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Abstract

Widely used methods such as Cox proportional hazards, accelerated fail-
ure time, and Bennet proportional odds models do not model the quan-
tiles directly, but rather allow to assess the influence of the covariates only
on the location of the distribution. Quantile regression allows to assess
the effects of covariates, not only on a location parameter (such as a mean
or median) but also on specific percentiles of the conditional distribution.
In recent years, a large family of flexible two-piece asymmetric distribu-
tions where the location parameter coincides with a specific quantile of
the distribution has been studied. In a conditional (regression) setting the
use of such a family of two-piece asymmetric distributions has only been
investigated in the complete data case in the literature. In this paper, we
propose a semi-parametric procedure to estimate the conditional quan-
tile curves of two-piece asymmetric distributions based on right censored
survival data. We use a local likelihood estimation technique in a multi-
parameter functional form, via which the effect of a covariate on the
location, scale, and index of the conditional survival distribution can be
assessed. The finite sample performance of the estimators is investigated
via simulations, and the methodology is illustrated on real data examples.
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1 Introduction

In lifetime regression analysis we are mostly interested to investigate the asso-
ciation of the lifetime of patients or study objects with a set of covariates. In the
spirit of this and related aims, several statistical models have been developed
including the widely used Cox proportional hazards model [10], Bennett pro-
portional odds model [4] and accelerated failure time (AFT) model [40]. These
widely used methods do not model the quantiles directly, but rather allow to
assess the influence of the covariates on the location of the distribution; in a
sense that they do not allow to assess the effect of the covariates on the scale
as well as shape of the conditional distribution. Conditional quantile functions
on the other hand completely characterize the conditional distribution. There
have been numerous studies to investigate the effect of covariates on a censored
survival outcome via quantile regression models [5, 6, 9, 11, 30, 31, 39] among
others. With a quantile regression approach one can study whether a covariate
has a varying or constant effect across quantiles. Fitting a quantile regression
model to lifetime data offers flexibility in exploring the effect of covariates on
a specific percentile of the distribution as well as to estimate covariate effects
on the scale and shape of the whole conditional survival distribution [27]. The
concept of quantile regression (in both censored and uncensored data) has
evolved over the years for a number of reasons: it is equivariant to monotonic
transformations; quantiles are less sensitive to outlying observations; the infer-
ence takes into account the entire shape of the conditional distribution; and it
is easy to draw a direct interpretation.

For fixed censoring schemes early papers on censored quantile regression
include Powell [32, 33]. Under a random censoring scheme, Portnoy [31] anal-
ysed censored survival data using quantile regression through a weighted
Kaplan-Meier approach. Similarly, Peng and Huang [30] studied quantile
regression for randomly censored survival data by a Nelson-Aalen type estima-
tion approach. However, both Portnoy [31] and Peng and Huang [30] methods
are restricted by a strong assumption that the entire quantiles are linear
in the covariates. Wang and Wang [39] casted doubt on the global linearity
assumption, and relaxed the method using a locally linear quantile regression
approach. This latter study dealt with a locally weighted censored quantile
regression by estimating the censoring probability non-parametrically using
a Kaplan-Meier approach. Fully parametric quantile regression for right cen-
sored data has been studied by Bottai and Zhang [5]. Their method also
imposes a linearity assumption for the covariate effects and the error term
follows an asymmetric Laplace distribution with a constant scale parameter.
Recently, De Backer et al. [11] proposed minimum distance type estimation in
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linear censored quantile regression by circumventing the check-based modelling
approach.

Together the aforesaid studies provide important insights into the flexi-
bility of quantile regression to assess covariate effects on the survival times.
However, most of the studies mentioned remain narrow in focus relying on
a global linear assumption (e.g., Portnoy [31] and Peng and Huang [30]) as
well as on a specific quantile linearity assumption (e.g., Wang and Wang [39]).
In contrast to the literature (e.g., Rubio and Yu [35]), our method to condi-
tional quantile is based on a multi-parameter regression framework where more
than one distributional parameter can depend on the covariates. The linearity
assumption on the covariate effects is relaxed and we add further distribu-
tional flexibility (see Section 2). Our approach is inspired by Gijbels et al. [21]
in the area of complete data analysis. They proposed semi-parametric quantile
regression using a rich family of asymmetric distributions, where the location
parameter coincides with a particular quantile. Modelling survival data in a
multi-parameter regression framework is not new in the literature; for example,
Anderson [2] proposed a log-linear model where both the location and disper-
sion parameters depend on the covariates which can be seen as an extension
of the classical AFT model. More recently, Burke and MacKenzie [7] studied
a multi-parameter regression model for survival data by relaxing the classical
proportional hazards assumption.

The paper is organized as follows. The definition of the family of two-piece
asymmetric distributions and its basic properties in the conditional setting are
described in Section 2. Section 3 briefly explores the semi-parametric estima-
tion problem when the unknown parameters as well as quantile function are
conditioned by both univariate and multivariate covariates. The asymptotic
properties for the proposed estimators are provided in Section 4. Section 5 is
devoted to an extensive simulation study conducted to investigate the finite
sample performance of the proposed method. The use of the proposed method-
ology in real life data examples is illustrated in Section 6. Part of the simulation
results and real data analysis are reported in the Supplementary material.

2 Two-piece asymmetric distributions

Let T be a lifetime random variable with support the positive real line R+.
This can be duration of time until the event of interest occurs such as in
biological organisms or failure time such as in mechanical systems. Consider an
increasing, differentiable and invertible function g : ]0,+∞[→ R (with inverse
g−1). Let T = g−1(Z), where Z is a random variable with support in R, and
probability density function

f̃α(z; µ, ϕ) =
2α(1− α)

ϕ


f0
{
(1− α)

(µ− z

ϕ

)}
if z < µ

f0
{
α
(z − µ

ϕ

)}
if z ≥ µ,

(1)
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where f0(·) denotes a unimodal symmetric density with mean zero and variance
one, µ ∈ R and ϕ ∈ R+ are, respectively, the location and scale parameters
for Z = g(T ), and α ∈ (0, 1) is an index parameter controlling the allocation
mass of the distribution to each side of µ. Gijbels et al. [20] named (1) a
quantile based asymmetric (QBA) density since the αth quantile of Z equals
the location parameter µ. The two-piece types of distributions go back to
Fechner [16]. See also Wallis [38].

We denote the unconditional probability density and cumulative distri-
bution function for the random variable T by fα(t; η, ϕ) and Fα(t; η, ϕ),
respectively. The probability density of T = g−1(Z) with parameters θ =
(η, ϕ, α)T and link function g(t) is obtained from (1), and given by

fα(t; η, ϕ) =
2α(1− α)g′(t)

ϕ


f0
{
(1− α)

(g(η)− g(t)

ϕ

)}
if t < η

f0
{
α
(g(t)− g(η)

ϕ

)}
if t ≥ η,

(2)

where η = g−1(µ) ∈ R+ (is the location parameter for T ) and g′(t) is the
first derivative of g(t). Hereafter, we call (2) a two-piece asymmetric (TPA in
short) density and f0 a reference density with its corresponding cumulative
distribution F0, survival S0 and hazard h0 functions.

Recently, the unconditional distributions defined in (2) have been studied
by Ewnetu et al. [13], Rubio and Hong [34] for random right censored data.
Ewnetu et al. [13] used a maximum likelihood estimation (MLE) and estab-
lished the asymptotic properties of the estimators with an explicit expression
of the Fisher information matrix.

By allowing the parameters of θ to depend on the covariate X, the
conditional TPA density of T given a covariate value X = x is written as

fα(x)(t; θ(x))

=
2α(x){1− α(x)}g′(t)

ϕ(x)


f0
{
(1− α(x))

(g(η(x))− g(t)

ϕ(x)

)}
if t < η(x)

f0
{
α(x)

(g(t)− g(η(x))

ϕ(x)

)}
if t ≥ η(x),

where θ(x) = {η(x), ϕ(x), α(x)}T . We assume a random covariate X with a
probability density function fX(·) and its support denoted by supp(fX). The
conditional cumulative distribution of T given X = x is given by

Fα(x)(t; θ(x)) =

{
2α(x)F0

{
(1− α(x))

( g(t)−g(η(x))
ϕ(x)

)}
if t < η(x)

2α(x)− 1 + 2(1− α(x))F0

{
α(x)

( g(t)−g(η(x))
ϕ(x)

)}
if t ≥ η(x),

(3)
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and the conditional quantile of order τ ∈ (0, 1) is given by

Qτ (T | x) ≡
{
Fα(x)(t; θ(x))

}−1

= inf
{
t : Fα(x)(t; θ(x)) ≥ τ

}
= g−1

(
g
(
η(x)

)
+ ϕ(x) · Cα(x)(τ)

)
, (4)

where g−1(·) > 0 and

Cα(x)(τ) =
1

1− α(x)
F−1
0

(
τ

2α(x)

)
I(τ < α(x))

+
1

α(x)
F−1
0

(
1 + τ − 2α(x)

2(1− α(x))

)
I(τ ≥ α(x)), (5)

whereas F−1
0 (·) is the quantile function of the reference distribution. In gen-

eral, Cα(x)(τ) is an increasing function of τ for a given covariate value X = x,
resulting in a monotone increasing conditional quantile function Qτ (T | x). In
particular when τ = α(x), Cα(x)(τ) = 0, and hence Qτ (T | x) = η(x), indi-
cating that the conditional quantile of order α(x) coincides with the location
function given X = x. The conditional survival function is

Sα(x)(t; θ(x)) =

{
1− 2α(x)S0

{
(1− α(x))

( g(η(x))−g(t)
ϕ(x)

)}
if t < η(x)

2(1− α(x))S0

{
α(x)

( g(t)−g(η(x))
ϕ(x)

)}
if t ≥ η(x),

(6)

where S0(·) is the survival probability function for the reference density.
To summarize, we assume f0(·) to be known while the distributional

parameters θ are unknown smooth functions of the covariate X.
In the approach above, we start from a parametric family of distributions

and then subsequently allow the parameters to be unknown functions of the
covariate. Similar approaches have been extensively applied in the literature,
for example in [19] and [3]. See also [26] for a recent review on what can be
called distributional regression.

3 Semiparametric conditional quantile
estimation

We are interested in the survival time T , however in real data applications, the
variable of interest T is not always observed or it may be subject to different
censoring schemes. In the presence of right random censoring one would only
observe the couple

(
min{T,C}, I(T ≤ C)

)
= (Y,∆), where C is a random

censoring variable with distribution G, Y is the observed response variable,
and ∆ = I(T ≤ C) is the censoring indicator which equals one if T ≤ C and
zero else. We consider two crucial assumptions that are commonly used in
standard survival models for censored data:
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� Conditionally independent censoring : the survival time T and the censor-
ing time C are conditionally independent given X.

� Non-informative censoring : the distribution of the censoring time C given
X = x does not give any information about the distribution of the survival
time T .

In the unconditional context the assumptions of independence and non-
informative censoring are classical. See for example [25].

Numerous studies have used likelihood methods to estimate the param-
eters in the distribution of T subject to the above two basic assumptions.
Let (xi, yi, δi), i = 1, . . . , n be a realized i.i.d. sample from (X,Y,∆). In the
presence of right censoring, the conditional likelihood function is proportional
to

likn(θ(·)) ∝
nu∏
i=1

fα(xi)(yi; θ(xi))

nc∏
i=1

Sα(xi)(yi; θ(xi))

=

n∏
i=1

{
fα(xi)(yi; θ(xi))

}δi{
Sα(xi)(yi; θ(xi))

}1−δi
,

(7)

where nu and nc denote, respectively, the number of uncensored and censored
observations. As we can see easily from (7), the contribution of an uncensored
(δi = 1) observation in the conditional likelihood function is the conditional
density while for a censored (δi = 0) observation it is the conditional survival
probability.

If η(x), ϕ(x) and α(x) have a specified parametric functional form of the
covariate, for example a polynomial with degree p1 for η(x) = (η0+η1x+ . . .+
ηp1

xp1), with degree p2 for ϕ(x) = (ϕ0 + ϕ1x + . . . + ϕp2
xp2), and degree p3

for α(x) = (α0 + α1x + . . . + αp3
xp3), maximizing the likelihood function of

(7) with respect to η(x), ϕ(x) and α(x) leads to a fully parametric estimation

with estimator η̂(x), ϕ̂(x) and α̂(x), respectively. In most real applications,
however, specifying a parametric form of these functions may be difficult and
becomes too restrictive. In these circumstances a local weighted version of (7),
the so-called local kernel weighted conditional log-likelihood may be used to
estimate the unknown parameter functions. The main idea of using a local fit-
ting approach is to estimate the unknown smooth functions non-parametrically
within a local window around a value x in a grid. This technique provides
estimates not only for the unknown smooth function but also for its derivatives.

A local likelihood technique has been applied to a generalized linear model
and the proportional hazards model of Cox [10] by Tibshirani and Hastie [37].
The motivation to use local likelihood and its applications in a variety of
fields including survival analysis with censored data has been studied by Fan
and Gijbels [14]. A number of studies have also applied local linear fitting for
right censored data in non-parametric estimation problems, see for example,
Fan and Gijbels [15], Kim et al. [24] and Yu and Jones [42]. Gannoun et al.
[18] studied a local linear approach in non-parametric conditional quantile
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estimation for censored data. Most of the papers have been focusing on a local
likelihood estimation technique with a single unknown smooth function of
interest. Limited studies have been carried out on local polynomial estimation
in multi-parameter likelihood models for the complete data case, see Aerts and
Claeskens [1] and Gijbels et al. [21].

The local likelihood method is simple to formulate by localizing the global
likelihood function defined in (7) using a kernel function K(·) (a symmet-
ric density function) and a bandwidth parameter h > 0. First, we assume
that η(·), ϕ(·) and α(·) are unknown smooth functions of the covariate X and
estimate them in a window around each x value. Once we have the esti-
mators η̂(x), ϕ̂(x) and α̂(x), the conditional quantile of order τ , Qτ (T | x)
can easily be estimated at the second stage from (4) and the estimator is

Q̂τ (T | x) = g−1

(
g
(
η̂(x)

)
+ ϕ̂(x) · Cα̂(x)(τ)

)
, where

Cα̂(x)(τ) =
1

1− α̂(x)
F−1
0

(
τ

2α̂(x)

)
I(τ < α̂(x))

+
1

α̂(x)
F−1
0

(
1 + τ − 2α̂(x)

2(1− α̂(x))

)
I(τ ≥ α̂(x)).

Note that Q̂τ (T | x) = η̂(x) when τ = α̂(x), i.e., the estimator of the location
function is the α̂(x)th conditional quantile of the distribution. Note that the

conditional quantile of Z = g(T ) is µ̂(x) + ϕ̂(x) · Cα̂(x)(τ), considering the

monotone transformation µ̂(x) = g
(
η̂(x)

)
. An advantage of the above approach

is that the non-crossing property of Q̂τ (T | x) inherently holds. Indeed, as can
be seen from (4) combined with (5), for 0 < τ1 ≤ τ2 < 1, the estimator of the

conditional quantile curves satisfy, Q̂τ1(T | x) ≤ Q̂τ2(T | x), in the support of
the covariate X.

The potential of modelling survival time with the two-piece asymmetric
distribution is to allow describing data by a large family of distributions which
includes log-symmetric models as special cases (where it is assumed that g(t) =
ln(t)).

3.1 Single covariate

Consider for now a unidimensional continuous covariate X. For convenience of
optimization, we reparametrize θ1(·) = g{η(·)}, θ2(·) = ln{ϕ(·)} and θ3(·) =

logit{α(·)} = ln
{ α(·)

1−α(·)
}
, which maps the parameter space of Θ, R+ × R+ ×

(0, 1) onto R3 = R×R×R, and also guarantees the positivity of η(·) and ϕ(·)
while for α(·) ensuring values in (0, 1). Let θ̃(·) denote the parameter vector(
θ1(·), θ2(·), θ3(·)

)T ∈ R3. Estimating θ̃(·) is then equivalent to estimating

θ(·) =
(
η(·), ϕ(·), α(·)

)T
. To formulate the local-likelihood function suppose

that the unknown function θr(·), r ∈ {1, 2, 3} has a (pr + 1)th continuous
derivative at the point x0. For the data points xi in the neighbourhood of x0
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we want to approximate θr(xi) with a Taylor expansion of degree pr (∈ N):

θr(xi) ≈ θr(x0) + θ(1)r (x0)
(
xi − x0

)
+ . . .+

θ
(pr)
r (x0)

pr!

(
xi − x0

)pr

≡
pr∑
j=0

θrj(x0)(xi − x0)
j

≡ βr0 + βr1(xi − x0) + . . .+ βrpr
(xi − x0)

pr = xT

i,pr
βr (8)

where ≈ denotes the approximation by ignoring the higher orders in the Taylor
expansion, xi,pr

=
(
1, (xi − x0), (xi − x0)

2, . . . , (xi − x0)
pr
)T

, the notation

βrv ≡ θrv(x0) =
θ
(v)
r (x0)

v!
, for v = 0, 1, . . . , pr, and βr = (βr0, . . . , βrpr

)T , with

the superscript (ν) denoting the νth derivative. From now on, for given x0 for
simplicity we may use βrv instead of θrv(x0). But it is important to keep in
mind the dependence on x0. Consider the ith observation and denote

Lu(β; yi, xi, x0) = ln{fα(xT
i,p3

β3)(yi; x
T

i,p1
β1,x

T

i,p2
β2,x

T

i,p3
β3)},

and Lc(β; yi, xi, x0) = ln{Sα(xT
i,p3

β3)(yi; x
T

i,p1
β1,x

T

i,p2
β2,x

T

i,p3
β3)},

where β =
{
β1,β2,β3

}
. By incorporating the localizing weight Kh(x−x0) the

local kernel weighted conditional log-likelihood function for the realized i.i.d.
sample is given by

Ln(β; x0, h) =

n∑
i=1

(δiLu(β; yi, xi, x0) + (1− δi)Lc(β; yi, xi, x0))Kh(xi − x0),

(9)

where Kh(·) = h−1K(·/h) is the kernel density function rescaled by the band-
width parameter h. Henceforth, maximizing Ln(β; x0, h) with respect to β

gives the local kernel weighted maximum likelihood estimators β̂ = (β̂1, β̂2, β̂3)
at a local point x0. That is,{

β̂1, β̂2, β̂3

}
= arg max

β1,β2,β3

{
Ln(β; x0, h)

}
, (10)

where β̂r = (β̂r0, . . . , β̂rpr )
T and the estimator θ̂

(v)
r (x0) for θ

(v)
r (x0) is

θ̂
(v)
r (x0) = v!θ̂rv(x0) = v!β̂rv. The estimators for η(·), ϕ(·), α(·) at a local point
x0 are then given as

η̂(x0) = g−1(β̂10), ϕ̂(x0) = exp(β̂20), α̂(x0) =
exp(β̂30)

1 + exp(β̂30)
. (11)
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Consequently, the estimator for the τth conditional quantile of the survival
time at the local point x0 is then given by

Q̂τ (T | x0) = g−1

(
g
(
η̂(x0)

)
+ ϕ̂(x0) · Cα̂(x0)(τ)

)
. (12)

The local kernel weighted conditional log-likelihood function defined in (9)
is continuous and differentiable with respect to the components of βr except
when yi = g−1(θ1(xi)), for i = 1, . . . , n. However, one can use direct or deriva-
tive free optimization techniques to maximize it numerically. Note that the
maximization problem defined in (10) is for a single x0 to provide an estimate
of θr(x0). For the purpose of producing estimates of the smooth function θr(·)
on its support, the maximization needs to be done for a fine grid of x0-values
in the support of the covariate X.

3.2 Multiple covariates

In the previous section we mainly focused on curve smoothing via a local
kernel weighted conditional log-likelihood for the censored data conditional on
a single covariate. We shall now extend this type of smoothing technique to
a d-dimensional covariate vector X = (X1, . . . , Xd)

T . The goal is then fitting
a d-dimensional surface to the observed data (xi, yi, δi), i = 1, 2, . . . , n, where
xi = (xi1, . . . , xid)

T . Let x0 = (x01, . . . , x0d)
T be a d-dimensional vector of

local points. We then estimate
(
θ1(x), θ2(x), θ3(x)

)T
in an arbitrary point x0

by maximizing the local kernel weighted conditional log-likelihood.
We illustrate this idea with a local linear estimator, i.e., when pr = 1,

for r ∈ {1, 2, 3}. The Taylor approximation of order one of θr(xi) in a
neighbourhood of x0 is given by

θr(xi) ≈ θr0(x0) +

d∑
j=1

∂θr(x)

∂xj
|x=x0 (xij − x0j)

≡ βr0 +

d∑
j=1

βrj(xij − x0j) ≡ x̃T

i; dβ
[d]
r ,

where βr0 = θr0(x0), βrj = θrj(x0) ≡ ∂θr(x0)

∂xj
, for j = 1, . . . , d; x̃i; d =(

1, (xi1−x01), . . . , (xid−x0d)
)T

and β
[d]
r = (βr0, βr1, . . . , βrd)

T . In such surface

fitting, we need to consider a d-dimensional multivariate kernel function K̃(·)
with the properties that

∫
K̃(u)du = 1 and

∫
uK̃(u)du = 0, and a positive

definite matrix of bandwidth parameters H with determinant | H |. In this
case we define a rescaled version of K̃ by K̃H(u) =| H |−1/2 K̃(H−1/2u).

The multivariable version of (9) for the observed i.i.d. sample is then

Ln(β
[d]; x0,H)
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=

n∑
i=1

(
δiLu(β

[d]; yi,xi,x0) + (1− δi)Lc(β
[d]; yi,xi,x0)

)
K̃H(xi − x0),(13)

where β[d] =
{
β
[d]
1 ,β

[d]
2 ,β

[d]
3

}
with

Lu(β
[d]; yi,xi,x0) = ln{f

x̃T
i; dβ

[d]
3
(yi; x̃

T

i; dβ
[d]
1 , x̃T

i; dβ
[d]
2 , x̃T

i; dβ
[d]
3 )}

and Lc(β
[d]; yi,xi,x0) = ln{S

x̃T
i; dβ

[d]
3
(yi; x̃

T

i; dβ
[d]
1 , x̃T

i; dβ
[d]
2 , x̃T

i; dβ
[d]
3 )}.

Accordingly, maximizing (13) with respect to β[d] at the local points x0 pro-

duces the local linear maximum likelihood estimators β̂[d] =
{
β̂
[d]
1 , β̂

[d]
2 , β̂

[d]
3

}
,

where β̂
[d]
r =

(
β̂r0, β̂r1, . . . , β̂rd

)
. Therefore, the d-variate local linear estima-

tor of θr(x0) equals θ̂r0(x0) = β̂r0, and for its first-order partial derivatives

∂̂θ(x0)

∂xj
= θ̂rj(x0) for j = 1, . . . , d; r ∈ {1, 2, 3}. Finally, we can derive the

estimators for the parameter of interests and the conditional quantile function
Qτ (T | x) as in the single covariate case.

An obvious challenge in case of multiple covariates is the presence of the
“curse of dimensionality.” Nonetheless, several methods are reported in the
literature to address this issue. The approaches include additive modelling,
partial linear modelling, and modelling with interactions. See for example Fan
and Gijbels [14] and references therein. For brevity we only elaborate on the
approach of partial linear modelling.

3.3 Extension: partially linear modelling

It is also possible to specify some known parametric functional forms for some
of the distributional parameters of interest. To be more specific, it could be
possible to model the location parametrically while modelling the scale and
index as unknown smooth functions. Let X1 and X2, respectively, be d1- and
d2-dimensional covariate vectors with d1 + d2 ≤ 2d. Note that this allows to
have common covariates in X1 and X2.

For the purpose of illustration we consider a multivariate covariate in the
parametric modelling of the location parameter and a single covariate X2

in non-parametric scale and index parameter functions. The non-parametric
components θr(X2) are approximated by Taylor expansion as defined by
(8) for r = 2, 3. The location parameter is parametrically modelled as
θ1(X1) = β10 + β11X11 + β12X12 + . . . + β1(d1−1)X1(d1−1) ≡ XT

1β1, where
XT

1 = (1, X11, . . . , X1(d1−1)), β1 = (β10, β11, . . . , β1(d1−1))
T is a vector of

regression coefficients that needs to be estimated.
Note that we can write an AFT type model for the transformed variable

Z = ln(T )

Z = XT

1β1 + exp{θ2(X2)}ε (14)
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where ε has a distribution defined in (3) with parameters µ(x) = 0, ϕ(x) =
1, α(x) = α(X2) and g(t) = t; a standard version of a two-piece asymmet-
ric distribution. As there are parametric and non-parametric functions at the
modelling stage, we call it semi-parametric or partially linear regression. It
allows to investigate non-linear covariate effects while retaining the nice inter-
pretability of the traditional linear regression on some covariates. It is useful
to alleviate the loss of precision due to the curse of dimensionality that arises
in fully non-parametric smoothing while at the same time reducing the bias
due to functional misspecification in a fully parametric model.

Lee [28] studied partially linear quantile regression in complete data
analysis. In the area of censored data, Chen and Khan [8] investigated semi-
parametric estimation in a partially linear regression model. Further, a recent
paper by Bravo [6] studied semi-parametric quantile regression with ran-
dom censoring in which the parametric and non-parametric components are
explicitly incorporated, and the estimation is done with a loss minimization
approach. Christou and Akritas [9] explored single index quantile regression
for censored data and proposed a non-iterative estimation algorithm for both
parametric and non-parametric components. The latter two papers and their
methods are discussed in Section 5.2.

Remark 1 It is clear that the distribution (3) reduces to a log-symmetric distribu-
tion when taking g(t) = ln(t) and the scale parameter function ϕ(x) ≡ exp(θ2(x))
is fixed constant and the index parameter function α(x) = 0.5 for all values of x
and consequently model (14) reduces to a classical AFT model in which the ran-
dom error term follows a log-symmetric distribution. In general, when both the scale
and index parameters are constants in model (14), the proposed method provides an
exciting opportunity to advance the classical AFT model with a rich family of TPA
distributions for the random error term.

The unknown parametric and non-parametric components in model (14)
are estimated by a profile likelihood approach. For the easy of illustration, the
procedure is explained for a (univariate) local linear estimator of the scale and
index parameter functions (i.e., p2 = p3 = 1, d2 = 1) and a d1-dimensional
parametric linear model for the location function:
S0: Get initial values for β1, θ2(·) and θ3(·) using parametric or fully non-

parametric censored regression. Let β̂
{0}
1 , θ̂

{0}
2 (·) and θ̂

{0}
3 (·) be the

estimates for β1, θ2(·) and θ3(·), respectively.
S1: Fix β1 at the initial value β̂

{0}
1 and estimate the non-parametric com-

ponents. For given x0, we estimate θ2(x0) and θ3(x0) and its first order
partial derivatives at x0 by a local linear smoothing approach. This can
be done using{

β̂
{1}
2 , β̂

{1}
3

}
= arg max

β2,β3

L{1}
n (β2,β3; β̂

{0}
1 , x0, h), (15)
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where β̂
{1}
2 =

(
β̂
{1}
20 , β̂

{1}
21

)T
, β̂

{1}
3 =

(
β̂
{1}
30 , β̂

{1}
31

)T
and

L{1}
n (β2,β3; β̂

{0}
1 , x0, h) is the local kernel weighted conditional log-

likelihood function of β2 and β3, similar to (9), replacing β1 by β̂
{0}
1 . The

estimators for ϕ(x0) and α(x0) are then respectively, ϕ̂{1}(x0) = exp(β̂
{1}
20 )

and α̂{1}(x0) =
exp(β̂

{1}
30 )

1 + exp(β̂
{1}
30 )

, as θ̂
{1}
r0 (x0) ≡ β̂

{1}
r0 , r = 2, 3.

S2: Estimate the parametric component β1 by fixing the non-parametric com-
ponents at their estimates obtained at S1. Maximize the profile likelihood
function for β1 substituting ϕ̂{1}(x2i) for ϕ(x2i) and α̂{1}(x2i) for α(x2i).

That is β̂1 = arg max
β1

L{2}
n

(
β1; ϕ̂

{1}(·), α̂{1}(·)
)
, where

L{2}
n

(
β1; ϕ̂

{1}(·), α̂{1}(·)
)

=

n∑
i=1

[
δi ln{fα̂{1}(x2i)(yi; g

−1(xT

1iβ1), ϕ̂
{1}(x2i), α̂

{1}(x2i))}

+(1− δi) ln{Sα̂{1}(x2i)(yi; g
−1(xT

1iβ1), ϕ̂
{1}(x2i), α̂

{1}(x2i))}
]
.

S3: Update the non-parametric components locally using (15) by substitut-

ing β̂1 for β̂
{0}
1 . Thus, the final estimators of the scale ϕ(x0) and index

α(x0) are then given as ϕ̂(x0) = exp(β̂20) and α̂(x0) =
exp(β̂30)

1 + exp(β̂30)
,

respectively.

Remark 2 In the above estimation algorithm we assumed that the unknown scale
and index are functions of the same covariate X2. In case when ϕ(·) and α(·) are
functions of different sets of covariates the proposed estimation procedures needs to
be modified.

One possible option can be to estimate the two unknown functions separately at
different stages. For example, one may split up S1 into two parts, say S1.1 and S1.2:
estimate only α(·) in S1.1 and then estimate ϕ(·) in S1.2 after substituting α̂{1} for

α(·) and β̂
{0}
1 for β1 before starting S2. Another option can be to use a multivariate

kernel function with a matrix of bandwidth parameters instead of univariate kernels
in S1 and S3. In this option we only need to modify the weighting function in the
proposed procedures (replacing Kh(·) with K̃H(·)).

4 Asymptotic properties

We briefly formulate the large sample properties (consistency and asymptotic
normality) of the local kernel weighted MLE in the univariate case (from
Section 3.1). Ewnetu et al. [13] investigated the asymptotic properties in
the case of unconditional survival time data, while Gijbels et al. [21] inves-
tigated the asymptotic properties of the local kernel weighted MLE in the
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complete data case. We exploit the large sample theoretical properties com-
bining the results of Ewnetu et al. [13] and Gijbels et al. [21]. The notations
and assumptions are deferred to the Supplementary material (see Section S2).

The first proposition is stating that the expected score function at the true
parameter is zero. Note that the score function differs from that in Gijbels et
al. [21], as we have a likelihood for censored data.

Proposition 1 Suppose that R1–R5 (in the Supplementary material) hold.
Then the expectation of the score function at the true parameter is zero:
EY,∆|X

{
ψr(Y,∆; θ1(x), θ2(x), θ3(x))

}
= 0, r = 1, 2, 3, where ψr(Y,∆; ·) is the score

function defined in S2.1 (in the Supplementary material).

The following theorem provides the consistency of the estimator.

Theorem 2 Suppose that the conditions of Proposition 1 on the conditional dis-
tributions of T and C hold. Assume that the smoothness and design conditions
(S1)–(S2) (in the Supplementary material) and the conditions for kernel function
and bandwidth (K1) and (K2) (in the Supplementary material) are satisfied. Let x
be a point in the interior of the support of fX . Then, as n → +∞, there exist
solutions β̂ =

{
β̂1, β̂2, β̂3

}
of the local kernel weighted conditional log-likelihood

equation ∂/∂βrv
{
Ln(β; x, h)

}
= 0, such that β̂rv is weakly consistent for estimating

βrv = θrv(x) for all r ∈ {1, 2, 3}; v = 0, 1, 2, . . . , pr.

The next theorem states the asymptotic normality of the estimator. Note
that the expression for Σx and Γx (in the Supplementary material) are similar
as in Gijbels et al. [21], however the local Fisher information (see the Supple-
mentary material) involved in their expression is now based on our local kernel
weighted conditional log-likelihood for censored data.

Theorem 3 Let all the conditions of Theorem 2 and (R6) (in the Supplementary
material) be satisfied. Then for a point x in the interior of supp(fX), as n→ ∞,(

Σ−1
x ΓxΣ

−1
x

)−1/2{√
nh

[
(β̂1 − θ1(x))Hp1 , (β̂2 − θ2(x))Hp2 , (β̂3 − θ3(x))Hp3

]T
−

(
Σ−1

x − hΣ−1
x Γ−1

x Σ−1
x

)
E[Wn(x)]

} D−→ Np1+p2+p3+3(0, Ip1+p2+p3+3),

where 0 is a null vector of dimension (p1 + p2 + p3 + 3) and Ip1+p2+p3+3, is the
identity matrix of dimension (p1 + p2 + p3 + 3) and the remaining notations are
provided in Section S2 (in the Supplementary material).

Corollary 1 Assume the conditions of Theorem 3 hold. If the function g−1
r (·) is

differentiable and (g−1
r )′(·) is continuous at ϑr(x), where ϑr(.) is the parameter

of interest. Then ϑ̂r(x) has the same limiting distribution as θ̂r(x) except that its
asymptotic bias is divided by (g−1

r )′(ϑr(x)) and asymptotic variance is divided by{
(g−1

r )′(ϑr(x))}2. This is especially useful to provide the asymptotic distribution of
the estimators of ϑ1(·) = η(·), ϑ2(·) = ϕ(·), and ϑ3(·) = α(·).
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5 Simulation study

We conduct an extensive simulation study with various scenarios to measure
the finite sample performance of our estimator. The performance of the esti-
mator depends on various aspects, including: the censoring rate, the sample
size, the link function used to generate the survival time, and the nature of
the unknown smooth parameter functions.

We split the simulation study into two parts. In the first part, we inves-
tigate the performance of the estimators for the unknown smooth functions
in a univariate covariate setting. In the second part multiple covariates are
incorporated and our estimator is compared with competitors when estimat-
ing the conditional quantile function. Even though the optimization is done
with the transformed parameter functions, the final results are presented for
the estimates of the originally defined parameter functions η(x), ϕ(x) and
α(x). All the computations are done using the statistical software R through
the minimization package nloptr (version 1.2.2.2). The R codes are available
at https://github.com/Ewnetu-github/tpalocal.git.

5.1 Part I: single covariate

We first investigate the performance of the local kernel weighted maximum
likelihood estimator in the univariate case.

5.1.1 Data generating mechanism

We consider two scenarios to generate the data:
� Scenario I: The survival time T | X = x ∼ Fα(x)(t; θ(x)) (given in (3))
with a log-link function g(t) = ln(t) and a standard Laplace distribution
for F0. Details on this conditional distribution and parameter estimation
in this setting are given in Section S1 of the Supplementary material.
The censoring time follows an exponential distribution C | X = x ∼

Expo(θcx). We consider two values for θc > 0, leading to 20% and 40%
of censoring respectively.

� Scenario II: This is the same as Scenario I, except for the link function
that is now a logit-link function g(t) = ln(et − 1).

We consider two sample sizes: n = 100 and 300. The covariate X has a trun-
cated normal distribution with mean 0 and standard deviation 2. We consider
two sets of unknown parameter functions (with x ∈ (0, 2)):

Model I: θ1(x) = x+ 2 exp(−16x2)

θ2(x) = sin(2x)− 3

θ3(x) = x2 − sin(x)− 2x

Model II: θ1(x) = x+ sin(2x) + 2 exp(−16x2)

θ2(x) = −x− 1.5

θ3(x) = sin(πx) + x2.
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The true location, scale and index parameter functions under these two models
are presented in Figure 1. In total we have 2× 2× 2× 2 = 16 data generating
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Fig. 1: True curves for the location (left), scale (middle) and index (right)
parameter functions under the two simulation models.

mechanisms in this part of the simulation study. We consider 500 Monte Carlo
simulations for each of the 16 settings.

5.1.2 Local kernel weighted estimator specifications

We use local linear smoothing for all unknown parameter functions (p1 = p2 =
p3 = 1) and an Epanechnikov kernel function given by K(u) = (3/4)

(
1−u2

)
I(|

u |≤ 1). In order to explore the sensitivity of the proposed method to the
bandwidth choice, we consider an equispaced grid of bandwidth values ranging
from 0.15 to 0.75 with interval lengths of 0.1. To start the optimization defined
in (10) the initial values for βr0’s (r = 1, 2, 3) are obtained from the fully
parametric maximum likelihood estimates and for βr1 we use zero as initial
value.

5.1.3 Performance measures

In order to measure the performance of the estimators under each scenario we
use the approximate integrated squared error (AISE) for θ̂r(x)’s and approx-

imate quantile residual loss (AQRL) for Q̂τ (T | x). The AISE is based on a
grid of m points (xj ’s; we take m = n in the analysis) in the domain of X and

defined by AISE = RX

m

∑m
j=1

(
θ̂r(xj) − θr(xj)

)2
, r = 1, 2, 3, where RX is the

range of the observed X-values and θ̂r(xj) is the estimator (based on (11)) of
the true θr(xj). The AQRL is defined as

AQRL =
RX

m

m∑
j=1

ρτ
(
Q̂τ (T | xj)−Qτ (T | xj)

)
, (16)
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Fig. 2: Scenario II. AISE values across seven bandwidth values for the three
estimates over 500 simulated samples of size n = 100 with 20% and 40%
censoring proportions; Model I (left column) and Model II (right column).

where ρτ (u) = u
(
τ − I(u < 0)

)
is the quantile loss function. The conditional

quantile is estimated for three different values of τ = 0.25, 0.5, 0.75: Q̂τ (T | xj)
(based on (12)).

5.1.4 Results

The results for Scenario II for n = 100 are presented here, while the figures
for Scenario II for n = 300, and the results for Scenario I can be found in the
Supplementary material. Boxplots of the AISE of the estimators over the 500
simulated samples of size n = 100 from Scenario II are depicted in Figure 2.
The red dot in each boxplot represents the average of AISE over these 500
simulated samples. Tables 1 and 2 present, for respectively Models I and II,
the median AISE values for Scenario II for both sample sizes.

It can be noted from Figure 2, Figure S1 in the Supplementary material,
and Tables 1 and 2 that the AISE decreases as the sample size increases while it
tends to increase with the censoring proportion for all estimates, as expected.
Nonetheless, the impact of censoring on the performance of the estimators is
very little, in particular for larger sample size. In terms of the bandwidth, we
observe that the performances of the three estimators are not so sensitive to the
bandwidth values, and that the sensitivity decreases as sample size increases.
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Table 1: Scenario II. Median AISE values for the estimators η̂(x), ϕ̂(x) and
α̂(x) for Model I, for sample sizes n = 100 and n = 300.

estimator bandwidth value h

sample size Pc 0.15 0.25 0.35 0.45 0.55 0.65 0.75

n = 100 η̂ 20% 0.027 0.021 0.017 0.018 0.020 0.024 0.031
40% 0.028 0.021 0.018 0.018 0.020 0.024 0.031

ϕ̂ 20% 0.004 0.003 0.003 0.003 0.003 0.003 0.003
40% 0.004 0.003 0.003 0.003 0.003 0.003 0.003

α̂ 20% 0.035 0.030 0.025 0.022 0.020 0.018 0.017
40% 0.037 0.030 0.027 0.023 0.020 0.019 0.018

n = 300 η̂ 20% 0.012 0.009 0.009 0.011 0.013 0.015 0.020
40% 0.012 0.010 0.009 0.011 0.013 0.015 0.020

ϕ̂ 20% 0.002 0.002 0.002 0.002 0.002 0.002 0.002
40% 0.002 0.002 0.002 0.002 0.002 0.002 0.002

α̂ 20% 0.020 0.017 0.016 0.016 0.013 0.012 0.013
40% 0.020 0.018 0.017 0.016 0.013 0.012 0.013

Table 2: Scenario II. Median AISE values for the estimators η̂(x), ϕ̂(x) and
α̂(x) for Model II, for sample sizes n = 100 and n = 300.

estimator bandwidth value h

sample size Pc 0.15 0.25 0.35 0.45 0.55 0.65 0.75

n = 100 η̂ 20% 0.041 0.032 0.032 0.039 0.042 0.046 0.050
40% 0.056 0.038 0.039 0.045 0.050 0.054 0.057

ϕ̂ 20% 0.006 0.005 0.004 0.004 0.003 0.003 0.003
40% 0.007 0.005 0.004 0.004 0.004 0.004 0.004

α̂ 20% 0.036 0.027 0.023 0.022 0.020 0.020 0.021
40% 0.037 0.029 0.026 0.025 0.024 0.023 0.023

n = 300 η̂ 20% 0.018 0.016 0.019 0.024 0.026 0.029 0.034
40% 0.021 0.018 0.022 0.025 0.028 0.031 0.038

ϕ̂ 20% 0.003 0.003 0.003 0.003 0.002 0.002 0.003
40% 0.004 0.003 0.003 0.003 0.003 0.003 0.003

α̂ 20% 0.018 0.015 0.014 0.014 0.014 0.016 0.018
40% 0.020 0.016 0.016 0.016 0.016 0.017 0.018

Comparing the two simulation models, Model I reveals a better per-
formance of η̂(x) and ϕ̂(x) compared to that of Model II whilst showing
approximately the same performance for α̂(x). This is owing to the fact that
the location function has a more complex shape (a peak and valley) in Model
II while only a valley in Model I.

The AQRL values under Scenario II are presented in Figure 3 for n = 100,
and for Models I and II. Table 3 lists the median AQRL values for Model
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Fig. 3: Scenario II. AQRL values across seven bandwidth values for three
quantiles over 500 simulated samples of size n = 100 with 20% and 40%
censoring proportions; Model I (a) and Model II (b).

I (a similar table for Model II can be found in the Supplementary material;
see Table S1). As can be seen from Figure 3a and Table 3, for Model I, the
lower order quantile (τ = 0.25) estimates show a better performance than
the higher order quantiles (τ = 0.5, 0.75). This is due to the fact that higher
order quantiles of the conditional distribution of the observed survival time
are affected by the right censoring. In Figure 3b, showing boxplots for Model
II, the lower order quantile estimate shows inferior performance compared to
the upper order quantiles. This might be due to the larger variability in the
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Table 3: Scenario II. Median AQRL values for the quantile estimator
Q̂τ (T | x), over a grid of x-values. Results for Model I, for three values of τ ,
two censoring proportions Pc, for the different bandwidth values. Sample sizes
n = 100 and n = 300.

bandwidth value h

sample size τ value Pc 0.15 0.25 0.35 0.45 0.55 0.65 0.75

n = 100 0.25 20% 0.030 0.027 0.026 0.028 0.031 0.034 0.039
40% 0.031 0.028 0.026 0.029 0.032 0.035 0.039

0.5 20% 0.041 0.037 0.037 0.041 0.046 0.051 0.056
40% 0.042 0.038 0.038 0.042 0.047 0.052 0.057

0.75 20% 0.066 0.061 0.066 0.078 0.092 0.104 0.113
40% 0.068 0.062 0.068 0.079 0.092 0.106 0.115

n = 300 0.25 20% 0.021 0.020 0.020 0.025 0.028 0.031 0.034
40% 0.022 0.020 0.021 0.025 0.029 0.031 0.035

0.5 20% 0.026 0.026 0.030 0.036 0.042 0.048 0.053
40% 0.027 0.026 0.030 0.036 0.043 0.049 0.053

0.75 20% 0.045 0.046 0.056 0.071 0.089 0.104 0.115
40% 0.045 0.047 0.057 0.072 0.090 0.106 0.116

data in the lower quantiles and the large amount of censored observations in
the lower quantiles (see the scatter plot in Figure 5b).

In order to illustrate the quality of the estimators, three representative
curves of the estimates together with the true curves are reported. These three
representative curves are selected from a list of 500 curves corresponding to
the 0.05th percentile (best estimated), 0.50th percentile (median) and 0.95th
percentile (worst estimated) of the AISE (AQRL for the quantiles) values.
The bandwidth yielding the smallest average AISE (AQRL) value is selected
among the list of all candidates for each of the estimates. Figure 4 depicts the
true and estimated parameter functions and Figure 5 presents a scatter plot
with the estimated quantile curves under Scenario II. The data in the scatter
plot are from the simulated sample corresponding to the 0.5th percentile of
AQRL values. The quality of the estimators observed from these figures is in
line with what we observed from the boxplots. The best, median, and worst
estimated curves are closer to the true curve for the 0.25th quantile compared
to the upper quantile, for Model I. The corresponding figures under Scenario
I are presented in Figures S8a and S8b for Model I and Model II, respectively.
The estimates under Scenario II are better than under Scenario I. This is
due to the link function used (g(t) = ln(et − 1), resp. g(t) = ln(t)). Indeed,
the link function has an impact on the asymptotic variance of the estimator
η̂(x) = g−1(θ̂1(x)), see Corollary 1.
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Fig. 4: Scenario II. True and estimated curves of η̂(x), ϕ̂(x) and ϕ̂(x) for
n = 300 and 20% censoring (first row) and 40% censoring (second row). Model
I (a) and Model II (b).
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Fig. 5: Scenario II. True and estimated curves of Q̂τ (x); n = 300 with
20% censoring (first row) and 40% censoring (second row). The scatter plot
represents the sample data selected according to the 0.50th AQRL percentile
(• represent the uncensored and × the censored cases).
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5.2 Part II: Multiple covariates

In this part, we compare our proposed estimator (TPA) with competitors in a
partially linear model setting. We consider model (14) with TPA Laplace error
distribution with a fixed index parameter. For comparison purpose we include
results on the following methods available in the literature: non-parametric
quantile regression (NP) of Gannoun et al. [18], semi-parametric quantile
regression (SPQR) of Bravo [6] and single-index quantile regression (SIQR)
studied by Christou and Akritas [9].

We are interested in the performance of the estimate of: (i) the parametric
component, more specifically β1 in (14); (ii) the non-parametric component
ϕ(x) = exp(θ2(x)); (iii) the conditional τth quantile function of Z = ln(T )
given X = x (Qτ (Z | x)).

5.2.1 Data generating mechanism

We consider sample size n = 300, 500 Monte Carlo simulations and 20%
censoring proportion in three different models.

� Model I - location and scale have no covariates in common:

Z = XT

1β1 + exp
(
sin(2πX2) − 1.5

)
ε, (17)

where X1 = (X11, X12)
T are independently generated from a standard

uniform distribution Unif(0, 1) and X2 ∼ Unif(0, 2), β1 = (β11, β12)
T =

(1, 2)T and θ2(x2) ≡ ln(ϕ(x2)) = sin(2πx2) − 1.5. The random error term
ε has a TPA Laplace distribution with parameters µ = 0, ϕ = 1, α = 0.25
and hence Qτ (ε) = F̃−1

α (τ ; µ = 0, ϕ = 1, α = 0.25). The τth quantile of
the TPA Laplace distribution with µ = 0, ϕ = 1 and index parameter α
is given by

F̃−1
α (τ) =


1

1− α
ln

(
τ

α

)
if τ < α

− 1

α
ln

(
1− τ

1− α

)
if τ > α.

The conditional τth quantile function for Z given X = (X11, X12, X2)
T is

thus given by Qτ (Z | X) = XT
1β1 + exp

(
sin(2πX2) − 1.5

)
F̃−1
α (τ).

We can rewrite the model in (17) as

Z = Qτ (Z | X) + exp
{
sin(2πX2)− 1.5

}
ε∗τ ,

where ε∗τ =
(
ε−F̃−1

α (τ)
)
with its τth quantile equals zero. This guarantees

that the assumption of SPQR of [6] (that the error has zero quantile with
order τ) is satisfied. The censoring variable C ∼ N(θc, 1), with θc such
that there is 20% censoring.

� Model II - same covariates are involved in location and scale:

Z = exp
(
XTβ1

)
+

(
sin(2πXTβ1) + 2

)
ε, (18)
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whereX = X1 from Model I. The parameter vector β1, the error ε and the
censoring distribution are the same as in Model I. This model is directly
taken from Christou and Akritas [9] except that the random error term
follows a TPA distribution here.

� Model III - Model II with conditional censoring distribution:
the conditional censoring distribution is C | X ∼ Expo(θcX) and X =
X12 ∼ Unif(0, 1).

5.2.2 Performance measures

We investigate the performance of the estimators on five different quantile
levels: τ = 0.1, 0.25, 0.50, 0.75 and 0.9. The finite sample performance of
the estimator of the regression coefficient vector β̂1 is measured using the
approximated bias and standard error (SE ). The performance of conditional
quantile estimator is assessed by the weighted AQRL (WAQRL) given by

WAQRL =
1

n

n∑
i=1

δi

1− Ĝ(Yi | ·)
ρτ

(
Q̂τ

{
Zi | xi

}
−Qτ (Zi | xi)

)
.

The motivation to use a weight in this performance measure is that all com-
petitors use 1 − Ĝ(Yi | ·) in their objective function to account for censoring
(where the Kaplan-Meier estimator is used). In Section S3 of the Supplemen-
tary material, we illustrate in a numerical example that using the weighted or
the unweighted version of the criterion does not alter conclusions.

5.2.3 Local kernel weighted estimator specifications

The local kernel weighted estimate of the τth order conditional quantile func-
tion in model (17) is Q̂τ (Z | X = x) = xT

1 β̂1 + exp
{
β̂20(x2)

}
F̃−1
α (τ), where

β̂1 = (β̂10, β̂11)
T and β̂20(x2) = θ̂20(x2) is the local kernel weighted estima-

tor of the non-parametric component θ2(x2). As mentioned earlier in Section
2, the αth quantile of any TPA family of distributions equals to the location
parameter itself so that F̃α(τ = α) = 0. Therefore, when α = τ the conditional

quantile estimates equals the parametric component xT
1 β̂1.

As the non-parametric component in model (18) involves two covariates,
we use a multivariate local linear kernel weighted estimator with a product
Epanechnikov kernel function, that is K(x1, x2) = Kh1

(x1) · Kh2
(x2) with

equal bandwidth parameter values h1 = h2 = h. Our local kernel weighted
estimator is based on the algorithm given in Section 3.3. At the initial stage
of the algorithm, we fit a generalized linear model for the location and scale
parameters of a power exponential distribution assuming Z ∼ PE

(
µ, σ, ν

)
[36].

For instance, for Model I we model: the location µ(X1) = β11X11 + β12X12,
the scale log(σ(X2)) = β20 + β21X2 and the shape ν is fixed at one.

The bandwidth parameter h is selected adaptively using 5-fold cross-
validation by minimizing the WAQRL values. First, we split up the data into



Springer Nature 2021 LATEX template

24 5.2 Part II: Multiple covariates

5 non overlapping groups with approximately equal size. We estimate the con-
ditional quantile Qτ (Z | x) in each group j = 1, 2, ..., 5 using all observations
but excluding those in the jth group. Then the performance of the conditional
quantile estimator is measured

WAQRLj(h) =
1

n

n∑
i∈S(−j)

δi

1− Ĝ(−j)(Yi | ·)
ρτ

(
Q̂(−j)

τ

{
Zi | xi

}
−Qτ (Zi | xi)

)
,

where S(−j) is the set of observations without the jth group and the superscript
(−j) illustrates the estimation is done with all observations except for the jth
part and h is the candidate bandwidth parameter. We repeat this procedure
for all j = 1, 2, ..., 5 and ten equally spaced grid values for h from 0.05 to 0.75
for Model I and from 0.15 to 0.75 for Models II and III. Finally, the bandwidth
value yielding the smallest AQRL value is selected among the ten candidates.

5.2.4 Competitors specifications

Christou and Akritas [9] provided us with the R code for calculation of their
estimator (including bandwidth selection) in the SIQRmodel. We implemented
ourself the estimator of Bravo [6] in the SPQR model, based on their majorize-
minimize algorithm. Estimation in the NP model is done via the rq function
in R package quantreg (version 5.75), by forming a new weight defined by

δi

1− Ĝ(Yi | ·)
K̃h(xi − x0), where Ĝ(Yi | ·) is the estimate of G(Yi | ·). Herein

K̃h is a multivariate kernel (a product kernel here) with the same bandwidth
h in each dimension. We use a Kaplan-Meier estimator for the (unconditional)
censoring distribution in Models I and II. In the situation of a conditional
censoring distribution (Model III), we estimate G(· | x) using the local Kaplan-
Meier estimator as defined by expression (2.7) in [9].

5.2.5 Results

Due to an identifiability issue in the SIQR model, it is commonly assumed to
impose that ∥β1∥ = 1 or that β11=1 (see e.g. [9]). As a result, we have fixed
β11 = 1 and only estimate β12 for the parametric component. Furthermore,
there are no common covariates in parametric and non-parametric components
in Model I, therefore both components for the NP estimator are estimated
separately via non-parametric censored regression.

Table 4 presents the approximated bias and SE for β̂12, and the average
WAQRL over the 500 simulation runs, for five different quantiles. From this
table, we observe that the bias as well as the SE values for local kernel weighted
estimator are approximately equal across the different quantile levels. This is
due to the fact that β1 is not specific to τ under the TPA method. TPA and
SPQR provide quite similar SE for β̂12, while the latter produces some bias
in all simulation models. On the other hand, the variability of β̂12 increases
with the order of quantile for the SIQR method. In general, we observe that
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Table 4: Models I, II and III: Approximated bias and standard errors (SE)

for β̂12, and average WAQRL values (av.WAQRL).
Criteria Methods τ = 0.1 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

Model I

Bias
TPA 0.008 0.017 0.008 0.007 0.007
SPQR −0.054 −0.050 −0.044 −0.020 0.007
SIQR 0.255 0.122 0.235 0.342 0.782

SE
TPA 0.087 0.088 0.086 0.087 0.087
SPQR 0.092 0.092 0.084 0.085 0.089
SIQR 1.061 0.652 0.838 1.584 4.313

av.WAQRL
TPA 0.125 0.018 0.158 0.434 0.800
SPQR 0.310 0.170 0.163 0.465 1.147
SIQR 0.108 0.052 0.156 0.403 0.752
NP 0.655 0.475 0.261 0.266 0.538

Model II

Bias
TPA 0.001 0.010 0.016 0.027 0.031
SPQR −0.077 −0.024 0.019 0.076 0.116
SIQR 0.413 0.105 0.154 0.424 1.883

SE
TPA 0.121 0.112 0.116 0.127 0.135
SPQR 0.137 0.115 0.114 0.133 0.152
SIQR 1.699 0.572 1.062 1.803 5.413

av.WAQRL

TPA 0.436 0.172 0.472 1.201 2.252
SPQR 1.124 0.162 1.054 4.394 10.620
SIQR 0.617 0.356 0.589 1.351 2.485
NP 0.615 0.427 0.699 1.563 2.644

Model III

Bias
TPA 0.009 0.014 0.027 0.040 0.041
SPQR −0.124 −0.056 −0.001 0.052 0.091
SIQR 0.581 0.138 0.140 0.489 0.916

SE
TPA 0.128 0.118 0.121 0.135 0.142
SPQR 0.163 0.127 0.118 0.139 0.159
SIQR 2.524 0.721 0.850 2.363 3.238

av.WAQRL

TPA 0.459 0.459 0.489 1.195 2.234
SPQR 0.975 0.975 1.125 4.524 10.805
SIQR 0.751 0.751 0.716 1.389 2.728
NP 0.702 0.702 0.728 1.611 2.807

the SIQR method induces important bias and SE for the estimates of the
parametric component in all simulation settings.

When comparing the methods based on the performance of the estimator
of the conditional quantiles, it is seen from Table 4 that TPA and SIQR have
a comparable performance under Model I, while the former outperforms the
latter in the other two simulation models. In contrast to the performance of
the parametric component estimates, the SPQR method is revealing the worst
performance (large av.WAQRL value) in all simulation settings except when

τ = 0.25. An explanation for this exception is that F̃α=0.25(τ = 0.25) = 0,

leads to Q̂τ (T | x) = xT β̂1, and hence the SPQR performs similarly at this
particular quantile.

Overall, the proposed TPA method outperforms the three competitors,
especially w.r.t. the estimation of the conditional quantile. Furthermore, SPQR
outperforms SIQR in estimating the parametric component, however, the
reverse holds when estimating the quantile function. Therefore, SPQR and
SIQR are less accurate to estimate the non-parametric and parametric com-
ponents, respectively. Due to the presence of conditional censoring the AQRL
value is slightly higher for all methods under Model III.
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6 Real data analysis

We apply our methodology on two data examples: the Small Cell Lung Cancer
(SCLC) data used by Ying et al. [41] and the Mayo Clinic Primary Biliary
Cirrhosis (PBC) data that has been analysed frequently (e.g. in Fleming and
Harrington [17], Jin et al. [23], Rubio and Hong [34]). In order to construct
confidence intervals for the parameters of interest, one can use the asymptotic
normality result of our estimator. The asymptotic variance, however depends
on the unknown distribution of the covariate and the censoring variable which
makes it less useful in practice as it therefore depends on the performance of
estimators of these distributions. Therefore, we construct confidence intervals
and calculate standard errors based on bootstrap resampling. We generate B =
1000 bootstrap samples in the single covariate analysis and B = 500 samples in
the multiple covariate setting. Three different members of the TPA family are
used in the modelling: Laplace, logistic and normal. We compare the methods
based on their predictive ability of the quantile function via AQRL (where in
(16) Qτ (T | xj) is replaced by Yj and the grid points are the observations).

6.1 Example 1: SCLC data

In this clinical study, there were 121 patients with small cell lung cancer ran-
domly assigned to two treatment groups (arm A and arm B), with 62 patients
assigned to arm A and 59 patients to arm B. We refer the readers to Ying
et al. [41] for a more detailed description of the clinical design that was con-
ducted to evaluate the two treatment regimes. The data is available in the R
package emplik. The survival times are measured in days administering the
two treatments together with patient’s entry age. At the time of analysis, each
death time was either observed or administratively censored. Thus, it is reason-
able to assume that the censoring variable does not depend on the covariates.
We denote the base 10 logarithm of the patient’s death time by Z, of whom
19% were censored observations. We denote the treatment indicator and the
patient’s entry age by X1 (X1 = 1 if a patient is in group B and 0 otherwise)
and X2, respectively.

As a preliminary analysis we fit a non-parametric median censored regres-
sion for the survival time on patients age (univariate analysis). The histogram
of the residuals obtained from this preliminary analysis is displayed in Figure 6,
together with the scatter plot of the data. From this figure, it can be noted
that the distribution of the residuals is not far from symmetry. Therefore, we
expect the index parameter to be close to 0.5 and we estimate the treatment
effect on the survival time, adjusting for the patient’s age in the scale parame-
ter of the distribution using the following semi-parametric quantile regression
model

Z = β10 + β11X1 + exp
{
θ2(X2)

}
· ε,

Qτ (Z | X) = β10 + β11X1 + exp
{
θ2(X2)

}
· F̃−1

α (τ), (19)
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Fig. 6: SCLC data: scatter plot (left) the histogram of residuals (right)
obtained by fitting a nonparametric median censored regression.

where F̃−1
α (τ) denotes the quantile function for the TPA distributions with

parameters µ = ln(η) = 0, ϕ = 1 and index α. The unknown function θ2(·) is
estimated local linearly.

Based on the local kernel weighted maximum likelihood estimator, we find
that α̂ = 0.45, 0.48, 0.51 for the Laplace, logistic and normal TPA distribu-
tions, respectively. The Epanechnikov kernel is used as a weighting function for
the non-parametric estimation. The bandwidth parameter h is selected via 5-
fold cross-validation by minimizing the AQRL for the conditional τth quantile
function of Z.

Table 6 provides the estimated regression coefficients with their bootstrap
standard errors and 95% bootstrap confidence intervals for the parametric
components. Estimates based on the TPA normal model have smaller boot-
strap standard errors and narrower bootstrap confidence intervals compared
to the other two distributions. This is in line with the AQRL values pre-
sented in Table 5 (first 3 columns), in particular for the first two quantiles.
The result for the 0.5th quantile is consistent with the median regression
model studied by Ying et al. [41]. For example, in Ying et al. [41] the pre-
dicted median survival time for a patient with age 62-year-old in treatment
Arm A was 603 days. This predicted value coincides with our estimate of
the 0.5th conditional quantile function. For the TPA Laplace distribution
Q̂τ=0.5(Z | X1 = 0, X2 = 62) = β̂10 + exp(β̂20) · F̃−1

α̂ (τ = 0.5) = 2.78, chang-
ing to the original time scale it becomes 102.78 ≊ 603 days. For treatment
Arm B, the predicted median survival time is Q̂τ=0.5(Z | X1 = 1, X2 = 62) =

β̂10 + β̂11 + exp(β̂20) · F̃−1
α̂ (τ = 0.5) = 2.6 ≈ 398 days, indicating that patients

treated in Arm A are more beneficial than those in Arm B.
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Table 5: SCLC: approximate quantile residual loss (AQRL) for three different
quantiles estimate

.

Unconditional α Conditional α(·)
Models τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

TPA Laplace 0.080 0.092 0.088 0.090 0.114 0.092
TPA logistic 0.074 0.093 0.093 0.094 0.118 0.092
TPA normal 0.075 0.093 0.090 0.100 0.123 0.093

Table 6: SCLC: estimates, bootstrap standard error (in parenthesis) and
confidence intervals for the parametric regression coefficients.

β̂10 β̂11
Model Estimate (se) 95%CI Estimate (se) 95%CI
TPA Laplace 2.742 (0.045) [2.690, 2.874] −0.171 (0.059) [−0.317, − 0.085]
TPA logistic 2.710 (0.030) [2.667, 2.784] −0.151 (0.044) [−0.228, − 0.052]
TPA normal 2.723 (0.029) [2.664, 2.773] −0.136 (0.043) [−0.213, − 0.050]

We now consider model (19), where also the index parameter is a function
of X2, and therefore estimating both the scale and index functions non-
parametrically. The estimated index function α̂(·) is depicted in Figure S11
(in the Supplementary material) for the two treatment arms separately. From
that figure we note that the estimated index function is below 0.5 for Arm A,
whereas for Arm B, the index function increases from about 0.4 to 0.8 with
age. This implies that there is a difference in the skewness of the distribution
for different age categories and treatment arms as well. For Arm B in the lower
age groups, the distribution of patient’s survival time is right skewed while in
the larger age categories it is left skewed. Further, the differences between the
estimates for the three TPA models, are quite different in the case of Arm A
(especially in the lower age categories), whereas for Arm B the three estimated
curves are almost parallel. Table 5 summarizes the AQRL (unconditional α
and conditional α(·)) in the three fitted models. The AQRL values obtained
with a conditional α(·) are larger than that of the unconditional α in all fitted
models. Besides that the modelling with a conditional index parameter reveals
different skewing behaviour for the two treatment arms, it is not showing an
improved performance in terms of estimating the conditional quantiles.

In Figure 7 the estimated quantile curves for the TPA Laplace distribution
versus patient’s age are presented. From that figure we conclude that the
survival time in treatment Arm A is better than in Arm B across the entire
age range and the three different percentiles of the survival time.

These data have also been analysed with an AFT model with least absolute
deviation estimation [22] and a heteroscedastic AFT model Zhou et al. [43].
Despite the fact that the effect of entry age was not significant in previous
studies, a closer inspection of this plot also shows a non-linear relationship
with patient’s age in the 0.25th and 0.75th quantiles but constant effects on
the 0.5th quantile (median).
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Fig. 7: SCLC: estimated quantile curves fitted by TPA Laplace model. The
solid line for the 0.25th quantile, dashed for the 0.5th quantile, and dotted
line for 0.75th quantile; grey line for the treatment Arm A and red line for
treatment Arm B (• represent the uncensored and × the censored cases).

6.2 Example 2: PBC data

The PBC data can be found in Appendix D of Fleming and Harrington [17].
The PBC data set includes information about the survival time (in days)
together with the status of the patient at the end of the study (0/1/2 for
censored, transplant, dead) and prognostic factors for 418 patients. The first
312 cases in the data set participated in the randomized trial and the remaining
106 cases did not participate in the clinical trial, but their basic measurements
have been recorded and followed for survival. Transplanted cases are considered
as censored, and hence there were about 61.5% of censored observations.

6.2.1 Single covariate analysis

We first consider a single covariate analysis for all unknown functions
(η(·), ϕ(·), α(·)) and estimate them local linearly. Fleming and Harrington [17]
showed that serum bilirubin (in mg/dl) is the strongest predictor of survival
probability of patients. Therefore, we perform a univariate analysis for the 312
cases that participated in the randomized trial. Apart from the conditional
quantile function, we also estimate the conditional survival function given two
values of serum bilirubin (X = 0.5, and X = 2.35). The point and interval
estimates (Table 7) for the conditional survival function at times t = 1 and
t = 5 are calculated. Li and Datta [29] studied the influence of serum bilirubin
on the survival probabilities using a non-parametric regression approach for
these specific values of bilirubin and at t = 1 and t = 5.
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Table 7: PBC (univariate): estimated conditional survival function together
with a bootstrap 90% confidence interval for two time points (in years) and at
two serum bilirubin values (in mg/dl).

Model t = 1 t = 5

X = 0.5 X = 2.35 X = 0.5 X = 2.35
TPA Laplace 0.997 [0.992, 0.999] 0.941 [0.942, 0.976] 0.946 [0.915, 0.968] 0.668 [0.604, 0.746]
TPA logistic 0.998 [0.989, 0.999] 0.968 [0.947, 0.982] 0.944 [0.907, 0.969] 0.663 [0.602, 0.715]
TPA normal 0.998 [0.996, 0.999] 0.960 [0.938, 0.981] 0.941 [0.904, 0.967] 0.637 [0.592, 0.694]

In the TPA Laplace model the 90% bootstrap confidence interval for the
5-year survival probability of a patient with serum bilirubin of 0.5 is at least
0.915 and can it be as high as 0.968. In other words, this interval indicates
that the proportion of patients in the population whose lifetimes would exceed
5-year given a serum bilirubin 0.5 can be found in between 0.915 and 0.968.
This result also coincides with that of Li and Datta [29].
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Fig. 8: PBC (univariate): 90% pointwise bootstrap confidence intervals for the
conditional survival function at two values of serum bilirubin (X = 0.5 and
X = 2.35) fitted by three TPA distributions: Laplace (left), logistic (middle)
and normal (right).

Figure 8 visualizes the 90% pointwise bootstrap confidence intervals for the
conditional survival function in the first 5 years for the two bilirubin levels. The
survival probability of a patient with serum bilirubin value of 0.5 is noticeably
larger than that with serum bilirubin value 2.35 across all time points. The
difference between the two curves increases with the survival time.

Table 8: PBC (univariate): average AQRL values over 1000 bootstrap samples
for eight different quantiles.

τ

Models 0.025 0.05 0.075 0.10 0.25 0.50 0.75 0.90
TPA Laplace 0.269 0.532 0.788 1.028 1.840 1.451 0.723 0.289
TPA logistic 0.260 0.498 0.732 0.964 1.864 1.449 0.723 0.289
TPA normal 0.272 0.508 0.747 0.984 1.858 1.446 0.723 0.289
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In order to assess the performance of the fitted models we compute the
AQRL values across eight different quantiles, summarized in Table 8. As
most of the uncensored observations are found in the lower quantiles of the
distribution we measure the performance with three very small values of
τ = 0.025, 0.05, 0.075, and further τ = 0.1, 0.25, 0.50, 0.75, 0.90. All the three
models result in a comparable performance for all quantile orders. Figure 9
depicts the 90% pointwise bootstrap confidence intervals for the conditional
quantile function for some quantile levels. It can be noted that the estimated
curve drops very quickly as the quantile level increases. This indicates that the
impact of changes in the serum bilirubin on the upper quantiles is stronger than
for the lower quantiles of the conditional distribution. This concurs with the
estimated survival curves depicted in Figure 8, where the differences between
the two curves increase as time goes by.
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Fig. 9: PBC (univariate): 90% pointwise bootstrap confidence intervals for
the conditional quantile function fitted by TPA Laplace model (• represent
the uncensored and × the censored cases).

6.2.2 Multiple covariate analysis

The PBC data is also studied by Jin et al. [23], where rank based inference
for the semi-parametric AFT model is proposed, and by Rubio and Hong
[34], who fitted an AFT model taking two-piece errors with two constant
scale parameters. Both authors analysed the data with five covariates: age (in
years), logarithm of the serum albumin (log(albumin) in mg/dl), logarithm
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of the serum bilirubin (log(bilirubin) in mg/dl), edema, and logarithm of the
prothrombin time (log(protime) in seconds).

We consider the same set of covariates in this multivariable part, specifically
with the aim of illustrating the proposed method in Section 3.3. We consider all
covariates in the parametric part while only the continuous covariates (that is
excluding edema) in the non-parametric components. All the five covariates are
thus involved in modelling the location of the distribution while only the four
continuous covariates are used to estimate the scale and index parameters in a
multivariate local linear kernel weighted smoothing approach. As all covariates
have different units of measurement, we use the standardized version of the
covariates in this part of the analysis.

LetX1 denote the 6-dimensional vector containing one and the set of all the
five covariates included in the parametric component andX2 the 4-dimensional
vector denoting those covariates included in the two non-parametric compo-
nents. We consider the following semi-parametric quantile regression model for
T using (4) with g(t) = ln(t) and g−1 = exp(t) :

Qτ (T | X) = exp
(
XT

1β1 + ϕ(X2)·Cα(X2)(τ)
)
, (20)

where β1 = (β10, β11, . . . , β15)
T . The scale ϕ(·) and index α(·) are unknown

smooth functions and need to be estimated using a multivariate local linear
kernel weighted approach. We use a product kernel function with an equal
bandwidth parameter for all components. We compare our multivariate local
kernel weighted maximum likelihood estimator with an MLE in an AFT model
with log-normal error, based on their AQRL for eight different quantiles, τ=
0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 0.9.

Figure 10 depicts the estimates for the non-parametric components against
each standardized covariate together with a LOESS smoothed curve for the
TPA normal model. This provides us with information on the relation between
each covariate and the scale and index parameters. From this figure, we con-
clude that log(protime) has a the strongest effect on both the scale and index
parameters, in contrast to the other covariates. Therefore, we decide to change
model (20), to a model where only log(protime) is used to model the unknown
scale and index parameters. As such the non-parametric components are mod-
elled with a single covariate. No modification are made on the parametric
component:

Qτ (T | X) = exp
(
XT

1β1 + ϕ(log(protime))·Cα(log(protime)(τ)
)
. (21)

Boxplots of the AQRL values for our multivariate local linear kernel
weighed MLE and the MLE in the AFT model, based on 500 bootstrap
samples, for models (20) and (21) are summarized in Figures 11 and 12,
respectively. The estimators based on Model (20) result in larger AQRL values
compared to Model (21). TPA Laplace and logistic distributions result in a
better performance in the upper three quantiles. From Figure 12 it is clear that
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Fig. 10: PBC data (multivariate): scatter plots of local estimates from TPA
normal model against each continuous covariate together with simple loess
smoothed curve (red line).
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Fig. 11: PBC (multivariable): AQRL from 500 bootstrap samples for model
(20).

0.2

0.4

0.6

0.025 0.05 0.075 0.1 0.25 0.5 0.75 0.9
τ

R
es

id
ua

l l
os

s

Laplace Logistic Normal AFT

Fig. 12: PBC (multivariable): AQRL value from 500 bootstrap samples for
model (21).

TPA normal and AFT distribution lead to a similar performance in the lower
three quantiles. However, the former shows better predictive performance than
the latter in the upper five quantiles. From the two partially linear models,
the one with only log(protime) in the scale and index function (21) provides
the best results according to the AQRL.
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The estimated regression coefficients with their bootstrapped standard
errors in model (21) are summarized in Table 9. The estimated coefficients for
the five covariates in the TPA normal and the AFT models are fairly similar.
These are furthermore similar to those reported in Ding [12].

Table 9: PBC (multivariable): estimates and associated bootstrap standard
errors (in parenthesis) for model (21).

Estimates TPA Laplace TPA logistic TPA normal AFT
intercept 7.560 (2.007) 7.332 (1.366) 7.622 (1.388) 7.836 (1.551)
age −0.030 (0.006) −0.027 (0.005) −0.026 (0.005) −0.026 (0.005)
log(albumin) 1.348 (0.573) 1.494 (0.452) 1.501 (0.500) 1.533 (0.499)
log(bilirubin) −0.568 (0.071) −0.569 (0.054) −0.581 (0.056) −0.593 (0.055)
edema −0.669 (0.353) −0.795 (0.235) −0.884 (0.241) −0.898 (0.225)
log(protime) −2.177 (0.830) −2.209 (0.518) −2.342 (0.498) −2.428 (0.569)

7 Further discussion and conclusion

We study conditional quantile curve estimates in the context of a large class
of two-piece asymmetric distributions based on right censored data. The main
features of the large family of two-piece asymmetric distributions are: the αth
quantile of the survival distribution coincides with its location parameter; and
the family includes any symmetric density with mean zero and variance one.
A link function ensures the flexibility to use any unimodal density as a basis,
including densities with support the whole real line. In the regression setting
the three parameters (location, scale and index) of a member of the family
may depend on covariates in a non-parametric way.

The unknown but smooth parameter functions are estimated by maximiz-
ing a weighted local polynomial likelihood function, and estimation of the
τth quantile curve is straightforwardly obtained by substituting the estimated
parameter functions. In case some of the functions (location, scale and index)
are modelled parametrically and the others non-parametrically, a two stages
estimation procedure is proposed, via a profile likelihood approach.

We establish the large sample properties of the estimators for an entire
class of conditional TPA distributions. The relevance and practical use of the
proposed method is demonstrated on real data applications. Although we focus
on right random censorship in this paper, the methodology can be extended
to other types of censoring, such as left and interval censoring.

Among the interesting research issues to tackle in further research are the
development of methods for data-driven bandwidth selection. Hereby one can
think of a global bandwidth h but also of a variable bandwidth, since at
boundary regions it might be better to use a somewhat larger bandwidth.

In this paper we worked under the standard assumptions made in survival
analysis, among which that of non-informative censoring, and the conditional
independence between survival and censoring time. It would be particularly
interesting to consider settings in which the parameter functions might be
influenced by the censoring mechanism.
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Supplementary information. We provide the following additional mate-
rial in the Supplementary material:

� Section S1 includes the conditional TPA Laplace distribution with its
parameter estimation.

� Essential notations and conditions for the asymptotic properties are
provided in Section S2.

� Section S3 summarizes the simulation result for Scenario I, presents the
other figures and tables for Scenario II, and provides a small study
concerning the weighted and unweighted AQRL.

� Some additional results for the SCLC data example are reported in
Section S4.
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S1 CONDITIONAL TPA LAPLACE DISTRIBUTION 1

S1 Conditional TPA Laplace distribution

Consider a standard Laplace density f0(s) =
1
2e

−|s| together with the corre-

sponding survival function S0(s) = 1
2 − 1

2 sgn(s)
(
1 − e−|s|), and the quantile

function F−1
0 (s) = −sgn(τ− 1

2 ) ln
(
1− 2 | τ− 1

2 |
)
. Then the conditional TPA

Laplace density for the survival time T given a single covariate X = x can be
obtained from (3) and written as

fT |X(t; θ(x)) =
α(x)(1− α(x))g′(t)

ϕ(x)
exp

(
− 1

ϕ(x)
ρα(x)

{
g(t)− g(η(x))

})
and the corresponding conditional survival function is

ST |X(t; θ(x)) =
(
I{t ≥ η(x)} − α(x)

)
exp

(
− 1

ϕ(x)
ρα(x)

{
g(t)− g(η(x))

})
+ I{t < η(x)},

where ρα(x)(u) is the check (loss) function defined as ρα(x)(u) = u
(
α(x)−I{u <

0}
)
for 0 < α(x) < 1 and I(·) is the indicator function. This loss function

assigns weight 1− α(x) and α(x) to t < η(x) and t ≥ η(x), respectively.

S1.1 Single covariate

Considering these two functions together with the expression of (8) and
the data (xi, yi, δi), the contribution of each uncensored datum in the local
likelihood function is then

Lu(β; yi, xi, x0) = ln
(
α(xi){1− α(xi)}

)
+ ln

{
g′(yi)

}
− xT

i,p2
β2 − ρα(xi)

(
g(yi)− g−1

(
xT
i,p1

β1

)
exp

(
xT
i,p2

β2

) )
and for the censored case will be given as

Lc(β; yi, xi, x0) = ωi ln

(
1− α(xi) exp

{
− ρα(xi)

(g(yi)− g−1
(
xT
i,p1

β1

)
exp

(
xT
i,p2

β2

) )})
+ (1− ωi)

{
ln
(
1− α(xi)

)
− ρα(xi)

(
g(yi)− g−1

(
xT
i,p1

β1

)
exp

(
xT
i,p2

β2

) )}
,

where α(xi) =
exp

(
xT
i,p3

β3

)
1 + exp(xT

i,p3
β3)

and ωi = I
{
yi < g−1(xT

i,p1
β1)

}
. Combining

these two equations with the localizing weighted function, the local kernel
weighted conditional log-likelihood sample is
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2 S1.2 Partially linear modelling

Ln(β; x0, h)

=

n∑
i=1

δi

(
ln
(
α(xi){1− α(xi)}

)
+ ln

{
g′(yi)

}
− xT

i,p2
β2

−ρα(xi)

(g(yi)− g−1
(
xT
i,p1

β1

)
exp

(
xT
i,p2

β2

) ))
Kh(xi − x)

+

n∑
i=1

(1− δi)

(
ωi ln

[
1− α(xi) exp

{
− ρα(xi)

(g(yi)− g−1
(
xT
i,p1

β1

)
exp

(
xT
i,p2

β2

) )}]
+(1− ωi)

{
ln
(
1− α(xi)

)
− ρα(xi)

(g(yi)− g−1
(
xT
i,p1

β1

)
exp

(
xT
i,p2

β2

) )})
Kh(xi − x0).

(S1.1)

As a result, the maximum likelihood estimators for the unknown parameter
functions at the local point x0, β̂1, β̂2 and β̂3 are the maximizer of (S1.1).
Accordingly, the local kernel weighted estimator of the conditional quantile
function for the survival time T with order τ is then given by

Q̂τ(T | X = x0) = g−1

{
g
(
η̂(x0)

)
+ ϕ̂(x0) · Cα̂(x0)(τ)

}
,

where η̂(x0) = g−1(β̂10), ϕ̂(x0) = exp(β̂20), α̂(x0) =
exp

(
β̂30

)
1 + exp

(
β̂30

) and

Cα̂(x0)(τ) =
1

1− α̂(x0)
ln

(
τ

α̂(x0)

)
I(τ < α̂(x0))

− 1

α̂(x0)
ln

(
1− τ

1− α̂(x0)

)
I(τ ≥ α̂(x0)).

Consequently, by employing (6) the local estimator of conditional survival
function for the lifetime T at a local point x0 is given by

ŜT |X(t; θ̂(x0))

=

(
I{t ≥ η̂(x0)} − α̂(x0)

)
exp

((
I{t < η̂(x0)} − α̂(x0)

){g(t)− g
(
η̂(x0)

)
ϕ̂(x0)

})
+ I{t < η̂(x0)}.

S1.2 Partially linear modelling

We now formulate the Laplace-based log-likelihood functions in the estimation
algorithm for the partially linear model, see Section 3.3 of the main paper:

L{1}
n (β2,β3; β̂

{0}
1 , x0, h)
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=

n∑
i=1

δi

{
ln
(
α(x2i)(1− α(x2i))

)
+ ln

{
g′(yi)

}
− xT

2i,1β2

− ρα(x2i)

(
g(yi)− g−1(xT

1iβ̂
{0}
1 )

exp
(
xT
2i,1β2

) )}
Kh(x2i − x0)

+

n∑
i=1

(1− δi)

{
ln

[
1− α(x2i) exp

{
− ρα(x2i)

(
g(yi)− g−1(xT

1iβ̂
{0}
1 )

exp
(
xT
2i,1β2

) )}]
×I

(
yi < g−1(xT

1iβ̂
{0}
1 )

)
+

{
ln
(
1− α(x2i)

)
− ρα(x2i)

(
g(yi)− g−1(xT

1iβ̂
{0}
1 )

exp
(
xT
2i,1β2

) )}
I
(
yi > g−1(xT

1iβ̂
{0}
1 )

)}
Kh(x2i − x0),

where α(x2i) is approximated by xT
2i,1β3 as defined in (8) with x2i,1 = (1, (x2i−

x0))
T and x1i = (x11i, . . . , x1d1i)

T ; i = 1, 2, . . . , n. Similarly,

L{2}
n

(
β1; ϕ̂

{1}(·), α̂{1}(·)
)

=

n∑
i=1

δi

{
ln
(
α̂{1}(x2i)(1− α̂{1}(x2i))

)
+ ln{g′(yi)} − ln{ϕ̂{1}(x2i)}

− ρα̂{1}(x2i)

(g(yi)− g−1
(
xT
1iβ1

)
ϕ̂{1}(x2i)

)}
+

n∑
i=1

(1− δi)

{
ln

[
1− α̂{1}(x2i) exp

{
− ρα̂{1}(x2i)

(g(yi)− g−1
(
xT
1iβ1

)
ϕ̂{1}(x2i)

)}]
×I

(
yi < g−1(xT

1iβ1)
)

+

(
ln
(
1− α̂{1}(x2i)

)
− ρα̂{1}(x2i)

(g(yi)− g−1
(
xT
1iβ1

)
ϕ̂{1}(x2i)

))

×I
(
yi > g−1(xT

1iβ1)
)}
.

S2 Asymptotic properties

S2.1 Notations and conditions

Recall that the parameter vector θ(x) =
(
η(x), ϕ(x), α(x)

)T
belongs to

the parameter space Θ = (0,+∞) × (0,+∞) × (0, 1). Further, the vector
θ̃(x) =

(
θ1(x), θ2(x), θ3(x)

)T
belongs to the parameter space R3. It is worth

mentioning that the form of fα(x)(t; θ(x)) is supposed to be known, however,
the parameters θr(x), r = 1, 2, 3 are unspecified real-valued functions of the
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covariate X = x.

Although the asymptotic properties of the local MLE with multi-parameter
likelihood models for complete data are provided in the literature, see for
example, in Aerts & Claeskens [1] (for standard likelihood) and Gijbels et al. [2]
(for non-standard likelihood), these results should be modified to the censoring
and some additional assumptions are required that deal with the censoring.

Denote conditional log-likelihood function given the data Y = y,∆ = δ,
and X = x by

ℓ(u1, u2, u3; y, δ, x) = δ ln fα(x)(y; u1, u2, u3) + (1− δ) lnSα(x)(y; u1, u2, u3),

where δ = 1 for uncensored and 0 for censored data. We further denote the
partial derivative of ℓ(u1, u2, u3; y, δ, x), for r, s, w ∈ {1, 2, 3} by

ψr(v1(x), v2(x), v3(x); y, δ)

=
∂

∂ur
ℓ(u1, u2, u3; y, δ, x) |(u1,u2,u3)=(v1(x),v2(x),v3(x))

ψrs(v1(x), v2(x), v3(x); y, δ)

=
∂2

∂ur∂us
ℓ(u1, u2, u3; y, δ, x) |(u1,u2,u3)=(v1(x),v2(x),v3(x))

ψrsw(v1(x), v2(x), v3(x); y, δ)

=
∂3

∂ur∂us∂uw
ℓ(u1, u2, u3; y, δ, x) |(u1,u2,u3)=(v1(x),v2(x),v3(x)),

where v1 = g−1(u1), v2 = exp(u2), v3 =
exp(u2)

1 + exp(u2)
. Then applying the

chain rule to differentiate the log-likelihood function with respect to u, for
r, s ∈ {1, 2, 3}, results in

∂

∂ur
ℓ(u1, u2, u3; y, δ, x) =

∂

∂vr
ℓ(v1, v2, v3; y, δ, x)

∂vr
∂ur

∂2

∂urus
ℓ(u1, u2, u3; y, δ, x) =

∂2

∂vrvs
ℓ(v1, v2, v3; y, δ, x)

∂vr
∂ur

∂vs
∂us

,

where

∂v1
∂u1

= (g−1)′(u1),
∂v2
∂u2

= v2, and
∂v3
∂u3

=
v3

1 + exp(u3)
.

Although the conditional TPA density given in (3) and its corresponding
survival function in (6) are continuous everywhere for all X = x, it is not
differentiable at points y = g−1(θ1(x)). This brings us to establish the asymp-
totic behaviour of the local kernel likelihood estimators under non-standard
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conditions. One of the standard regularity conditions in (local-) maximum like-
lihood estimation is that the expected value of the score function with respect
to each parameter needs to exist and equate to zero at the true parameter
value. We also need this condition to build up the asymptotic properties in
the non-standard case. More specifically, consider for r, s ∈ {1, 2, 3},

λr(v1(x), v2(x), v3(x)) = EY,∆|X
{
ψr(v1(X), v2(X), v3(X); Y,∆ | X = x)

}
λrs(v1(x), v2(x), v3(x)) =

∂

∂us
λr(u1, u2, u3) |(u1,u2,u3)=(v1(x),v2(x),v3(x)) .

Throughout, the notation EY,∆|X denotes the joint expectation for Y and ∆
conditional on X = x.

We now turn to state the assumptions/conditions that are essentially
needed to establish the asymptotic properties of the local kernel weighted esti-
mators in case of non-standard local likelihood models with right censored
data. These mild conditions mainly depend on the conditional distributions
of T and C given X = x, the link function g(·), the smoothness of θr(·), the
design density fX , the kernel function K(·) with its bandwidth parameter h.

Conditions on the conditional distributions of T and C given X = x:
(R1) The conditional TPA density fα(x)(t; θ(x)) has a common support for

all x on an open subset Θ̊ of the parameter space Θ containing the true
parameters θ̃(x) =

(
θ1(x), θ2(x), θ3(x)

)T
for all x.

(R2) The reference symmetric density f0(z) satisfies lim
z→+∞

zf0(z) = 0 or∫∞
0
zf ′0(z)dz = − 1

2 .

(R3) g(·) : R+
0 → R is monotone increasing and differentiable function, such

that lim
t→0

g(t) = 0 and lim
t→+∞

g(t) = +∞.

(R4) The distributions of T and C are conditionally independent given X = x.
(R5) lim

z→+∞
zr−1f0(z)G[glθ(z | X = x)] = 0, and

∫∞
0
zr−1f0(z)dG[glθ(z)] <

+∞ for r, l = 1, 2, where g1θ(z | X = x) = g−1
{
g(η(x)) − ϕ(x)

1−α(x)z
}
and

g2θ(z | X = x) = g−1
{
g(η(x)) + ϕ(x)

α(x)z
}
.

(R6) Irs(θ1(x), θ2(x), θ3(x)) = EY,∆|X
{
ψr(Y,∆; θ1(x), θ2(x), θ3(x))

· ψs(Y,∆; θ1(x), θ2(x), θ3(x))
}
; r, s = 1, 2, 3 is Lipschitz continuous

and differentiable at
(
θ1(x), θ2(x), θ3(x)

)
for all x; and the local Fisher

information matrix

I(θ1(x), θ2(x), θ3(x))

=

I11(θ1(x), θ2(x), θ3(x)) I12(θ1(x), θ2(x), θ3(x)) I13(θ1(x), θ2(x), θ3(x))
I21(θ1(x), θ2(x), θ3(x)) I22(θ1(x), θ2(x), θ3(x)) I23(θ1(x), θ2(x), θ3(x))
I31(θ1(x), θ2(x), θ3(x)) I32(θ1(x), θ2(x), θ3(x)) I33(θ1(x), θ2(x), θ3(x))


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is positive definite, which depends on the censoring distribution G and
the link function g(·).

Conditions on the design and the smoothness of θr(x) for all x in the support
of X; r = 1, 2, 3:
(S1) The smooth function θr(·) has a continuous derivative of order (pr +1)th

for pr odd and (pr + 2)nd for pr even, r = 1, 2, 3.
(S2) The design density fX is differentiable and continuous on the interior of

supp(fX).
(S3) For each x ∈ supp(fX), gr(·) is continuous and permits third order

derivatives and gr(θr(x)), r = 1, 2, 3, is nonzero.

Conditions on the kernel function and the bandwidth parameter:
(K1) The kernel function K is a symmetric bounded probability density

compactly supported on [−1, 1].
(K2) The bandwidth sequence h = hn satisfies: hn → 0 and nh3n → +∞, as

n→ +∞.

The first condition (R1) is standard on the conditional probability density
of the survival time. The conditions (R2)–(R5) are claimed to ensure that the
expected value of the score function at the true value of the parameter of
interest is zero. Condition (R6) is stated to provide a finite variance-covariance
matrix of the local kernel weighted maximum likelihood estimators. Conditions
(S1)–(S2) are postulated for the design density fX and smoothness of θr(·) on
the support of a continuous covariate X, which are needed for the consistency
and asymptotic normality of the estimators. The condition (S3) is required
to translate the asymptotic results to the parameters of interest.The last two
conditions (K1) and (K2) are targeted on the nature of the kernel function
and the bandwidth parameter.

To prove the asymptotic normality of our estimator, we need some extra
notation. These notations are adopted from Aerts & Claeskens [1], Gijbels
et al. [2] and references their in. The main ingredients in this asymptotic
normality result are: the existence of a positive semidefinite information matrix
at the local point x, the kernel density K with the bandwidth parameter h,
and the design density fX . For the easy of illustration with condition (S2),
let the local point x be lying in the interior of supp(fX). A point x will be
called an interior point of supp(fX) if and only if {u : h−1(u − x) ∈ A} ⊆
supp(fX) with A denoting the support of K(·). Denote νj(A) =

∫
A u

jK(u)du.
In addition, let Nprps

(x), Tprps
(x) and Qprps

(x) be the (pr + 1) × (ps + 1)
dimension of matrices having (k+1, l+1)th entry equals, respectively, νk+l(A),∫
A u

k+lK2(u)du and νk+l+1(A) (k = 0, 1, . . . , pr; l = 0, 1, . . . , ps). Further,
let Mvps

(u) be the matrix obtained from Nprps
(x) by replacing its (v + 1)th

column by (1, u, . . . , ups)T , and for | Nprps
(x) |, define Kvps

(u) = v!
{

|
Mvps

(u) | / | Nprps
(x) |

}
K(u), where Kvps

(u) is called an equivalent kernel.
Finally, we define, for r ∈ {1, 2, 3}

Hpr = diag(1, h, . . . , hpr )
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Σx = fX(x)I(θ1(x), θ2(x), θ3(x))⊗N(x)

Γx = fX(x)I(θ1(x), θ2(x), θ3(x))⊗ T (x)

Λx = D(x)⊗Q(x),

where

N(x) =

Np1p1(x) Np1p2(x) Np1p3(x)
Np2p1(x) Np2p2(x) Np2p3(x)
Np3p1(x) Np3p2(x) Np3p3(x)

 ,
T (x) =

Tp1p1
(x) Tp1p2

(x) Tp1p3
(x)

Tp2p1
(x) Tp2p2

(x) Tp2p3
(x)

Tp3p1
(x) Tp3p2

(x) Tp3p3
(x)

 ,

Q(x) =

Qp1p1
(x) Qp1p2

(x) Qp1p3
(x)

Qp2p1
(x) Qp2p2

(x) Qp2p3
(x)

Qp3p1
(x) Qp3p2

(x) Qp3p3
(x)

 ,
D(x) =

d

dx

{
fX(x)I(θ1(x), θ2(x), θ3(x))

}
,

and ⊗ denotes a generalized Kronecker product. To be more pre-
cise, D(x) denotes element-by-element derivative of the matrix
fX(x)I(θ1(x), θ2(x), θ3(x)), with respect to the local point x.

Further W n(x) =
(
W n

1 (x)
T ,W n

2 (x)
T ,W n

3 (x)
T
)T

, where W n
r (x), r ∈

{1, 2, 3}, is a column vector of dimension pr +1, with (k+1)st component the
partial derivative of the local kernel weighted log-likelihood function given by

Wn
rk(x) =

1√
nh2k+1

n∑
i=1

ψr

(
θ̄1(Xi, x), θ̄2(Xi, x), θ̄3(Xi, x); Yi,∆i

)
×K

{
(Xi − x)/h

}
(Xi − x)k,

with θ̄r(Xi, x) =
∑pr

j=0 θrj(x)
(
Xi − x

)j
; r ∈ {1, 2, 3}.

S3 Additional simulation results

S3.1 Additional results to Section 5.1 in the main paper

Additional tables and figures for simulations under Scenario II
Figure S1 presents the boxplots of the AISE values for the two models for
sample size n = 300. Figure S2 shows the boxplots of the AQRL values in
quantile estimation from the simulations for Model II under Scenario II, for
sample size n = 300. Finally, Table S1 lists the median AQRL values under
this scenario for Model II for sample sizes n = 100 and n = 300.
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Fig. S1: Scenario II. AISE value across seven bandwidth values for the
three estimates over 500 simulated samples of size n = 300 with 20% and 40%
censoring proportions; Model I (left column) and Model II (right column).

Simulation results under Scenario I
All the simulation results under Scenario I are reported here, using similar
graphical presentations and similar presentations for tables as for Scenario II.

The AISE values for different fixed bandwidths are presented in boxplots in
Figures S3 and S4, for respectively sample sizes n = 100 and n = 300. Median
AISE values for Models I and II are listed in, respectively, Tables S2 and S3,
for sample sizes n = 100 and n = 300.

Focusing on quantile estimation, Figures S5 and S6 provide the boxplots for
the AQRL values, for respectively sample sizes n = 100 and n = 300. Tables S4
and S5 list the median AQRL values obtained for respectively Models I and II.

Finally, Figures S7 and S8 depict the true curves, together with three rep-
resentatives curves of the estimated θ̂(·) and Q̂τ(T | X = x), respectively.
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Fig. S2: Scenario II. AQRL value across seven bandwidth values for the
three quantiles over 500 simulated samples of size n = 300 with 20% and 40%
censoring proportions; Model I (a) and Model II (b).
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Table S1: Scenario II. Median AQRL values for the quantile estimator
Q̂τ (T | x), over a grid of x-values. Results for Model II, for three values of τ ,
two censoring proportions Pc, for the different bandwidth values. Sample sizes
n = 100 and n = 300.

bandwidth value h

sample size τ value Pc 0.15 0.25 0.35 0.45 0.55 0.65 0.75

n = 100 0.25 20% 0.052 0.044 0.044 0.050 0.060 0.073 0.087
40% 0.056 0.048 0.047 0.051 0.058 0.068 0.082

0.5 20% 0.042 0.039 0.042 0.049 0.056 0.063 0.069
40% 0.047 0.043 0.046 0.053 0.061 0.066 0.073

0.75 20% 0.042 0.042 0.048 0.056 0.062 0.068 0.072
40% 0.048 0.047 0.054 0.063 0.072 0.078 0.081

n = 300 0.25 20% 0.035 0.035 0.040 0.049 0.060 0.074 0.090
40% 0.038 0.037 0.041 0.048 0.058 0.071 0.085

0.5 20% 0.026 0.029 0.036 0.044 0.052 0.059 0.066
40% 0.029 0.032 0.040 0.047 0.055 0.062 0.070

0.75 20% 0.029 0.033 0.041 0.050 0.056 0.061 0.065
40% 0.033 0.037 0.046 0.056 0.063 0.069 0.075

Table S2: Scenario I. Median AISE values for the estimators η̂(x), ϕ̂(x) and
α̂(x) for Model I, for the different bandwidth values. Sample sizes n = 100 and
n = 300.

estimator bandwidth value h

sample size Pc 0.15 0.25 0.35 0.45 0.55 0.65 0.75

n = 100 η̂ 20% 0.582 0.465 0.380 0.384 0.430 0.500 0.657
40% 1.543 0.710 0.523 0.504 0.557 0.613 0.770

ϕ̂ 20% 0.004 0.003 0.003 0.003 0.003 0.003 0.003
40% 0.004 0.003 0.003 0.003 0.003 0.003 0.003

α̂ 20% 0.036 0.030 0.026 0.022 0.020 0.018 0.017
40% 0.046 0.034 0.029 0.026 0.024 0.021 0.021

n = 300 η̂ 20% 0.241 0.198 0.195 0.225 0.239 0.306 0.432
40% 0.307 0.255 0.243 0.269 0.277 0.336 0.451

ϕ̂ 20% 0.002 0.002 0.002 0.002 0.002 0.002 0.002
40% 0.002 0.002 0.002 0.002 0.002 0.002 0.002

α̂ 20% 0.020 0.018 0.017 0.015 0.013 0.011 0.013
40% 0.024 0.021 0.018 0.016 0.015 0.013 0.015
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Fig. S3: Scenario I. AISE values across seven bandwidth values for the three
estimates over 500 simulated samples of size n = 100 with 20% and 40%
censoring proportions; Model I (left column) and Model II (right column).
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Fig. S4: Scenario I. AISE values across seven bandwidth values for the three
estimates over 500 simulated samples of size n = 300 with 20% and 40%
censoring proportions; Model I (left column) and Model II (right column).

Table S3: Scenario I. Median AISE values for the estimators η̂(x), ϕ̂(x) and
α̂(x) for Model II, for the different bandwidth values. Sample sizes n = 100
and n = 300.

estimator bandwidth value h

sample size Pc 0.15 0.25 0.35 0.45 0.55 0.65 0.75

n = 100 η̂ 20% 2.100 1.310 1.260 1.451 1.631 1.806 1.950
40% 2.919 1.606 1.586 1.777 1.910 2.054 2.219

ϕ̂ 20% 0.006 0.005 0.004 0.004 0.003 0.003 0.003
40% 0.007 0.005 0.005 0.004 0.004 0.004 0.004

α̂ 20% 0.035 0.027 0.023 0.022 0.021 0.021 0.021
40% 0.036 0.029 0.027 0.025 0.024 0.023 0.022

n = 300 η̂ 20% 0.748 0.654 0.758 0.917 0.989 1.130 1.314
40% 0.925 0.762 0.849 0.973 1.068 1.206 1.424

ϕ̂ 20% 0.003 0.003 0.003 0.003 0.002 0.002 0.003
40% 0.004 0.003 0.003 0.003 0.003 0.003 0.003

α̂ 20% 0.018 0.015 0.014 0.014 0.014 0.016 0.018
40% 0.020 0.017 0.016 0.017 0.016 0.017 0.018
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Fig. S5: Scenario I. AQRL values across seven bandwidth values for the
three quantiles over 500 simulated samples of size n = 100 with 20% and 40%
censoring proportions; Model I (a) and Model II (b).
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Fig. S6: Scenario I. AQRL values across seven bandwidth values for the
three quantiles over 500 simulated samples of size n = 300 with 20% and 40%
censoring proportions; Model I (a) and Model II (b).
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Table S4: Scenario I.Median AQRL values for the quantile estimator Q̂τ (T |
x), over a grid of x-values. Results for Model I, for three values of τ , two
censoring proportions Pc, for the different bandwidth values. Sample sizes n =
100 and n = 300.

bandwidth value h

sample size τ value Pc 0.15 0.25 0.35 0.45 0.55 0.65 0.75

n = 100 0.25 20% 0.145 0.133 0.120 0.134 0.151 0.167 0.189
40% 0.166 0.155 0.141 0.157 0.182 0.208 0.236

0.5 20% 0.218 0.189 0.184 0.202 0.221 0.244 0.266
40% 0.229 0.209 0.204 0.221 0.246 0.268 0.291

0.75 20% 0.525 0.427 0.425 0.468 0.542 0.630 0.685
40% 0.521 0.461 0.469 0.516 0.602 0.673 0.738

n = 300 0.25 20% 0.107 0.098 0.099 0.120 0.136 0.148 0.167
40% 0.125 0.118 0.117 0.148 0.168 0.188 0.215

0.5 20% 0.135 0.129 0.142 0.168 0.196 0.225 0.247
40% 0.149 0.145 0.160 0.187 0.216 0.245 0.270

0.75 20% 0.324 0.300 0.340 0.415 0.511 0.609 0.675
40% 0.359 0.328 0.373 0.451 0.552 0.650 0.715

Table S5: Scenario I.Median AQRL values for the quantile estimator Q̂τ (T |
x), over a grid of x-values. Results for Model II, for three values of τ , two
censoring proportions Pc, for the different bandwidth values. Sample sizes n =
100 and n = 300.

bandwidth value h

sample size τ value Pc 0.15 0.25 0.35 0.45 0.55 0.65 0.75

n = 100 0.25 20% 0.213 0.190 0.188 0.219 0.272 0.328 0.403
40% 0.228 0.207 0.201 0.216 0.250 0.304 0.367

0.5 20% 0.230 0.207 0.222 0.252 0.288 0.331 0.371
40% 0.268 0.236 0.250 0.285 0.317 0.352 0.391

0.75 20% 0.276 0.255 0.284 0.332 0.369 0.409 0.433
40% 0.331 0.307 0.336 0.390 0.433 0.481 0.503

n = 300 0.25 20% 0.149 0.155 0.181 0.218 0.276 0.343 0.420
40% 0.162 0.166 0.175 0.210 0.258 0.316 0.388

0.5 20% 0.142 0.152 0.186 0.230 0.272 0.312 0.359
40% 0.168 0.175 0.207 0.247 0.290 0.333 0.378

0.75 20% 0.180 0.193 0.237 0.291 0.329 0.358 0.387
40% 0.212 0.226 0.277 0.334 0.379 0.419 0.448
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Fig. S7: Scenario I. True and estimated curves of η̂(x), ϕ̂(x) and ϕ̂(x) for
n = 300 and 20% censoring (first row) and 40% censoring (second row). Model
I (a) and Model II (b).
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Fig. S8: Scenario I. True and estimated curves of Q̂τ(x)
(
τ = 0.25, 0.50, 0.75

)
for Model I (a) and Model II (b). The sample size is n = 300 with 20% cen-
soring (first row) and 40% censoring (second row). The scatter plot represents
the sample data selected according to the 0.50th AQRL percentile. Dots (•)
represent the uncensored cases and crossed (×) for censored cases.
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S3.2 Weighted versus unweighted AQRL

In the main paper, both unweighted and weighted AQRL criteria have been
used to measure the performance of the quantile estimates. The reason for
using the weighted version of AQRL in the second simulation part has been
explained in the main paper. For further illustrative purposes, we applied both
criteria under Scenario I for Model I in the first part of simulation study.
Figures S9 and S10, respectively, depict the average AQRL and WAQRL for
n = 100 and n = 300 over the 500 simulated samples across the seven different
bandwidth values. Note that the conclusive remarks are the same when using
the weighted or unweighted performance measure.
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Fig. S9: Scenario I: average AQRL and WAQRL values for Model I and n =
100 with 20% censoring proportion (first row) and 40% censoring proportion
(second row).
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Fig. S10: Scenario I: average AQRL andWAQRL values for Model I and n =
300 with 20% censoring proportion (first row) and 40% censoring proportion
(second row).

S4 SCLC data

Figures S11 and S12 provide some extra illustrations for the SCLC data
supporting the statements in the main paper.
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Fig. S11: Estimated α̂(x) curves for the SCLC data with conditional α(·);
solid line for the TPA Laplace, dashed line for the TPA logistic and dotted
line for the TPA normal model.
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Fig. S12: Estimated ϕ̂(x) curves for the SCLC data with conditional α(·);
solid line for the TPA Laplace, dashed line for the TPA logistic and dotted
line for the TPA normal model.
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