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Abstract. This paper investigates how the soil profile affects the vibration mitigation
performance of seismic metamaterials in a wide frequency band (1 – 80 Hz). A 3D coupled finite
element - boundary element (FE-BE) model with an efficient substructuring method is developed
to analyze the vibration reduction performance of seismic metamaterials on top of a layered soil.
Resonators are modeled as single degree of freedom systems on top of square concrete surface
foundations. The response of uniform and graded metasurfaces on a homogeneous and layered
halfspace due to harmonic point load are compared. The narrow band gap obtained for a
uniform metasurface on a homogeneous halfspace is widened over a broader range of frequencies
(40 – 70 Hz) using inverse metawedges. For layered soil conditions, vibration mitigation in a
wide frequency band still emerges using metawedges. Their efficiency, however, is reduced.

1. Introduction
Seismic metamaterials have been extensively studied as a mitigation measure of vibration in the
built environment. These are artificially engineered materials consisting of an arrangement of
elementary cells exhibiting non-conventional dispersion properties that are usually not found in
natural soils [1]. Very promising results were reported to protect important civil infrastructure
from earthquakes [2, 3].

Non-resonant seismic metamaterials induce Bragg scattering as result of periodic
arrangements of the same order of the surface wavelengths, creating band gaps where wave
propagation is not possible. Locally resonant seismic metamaterials on the other hand do not
rely on structural periodicity, so that their dimensions and spacings can be lower than the surface
wavelengths. These can be resonators on the soil’s surface or embedded in the soil [1, 4]. Locally
resonant seismic metasurfaces comprising an array of resonators are exploited in this paper.

In a uniform configuration, narrow band gaps around the resonance frequency of the
resonators are provided [5]. Vibration mitigation in a wide frequency range is needed when
the source is a broadband excitation, e.g. railway traffic [6]. Graded metamaterials have shown
an attractive potential to broaden the band gap in homogeneous soils [7]. Depending on their
arrangement, so-called metawedges can evoke rainbow trapping, which traps the Rayleigh wave
and reflects the energy backward, or conversion of surface waves into shear waves propagating
away from the surface of the homogeneous soil into the bulk.

The soil is actually a stratified medium, which in a good approximation is represented as a
horizontally layered halfspace. As a result, body waves are partially reflected at layer interfaces,



propagating toward the surface of the soil. This hinders the surface-to-shear conversion evoked
by inverse metawedges in a homogeneous medium [8]. Results considering 2D uniform and graded
metasurfaces on layered soils were recently provided [9, 10]. 3D small-scale seismic metasurfaces
and metabarriers on a heterogeneous medium were widely investigated [11, 12]. Results indicate
that the soil profile has a significant impact on the vibration mitigation performance of seismic
metamaterials, requiring further investigation.

This paper explores how the soil profile affects the vibration mitigation performance of
seismic metasurfaces in a wide frequency band (1 − 80Hz). The soil is represented as a
horizontally layered medium. A uniform metasurface and a metawedge consisting of an
array of graded resonators with increasing resonance frequency are considered. We assess
the vibration mitigation performance of the metasurfaces by analyzing wavenumber-frequency
spectra, transfer functions for a point load, and the wave field within the soil.

The outline of the paper is as follows. Section 2 presents a 3D FE-BE formulation for an array
of resonators (metasurface) on layered soils. The vibration mitigation performance of uniform
and graded seismic metasurfaces on homogeneous and layered soil is described in section 3.
Section 4 concludes the paper.

2. 3D FE-BE formulation for multiple resonators on a layered halfspace
2.1. Problem outline
Figure 1 shows a metasurface composed of an array of N resonators on top of a layered soil
represented by the unbounded domain Ωe

s . The first row of the metasurface is located at a
perpendicular distance D from the origin of the coordinate system. The layout is characterized
by a rectangular grid of Nx by Ny resonators with lattice constants ax and ay in the x- and
y-direction, respectively. The interface between a resonator k and the soil is defined as Σk, while

the soil-structure interface for N resonators is denoted as Σ =
N⋃
k=1

Σk.
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Figure 1: An array of resonators on top of a layered halfspace.

2.2. Displacement and traction fields
The displacement of a resonator k on top of the layered halfspace is denoted as ûrk(x, ω). A hat
on a variable indicates its representation in the spatial-frequency domain. Continuity conditions
and equilibrium of tractions are imposed on the soil-resonator interface Σk:

ûrk − ûs = 0 on Σk (1)

t̂r(ûrk) + t̂s(ûs) = 0 on Σk, (2)



where ûs(x, ω) is the soil displacement vector and t̂r(ûrk)(x, ω) is the traction vector due to the
displacement ûrk.

Assuming that an incident wave field impinges on the resonators, the soil displacement
ûs(x, ω) is decomposed into the incident wave field ûinc(x, ω), the locally diffracted wave field
ûd0(x, ω) and the wave field ûsc(x, ω) scattered by displacements ûrk(x, ω) of all resonators k
(k = 1, . . . , N) [13]:

ûs = ûinc + ûd0 +
N∑
k=1

ûsc(ûrk). (3)

The incident wave field ûinc(x, ω) is evaluated with a source model, the locally diffracted wave
field ûd0(x, ω) is an elastodynamic field that obeys the Sommerfeld’s radiation condition. This
is defined so that the combined wave field ûinc(x, ω) + ûd0(x, ω) vanishes on the soil-structure
interface Σ.

2.3. The dynamic soil-structure interaction problem
The dynamic equilibrium for a single structure j (j = 1, . . . , N) can be expressed in a weak
variational form. A virtual displacement field v̂rj(x, ω) is imposed on the structure j in order
to construct the virtual work expression for the dynamic soil-structure interaction problem [14]:

∫
Ωrj

ϵ̂r(v̂rj) : σ̂r(ûrj) dΩ− ω2

∫
Ωrj

v̂rj · ρrjûrj dΩ +
N∑
k=1

∫
Σj

v̂rj · t̂s(ûsc(ûrk)) dΓ

= −
∫
Σj

v̂rj · t̂s(ûinc + ûd0) dΓ.

(4)

where ϵ̂r(v̂rj)(x, ω) is the virtual strain tensor, σ̂r(ûrj)(x, ω) is the Cauchy stress tensor due to
displacements ûrj(x, ω), and ρrj is the density of the structure.

This problem is solved by means of a coupled FE-BE model. The resonator is modeled with
finite elements whereas boundary elements are used to discretize the unbounded soil on the
interfaces Σk. The structural displacement vector for resonator j is discretized as:

ûrj ≃ Nrjûrj , (5)

where Nrj is a matrix of global finite element shape functions for resonator j and ûrj(ω) is the
vector with nodal degrees of freedom. In a Galerkin approach, this approximation is also used
for the virtual displacement field v̂r(x, ω). Equation (4) then yields:

[
Kj − ω2Mj

]
ûrj +

N∑
k=1

K̂s
jkûrk = f̂

s

j , (6)

where Kj and Mj are the stiffness and mass matrices of the resonator j, respectively. The
contribution of structural damping can be added to equation (6). In this work, proportional
damping is used where a damping ratio is defined for each mode of the structure. The summation
in equation (6) accounts for through-soil coupling of resonator j with all resonators. The soil

stiffness matrix K̂s
jk(ω) is given by:

K̂s
jk =

∫
Σj

NT
rj t̂s(ûsc(Nrk)) dΓ. (7)



The force vector f̂
s

j(ω) due to an incident wave field is equal to:

f̂
s

j = −
∫
Σj

NT
rj t̂s(ûinc + ûd0) dΓ. (8)

The scattered wave field and the locally diffracted wave field are computed by means of the BE
method, as the problem is formulated in terms of displacements on the interfaces Σk. When
the resonator j is placed on the surface of the soil, t̂s(ûinc)(ω) = 0. The tractions t̂sk(ω) on the
soil-resonator interfaces Σk are calculated as:

N∑
k=1

[
Ijk + T̂jk

]
ûsk =

N∑
k=1

Ûjkt̂sk, (9)

where Ijk is an identity matrix, Ûjk(ω) and T̂jk(ω) are fully populated asymmetric boundary
element matrices which require the integration of Green’s functions for a layered halfspace, and
ûsk(ω) and t̂sk(ω) are the displacements and tractions on the soil-structure interface Σk. For a

BE mesh on the surface of the soil, T̂jk(ω) = 0.

2.4. Craig-Bampton substructuring technique
The resonator comprises a superstructure coupled to a foundation resting on the surface of
the soil. Therefore, it is convenient to decompose the displacement vector ûrj of resonator
j into displacements of its foundation ûr1j and superstructure ûr2j . The use of a Craig-
Bampton substructuring technique reduces the problem size and avoids the recomputation of
the BE matrices for alternative superstructures [15]. Using the Craig-Bampton substructuring
technique, the structural displacement vector for resonator j is discretized as:

ûrj ≃
[
Nr1j Nr2j

] [ Φr1j 0
Φs

r2j
Φr2j

]{
α̂r1j

α̂r2j

}
= NrjΦrjα̂rj , (10)

where the vector α̂rj(ω) collects the modal coordinates. The modes Φr2j are the eigenmodes of
the superstructure with clamped base. The modes Φr1j are the eigenmodes of the foundation
without the superstructure. The modes Φs

r2j
are the quasi-static transmission of the foundation

modes Φr1j into the superstructure:

Φs
r2j = −K−1

r2r2j
Kr2r1jΦr1j , (11)

where Kr2r2j and Kr2r1j are submatrices of the stiffness matrix of the resonator j defined
according to the degrees of freedom of the foundation r2 and superstructure r1. Using a Galerkin
approach, substituting equation (10) into equation (4), and premultiplying with ΦT

rj yields:

ΦT
rj

[
Kj − ω2Mj

]
Φrjα̂rj +

N∑
k=1

ΦT
rjK̂

s
jkΦrkα̂rk = ΦT

rj f̂
s

j . (12)

The modal soil stiffness matrix ΦT
rjK̂

s
jkΦrk is given by:

ΦT
rjK̂

s
jkΦrk =

∫
Σj

ΦT
rjN

T
rj t̂s(ûsc(NrkΦrk)) dΓ. (13)

The modal soil tractions t̂s(ûsc(Nr1kΦr1k)) are computed by means of equation (9) for each
mode and integrated over the interface using equation (13). Any change of the superstructure
does not affect the computation of the soil stiffness (13) as this term only depends on the BE
mesh.



2.5. Receiver points
Tractions t̂s(ω) and displacements ûs(ω) on the soil-resonators interface Σ are computed
according to [5]. The radiated wave field ûr

s(x, ω) within the soil domain can be evaluated
as:

ûr
s = Ûpt̂s − T̂pûs, (14)

where Ûp(x, ω) and T̂p(x, ω) are boundary element transfer matrices computed based on the
Green’s functions of a layered halfspace.

3. Vibration reduction by seismic metasurfaces
3.1. Problem outline
A 2D array of Nx = 12 by Ny = 10 resonators on top of homogeneous and layered soil is
considered. The dynamic soil characteristics are summarized in tables 1 and 2. The layered
soil (table 2) is composed of a single layer on top of a halfspace four times stiffer than the
layer. The layer has the same properties of the homogeneous halfspace described in table 1. The
layer thickness h is chosen such that the cut-on frequency of the soil (≈ 15Hz) falls below the
resonance frequencies of the resonators.

The resonator is composed of an oscillator attached to a surface foundation. For the uniform
metasurface, the oscillator has a mass of 50 kg and a resonance frequency of 60Hz (j = 1, . . . , N).
For the graded metasurfaces, the stiffness of the oscillators is graded conserving the mass,
yielding a linear variation of the resonators’ eigenfrequencies in the x-direction. A damping
ratio ξ = 0.01 is assumed for both cases. The foundation is modeled as a rigid concrete slab
with Lf

x = Lf
y = 0.5m, thickness 0.1m and mass 62.5 kg. The seismic metasurface is placed far

from the source, D = 30m, in order to study its vibration mitigation performance when excited
by Rayleigh waves generated by a harmonic point load.

Layer h Cs Cp βs βp ρ
[m] [m/s] [m/s] [-] [-] [kg/m3]

1 ∞ 150 300 0.020 0.020 1800

Table 1: Dynamic soil characteristics for the homogeneous soil.

Layer h Cs Cp βs βp ρ
[m] [m/s] [m/s] [-] [-] [kg/m3]

1 5 150 300 0.020 0.020 1800
2 ∞ 300 600 0.020 0.020 1800

Table 2: Dynamic soil characteristics for the layered soil.

3.2. Algorithmic parameters
The vertical mobility v̂zz(x, y = 0, z = 0, ω) is computed on a wide range of receiver points in the
x-direction. Computations are made for frequencies between 1 and 80Hz with a frequency bin
of 1Hz. A logarithmic sampling is adopted for the spatial coordinate x and the horizontal
wavenumber kx. The wavenumber-frequency spectra ṽzz(kx, y = 0, z = 0, ω) are assessed
by means of a forward Fourier transform from the horizontal coordinate x to the horizontal
wavenumber kx.



3.3. Homogeneous soil
3.3.1. Uniform metasurface The results in this subsection were originally presented by Carneiro
et al. [5]. They are summarized here to allow the comparison of two different soil profiles.

A uniform metasurface (figure 2a) on the homogeneous soil creates a narrow band gap around
the resonance frequency of the oscillators (figure 2b). The wavenumber-frequency spectrum
computed using the 3D FE-BE model agrees with the analytical dispersion curve of an infinite
number of resonators interacting with the homogeneous halfspace [4]. Figure 2c shows the
vertical soil mobility v̂zz(x = 57.35m, y = 0, z = 0, ω) on a logarithmic scale in dB with a
reference mobility of 10−8m/s/N. The free field response is used as the reference case. At
these frequencies, a large vibration mitigation is found behind the metasurface (figure 2c). The
real part of the vertical displacement is computed on a large grid of receiver points (figures
2d-f). The resonators are depicted by black squares on the surface of the soil. The vibration
mitigation mechanism consists of a Rayleigh wave converted into a shear wave propagating from
the surface into the bulk (figure 2e). The Rayleigh wave still propagates behind the array of
resonators, but its amplitude is lower than the free field response. The waves are not affected
by the metasurfaces at frequencies far from the resonance frequency of the resonators (figures
2d and 2f).
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Figure 2: (a) Eigenfrequencies for a uniform array of Nx = 12 by Ny = 10 resonators. (b)
Modulus of the vertical mobility ṽzz(kx, y = 0, z = 0, ω). Superimposed are the dispersion
curves of the dilatational (■), shear (■), and Rayleigh (■) wave propagating in the free
halfspace and the analytical dispersion curve of an infinite number of resonators interacting with
a homogeneous halfspace (solid line). (c) The vertical soil mobility v̂zz(x = 57.25m, y = 0, z =
0, ω) without and with resonators. Real part of the vertical displacement ûzz(x,x

′, ω) [m/Hz] at
(d) 40Hz, (e) 60Hz, and (f) 80Hz.

3.3.2. Graded metasurface The band gap created by a uniform array of resonators can be
widened by considering graded metasurfaces. This is accomplished by tuning the properties of
the oscillators so that their resonance frequency is smoothly graded in the x-direction. These are
so-called metawedges, first presented by Colombi et al. [7]. In this paper, only the performance
of inverse metawedges, i.e., resonators with increasing eigenfrequency, will be investigated.

Since only the superstructure is modified and a Craig-Bampton substructuring method is
applied, the recomputation of the soil stiffness matrix and the boundary element transfer



matrices is avoided. The computational time is therefore drastically reduced.
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Figure 3: (a) Eigenfrequencies for a graded array ofNx = 12 byNy = 10 resonators. (b) Modulus
of the vertical mobility ṽzz(kx, y = 0, z = 0, ω). Superimposed are the dispersion curves of the
dilatational (■), shear (■), and Rayleigh (■) wave propagating in the free halfspace. (c) The
vertical soil mobility v̂zz(x = 57.25m, y = 0, z = 0, ω) without and with resonators. Real part
of the vertical displacement ûzz(x,x

′, ω) [m/Hz] at (d) 40Hz, (e) 60Hz, and (f) 80Hz.

The graded metasurface is built changing the stiffness while the mass of the oscillator is
maintained constant. Figure 3a shows the resonance frequencies of the considered inverse
metawedge, ranging from 40Hz to 70Hz. The peak values of the wavenumber-frequency
spectrum are reduced within this range (figure 3b). The mobility is substantially reduced
between 40Hz and 70Hz (figure 3c).

The real part of the vertical displacement at 40Hz, 60Hz, and 80Hz is shown in figures 3d-
f. When the wavefront reaches the row of resonators of eigenfrequency equal to the excitation
frequency, a conversion of Rayleigh waves into shear waves propagating into the bulk is observed.
Attenuated Rayleigh waves still propagate behind the metasurface, as a consequence of the finite
number of resonators in the x-direction. At 80Hz, the Rayleigh wave is not affected by the
resonators, as the maximum resonance frequency of the metasurface is 70Hz.

3.4. Layered soil
In this section, the uniform metasurface and the inverse metawedge used in section 3.3 are placed
on top of the layered soil described in table 2.

3.4.1. Uniform metasurface Figure 4b shows the wavenumber-frequency spectrum for a
uniform array of Nx = 12 by Ny = 10 resonators, presented in figure 4a, on top of the layered
halfspace. Superimposed are the dispersion curves of the first six Rayleigh wave modes of the
layered halfspace without resonators. The wavenumber-frequency response is mostly governed
by the fundamental Rayleigh wave mode as the maxima of the spectrum follow the first mode.
At low wavenumber values, body waves are characterized by dips and peaks in the response, but
their amplitude is much lower than the fundamental mode. A peak is observed at the cut-on
frequency of 15Hz.

Mainly the fundamental mode is affected by the metasurface around 60Hz, resulting in
a partial band gap in the wavenumber-frequency response. The analytical dispersion curve
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Figure 4: (a) Eigenfrequencies for a uniform array of Nx = 12 by Ny = 10 resonators. (b)
Modulus of the vertical mobility ṽzz(kx, y = 0, z = 0, ω). Superimposed are the dispersion
curves of the first six Rayleigh wave modes (dashed lines) and the analytical dispersion curve
of an infinite number of resonators interacting with a homogeneous halfspace (solid line). (c)
The vertical soil mobility v̂zz(x = 57.25m, y = 0, z = 0, ω) without and with resonators. Real
part of the vertical displacement ûzz(x,x

′, ω) [m/Hz] at (d) 40Hz, (e) 60Hz, and (f) 80Hz. The
dashed lines indicate the layer interface.

presented in figure 2b is also superimposed in figure 4b. A good agreement between the opening
on the fundamental mode of the layered soil and the analytical dispersion curve is observed.
However, this only holds for layered soils of cut-on frequency below the oscillators’ resonance
frequency.

Large vibration reduction is found in the mobility response (figure 4c) at frequencies
corresponding to the opening in the fundamental mode. A slight frequency shift in the response
is observed between the mobility without and with the array of resonators. Surface masses
modify the mass density of the system, resulting in a change in the Rayleigh wave velocity, and
shifting frequency [16].

Figures 4d-f show the wave propagation within the layered soil with metasurface at 40Hz,
60Hz, and 80Hz, respectively. Several constructive and destructive interferences characterize
the complex wave propagation in layered soil. Waves are faster and have longer wavelengths
in the stiffer halfspace than in the layer. No prominent attenuation effect is noticed in figures
4d and 4f, agreeing with the mobility response in figure 4c. The surface-to-shear conversion
observed in the homogeneous halfspace (figure 2e) is not seen in layered soil (figure 4e). The
array of resonators is triggered by the wave propagation at the surface of the soil yielding the
hybridization effect. At 60Hz, a surface-to-bulk mode conversion is expected as the Rayleigh
wave still bends towards the shear wave in figure 4b. The transformed waves are, however,
mainly trapped within the layer (figure 4e). Large vibration mitigation is still observed behind
the metasurface, which is non-uniform due to wave reflections within the layer, in contrast to
the uniform attenuation observed in figure 2. The mobility response is significantly distinct at
different receiver points behind the metasurface.

3.4.2. Graded metasurface The inverse metawedge presented in figure 5a is placed on top of
the layered halfspace. Figures 5b and 5c show the effect of the metawedge on the wavenumber-



frequency spectrum and the mobility response, respectively. Although the metawedge produces
lower vibration reduction in comparison to the case of uniform metasurface, vibration mitigation
in a broad frequency band (40Hz - 70Hz) is still evoked using metawedges in layered soil. The
efficiency of the metawedge is mostly reduced when the results in homogeneous (figure 3c) and
layered (figure 5c) soils are compared.
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Figure 5: (a) Eigenfrequencies for a graded array of Nx = 12 by Ny = 10 resonators. (b)
Modulus of the vertical mobility ṽzz(kx, y = 0, z = 0, ω). Superimposed are the dispersion
curves of the first six Rayleigh wave modes (dashed lines). (c) The vertical soil mobility
v̂zz(x = 57.25m, y = 0, z = 0, ω) without and with resonators. Real part of the vertical
displacement ûzz(x,x

′, ω) [m/Hz] at (d) 40Hz, (e) 60Hz, and (f) 80Hz. The dashed lines indicate
the layer interface.

The wave field in the layered soil with the inverse metawedge at 40Hz, 60Hz, and 80Hz is
shown in figures 5d-f. The metasurface is still activated when the wavefront reaches the row
of resonators of resonance frequency equal to the excitation frequency and, hence, vibration
reduction is obtained from this point onwards at the surface of the soil. A comparison between
figures 4d and 5d shows that body waves with long wavelength propagating in the halfspace
from x = 40m onwards are observed at 40Hz. This indicates that the surface-to-shear wave
conversion induced by inverse metawedges in homogeneous media (figures 3d and 3e) still arises,
even though the shear wave is predominantly trapped within the layer. At 60Hz, this effect is less
noticeable. Nevertheless, considerable vibration mitigation is observed behind the metasurface
at the surface of the soil. Again, the graded metasurface is not activated at 80Hz as the
maximum resonance frequency is 70Hz.

4. Conclusions
This paper investigates how the dynamic soil characteristics affect the vibration attenuation
performance of seismic metasurfaces in a wide frequency band. A 3D FE-BE model using
Craig-Bampton substructuring method is implemented to perform the analyses. Uniform and
graded metasurfaces on homogeneous and layered soil are considered. The layered soil has a
cut-on frequency below the resonance frequency of the oscillators. A uniform metasurface on
the homogeneous soil creates a narrow band gap for all wavenumbers, whereas it mainly affects
the fundamental mode of a layered soil. Significant vibration reduction is obtained at these



frequencies. The inverse metawedge evokes vibration attenuation in a broad frequency band
in both homogeneous and layered soil. In the latter, however, their efficiency is reduced. The
attenuation mechanism is the same, but the converted body waves are trapped within the layer.
Graded metasurfaces can be tuned to attenuate a wide frequency content of railway induced
vibration in homogeneous or layered soils.
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