

L-band Satellite Data Assimilation over Land

Gabriëlle De Lannoy and many colleagues

KU Leuven, Department of Earth and Environmental Sciences, Belgium

Land data assimilation

Improved surface soil moisture → root-zone soil moisture, vegetation, irrigation, groundwater, flux estimates - droughts, agricultural monitoring

- carbon, ecosystem monitoring
- hydrological, hazard forecasting
- land-atmosphere interactions, weather

Surface to root-zone soil moisture

SMAP L4_SM:

Global 3-hourly, <u>9-km</u> Surface, root-zone SM All other geophysical variables

In situ validation:

Precipitation

observations

Land

surface

model

GEOS surface

meteorology

Data

Assimilation

L4_SM

product

SMAP brightness

temperature

observations

To groundwater in peatlands

Improving soil moisture and groundwater

Past to current state-of-the-art

- AMSR-E DA → SMOS/SMAP Tb DA (clear improvements in SM)
- SM or Tb DA?
- Tb DA via RTM or NN; rescaling?
- Combine SMOS & SMAP (frequency)
- 1D DA \rightarrow 3D DA for downscaling

Ongoing developments

- SMAP/SMOS Tb DA → multivariate, vegetation updating to improve SM
 - only in the RTM, or parameters
 - also in LSM, dynamic vegetation
- SM & VOD or Tb DA? → need multiple incidence angles, polarizations

De Lannoy and Reichle (2016), Rodriguez-Fernandez et al. (2019), Kumar et al. (2020) KU LEUVEN

To carbon, vegetation and evapotranspiration

SMOS/SMAP SM DA

- SMOS SM DA in Carbon Cycle Data Assimilation System (CCDAS)
- SMOS SM DA in Global Land Evaporation Amsterdam Model (GLEAM)
- SMAP L4_SM as input to net ecosystem CO₂ exchange estimates → SMAP L4_C
- SMAP L4_SM to constrain MODIS-based ET → improve in water-limited regions
- SMAP Tb or SM DA \rightarrow turbulent fluxes
- Success depends on SM-vegetation-ET coupling strength (in reality and in model)

Wu et al. (2020), RSE, Martens et al. (2016), IJAEOG, Jones et al. (2020), TGRS, Brust et al., (2021), RSE, Lu et al. (2020), JHM KU LEUVEN

To carbon, vegetation and evapotranspiration

SMAP VOD DA

-120

-110

-100

-90

-80

Evapotranspiration

-70

-120

-110

-100

-90

-70

-80

SMAP SM DA

To irrigation

likelihood that SMOS/SMAP signal responds to irrigation ~ size of the irrigated area \rightarrow need higher spatial resolution (1) ~ overpass time \rightarrow need higher temporal resolution (2)

(1)

California Central Valley SMAP enhanced (9-km)

(2)

- Increase in GPP or SM after SMAP_E DA → irrigation detection
- Difference O-F backscatter (innov)
- → irrigation model computes irrigation amount based on root-zone SM

To river discharge

- Spatial variation in SM \rightarrow higher spatial resolution \rightarrow better estimate of travel time to river
- SMOS DA in GloFAS: most impact for high flow events → need data at the right time
- Success depends on SM-runoff coupling (in reality and in model)

Data frequency insufficient + need deeper SM → DA
Finer spatial and temporal resolution better

107.25°E

99°E

115.5°E

0.05

L-BAND DATA FOR NUMERICAL WEATHER PREDICTION AND EMERGENCY SERVICES AT ECMWF

Pete Weston, Patricia de Rosnay, Nemesio Rodríguez-Fernández, Calum Baugh, David Fairbairn, Francesca Di Giuseppe, Ruth Coughlan, Joaquín Muñoz-Sabater, Stephen English, Christel Prudhomme, Matthias Drusch, and many other colleagues

Earth System approach Coupled assimilation for NWP & reanalyses

Importance of observations sensitive to interface variables, e.g. SST, sea ice, snow and soil moisture

ECMWF Soil Analysis for NWP

Observation monitoring and quality control

SMOS brightness temperature operational monitoring

- RFI has significantly affected SMOS measurements
 - Lessons learnt led to development of onboard filtering for SMAP and CIMR (could be used for SMOS-HR too)
- Improved screening (GRDS, Oliva et al, 2021) does a better job of filtering it out but still not perfect
 - Comparing observations to NWP forecasts can be a powerful validation tool
 - Quality control is vital for assimilation applications
- Future evolution:
 - Higher spatial resolution potentially means more pixels without RFI contamination
 - Potential to run GRDS operationally as part of the ground segment for current/future MW instruments

G BLOCEFFITE soccessingog

SMOS multi-year monitoring

• Monitor latest re-processed v724 SMOS L1C Tbs against stable ERA5 reference from 2010 to 2021

- Key take aways:
 - Improved RFI screening (orange v blue)
 - Newly developed bias correction performs consistently (green v orange)
 - Data quality is consistent over entire lifetime (after screening) potential assimilation into future reanalyses

SMOS neural network soil moisture assimilation

NWP SMOS soil moisture impact

Aircraft humidity (JJA 2017)

Rodriguez-Fernandez et al., HESS 2017, RS 2019

A priori training of the SMOS neural network processor -> retraining when L1 Tb or IFS soil change

Further explore ML/AI for forward modelling

SMAP L-band data

Operational in the IFS for monitoring since May 2021

- Set-up operational NRT acquisition
- IFS processing changes
- SMAP Observation interface (Obs Data base, ODB)
- Monitoring webpage update
- Allows comparisons between SMOS and SMAP
- Future: SMAP Tb assimilation evaluation

→ SMOS and SMAP L-band operational

SMOS applications for the Copernicus Emergency Management Service (CEMS)

Data assimilation impact upon hydrology

- Data denial experiments with SMOS show similar results
 - i.e. muted impact on streamflow

Figures from Baugh et al., Rem. Sens. 2020

Emergency Management

- ECMWF LDAS corrects for random errors, not systematic ones
- Process errors in Australia for example, maybe poor representation of processes such as irrigation and lake storage
- High spatial resolution important for this application

Other SMOS SM & VOD applications

- Copernicus Emergency Management Service (CEMS):
 - Using machine learning to predict fire ignition occurrences from:
 - Lightning forecasts
 - Environmental conditions, including SMOS
 NN soil moisture
 - Classification algorithms used:
 - Decision tree, AdaBoost, Random Forest
 - Updated model using SMOS L-VOD data

- CoCO-2 (H2020 project):
 - Prototype system for a Copernicus **CO₂ emission** monitoring service
 - Assimilation of SMOS L-VOD to analyse LAI

Coughlan et al., Met App 2021

CECMWF

Summary and perspectives

- ECMWF Earth-system approach:
 - Interface observations -> relevance of L-band data
- Many **different applications** use L-band Tbs and derived products at ECMWF:
 - NWP land and atmosphere (via coupling)
 - Ocean salinity and sea-ice
 - Hazards floods and fires
 - CO₂ vegetation
 - Climate use in reanalyses for long-term trends
- Regular increases model and assimilation resolution at ECMWF:
 - 9km HRES and ENS in 2023 -> ~5km in mid-late 2020s
 - Importance of **high spatial resolution observations** to initialise higher resolution models (Destination Earth)
- Relevant future projects in support of Copernicus Evolution
 - CERISE: improved L-band MW observation operator
 - CORSO: direct L-band Tb assimilation to analyse vegetation

Summary and perspectives

	Spatial	Temporal	Polarization/frequentincidence angles	cy/	Comment
Climate, drought, carbon monitoring	coarse	low	yes	tial	Dynamic vegetation updating still in infancy
Agriculture: crop	fine	low	yes	oten	Field/farm-scale,
Agriculture: irrigation	fine	high	no	bd L	management
Ecosystems, peatlands	fine	low	yes	search	Nature preservation, peatland restoration
Hazards	fine	high	no	Re	Water-related hazards (flood, landslide, fire)
NWP	towards finer	high	no		ECMWF operational
	Finer → wider user community		Yes → multivariate (in vegetation) updating	cl.	