
Chemprop: A Machine Learning Package for Chemical Property
Prediction
Esther Heid, Kevin P. Greenman, Yunsie Chung, Shih-Cheng Li, David E. Graff, Florence H. Vermeire,
Haoyang Wu, William H. Green, and Charles J. McGill*

Cite This: https://doi.org/10.1021/acs.jcim.3c01250 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Deep learning has become a powerful and frequently
employed tool for the prediction of molecular properties, thus creating a
need for open-source and versatile software solutions that can be operated by
nonexperts. Among the current approaches, directed message-passing neural
networks (D-MPNNs) have proven to perform well on a variety of property
prediction tasks. The software package Chemprop implements the D-MPNN
architecture and offers simple, easy, and fast access to machine-learned
molecular properties. Compared to its initial version, we present a multitude
of new Chemprop functionalities such as the support of multimolecule
properties, reactions, atom/bond-level properties, and spectra. Further, we
incorporate various uncertainty quantification and calibration methods along
with related metrics as well as pretraining and transfer learning workflows, improved hyperparameter optimization, and other
customization options concerning loss functions or atom/bond features. We benchmark D-MPNN models trained using Chemprop
with the new reaction, atom-level, and spectra functionality on a variety of property prediction data sets, including MoleculeNet and
SAMPL, and observe state-of-the-art performance on the prediction of water-octanol partition coefficients, reaction barrier heights,
atomic partial charges, and absorption spectra. Chemprop enables out-of-the-box training of D-MPNN models for a variety of
problem settings in fast, user-friendly, and open-source software.

1. INTRODUCTION
Machine learning in general and especially deep learning has
become a powerful tool in various fields of chemistry.
Applications range from the prediction of physicochemical1−9

and pharmacological10 properties of molecules to the design of
molecules or materials with certain properties,11−13 the
exploration of chemical synthesis pathways,14−27 or the
prediction of properties important for chemical analysis like
IR,28 UV/vis,29 or mass spectra.30−33

Many combinations of molecular representations and model
architectures have been developed to extract features from
molecules and predict molecular properties. Molecules can be
represented as graphs, strings, precomputed feature vectors, or
sets of atomic coordinates and processed using graph-
convolutional neural networks, transformers, or feed-forward
neural networks to train predictive models. While early works
focused on handmade features or simple fingerprinting
methods combined with kernel regression or neural net-
works,34 the current state-of-the-art has shifted to end-to-end
trainable models which directly learn to extract their own
features.35 Here, the models can achieve extreme complexity
based on the mechanisms of information exchange between
parts of the molecule. For example, graph convolutional neural
networks (GCNNs) extract local information from the
molecular graph for single or small groups of atoms and use

that information to update the immediate neighborhood.1−3,36

They offer robust performance for properties dependent on the
local structure and if the three-dimensional conformation of a
molecule is not known or not relevant for a prediction task.
Graph attention transformers allow for a less local information
exchange via attention layers, which learn to accumulate the
features of atoms both close and far away in the graph.37,38

Another important line of research comprises the prediction of
properties dependent on the three-dimensional conformation
of a molecule, such as the prediction of properties obtained
from quantum mechanics.2,39−41 Finally, transformer models
from natural language processing can be trained on string
representations such as SMILES or SELFIES, also leading to
promising results.42−45 In this work, we discuss our application
of GCNNs, namely, Chemprop,36 a directed-message passing
algorithm derived from the seminal work of Gilmer et al.1

An early version of Chemprop was published in ref 36. Since
then, the software has substantially evolved and now includes a
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vast collection of new features. For example, Chemprop is now
able to predict properties for systems containing multiple
molecules, such as solute/solvent combinations or reactions
with and without solvent. It can train on molecular targets,
spectra, or atom/bond-level targets and output the latent
representation for analysis of the learned feature embedding.
Available uncertainty metrics include popular approaches, such
as ensembling, mean-variance estimation, and evidential
learning. Chemprop is thus a general and versatile deep
learning toolbox and enjoys a wide user base.
The remainder of the article is structured as follows: First,

we summarize the architecture of Chemprop. We discuss a
selection of Chemprop features with a focus on features
introduced after the initial release of Chemprop. We then
conclude the main body of the article and provide details on
the data and software, which we have open-sourced including
all scripts to allow for full reproducibility. Alongside the main
body of this article, we provide Supporting Information that
contains further model design details; descriptions of the data
acquisition, preprocessing, and splitting of all data sets used in
benchmarking; and the results of Chemprop benchmarks on a
variety of data sets showcasing its performance on both simple
and advanced prediction tasks.

2. MODEL STRUCTURE
Chemprop consists of four modules: (1) a local features
encoding function, (2) a directed message passing neural
network (D-MPNN) to learn atomic embeddings from the
local features, (3) an aggregation function to join atomic
embeddings into molecular embeddings, and (4) a standard
feed-forward neural network (FFN) for the transformation of
molecular embeddings to target properties, summarized in
Figure 1. The D-MPNN is a class of graph-convolutional
neural networks (GCNN), which updates hidden representa-
tions of the vertices V and edges E of a graph G based on the
local environment. In the following, we use bold lower case to
denote vectors, bold upper case to denote matrices, and italic
light font for scalars and objects.
For a molecule, the molecule SMILES string is used as input,

which is then transformed to a molecular graph using RDKit,46

where atoms correspond to vertices and bonds to edges. Initial
features are constructed based on the identity and topology of
each atom and bond. For each vertex v, initial feature vectors
{xv |v ∈ V} are obtained from a one-hot encoding of the atomic
number, number of bonds linked to each atom, formal charge,

chirality (if encoded in the SMILES), number of hydrogens,
hybridization, and aromaticity of the atom, as well as the
atomic mass (divided by 100 for scaling). For each edge e,
initial feature vectors {evw|{v, w} ∈ E} arise from the bond
type, whether the bond is conjugated or in a ring, and whether
it contains stereochemical information, such as a cis/trans
double bond. The D-MPNN uses directed edges in a graph to
pass information, where each undirected edge (bond) has two
corresponding directed edges, one in each direction. Initial
directed edge features evwd are obtained via simple concate-
nation of the atom features of the first atom of a bond xv to the
respective undirected bond features evw

=e x ecat( , )vw v vw
d (1)

where cat() denotes simple concatenation. The directed edges
evwd and ewv

d are distinguished only by the choice of which atom
to use in eq 1. Chemprop also offers the option to read in
custom atom and bond features in addition to or as a
replacement for the default features, as described in SI Section
S1.2, and thus offers full control of the initial features. In
summary, Module 1 of Chemprop constructs atom and
directed bond feature vectors xv and evwd from the input
molecules.
The initial atom and bond features are then passed to a D-

MPNN. In a D-MPNN structure, messages are passed between
directed edges rather than between nodes as would be done in
a traditional MPNN. To construct the hidden directed edge
features hvw

0 of hidden size h, the initial directed edge features
evwd are passed through a single neural network layer with
learnable weights ×Wi

h hi

=h We( )vw i vw
0 d (2)

and a nonlinear activation function τ which can be chosen by
the user (default ReLU). The size h of hvw

0 can be chosen by
the user (default 300). The size of evwd , which we term hi, is set
by the lengths of initial feature encodings, per eq 1. The
directed edge features are then iteratively updated based on the
local environment via T (default 3) message passing steps

= ++

{ \ }

i

k
jjjjjjj

y

{
zzzzzzzh h W hvw

t
vw h

k N v w
kv
t1 0

( ) (3)

until t + 1 = T, where ×Wh
h h and N(v)\w denotes the

neighbors of node v excluding w. The opposite facing directed

Figure 1. Overview of the architecture of Chemprop. The message passing update of the hidden vector for directed edge 2 → 1 is expanded for
demonstration.
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edge is excluded from the message passing update for increased
numerical stability (see Mahe ́ et al.47). Finally, the updated
hidden states hvw

T are aggregated into atomic embeddings via

=h W q( )v o (4)

where q is a concatenation of the initial atom features xv and
the sum of all incoming directed edge hidden states

=
i

k
jjjjjjj

y

{
zzzzzzzq x hcat ,v

w N v
wv
T

( ) (5)

with ×Wo
h ho. Here, ho is the size of q, i.e., the sum of the

hidden size h and the size of xv. In summary, in Module 2, the
D-MPNN weights Wi, Wh, and Wo are learned from the
training data, outputting learnable atomic embeddings hv.
Customizations and hyperparameter tuning include the choice
of the activation function τ, the hidden size h, and the number
of message passing steps T. Chemprop offers the option to add
bias terms to all neural network layers (defaults to False).
The atomic embeddings hv of all atoms in a molecule are

then aggregated into a single molecular embedding hm via

=h h xcat( , )m m m (6)

with

=h hm
v V

v
(7)

where xm is an optional vector of additional molecular features.
Chemprop offers three aggregation options: summation (as
shown in eq 7), a scaled sum (divided by a user specified
scaler, called a norm within Chemprop), or an average (the
default aggregation). Schweidtmann et al.48 compared the
performance of such aggregation functions for different data
sets. The optional additional molecular features, xm, may be
provided features from outside sources (SI Section S2) or
generated engineered fingerprints (Morgan circular finger-
prints49 and RDKIT 2D fingerprints46 are implemented in
Chemprop). By default, xm is empty such that the molecular
embedding is simply an aggregation over atomic embeddings,
i.e., hm = hm′ . In summary, Module 3 produces molecular
embeddings hm of length h plus the size of xm. Chemprop offers
the option to circumvent Modules 1−3 and only using xm as
fixed molecular embedding, so that hm = xm.

Finally, in the last module, molecular target properties are
learned from the molecular embeddings hm via a feed-forward
neural network, where the number of layers (default 2) and the
number of hidden neurons (default 300) can be chosen by the
user. The number of input neurons is set by the length of hm,
and the number of output neurons is set by the number of
targets. The activation function between linear layers is set to
be the same as in the D-MPNN, and bias is turned on per
default. For binary classification tasks, the final model output is
passed through a sigmoid function to constrain values to the
range (0,1). For multiclass classification, the final model output
is transformed with a softmax function, such that the
classification scores sum to 1 across classes.
Chemprop is fully end-to-end trainable, so that the weights

for D-MPNN and FFN are updated simultaneously. Users have
the option to train models using cross-validation and
ensembles of submodels. By default, a single model is trained
on a random data split for 30 epochs. We note that small data
sets need a much larger number of epochs to train and advise
to check for convergence of the learning curve. Chemprop uses
the Adam optimizer.50 The default learning rate schedule
increases the learning rate linearly from 10−4 to 10−3 for the
first two warmup epochs and then decreases the learning rate
exponentially from 10−3 to 10−4 for the remaining epochs. By
default, a batch size of 50 data points is used for each optimizer
step. Early stopping and dropout are available as means of
regularization. The PyTorch backend of Chemprop enables
seamless GPU acceleration of both model training and
inference. The acceleration of training and inference processes
when used with a GPU can be significant, as shown in SI
Section S3.3.

3. DISCUSSION OF FEATURES
Table 1 lists a nonexhaustive selection of studies based on
Chemprop, showcasing its versatility and applicability for the
prediction of a large variety of chemical properties, but also its
ease of use. Models can be trained and tested with a single line
on the command line (or a few lines of python code) and a
user-supplied CSV file (see SI for some examples). In the
following, we discuss specialty options introduced since its first
release.
3.1. Additional Features. Chemprop can take additional

features at the molecule-, atom-, or bond-level as input. While
Chemprop often generates accurate models without requiring

Table 1. Selected Published Studies Based on Chemprop

ref Year Prediction ref Year Prediction

10 2020 Growth inhibitory activity against E. coli; led to an identification of
a potential new drug

51 2022 Absorption, distribution, metabolism, excretion (ADME)
properties for drug discovery

52 2021 Chemical synergy against SARS-CoV-2; identified two drug
combinations with antiviral synergy in vitro

53 2023 Growth inhibitory activity against A. baumannii; led to an
identification of a potential new drug

28 2021 IR spectra of molecules 54 2023 Fuel properties
55 2021 Atomic charges, Fukui indices, NMR constants, bond lengths, and

bond orders
56 2023 Critical properties, acentric factor, and phase change

properties
57 2021 Lipophilicity 58 2023 Molecular optical peaks
59 2022 Reaction rates and barrier heights 60 2023 Lipophilicity
61 2022 Barrier heights of reactions 62 2023 Solvent effects on reaction rate constants
29 2022 Molecular optical peaks 63 2023 Vapor pressure in the low volatility regime
64 2022 Solvation free energy, solvation enthalpy, and Abraham solute

descriptors
65 2023 Molecular optical peaks and partition coefficients for closed-

loop active learning
66 2022 Solid solubility of organic solutes in water and organic solvents 67 2023 Senolytic activity of compounds to selectively target senescent

cells
68 2022 Activity coefficients 69 2023 Toxicity measurements using 12 nuclear receptor signaling

and stress response pathways
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any input beyond the SMILES, it has been shown that outside
information added as additional features can further improve
performance.36,64 Users can provide their custom additional
features by adding keywords and paths to the data files
containing the features. See SI for command-line arguments
and details.
3.2. Multimolecule Models. Chemprop can also train on

a data set containing more than one molecule as input. For
example, when properties related to solvation need to be
predicted, both a solute and a solvent are required as input to
the model. Users can provide multiple molecules as inputs to
Chemprop. When multiple molecules are used, by default
Chemprop trains a separate D-MPNN for each molecule
(Figure S1a). If the option --mpn_shared is specified, then
the same D-MPNN is used for all molecules (Figure S1b). The
embeddings of the different molecules are then concatenated
prior to the FFN. Note that the current implementation of
multiple molecules in Chemprop does not ensure permuta-
tional invariance toward the input molecules. This is suited to
situations where the input molecules have different roles, e.g.,
molecule 1 = solute, molecule 2 = solvent. For additional input
information and a figure depicting the multimolecule model
structure, see SI.
3.3. Reaction Support. Chemprop supports the input of

atom-mapped reactions, i.e., pairs of reactants and products
SMILES connected via the “≫” symbol,by using the keyword
--reaction. The pair of reactants and products is
transformed into a single pseudomolecule, namely, the
condensed graph of reaction (CGR), and then passed to a
regular D-MPNN block. The construction of a CGR within
Chemprop is described in detail in ref 59 and summarized in
the following. In general, the input of a reaction vs a molecule
only affects the setup of the graph object and its initial features,
but not any other part of the architecture. The graph of a
reaction has a different set of edges E as the graph of a
molecule, as shown in Figure 2 for an example Diels−Alder
reaction. To build the CGR pseudomolecule, the set of atoms
is obtained as the union of the sets of atoms in the reactants
and products. Similarly, the set of bonds is obtained as the
union of the sets of bonds in the reactants and products. Once
constructed, the CGR is passed through the D-MPNN and
other model architecture components in the same way a

molecular graph would. Optionally, Chemprop accepts an
additional molecule object as input, such as a solvent, a
reagent, etc. which is passed to its own D-MPNN similar to the
multimolecule model. The output of the reaction D-MPNN
and molecule D-MPNN is concatenated after atomic
aggregation, before the FFN. This option is available via the
reaction_solvent keyword. See SI for further com-
mandline options and details.
3.4. Spectra Data Support. Chemprop supports the

prediction of whole-spectrum properties for molecules. An
initial version of this capability was discussed in ref 28 for use
with IR absorbance spectra. Targets for the spectra data set
type are composed of an array of intensity values, set at fixed
bin locations typically specified in terms of wavelengths,
frequencies, or wavenumbers. Spectral Information Divergence
was originally developed as a method of comparing spectra to
reference databases70 and is adapted in Chemprop to be used
as a loss function, considering the deviation of the spectrum as
a whole rather than independently at each bin location. The
treatment of spectra can handle targets with gaps or missing
values within a data set. With the expectation that spectra will
often be collected in systems where a portion of the range will
be obscured or invalid (e.g., from solvent absorbance),
Chemprop can create exclusion regions in specified spectra
where no predictions are provided and targets are ignored for
training purposes.
3.5. Latent Representations. Graph neural networks

enable learning both molecular representation and property
end-to-end directly from the molecular graph. As detailed
above in Section 2, the learned node representations are
aggregated into a molecule-level representation after the
message-passing phase, which we refer to as the “learned
fingerprint.” This embedding is then further fed into the FFN
network. Within the FFN, we consider the final hidden
representation, which we refer to as the “ffn embedding”. Both
of these vectors are latent representations of a molecule as it
relates to a particular trained model. Molecule latent
representations can be useful for data clustering or used as
additional features in other models. Chemprop supports the
calculation of either from a trained model for a given set of
molecules.

Figure 2. Construction of the condensed graph of reaction (CGR) of an example reaction. The vertices and edges are obtained as the union of the
respective reactant and product vertices and edges. The features are obtained as a combination of the reactant (white background) and product
(gray background) features for atoms and bonds.
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3.6. Loss Function Options. Chemprop can train models
according to many common loss functions. The loss functions
available for a given task are determined by the data set type
(regression, classification, multiclass, or spectra). Regression
models can be trained with mean squared error (MSE),
bounded MSE (which allows inequalities as targets), or
negative log-likelihood (NLL) based on prediction uncertainty
distributions consistent with mean-variance estimation
(MVE)71 or evidential uncertainty.72 Classification tasks
default to the binary cross entropy loss and have additional
options of Matthews correlation coefficient (MCC) and
Dirichlet (evidential classification).73 Cross entropy and
MCC are also available for multiclass problems. There are
two options available for training on spectra: spectral
information divergence (SID)70 and first-order Wasserstein
distance (a.k.a. earthmover’s distance).74 Loss functions must
be differentiable since they are used to calculate gradients that
update the model parameters, but Chemprop also provides the
option to use several nondifferentiable metrics for model
evaluation.
3.7. Transfer Learning. Transfer learning is a general

strategy of using information gained through the training of
one model to inform and improve the training of a related
model. Often, this strategy is used to transfer information from
a previously trained model of a large data set to a model of a
small data set in order to improve the performance of the
model of the small data set. The simplest method of transfer
learning would be taking predictions or latent representations
from one model and supplying them as additional features to
another model (Sections 3.1 and 3.5).
In Chemprop, different strategies are available to transfer

learned model parameters from a previously trained model to a
new model as a form of transfer learning, as shown in Figure 3.

A pretrained model may be used to initialize a new model with
normal updating of the transferred weights in training.
Alternatively, parameters from the transferred model can be
frozen, holding them constant during training. Freezing
parameters always include the D-MPNN weights but can be
specified to include some FFN layers as well. See SI for the
corresponding arguments.

3.8. Hyperparameter Optimization. Chemprop provides
a command-line utility, allowing for the simple initiation of
hyperparameter optimization jobs. Options for the hyper-
parameter job such as how many trials to carry out and which
hyperparameters to include in the search (options in Table S3)
can be specified with simple command-line arguments. The
optimization initially uses randomly sampled trials, followed by
targeted sampling using the Tree-structured Parzen Estimator
algorithm.75,76

Hyperparameter optimization is often the most resource-
intensive step in model training. In order to search a large
parameter space adequately, a large number of trials is needed.
Chemprop allows for parallel operation of multiple hyper-
parameter optimization instances, removing the need to carry
out all trials in series and reducing the wall time needed to
perform the optimization significantly. See SI for the available
hyperparameter options and other details.
3.9. Uncertainty Tools. Chemprop includes a variety of

popular uncertainty estimation, calibration, and evaluation
tools. The estimation methods include deep ensembles,77

dropout,78 mean-variance estimation (MVE),71 and eviden-
tial,72 as well as a special version of ensemble variance for
spectral predictions,28 and the inherently probabilistic outputs
of classification models. After estimating the uncertainty in a
model’s predictions, it is often helpful to calibrate these
uncertainties to improve their performance on new predictions.
We provide four such methods for regression tasks (z-
scaling,79 t-scaling, Zelikman’s CRUDE,80 and MVE weight-
ing81) and two for classification (single-parameter Platt
scaling82 and isotonic regression83). In addition to standard
metrics such as RMSE, MAE, etc. for evaluating predictions,
Chemprop also includes several metrics specifically for
evaluating the quality of uncertainty estimates. These include
negative log likelihood, Spearman rank correlation, expected
normalized calibration error (ENCE),84 and miscalibration
area.84 Any valid classification or multiclass metric used to
assess predictions can also be used to assess uncertainties.
3.10. Atom/Bond-Level Targets. Chemprop supports a

multitask constrained D-MPNN architecture for predicting
atom- and bond-level properties, such as charge density or
bond length. This model enables a D-MPNN to be trained on
multiple atomic and bond properties simultaneously, though
unlike molecular property targets, they do not share a single
FFN. Optionally, an attention-based constraining method may
be used to enforce that predicted atomic or bond properties
sum to a specified molecular net value, such as the overall
charge of a molecule. An initial, more limited version of this
capability was developed in ref 55. For details on the input
formats to be used for atom/bond targets, both for training
and for inference, see SI.

4. BENCHMARKING
See SI for general performance benchmarks, benchmarks using
specific Chemprop features (atom/bond-level targets, reaction
support, multimolecule models, spectra prediction, and
uncertainty estimation), and system timing benchmarks.

5. CONCLUSION
We have presented the software package Chemprop, a
powerful toolbox for machine learning of the chemical
properties of molecules and reactions. Significant improve-
ments have been made to the software since its initial release

Figure 3. Options to transfer model parameters from a pretrained
model (squared) to a new model, by (a) initializing the new model
parameters or by freezing the (b) D-MPNN layers and (c) n FFN
layers.
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and study,36 including the support of multimolecule properties,
reactions, atom/bond-level properties, and spectra. Addition-
ally, several state-of-the-art approaches to estimate the
uncertainty of predictions have been incorporated as well as
pretraining and transfer learning procedures. Furthermore, the
code now offers a variety of customization options, such as
custom atom and bond features, a large variety of loss
functions, and the ability to save the learned feature
embeddings for subsequent use with different algorithms. We
have showcased and benchmarked Chemprop on a variety of
example tasks and data sets and have found competitive
performances for molecular property prediction compared to
other approaches available on public leaderboards. In
summary, Chemprop is a powerful, fast, and convenient tool
to learn conformation-independent properties of molecules,
sets of molecules, or reactions.

■ ASSOCIATED CONTENT
Data Availability Statement
Chemprop, including all features described in this paper, is
available under the open-source MIT License on GitHub,
github.com/chemprop/chemprop. An extensive documenta-
tion including tutorials is available online,85 including a
workshop on YouTube.86 Scripts and data splits to fully
reproduce this study are available on GitHub, github.com/
chemprop/chemprop_benchmark, and on Zenodo, doi.org/
10.5281/zenodo.8174267, respectively.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01250.

Additional software details and usage examples, data set
and data handling details for benchmarking, and results
of software benchmarks (general performance, feature
demonstrations, timing) (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Charles J. McGill − Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, United States; Department of
Chemical and Life Science Engineering, Virginia
Commonwealth University, Richmond, Virginia 23284,
United States; orcid.org/0000-0003-2704-7717;
Email: mcgillc2@vcu.edu

Authors
Esther Heid − Department of Chemical Engineering,

Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, United States; Institute of Materials
Chemistry, TU Wien 1060 Vienna, Austria; orcid.org/
0000-0002-8404-6596

Kevin P. Greenman − Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, United States; orcid.org/0000-
0002-6466-1401

Yunsie Chung − Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, United States; orcid.org/0000-
0002-3097-010X

Shih-Cheng Li − Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, United States; Department of

Chemical Engineering, National Taiwan University, Taipei
10617, Taiwan

David E. Graff − Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, United States; Department of
Chemistry and Chemical Biology, Harvard University,
Cambridge, Massachusetts 02138, United States;
orcid.org/0000-0003-1250-3329

Florence H. Vermeire − Department of Chemical
Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, United States;
Department of Chemical Engineering, KU Leuven, B-3001
Leuven, Belgium

Haoyang Wu − Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, United States; orcid.org/0000-
0002-0644-7554

William H. Green − Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, United States; orcid.org/0000-
0003-2603-9694

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.3c01250

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
E.H., Y.C., F.H.V., and W.H.G. acknowledge support from the
Machine Learning for Pharmaceutical Discovery and Synthesis
Consortium (MLPDS). K.P.G., S.-C.L., F.H.V., H.W., W.H.G.,
and C.J.M. acknowledge support from the DARPA Accelerated
Molecu lar Discovery (AMD) program (DARPA
HR00111920025). E.H. acknowledges support from the
Austrian Science Fund (FWF), project J-4415. K.P.G. was
supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. 1745302.
D.E.G. acknowledges support from the MIT IBM Watson AI
Lab. F.H.V. would like to acknowledge the KU Leuven Internal
Starting Grant (STG/22/032). C.J.M. would like to acknowl-
edge support from VCU Startup Funding. Parts of the data
reported within this paper were generated with resources from
the MIT SuperCloud Lincoln Laboratory Supercomputing
Center.87

■ REFERENCES
(1) Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E.
Neural Message Passing for Quantum Chemistry. Proceedings of the
International Conference on Machine Learning 2017, 1263−1272.
(2) Gasteiger, J.; Groß, J.; Günnemann, S. Directional Message
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