
Physics-Based
Model Order Reduction

‒ MOR approaches struggle to handle complex
coupled Nonlinear parametric systems.

‒ Hyper-Reduction approaches have been found to be
Intrusive in nature.

Nonlinear Intrusive

Data Driven
Model Order Reduction

‒ Suffer from Underfitting/Overfitting.
‒ Reduced capacity to Extrapolate.
‒ Violation of key physics properties.
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Background

Exchangeability

Compress, transfer and
execute simulation models in
other embedded or cloud
environments.

Speed Up

Alleviation of the computational
burden of high-dimensional
numerical simulations.

Digitalization
Simulation and Modeling
Pillars of digitalization, since they enable the creation of Digital
Twins over the entire product life cycle.

Digital Twin
Digital representations of a product which mirror the physical
system in the digital word.

Require a fine spatial-temporal resolution, leading inevitably to
larger-scale complex models.

Numerical Models

Aims to reduce the computational burden by creating a
low-dimensional, faster approximation of high-fidelity
model, i.e. the so-called Reduced Order Model (ROM).

Model Order Reduction (MOR)

Conclusion

Non-Intrusive Hyper-Reduction approach easy to
integrate into simulation frameworks and existing
commercial software.
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1
Model Order Reduction approach able to reduce the
computational cost of Nonlinear Structural Finite
Element analyses.

Robust approach thanks to embedded Physics
Properties via Scientific Machine Learning Physics-
Augmentation.
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Future Works

Explore methods to ensure ROM Portability such
that they can be effectively distributed, deployed and
executed on edge devices.

Extend the methodology to multi-physics settings
such as in complex coupled nonlinear
Thermomechanical systems.

Extend the methodology to retrieve the Parametric
dependencies within the model, allowing its use in
different operational conditions and settings.
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Results

Hyper-Reduced
Nonlinear Internal Map

Reduced Displacement
Using the Hyper-Reduced Map

Comparison of Fully Connected Neural Network
(FCNN) and Input-Convex Neural Network (ICNN).

Both approaches provide a good approximation
of the reduced internal forces.

The ICNN architecture does guarantee the a priori
enforcement of the physical constraints and
therefore provides stable and consistent results.

The FCNN architecture does not ensure stability-
preserving properties which leads to the unstable
behavior and related convergence issues.

Static

Dynamic

Reduced Displacement
Using the Hyper-Reduced Map

Again, also for dynamic analyses, the FCNN
architecture does not ensure stability-preserving
properties.

The ICNN architecture, once again, guarantee the a
priori enforcement of the physical constraints.


