. Furthermore, this
section reports on the experimental validation of their perfor-
mance on six academic and industrial products. Section 4 sub-
sequently analyses the obtained results, and reflects on past ap-
plications for which the APLAN workbench proved to be in-
strumental. Finally, Section 5 summarises the presented work
and points to future research directions.

2. Framework architecture

Similar to commercial design software, FreeCAD is cen-
tred around the concept of workbenches: a collection of tools
developed to serve one specific task often gathered under the
same tab, ribbon or menu of the graphical user interface (GUI).
FreeCAD’s 21st release ships with 20 built-in workbenches and
over 100 additional ones, thanks to its solid community.

The set of commands available via the proposed APLAN
workbench1 focuses on assembly planning. Since a substan-
tial portion of FreeCAD’s user base is already familiar with
the workflow of the FEM (finite element method) workbench,
it has been decided to structure APLAN the same way, using
the same concepts (e.g., containers, solvers, constraints) as this
would flatten any learning curve and ease its adoption.

2.1. Analysis container

First and foremost, the user is required to create an analy-
sis container. As its name suggests, this container functions as
a data structure for collecting every object related to the as-
sembly planning process. In addition, it makes sure that the re-
sults outputted by the constraint detectors and planners for a
particular assembly product are stored in the same designated
working directory. However, there is no limitation on the num-
ber of assembly containers one can create for a single assembly.
The user could, for instance, decide to experiment with different
constraint solvers, planner settings, or to filter some parts, and
keep these settings and outputs separated into multiple uniquely
labelled container objects.

2.2. Part filter

Prior to starting off, the parts considered for planning should
be determined. Thus far, the APLAN workbench solely consid-
ers products whose geometries remain unaltered. Operations re-
quiring the manipulation of non-rigid materials, or components
to temporarily or permanently deform during (dis)assembly are
not modelled in the CAD environment. In those cases, the plan-
ning of possible (dis)assembly sequences is still feasible pro-
vided all self-obstructing features are removed, flexible materi-
als are approximated as rigid, or these deformable components
are excluded from the analysis altogether. For the latter option,
a part filter can be created, which allows the user to (un)select
the components suitable for analysis.

Another functionality offered by this part filter object con-
sists of grouping individual components into uniquely labelled
compounds. A compound represents a collection of topological
shapes that can be viewed and manipulated as though it is a sin-
gle solid component (e.g. the bolts of a flange mounting). An-
other use could be the creation of non-divisible subassemblies
when it is undesired to map out a product’s entire assembly se-
quence down to its last bolt. In this case, one could exclude all
assembly operations associated with a particular subassembly
by grouping its constituent parts in a compound object.

1 Interested readers are referred to the code repository for details and videos:
https://github.com/martcram/FreeCAD-APLAN.

2

https://github.com/martcram/FreeCAD-APLAN


Cramer et al. / Procedia CIRP 00 (2024) 000–000 3

2.3. Constraints

Since the (dis)assembly of an n-sized product can be re-
garded as an n-permutation, a factorial relationship (n!) exists
between the size of a product and the number of sequences in
which it can be theoretically (dis)assembled. However, due to
practical limitations, only a tiny proportion of this set is also
physically possible. Hence, before creating assembly plans in
APLAN, it is paramount to specify the topological and geomet-
rical constraints of the product under analysis.

Topological constraints are graphically represented as a con-
nection diagram (or liaison graph): an undirected graph whose
vertices correspond to the individual components, and the edges
represent the components standing in direct physical contact
with each other after assembly. Geometrical constraints reflect
how the geometries of these components impact each other dur-
ing (dis)assembly and are formalised as several obstruction di-
agrams (or blocking graphs), each associated with a specific
(dis)assembly motion. The vertices of these undirected graphs
correspond to the product’s components, while their edges point
from the target component to the components that block this
target when being disassembled along the direction considered.

Via the APLAN workbench, users have two options for cre-
ating connection and obstruction diagrams: (1) manually us-
ing the interactive graph visualiser, or (2) automatically us-
ing so-called connection and obstruction detectors (see Sec-
tion 3). While in previous studies, assembly planners mainly
conveyed their results as textual representations in the termi-
nal or via static images, the constraint diagrams generated by
APLAN are displayed as dynamic force-directed graphs allow-
ing to inspect, create and modify them in an interactive manner.
Since JavaScript does not integrate with FreeCAD by default, a
browser-like environment was set-up in the proposed module.

2.4. AND/OR graph

Due to their sheer number, a product’s feasible assembly se-
quences must be compiled in a suitable format for human pro-
cess planners to inspect and learn from them. The AND/OR
graph, a directed hypergraph popular for studying decompos-
able production systems [20], provides such a condensed and
human-interpretable representation. Its vertices stand for all
subassemblies that can practically be constructed considering
topological and geometrical constraints, whereas the hyperarcs
connecting them reflect all feasible (dis)assembly operations.

To maintain a combinatorially manageable search for poten-
tial assembly sequences, the reverse cut-set algorithm described
in [21, p. 188] was implemented in APLAN, which is capable
of automatically determining a product’s AND/OR graph based
on its connection and obstruction diagrams.

2.5. Assumptions

In order to demonstrate the potential of the presented as-
sembly planning module as well as its functionalities, some
frequently made assumptions have been adopted. Assembly-by-
disassembly (AbD): assembly sequences are formed by revers-
ing the different orders in which the components of a product

Fig. 1. CAD models of the six assemblies studied in this work: [BP1] simple
Bourjault’s ballpoint pen (n = 6), [BP2] complex Bourjault’s ballpoint pen (n =
6), [TT] toy truck (n = 21), [SM] shear mould (n = 17), [CP] centrifugal pump
(n = 22), [DP] diaphragm pump (n = 27) with n: the number of components.

can be disassembled. Translational Cartesian movements: ob-
struction detectors strictly consider linear (dis)assembly mo-
tions along the six Cartesian directions for collisions. 1-
movability: every component can be (dis)assembled from the
rest of the product using a single translational motion with-
out creating intermediate assembly states. Monotony: no other
components should be relocated prior to removing a compo-
nent. Non-monotone products are often found in locking mech-
anisms. 2-fold or binary operations: restricted by our morphol-
ogy, humans can only efficiently manipulate two things simul-
taneously, hence focussing on (dis)assembly operations involv-
ing two components or subassemblies. Rigidity: all assembly
components are assumed to be solid and rigid. Additionally,
(dis)assembly operations do not require temporary or perma-
nent deformations. Stability: components are not subjected to
internal (elasticity and friction) or external forces (gravity).
When touching, components make up a stable composition.

3. Constraint detectors

This section covers the range of solvers available through
APLAN to automatically identify topological and geometrical
constraints as well as two refinement methods to speed up this
process. In order to demonstrate the performance of these au-
tomatic techniques and the impact of the developed refiners,
six differently-sized assemblies, including both academic and
industrial products, are subjected to APLAN’s constraint detec-
tors. Figure 1 pictures the CAD models of these products, which
can be accessed on GitHub2.

3.1. Connection detector

This constraint detector identifies which components of a
given product physically touch after assembly, without consid-
ering the type of connection. Its output consists of the set of

2 https://github.com/martcram/FreeCAD-APLAN-benchmark.git

3

https://github.com/martcram/FreeCAD-APLAN-benchmark.git


Cramer et al. / Procedia CIRP 00 (2024) 000–000 4

topological constraints represented as a connection diagram and
stored in the JSON file format. In APLAN, one can create a con-
nection detector supporting the following five solver methods
that use the Open CASCADE Technology (OCCT) geometric
modelling kernel.

• BRepExtrema ShapeProximity: determines the overlapping
faces between two given shapes. The underlying algorithm
could be set to solely detect intersecting faces or faces lo-
cated within a specific tolerance value dov. Due to its use of
pre-triangulated shapes, accuracy is traded for performance.
• BRepExtrema DistShapeShape: computes the minimum dis-

tance between two shapes. If the resulting distance is below
a certain threshold value dmin, the components linked to these
shapes are considered touching each other.
• GeoData & BRepClass3d SolidClassifier: samples points on

the surface of the smallest of two given components, consid-
ering a certain sampling rate. Each point is then sequentially
checked on being inside or on the other component’s shape.
• BRepMesh & BRepClass3d SolidClassifier: creates a trian-

gle mesh for the smallest of two given components, consider-
ing a certain maximum linear deflection. Each vertex is then
sequentially checked on the same conditions (using the same
function) as for the previous solver.
• BRepAlgoAPI Section: performs a section operation between

two shapes. If the resulting shape consists of any vertices,
the components linked to both input shapes are considered
touching each other.

The constraint detection itself entails determining for every
bipartite combination that results from the set of n assembly
components whether they stand in physical contact using the
formerly described methods. However, it is important to use
these functions deliberately and sparingly as they operate on
the entire geometry of each component, making them expen-
sive operations. Checking n · (n − 1) combinations would only
be useful for strongly connected products, which are rare if not
non-existent in practice. Hence, the pairs of potentially touch-
ing components should first be refined by checking whether
the bounding boxes of these components intersect after initially
enlarging them along the six Cartesian axes by half of a pre-
specified swell distance dsw. The performance of the BRepEx-
trema DistShapeShape solver and the impact of this refinement
method is validated quantitatively in Table 1.

3.2. Obstruction detector

To automatically determine the geometrical constraints as-
sociated with a product’s (dis)assembly, an obstruction detec-
tor can be created. The purpose of this constraint searcher is to
examine, for each of the product’s components (C) and prede-
fined disassembly directions, which other components prevent
the considered target component (T ) from being removed dur-
ing its disassembly. More specifically, starting from the prod-
uct’s assembled state, every component is alternately displaced
in discrete steps until entirely separated while the others stay
put. During this virtual and stepwise disassembly, the selected
solver identifies collisions between T and the set of remaining

Table 1: Computation times in seconds (mean ± SEM, k = 5) and number of
contact checks for finding the topological constraints of six assembly products
with and without refinement. Refiner: SwellBoundBox (dsw : 0.01 mm); Solver:
BRepExtrema DistShapeShape (dmin : 1 × 10−5 mm)

Refine
Model ID

BP1
(n=6)

BP2
(n=6)

SM
(n=17)

TT
(n=21)

CP
(n=22)

DP
(n=27)

No
0.091±
0.001

0.147±
0.003

2.411±
0.004

6.201±
0.029

24.38±
0.02

28.67±
0.03

30 30 272 420 462 702

Yes
0.070±
0.001

0.124±
0.003

0.639±
0.006

3.223±
0.015

8.215±
0.022

8.789±
0.015

10 10 24 48 59 60

components (C−), followed by constructing the obstruction dia-
gram for that particular disassembly motion (d⃗). This procedure
is repeated for all pre-specified motion directions after which
the results are exported to JSON.

At every position of T , and for each combination of {T }×C−,
the fast-but-less-accurate BRepExtrema ShapeProximity func-
tion first examines if the faces of the target shape overlap with
those of the other component before calling the selected solver.
The solver method subsequently confirms whether or not these
geometries actually collide. It has been observed that this two-
step screening procedure outperforms in terms of computation
time as opposed to directly putting the slower, more accurate
solver functions into operation. The first three solver methods
available through APLAN for establishing a product’s geomet-
rical constraints employ the same OCCT functions described
in Section 3.1 (number 2 – number 4) but are succeeded by
the BRepFeat IsInside operation to ascertain that the provided
shapes actually intersect instead of touch. The two remaining
solvers rely on the following functions:

• BOPAlgo Common: performs a boolean intersection opera-
tion on two given shapes, keeping their common section. If
the volume of the resulting geometry exceeds a pre-specified
threshold value, both shapes are identified as colliding.
• BOPAlgo Fuse: performs a boolean union operation on two

given shapes, joining them together. If the volume of the re-
sulting geometry exceeds the sum of both shapes’ separate
volumes minus a pre-specified threshold value, both shapes
are identified as colliding.

As follows from the foregoing Cartesian product, the solver
must perform n − 1 expensive collisional checks from every
element of C−, at every position of T . To speed up the obstruc-
tion analyses, reducing the amount of collision checks is vital.
Therefore, the objective of the developed refinement stage is to
determine, at each discrete position of T , which subsection of
C− might potentially obstruct its disassembly along d⃗. To this
end, the presented refiner divides T ’s disassembly motion into
distinct zones, i.e. obstruction intervals, each individually asso-
ciated with a subset of C− that may intersect with T (see Fig. 2).
Consequently, when the solver moves T through one of these
intervals, only the components in these subsets will be verified
for possible collisions resulting in significant time gains.

4



Cramer et al. / Procedia CIRP 00 (2024) 000–000 5

Fig. 2. Expected obstacles for each obstruction interval when disassembling
the ink (T ) of Bourjault’s ballpoint pen along the positive X axis, without (top)
and with (bottom) refinement. Legend: (white) bounding boxes, (yellow) T ’s
elongated bounding box, (blue) interval boundaries, (pink) T ’s origin, (black)
positions taken by T ’s origin when travelling through each obstruction interval.

First, the global bounding box (C⊠) is determined that en-
closes all C of the assembly. Next, the target component’s
bounding box (T⊠) is extended to the edge of C⊠ according
to d⃗. Subsequently, the intersections are calculated between the
bounding boxes of C− and the elongated bounding box (T ∗⊠) re-
sulting from the previous process step. The outer dimensions of
these beam-shaped intersections, projected onto d⃗ and relative
to the origin (O), represent the components’ intersection inter-
vals. O is defined to equal the initial position of T when in its
assembled state, from which all other positions and dimensions
are referenced. The lower bound of each intersection interval
is subsequently reduced by the size of T⊠, according to d⃗, and
where necessary, truncated at the lower bound of T⊠ projected
onto d⃗; the upper bound of each interval remains unaltered. Fi-
nally, the boundaries of the previously introduced obstruction
intervals can be obtained by sorting the limits of these intersec-
tion intervals in ascending order and grouping them into pairs.
The set of expected obstacles (Ei) in each obstruction interval i
is then obtained by establishing which intersection intervals of
the components in C− overlap with these obstruction intervals.
If the solver has identified every potential collision in a partic-
ular obstruction interval j, given by E j, the travel of T through
that interval is aborted and continued in the next.

Besides reducing the number of collision checks at each po-
sition of T , additional time gains are obtained by decreasing the
number of positions traversed inside an obstruction interval. To
this end, the fixed step size x over which the solver incremen-
tally moves T is varied proportionally as a function of the length
of the current obstruction interval considering ratio r and min-
imum step size xmin. A final saving is achieved by distributing
the individual obstruction analyses for each d⃗ across multiple
processes, therewith performing these operations in parallel.
The performance of the BRepExtrema DistShapeShape solver
and the impact of the aforementioned enhancements are deter-
mined quantitatively in Table 2.

Table 2: Computation times in seconds (mean ± SEM, k = 3) and number of
collision checks for finding the geometrical constraints of six assembly prod-
ucts along the three positive Cartesian directions, with and without refinement
and a varying step size, each executed on a separate process of the PC used.
Refiner: BoundBox (x : 1.0 mm, xmin : 1.0 mm, r : 0.10); Solver: BRepEx-
trema DistShapeShape (dov : 1 × 10−5 mm, dmin : 1 × 10−5 mm)

Refine
Model ID

BP1
(n=6)

BP2
(n=6)

SM
(n=17)

TT
(n=21)

CP
(n=22)

DP
(n=27)

No
2.229±
0.003

5.877±
0.020

186.1±
0.8

325.6±
0.3

> 3600
1063 ±
4

6,500 3,275 71,952 84,440 471,597 265,902

Yes
0.455±
0.001

1.072±
0.006

6.568±
0.041

57.47±
0.09

407.4±
1.2

392.6±
2.2

1,217 1,217 3,116 6,313 23,769 14,496

4. Discussion

4.1. Benchmarking

Tables 1 and 2 report on the recorded computation times re-
quired by APLAN’s connection and obstruction detectors for
respectively determining the topological and geometrical con-
straints of the six differently-sized products pictured in Fig-
ure 1. In addition, the impact of the two self-developed refine-
ment procedures is analysed. These calculation were performed
on a PC with an Intel® Core™ i9-9920X CPU @ 3.50 GHz ×
24 and 62.5 GB RAM memory. For the study of both detectors,
the BRepExtrema DistShapeShape solver was chosen due to its
relatively high accuracy and acceptable speed compared to the
other solvers described in Sections 3.1 and 3.2.

It has been observed that the connection detector’s perfor-
mance depends on the product size n (cfr. SM and DP) and the
complexity of its constituent components (cfr. BP1 and BP2),
measured by the number of vertices, edges and faces they com-
prise of. Without any further optimisations, the set of n com-
ponents can be paired into n · (n − 1) combinations requiring
an equal amount of computationally expensive contact checks,
which lead to calculation times between 91 ms (BP1) and 28.7 s
(DP) for the products considered. To reduce the number of
solver operations, a refinement procedure was implemented that
first screens every component pair based on whether their en-
larged bounding boxes intersect. This reduced the amount of
contact checks between 66.7% and 91.5% translating to a time
saving of 15.7% (BP2) up to 73.5% (SM).

As defined by the assumptions in Section 2, only Cartesian
directions of disassembly are considered for obstruction detec-
tion in APLAN. Moreover, since the obstruction graph along a
particular direction equals the transpose of that graph for the op-
posite direction, calculations were only performed for the three
positive coordinate axes, and distributed across separate pro-
cesses. In absence of any refinement stage, the selected solver
must at most perform, for each component sequentially, n − 1
collision checks at every position of this target during its dis-
assembly along one of the pre-specified directions. For a fixed
step size of 1 mm, this means a maximum of 3,275 (BP2) and
471,597 (CP) computationally demanding solver operations to

5



Cramer et al. / Procedia CIRP 00 (2024) 000–000 6

compose three constraint diagrams. In terms of computation
times, the obstruction graphs of the six products were found in
2.2 s (BP1) up to 17.7 min (DP). To be of practical relevance for
the industry, a refiner was presented that reduced the number of
collision checks by 62.8% up to 95.7%, resulting in significant
time gains between 63.1% (DP) and 96.47% (SM).

4.2. Applications

The authors formerly employed the introduced FreeCAD
workbench in the area of human-robot collaborative assembly
[22]. From APLAN’s output, a probabilistic decision model
was automatically constructed based on which a robotic assis-
tant could select and perform joint assembly operations, con-
sidering its human partner’s intention. The assembly planning
framework has also been used in an industrial research project
targeting the development of an inclusive assembly cell for
sheltered workers [23]. APLAN assisted in exploring optimal
assembly sequences as well as designing multi-purpose jigs and
fixtures.

5. Conclusion

While many assembly sequencing algorithms already exist,
academia and industry still face intellectual and financial barri-
ers when applying these software tools themselves. This paper,
therefore, presents the APLAN workbench: a software frame-
work that enables developers to share their (dis)assembly plan-
ning algorithms as part of the open-source 3D parametric mod-
eller FreeCAD in a ready-made and centralised way.

As a starting point, APLAN offers two different detectors
for automatically identifying an assembly’s topological and ge-
ometrical constraints. As demonstrated by performance tests on
six academic and industrial products, the two newly developed
refinement procedures drastically decreased the computation
times, therewith facilitating this module’s uptake by industry.
In order to ease the inspection or modification of the resulting
constraint graphs, APLAN also features an interactive graph vi-
sualiser. Given the former constraints, users are finally provided
with an academic AND/OR graph generator to determine all
feasible sequences in which a product can be (dis)assembled.

Future work will focus on benchmarking the remaining
solvers of APLAN’s connection and obstruction detectors and
including extra assembly sequence generators. As understand-
ing the type of connection between components could improve
assembly orders and computing times, adding such classifiers
will be considered for upcoming extensions. Furthermore, since
AND/OR graphs may quickly become cluttered for large or
complex products, the interactive graph visualiser will be ex-
tended to support these hypergraphs as well.

Acknowledgements

Martijn Cramer would like to thank the FWO (Research
Foundation - Flanders) for facilitating this research under grant
agreements 1SA6919N and 1SA6921N.

References

[1] A. Buffoni, A. de Angelis, V. Grüntges, A. Krieg, How to make sure your
next product or service launch drives growth, https://www.mckinsey.com,
accessed: 2023-09-26 (2017).

[2] N. Arora, et al., The value of getting personalization right—or wrong—is
multiplying, https://www.mckinsey.com, accessed: 2023-09-26 (2021).

[3] S. K. Ong, M. M. L. Chang, A. Y. C. Nee, Product disassembly sequence
planning: state-of-the-art, challenges, opportunities and future directions,
Int. J. Prod. Res. 59 (11) (2021) 3493–3508.

[4] B. Hasan, J. Wikander, A review on utilizing ontological approaches in
integrating assembly design and assembly process planning (APP), Int. J.
Multicult. Educ. 4 (11) (2017) 5–16.

[5] A. Petruccioli, F. Pini, F. Leali, Model-based approach for optimal alloca-
tion of GD&T, in: Proc. Int. Conf. Des. Tools Methods Ind. Eng., 2022, pp.
277–284.

[6] H. Gong, L. Shi, D. Liu, J. Qian, Z. Zhang, Construction and implemen-
tation of extraction rules for assembly hierarchy information of a product
based on OntoSTEP, Procedia CIRP 97 (2021) 514–519.

[7] J. Qian, Z. Zhang, C. Shao, H. Gong, D. Liu, Assembly sequence planning
method based on knowledge and ontostep, Procedia CIRP 97 (2021) 502–
507.

[8] C. Pan, S. S. Smith, G. C. Smith, Automatic assembly sequence planning
from STEP CAD files, Int. J. Comput. Integr. Manuf. 19 (8) (2006) 775–
783.

[9] D. Agrawal, S. Kumara, Automated assembly sequence planning and sub-
assembly detection, in: Proc. ISERC, 2014, pp. 781–788.

[10] A. Neb, Review on approaches to generate assembly sequences by extrac-
tion of assembly features from 3D models, Procedia CIRP 81 (2019) 856–
861.

[11] P. Neto, N. Mendes, R. Araújo, J. Norberto Pires, A. Paulo Moreira, High-
level robot programming based on CAD: dealing with unpredictable envi-
ronments, Ind. Rob. 39 (3) (2012) 294–303.

[12] M. V. A. R. Bahubalendruni, B. B. Biswal, B. B. V. L. Deepak, Com-
puter aided assembly attributes retrieval methods for automated assembly
sequence generation, Int. J. Min. Miner. Eng. 11 (4) (2017) 759–767.

[13] S. Münker, R. H. Schmitt, CAD-based AND/OR graph generation algo-
rithms in (dis)assembly sequence planning of complex products, Procedia
CIRP 106 (2022) 144–149.

[14] C. M. Costa, et al., Automatic generation of disassembly sequences and ex-
ploded views from SolidWorks symbolic geometric relationships, in: IEEE
ICARSC, 2018, pp. 211–218.

[15] L.-M. Ou, X. Xu, Relationship matrix based automatic assembly sequence
generation from a CAD model, Comput. Aided Des. 45 (7) (2013) 1053–
1067.

[16] S. Tao, M. Hu, A contact relation analysis approach to assembly sequence
planning for assembly models, Comput. Aided Des. Appl. 14 (6) (2017)
720–733.

[17] J. Riegel, W. Mayer, Y. van Havre, FreeCAD (version 0.22.0), [Software]
Available from https://www.freecadweb.org (2023).

[18] R. Viganò, G. Osorio-Gómez, ASPIP - automatic and assisted definition
of assembly sequences based on component liaisons and subassemblies
approach, J. Adv. Manuf. Technol. 5 (3) (2021) 15–28.

[19] M. Yao, et al., Computer-aided assembly sequence planning for high-mix
low-volume products in the electronic appliances industry, in: Proc. CPSL,
2022, pp. 91–100.

[20] L. S. Homem de Mello, A. C. Sanderson, AND/OR graph representation
of assembly plans, IEEE Trans. Robot. Autom. 6 (2) (1990) 188–199.

[21] A. J. D. Lambert, S. M. Gupta, Disassembly modeling for assembly, main-
tenance, reuse, and recycling, The St. Lucie Press series on resource man-
agement, CRC Press, 2005.

[22] M. Cramer, K. Kellens, E. Demeester, Probabilistic decision model for
adaptive task planning in human-robot collaborative assembly based on de-
signer and operator intents, IEEE Robot. Autom. Lett. 6 (4) (2021) 7325–
7332.

[23] Flanders Make, Innovative assembly cell boosts self-confidence of work-
ers, https://www.flandersmake.be, accessed: 2023-09-26 (2023).

6

https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/how-to-make-sure-your-next-product-or-service-launch-drives-growth
https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/the-value-of-getting-personalization-right-or-wrong-is-multiplying
https://www.freecadweb.org
https://www.flandersmake.be/en/insights/news/innovative-assembly-cell-boosts-self-confidence-workers/

