

Davide Fleres Ph.D. Candidate davide.fleres@siemens.com

A Non-Intrusive Physics-Informed Neural Network Hyper Reduction approach for Nonlinear Structural Finite Elements

Davide Fleres^{1,2}, Daniel De Gregoriis¹, Onur Atak³ and Frank Naets^{2,4}

In Collaboration with ^{1,3} Siemens Digital Industries Software (¹ Belgium, ³ United Kingdom), ² Department of Mechanical Engineering at KU Leuven (Belgium), and ⁴ E2E core lab Flanders Make @ KU Leuven (Belgium)

Background

Digitalization

Simulation and Modeling

Pillars of digitalization, since they enable the creation of Digital Twins over the entire product life cycle.

Digital Twin

Digital representations of a product which mirror the physical system in the digital word.

Numerical Models

burden of high-dimensional Require a fine spatial-temporal resolution, leading inevitably to numerical simulations. larger-scale complex models.

Model Order Reduction (MOR)

Aims to reduce the computational burden by creating a low-dimensional, faster approximation of high-fidelity model, i.e. the so-called Reduced Order Model (ROM).

Compress, transfer and Alleviation of the computational execute simulation models in other embedded or cloud environments.

Benchmark Case

Extrapolation

- Future Works

such as in complex coupled nonlinear

Thermomechanical systems.

executed on edge devices.

Extend the methodology to retrieve the **Parametric** dependencies within the model, allowing its use in different operational conditions and settings.

Model Order Reduction approach able to reduce the 1 computational cost of Nonlinear Structural Finite Element analyses.

Non-Intrusive Hyper-Reduction approach easy to integrate into simulation frameworks and existing commercial software.

Robust approach thanks to embedded Physics Properties via Scientific Machine Learning Physics-Augmentation.

VLAIO

Acknowledgments

This work was carried out as part of a PhD program funded by the Flemish government (Flemish Innovation and Entrepreneurship, VLAIO, https://www.vlaio.be/nl/subsidies-financiering/baekeland-mandaten) as a Baekeland mandate grant (nr. HBC.2021.0812)