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A B S T R A C T

In pressure tank design, structural efficiency or the ratio of pressurized volume to structural mass is
fundamental and implies a specific shape, such as a cylindrical or spherical layout. However, this axi-symmetric
layout may be not conform to the enveloping shape. Previous investigations developed a conformable tank
concept with a multi-bubble axi-symmetric layout, called a multi-lobe, multi-cell or multi-bubble tank, but
structural design and analysis are limited to intersecting cylindrical, spherical or toroidal shells. The objective
of this research is to increase the volumetric efficiency of multi-bubble tanks even further through the
introduction of a conical shell. An integral analytical formulation of tank topology and explicit expression
of equilibrium are provided in order to design a structurally efficient tapered multi-bubble tank under low
differential pressure. The result is expressed in a geometric rule that is applicable for tapered multi-bubble
tanks of any eligible shape.
1. Introduction

Classical pressure tanks have an axi-symmetric layout, which is
the most effective structural concept to cope with differential pressure
without bending stress in the tank wall. Cylindrical pressure tanks with
domed ends are common in many engineering applications to store or
transport liquid or gas under pressure. If a significant amount of liquid
or gas is to be stored, however, the accommodation of single cylindrical
pressure tanks requires a large volume and is often inconsistent with the
general layout of the host cavity.

The concept of a conformable pressurized structure or multi-bubble
tank provides a solution. Multi-bubble tanks consist of intersecting
shells with web reinforcements. Compared with classical pressure tanks,
multi-bubble tanks take full advantage of the available space and offer
the lowest structural weight when volumetric efficiency and conforma-
bility are important. In a context of variable topology bubbles can
adapt to the convex or concave contour of the available space. Unlike
unpressurized fuel tanks, which do not have strict restrictions on shape
and size, a multi-bubble tank is subject to additional specifications on
its geometrical design. Not only should each bubble of the tank have
a three-dimensional convexity, the fact that it is pressurized implies
a specific shape. Fig. 1 illustrates the two-dimensional concept of a
multi-bubble structure with intersecting circular shells. The vertical
members, usually referred to as webs, are required to transfer the
circumferential forces as a result of the differential pressure. The
connection between two circular shells and a web is called the Y-
junction. Translation of the multi-bubble cross section shown in Fig. 1
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gives a cylindrical multi-bubble structure or multi-cylinder, revolution
around the horizontal transverse axis gives a spherical multi-bubble
structure or multi-sphere and revolution around the vertical transverse
axis gives a toroidal multi-bubble structure or multi-torus. Fig. 2 shows
an example of an open multi-bubble structure with a cylindrical layout.
This paper studies conformable pressure tanks under uniform internal
pressure. In a similar context, analytical formulations for the stress
analysis of egg-shaped sludge digestors [1,2] and spherical multi-
bubble tanks [3] under internal hydrostatic pressure are described by
Zingoni. A pressure tank in the form of a barrelled shape and loaded
with a uniform external pressure is presented by Jasoin [4].

In 1972, Ardema published a first article on the integration of
pressurized conformable structures in hypersonic aircraft in search
of optimum structural mass and volumetric efficiency of the tank
within an elliptic envelope [5]. This framework was used in 2020
by Van Bavel and subsequently in 2022 by Malfroy to optimize the
volumetric efficiency of the central multi-bubble tank in a hypersonic
vehicle concept [6,7]. The application of intercontinental hypersonic
transportation is already on the drawing tables for a long time, and
conformable pressurized tanks are particularly of interest to store the
cryogenic propellants in a liquid state on board of the LAPCAT MR2.4
vehicle [8–10], the STRATOFLY MR3 vehicle [11–13] and the X-33
vehicle [14]. Multi-bubble tanks are also interesting for application as
a pressure cabin [15–17] or cargo transport fuselage [18] in blended
wing body aircraft. The LAPCAT and STRATOFLY programmes are
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Nomenclature

Latin letters

𝐺 Implicit function
𝑁 Normal force per unit length
𝑝 Internal pressure
𝑄 Transverse force per unit length
𝑟 Radius
𝑡 Membrane thickness
𝑣 Distance between two axes of revolution
𝑥 Horizontal transverse direction
𝑦 Vertical transverse direction
𝑧 Longitudinal direction

Greek letters

𝛼, 𝛽 Taper angle
𝛾 Angle between two axes of revolution
𝛿 Angle between the web and the 𝑧-axis in

the plane containing the axes of revolution
𝜃 Circumferential direction
𝜎 Stress

uropean research development projects on hypersonic flight vehicles
ith strong restrictions on the geometric space to accommodate con-

ormable liquid hydrogen pressure tanks [19]. The main advantages of
sing hydrogen fuel are its high gravimetric energy density and the
bsence of carbon-based pollution in the exhaust after combustion with
ir. Liquid hydrogen needs to be stored in pressure tanks at cryogenic
emperatures and low pressure to maintain the liquid state of the fuel.

In 2012, Geuskens improved the understanding in the design and
nalysis of conformable pressurized structures with a cylindrical, spher-
cal and toroidal layout [20–22]. Scientific research is limited to the
nalysis of these three multi-bubble configurations and the volume op-
imization of conformable tanks is therefore limited to two dimensions.
he addition of a taper degree of freedom for each bubble provides
uch more freedom for accommodating the tank in a surrounding

tructure with arbitrary shape. Multi-bubble tanks with bubbles tapered
long their longitudinal axis have the potential to maximize the volu-
etric efficiency. When designing a tapered multi-bubble tank, bending

tress in the tank wall must be minimized which would otherwise
educe the structural efficiency considerably. One of the most important
onclusions in the work of Geuskens is that membrane forces in multi-
ubble tanks can be visually assessed by taking into consideration the
omplete set of distinctive geometry descriptors. For this reason, a fully
nalytical formulation using a complete set of geometry descriptors
or a thin-walled tapered multi-bubble structure is preferred over a
umerical simulation using the finite element method. The analytical
odel should also facilitate optimization strategies to fit the tapered
ulti-bubble tank to a prescribed volume in further research.

Tapered multi-bubble tanks with full spatial freedom have not
een realized yet, mainly due to an insufficient understanding of con-
ormable pressurized structures. This paper investigates the structural
easibility of the thin-walled tapered multi-bubble structure. Section 2
efines the geometry of a tapered multi-bubble structure using conical
hells in a three-dimensional Cartesian coordinate system and elabo-
ates on the shape of the web. The analytical model of the primitive
hapes of the geometry leads to an analytical formulation of stress
esultants and equilibrium in Section 3. The analytical formulation is
imited to force equilibrium considerations at the Y-junction. Localized
hell bending due to incompatibilities in the membrane deformations
f adjacent shell edges, e.g. at the junction of a dished head and a
2

Fig. 1. Half the cross section of a seven-bubble tank (solid line) in an elliptic envelope
(dashed line).

Fig. 2. Example of a cylindrical multi-bubble structure.

cylindrical shell [23], is not considered. Section 4 discusses the relation
that results between the planarity of the web and the structural effi-
ciency of the tank and Section 5 verifies the accuracy and applicability
of the analytical solution by comparison with a static structural finite
element analysis of a tapered multi-bubble tank with multi-spherical
heads. Sensitivity of the planarity of the web to the structural efficiency
of the tank is shown in Section 6.

2. Geometry descriptors

This section is an introduction to the geometry of a tapered multi-
bubble tank and defines a complete set of geometry descriptors.

2.1. Cylindrical multi-bubble tank

A cylindrical multi-bubble tank is an assembly of multiple intersect-
ing cylindrical shells with parallel axes of revolution. If in addition all
axes of revolution lie in the same plane, then this plane is a plane of
symmetry of the multi-bubble tank. Fig. 3 shows a cross section of a
cylindrical multi-bubble tank and a set of five geometry descriptors
in two intersecting cylinders (Table 1): two radii 𝑟, two angles 𝜃 that
define the boundary of the cylindrical shells and a separation distance 𝑣
between the two axes of revolution. In each pair of cylinders two
geometrical relations hold in the two-dimensional space 𝑥𝑦:

𝑟1 cos 𝜃1 + 𝑟2 cos 𝜃2 = 𝑣 (1)

𝑟1 sin 𝜃1 − 𝑟2 sin 𝜃2 = 0 (2)

Consequently, each pair of cylinders of a cylindrical multi-bubble
tank is completely defined by a set of three independent geome-
try descriptors 𝛹 =

{

𝑟1, 𝑟2, 𝑣
}

. The total set of geometry descriptors
𝛹 =

{

𝑟1 … 𝑟𝑁 , 𝑣1 … 𝑣𝑁−1
}

with 𝑁 ≥ 2 the number of bubbles in the
multi-bubble tank gives an unambiguous and complete description of
the cross section of an arbitrary cylindrical multi-bubble tank.
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Fig. 3. Geometry descriptors in two intersecting cylinders of a cylindrical multi-bubble
tank.

Table 1
Definition of the geometry descriptors in two intersecting cylinders of a cylindrical
multi-bubble tank.

Symbol Definition

𝜃𝑖 Angle between the plane containing the axes of revolution
and the radius of the 𝑖th cylinder intersecting the circle
in the Y-junction

𝑟𝑖 Radius of the 𝑖th cylinder
𝑣 Distance between the axes of revolution

2.2. Tapered multi-bubble tank

Design of cylindrical multi-bubble tanks is inherently limited to the
two-dimensional space. A tapered multi-bubble tank is now added with
design degree of freedom in the third direction. The tapered layout
that is the most effective to cope with differential pressure is found in
the primitive axi-symmetric shape of a conical shell. A tapered multi-
bubble tank is therefore an assembly of multiple intersecting conical
shells with parallel or intersecting axes of revolution. If in addition all
axes of revolution lie in the same plane, then this plane is a plane
of symmetry of the multi-bubble tank. Fig. 4 defines two intersect-
ing cones as two individual shells of revolution. A three-dimensional
coordinate system 𝑥𝑦𝑧 is defined at the centre of the largest circle
with radius 𝑟1 of a first cone with the 𝑧-axis centred along the axis of
revolution of that cone. The axis of revolution of a second cone with
largest radius 𝑟2 starts at an offset 𝑣 along the 𝑥-axis and intersects
the axis of revolution of the first cone at an angle 𝛾. The first and
second cones have apex angles 2𝛼 and 2(𝛽 − 𝛾), respectively, with 𝛽 ≥ 𝛾.
The angles 𝛼, 𝛽 ∈ [0, 𝜋∕2) and 𝛾 ∈ (−𝜋∕2, 𝜋∕2) are defined clockwise and
represent additional degrees of freedom in the design of the tank in
the third dimension. Consequently, each pair of cones of a tapered
multi-bubble structure or multi-cone is fully represented by a set of six
independent geometry descriptors 𝛹 =

{

𝛼, 𝛽, 𝛾, 𝑟1, 𝑟2, 𝑣
}

(Table 2).
Fig. 5 shows a three-dimensional example of a tapered multi-bubble

tructure. In contrast to the intersection of two cylindrical shells with
arallel axes of revolution, the intersection of two conical shells with
oplanar axes of revolution is a space curve. The web is the curved
urface that contains the space curve and is perpendicular to the
lane containing the axes of revolution. An analytical model of the
ntersection is found starting with the description of the first cone and
econd cone in Cartesian coordinates. The implicit equation of the first
one 𝐺𝑐,1(𝑥, 𝑦, 𝑧) for which the largest radius 𝑟1 is linearly decreasing at
n angle 𝛼 along the longitudinal 𝑧-axis is:

𝑐,1(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − (𝑟1 − 𝑧 tan 𝛼)2 = 0 (3)

The implicit form of the second cone 𝐺𝑐,2(𝑥, 𝑦, 𝑧) is similar to Eq. (3) but
3

replacing 𝑟1 by 𝑟2 and 𝛼 by (𝛽 − 𝛾). After a clockwise rotation around s
Fig. 4. Independent geometry descriptors in two intersecting cones of a tapered multi-
bubble tank. This illustration shows the first cone (blue), second cone (orange) and
axes of revolution (dash-dotted line). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Table 2
Definition of the geometry descriptors in two intersecting cones of a tapered
multi-bubble tank.

Symbol Definition

𝛼 Half apex angle of the 𝑖th cone
𝛽 Sum of the half apex angle of the (𝑖 + 1)th cone

and the angle 𝛾
𝛾 Angle between the axes of revolution
𝛿 Angle of deflection of the web
𝜃𝑖 Angle between the plane containing the axes of revolution

and the radius of the 𝑖th cone intersecting the circle
in the Y-junction

𝑟𝑖 Largest radius of the 𝑖th cone
𝑣 Largest distance between the axes of revolution

the 𝑦-axis at an angle 𝛾 and subsequently a translation along the 𝑥-axis
by a distance 𝑣 in accordance with Fig. 4 the equation reads:

𝐺𝑐,2(𝑥, 𝑦, 𝑧) = [(𝑥 − 𝑣) cos 𝛾 + 𝑧 sin 𝛾]2 + 𝑦2

−
[

𝑟2 + ((𝑥 − 𝑣) sin 𝛾 − 𝑧 cos 𝛾) tan(𝛽 − 𝛾)
]2 = 0 (4)

qs. (3) and (4) provide an analytical description of the three-dimen-
ional intersection in the 𝑥𝑦𝑧 coordinate system. The subtraction of
oth equations eliminates the dependency on 𝑦 because of the coplanar
haracter of the axes of revolution which results in a bivariate quadratic
unction:

𝑤(𝑥, 𝑧) = 𝐺𝑐,2(𝑥, 𝑦, 𝑧) − 𝐺𝑐,1(𝑥, 𝑦, 𝑧)

= 𝐴𝑥2 + 𝐵𝑥𝑧 + 𝐶𝑧2 +𝐷𝑥 + 𝐸𝑧 + 𝐹 = 0 (5)

erivation of the coefficients A-F is elaborated in Appendix:

𝐴 = −
sin2 𝛾

cos2(𝛽 − 𝛾)
𝐵 =

sin 2𝛾
cos2(𝛽 − 𝛾)

𝐶 = −𝐴 − tan2(𝛽 − 𝛾) + tan2 𝛼

= −2𝑣(1 + 𝐴) − 2𝑟2 sin 𝛾 tan(𝛽 − 𝛾)

𝐸 = −𝑣𝐵 + 2𝑟2 cos 𝛾 tan(𝛽 − 𝛾) − 2𝑟1 tan 𝛼

𝐹 = −𝑣𝐷 − 𝑣2(1 + 𝐴) − 𝑟22 + 𝑟21

Eq. (5) shows the projection 𝑥(𝑧) of the space curve given by 𝐺𝑐,1(𝑥(𝑧),
, 𝑧) = 0 onto the plane containing the axes of revolution such that
𝑤(𝑥(𝑧), 𝑧) = 0. Implicit differentiation of 𝐺𝑤(𝑥(𝑧), 𝑧) = 0 with respect

o 𝑧 gives:
𝜕𝐺𝑤
𝜕𝑧

+
𝜕𝐺𝑤
𝜕𝑥

d𝑥
d𝑧

= 0 (6)

The web’s angle of deflection 𝛿 is the angle between the web and the
𝑧-axis in the plane containing the axes of revolution, is defined to be
positive if 𝑥(𝑧) is decreasing and is obtained using Eq. (6):

an 𝛿(𝑧) = −d𝑥
d𝑧

=
𝐵𝑥(𝑧) + 2𝐶𝑧 + 𝐸
2𝐴𝑥(𝑧) + 𝐵𝑧 +𝐷

(7)

Fig. 6 shows a geometrical interpretation of the angle 𝛿(𝑧). Eq. (7)
hows that the angle 𝛿(𝑧) depends on 𝑧, which implies that the web
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Fig. 5. Example of a tapered two-bubble structure with
{

𝑟1 , 𝑟2 , 𝑣
}

= {2.5, 2.0, 2.2} m
and {𝛼, 𝛽, 𝛾} = {3, 6, 4} degrees. This illustration shows the first cone (blue), second
cone (orange), web (green), intersection curve (dashed line) and axes of revolution
(dash-dotted line). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. Top view of the example in Fig. 5 and a geometrical interpretation of the
angles 𝛼, 𝛽, 𝛾 and 𝛿(𝑧).

is in general nonplanar. The discriminant 𝐵2 − 4𝐴𝐶 shows that 𝑥(𝑧)
is a hyperbola for every set {𝛼, 𝛽, 𝛾 ∣ 𝛾 ≠ 0◦} and a parabola if 𝛾 = 0◦.
The concavity of the hyperbolic or parabolic function on the other
hand depends on the total set of independent geometry descriptors
{

𝛼, 𝛽, 𝛾, 𝑟1, 𝑟2, 𝑣
}

. Hence, at least one solution exists for 𝛾 for every
set

{

𝛼, 𝛽, 𝑟1, 𝑟2, 𝑣
}

such that the intersection of two conical shells is
a plane curve resulting in a planar web. This condition is met if the
second order derivative of 𝑥 with respect to 𝑧 is equal to zero. Implicit
differentiation of Eq. (6) with respect to 𝑧 gives:

𝜕2𝐺𝑤

𝜕𝑧2
+ 2

𝜕2𝐺𝑤
𝜕𝑥𝜕𝑧

d𝑥
d𝑧

+
𝜕2𝐺𝑤

𝜕𝑥2
( d𝑥
d𝑧

)2
+

𝜕𝐺𝑤
𝜕𝑥

d2𝑥
d𝑧2

= 0 (8)

While the factor 𝜕𝐺𝑤
𝜕𝑥 in the fourth term is always nonzero by definition,

the second order derivative of 𝑥 with respect to 𝑧 is equal to zero
in Eq. (8) if and only if the following condition is met:

𝜕2𝐺𝑤

𝜕𝑧2
+ 2

𝜕2𝐺𝑤
𝜕𝑥𝜕𝑧

d𝑥
d𝑧

+
𝜕2𝐺𝑤

𝜕𝑥2
( d𝑥
d𝑧

)2
= 0 (9)

with
𝜕2𝐺𝑤

𝜕𝑧2
= 2𝐶,

𝜕2𝐺𝑤
𝜕𝑥𝜕𝑧

= 𝐵,
𝜕2𝐺𝑤

𝜕𝑥2
= 2𝐴

Eq. (9) leads to

−𝐴 − tan2(𝛽 − 𝛾) + tan2 𝛼 − 𝐵 tan 𝛿 + 𝐴 tan2 𝛿 = 0 (10)

Trigonometric identities (see Appendix) simplify Eq. (10) to the elegant
expression:

cos(𝛾 − 𝛿) cos 𝛼 = cos 𝛿 cos(𝛽 − 𝛾) (11)

In conclusion, the angle 𝛿 does not change along the longitudinal 𝑧-
axis, the intersection is a plane curve and the web is a plane surface
if and only if Eq. (11) is satisfied. Parameters

{

𝑟1, 𝑟2, 𝑣
}

are included
in Eq. (11) via Eq. (7).
4

3. Equilibrium of forces

Any (conformable) thin-walled pressurized tank is structurally ef-
ficient, i.e. the ratio of pressurized volume to structural mass is max-
imized, if the orientation of the members align with the orientation
of resulting forces which are transferred by each of the members.
Shells of revolution have the property that under axi-symmetric loading
perpendicular to the shell, membrane stress is dominant. Each bubble
of the conformable tank must therefore be a shell of revolution and
any deviation from the shell of revolution (e.g. an elliptic cylinder)
gives rise to bending moments in the wall which reduce the structural
efficiency considerably [21].

3.1. Cylindrical multi-bubble tank

Fig. 7 shows the stress resultants between three structural members
at a Y-junction in a cylindrical multi-bubble tank. For a cylinder with
radius 𝑟 subject to an internal pressure 𝑝 [Pa], the hoop force 𝑁𝜃 [N/m],
i.e. the normal force along the circumferential direction 𝜃 per unit
length of section, is given by

𝑁𝜃 = 𝑝𝑟

According to the definitions of Flügge, all forces are defined per unit
length and division of the normal force by membrane thickness gives
the normal stress in the shell element [24]. The normal force 𝑁𝑦 and
the transverse force 𝑄𝑥 in the web where two cylindrical shells meet
are found from the expression of force equilibrium along the 𝑦- and
𝑥-axes, respectively:

𝑁𝑦 = 𝑁𝜃,2 cos 𝜃2 +𝑁𝜃,1 cos 𝜃1

= 𝑝
(

𝑟2 cos 𝜃2 + 𝑟1 cos 𝜃1
)

(12)
𝑄𝑥 = 𝑁𝜃,2 sin 𝜃2 −𝑁𝜃,1 sin 𝜃1

= 𝑝
(

𝑟2 sin 𝜃2 − 𝑟1 sin 𝜃1
)

(13)

The transverse force 𝑄𝑥 should vanish to minimize bending moments
in the structure. Eq. (13) shows that 𝑄𝑥 is equal to zero if the following
condition is met:

𝑟1 sin 𝜃1 = 𝑟2 sin 𝜃2 (14)

A closer look to the geometry descriptors in Fig. 3 shows that Eq. (14) is
identical to Eq. (2) which is a geometrical constraint that should always
hold. As a result, any cylindrical multi-bubble tank is structurally
efficient as 𝑄𝑥 is always zero. Further reformulation of Eq. (12) using
Eq. (1) gives a geometrical interpretation of the normal force in the
web of a cylindrical multi-bubble tank:

𝑁𝑦 = 𝑝𝑣

3.2. Tapered multi-bubble tank

The two-dimensional methodology to describe the stress system in
a cylindrical multi-bubble tank is now extended to a methodology in
three dimensions for the tapered multi-bubble tank defined in Fig. 4.
In a tapered multi-bubble configuration, however, the analytical de-
scription of equilibrium of forces at a Y-junction is more involved as
the radii of the shells change along their axial direction, the axes of
revolution are intersecting lines and the web is in general a curved
surface due to the introduction of the angles 𝛼, 𝛽 and 𝛾. Because of the
curvature of the web, a curvilinear coordinate system with orthogonal
axes, one of which is perpendicular to the surface of the web, is
required to define the transverse direction of the web. Fig. 8 shows the
orthogonal curvilinear coordinate system with 𝑦′ and 𝑧′ the coordinate
axes tangent to the surface of the web and 𝑥′ the transverse coordinate
axis perpendicular to the surface of the web. The directions 𝑦 and 𝑦′

are parallel.
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Fig. 7. Stress resultants at a Y-junction in a cylindrical multi-bubble tank.

Fig. 8. Simplification of Fig. 6 to show the orthogonal curvilinear coordinate system
𝑥′𝑦′𝑧′ at the intersection (dashed line) of two conical shells with 𝑥′ the direction
perpendicular to the surface of the web.

Fig. 9. Stress resultants at a Y-junction in an arbitrary section 𝐴 − 𝐴 of a tapered
ulti-bubble tank.

Fig. 9 shows the stress resultants at a Y-junction in a tapered multi-
ubble tank. Similar to the cylindrical multi-bubble tank, the tapered
ulti-bubble tank is structurally efficient if transverse forces vanish

verywhere. For a conical shell subject to an internal pressure 𝑝, the
oop force per unit length is expressed as

𝜃 =
𝑝𝑟

cos 𝛼
where 𝑟 is the distance of one of its points from the axis of revolution
nd 2𝛼 is the apex angle of the cone. The hoop force 𝑁𝜃 is a normal

force along the circumferential direction which is perpendicular to the
axis of revolution, as shown at the left in Fig. 9. The normal force 𝑁𝑦′

nd the transverse force 𝑄𝑥′ in an arbitrary section of the web where
wo conical shells meet are calculated by expressing force equilibrium
long the 𝑦′- and 𝑥′-axes, respectively:

𝑦′ = 𝑁𝜃,2 cos 𝜃2 +𝑁𝜃,1 cos 𝜃1

= 𝑝
(

𝑟2 cos 𝜃2 +
𝑟1 cos 𝜃1

)

(15)
5

cos(𝛽 − 𝛾) cos 𝛼
𝑄𝑥′ = 𝑁𝜃,2 sin 𝜃2 cos(𝛾 − 𝛿) −𝑁𝜃,1 sin 𝜃1 cos 𝛿

= 𝑝
(

𝑟2 sin 𝜃2
cos(𝛾 − 𝛿)
cos(𝛽 − 𝛾)

− 𝑟1 sin 𝜃1
cos 𝛿
cos 𝛼

)

(16)

Eq. (15) describes the normal force 𝑁𝑦′ in the web. It simplifies
to Eq. (12) if both shells are cylindrical shells, i.e. 𝛼 = 0◦ and 𝛽 = 𝛾.
q. (16) shows that the transverse force 𝑄𝑥′ vanishes if the following
wo conditions are met:

𝑟1 sin 𝜃1 = 𝑟2 sin 𝜃2 (17)

os(𝛾 − 𝛿) cos 𝛼 = cos 𝛿 cos(𝛽 − 𝛾) (18)

Section 4 gives a thorough discussion of the two conditions expressed
in Eqs. (17) and (18).

4. Discussion

Eq. (17) is identical to Eq. (14) and is met for every cone that
is merged with another cone as long as the axes of revolution are
coplanar, which is by definition always the case. Eq. (18) is identical
to Eq. (11) and is therefore always guaranteed if the intersection of two
conical shells is a plane curve. This observation leads to the Equivalence
which states that a thin-walled tapered multi-bubble tank with 𝑁
bubbles under differential pressure is structurally efficient if all (𝑁 − 1)
webs are plane surfaces.

Equivalence. A thin-walled tapered multi-bubble tank that (1) consists
of intersecting conical shells with web reinforcements at the intersections
and (2) is subject to a uniform internal differential pressure is structurally
efficient if all webs are planar.

The Equivalence constrains the design of a tapered multi-bubble
tank to a series of intersecting conical shells for which each intersection
is a plane curve. This constraint is expressed in Eq. (18) which involves
the total set of independent geometry descriptors 𝛹 =

{

𝛼, 𝛽, 𝛾, 𝑟1, 𝑟2, 𝑣
}

for each pair of adjoint bubbles with intersecting conical shells. The
following four statements are equivalent if Eq. (18) is met:

1. the web’s angle of deflection 𝛿 is constant.
2. the intersection curve is a plane curve.
3. the web is planar.
4. the tapered multi-bubble tank is structurally efficient.

Depending on the values for the set {𝛼, 𝛽, 𝛾}, there are four cases:

Case 1. Cylindrical shells - Parallel axes of revolution
In this case, 𝛼 = 0◦ and 𝛽 = 𝛾 = 0◦. The condition for structural

efficiency (Eq. (18)) is always met, hence the angle 𝛿 is constant and the
web is planar. Moreover, the angle 𝛿 is always equal to zero according
to Eq. (7) because of the coefficients of the homogeneous equation
𝐴 = 𝐵 = 𝐶 = 𝐸 = 0. According to expectations, the multi-bubble tank
is a cylindrical multi-bubble tank, i.e. the set {𝛹 ∣ 𝛼 = 𝛽 = 𝛾 = 0◦}, is
inherently structurally efficient.

Case 2. Cylindrical shells - Intersecting axes of revolution
In this case, 𝛼 = 0◦ and 𝛽 = 𝛾 ≠ 0◦. The condition for structural

efficiency (Eq. (18)) is met if 2𝛿 = 𝛾. Eq. (7) shows that the condition
2𝛿 = 𝛾 is met if 𝛾 = 0◦ (i.e. Case 1) or if both cylinders have equal radii
(i.e. 𝑟1 = 𝑟2). In other words, the tapered multi-bubble tank obtained
as the intersection of two cylinders of equal radius whose axes are
intersecting lines, i.e. the set

{

𝛹 ∣ 𝛼 = 0◦, 𝛽 = 𝛾, 𝑟1 = 𝑟2
}

, is structurally
efficient and the web is in an additional plane of symmetry.

Case 3. Conical shells - Parallel axes of revolution
In this case, 𝛼 ≠ 0◦ and 𝛽 ≠ 𝛾 = 0◦. The condition for structural

efficiency (Eq. (18)) is met if 𝛼 = 𝛽. Because of the coefficients of
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Table 3
Numerical values of the geometry descriptors

{

𝛼, 𝛽, 𝛾, 𝑟1 , 𝑟2 , 𝑣
}

and numerical results of the angle 𝛿, maximum value of the major principal stress 𝜎1 maximum
across the shell and maximum value of the magnitude of displacement 𝑢 for Cases 1 to 4.

Case 𝛼 [◦] 𝛽 [◦] 𝛾 [◦] 𝑟1 [m] 𝑟2 [m] 𝑣 [m] 𝛿 [◦] 𝜎1, max [MPa] 𝑢max [mm]

1 0.0 0.0 0.0 2.254 2.126 2.266 0.0 134.66 9.51
2 0.0 6.0 6.0 2.254 2.254 2.266 3.0 133.57 7.48
3 1.5 1.5 0.0 2.254 2.126 2.266 0.08475 135.27 9.91
4 1.5 4.718 2.121 2.254 2.126 2.266 0.0 135.08 10.76
Fig. 10. Analytical (Eq. (19)) and FE stress results (Fig. 12) of the major principal
tress averaged across the shell thickness in the web at the Y-junction.

he homogeneous equation 𝐴 = 𝐵 = 𝐶 = 0 if 𝛼 = 𝛽 and 𝛾 = 0◦, Eq. (7)
implifies to

an 𝛿 = 𝐸
𝐷

=
𝑟1 − 𝑟2

𝑣
tan 𝛼

nd shows that 𝛿 is always nonzero unless 𝛼 = 𝛽 = 0◦ (i.e. Case 1) or if
oth cones have equal radii (i.e. 𝑟1 = 𝑟2). The tapered multi-bubble tank
ssembled as two conical shells of equal apex angle and whose axes are
arallel lines, i.e. the set {𝛹 ∣ 𝛼 = 𝛽, 𝛾 = 0◦}, is structurally efficient.

ase 4. Conical shells - Intersecting axes of revolution
In this case, 𝛼 ≠ 0◦ and 𝛽 ≠ 𝛾 ≠ 0◦. At least one solution for 𝛾

xists for every set of geometric descriptors
{

𝛼, 𝛽, 𝑟1, 𝑟2, 𝑣
}

such that the
ondition for structural efficiency (Eq. (18)) holds. In contrast to Case 3
here the angles 𝛼 and 𝛽 have to be equal to each other due to the
arallel axes of revolution (𝛾 = 0◦), this case shows the significance of
he angle 𝛾 in the design degree of freedom of a structurally efficient
apered multi-bubble tank. The intersection of the axes of revolution
t an angle 𝛾 in this case allows to design a structurally efficient
apered multi-bubble tank with unequal angles 𝛼 and 𝛽. The inequality
etween 𝛼 and 𝛽 provides an additional taper degree of freedom for
ccommodating the tank in an arbitrary space.

. Validation

This section is an objective validation of the analysis procedure from
ections 2–3 and the Equivalence that results. The finite element (FE)
ethod is a generic and independent instrument for structural analysis.
he commercial Siemens Simcenter 3D software is used in this analysis.
he validation case is a tapered two-bubble tank closed with spherical
wo-bubble heads and without structural discontinuities for Cases 1
o 4 (Section 4). It is deliberately simple with few geometry descriptors
Table 3), but more complex geometries can be considered too. The
ngles 𝛼 and 𝛽, the radii 𝑟1 and 𝑟2 and the separation distance 𝑣 are

randomly selected. The angles 𝛽 and 𝛾 for Case 4 are calculated using
Eqs. (7) and (18) such that the resulting angle 𝛿 is zero. A 3D tapered
wo-bubble structure with a length of 20 m is modelled by inserting the
alues of the geometry descriptors in the template from Fig. 4.

An FE model of the tapered two-bubble tank is created using
QUAD4 and CTRIA3 shell elements. Low internal differential pressure
6

= 50 kPa is applied. Shell thickness 𝑡 = 1 mm is sufficient to sustain
Fig. 11. FE stress results of the major principal stress in the web at the Y-junction for
Case 4. This illustration shows the maximum stress across the shell thickness relative
to the average stress across the shell thickness: 𝜀 = |

|

|

1 − 𝜎max∕𝜎avg
|

|

|

.

pressure safely using standard engineering materials. Mesh conver-
gence analysis shows that an overall element size of 50 mm is sufficient,
which leads to a total of 107 424 nodes for Case 4. The FE model of
the tank is constrained with minimum statically determinate boundary
conditions. Finally, Simcenter Nastran version 2212.0 is used to obtain
the linear static solution for the 3D displacements 𝑢, major principal
stress 𝜎1 and intermediate principal stress 𝜎2 with minor principal stress
𝜎3 equal to zero in plane stress conditions. All shell elements in the
two-bubble tank are subject to a combination of membrane tensile load
and bending. In standard FE procedure stress is calculated from the
displacement field using equations from plate theory. Membrane stress
is calculated from in-plane displacement degrees of freedom, whereas
bending stress is calculated from out-of-plane displacement degrees of
freedom and nodal rotations. Stress output is requested at the top and
bottom surfaces of the shell element, because peak values occur at
either shell surfaces.

Figs. 10 and 11 show the FE stress results of the major princi-
pal stress in the web at the Y-junction. They are the result of post-
processing of the FE stress values in the two-bubble tanks shown in
Fig. 12. Membrane stress is derived directly as the average value of
stress at the top and bottom surfaces of the shell element and it is
compared to the analytical stress values in Fig. 10. The analytical stress
results of the major principal stress 𝜎1, web in the web at the Y-junction
is calculated from the division of Eq. (15) by the shell thickness 𝑡.
Further reformulation of Eq. (15) using Eqs. (3) and (4) gives

𝜎1, web =
𝑝
𝑡

(

(𝑣 − 𝑥(𝑧)) cos 𝛾 − 𝑧 sin 𝛾
cos(𝛽 − 𝛾)

+
𝑥(𝑧)
cos 𝛼

)

(19)

Eq. (19) is a linear function with respect to the longitudinal 𝑧-axis
provided that the Equivalence holds and depends on the pressure 𝑝,
shell thickness 𝑡 and independent geometry descriptors

{

𝛼, 𝛽, 𝛾, 𝑟1, 𝑟2, 𝑣
}

with 𝑥(𝑧) the coordinates of the web (Eq. (5)). The analytical and FE
stress results of 𝜎1, web are approximately equal along the entire length
of the tapered two-bubble tank for each case.

Displacements and the maximum stress across the shell thickness
are used to identify bending stress. The maximum values of the ma-
jor principal stress maximum across the shell thickness are added to
Table 3 and are located at the connection of a sphere with a cylinder
or cone. Fig. 11 shows that maximum stress across the shell thickness
and average stress across the shell thickness are approximately equal
at the Y-junction along the entire length of the tank. Displacements are

limited to 0.5% of the largest radius in the entire model.



Thin-Walled Structures 197 (2024) 111519

7

J. Malfroy et al.

Fig. 12. Major principal stress in the tapered two-bubble tank subject to an internal pressure of 50 kPa with geometry descriptors listed in Table 3 for Cases 1 to 4. (left) Average
value of stress at the top and bottom surfaces of the shell element and (right) maximum stress across the shell thickness. Only half of the two-bubble tank is shown because of
symmetry and to visualize the stress components in the planar web at the inside of the tank.



Thin-Walled Structures 197 (2024) 111519J. Malfroy et al.
Fig. 13. FE displacement and stress results in tapered two-bubble tanks with different curvatures of the web and with fixed geometry descriptors
{

𝑟1 , 𝑟2 , 𝑣
}

= {2.254, 2.126, 2.266} m
and {𝛼, 𝛿(0)} = {1.5, 0} degrees. (a) Nonplanarity of the web for different values of 𝛽 and 𝛾 (Eq. (5)). This illustration shows the web in the tapered structure (solid line) connected
to the webs in the spherical structures (dotted lines). (b) Displacements along the 𝑥-axis in the tapered two-bubble tank with {𝛽, 𝛾} = {5.5, 2.651} degrees. This illustration shows the
absolute deformed model (1:1). (c) FE displacement results of the transverse displacements of the web in the plane of symmetry. This illustration shows the transverse displacements
relative to the largest radius: 𝜀 = 𝑢𝑥∕𝑟1 and Fig. 13(b) shows the absolute values of 𝑢𝑥 for the model with 𝛽 = 5.5◦. (d) FE stress results of the major principal stress in the web at
the Y-junction. This illustration shows the maximum stress across the shell thickness relative to the average stress across the shell thickness: 𝜀 = |

|

|

1 − 𝜎max∕𝜎avg
|

|

|

.

FE results coincide with analytical results and the uniformity of the
stress fields shows that the Equivalence holds and that the two-bubble
tank is structurally efficient for each case. Fig. 12 also shows that stress
components in the tank wall are constant along the length of the tank
for cylindrical shells (Cases 1 and 2) and are linearly decreasing with
approximately 𝑝 tan(𝛼)∕𝑡 and 𝑝 tan(𝛽 − 𝛾)∕𝑡 for conical shells (Cases 3
and 4). Stress components in the web are (approximately) constant
along the length of the tank for parallel axes of revolution (Cases 1
and 3) and are linearly decreasing with approximately 𝑝 sin(𝛾)∕𝑡 for axes
of revolution intersecting at an angle 𝛾 (Cases 2 and 4).

6. Proof by contradiction

The FE results in Section 5 show the stress fields in thin-walled
tapered two-bubble tanks that are in agreement with the Equiva-
lence. Compliance with the Equivalence is a necessary condition for
membrane stress to be dominant over bending stress. As a proof by
contradiction, this section briefly shows that displacements and stresses
increase if the condition from the Equivalence is violated so that the
web is no longer a plane surface but a curved surface even if that
deviation is only slight. Case 4 is repeated and the angles 𝛼 = 1.5◦ and
𝛿(0) = 0◦ are fixed for now, but geometry is slightly modified to violate
the condition from the Equivalence. By increasing 𝛽 from 4.0◦ to 5.5◦ in
steps of 0.5◦ and calculating the corresponding angle 𝛾 for every value
of 𝛽 using Eq. (7), four different designs of a tapered two-bubble tank
with a nonplanar web are created. Fig. 13(a) shows the resulting non-
planarity of the web in the plane of symmetry for each solution together
with the structurally efficient solution {𝛽, 𝛾} = {4.718, 2.121} degrees
(Table 3). Edges of the tapered structure are at 𝑧 = 0 m and 𝑧 = 20 m.
Parts of the web formed by the spherical two-bubble heads at both ends
of the tank are added to show the structural continuity of the web.
8

Fig. 13(b) shows the absolute deformed tapered two-bubble tank
subject to an internal pressure of 50 kPa for 𝛽 = 5.5◦ and a shell
thickness of 1 mm. Maximum magnitude of the displacement vector
occurs in the 𝑥-direction or transverse direction of the web in the
plane of symmetry and is equal to 635 mm or 28.2% of the largest
radius in the tank. Fig. 13(c) shows the transverse displacements of
the web in the plane of symmetry for the models with other values
of 𝛽 and Fig. 13(d) shows the major principal stress in the web at
the Y-junction. These two figures show for values of the angle 𝛽 in
the range from 4.0◦ to 5.5◦ that a tapered multi-bubble tank geometry
exists in which displacements and stresses are minimum. This optimal
geometry is the structurally efficient solution (𝛽 = 4.718◦) and even
small deviations from the ideally planar web result in large transverse
displacements of the web and high stress peaks at the Y-junction.
This result demonstrates the importance of a planar web to preserve
structural efficiency and shows that the Equivalence should not be
violated in the design of a tapered multi-bubble tank.

7. Conclusion

An analytical proof and an independent numerical validation show
that the Equivalence is a fundamental rule in the design of a tapered
multi-bubble tank under differential pressure. All web reinforcements
have to be plane surfaces to guarantee a structurally efficient tapered
conformable structure in which the orientation of the members align
with the orientation of resulting forces which are transferred by each
of the members. Based on this principle, tapered multi-bubble tanks are
shown to have similar wall thickness and hoop stresses as for classical
pressure tanks with an axi-symmetric layout such as cylindrical shells.
This conclusion and construction guidelines provide the tank designer
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with a simple geometrical rule to assure from the start a structurally
efficient tapered conformable low-pressure tank. However, with the
high degree of sensitivity of stress peaks to geometry in general and
web planarity in particular, both the designer and manufacturer should
pay attention to precision.
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ppendix

Implicit equation of the first cone:

𝑐,1(𝑥, 𝑦, 𝑧)

= 𝑥2 + 𝑦2 − (𝑟1 − 𝑧 tan 𝛼)2

= 𝑥2 + 𝑦2 − 𝑟21 − 𝑧2 tan2 𝛼 + 2𝑟1𝑧 tan 𝛼

Implicit equation of the second cone:

𝑐,2(𝑥, 𝑦, 𝑧)

= [(𝑥 − 𝑣) cos 𝛾 + 𝑧 sin 𝛾]2 + 𝑦2

−
[

𝑟2 + ((𝑥 − 𝑣) sin 𝛾 − 𝑧 cos 𝛾) tan(𝛽 − 𝛾)
]2

= (𝑥 − 𝑣)2 cos2 𝛾 + 𝑧2 sin2 𝛾 + 2(𝑥 − 𝑣)𝑧 cos 𝛾 sin 𝛾 + 𝑦2

− 𝑟22 − 2𝑟2(𝑥 − 𝑣) sin 𝛾 tan(𝛽 − 𝛾) + 2𝑟2𝑧 cos 𝛾 tan(𝛽 − 𝛾)

− (𝑥 − 𝑣)2 sin2 𝛾 tan2(𝛽 − 𝛾) − 𝑧2 cos2 𝛾 tan2(𝛽 − 𝛾)

+ 2(𝑥 − 𝑣)𝑧 sin 𝛾 cos 𝛾 tan2(𝛽 − 𝛾)

= (𝑥 − 𝑣)2(cos2 𝛾 − sin2 𝛾 tan2(𝛽 − 𝛾)) + 𝑦2

+ 2(𝑥 − 𝑣)𝑧 cos 𝛾 sin 𝛾(1 + tan2(𝛽 − 𝛾))

+ 𝑧2(sin2 𝛾 − cos2 𝛾 tan2(𝛽 − 𝛾))

− 𝑟22 − 2𝑟2(𝑥 − 𝑣) sin 𝛾 tan(𝛽 − 𝛾) + 2𝑟2𝑧 cos 𝛾 tan(𝛽 − 𝛾)

Implicit equation of the web:

𝐺𝑤(𝑥, 𝑧) = 𝐺𝑐,2(𝑥, 𝑦, 𝑧) − 𝐺𝑐,1(𝑥, 𝑦, 𝑧)

= 𝐴𝑥2 + 𝐵𝑥𝑧 + 𝐶𝑧2 +𝐷𝑥 + 𝐸𝑧 + 𝐹

with

𝐴 = −1 + cos2 𝛾 − sin2 𝛾 tan2(𝛽 − 𝛾) = −
sin2 𝛾

cos2(𝛽 − 𝛾)

𝐵 = 2 cos 𝛾 sin 𝛾(1 + tan2(𝛽 − 𝛾)) =
sin 2𝛾

cos2(𝛽 − 𝛾)
𝐶 = sin2 𝛾 − cos2 𝛾 tan2(𝛽 − 𝛾) + tan2 𝛼

= −𝐴 − tan2(𝛽 − 𝛾) + tan2 𝛼
9

𝐷 = −2𝑣(cos2 𝛾 − sin2 𝛾 tan2(𝛽 − 𝛾)) − 2𝑟2 sin 𝛾 tan(𝛽 − 𝛾)

= −2𝑣(1 + 𝐴) − 2𝑟2 sin 𝛾 tan(𝛽 − 𝛾)

𝐸 = −2𝑣 cos 𝛾 sin 𝛾(1 + tan2(𝛽 − 𝛾)) + 2𝑟2 cos 𝛾 tan(𝛽 − 𝛾) − 2𝑟1 tan 𝛼

= −𝑣𝐵 + 2𝑟2 cos 𝛾 tan(𝛽 − 𝛾) − 2𝑟1 tan 𝛼

𝐹 = 𝑣2(cos2 𝛾 − sin2 𝛾 tan2(𝛽 − 𝛾)) + 2𝑣𝑟2 sin 𝛾 tan(𝛽 − 𝛾) − 𝑟22 + 𝑟21
= −𝑣𝐷 − 𝑣2(1 + 𝐴) − 𝑟22 + 𝑟21

Simplification of Eq. (10):

− 𝐴 − tan2(𝛽 − 𝛾) + tan2 𝛼 − 𝐵 tan 𝛿 + 𝐴 tan2 𝛿

=
sin2 𝛾

cos2(𝛽 − 𝛾)
+ 1 − 1

cos2(𝛽 − 𝛾)
− 1 + 1

cos2 𝛼

−
sin 2𝛾

cos2(𝛽 − 𝛾)
tan 𝛿 −

sin2 𝛾
cos2(𝛽 − 𝛾)

tan2 𝛿

= − 1
cos2(𝛽 − 𝛾)

(

cos2 𝛾 + sin 2𝛾 tan 𝛿 + sin2 𝛾 tan2 𝛿
)

+ 1
cos2 𝛼

= − 1
cos2(𝛽 − 𝛾)

(cos 𝛾 + sin 𝛾 tan 𝛿)2 + 1
cos2 𝛼

= −
cos2(𝛾 − 𝛿)

cos2(𝛽 − 𝛾) cos2 𝛿
+ 1

cos2 𝛼
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