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ABSTRACT 

 

Occasionally, problems are solved with a sudden Aha! Moment (insight), while the mundane approach 

to solve problems is analytical (non-insight). At first glance, non-insight appears to depend on the 

availability and taxation of cognitive resources to execute the step-by-step approach, whereas insight 

does not or to a lesser extent. However, this remains debated. To investigate the reliance of both solution 

types on cognitive resources, we assessed the involvement of the prefrontal cortex using vagally 

mediated heart rate variability (vmHRV) as an index. Participants (N = 68) solved 70 compound remote 

associates word puzzles solvable with insight and non-insight. Before, during, and after solving the 

word puzzles, we measured vmHRV. Our results showed that resting-state vmHRV (trait) showed a 

negative association with behavioural performance for both solution types. This might reflect inter-

individual differences in inhibitory control. As the solution search requires one to think of remote 

associations, inhibitory control might hamper rather than aid this process. Furthermore, we observed, 

for both solution types, a vmHRV increase from resting-state to solution search (state), lingering on in 

the post-task recovery period. This could mark the increase of prefrontal resources to promote an open-

minded stance, essential for divergent thinking, which arguably is crucial for this task. Our findings 

suggest that, at a general level, both solution types share common aspects. However, a closer analysis 

of early and late solutions and puzzle difficulty suggested that metacognitive differentiation between 

insight and non-insight improved with higher trait vmHRV, and that a unique association between trait 

vmHRV and puzzle difficulty was present for each solution type. 

 

Keywords: Aha! experience, insight problem solving, heart rate variability, prefrontal cortex
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1. INTRODUCTION 

As people go about their daily lives, they are often confronted with problems requesting their 

undivided attention, such as changing a flat tire or tackling monthly finances. Most of these problems 

can be solved by relying on stored knowledge and procedures, such as factual knowledge, heuristics, 

and prior problem solving experiences accumulated through life, for instance, via education (Weisberg, 

2015). One of the prominent features of this analytical problem-solving strategy is that it is effortful 

and demands attention (Stuyck et al., 2022). It requires the problem solver to maintain a representation 

of the problem while applying different solution strategies and to avoid being distracted by irrelevant 

information (Shipstead et al., 2016; Wiley & Jarosz, 2012). Although analytical problem-solving is the 

general modus operandi to solve complex problems, occasionally, a solution is also obtained by a 

sudden epiphany. The felt component of such an epiphany is known as the Aha! experience or Eureka 

moment, and we will refer to this phenomenon as insight (Danek et al., 2014). At first glance, one of 

insight's defining features that sets it apart from the analytical, non-insight strategy is the apparent 

effortlessness of solution retrieval: No specific overt problem-solving behaviour seems to precede the 

insightful solution (e.g., Laukkonen et al., 2021). This conception of insight fits well with the 

phenomenological reports of different great thinkers, such as Judah Folkman and John Nash (Kounios 

& Jung-Beeman, 2015; Laukkonen et al., 2020). The great French physicist André-Marie Ampère 

described his experience of insight as follows:  
 

"I gave a shout of joy. ... It was seven years ago I proposed to myself a problem which I have 

not been able to solve directly, but for which I had found by chance a solution, and knew that 

it was correct, without being able to prove it. The matter often returned to my mind and I had 

sought twenty times unsuccessfully for this solution. For some days I had carried the idea about 

with me continually. At last, I do not know how, I found it, together with a large number of 

curious and new considerations concerning the theory of probability." (Horvitz, 2002, p. 1) 

 

This description vividly illustrates the out-of-the-blue, effortless nature of insight. Such 

phenomenological reports have spurred some insight theorists to propose that insight mainly arises via 

unconscious processes (Fedor et al., 2017; Jung-Beeman et al., 2004). For example, it has been argued 

that prior assumptions and knowledge misguide the problem solver to an over-constrained solution 

space. As a result, the problem solver cannot find the solution and reaches a dead end. This state of 

impasse subsequently propagates negative feedback through the information processing system, thereby 

decreasing the activation of the misguiding assumptions and redistributing the unconscious spreading 

of activation to more remotely related concepts needed to relax the self-imposed constraints. As those 

constraints are relaxed, the whole solution space is restructured, eventually revealing the correct 

solution path (Fedor et al., 2017; Ohlsson, 2011, 2018). Other theorists, however, have questioned this 

conceptualization of insight (Benedek & Fink, 2019; Weisberg, 2018) and have argued that insight and 

non-insight are more alike than meets the eye. In their view, restructuring the initial erroneous solution 

space is achieved by consciously and incrementally building on new information arising from failed 

solution attempts (MacGregor et al., 2001; Weisberg, 2015). Proponents of each theory have suggested 

either a mainly unconscious or conscious trajectory leading to an insightful solution, although they 

concede that both insight and non-insight rely on conscious and unconscious processes to attain the 

solution, albeit to differing degrees (Becker et al., 2021; Bowden & Grunewald, 2018; Weisberg, 2015). 

It seems clear that non-insight requires a conscious mental workspace where information can be 

manipulated to reach task goals. Working memory (WM) is often referred to as such a workspace (e.g., 

Frith, 2021, Wiley & Jarosz, 2012). However, it remains unclear whether insight relates similarly to 

this conscious WM workspace. In the following, we briefly overview the relationship between 

consciousness, working memory, and the two solution types (i.e., insight and non-insight).  
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1.1  Consciousness, working memory, and the two solution types 

It has been argued that the difference between conscious and unconscious states is that 

conscious states result from large-scale brain connections, with sensory cortices providing content-

specific information and prefrontal and parietal cortices collating this information into rich subjective 

experiences (see, for a discussion, Frith, 2021). Hence, according to such perspectives, conscious access 

to mental representations depends on the prefrontal and parietal cortices (Dehaene, 2014), precisely 

those areas also involved in the goal-directed manipulation of mental representations (i.e., cognitive 

control; Martin-Signes et al., 2020; Riddle et al., 2020). Trübutschek et al. (2019) illustrated the 

interwoven character of consciousness and cognitive control by showing that cognitive manipulation of 

mental representations in service of task goals requires consciousness (but see also Sklar et al., 2021, 

for an opposing view). One central prefrontal processing hub where information is consciously 

manipulated to cope with ongoing task demands is WM (Chuderski & Jastrzebski, 2018; Frith, 2021; 

Funahashi, 2017). This hub enables people to maintain the problem representation, to focus their 

attention on successful instead of unsuccessful solution paths, to switch between solution strategies, 

and to steer away from irrelevant information (Shipstead et al., 2016; Wiley & Jarosz, 2012). The 

capacity of WM (WMC), which one may think is related to problem solving ability, has been 

approached from a trait perspective (i.e., inter-individual differences) and a resource-dependent 

perspective (i.e., limited cognitive resources). From a trait perspective, it is argued that people with a 

higher WMC than those with a lower WMC can sustain more task-relevant information in WM. This 

enables them to solve problems more efficiently than low-WMC people because they can 

simultaneously consider a broader spectrum of solution approaches to navigate the solution space 

(Unsworth et al., 2014). For example, it has been found that people's WMC is positively associated with 

more effective strategy use and performance in complex problem-solving (e.g., Ellis & Brewer, 2018; 

Gonthier & Roulin, 2020; Peng et al., 2016). From a resource perspective, WMC is conceived as a 

limited cognitive resource that can become depleted when increasing amounts of information require 

attention to cope with one or more ongoing tasks (Oberauer, 2019; Oberauer et al., 2016). For example, 

a recent meta-analysis showed that performing a secondary task while solving arithmetic problems (i.e., 

dual-task paradigm) hampered arithmetic performance (Chen and Bailey, 2021).  

One would expect non-insight problem solving, typically defined as conscious and effortful, to 

be closely related to the trait- and resource-dependent perspectives of prefrontal-based WMC. 

Specifically, WMC should be positively associated with non-insight problem solving, and non-insight 

should depend on the availability of cognitive resources. However, for insight, the relation is less 

obvious. If insight entails a conscious solution search, it should also relate to the trait- and resource-

dependent perspectives of prefrontal-based WMC, like non-insight. However, if insight depends more 

on unconscious processes, it should be relatively independent of both perspectives. The main aim of 

this study is to address to what extent insight and non-insight are (differentially) related to prefrontal-

based WMC from both a trait- and resource-dependent perspective.   

1.2  The neurovisceral integration model: Prefrontal functionality and vagally mediated HRV 

 One way to approach this conundrum is by assessing heart rate variability (HRV; Laborde et 

al., 2018). HRV refers to the variability in the time interval between two consecutive heartbeats (i.e., 

inter-beat intervals or IBI). HRV stems from the dynamic interplay between the parasympathetic (i.e., 

PNS; rest and digest) and sympathetic nervous system (i.e., SNS; fight or flight), where the former 

decreases heart rate (HR) and the latter increases it. More importantly, prefrontal functionality is often 

indexed using HRV (Laborde et al., 2018; Thayer et al., 2009). One of the theories linking prefrontal 

functioning to HRV is the neurovisceral integration model (Thayer et al., 2009). This model postulates 

that the prefrontal cortex modulates the heart's activity through distinct cortical-subcortical pathways. 

Namely, the prefrontal cortex regulates and tonically inhibits the activity of the limbic system, which 

has an inhibitory effect on the PNS outflow and an excitatory effect on SNS outflow (Smith et al., 

2017a; Thayer et al., 2009). Thus, increased prefrontal resource availability is expected to be associated 
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with increased inhibition of the limbic system. Consequently, this inhibition of the limbic system results 

in expanding PNS outflow and condensing SNS outflow, thereby causing HR to decrease and HRV to 

increase. The opposite pattern is expected for decreased prefrontal resource availability (see Figure 1 

for an elementary schematic representation). The PNS is regarded as the HR's dominant controller, 

propagating its outflow via its vagus nerve (Laborde et al., 2018). PNS functions as a brake continuously 

engaged to inhibit the tonically active SNS outflow and the heart's intrinsic beating rate (i.e., 100-110 

bpm). Engaging this vagal brake increases HRV by decreasing the HR to conserve and/or restore 

resources, which is the favoured bodily state (Laborde et al., 2018; Shaffer & Ginsberg, 2017). As such, 

the prefrontal cortex modulation of the heart's activity will mainly operate through this vagal brake. 

Therefore, HRV mediated via this vagal brake, instead of HR, is argued to be the essential index 

reflecting prefrontal resource availability and consumption (Laborde et al., 2018).  

 

Figure 1 

Schematic Representation of the Neurovisceral Integration Model 

 

 
Note. PFC, prefrontal cortex; the limbic system, involving cingulate cortex, insula, amygdala, and 

hypothalamus; BS, brain stem; HRV, heart rate variability; blue arrows indicate the cascading actions if PFC 

resource availability decreases; red arrows indicate the cascading actions if PFC resource availability increases; 

black arrows show interactions between the different brain structures and their output to the heart. This 

schematic figure is an elementary representation of the Neurovisceral Integration Model (for more detailed 

information about this model, see Thayer et al., 2009). 

 

1.3  Vagally mediated HRV: A trait and resource-dependent perspective 

Hence, prefrontal cortex functionality and vagally mediated HRV (i.e., vmHRV) are closely 

related. This relationship has been approached from two perspectives (Laborde et al., 2018; Smith et 

al., 2017). Namely, as an index to size up people's prefrontal resource availability to address 

environmental challenges (e.g., to solve problems; Smith et al., 2017; Thayer et al., 2009) and as an 

index of prefrontal resource consumption (e.g., due to mental effort exertion; Laborde et al., 2018). 

Based on this, vmHRV is a suitable parameter to index prefrontal functionality from a trait- and 

resource-dependent perspective. From a trait perspective, vmHRV measured during a resting-state is 

considered to reflect people's trait vmHRV, a relatively stable feature across time (Bornstein & Suess, 

2000; Li et al., 2009). For instance, it has been found that higher resting-state vmHRV is associated 

with enhanced executive functioning in general (Forte et al., 2019; Jennings et al., 2015; Magnon et al., 

2022) and improved inhibitory control more specifically (Kimhy et al., 2013; Ottaviani et al., 2018). 

These studies illustrate that trait vmHRV is positively associated with cognitive outcomes. A recent 
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study by Zeng et al. (2023) has further substantiated these findings by demonstrating that increased 

performance of individuals with high resting-state vmHRV on a WM task was related to higher 

efficiency in regulating neural resources in the prefrontal cortex, as compared to their lower vmHRV 

peers. From a resource-dependent perspective, vmHRV reactivity during task performance and 

vmHRV rebound during a post-task recovery period are indices used to represent prefrontal resource 

consumption. Research has shown the heart's reactivity during task performance (e.g., Cranford et al., 

2014;  Hansen et al., 2003) and during the application of non-invasive brain stimulation (Makovac et 

al., 2017; Nikolin et al., 2017). For instance, Nikolin et al. (2017) showed that excitatory brain 

stimulation to the left dorsolateral prefrontal cortex increased the power of the signal in the high-

frequency band (i.e., a vmHRV parameter) compared to a sham condition. This showed that enhancing 

prefrontal resources affects vmHRV. Furthermore, HRV tends to recover to its resting-state value 

following an event-related HRV decrease (Balzarotti et al., 2017; Smith et al., 2020). The studies 

discussed above provide ample support for the premises put forward by the neurovisceral integration 

model regarding the bi-directional connection between the brain and the heart. 

 

1.4  The heart's activity in insight/non-insight problem solving 

Although this shows that vmHRV might be a valuable index to study how insight and non-

insight problem solving are (in)differentially related to WMC from both a trait- and resource-dependent 

perspective, only a few studies have assessed heart function to determine how insight and non-insight 

problem solving are related to WMC (e.g., Jausovec & Bakracevic, 1995; Shen et al., 2017). Of these 

studies, to our knowledge, the study of Shen et al. (2017) is the only one that assessed vmHRV for both 

solution types. They presented participants with the compound remote associates test (i.e., CRA), where 

participants receive three cue words (e.g., fox/man/peep), and they have to search for a fourth compound 

solution word (e.g., hole) to form three new meaningful compound words (e.g., 

foxhole/manhole/peephole). After each successfully solved CRA word puzzle, participants indicated, 

based on their subjective experience, whether they solved it with insight or non-insight. vmHRV, more 

specifically the root mean square of successive differences between normal IBIs (RMSSD), was 

analyzed in the last four seconds preceding solution retrieval. No difference was observed between 

resting-state baseline RMSSD and RMSSD preceding solution retrieval for both solution types. 

However, a negative association was found between the participants' average solution time and RMSSD 

measured before solution retrieval, solely for the CRA word puzzles solved with insight. They 

concluded that, for insight solutions, an increased average solution time is associated with increased 

recruitment of prefrontal resources to restructure the solution space immediately before finding the 

solution. This would imply that insight is relatively independent of WMC until the time window 

immediately preceding solution retrieval. Based on HR, Jausovec and Bakracevic (1995) also found a 

differential pattern in the heart's functioning for insight and non-insight. They presented participants 

with insight and non-insight problems and continuously tracked HR during the solution search. Their 

results showed that for non-insight problems, the trajectory of the HR displayed a gradual increase until 

solution retrieval. For the insight problems, the trajectory of the HR suddenly increased immediately 

before solution retrieval (see also Lackner et al., 2013). This observation implies that solving non-

insight problems relied on WMC, increasingly depleting the availability of prefrontal resources. 

Contrarily, solving insight problems was relatively independent of WMC and, therefore, prefrontal 

resources were mainly unaffected. Overall, these studies suggest that vmHRV might be differentially 

affected for insight and non-insight due to a discrepancy in reliance on WMC. 

Although these studies certainly paved the way, they were not able to fully address this research 

question. First, Jausovec and Bakracevic (1995) only used two insight and two non-insight problems, 

leading to a very limited amount of data points per participant. Furthermore, these problem types were 

also very different in nature (i.e., two visuospatial riddles and two simple verbal math problems, 

respectively), hampering a direct comparison between the two solution strategies. Furthermore, recent 

studies have shown that such insight problems can sometimes be solved with non-insight and such non-

insight problems with insight (Danek et al., 2016; Webb et al., 2016). A proposed solution for this is to 
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rely on participants' subjective self-reports to classify solved problems into those solved with insight 

and non-insight (see Bowden & Jung-Beeman, 2007; Shen et al., 2017). Second, although Shen et al. 

(2017) addressed this insight/non-insight problem type issue by using insight/non-insight self-reports, 

they only assessed vmHRV in the last four seconds of the solution search. The time to solve the CRA 

word puzzle varied in length for each trial (i.e., between 4s and 30s). Therefore, the last four seconds 

sometimes reflected the full solution search and sometimes only the end. We contend that this four-

second vmHRV interval may not only reflect different aspects of the solution search depending on trial 

length but also leaves a large part of the solution search unexplored for some trials. This unexplored 

part might be crucial when determining insight and non-insights' reliance on WMC. Specifically, an 

essential part of the solution search that might tax WMC occurs between problem representation and 

the moment of solution retrieval. Therefore, we argue for a consistent approach for each CRA trial 

where the full solution search interval is taken into account. Third, Shen et al. (2017) only assessed 

vmHRV reactivity during task performance but not during a post-task recovery period. For non-insight, 

prefrontal resources are expected to be taxed during the solution search, and prefrontal resource 

recovery, as indexed by vmHRV, should be expected afterward. If insight is similar to non-insight, the 

same pattern should emerge. However, if insight is a more automated unconscious process, prefrontal 

resources should remain largely unaffected during the solution search, and subsequent prefrontal 

resources recovery should be minimal or absent. Lastly, both Jausovec and Bakracevic (1995) and Shen 

and colleagues (2017) tackled this research question solely from a resource-dependent perspective. We 

argue that approaching this research question from a trait perspective would shed valuable light on how 

inter-individual differences in prefrontal resource availability might affect insight/non-insight problem 

solving performance. 

1.5  Aims and hypotheses of the current study  

The current study aimed to assess how prefrontal functionality, strongly related to WMC, is 

differentially associated with insight and non-insight problem solving by measuring vmHRV, as 

indexed by RMSSD (from now on both terms are used interchangeably), from two perspectives. First, 

in contrast to the studies mentioned above (Jausovec & Bakracevic, 1995; Shen et al., 2017), we 

approached vmHRV from a trait perspective to elucidate how inter-individual differences in prefrontal 

functionality relate to both solution types. To our knowledge, this is the first study using this approach 

within this field. Second, extending the studies mentioned above, we approached vmHRV from a 

resource-dependent perspective to clarify whether and how prefrontal resource engagement during task 

performance and its subsequent recovery differ between both solution types. To achieve these aims, we 

used CRA word puzzles in line with Shen et al. (2017) and relied on participants' subjective self-reports 

to classify solved word puzzles into those solved with insight and with non-insight. RMSSD was 

measured before, during, and after the full solution search.  

Regarding the trait perspective of vmHRV, we hypothesized that non-insight solution search 

performance would be positively relate to resting-state RMSSD. Following the neurovisceral 

integration model, individuals with higher resting-state RMSSD should display enhanced prefrontal 

functionality, reflecting a better regulation of cognitive control functions to consciously solve problems, 

which should be vital for non-insight. If insight solution retrieval similarly relies on a conscious process, 

it should also display an association with resting-state RMSSD. However, if insight entails a more 

unconscious process, it would not depend on the individual's intrinsic prefrontal functionality to the 

same extent as non-insight. In that case, insight solution search performance would be associated less 

or not at all with resting-state RMSSD.  

Concerning the resource-dependent perspective of vmHRV, we predicted that non-insight 

should be associated with a decrease of RMSSD during the solution search relative to its resting-state 

measurement. In line with the neurovisceral integration model, consciously engaging cognitive control 

functions during the problem-solving process taxes prefrontal resources, which is expected to disengage 

the vagal break causing RMSSD to decrease. Furthermore, we expected that for non-insight, RMSSD 

would recover to baseline level following the solution-search-related RMSSD decrease during a 
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recovery period. Contrarily, if insight results from more unconscious processes largely independent of 

the engagement of prefrontal-based cognitive control functions, RMSSD during solution search and 

recovery is expected to remain relatively stable from baseline to solution search to recovery. 

 

2. METHOD 

2.1  Participants  

A convenience sample of 84 undergraduates took part in this study. They received course credits 

for their participation. Several inclusion criteria were used: non-smokers, body-mass index <30, Beck 

Depression Inventory score <29, no cardiovascular or neurological medication use, and no history of or 

current cardiopulmonary diseases, psychiatric disorders and/or neurological disorders. Moreover, 

participants had to adhere to several instructions concerning their daily routines immediately preceding 

their participation: no alcohol consumption the night before and on the day of the experiment, at least 

six hours of sleep the night before the experiment, and no caffeine consumption, no heavy meal 

consumption and no strenuous physical activity two hours before the experiment. We used these 

inclusion criteria and daily instructions as it has been indicated that they might negatively influence the 

ECG recording (see Quintana & Heathers, 2014).  

Of the 84 participants, seven were excluded due to technical issues with the ECG recording 

(i.e., incorrect electrode placement, N = 1, disconnection of the electrodes during recording, N = 2, and 

trigger interface unresponsiveness, N = 4). Five participants were also excluded after visual inspection 

of the ECG signal because of an abnormal ECG signal (see Appendix A for an example; Kumral et al., 

2019; Shaffer & Ginsberg, 2017). For the remaining 71 participants, the percentage of to-be-excluded 

ECG noise epochs (i.e., an epoch with an uninterpretable ECG wave morphology) and the percentage 

of corrected IBIs in the ECG noise-free part were determined (see data preprocessing for a detailed 

explanation). If one or both of these percentages surpassed the 5% poor-data-quality threshold in the 

baseline ECG recording, the participant was excluded from the analysis (see Munoz et al., 2015 for a 

similar procedure). Based on these criteria, we excluded another three participants. Lastly, we omitted 

participants with severely outlying HRV data in the baseline ECG recording. This criterion was 

determined based on Tukey's (1977) method of three interquartile ranges above the sample median (i.e., 

RMSSD, Mdn = 33.30ms; IQR = 18.43ms; range 0 – 88.59ms; see Kumral et al., 2019 for a similar 

procedure). This led to the additional exclusion of one participant. The final sample consisted of 68 

participants (mean age = 19, SD = 1.29, 62 female, mean BDI score = 8.53, SD = 5.73), which is more 

than three times the size of previous similar insight studies (Jausovec & Bakracevic, 1995, N = 19; Shen 

et al., 2017, N = 22). All participants provided their written informed consent before they participated. 

As HRV studies on insight are scarce, we used a medium effect size to estimate the power, which is 

generally considered a valid effect size in psychological research (Brysbaert & Stevens, 2018). The 

current sample size is sufficient to detect medium effect sizes (η² = 0.07) with a statistical power of 

80% (Campbell & Thompson, 2012). The Social and Societal Ethics Committee (SMEC) of the KU 

Leuven approved the study (approval number G-2019 12 1929).  

2.2  Assessment and Measurement  

To measure insight and non-insight using the same type of problems, the Dutch version of the 

Compound Remote Associates Test (CRA) was used (Stuyck et al., 2021; https://osf.io/snb3k/). In the 

CRA, participants are presented with a word puzzle on each trial containing three words. They are 

requested to find a fourth word to attach to each of these three words to make three new compound 

words (e.g., escape hatch, escape route, escape artist). The Dutch version of the CRA contains 76 word 

puzzles (i.e., 70 experimental and 6 practice CRA trials). For the experimental trials, half of the word 

puzzles required a solution word to be attached to the back of each of the three words of the puzzle, and 

the other half required a solution word to be attached to the front.  

https://osf.io/snb3k/
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Figure 2 depicts an example of a CRA word puzzle trial. The experiment was self-paced. After 

participants indicated their readiness with a spacebar press, a fixation cross was presented at the screen's 

center for 0.5s. After that, there was a 10s rest interval during which participants were instructed to 

remain calm and regulate their emotions (see Shen et al., 2017 for a similar procedure). Next, the CRA 

word puzzle was presented for maximal 30s. All words of the word puzzle were presented in white on 

a silver background (i.e., typeface Arial and letter height 1.5/10 of the screen size). The three words of 

the word puzzle were presented vertically on top of each other with a question mark beneath it (i.e., 

screen's y-axis ranging from -1 bottom to 1 top; first word on 0.45, second word 0.25, third word on 

0.05, and the question mark on -0.25) at the center of the screen's x-axis. A countdown timer was 

presented in the screen's upper right corner. After indicating that a solution was found with a spacebar 

press, participants were presented with a screen for a maximal duration of 10s to type in their solution. 

After that, there was a trial-by-trial HRV recovery interval of 10s, during which participants were 

instructed to remain calm and regulate their emotions. Next, a screen was presented, probing 

participants which solution type had led to the solution. They answered this question by pressing (1) for 

insight (Aha!), (2) for non-insight (without Aha!), or (3) for another strategy. There was no time limit 

to respond to this solution-type question. After that, participants were asked to report their solution 

confidence by moving a scale slider with their mouse to select a position on a horizontal scale (i.e., 

vertical white rectangular bar) between low (0) and high (1) confidence. The starting position of the 

slider on the horizontal scale randomly varied on each trial. There was no time limit to respond to this 

solution-confidence question. After each solved CRA trial, the solution-type and solution-confidence 

questions were presented in random order. If participants could not solve the CRA word puzzle in the 

allotted time, the next CRA trial immediately began after the time had run out.  

Figure 2 

 

Example of a CRA Word Puzzle Trial 
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2.3  Equipment  

Participants were seated individually in a quiet, dimly lit room held at a constant temperature 

between 21° and 23°. They faced the computer monitor from approximately 60cm. A Dell Optiplex 

3060 computer was used with a Dell 23.6-inch monitor. The experiment was programmed with 

PsychoPy v2021.2.3 (Pierce et al., 2019).  Nexus-10 MKII (Mind Media BV, Herten, the Netherlands) 

was used as the ECG recording device (CE-certified; 93/42/EC Annex XII). The device obtains the 

ECG signal in microvolts with a sampling rate of 256 Hz. Three pre-gelled Ag/AgCl electrodes were 

used. Following the modified Lead-II placement, these were attached to the upper body (see Kuipers et 

al., 2017 for a similar procedure). Namely, the negative electrode below the center of the right 

collarbone, the positive electrode on the lower left rib cage and the ground electrode below the left 

collarbone. Before placing the electrodes, the skin was cleaned with an alcohol pad. The data obtained 

by the Nexus-10 MKII (i.e., ECG signal) were preprocessed using Kubios premium (v. 3.4.2; Tarvainen 

et al., 2014).  

 

2.4  Procedure  

All participants were examined between 9 am and 5 pm. Before entering the laboratory, 

participants were asked to go to the toilet if needed. The experiment leader explained that a full bladder 

and/or bowel might influence the HRV recording. After that, participants' eligibility to participate in 

the experiment and their adherence to the instructed daily routines were checked. The BDI was only 

administered after the experiment to avoid any influence on the participants' HRV recording due to the 

valence of the questions. Subsequently, participants received instructions on how to attach the 

electrodes to the upper body. This instruction was accompanied by an image displaying the modified 

Lead-II placement. After participants had attached the electrodes, the experiment leader visually 

checked if the electrodes were attached correctly. Participants also wore a wrist-worn device (i.e., 

Empatica E4) on their non-dominant hand in light of another validation study (Stuyck et al., 2022). 

Participants were instructed to remain in an upright seated position without crossing their legs and 

refrain from excessive movement (e.g., coughing, arm-stretching). It was explained that any deviation 

from these instructions might negatively influence the ECG recording. Next, participants performed 

that CRA test as described above. Before initiating the CRA test, elaborate instructions were provided 

so that participants fully understood the aim of a CRA word puzzle, what each solution type entails, 

and how to respond to the different questions. To explain the insight and non-insight concepts, we relied 

on definitions employed in previous research (Danek et al., 2014; Hedne et al., 2016; Jung-Beeman et 

al., 2004). The detailed instructions can be found in Appendix B. During the practice trials, feedback 

was provided in the form of the correct solution.  

To assess the association between trait vmHRV and behavioural performance on both solution 

types, a baseline HRV recording was obtained after the six practice CRA trials. Specifically, a 10 min 

resting interval followed these practice trials. During this interval, participants were instructed to relax 

and control their emotions to minimize the likelihood of engaging in ruminative or emotionally valenced 

thoughts that might affect ECG recording. To minimize changes in their behaviour related to the 

awareness of the recording, during this 10 min interval, we told participants that this interval was meant 

to return to a relaxed state and that we were mainly interested in their (later) CRA word puzzle 

performance. This 10min baseline interval consisted of a 5 min acclimatization period and a subsequent 

5 min baseline interval. This 5 min baseline interval was used to measure the trait vmHRV and 

functioned as the baseline measurement to assess changes in vmHRV related to the solution search for 

each solution type. After the 10 min resting interval, participants received a summary of the instructions 

followed by the 70 experimental CRA trials. 
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2.5  Vagally mediated HRV: RMSSD 

To assess vmHRV, we used the root mean square of successive differences between normal 

IBIs (i.e., RMSSD), a time-domain HRV metric reflecting the variability in beat-to-beat intervals 

(Shaffer & Ginsberg, 2017). RMSSD is considered a suitable candidate for reflecting PNS’s effect on 

HRV (Laborde et al., 2017). High-frequency band power is another HRV metric linked to the PNS 

effect on HRV, but it is more affected by respiration compared to RMSSD (Laborde et al., 2017; Shaffer 

& Ginsberg, 2017). Given the high correlation between high-frequency band power and RMSSD (i.e., 

r = .86 in the current sample), we only used RMSSD to represent vmHRV.   

 

2.6 Data preprocessing 

 

The Kubios HRV software was used to preprocess the ECG data (Tarvainen et al., 2020). We 

used the automatic artifact correction algorithm of Kubios to correct for potential artifacts in the IBI 

time series (e.g., ectopic beats, missed and extra beats). All detected artifacts were subsequently 

replaced with IBIs based on cubic spline interpolation. Additionally, we applied a visual inspection of 

the ECG signal to identify unstable recording epochs, missed r-peaks, and missed artifacts by an 

automatic correction algorithm. In case an artifact was detected, a manual correction was applied. We 

only retained data that was minimally 95% noise free and had a maximum of 5% corrected IBIs. In 

Appendix C, a detailed description of the preprocessing steps can be found.  

To create the solution search and recovery intervals over which RMSSD was calculated, we 

merged the time intervals of the individually correctly solved CRA word puzzle trials for each solution 

type. This led to four RMSSD observations per participant (i.e., solution search insight, solution search 

non-insight, recovery insight and recovery non-insight). These merged solution-search intervals 

consisted of a series of time intervals with differing lengths, as CRA word puzzles took between 1s and 

30s to be solved. The merged recovery intervals always consisted of a series of time intervals of 10s, as 

the recovery time interval after each trial had a fixed length of 10s. The minimum solution search and 

recovery interval length deemed acceptable for assessing RMSSD was 10s. Previous research (e.g., 

Munoz et al., 2015) has shown that RMSSD calculated with a 10s ECG recording gives a reliable 

approximation of the RMSSD obtained with a 5min ECG recording. 

 

2.7 Statistical Analysis  

For all statistical analyses, we only included the CRA word puzzles solved with insight and 

non-insight. The solved CRA word puzzles where participants reported having used "another strategy" 

were not included because they have no informational value regarding the solution types of interest. 

This led to the omission of 252 of the 3355 CRA word puzzle trials.  

 

2.7.1 Trait vagally mediated HRV  

 

To assess the association between the trait vmHRV and CRA performance (i.e., solution time, 

solution accuracy, solution confidence, and the number of correctly solved CRA word puzzles) for each 

solution type, we relied on the RMSSD obtained with the 5 min baseline ECG recording. Next, we used 

three (generalized) linear mixed models ([G]LMM) and one generalized linear model (GLM) to assess 

our hypotheses. These GLMMs and GLM contained solution type (i.e., insight vs. non-insight), 

RMSSD (i.e., continuous predictor), and their interaction term as fixed effects. The first LMM had 

solution time as a continuous outcome variable and was solely based on the correctly solved CRA word 

puzzles (Baayen & Milin, 2010). We applied a Box-Cox transformation to solution time (λ = -0.2) to 

accommodate non-normality and heteroscedasticity (i.e., BoxCox solution time =  
solution time−0.2−1

−0.2
; 

Atkinson et al., 2021). Afterward, solution time was back-transformed for interpretability (Atkinson et 

al., 2021). A second GLMM was used with solution accuracy as a binary outcome variable (i.e., 0 = 
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incorrect and 1 = correct; Sommet & Morselli, 2017). The third GLMM contained solution confidence 

as a bounded outcome variable and was solely based on the correctly solved CRA word puzzles (i.e., 

.005 - .995; Verkuilen & Smithson, 2012). A fourth and final GLM was used with the number of 

correctly solved CRA word puzzles as a count outcome variable (Gardner et al., 1995). In this GLM, 

each participant had one count observation for insight and one for non-insight. To account for the non-

independence in the GLM (i.e., two observations clustered in participants), we used robust standard 

errors (Zeileis et al., 2020). In all specified models above, RMSSD was standardized across participants 

by rescaling it to z-scores to enhance interpretability and convergence of the (G)LMMs and GLM 

(Enders & Tofighi, 2007). Furthermore, we used sum coding to set the contrasts, coding insight as 0.5 

and non-insight as -0.5 (Schad et al., 2020). The Satterthwaite approximation method was used to assess 

the significance of the LMM, while the Wald test assessed the significance of the GLMMs and the 

GLM. All (G)LMMs included a random intercept for the participant and the CRA word puzzle, taking 

into account between participant and between CRA word puzzle variations (Baayen et al., 2008).   

If a significant effect was found for solution type, we conducted a post-hoc test to extract the 

model's estimates for insight versus non-insight, accompanied by Cohen’s d effect size. If there was a 

significant effect of scaled baseline RMSSD, the beta coefficient of the model represented the effect 

size and was used for interpretation. For the LMMs of solution time and solution confidence, this is 

straightforward. However, this is less clear for the GLMM of solution accuracy and the GLM of the 

number of correctly solved CRA word puzzles. To address this, we exponentiated the beta coefficients 

to obtain odds ratios (OR) for the GLMM of solution accuracy and incidence rate ratios (IRR) for the 

GLM of the number of correctly solved CRA word puzzles. An OR above or below one indicates an 

increase or decrease in the likelihood of solving a CRA word puzzle correctly, respectively (Sommet & 

Morselli, 2017). We divided one by the OR in case the OR was below one to express them as “times 

less likely”. An IRR reflects the multiplicative factor with which the outcome variable increases or 

decreases with a one-unit increase of the predictor variable (Wilson, 2022). If there was a significant 

interaction effect between solution type and scaled baseline RMSSD, a post-hoc test was used to 

estimate the slope coefficients and their significance for both solution types.   

 

2.7.2 The resource-dependent vagally mediated HRV  

 

We used different interval types to assess vmHRV's reactivity to the solution search and its 

reactivity during a post-trial recovery period. Specifically, we used the same 5 min ECG recording of 

the trait vmHRV analysis to calculate baseline RMSSD (see Shen et al., 2017 for a similar procedure). 

Next, only the correctly solved CRA word puzzle trials were considered for the merged solution-search 

and recovery intervals (N = 2420). Of these correctly solved CRA word puzzles, 51 trials could not be 

used due to a technical issue with the trigger interface, and 39 trials were omitted because of an 

uninterpretable ECG signal morphology (i.e., noise epochs). So the calculation of RMSSD for the 

merged solution search and recovery intervals was based on 2330 correctly solved CRA word puzzle 

trials.  

To assess the reactivity of vmHRV in the baseline, solution search, and recovery intervals, we 

used an LMM with solution type (i.e., two levels: insight and non-insight), interval type (i.e., three 

levels: baseline, solution search and recovery), and their interaction term as fixed effects. In this LMM, 

RMSSD was the continuous outcome variable (Baayen & Milin, 2010). To accommodate non-normality 

and heteroscedasticity, we used a Box-Cox transformation for RMSSD with λ = 0.3 (i.e., 

BoxCox RMSSD =  
RMSSD0.3−1

0.3
; Atkinson et al., 2021). Afterward, we back-transformed RMSSD for the 

interpretability of the results (Atkinson et al., 2021). Except for the specified characteristics above, this 

LMM was similar to the LMM of solution time of the trait vmHRV. We used model comparison based 

on the likelihood ratio test (χ²) to extract the main and interaction effects of the LMM. Namely, we 

compared the full model to three reduced models that either excluded one of the main effects or the 
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interaction effect. Finding statistical significance in those comparisons implies the presence of main 

and/or interaction effects (Levy, 2018).  

In case of a significant main and/or interaction effects, we applied a post-hoc test to interpret 

them further. For the main effect of solution type, we contrasted insight versus non-insight. If there was 

a main effect of interval type, we conducted a pairwise comparison for the three interval types (i.e., 

baseline vs. solution search, baseline vs. recovery, solution search vs. recovery). In case of a significant 

interaction effect, we compared the three interval types pairwise conditionally on the solution types. 

The Tukey method was used to adjust for multiple comparisons. Cohen's d effect sizes accompanied all 

pairwise contrasts.  

 

The open-source R language to perform statistical analysis was used (R Core Team, 2020). 

Details of the package used for the statistical analysis can be found in Appendix D. All data and program 

code (R and PsychoPy) are placed on the OSF platform (https://osf.io/7hp5u/). 

 

3. RESULTS  

3.1  Trait vagally mediated HRV  

 Together, participants solved 3103 CRA word puzzles (i.e., insight = 1735 and non-insight = 

1368), of which they correctly solved 2420 CRA word puzzles (i.e., insight = 1541 and non-insight = 

879). Based on these correctly solved CRA word puzzles, participants, on average, solved 23 CRA 

word puzzles with insight and 13 with non-insight. The baseline measurement of RMSSD showed, 

across participants, an average RMSSD of 36ms (SD = 13, range 15 – 68). The descriptive statistics of 

the outcome variables can be found in Table 1.  

 

Table 1 

 

Descriptive Statistics of the Outcome Variables 

 

 Insight Non-Insight 

 M(SD) range M(SD) range 

Solution time 8.36(5.86) 1.58-29.68 10.67(6.67) 1.26-29.46 

Solution accuracy 89%(10%) 60%-100% 64%(23%) 0%-100% 

Solution confidence .83(.19) .005-.995 .67(.26) .005-.995 

#Solved 23(9) 1-43 13(7) 1-38 
Note. Solution time is expressed in seconds; Solution accuracy is the percentage of correctly solved CRA 

word puzzles; Solution confidence is rescaled to range from .005 low confidence to .995 high confidence; 

#Solved, is the number of correctly solved CRA word puzzles.  

 

3.1.1 Solution time  

Based on the correct CRA trials, an LMM was constructed with (Box-Cox transformed) 

solution time as the outcome variable and solution type (i.e., insight vs. non-insight), scaled baseline 

RMSSD (continuous variable), and their interaction term as fixed effects (Table 1 in Appendix E depicts 

the model). Solution type was a significant predictor of solution time, t(2390) = -9.31, p < .001. CRA 

word puzzles solved with insight were solved significantly faster (M = 6.98s) than those solved with 

non-insight (M = 8.89s), Cohen’s d = 0.43 (95% CI [0.34, 0.52]). The scaled baseline RMSSD and the 

interaction between solution type and the scaled baseline RMSSD were not significant, p = .999 and p 

= .256, respectively.  

 

 

https://osf.io/7hp5u/
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3.1.2 Solution accuracy  

Based on the correct and incorrect CRA trials, a similar GLMM was built with solution 

accuracy as a binary outcome variable (Table 2 in Appendix E depicts the model). Solution type was a 

significant predictor of solution accuracy, Z = 15.07, p < .001. CRA word puzzles solved with insight 

(M = 92%) were more likely to be correct than those solved with non-insight (M = 68%), Cohen’s d = 

-1.74 (95% CI [-1.97, -1.51]. The scaled baseline RMSSD was a marginally significant predictor of 

solution accuracy, OR = 0.81 [1/0.81 = 1.24], Z = -1.85, p = .065. This showed that a one-unit 

increase of the scaled baseline RMSSD made it 1.24 times less likely to solve CRA word puzzles 

correctly. Figure 3 illustrates this result. The interaction between solution type and the scaled baseline 

RMSSD was not significant, p = .436.  

Figure 3 

Scaled Baseline RMSSD Predicting Solution Accuracy 

 

 

 

Note. X-axis, Scaled Baseline RMSSD, root mean square of successive differences between normal inter-beat 

intervals standardized by rescaling it to z-scores; Y-axis, predicted probability of solving a CRA word puzzle 

correctly; bars at the bottom of the graph represent the percentage of incorrectly solved CRA word puzzles for 

a given bin of scaled RMSSD; bars at the top of the graph represent the percentage of correctly solved CRA 

word puzzles for a given bin of scaled RMSSD. To extract the percentage of correctly solved word puzzles, 

one should subtract the bar height from one  (e.g., 1- bar height 0.9 = 0.1 or 10%); rugs at the bottom of the 

graph represent CRA word puzzles incorrectly solved with insight and non-insight at the observational level; 

rugs at the top of the graph represent the CRA puzzles correctly solved with insight and non-insight at the 

observational level; grey line, association between probability of correctly solved CRA word puzzles and scaled 

RMSSD; grey shade, represents the 95% confidence interval. 

 

 

3.1.3 Solution confidence 

 Similarly, based on the correct CRA trials, a GLMM was built with solution confidence as a 

bounded outcome variable (range = .005 - .995; Table 3 in Appendix E illustrates the model). Solution 

type was a significant predictor of solution confidence, Z = 14.42, p < .001. Solution confidence was 

significantly higher for word puzzles solved with insight (M = .81) than those solved with non-insight 

(M = .69), Cohen’s d = -0.13 (95% CI [-0.15, -0.12]. The scaled baseline RMSSD and the interaction 
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between solution type and the scaled baseline RMSSD were not significant, p = .474 and p = .496, 

respectively.  

3.1.4 The number of correctly solved word puzzles  

Lastly, a GLM was constructed with the number of correctly solved CRA trials as a count 

outcome variable (Table 4 in Appendix E shows the model). Solution type was a significant predictor 

of the number of correctly solved CRA word puzzles, Z = 5.97, p < .001. Correctly solved CRA word 

puzzles with insight (M = 23) were more frequent than those solved with non-insight (M = 13), Cohen’s 

d = -0.52 (95% CI [-0.68, -0.36]). The scaled baseline RMSSD was also a significant predictor of the 

number of correctly solved CRA word puzzles, incidence rate ratio = 0.93 [1 – 0.94 = 0.06], Z = -2.26, 

p = .024. This showed that a one-unit increase of the scaled baseline RMSSD corresponded to a 6% 

decrease in the number of correctly solved CRA word puzzles. Figure 4 illustrates this result. The 

interaction between solution type and the scaled baseline RMSSD was not significant, p = .181. 

 

Figure 4 

Scaled Baseline RMSSD Predicting the Number of Correctly Solved CRA Word Puzzles 

 

   

Note. X-axis, Scaled Baseline RMSSD, root mean square of successive differences between normal inter-beat 

intervals standardized by rescaling it to z-scores; Y-axis, the number of correctly solved CRA word puzzles; 

grey line, represents the association between the number of correctly solved CRA puzzles and the scaled 

RMSSD; grey shade, represents the 95% confidence interval. 

 

3.2  Resource-dependent vagally mediated HRV  

 The descriptive statistics of RMSSD and the length of the interval types used to calculate it are 

presented in Table 2 as a function of solution type (i.e., insight and non-insight) and interval type (i.e., 

baseline, solution search and recovery). This analysis is based on 2330 correctly solved CRA word 

puzzles.  
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Table 2 

Descriptive statistics of the outcome variable RMSSD and the Length of Assessment Interval 

  RMSSD length of recording 

  M(SD) range M(SD) range 

Insight baseline 35.32(13.08) 14.82-67.68 299s(2s) 286s-300s 

solution search 42.87(15.04) 17.00-73.68 186s(74s) 20s-389s 

recovery 42.76(15.36) 14.64-72.34 222s(84s) 10s-430s 

Non-Insight baseline 35.32(13.08) 14.82-67.68 299s(2s) 286s-300s 

solution search 42.29(16.57) 15.58-97.80 139s(74s) 11s-466s 

recovery 45.28(19.43) 12.11-89.78 130s(71s) 10s-387s 
Note. RMSSD, root mean square of successive differences between normal inter-beat intervals expressed in ms; 

length of recording refers to the length of the interval type used to calculate RMSSD; the solution search and recovery 

intervals used to calculate RMSSD were constructed by merging all trial-by-trial intervals of the correctly solved 

CRA word puzzles.  

 

3.2.1 Resource-dependent vagally mediated HRV 

An LMM was constructed with (Box-Cox transformed) RMSSD as the outcome variable and 

solution type (i.e., insight vs. non-insight), interval type (i.e., baseline vs. solution search vs. recovery), 

and their interaction term as fixed effects (Table 1 in Appendix F depicts the model). There was only a 

significant effect of interval type, χ²(2) = 85.26, p < .001. Post-hoc tests showed that baseline RMSSD 

(M = 33.88ms) was significantly lower than the solution-search RMSSD (M = 40.56ms), t(335) = 7.99, 

p < .001, Cohen’ s d = -0.99 (95% CI [-1.25, -0.73]) and the recovery RMSSD (M  = 41.34ms), t(335) 

= 8.87, p < .001, Cohen’ s d = -1.10 (95% CI [-1.36, -0.84]). The solution-search RMSSD was not 

significantly different from the recovery RMSSD, p = .998. This finding is also illustrated in Figure 5. 

The effect of solution type and the interaction effect between solution type and interval type were not 

significant, p = .822 and p = .564, respectively.  

 

Figure 5 

RMSSD Predicted by Solution Type and Interval Type 

 

 

Note. RMSSD, root mean square of successive differences between normal inter-beat intervals; RMSSD was 

back-transformed from a Box-Cox transformation with λ = 0.3; bars represent the 95% confidence intervals.  
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3.3 Exploratory analyses 

 

3.3.1 Differentiating insight from non-insight 
 

 We performed two additional exploratory analyses to explore the absence of a difference 

between insight and non-insight in the main analysis.  

 

3.3.1.1 Exploratory analysis 1: Early and late solution retrieval. In this exploratory analysis, 

we took the length of the solution search into account (range 1.26s to 29.68s) to unveil differences 

between insight and non-insight in the trait- and resource-dependent analyses. CRA trials of differing 

lengths might be less comparable because the timing of the solution search phases (i.e., problem 

representation, search and solution retrieval) differs. As such, analysing all CRA trials together might 

have obscured differences between insight and non-insight. Therefore, we have performed a median 

split on the overall solution times. Based on the median of solution time (Mdn = 7.006s), we divided 

solved CRA word puzzles into an early (i.e., < Mdn = 7.006s) and a late (i.e., > Mdn = 7.006s) sample. 

The early sample had a median solution time of 4.5s (SD = 1.3s, range 1.3s – 7.002s), and the late 

sample had a median solution time of 12.3s (SD = 5.8s, range 7.009s – 29.7s). Subsequently, we reran 

all statistical analyses described above on the early and late samples separately. 

Trait vagally mediated HRV. For solution time, results were similar to the main analysis in 

both the early and late samples (see Table 1 in Appendix G for the models). Namely, only solution type 

was a significant predictor of solution time, t(1145) = -3.65, p < .001, and t(1135) = -3.54, p < .001, for 

the early and late samples, respectively. This result showed that word puzzles solved with insight were 

solved faster than those solved with non-insight for both the early and late samples (i.e., early: M = 

4.61s versus 4.91s, Cohen's d = 0.26, 95% CI [0.12, 0.41]; late: M = 11.87s versus 12.66s, Cohen's d = 

0.21, 95% CI [0.09, 0.33]). The scaled baseline RMSSD and the interaction between the scaled baseline 

RMSSD and solution type were not significant in both the early (i.e., p = .543 and p = .136, respectively) 

and late sample (i.e., p = .266 and p = .954, respectively). Note that the effect sizes for the main effect 

of solution type decreased from medium in the main analysis (i.e., Cohen's d = 0.43) to small (i.e., 

Cohen's d = 0.26 and 0.21 for early and late samples, respectively) in the exploratory analysis. This 

shows that splitting solution time into early and late samples made word puzzles solved with insight 

and non-insight more alike in terms of the length of the solution search. 

For solution accuracy, solution type was a significant predictor for both the early (Z = 5.26, p 

< .001) and late (Z = 10.88, p < .001) samples, in line with the main analysis (see Table 2 in Appendix 

G for the models). CRA word puzzles solved with insight were more likely to be correct than those 

solved with non-insight for both the early and late samples (i.e., early: M = 96% versus 89%, Cohen's 

d = -1.17, 95% CI [-1.60, -0.73]; late: M = 86% versus 57%, Cohen's d = -1.58, 95% CI [-1.87, -1.29]). 

However, whereas scaled baseline RMSSD was a marginally significant predictor of solution accuracy 

in the main analysis, Z = -1.85, p = .065, this effect was now only observed for the late sample, OR = 

0.79 [1/0.79 = 1.27], Z = -2.101, p = .036. This showed that a one-unit increase of the scaled baseline 

RMSSD made it 1.27 times less likely to solve CRA word puzzles correctly. Contrarily, on the early 

sample, the scaled baseline RMSSD was not a significant predictor of solution accuracy, p = .191. 

Lastly, similar to the main analysis, in both the early and late samples, the interaction effect between 

solution type and the scaled baseline RMSSD was not significant, p = .156 and p = .149, respectively. 

For solution confidence, solution type was a significant predictor for both the early (Z = 6.20, 

p < .001) and late (Z = 11.80, p < .001) samples, in line with the main analysis (see Table 3 in Appendix 

G for the models). CRA word puzzles solved with insight received a higher solution confidence than 

those solved with non-insight for both the early and late samples (i.e., early: M = .86 versus .80, Cohen's 

d = -0.06, 95% CI [-0.08, -0.04]; late: M = .78 versus .64, Cohen's d = -0.17, 95% CI [-0.20, -0.14]). 

Similar to the main analysis, the main effect of the scaled baseline RMSSD was not significant in both 

the early and late samples, p = .619 and p = .475, respectively. However, unlike the main analysis, we 

did observe a significant interaction effect between solution type and the scaled baseline RMSSD, but 

only for the early sample, Z = 2.19, p = .028. Figure 7 illustrates this result, which shows that the 

difference in solution confidence between puzzles solved with insight and non-insight became more 
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pronounced with increasing scaled baseline RMSSD. For the late sample, this interaction effect was not 

significant, p = .783. 

 

Figure 6 

Scaled Baseline RMSSD Predicting Solution Confidence for the Early and Late Samples 

  
Note. left figure; early sample; right figure; late sample; X-axis, Scaled Baseline RMSSD, root mean square of successive differences 

between normal inter-beat intervals standardized by rescaling it to z-scores; Y-axis, solution confidence (range .005 - .995); coloured 

lines, represent the association between solution confidence and the scaled RMSSD depending on solution type; coloured shade, 

represents the 95% confidence interval. 

 

In order to conduct this exploratory analysis for the number of correctly solved word puzzles, 

we would need to analyse the data with generalized linear models due to only two observations being 

nested within participants. As generalized linear models, in contrast to generalized linear mixed models, 

do not handle missing values efficiently, participants with missing observations would be excluded 

from this, leading to biased estimates (Matuschek et al., 2017). Specifically, this would lead to the 

exclusion of nine participants in the early sample and two in the late sample. Furthermore, by calculating 

the number of correctly solved insight and non-insight word puzzles separately for the early and late 

samples, we would artificially split the total number of correctly solved word puzzles in two. This 

division is inconsistent with the idea of the total number of correctly solved word puzzles. Indeed, for 

some participants, there is an equal distribution of the number of correctly solved word puzzles in the 

early and late samples, but for other participants, this distribution is skewed, with either more word 

puzzles correctly solved in the early sample than in the late sample or vice versa. Therefore, we refrain 

from conducting the exploratory analysis for the number of correctly solved word puzzles. 

Resource-dependent vagally mediated HRV. For the resource-dependent approach to vagally 

mediated HRV, we observed similar results in the early and late samples as in the main analysis (see 

Table 4 in Appendix G for the models). There was only a significant effect of interval type in both the 

early and late samples, χ²(2) = 51.83, p < .001, and χ²(2) = 51.47, p < .001. Post-hoc tests showed that 

baseline RMSSD was significantly lower than the solution-search RMSSD for both the early and late 

samples (i.e., early: M = 33.63ms versus 39.50ms, t(303) = 5.91, p < .001, Cohen's d = -0.79, 95% CI 

[-1.06, -0.51]; late: M = 33.63 versus 39.31, t(329) = 6.10, p < .001, Cohen's d = -0.76 (95% CI [-1.01, 

-0.51]). The baseline RMSSD was also significantly lower than the recovery RMSSD for both the early 

and late samples (i.e., early: M  = 33.63ms versus 40.07ms, t(303) = 6.75, p < .001, Cohen's d = -0.87, 

95% CI [-1.12, -0.60]; late,  M  = 33.63ms versus 39.88ms, t(330) = 6.65, p < .001, Cohen's d = -0.84, 

95% CI [-1.09, -0.58]). The solution-search RMSSD was not significantly different from the recovery 

RMSSD in the early and late samples, p = .860 and p = .814, respectively. In both the early and late 

samples, the effect of solution type and the interaction effect between solution type and interval type 

were not significant, with p = .322 and p = .509 for the early samples, and, p = .839 and p = .861 for 

the late samples, respectively.  

 



19 
 

3.3.1.2 Exploratory analysis 2: CRA word puzzle difficulty. Another analysis that might 

reveal differences between insight and non-insight is considering CRA word puzzle difficulty in relation 

to vmHRV. We observed that solution time and accuracy were closely linked, so that, on average, faster-

solved puzzles were also more often solved correctly and vice versa. To confirm this observation, we 

first built an LMM, including solution time as the continuous outcome variable and solution accuracy 

as the binary predictor. As expected, we observed that correctly solved CRA word puzzles were solved 

faster (M = 7.73s) than incorrectly solved ones (M = 13.13s), t(3098) = -19.08, p < .001, Cohen’s d = 

0.91 (95% CI [0.82, 1.01]). This implies that solution time and accuracy jointly may inform us about 

the difficulty of an individual CRA word puzzle. CRA word puzzles that are, on average, solved faster 

and more often correctly can be considered the easier problems and vice versa for difficult ones. We 

applied two steps to define CRA word puzzle difficulty associated with insight and non-insight at the 

participant level. First, we calculated the Inverse Efficiency Score (IES =

mean(solution time) proportion correct⁄ ; Vandierendonck, 2017) for each CRA word puzzle based on 

the participant’s performance. The IES combines solution time and accuracy, where higher IES values 

are assumed to be related to a higher CRA word puzzle difficulty. Second, we calculated each 

participant's average IES values for their insightfully and non-insightfully solved CRA word puzzles, 

resulting in one average IES value for insight and one for non-insight per participant. Based on these 

values, we constructed a linear model with Box-Cox transformed baseline RMSSD as the outcome 

variable and solution type, IES values (standardized by rescaling them to z-scores), and their interaction 

term as predictors.  

The results of the linear model showed a significant interaction effect between solution type 

and the scaled average IESs, t(131) = 2.60, p = .010 (see Table 5 in Appendix G for the model). For 

insight, a positive association between (Box-Cox transformed) RMSSD and the scaled average IES was 

observed, while a negative association between RMSSD and IES was observed for non-insight. This 

striking finding illustrates that participants with lower baseline RMSSD reported more often to have 

solved an easy problem with insight and a difficult problem with non-insight, whereas for participants 

with higher baseline RMSSD, the reverse was found. This result is illustrated in Figure 6. The main 

effects of solution type and scaled average IES were not significant, p = .364 and p = .460. 
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Figure 6 

RMSSD Predicted by Solution Type and the Inverse Efficiency Score 

 
Note. X-axis, scaled average inverse efficiency score (higher values = more difficult CRA word puzzles on 

average); Y-axis, RMSSD, root mean square of successive differences between normal inter-beat intervals; 

RMSSD was back-transformed from a Box-Cox transformation with λ = 0.3; red and green line represents the 

association between RMSSD and scaled average inverse efficiency score for non-insight and insight 

respectively; red and green shade, represents the 95% confidence intervals for the linear regression of non-

insight and insight, respectively.   

 

3.3.2 Assessing the Neurovisceral integration model 
 

In the main analysis regarding trait vmHRV, we observed a negative association between 

solution accuracy and vmHRV and between the number of correctly solved word puzzles and vmHRV. 

This finding is inconsistent with the assumptions of the neurovisceral integration model, which would 

predict a positive association. Exploratory analysis 2, described above, also allowed us to further 

clarify this inconsistent observation by examining how RMSSD related to CRA word puzzle difficulty 

(i.e., the main effect of IES). In line with the neurovisceral integration model, we expected RMSSD to 

be positively associated with CRA word puzzle difficulty. However, the main effect of scaled average 

IES was not significant, p = .460 (see also exploratory analysis 2).    

 

4. DISCUSSION 

With the current study, we aimed to clarify how insight and non-insight are (in)differentially 

related to WMC from a trait and resource-dependent perspective. To that end, we asked participants to 

solve CRA word puzzles and measured vmHRV, an index of prefrontal cortex resources, at three 

different interval types: resting-state baseline, solution search, and recovery.  

Our results showed that vmHRV measured during resting-state, indexing inter-individual 

differences in prefrontal functionality, was negatively associated with the problem-solving performance 

of both solution types (trait). Moreover, vmHRV reactivity during the solution search and its rebound 

during a post-task recovery period illustrated a similar pattern for both solution types (resource-

dependent). Namely, vmHRV increased relative to its resting-state value during the solution search for 

both solution types. During the post-task recovery, vmHRV remained comparable to its value during 

the solution search. Psychophysiologically, we observed no differences between insight and non-insight 

problem solving, for the trait nor the state analyses. However, differences between insight and non-

insight did emerge in exploratory analyses when splitting solution times in an early and late sample and 
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when taking CRA word puzzle difficulty into account. Furthermore, behaviourally and metacognitively, 

our findings dissociated between the solution types, demonstrating that insight solutions were found 

faster, were more often correct, received higher solution confidence, and were solved more frequently 

than non-insightful ones.   

4.1  Trait vagally mediated HRV  

Opposing the direction of the hypothesized association between non-insight and vmHRV, we 

found that higher vmHRV, indexing inter-individual prefrontal functionality, was (marginally) 

associated with a decreased likelihood of solving CRA word puzzles correctly and a decrease in the 

frequency of the number of correctly solved CRA word puzzles. Importantly, this result was also found 

for insight, illustrating that both solution types relate to this intrinsic prefrontal functionality similarly. 

Splitting solution time in an early and late sample further elucidated this effect (exploratory analysis 1). 

Namely, this association between vmHRV and solution accuracy only reached significance in the late 

sample (i.e., observations > 7.006s). However, in the early sample (i.e., observations < 7.006s), the 

solution accuracies for insight (M = 96%) and non-insight (M = 89%) were perhaps close to ceiling 

level, leaving little room for variation in function of the participants' resting-state vmHRV, precluding 

the observation of a significant effect. This finding does show that the association is mainly driven by 

CRA word puzzles that required a longer solution time. Because there is, to our knowledge, no previous 

insight study that approached vmHRV from a trait perspective, it is difficult to make direct comparisons. 

Nonetheless, our findings align with some inter-individual studies on the association between WMC 

and insight and non-insight problem solving, showing that WMC is similarly involved for both solution 

types (Chein & Weisberg, 2014; Chuderski & Jastrzebski, 2018). On the other hand, our results are not 

in line with other studies, observing a differential involvement of WMC for both solution types (e.g., 

DeCaro et al., 2016; Gilhooly & Fioratou, 2009). 

Thus, our results showed that higher inter-individual WMC/prefrontal functionality is 

associated with poorer CRA word puzzle problem solving performance. Some have argued that vmHRV 

primarily indexes inhibitory control instead of the full scope of executive functions (i.e., the ability to 

suppress unwanted thoughts and responses in service of the task goals; Kimhy et al., 2013; Munakata 

et al., 2011; Ottaviani et al., 2018). It might be that solving CRA word puzzles with insight or non-

insight is hampered instead of aided by too much inhibitory control. Namely, with each step in the 

solution search, participants have to explore various solution candidates or alternative approaches to 

deal with the CRA word puzzle, even less obvious ones. To achieve this, the participant needs a loose 

associative mind, open to all types of information even though they may seem irrelevant at first glance, 

or to attend to some faint valuable information located at the border of consciousness. This type of 

thinking is also called divergent thinking (Zhang et al., 2020) and has been associated with CRA 

problem solving in general (Cancer et al., 2022; Wu & Chen, 2021) and CRA word puzzle solving with 

insight specifically (Jung-Beeman et al., 2004; Kounios & Jung-Beeman, 2015). If inhibitory control is 

too strong, filtering out seemingly irrelevant/less obvious associations or blocking information at the 

border of consciousness, this might hamper instead of aid CRA word puzzle solving. Indeed, previous 

studies have shown that divergent thinking benefits from less inhibitory control (e.g., Carson et al., 

2003; Zabelina et al., 2016). Namely, less inhibitory control is presumed to facilitate the surfacing of 

more remotely associated task information (Abraham & Windmann, 2008; Cosgrave et al., 2018; but 

also see Nusbaum & Silvia, 2011). As such, those participants with a lower resting-state HRV, indexing 

lower prefrontal functionality (i.e., lower inhibitory control), might be more receptive to a broad range 

of ideas to proceed in the non-insight solution search or to access unusual approaches that can trigger 

insight. Although the conception of vmHRV indexing inhibitory control seems fruitful, we cannot 

confirm this interpretation solely based on our data as we did not include a behavioural measure of 

inhibitory control. Therefore, it would be worthwhile to assess inhibitory control alongside vmHRV in 

the context of problem solving to assess whether they are indeed interrelated, as suggested above. In 

any case, we speculate that our results indicate that the CRA word puzzle test might rely largely on 

divergent thinking, irrespective of how it is solved. Nevertheless, how this divergent thinking plays its 
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role in insight and non-insight CRA word puzzle solving could still be different. It could be that vmHRV 

is too crude of a measure to pick up this dissociation in divergent thinking between the solution types. 

Therefore, it might be an exciting avenue of further inquiry to assess the nature of divergent thinking in 

both solution types and whether or not this is different by using a more fine-grained measure such as an 

electroencephalogram (EEG; e.g., Jia & Zeng, 2021). 

Interestingly, when splitting solution time in an early and late sample (i.e., exploratory analysis 

1), we observed for the early sample only, that the difference in confidence reported for insight and 

non-insight solutions became more pronounced with increasing resting-state vmHRV. One approach to 

clarify this, is by considering solution confidence as an index of metacognitive awareness — i.e., the 

propensity to be aware of one's ongoing thinking, which is closely associated with cognitive control, 

prefrontal functionality, and vmHRV (Allan et al., 2017; Ask et al., 2023, Fleur et al., 2021; Harrison 

& Vallin, 2018). Research has already shown that individuals with high vmHRV displayed better 

metacognitive awareness than their low vmHRV peers (e.g., Meessen et al., 2018; Ask et al., 2023). 

Therefore, it might be that higher resting-state vmHRV was associated with increased metacognitive 

awareness of the ongoing solution search, resulting in a differential judgment of insight and non-insight 

solutions in terms of confidence in the solution. Indeed, we observed that participants lower in resting-

state vmHRV, relative to their higher vmHRV peers, judged both solution types more equally in terms 

of confidence, even though the insight and non-insight solutions were dissociable with regards to 

accuracy (i.e., 96% versus 89%). This shows that resting-state vmHRV was positively associated with 

the participants' metacognitive accuracy. However, this was only observed in the early sample (see 

Figure 6). The absence of the interaction effect in the late sample may result from a more pronounced 

difference in solution accuracy between insight and non-insight (i.e., 86% versus 57%) for these later 

solutions. This large solution accuracy difference was likely easier to track metacognitively, regardless 

of inter-individual differences in metacognitive awareness. One approach to further elucidate this 

interpretation is implementing a metacognitive awareness scale alongside measuring vmHRV and CRA 

word puzzles (see Harrison & Vallin, 2018) to assess the relationship more directly between confidence, 

metacognitive awareness, and vmHRV. Crucially, this result illustrates that not accounting for the 

variety in solution-time length in the original analysis obscured this differential relation between 

vmHRV and insight versus non-insight. 

Furthermore, when taking into account CRA word puzzle difficulty (i.e., exploratory analysis 

2), we observed a differential association between vmHRV and puzzle difficulty for insight and non-

insight. Namely, individuals with lower resting-state vmHRV tended to judge easy CRA puzzles as 

solved with insight and difficult ones with non-insight, whereas the reverse was observed for higher 

resting-state vmHRV individuals. This observation, again, might be linked to divergent thinking. 

Divergent thinking involves two associative memory-search processes: spontaneous and goal-directed 

processes (Beaty & Kennet, 2023). The first entails accessing information spontaneously, like in a free 

association task (Merseal et al., 2023), and is linked to unconscious processing and neuronal activity in 

the default mode network (Marron et al., 2018). The second is a conscious process where individuals 

use executive control (e.g., inhibition and switching) to navigate memory, and is linked to neuronal 

activity in the executive control network (Beaty et al., 2014; Zhang et al., 2020). Certain studies, 

although scarce, indirectly imply that individuals with greater cognitive resources are biased towards 

goal-directed processing, while those with fewer resources are biased towards more spontaneous 

processing (e.g., Robison et al., 2020; Liu et al., 2023). Therefore, we tentatively argue that the 

preference for one over the other memory-search process might depend on an individual’s prefrontal 

functionality (i.e., as indexed by vmHRV). Specifically, individuals with lower resting-state vmHRV, 

often associated with reduced cognitive resources, might rely more on a spontaneous search because 

cognitive control engagement would place additional strain on their already constrained cognitive 

resources. Conversely, those with higher resting-state vmHRV, often associated with enhanced 

cognitive resources, might favour a goal-directed search, exploiting the benefit of their greater cognitive 

resources. This propensity, in turn, could impact how easy and difficult CRA puzzles are experienced 

in terms of insight and non-insight.  
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Specifically, for easy CRA puzzles, lower vmHRV individuals relying more on spontaneous 

search, likely access the solution spontaneously after only one or two attempts, resulting in a sudden 

insight experience (see also Becker et al., 2021). Contrarily, higher vmHRV individuals relying more 

on goal-directed search, might perceive easy CRA puzzles as non-insightful because they can navigate 

the semantic search space in a goal-directed way, facilitated by the limited scope of the solution-space 

for these easy puzzles. Our results with regards to the early sample’s solution confidence support this, 

highlighting an increased awareness of the ongoing solution search in higher vmHRV individuals, 

aligning with goal-directed search processes. On the other hand, for difficult CRA puzzles, lower 

vmHRV individuals may need multiple cycles of spontaneous search or resort to goal-directed search 

after spontaneous attempts fail, leading to the experience of non-insight. Contrarily, higher vmHRV 

individuals might encounter dead ends in the semantic search space, necessitating the inhibition of 

erroneous assumptions (cf. restructuring) or the reliance on a spontaneous search to find the solution. 

Such a sudden shift in the protracted solution search might be experienced as an insight. In any case, an 

individual’s tendency to rely more on spontaneous or goal-directed associative searches of semantic 

memory might influence how they experience and interpret the process of solving CRA word puzzles, 

particularly in terms of insightfulness. However, as we only indirectly reached these conclusions after 

an exploratory analysis, we want to stress that caution is needed here and future research is required to 

test these hypotheses more directly. One possible way to assess this more directly is by examining the 

relative involvement of the default mode and executive control network during CRA solving of 

individuals high and low in cognitive resources (e.g., based on cognitive control test battery), while also 

tracking vmHRV. 

Finally, the results of the main analyses were difficult to reconcile with the neurovisceral 

integration model’s assumption that individuals with higher vmHRV tend to have better prefrontal 

resources for self-regulatory purposes than their lower vmHRV peers (Thayer et al., 2009). Namely, 

instead of observing a positive association between vmHRV and behavioural CRA performance, a 

negative one was found. To elucidate this unexpected association, we additionally examined CRA word 

puzzle difficulty in association with vmHRV, irrespective of solution type, using exploratory analysis 

2. CRA word puzzle difficulty appeared unrelated to vmHRV. Although these findings are not in line 

with the neurovisceral integration model, the findings of exploratory analyses 1 (early and late solution 

retrieval) and 2 (CRA word puzzle difficulty) tend to align with this model. Namely, these analyses 

showed that higher vmHRV individuals are more aware of their ongoing solution search and are 

arguably more prone to engage in a goal-directed search, characteristics which the model would 

associate with higher vmHRV.  

In conclusion, although the main analyses showed a similar association between vmHRV and 

behavioural CRA performance for both solution types, the more fine-grained exploratory analyses 

revealed that insight and non-insight were dissociable when considering the length of the solution search 

and CRA word puzzle difficulty. While an enhanced inhibitory control of higher vmHRV individuals 

may hamper CRA problem solving, they might, at the same time, also be more aware of the ongoing 

solution search and adopt a more goal-directed approach to solve CRA puzzles.  

4.2  Resource-dependent HRV 

We observed that vmHRV increased from resting-state baseline to solution search for both 

solution types. Moreover, this vmHRV remained at a comparable level during the post-task recovery 

period. The exploratory analysis revealed a similar result, where solution time was split into an early 

and late sample. Taken that the solution search interval was not divided into its constituent solution 

search phases (i.e., problem representation, search, and solution retrieval), these findings show that it is 

valuable to consider the full solution search to assess the involvement of prefrontal resources. However, 

it might have been that the different solution search phases displayed a differential prefrontal 

involvement for insight and non-insight. This would require dividing each CRA word puzzle trial into 

its solution search phases. The question then arises of how to determine the time interval of each 

solution search phase. This would not be trivial. First, inter-individual differences might occur in the 
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time spent in each solution search phase, with some individuals devoting more time to certain phases 

than others. Second, it is likely (given the differences in solution time between the trials, i.e., range 

1.26s – 29.68s) that the intervals for each phase in the solution search vary from trial to trial. 

Furthermore, if these phases are very short, this would hamper the assessment of vmHRV. For example, 

regarding solution retrieval, previous psychophysiological studies (e.g., Jung-Beeman et al., 2004; Salvi 

et al., 2020) have shown differential patterns in EEG and pupil dilation data for insight and non-insight 

in the last 500ms before solution retrieval. If this 500ms interval represents the solution retrieval phase 

in the CRA-task context, using vmHRV to index prefrontal resources for insight and non-insight would 

be impossible. Therefore, having an accurate demarcation of each solution search phase for each trial 

would be interesting. Perhaps this can be based on participants' online subjective experiences during 

the solution search (e.g., Fedor et al., 2015) and/or by tracking changes in eye behaviour (e.g., Salvi et 

al., 2020). In any case, our results show that when we take into account the full solution search, there is 

something markedly similar between the two solution types. 
 Namely, our findings highlighted that both solution types relate to the use of prefrontal 

resources in a similar vein. This observation is not in line with Jausovec and Bakracevic's (1995) study, 

which found a differential pattern for both solution types. Studying heart rate, they found an incremental 

increase, relative to baseline, for non-insight (measured via verbal math problems) and a sudden 

increase at the moment of solution retrieval for insight (measured via visuospatial riddles). For non-

insight, one would expect this increase in heart rate to correspond to a vmHRV decrease, similar to 

what is seen in studies assessing vmHRV reactivity while solving math-like problems (Singh et al., 

2019; Sloan et al., 1991). For insight, the expected pattern of the vmHRV reactivity (i.e., increased or 

unaffected relative to its resting-state baseline) is less clear based on their heart rate study. In any case, 

it is surprising that the non-insightful solution search in the present study, which we considered to 

depend on the exertion of mental effort, was not associated with the depletion of prefrontal resources 

which would have been indexed by a decrease in vmHRV.  

vmHRV decreases are most often found during tasks for which demands are high, but it is clear 

how they should be procedurally executed (e.g., WM task, math problems; Hansen et al., 2003; 

Overbeek et al., 2014; Singh et al., 2019). However, the nature of such tasks might differ greatly from 

the CRA word puzzle test used in the current study. Namely, figuring out the solution to the CRA word 

puzzles is not an everyday task for which procedural knowledge is present. So solving the CRA word 

puzzles might require a different approach that taxes prefrontal resources differently than, for instance, 

solving a math problem. As the CRA test is based on the remote associates test of Mednick (1962), a 

well-known test to assess creativity, it is not inconceivable that reaching a solution (non)insightfully is, 

in a larger part, a creative challenge (Wu & Chen, 2021) rather than the application of procedural 

knowledge. Indeed, not all HRV research has illustrated a task-dependent decrease in vmHRV (e.g., 

Silvia et al., 2014). For example, it has been found that task contexts relating to impulse control (e.g., 

resisting the urge to drink alcohol) and creativity are found to be associated with vmHRV increases 

(Denson et al., 2011; Ingjaldsson et al., 2003; Segerstrom & Nes, 2007). One of the arguments is that 

increasing prefrontal resource, as indexed by elevated vmHRV, during such tasks is adaptive here as it 

promotes calm reflection to approach a situation from a neutral and open stance (Denson et al., 2011; 

Laborde et al., 2018; Rominger et al., 2019; Segerstrom & Nes, 2007). Such an open-minded, calm 

reflection might support divergent thinking, which is often associated with creativity (see Cancer et al., 

2022; Zhang et al., 2020). This observation neatly aligns with our results concerning the trait vmHRV 

described in the previous section. Namely, solving CRA word puzzles might be mainly a creative 

challenge depending on divergent thinking, regardless of whether the puzzle is solved with insight or 

non-insight.  

It has recently been argued that creative problem-solving and insight problem-solving 

specifically rely on divergent/flexible thinking and convergent/persistent thinking (Zhang et al., 2020). 

The latter is used to narrow down and evaluate the options to continue the solution search or attain the 

solution (Cancer et al., 2022; Zhang et al., 2020). One or multiple cycles of divergent and convergent 

thinking might be needed to find the solution (Hélie & Sun, 2010; Kajic et al., 2017; Rominger et al., 

2019). Insight might be preceded by only one or two such cycles to restructure the erroneous solution 
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space and attain the solution, perhaps still relying on implicit processes to a large extent. In contrast, 

non-insight might depend on multiple cycles building on previous cycles through the solution search. 

Becker et al. (2021) showed that more solution attempts precede non-insight than insight, tentatively 

corroborating this assumption. Thus, future research pinpointing whether these two modes of thinking 

are present in insight and non-insight problem solving and whether these modes differ between insight 

and non-insight in how they fluctuate temporally would be worthwhile.  

The finding that vmHRV did not progress back to its resting-state value during the recovery 

period might not be that surprising. The body's preferred state is one that enhances resource restoration 

and rest, marked by parasympathetic dominance and, thus, increased vmHRV (Laborde et al., 2017; 

Shaffer & Ginsberg, 2017). Therefore, maintaining a higher vmHRV post-task can be seen as adaptive, 

reflecting that prefrontal resources remain more readily accessible to address the next CRA word puzzle 

trial (see also Laborde et al., 2017). It is also not inconceivable that the experience of insight, compared 

to non-insight, induces vmHRV changes due to insight's surprising and affective nature. Although this 

would be an exciting avenue to further establish the psychophysiological difference between insight 

and non-insight, the current experimental design does not allow us to test this hypothesis. Namely, 

participants' typing behaviour immediately following solution retrieval confounds any immediate post-

solution vmHRV changes related to solution type. 

Finally, it is noteworthy that we merged all correctly solved CRA word puzzle trials with insight 

and non-insight to obtain valid measures of vmHRV. This merging into large solution search and 

recovery intervals might not have done justice to the diversity of solution search strategies present 

within each CRA word puzzle trial. Perhaps, as a next step, it would be interesting to use more fine-

grained measures, such as EEG and eye-tracking, to tease apart the insightful versus non-insightful 

solution search on a more trial-by-trial basis (see, for example, Becker et al., 2021).  

4.3   Behavioural and metacognitive differences 

Our behavioural and metacognitive results for each solution type correspond to the findings of 

numerous other studies (e.g., Danek & Wiley, 2017; Hedne et al., 2016; Laukkonen et al., 2021; Salvi 

et al., 2016; Stuyck et al., 2022; Webb et al., 2019). That is, insight solutions are typically solved faster, 

are more often correct, receive more confidence, and are solved more frequently than non-insightful 

ones. Only solution time has been considered a less stable characteristic separating insight from non-

insight, with some studies finding faster solution times for insight (e.g., Cranford & Moss, 2012), no 

difference (e.g., Hedne et al., 2016), or slower solution times (e.g., Stuyck et al., 2021). Nonetheless, 

these observations ensure that the current study's self-reported insight and non-insight solution 

strategies closely mimic what has been previously observed in insight studies using the same paradigm. 

It is worth mentioning that these self-reports have not been without critique. For instance, it has been 

claimed that insight classification is driven by finding a solution quickly, therefore bypassing an actual 

solution search and artificially increasing the accuracy effect (i.e., fast = easy = more accurate; Cranford 

& Moss; Stuyck et al., 2022). However, several studies have already shown that accounting for these 

fast insight solutions does not change the observed patterns (e.g., Salvi et al., 2016; Stuyck et al., 2021; 

Stuyck et al., 2022). Moreover, it has been argued that the definition of insight provided to participants 

at the onset of the experiment and/or participants' intrinsic conception of insight biases participants to 

rely on certain phenomenological (e.g., solution confidence) and behavioural (e.g., solution accuracy) 

cues to make the insight/non-insight classification (Laukkonen et al., 2021; Laukkonen & Tangen, 

2018). However, research has shown that the insight/non-insight classification corresponds to a distinct 

psychophysiological (e.g., squeeze strength, pupil dilation; Laukkonen et al., 2021; Salvi et al., 2020), 

neurological (e.g., EEG signature; see Kounios & Jung-Beeman, 2014  for a review), and behavioural 

(e.g., differentially affected by cognitive load; Stuyck et al., 2022) signature, thereby illustrating that 

the self-reports implicate differing constructs. Notably, we observed that some participants 

proportionally solved more word puzzles with insight than non-insight (N = 17) or vice versa (N = 14). 

This might reflect inter-individual differences in the propensity to solve problems with insight or non-

insight. Therefore, it might be an interesting avenue to explore this insight/non-insight propensity in 
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future research, ideally using a longitudinal design to examine whether the insight/non-insight 

propensity is a robust phenomenon over time. 

Furthermore, we must note that the current sample consisted almost exclusively of female 

undergraduates. Previous research has not found an effect of biological sex on the tendency to solve 

problems with insight or non-insight (e.g., Stuyck et al., 2022; Wieth & Burns, 2006). On the other 

hand, the effect of biological sex on HRV has been somewhat inconsistent with some studies (e.g., 

Alyahya et al., 2021) showing no difference in young adults and others reporting otherwise (e.g., 

Estévez-Baés et al., 2018). In any case, our results should be interpreted with the composition 

characteristics of the sample in mind. Lastly, due to COVID-19, we had to adhere to strict ethical 

guidelines. To avoid any undue influence on HRV measurements, participants did not wear face masks 

while being tested. However, participants were requested to attach the electrodes themselves. Although 

we provided verbal and pictorial guidance and visually double-checked the electrode attachment, we 

cannot exclude the possibility that, on some occasions, the electrode placement was suboptimal, leading 

to poor ECG data. This could explain the higher proportion of excluded participants than usual. When 

no health-related restrictions or other ethical issues apply, we recommend that an experimenter attaches 

the electrodes to ensure high-quality data.  

4.4  Conclusion 

Trait vmHRV was negatively associated with CRA problem solving performance. We argued 

that this might reflect inter-individual differences in inhibitory control. As the solution search requires 

one to think of remote associations, inhibitory control might hamper rather than aid this process. This 

was further substantiated by observing a vmHRV increase from resting-state baseline to solution search, 

which lingered on in the recovery period. This vmHRV increase could mark the increase of prefrontal 

resources to promote an open-minded stance, important for thinking in a divergent manner, which 

arguably is crucial for the CRA test used in this study. Although this psychophysiological pattern of 

results was observed for both solution types, we also found that metacognitively differentiating insight 

from non-insight based on confidence in the early sample was positively associated with trait vmHRV 

(exploratory analysis 1). We suggested that higher trait vmHRV individuals have more fine-grained 

metacognitive information about the ongoing solution search, enabling them to guide their solution 

confidence effectively. Furthermore, trait vmHRV was positively associated with CRA puzzle difficulty 

for insight and negatively associated with CRA puzzle difficulty for non-insight (exploratory analysis 

2). We proposed that this observation might stem from higher trait vmHRV individuals favouring goal-

directed divergent thinking while lower vmHRV individuals might favour spontaneous divergent 

thinking, resulting in a differential judgment of whether easy and difficult CRA puzzles were solved 

using insight or non-insight. Although the main analyses indicated that insight and non-insight shared 

a similar association between vmHRV and behavioral performance, the more fine-grained exploratory 

analyses revealed that insight and non-insight were metacognitively judged differently in the early 

sample of CRA word puzzles and were experienced differently depending on the CRA word puzzle 

difficulty.   
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Appendix A. Example of abnormal ECG signal 

 

Figure 1 

 

Examples of a Normal and Abnormal ECG signal 

 

 
Note. A, normal ECG signal; B, abnormal ECG signal; P, P-wave (depolarization of the atria); Q, Q-wave 

(depolarization of the interventricular septum); R, R-wave (depolarization of the main body of the ventricles); S, 

S-wave (depolarization of the ventricles at the base of the heart); T, T-wave (repolarization of the ventricles; 

Silverthorn, 2004, p. 448); the time interval between two consecutive R-waves is used to estimate the IBIs.  
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Appendix B. Instructions 

Thank you for participating in this experiment.  

During the experiment, you will be presented with three words. The goal is to find a word that you 

can attach to each of these three words so that three new meaningful words are created. For example: 

"cane/daddy /plum" is connected by the word "sugar", because with the word "sugar" the compound 

words "sugarcane/ sugar daddy/sugarplum" can be formed. For every word puzzle, the solution is 

always a word that you can only add either to the front or to the back of the three words. Try to 

answer as quickly and accurately as possible. You have 30 s to find a solution. Once you have found 

the solution, press the space bar and enter your answer.  

 

In addition, you must indicate whether you have solved the word 'with an Aha!' or 'without an Aha!'.  

With Aha!: with an Aha! experience you become aware of the solution suddenly and clearly. This can 

be accompanied by a sense of revelation and relief. Without Aha!: Unlike an Aha! feeling, finding a 

solution with analysis is characterized by a step-by-step search process. Imagine a dark room that is 

suddenly lit up (with Aha!) or slowly lit with a dimmer switch (without Aha!).  

We ask you to indicate after each word puzzle if you have solved it "with Aha!" or "without Aha!". 
 

Finally you should also indicate your confidence in your solution. You can do this by using the cursor 

of the mouse to choose a position on a horizontal scale between "low confidence" and "high 

confidence". 
 

Before the experiment starts, you can practice. If something is still not clear, please call the 

experiment leader. Once all instructions are clear, press the spacebar to continue.  
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Appendix C. Data preprocessing 

 

To synchronize the course of the experiment programmed in PsychoPy with the ECG signal, we used 

the Nexus trigger interface to send triggers from PsychoPy to the ECG recording software (i.e., 

BioTrace+), marking the intervals of interest (i.e., baseline, solution search, and recovery).  

 

  2.6.1 Kubios. To detect the r-peaks in the ECG signal, the Kubios HRV software uses a QRS-

detection algorithm based on the Pan-Tompkins algorithm (see Tarvainen et al., 2020, for an in-depth 

explanation). After that, the IBIs were calculated by determining the time interval between two r-peaks 

for the ECG signal (see Fig. 2 for an example). To correct potential artifacts in the IBI time series, we 

used the automatic artifact correction algorithm of Kubios. This algorithm uses the distribution of the 

differences between consecutive IBIs to estimate a time-varying threshold (i.e., threshold changes 

depending on location in the IBI time series) to identify ectopic beats. To detect missed and extra beats, 

the time-varying threshold is determined based on the distribution of the differences between the IBIs 

and a local, median IBI (see Lipponen & Tarvainen, 2019, for the algorithm and decision rule). All 

detected artifacts are subsequently replaced with IBIs based on cubic spline interpolation. Lastly, 

Kubios deploys a detrending procedure to accommodate the non-stationarity of the IBI time series by 

defining an a priori smoothing parameter (cut-off frequency 0.035 Hz; see Tarvainen et al., 2002).  

 

2.6.2 Visual inspection. Additionally, all ECG signals were visually inspected for abnormal 

ECG signals, unstable recording epochs, missed r-peaks, and missed artifacts by the algorithms that 

might influence the vmHRV data (e.g., supraventricular extrasystole; see Kumral et al., 2019 for a 

similar procedure). In case of abnormalities, we applied a manual correction to the ECG signal (e.g., 

marking noisy ECG epochs as to-be-excluded noise epochs and/or adding missing r-peaks). For all ECG 

recording intervals (i.e., baseline, solution search, and recovery), we only accepted ECG recordings 

consisting of at least 95% noise-free data (i.e., clear and distinct ECG wave morphology) and no more 

than 5% corrected IBIs in that noise-free data. For example, a baseline ECG recording of 300s could 

not include more than 15s of noise epochs (i.e., an epoch with an uninterpretable ECG wave 

morphology).  

 

2.6.3 Baseline ECG recording. As the 5min baseline ECG recording is vital for the statistical 

analysis of the trait vmHRV and the resource-dependent vmHRV, baseline ECG recordings that 

violated these above percentages (i.e., min. 95% noise-free data and max. 5% corrected IBIs) led to the 

exclusion of one participant (see participant section). Table 1 depicts the percentage of corrected IBIs 

and noise-free data.  

 

2.6.4 Solution search and recovery ECG recording. To create the solution search and 

recovery intervals over which RMSSD was calculated, we merged the time intervals of the individually 

correctly solved CRA word puzzle trials for each solution type. This led to four RMSSD observations 

per participant (i.e., solution search insight, solution search non-insight, recovery insight, and recovery 

non-insight). The merged solution-search interval consisted of a series of time intervals with differing 

lengths. This is because CRA word puzzles took between 1s and 30s to be solved. The merged recovery 

interval always consisted of a series of time intervals of 10s, as the recovery time interval after each 

trial had a fixed length of 10s. The minimum solution search and recovery interval length deemed 

acceptable for assessing RMSSD was 10s. Previous research (e.g., Munoz et al., 2015) has shown that 

RMSSD calculated with a 10s ECG recording gives a reliable approximation of the RMSSD obtained 

with a 5min ECG recording. Based on this minimum required interval length, we refrained from 

calculating RMSSD for the insightful solution search of one participant. Next, similar to the baseline 

ECG recording, we determined the percentage of noise-free data and the percentage of corrected IBIs 

in the noise-free data. If these percentages were below 95% and above 5%, respectively, we refrained 
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from calculating the RMSSD value but retained the participant. This led to an additional omission of 

five RMSSD values of five different participants. We note that for the solution search and recovery 

intervals below 30s all ECG data were 100% noise-free without corrected IBIs. This is important, as 

for such short intervals with a low number of IBIs which can be used to calculate RMSSD, additional 

missing/erroneous ECG data would be detrimental to the valid estimation of RMSSD. Finally, we used 

Tukey's (1977) method (see participant section for explanation) to identify severely outlying RMSSD 

observations in the four different interval types (i.e., solution search insight, solution search non-insight, 

recovery insight, and recovery non-insight; see Kumral et al., 2019 for a similar procedure). No RMSSD 

observations were considered as outlying based on this method. Table 1 depicts the percentage of noise-

free data, the percentage of corrected IBIs, and the number of excluded RMSSD observations for each 

interval type.  

 

Table 1 

 

The Percentage of IBIs corrected and the Percentage of Noise-Free Data 

 

  %corrected IBI %noise-free ECG data #RMSSD excluded 

  M(SD) range M(SD) range  

 baseline 0.26(0.49) 0-1.82 99.88(0.63) 95.32-100 / 

Insight solution search 0.10(0.35) 0-2.34 99.75(2.06) 83.00-100 2 

recovery 0.36(0.74) 0-4.15 99.88(0.66) 95.00-100 / 

Non-Insight solution search 0.38(0.99) 0-5.26 99.96(0.37) 97.00-100 1 

recovery 0.63(1.40) 0-6.06 99.97(0.24) 98.00-100 3 
Note. %corrected IBI, percentage of IBIs that were corrected in the noise-free data; %noise-free ECG data, percentage 

of data with a clear and distinct ECG signal; RMSSD, root mean square of successive differences between normal 

IBIs; #RMSSD excluded, number of RMSSD observations within a specific interval type that were excluded because 

they either had too much IBIs corrected or had insufficient noise-free ECG data; /, no excluded RMSSD observations.  
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Appendix D. R package used for the statistical analysis 

 

The (G)LMMs of trait vmHRV of solution time and solution accuracy, and the LMM of 

resource-dependent vmHRV of RMSSD were built with the lme4 package (Bates et al., 2015). The 

GLMM on solution confidence was built with the glmmTMB package (Brooks et al., 2017). The GLM 

on the number of correctly solved word puzzles was built with the MASS package (Venables & Ripley, 

2002), and its robust standard errors were obtained with the Sandwich package (Zeileis et al., 2020). 

Box-Cox transformations were applied with the MASS package (Venable & Ripley, 2002). Post-hoc 

tests were performed with the emmeans package (Lenth, 2020).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

Appendix E. Trait vagally mediated HRV's estimated models  

Table 1.  
Linear Mixed Model on Solution Time of the CRA 

 β(SE) CI 95% t-value p 

Intercept (grand mean) 1.69(0.03) 1.64, 1.74 67.66 <.001 
solution type -0.16(0.02) -0.19, -0.13 -9.31 <.001 
RMSSD -0.00001(0.02) -0.03, 0.04 -0.001 .999 
solution type*RMSSD -0.019(0.02) -0.06, 0.02 -1.14 .256 

Note. RMSSD, root mean square of successive differences between normal inter-beat intervals standardized 
by rescaling it to z-scores; p-values were obtained using the Satterthwaite approximation method; Boldface, 
significant results; CI, confidence interval. This linear mixed model is based on only the correctly solved CRA 
word puzzles. 

 

 

 

 

Table 2.  

Generalized Linear Mixed Model on Solution Accuracy of the CRA 

 β(SE) OR CI 95% Z-value p 

Intercept (grand mean) 1.62(0.16) 5.07 3.75, 6.87 10.51 <.001 
solution type 1.74(0.12) 5.67 4.53, 7.11 15.07 <.001 

RMSSD -0.22(0.12) 0.81 0.64, 1.01 -1.85 .065 
solution type*RMSSD -0.09(0.11) 0.92 0.74, 1.14 -0.79 .436 

Note. RMSSD, root mean square of successive differences between normal inter-beat intervals standardized 
by rescaling it to z-scores; p-values were based on the Wald test; Betas are on the logit scale; OR, odds ratio; 
an OR of one represents the at chance-level classification of correct and incorrectly solved CRA word puzzles; 
An OR above/below one represents the magnitude of increase/decrease in the probability of solving a CRA 
word puzzle correctly; Boldface, significant and borderline significant results; CI, confidence interval. This 
generalized linear mixed model is based on the correct and incorrect solved CRA word puzzles.   

Table 3.  

Generalized Linear Mixed Model on Solution Confidence of the CRA 

 β(SE) CI 95% Z-value p 

Intercept (grand mean) 1.11(0.10) 0.93, 1.30 11.75 <.001 
solution type 0.62(0.04) 0.54, 0.70 14.42 <.001 
RMSSD 0.06(0.08) -0.10, 0.21 0.72 .474 
solution type*RMSSD 0.03(0.04) -0.06, 0.11 0.68 .496 

Note. RMSSD, root mean square of successive differences between normal inter-beat intervals standardized 
by rescaling it to z-scores; p-values were based on the Wald test; Betas are on the logit scale; Boldface, 
significant results; CI, confidence interval. This generalized linear mixed model is based only on the correct 
solved CRA word puzzles.   
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Table 4.  

Generalized Linear Mixed Model on the Number of Correctly Solved CRA Word Puzzles 

 β(SE) IRR CI 95% Z-value p 

Intercept (grand mean) 2.85(0.03) 17.23 15.90, 18.68 90.55 <.001 
solution type 0.55(0.09) 1.73 1.47, 2.03 5.97 <.001 

RMSSD -0.06(0.03) 0.94 0.87, 1.02 -2.26 .024 
solution type*RMSSD 0.13(0.10) 1.14 0.97, 1.33 1.34 .181 

Note. RMSSD, root mean square of successive differences between normal inter-beat intervals standardized by 
rescaling it to z-scores; p-values were based on the Wald test; Betas are on the log scale; IRR, incidence rate 
ratio; an IRR of one represents no change in the rate of the number of correctly solved CRA word puzzles; An IRR 
above/below one represents the multiplicative factor of increase/decrease in the rate of the number of 
correctly solved CRA word puzzles; Robust standard errors were computed to take the non-independence of the 
data into account; Boldface, significant results; CI, confidence interval. This generalized linear model is based on 
only the correctly solved CRA word puzzles.   
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Appendix F. Resource-dependent vagally mediated HRV 

 

Table 1.  
Linear Mixed Model on (Box-Cox transformed) RMSSD 

 β(SE) CI 95% t-value p 

Intercept (grand mean) 6.63(0.13) 6.38, 6.91 51.85 <.001 
solution type -0.01(0.05) -0.11, 0.10 -0.23 .822 
search interval1 0.32(0.08) 0.18, 0.48 4.13 <.001 
search interval2 -0.43(0.08) -0.58, -0.29 -5.66 <.001 
solution type*search interval1 0.13(0.15) -0.17, 0.41 0.84 .402 
solution type*search interval2 0.15(0.15) -0.16, 0.49 1.00 .319 

Note. RMSSD, root mean square of successive differences between normal inter-beat intervals; RMSSD is Box-
Cox transformed with λ = 0.3 to accommodate non-normality and heteroscedasticity; search interval1, 
baseline vs. solution search; search interval2, baseline vs. recovery; p-values were obtained using the 
Satterthwaite approximation method; Boldface, significant results; CI, confidence interval; this linear mixed 
model is based on the RMSSD calculated on the merged intervals of the solution search and recovery intervals 
for the correctly solved CRA word puzzles.  
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Appendix G. Exploratory analysis 

 

Table 1.  

Linear Mixed Model on Solution Time of the CRA for the Early and Late Samples 

Early 

 β(SE) CI 95% t-value p 

Intercept (grand mean) 2.96(0.05) 2.86, 3.08 99.22 <.001 

solution type -0.21(0.06) -0.32, -0.12 -3.65 <.001 

RMSSD 0.03(0.04) -0.07, 0.10 0.61 .544 

solution type*RMSSD -0.09(0.06) -0.19, 0.03 -1.49 .136 

Late 

 β(SE) CI 95% t-value p 

Intercept (grand mean) 1.48(0.005) 1.47, 1.49 322.31 <.001 

solution type     -0.03(0.007)        -0.04, -0.009 -3.54 <.001 

RMSSD -0.006(0.004) -0.01, 0.004 -1.12 .266 

solution type*RMSSD -0.0004(0.0004) -0.02, 0.02 -0.06 .954 

Note. RMSSD, root mean square of successive differences between normal inter-beat intervals standardized 

by rescaling it to z-scores; p-values were obtained using the Satterthwaite approximation method; Boldface, 

significant results; CI, confidence interval. This linear mixed model is based on only the correctly solved CRA 

word puzzles in the early (observations < 7s) and the late sample (observations > 7s). 

 

 

Table 2.  

Generalized Linear Mixed Model on Solution Accuracy of the CRA for the Early and Late Samples 

Early 

 β(SE) OR CI 95% t-value p 

Intercept (grand mean) 2.70(0.23) 14.91 9.45, 23.53 11.61 <.001 

solution type 1.17(0.22) 3.21 2.07, 4.96 5.26 <.001 

RMSSD -0.22(0.16) 0.81 0.59, 1.11 -1.31 .191 

solution type*RMSSD 0.32(0.22) 1.37 0.89, 2.13 1.42 .156 

Late 

 β(SE) OR CI 95% t-value p 

Intercept (grand mean) 1.07(0.14) 2.88 2.18, 3.80 7.46 <.001 

solution type 1.58(0.15) 4.83 3.64, 6.42 10.88 <.001 

RMSSD -0.24(0.11) 0.79 0.63, 0.98 -2.10 .036 

solution type*RMSSD -0.20(0.14) 0.82 0.62, 1.08 -1.44 .149 

Note. RMSSD, root mean square of successive differences between normal inter-beat intervals standardized 

by rescaling it to z-scores; p-values were based on the Wald test; Betas are on the logit scale; OR, odds ratio; 

an OR of one represents the at chance-level classification of correct and incorrectly solved CRA word puzzles; 

An OR above/below one represents the magnitude of increase/decrease in the probability of solving a CRA 

word puzzle correctly; Boldface, significant and borderline significant results; CI, confidence interval. This 

generalized linear mixed model is based on the correct and incorrect solved CRA word puzzles in the early 

(observations < 7s) and the late sample (observations > 7s).   
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Table 3.  

Generalized Linear Mixed Model on Solution Confidence of the CRA for the Early and Late Samples 

Early 

 β(SE) CI 95% t-value p 

Intercept (grand mean) 1.57(0.10) 1.38, 1.76 16.07 <.001 

solution type 0.40(0.07) 0.28, 0.53 6.20 <.001 

RMSSD 0.04(0.09) -0.13, 0.21 0.50 .619 

solution type*RMSSD 0.14(0.06) 0.02, 0.27 2.19 .028 

Late 

 β(SE) CI 95% t-value p 

Intercept (grand mean) 0.91(0.10) 0.73, 1.10 9.62 <.001 

solution type 0.72(0.06) 0.60, 0.84 11.80 <.001 

RMSSD 0.06(0.08) -0.10, 0.21 0.71 .475 

solution type*RMSSD -0.02(0.06) -0.14, 0.10 -0.28 .783 

Note. RMSSD, root mean square of successive differences between normal inter-beat intervals 

standardized by rescaling it to z-scores; p-values were obtained using the Satterthwaite approximation 

method; Boldface, significant results; CI, confidence interval. This linear mixed model is based on only 

the correctly solved CRA word puzzles in the early (observations < 7s) and the late sample 

(observations > 7s). 

 

 

Table 4.  

Linear Mixed Model on (Box-Cox transformed) RMSSD for the Early and Late Samples 

Early 

 β(SE) CI 95% t-value p 

Intercept (grand mean) 5.33(0.09) 5.16, 5.50 60.04 <.001 

solution type 0.05(0.05) -0.04, 0.13 0.99 .322 

search interval1 0.26(0.06) 0.15, 0.38 4.14 <.001 

search interval2 -0.20(0.07) -0.33, -0.06 -3.05 .003 

solution type*search interval1 -0.06(0.13) -0.34, 0.17 -0.50 .620 

solution type*search interval2 0.15(0.13) -0.47, 0.08 -1.15 .250 

Late 

 β(SE) CI 95% t-value p 

Intercept (grand mean) 5.33(0.09) 5.15, 5.50 58.99 <.001 

solution type 0.009(0.04) -0.07, 0.08 0.20 .839 

search interval1 0.25(0.06) 0.15, 0.37 4.20 <.001 

search interval2 -0.19(0.06) -0.30, -0.08 -3.17 .002 

solution type*search interval1 -0.05(0.12) -0.31, 0.20 -0.38 .701 

solution type*search interval2 -0.06(0.12) -0.30, 0.19 -0.53 .600 

Note. RMSSD, root mean square of successive differences between normal inter-beat intervals; RMSSD is Box-

Cox transformed with λ = 0.3 to accommodate non-normality and heteroscedasticity; search interval1, baseline 

vs. solution search; search interval2, baseline vs. recovery; p-values were obtained using the Satterthwaite 

approximation method; Boldface, significant results; CI, confidence interval; this linear mixed model is based 

on the RMSSD calculated on the merged intervals of the solution search and recovery intervals for the correctly 

solved CRA word puzzles in the early (observations < 7s) and the late sample (observations > 7s).  
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Table 5.  
Linear Model on (Box-Cox transformed) RMSSD 

 β(SE) CI 95% t-value p 

Intercept (grand mean) 6.39(0.13) 6.14, 6.64 50.19 <.001 
solution type -0.07(0.08) -0.23, 0.09 -0.91 .364 
scaled average IES -0.07(0.09) -0.25, 0.12 -0.74 .460 
solution type*scaled average IES 0.59(0.23) 0.14, 1.03 2.60 .010 

Note. RMSSD, root mean square of successive differences between normal inter-beat intervals; RMSSD is Box-
Cox transformed with λ = 0.3 to accommodate non-normality and heteroscedasticity; scaled average IES, 
average inverse efficiency score for insight and non-insight per participant standardized by rescaling it to z-
scores; Boldface, significant results; CI, confidence interval. This linear model is based on only the correctly 
solved CRA word puzzles. 
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