
Vincent Derkinderen
Dissertation presented in partial

fulfillment of the requirements for the
degree of Doctor of Engineering

Science (PhD): Computer Science

Supervisor:
Prof. dr. Luc De Raedt

December 2023

Knowledge Compilation and
Counting: an Algebraic Journey

ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Knowledge Compilation and Counting: an
Algebraic Journey

Vincent DERKINDEREN

Examination committee:
Prof. dr. ir. Jean-Pierre Celis, chair
Prof. dr. Luc De Raedt, supervisor
Prof. dr. ir. Tias Guns
dr. ir. Wannes Meert
Prof. dr. ir. Greet Vanden Berghe
Prof. dr. Pierre Marquis
(Université d’Artois)

Prof. dr. Stefano Teso
(Università di Trento)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

December 2023

© 2023 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Vincent Derkinderen, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Cover picture by Thomas Winters and Vincent Derkinderen, resulting from multiple interactions with the
generative models of Midjourney (paid license) and of Adobe Firefly, on 28th of August 2023.

Acknowledgements

Like life in general, a PhD journey is the most enjoyable when you have people to
share it with. As a token of my gratitude, I would therefore like to acknowledge
all those that have helped me complete this journey.

My supervisor Luc De Raedt has not only played a fundamental role throughout
my PhD, but also laid the foundations prior. It all began with my master thesis
topic that he supervised, Subgraph search in deep arithmetic graphs, which
allowed me to work with Jonas, Laura, Wannes, Nimish, and Prof. Marian
Verhelst. This master thesis initiated my interest in knowledge compilation and
model counting, two central topics within this dissertation, and it led me to
realise that I liked research! For that, I am very grateful to all those that were
involved.

I also appreciate that Luc pushed me to write an FWO project proposal even
if he had doubts about its chances. I still remember (and chuckle about) the
day he came into my office after we learned that the proposal was accepted! He
told me he had not actually anticipated the result and that he now had to find
a replacement for the project that I had so far been assigned to. Thanks to
the fellowship funding of the Fonds Wetenschapelijk Onderzoek - Vlaanderen
(FWO), I had five years to learn a lot from Luc, from writing, presenting, to
following a proper research methodology, just to name a few. I am also deeply
honored that he asked me to act as a workflow chair for the IJCAI-ECAI2022
conference. The position itself had its ups and downs, but I am glad that I
accepted and got to work with the rest of the conference team, contributing to
the international research community. Also for the reassuring words leading up
to the preliminary defence, Luc, thank you!

I am also grateful for my supervisory and examination committee. For the
guidance throughout my PhD journey, for the insightful questions during the
(preliminary) defence, and for the constructive feedback that improved this
manuscript.

i

ii ACKNOWLEDGEMENTS

I also wish to thank all my co-authors and (ex-)colleagues who made work more
enjoyable and made me be a better researcher. From (random) discussions
in the hallway, at Alma, during coffee breaks, to the fun office parties (e.g.
the welcome back parties, the Christmas parties, . . .), it was really a pleasure
working with you all! To those with whom I share(d) an office: Tim, Nitesh,
Pietro, Victor, Paolo, Jaron, Robin, Thomas, Yang, and Ying, and Giuseppe
back when he was still a visitor in our group, thank you! As many will tell
you, a PhD journey is not solely filled with joy; it also encompasses its share
of challenges and low points. I therefore thank all of them not only for the
interesting research discussions, but also the frustrations we shared and vented
(away).

I want to specifically express my appreciation to those who have been following
the same track as me these last few months, writing FWO/BOF proposals and
the PhD manuscript. Thomas, Pieter, Laurens, Jonas, being able to exchange
advice and share frustrations about these processes has been really invaluable
to me. Thank you and good luck with your future endeavors!

Most importantly, I wish to thank my friends and family who supported me
throughout this process. Notably, my parents, brothers and sister: voor jullie
continue, onvoorwaardelijke liefde en ondersteuning tijdens heel mijn leven; ik
kan jullie niet genoeg bedanken!

Vincent M. Derkinderen
Leuven, Belgium
December 2023

Abstract

The journey captured by this dissertation centers around knowledge compilation
and model counting, and their role within state-of-the-art inference algorithms
for probabilistic logic programming languages. Model counting is the task of
computing the number of solutions that satisfy a given set of constraints. For
example, the constraint ‘A is true or B is false’ has three solutions. A particularly
important application of this problem is in the domain of probabilistic inference,
where each solution may represent a particular scenario that is weighted with a
probability. The problem of weighted model counting then naturally translates
to answering probabilistic queries, making clear the connection with inference
in probabilistic logic programming languages.

The weighted model counting problem consists of two operations: addition
(counting solutions) and multiplication (computing the probability of a solution).
A broader problem that encompasses even more applications is algebraic model
counting (AMC): it generalizes the two aforementioned operations to those of a
semiring, a mathematical construct that guarantees operational properties such
as commutativity, associativity and distributivity that can then be exploited
for more efficient counting. As we demonstrate throughout this dissertation, a
significant insight is that AMC unifies several probabilistic logic programming
language variants under a common framework, providing efficient inference
algorithms.

Model counting is a hard problem, #P-complete to be exact. Consequently,
the chances of discovering a polynomial-time algorithm for model counting are
slim. It would prove P = NP, which is widely regarded as unlikely. This issue
has also been observed in practice when trying to scale up to larger problems.
Nevertheless, many application instances have become solvable in practice
due to the development of algorithms that exploit structure present in the
problem instances, mirroring the history of SAT solving. From a mathematical
point of view, exploiting structure can be regarded as utilising the previously
mentioned semiring properties. In this dissertation we contribute an extension

iii

iv ABSTRACT

of such counters that expands the exploitable structure by taking advantage of
symmetries present within the given constraints. For example, the number of
solutions for ‘A is true or B is false’, remains equivalent when variables A and
B are swapped.

Important to efficient model counting is the research domain of knowledge
compilation which studies, among other things, how to reformulate the set of
counting constraints to make counting more tractable. One of our contributions
further showcases the generality of algebraic model counting, solved through
knowledge compilation, by adapting it to solve a task of decision making under
uncertainty. This is non-trivial as it requires three operations instead of two:
max, sum, and product.

Finally, we consider counting with respect to a background theory, enabling
the use of constraints that go beyond Boolean variables that are only true
or false. For example, enabling constraints such as (x + y < 1) ∨ (x > 10).
Knowledge compilation tools for counting in this setting are currently sparse
and more often limited to a specific background theory. This motivates our
contribution in laying the foundations for knowledge compilation with respect
to such background theories.

Beknopte samenvatting

De reis die in deze dissertatie wordt vastgelegd handelt rond kenniscompilatie
en het tellen van modellen, en hun rol binnen de state-of-the-art inferentie
algoritmen voor probabilistische logische programeertalen. Het tellen van
modellen is een computationeel probleem bestaande uit het berekenen van
het exacte aantal oplossingen die voldoen aan een gegeven verzameling van
beperkingen. Bijvoorbeeld, de beperking ‘A is waar of B is niet waar’ heeft
drie oplossingen. Een bijzonder belangrijke toepassing van dit probleem is in
het domein van probabilistische inferentie, waar elke oplossing een scenario
kan vertegenwoordigen dat wordt gewogen met een bepaalde waarschijnlijkheid.
Het tellen van gewogen modellen vertaalt zich dan op natuurlijke wijze tot het
beantwoorden van probabilistische vragen, wat de connectie met inferentie in
probabilistische logische programmeertalen duidelijk maakt.

De gewogen variant van het telprobleem bestaat uit twee operaties: optellen
(het tellen van oplossingen) en vermenigvuldigen (de waarschijnlijkheid van een
oplossing berekenen). Een breder probleem dat nog meer toepassingen omvat is
het tellen van algebraïsch gewogen modellen (AMC): het veralgemeent de twee
bovengenoemde operaties naar die van een semiring, een wiskundige constructie
die operationele eigenschappen garandeert zoals commutativiteit, associativiteit,
en distributiviteit, dewelke gebruikt kunnen worden om efficienter te tellen.
Zoals we doorheen deze dissertatie demonstreren, is een belangrijk inzicht
dat AMC verschillende probabilistische logische programmeertalen verenigt
onder een gemeenschappelijk kader, en er efficiënte inferentie algoritmen aan
beschikbaar stelt.

Het tellen van modellen is een complex probleem, #P-compleet om precies te
zijn. Door dit resultaat is het onwaarschijnlijk dat een algoritme gevonden zal
worden met een polynomiale uitvoeringstijd. Dat zou namelijk bewijzen dat
P = NP, wat door velen als onwaarschijnlijk wordt beschouwd. Dit resultaat
manifesteert zich ook in de praktijk, wanneer we proberen op te schalen naar
grotere problemen. Desondanks zijn er reeds veel telproblemen praktisch

v

vi BEKNOPTE SAMENVATTING

oplosbaar geworden door de ontwikkeling van verschillende algoritmen die
de structuur van de probleeminstanties uitbuiten om sneller te kunnen tellen.
Vanuit een wiskundig perspectief is dit analoog aan het gebruiken van de eerder
vermelde semiring eigenschappen. In deze dissertatie stellen we een uitbreiding
voor die de uitbuitbare structuur voor de algoritmen vergroot, door gebruik te
maken van de symmetrieën die aanwezig zijn binnen de gegeven verzameling
van beperkingen. Bijvoorbeeld, het aantal oplossingen voor ‘A is waar of B is
niet waar’ is equivalent wanneer A en B worden omgewisseld.

Belangrijk voor het tellen van modellen is het onderzoeksdomein genaamd
kenniscompilatie, dat onder meer bestudeert hoe de verzameling beperkingen
geherformuleerd kan worden om gemakkelijker te kunnen tellen. Één van de
bijdragen in deze dissertatie demonstreert de algemeenheid van het probleem,
tellen van algebraïsch gewogen modellen opgelost door kenniscompilatie, door
het aan te passen voor een beslissingsprobleem met onzekerheid. Dit is niet
triviaal aangezien dergelijk beslissingsprobleem drie operaties omvat in plaats
van de gewoonlijke twee: max, som, en product.

We beschouwen ook het probleem van tellen met betrekking tot een
achtergrondtheorie, die het mogelijk maakt om beperkingen te gebruiken die
verder gaan dan Booleaanse variabelen die enkel waar of niet waar zijn, zoals
de beperking (x+ y < 1)∨ (x > 10). Hulpmiddelen voor het compileren in deze
context zijn schaars en vaak beperkt tot een specifieke achtergrondtheorie. Dit
motiveert onze bijdrage in het leggen van de fundamenten voor kenniscompilatie
met betrekking tot dergelijke achtergrondtheorieën.

List of Abbreviations

LRA Linear Real Arithmetic. 24, 83–86, 91, 93, 96, 97, 99, 105–107, 110, 143,
144

AI artificial intelligence. 26, 44, 66, 115, 116

AMC Algebraic Model Count. 13, 14, 36, 42, 68, 69, 73, 77–80

CDCL Conflict-driven Clause Learning. 16, 17, 105, 108

CNF Conjunctive Normal Form. 12, 14, 109, 123

d-DNNF deterministic Decomposable Negation Normal Form. 18–21, 24, 82,
86, 104–111, 118

DPLL Davis-Putnam-Logemann-Loveland. 14–16, 48, 103–106, 108–111, 115,
118

MEU Maximum Expected Utility. 69

NNF Negation Normal Form. 19, 20, 109

OBDD Ordered Binary Decision Diagram. 24, 109

PCC Probabilistic Component Caching. 55, 58

PLP Probabilistic Logic Programming. 25–29, 35, 45, 113

PSCC Probabilistic Symmetric Component Caching. 55

SAT Satisfiability problem. 12, 48–50, 59, 64, 105, 108, 111, 121

vii

viii LIST OF ABBREVIATIONS

SDD Sentential Decision Diagram. 22–24, 67, 70, 71, 74, 75, 78, 82, 85, 86,
97–99, 103, 109, 118, 143–145

SMT Satisfiability Modulo Theory. 105, 107, 108, 110

WMC Weighted Model Count. 13, 85

WMI Weighted Model Integration. 83–87, 99, 102, 115, 144

XSDD Extended Sentential Decision Diagram. 85, 99, 143–145

Contents

Abstract iii

Beknopte samenvatting v

List of Abbreviations viii

Contents ix

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Knowledge Representation and Reasoning 1

1.2 The Algebraic Journey . 1

1.3 Contributions . 5

1.4 Structure of the Thesis . 8

2 Background 11

2.1 Propositional Logic . 11

2.2 Model Counting . 12

2.3 Counting via the #DPLL Algorithm 14

ix

x CONTENTS

2.3.1 The Basic #DPLL Algorithm 15

2.3.2 #DPLL with Component Caching 17

2.4 Counting via Knowledge Compilation 18

2.4.1 sd-DNNF Formulas . 19

2.4.2 Traces of the #DPLL Algorithm 20

2.4.3 Decision Diagrams . 22

2.5 Background Theories . 24

3 Probabilistic and Neural-Symbolic Logic Programming 27

3.1 Introduction . 28

3.1.1 History of Probabilistic Logic Programming 28

3.1.2 Synthesizing Probabilistic Logic Programming Variations 29

3.2 From Logic Programs to Algebraic Logic Programs 30

3.2.1 Logic Programming . 30

3.2.2 Probabilistic Facts . 31

3.2.3 Neural Facts . 33

3.2.4 Distributional Facts and Indicator Facts 34

3.2.5 Algebraic Facts . 37

3.3 Inference . 38

3.3.1 Logical Inference . 39

3.3.2 Translation to Algebraic Model Counting 41

3.3.3 Solving Model Counting 42

3.4 Learning . 44

3.4.1 Gradient Semiring . 44

3.5 Related Work and Applications 46

3.6 Conclusion . 47

4 Exploiting Symmetry for Model Counting 49

CONTENTS xi

4.1 Introduction . 50

4.2 Related Work . 52

4.3 Background . 53

4.3.1 #DPLL with Component Caching 53

4.3.2 Isomorphism . 53

4.4 Symmetric Components . 55

4.5 Implementation: SymGanak 57

4.6 Experiments . 60

4.6.1 Implementation and Experimental Setup 61

4.6.2 Results . 62

4.7 Conclusion . 65

4.8 Beyond Unweighted Counting 66

5 Decision Making: A Tale of Three Operations 67

5.1 Introduction . 68

5.2 Constrained Sentential Decision Diagram 69

5.3 Maximising Decisions . 70

5.3.1 Constrained Algebraic Circuit 72

5.3.2 Unconstrained Algebraic Circuit 74

5.3.3 Experiments . 76

5.4 Learning Utility Parameters . 77

5.5 Related Work . 81

5.6 Conclusion . 82

6 Variable Ordering for Weighted Model Integration 83

6.1 Introduction . 84

6.2 Weighted Model Integration . 85

6.3 Variable Orderings . 88

xii CONTENTS

6.3.1 How to Exploit Structure 90

6.3.2 How to Order Variables 92

6.4 Variable Trees . 95

6.4.1 AND/OR Graphs . 96

6.4.2 Pseudo-Tree Heuristics 100

6.5 Experiments . 101

6.6 Conclusion . 104

7 Modulo Theory Compilation 105

7.1 Introduction . 106

7.2 Background . 107

7.3 d-DNNF for Modulo Theory . 108

7.4 Compilation Strategies . 109

7.4.1 Theory Aware versus Theory Agnostic 109

7.4.2 Eager versus Lazy Solving 110

7.4.3 Top-down versus Bottom-up Compilation 111

7.5 Traces of an Exhaustive DPLL(T) Algorithm 112

7.6 Conclusion & Future Work . 113

8 Conclusion 115

8.1 Summary . 115

8.2 Future Perspective . 119

A SymGanak: Results 123

A.1 Problem Classes . 123

A.2 Results . 125

B F-XSDD(BR) with Complex Weight Functions 145

CONTENTS xiii

Bibliography 149

Curriculum Vitae 173

List of publications 175

List of Figures

1.1 Formula representations for the biased coin flip problem 3

1.2 Formula representations for the broken factory machine problem 4

2.1 d-DNNF and arithmetic circuit of (B ∨ C) ∧ (¬B ∨A) 21

2.2 Sentential decision diagram of (A ∧B) ∨ (C ∧D) ∨ (B ∧ C) . . 23

2.3 The vtree used for the sentential decision diagram in Figure 2.2. 24

3.1 Three step pipeline for inference in algebraic logic programs . . 39

3.2 SLD tree for Example 23 . 40

3.3 sd-DNNF corresponding to Example 14’s ProbLog program . . 43

3.4 WMC(ψ) representation of Figure 3.3 43

3.5 Arithmetic circuit for Example 27 46

4.1 Graph representation Gr(C1) and Gr(C2) of Example 28 56

4.2 Cactus plot comparing different variable branching heuristics . 62

4.3 Cactus plot comparing SymGanak and Ganak 64

4.4 Scatter plot comparing SymGanak and Ganak 64

4.5 Cache hit distribution for an n-queens problem instance 65

5.1 A sentential decision diagram representing (A ∧B) ∨ (C ∧D) ∨
(B ∧ C), and its vtree. 70

xv

xvi LIST OF FIGURES

5.2 {A}-Constrained SDD modelling Example 32 73

5.3 Learning progress of a Survey network 80

5.4 Relative regret for 180 Survey networks. 81

5.5 MSSE for five different Survey networks 81

6.1 Illustration of the WMI problem in Example 33 87

6.2 The WMI equation of Example 34. 89

6.3 Interaction graphs for discrete factors over A, B, and C 93

6.4 Interaction graphs of Example 35, over {x0, x1, . . . , x4} 94

6.5 OR-tree with d = B,A,C and table of weights (x*). 97

6.6 AND/OR-tree and its guiding variable tree 97

6.7 AND/OR Graph and weight table (x*) for the continuous setting. 98

6.8 Integration tree and a guiding tree respecting it. 99

6.9 Run time comparison of variable ordering heuristics 102

7.1 Different representations of abstraction (B1 ∨B2) ∧ (¬B1 ∨A) 110

A.1 Cactus plot comparing VSADS and CSVSADS within Ganak 125

B.1 XADD representation of the weight function in Equation B.1 . 146

B.2 Equation circuit showing F-XSDD(BR)’s integration process . . 148

List of Tables

5.1 Empirical results for maximising the expected utility 77

6.1 Conditional probability tables P (A), P (B|A), and P (C|B). . . 90

A.1 Results comparing SymGanak’s variable selection heuristics . 126

A.2 Results comparing Ganak and SymGanak on (CS)VSADS . . 132

A.3 Benchmark names with their associated instance number. . . . 138

xvii

Chapter 1

Introduction

1.1 Knowledge Representation and Reasoning

The term Artificial intelligence (AI) was first coined in 1955 in a Darmouth
workshop proposal (McCarthy et al., 1955; Russell and Norvig, 2010). The
purpose of the workshop, which was organized by John McCarthy, was to find
“how to make machines use language, form abstractions and concepts, solve
kinds of problems now reserved for humans, and improve themselves”. Shortly
after the workshop, McCarthy proposed the design for an automated reasoning
system (McCarthy, 1959) that would later form the basis for knowledge-based
systems (Darwiche, 2009). The design consists of two separate components, a
knowledge base that encapsulates what is known, and a reasoning component
that reasons over the knowledge base to address certain queries. The language
to encode the knowledge was envisioned by McCarthy to be logic. This leads us
to the topic of this dissertation, which is in the field of knowledge representation
and reasoning and includes probabilistic inference to deal with the uncertainty
present when reasoning or acting in a real-world environment.

1.2 The Algebraic Journey

The journey of this dissertation begins with ProbLog (De Raedt et al.,
2007), a probabilistic logic programming language that has its origins in the
similarly named prominent logic programming language called Prolog (Flach,
1994; Körner et al., 2022). Unlike Prolog, however, ProbLog programs may

1

2 INTRODUCTION

contain probabilistic facts, that are true with a certain probability. As a
brief introduction, consider the ProbLog program below. It is comprised of
two probabilistic facts, cloudy and humid, and logical rules to deduce more
information from those facts. In this case there is one rule, which allows us to
deduce that rain is true when both probabilistic facts are true.

1 0.25 :: cloudy.
2 0.8 :: humid.
3 rain :- cloudy, humid.

The particular focus of this dissertation is on the counting (and knowledge
compilation) based algorithms that have been developed to perform probabilistic
inference in this language (Fierens et al., 2015). For example, to efficiently
determine what the probability of rain being true is, given the information
encoded in the ProbLog program. The state-of-the-art approach to address this
question consists of translating the ProbLog program into a weighted logical
formula. Consider the following motivating example which makes the connection
to counting clearer.

Example 1. Bob flips two coins. Since each coin has two sides, tossing the
coins can lead to one of four possible scenarios (counting). Now suppose
the first coin is biased, such that the probability of heads for that coin is 0.2
instead of 0.5. Clearly, the four scenarios are no longer equally likely. Suppose
furthermore that Bob considers placing a bet, and is therefore interested in
the probability of getting at least one heads. Using the logical symbol ∨ for
disjunction (i.e., ‘or’), and P to denote the probability, this question is more
formally expressed as

P (coin(1, heads) ∨ coin(2, heads)) = ? (1.1)

To address this question that is a probabilistic query, we can compute the
probability of each scenario that satisfies the logical query coin(1, heads) ∨
coin(2, heads), and then add those probabilities (weighted counting):

(0.2× 0.5) + (0.2× (1− 0.5)) + (0.8× 0.5) = 0.6 (1.2)

Knowledge compilation. While the previous example had only four possible
scenarios, it goes without saying that enumerating all scenarios quickly becomes
infeasible for larger problems. In the domain of knowledge compilation, tools have
been developed that can help to count more efficiently (Darwiche and Marquis,
2002). In particular, these tools reformulate the logical formula, describing the
problem in a way that counting becomes easier. For instance in the previous
example, we can reformulate the query coin(1, heads) ∨ coin(2, heads) to the

THE ALGEBRAIC JOURNEY 3

∨

coin(1,heads) ∧

¬coin(1,heads) coin(2,heads)

(a) logical formula

+

0.2 ×

1 - 0.2 0.5

(b) probability heads

max

0.2 ×

1 - 0.2 0.5

(c) probability of most
likely scenario

Figure 1.1: Formula representations corresponding to the biased coin flip
problem in Example 1.

logically equivalent formula displayed below and shown in Figure 1.1a, where ¬
and ∧ are the logical symbols for respectively negation and conjunction (i.e.,
‘and’).

coin(1, heads) ∨ (¬coin(1, heads) ∧ coin(2, heads)) (1.3)

In this form, weighted counting becomes simple: replace ‘or’ with addition, ‘and’
with multiplication, and each coin variable with their associated probability.
The resulting equation, shown in Figure 1.1b, is exactly the answer to our
probabilistic query, 0.2 + [0.8 × 0.5] = 0.6. We explain this process in more
detail later in this dissertation.

Algebraic counting. These same knowledge compilation tools also help to solve
a more generalized form of counting called algebraic model counting (Kimmig
et al., 2017). In this form, the addition and product operators have been
replaced by more general operations that can be tailored to the task at hand.
For instance in the previous example, Bob might wonder what the most likely
scenario will be when he does win the bet. The probability of this scenario is
easily computed by replacing the addition operator with a maximisation, as
illustrated in Figure 1.1c. The description of this most likely scenario can be
obtained using a similar technique. As a final example, we consider computing
the expected utility. For instance, Bob might wish to compute the yield he
can expect to obtain from placing bets. In this case, Bob could compute the
probability of each scenario, and multiply it with its yield. Alternatively, the
algebraic model counting framework provides Bob with a more efficient approach
that only requires selecting the appropriate operations (those of the expectation
semiring (Eisner, 2002)).

As the title of this dissertation suggests, we will discuss this technique, and
the operation’s semiring properties required for it to work, in more detail.

4 INTRODUCTION

∨

t > 30 ∧

t > 20 no_cool

(a) logical formula

∨

t > 30 ∧

∧ no_cool

t ≤ 30 t > 20

(b) logical formula

+

⟦t > 30⟧ ×

× 0.01

⟦t ≤ 30⟧ ⟦t > 20⟧

(c) equation structure

Figure 1.2: Formula representations corresponding to the broken factory machine
problem in Example 2.

Specifically, we will emphasize how the algebraic model counting framework
unifies the ProbLog language with its extensions, those that support continuous
variables or integration with neural networks, and allows it to more generally
solve problems that can be cast to an algebraic model count. Furthermore,
we will consider a decision making setting under uncertainty and show how to
compute the maximum expected utility, a task that involves three operations
instead of two: max, sum, and product. This will help Bob in deciding whether
to place a bet.

Modulo theories. Finally, we also consider counting modulo theory problems.
In propositional logic, a formula is composed of logical connectives such as ¬,∨,
and ∧, and Boolean variables that are only true or false (like in the examples
discussed before). In contrast, modulo theory problems move beyond Boolean
variables and may require reasoning over integer or real variables. We illustrate
this using the following example from Zuidberg Dos Martires (2020), which
contains a temperature variable that takes numerical values.

Example 2. Alice manages the factory machines. As part of her job, she is
interested in the probability that a machine breaks down, for which she uses the
following formula: a machine breaks down iff the room temperature is above
30◦C, or the machine’s cooling does not work and the room temperature is
above 20◦C. After collecting data, she concludes that the cooling does not work
properly in 1% of the cases, and that the room temperature roughly follows a
normal distribution N (20, 9).

The logical formula corresponding to this example is shown in Figure 1.2a.
Again, knowledge compilation tools can help to compute the correct answer

CONTRIBUTIONS 5

by reformulating the formula such that it decomposes into disjoint regions.
Figure 1.2b shows such a reformulation of the previous logical formula. The
result can then be turned into the equation shown in Figure 1.2c, where J·K
represents the Iverson bracket evaluating to 1 when the relation within the
brackets is satisfied, and evaluating to 0 otherwise. To compute the correct
probability using this equation, we integrate, and push down the integration
operator for efficiency reasons when possible:

P (broken) =
∫
f(t)

(
Jt > 30K + (0.01Jt ≤ 30KJt > 20K)

)
dt (1.4)

=
(∫

f(t)Jt > 30Kdt
)

+
(

0.01
∫
f(t)Jt ≤ 30KJt > 20Kdt

)
(1.5)

=
(∫

t>30
f(t)dt

)
+
(

0.01
∫

20<t≤30
f(t)dt

)
(1.6)

= 0.00043 + 0.01× 0.4996 = 0.005426 (1.7)

with f(t) being the probability density function of N (20, 9).

The example is an instance of a weighted model integration task (Belle
et al., 2015), which benefits from knowledge compilation tools that are capable
of reasoning not only over Boolean variables, but also over other types of theories
such as (linear) real arithmetic, or integer arithmetic. For example, to realize
that x + y < 5 and x > 5 together imply y < 0, techniques beyond Boolean
reasoning are required. We discuss this in more detail (for weighted model
integration), and will propose a framework for knowledge compilation that
works with any quantifier-free theory.

The two overarching research questions of this dissertation are as follows:

RQ1 What tasks can be cast into an algebraic model counting problem?

RQ2 How to then efficiently solve those algebraic model counting
problems?

1.3 Contributions

This dissertation presents four main contributions to the research questions
stated in the previous section. Each contribution is briefly introduced below.

6 INTRODUCTION

Algebraic model counting: a unifying framework

RQ1 What tasks can be cast into an algebraic model counting
problem?

Algebraic model counting forms a general framework into which several tasks
can be cast. It is important to identify these tasks to explore new methods of
solving them, and to detect the limitations of algebraic model counting. Our
first main contribution demonstrates the general applicability of algebraic
model counting by considering several inference problems. This contribution
comprises the following:

• An overview of the probabilistic, distributional, neural, and algebraic
fact, and how they are unifiable under the algebraic model counting
framework. We thereby also explain in more detail the connection
between counting, knowledge compilation, weighted model counting, and
probabilistic inference.

• A demonstration on the ability of algebraic model counting and knowledge
compilation to compute the expected utility, and in extension two methods
for solving decision making problems in uncertain environments.

• The introduction of a utility learning problem, with a model counting
based method to address it.

Dynamically exploiting formula symmetries during model counting

RQ2.1 How to exploit structural symmetry while model counting
on propositional logic formulas?

As a second main contribution we investigate how to exploit structural
symmetry present in the logical formula to improve the run time of model
counters. This contribution is in the context of unweighted counting but is
extendable to the weighted and algebraic variants. The idea is relatively simple
and revolves around the realization that the model count of a formula is invariant
under certain operations. As an example consider that the unweighted model
count for each of the following three logical formulas is equivalent.

coin(1, heads) ∨ ¬coin(2, heads) (1.8)

¬coin(2, heads) ∨ coin(1, heads) (1.9)

coin(2, heads) ∨ ¬coin(1, heads) (1.10)

CONTRIBUTIONS 7

The second formula is obtained from the first by using the commutativity
of ∨. The third formula is obtained from the first by renaming the symbols
appropriately. Neither of these operations change the unweighted model count.
We show how to dynamically exploit this fact by requiring only a minor
modification to the caching mechanism of existing model counting algorithms.
This optimization effectively leads to a reduction in the model counting search
space.

Variable ordering for weighted model integration

RQ2.2 Can we extend variable ordering heuristics developed for
the discrete domain to also work well for discrete-continuous
domains?

Our third contribution focuses on the task of weighted model integration.
This is a counting task in the domain of modulo theory formulas, as opposed
to the purely propositional formulas. For solving such a task, algebraic model
counting and its knowledge techniques have proven to be very useful (Kolb
et al., 2019b).

When solving weighted model integration tasks, the variable ordering used by
knowledge compilation tools affects not only the representation size but also
the performance of the integration performed on top of that representation.
Our third contribution is therefore a study on the impact of the variable
ordering within weighted model integration. This contribution increased the
understanding and led to an adaptation of existing variable ordering heuristics
normally used for propositional formulas, as well as a completely novel ordering
heuristic.

Top-down modulo theory compilation for counting problems

RQ2.3 How to perform knowledge compilation for counting over
modulo theory formulas?

Our fourth and final main contribution is a discussion on knowledge
compilation for quantifier-free modulo theory formulas, for counting tasks. This
contribution includes a new top-down knowledge compilation algorithm, that
generalizes compilation for propositional formulas to any quantifier-free modulo
theory. This helps, for instance, answer Alice’s inference task involving the
factory machines where she needed to compile the following modulo theory

8 INTRODUCTION

formula (cf. Example 2 and Figure 1.2)

(t > 30) ∨
(
(t > 20) ∧ no_cool

)
(1.11)

We furthermore discuss the complications of modulo theory compilation on the
desired representation properties, and the ability to obtain those properties.
The main difficulty within this setting comes from the presence of implicit logic
connecting multiple atoms. For example while using the linear real arithmetic
background theory, when (x+ y ≤ 0) and (x ≥ 0) are both true, then (y ≤ 0)
must also be true. This statement implicitly holds true regardless of the actual
formula.

1.4 Structure of the Thesis

The topic of this dissertation is exact model counting using knowledge
compilation. The initial required background is provided in Chapter 2.
Additional background information is introduced when necessary in the
background section of each following chapter.

As a starting point, Chapter 3 presents the algebraic journey of the
ProbLog (Fierens et al., 2015) programming language, elaborating on the
connection between inference in the language on the one hand, and counting
and knowledge compilation on the other hand. This also makes clear our primary
motivation behind investigating counting over logical formulas. Additionally,
it provides the specific insight that ProbLog, its DeepProbLog variant that
supports neural network integration (Manhaeve et al., 2018), and its variant
DC-ProbLog (Zuidberg Dos Martires et al., 2023) that supports continuous
variables, can all be generalised under the algebraic framework using algebraic
facts (Kimmig et al., 2011). This chapter thereby contributes to RQ1 and is
based on the following journal article currently under review.

V. Derkinderen, R. Manhaeve, P. Zuidberg Dos Martires, and L.
De Raedt (2023c). “Semirings for Probabilistic and Neural-Symbolic
Logic Programming”. Accepted with minor revision in International
Journal of Approximate Reasoning

After this synthesis we discuss in more detail the additional contributions we
made along this journey, continuing with the contribution to RQ2.1 in the
next chapter.

The focus of Chapter 4 is on the unweighted variant of the counting task.
This chapter explains how to dynamically reduce the counting search space by

STRUCTURE OF THE THESIS 9

exploiting the symmetry present in the counting task’s structure. Empirically,
equipping a model counter with this enhancement resulted in an improved
PAR-2 score and a greater number of solved benchmarks. The publication
listed below forms the basis of this chapter. The discussion at the end, on how
to extend the proposed idea to the weighted- and projected model counting
task variants, is an additional novel contribution not present in the original
publication.

T. van Bremen, V. Derkinderen, S. Sharma, S. Roy, and K. S.
Meel (2021). “Symmetric Component Caching for Model Counting
on Combinatorial Instances”. In: Proceedings of the 35th AAAI
Conference on Artificial Intelligence. AAAI Press, pp. 3922–3930

Chapter 5 proceeds, moving back to the weighted and algebraic counting
variants. This chapter further demonstrates the generality of the algebraic
model counting framework and its algorithms, by adapting it to solve a decision
making task in an uncertain environment. This application is non-trivial as
it involves three operations, (arg)max, sum, and product, rather than the two
operations that algebraic model counting is normally limited to. The chapter
contributes to RQ1 and is based on the following publication:

V. Derkinderen and L. De Raedt (2020). “Algebraic Circuits for
Decision Theoretic Inference and Learning”. In: Proceedings of the
24th European Conference on Artificial Intelligence, ECAI. vol. 325.
IOS Press, pp. 2569–2576. doi: 10.3233/FAIA200392

In contrast to the previous chapters which primarily focus on propositional
logic formulas, Chapters 6 and 7 instead consider knowledge compilation for
the modulo theory setting, addressing RQ2.2 and RQ2.3 respectively. In this
setting, weighted model integration is a relevant counting task (Kolb et al.,
2019b). Chapter 6 investigates the impact of the variable ordering used
during knowledge compilation for such integration tasks. Chapter 7 increases
the theory awareness of the compilation process, proposing a new algorithm
for compiling quantifier-free modulo theory formulas. The two chapters are
respectively based on the following publications.

V. Derkinderen, E. Heylen, P. Zuidberg Dos Martires, S. Kolb,
and L. De Raedt (2020). “Ordering Variables for Weighted Model
Integration”. In: Proceedings of the 36th Conference on Uncertainty
in Artificial Intelligence, UAI. ed. by R. P. Adams and V. Gogate.
Vol. 124. AUAI Press, pp. 879–888

https://doi.org/10.3233/FAIA200392

10 INTRODUCTION

V. Derkinderen, P. Zuidberg Dos Martires, S. Kolb, and P. Morettin
(2023d). “Top-Down Knowledge Compilation for Counting Modulo
Theories”. In: CoRR abs/2306.04541. accepted at Workshop on
Counting and Sampling at SAT 2023. doi: 10.48550/arXiv.2306.
04541

Finally, Chapter 8 concludes this dissertation and provides future research
directions.

All my publications, including those not covered in this dissertation, are listed
at the end.

https://doi.org/10.48550/arXiv.2306.04541
https://doi.org/10.48550/arXiv.2306.04541

Chapter 2

Background

In this chapter we provide the necessary background. We formalize the problem
of model counting, weighted model counting, and the more general algebraic
model counting. Then we introduce the #DPLL algorithm that performs model
counting, and explain how it relates to knowledge compilation.

2.1 Propositional Logic

Propositional logic allows us to formally express propositions precisely, unlike
natural language which may be ambiguous. In this logic, propositions such as
“a burglary triggers an alarm” are encoded using a combination of so-called
atomic propositions, also referred to as propositional variables. These variables
are Boolean, meaning they are either true or false, and we denote them using
uppercase symbols such as X when they are part of a propositional formula.
A propositional formula ψ is used to represent more complex propositions and
is inductively defined as a propositional variable X, a negation of a formula
¬ψ1, a conjunction (meaning ‘and’) of two formulas ψ1 ∧ ψ2, or a disjunction
(meaning ‘or’) of two formulas ψ1 ∨ψ2. We may use parenthesis when necessary
for clarity, but otherwise ¬ binds stronger than ∧ which in turn binds stronger
than ∨. This is similar to the usual convention in mathematics of × binding
stronger than +. We denote all variables involved in formula ψ as vars(ψ), and
use the term literal to refer to a propositional variable or its negation.

Example 3. The proposition “a burglary triggers an alarm”, which we interpret
as “burglary =⇒ alarm”, can be encoded as the propositional formula ¬B ∨A
where B is used to denote a burglary and A denotes the alarm being triggered.

11

12 BACKGROUND

The interpretation m of a propositional formula is a truth assignment to each of
its variables. When convenient we may also represent this assignment as a set
of literals. When given an interpretation m for a formula ψ, we can also assert
the truth of ψ under m, which works as expected: if ψ is a variable X then its
truth is equivalent to the truth assigned to X, if ψ is ¬ψ1 then its truth is the
negation of ψ1’s, if ψ is ψ1 ∧ ψ2 then it is true iff both ψ1 and ψ2 evaluate to
true, and if ψ is ψ1 ∨ ψ2 then it is true iff ψ1 or ψ2 evaluate to true. When ψ is
true under m, formally denoted as m |= ψ, we say m is a model of ψ. When ψ
has no models, we say ψ is unsatisfiable. To denote the set of all models of ψ,
we use Rψ.

Example 4. The interpretation m = {A 7→ true,B 7→ true} is a model of the
previous formula ¬B ∨A, while {A 7→ false,B 7→ true} is not. For brevity, we
may instead represent those interpretations as {A,B} and {¬A,B}.

A propositional theory is a set of propositional formulas, and it is interpreted as
true under m iff each of its formulas is true under m. A clause is a disjunction
of (multiple) literals, e.g. A ∨ ¬B ∨ C. A propositional formula is said to be in
conjunctive normal form (CNF) when it is a conjunction of clauses.

2.2 Model Counting

The problem of determining whether a propositional formula ψ has a model,
i.e., whether |Rψ| > 0 , is called the (Boolean) satisfiability problem (SAT).
Connected to the satisfiability problem is the model counting problem: “given a
propositional formula ψ, the model counting problem, also referred to as #SAT,
seeks to compute the number of satisfying assignments (or models) of ψ, i.e.,
|Rψ|”(van Bremen et al., 2021).

Definition 1 (model count). The model count of a propositional formula ψ
over variables V is the number of models that ψ has over V. Evidently it holds
that the model count lies within the interval [0, 2|V|].

We denote the model count as |Rψ|, implying V = vars(ψ) unless specified
otherwise.

Example 5. A ∨ ¬B has model count three: {A,B}, {A,¬B}, and {¬A,¬B}.

Weighted model counting is a generalisation of model counting where each model
is assigned a weight. Since it would be impractical to define a weight for each
individual model, the weight of a model m is commonly defined as the product
of the weight of each literal l in that model:

∏
l∈m w(l).

MODEL COUNTING 13

Definition 2 (weighted model count (WMC)). Given a propositional formula
ψ over variables V, and a weight function w mapping each literal to a real, the
weighted model count is

WMC(ψ,V, w) =
∑
m|=ψ

∏
l∈m

w(l) (2.1)

Example 6 (weighted model count). Given formula ψ = A ∨ ¬B over V =
{A,B}, and weight function w = {A 7→ 0.2,¬A 7→ 1, B 7→ 0.5,¬B 7→ 2}, the
weighted model count is 2.5.

WMC(ψ,V, w) = (0.2× 0.5) + (0.2× 2) + (1× 2) = 2.5

Applications of weighted model counting include probabilistic inference, which
we discuss in more detail in Chapter 3 and 5.

Algebraic model counting generalizes model counting even further, replacing the
addition and product operations with commutative semiring operations (Kimmig
et al., 2017). From Derkinderen and De Raedt (2020),

Definition 3 (commutative semiring). A commutative semiring S is an
algebraic structure (A,⊕,⊗, e⊕, e⊗) where

• A defines the domain of the values,
• ⊕ and ⊗ are associative, commutative binary operations over A,
• ⊗ distributes over ⊕,
• e⊗ ∈ A and ∀a ∈ A : e⊗ ⊗ a = a, i.e., e⊗ is a neutral element for ⊗.
• e⊕ ∈ A and ∀a ∈ A : e⊕ ⊕ a = a and e⊕ ⊗ a = e⊕, i.e., e⊕ is a neutral

and absorbing element for ⊕ and ⊗ respectively.

The semiring relevant to (weighted) model counting is (R,+,×, 0, 1), and the
one for satisfiability problems is (B,∨,∧,⊥,>), where ⊥ is the symbol for ‘false’,
and > is the symbol for ‘true’. From Derkinderen and De Raedt (2020),

Definition 4 (algebraic model count (AMC)). Given a propositional formula ψ
over variables V, a commutative semiring S = (A,⊕,⊗, e⊕, e⊗), and a weight
function w mapping each literal to an element of A, the algebraic model count
(Kimmig et al., 2017) is

AMC(ψ,V,S, w) =
⊕
m|=ψ

⊗
l∈m

w(l) (2.2)

14 BACKGROUND

Example 7 (algebraic model count). Suppose semiring S = (R,max,×, 0, 1),
formula ψ = A ∨ ¬B and w = {A 7→ 1,¬A 7→ 2, B 7→ 3,¬B 7→ 4} then
AMC(ψ,V,S, w) = 8, the highest weight out of all models of ψ.

AMC(ψ,V,S, w) = max
(
(1× 3), (1× 4), (2× 4)

)
= 8

By selecting the correct semiring and labeling function, several tasks can
be cast into an AMC task, including sensitivity analysis and computing
gradients (Kimmig et al., 2017). In Chapter 5 we adapt this framework to
perform decision making in an uncertain environment.

Constraint programming. The Boolean satisfiability (SAT) problem is focused
on propositional logic formulas. The larger field of constraint programming also
encompasses other types of constraints. For example, integer linear programs
(ILP) more generally contain linear constraints over integers. Satisfiability in a
0−1 ILP specifically, where the integers are limited to 0 or 1, is an NP-complete
problem (Karp, 1972). Hence, they are poly-time reducible to SAT problems
and vice versa. In contrast, model counting is a counting task (as opposed to a
decision or optimisation task) and is as such not directly comparable. However,
the algorithms developed for counting do relate to the algorithms developed for
satisfiability or optimization. That is, the #DPLL algorithm that is explained
in the next section relates to the branching algorithms used for solving ILPs, like
the branch-and-bound based algorithms (Morrison et al., 2016). Consequently,
our contributions to model counting, like those discussed later in Chapter 4,
may also contribute to other areas of constraint programming.

2.3 Counting via the #DPLL Algorithm

The problem of model counting, both in its unweighted and weighted form,
serves as a well-known example of the #P-complete complexity class (Valiant,
1979a). Chances of finding a polynomial-time algorithm for model counting
are therefore believed to be slim, since it would proof P = NP, which is widely
regarded to be unlikely. This issue has also been observed in practice when
trying to scale to larger counting problems. However, over the years many more
instances have become solvable in practice by algorithms exploiting the structure
present in the instances. The #DPLL algorithm is a counting algorithm that
does exactly that. We discuss a basic version of this algorithm, extended with
component caching. In Chapter 4 we contribute an improvement to it. Parts of
Section 2.3.2 are based on our publication discussed in Chapter 4 (van Bremen
et al., 2021).

COUNTING VIA THE #DPLL ALGORITHM 15

2.3.1 The Basic #DPLL Algorithm

The Davis–Putnam–Logemann–Loveland algorithm, DPLL for short, was
designed to address satisfiability problems (Davis et al., 1962; Davis and Putnam,
1960). The algorithm assumes that formula ψ is in conjunctive normal form
(CNF), i.e., a conjunction of clauses. When this is not the case ψ must first be
transformed, using for example the Tseitin transformation algorithm (Kuiter
et al., 2023; Tseitin, 1983).

Roughly, the DPLL algorithm works by iteratively branching on literals l until
ψ is satisfied or until a conflict occurs. In case of the latter, the algorithm
backtracks and tries an opposite literal ¬l. Consider what happens when
conditioning on literal l, using the following example.

Example 8 (conditioning). Consider the CNF formula ψ depicted below
without the ∧ operator that is implicitly present between the two clauses. When
conditioning C to be true, denoted as ψ|C , then the second clause ¬B ∨ C
becomes satisfied and the first clause is transformed into A ∨B. Indeed, then
¬C evaluates to false and the first clause can only be satisfied through A ∨B.

ψ

{
A ∨B ∨ ¬C
¬B ∨ C

ψ|C
{
A ∨B

The basic DPLL algorithm. A basic DPLL algorithm is shown in Algorithm 1.
First it checks whether any of the clauses is empty, in line 2. An empty clause
indicates that a conflict occurred, i.e., that our current truth assignments have
made it impossible for the clause, and by consequence the whole ψ, to be
satisfied. Hence, false is returned. In contrast, when no clauses remain at
all, i.e., all are satisfied, the current (partial) assignment forms a model of
ψ and true is returned (line 4). For instance after conditioning on C and B
in the previous example, all clauses of ψ are satisfied. This means {B,C,A}
and {B,C,¬A} are both models of ψ, positively addressing the satisfiability
question of whether there exists a model for ψ. In line 6 a variable is selected
and in line 7 the actual conditioning and branching occur. Note for the final
line that the lazy or-operator will first perform DPLL(ψ|l) and only when that
assignment fails, i.e., false was returned, only then is the second argument
DPLL(ψ|¬l) computed.

The DPLL algorithm has been significantly researched and extended over the
years. For example, a variety of variable selection heuristics have been developed
(line 6) (Bliem and Järvisalo, 2019; Lagniez and Marquis, 2017; Sang et al.,
2005; Sharma et al., 2019; Vaezipoor et al., 2021). Also worth mentioning is
unit propagation: when a clause becomes unit, meaning it only has one literal

16 BACKGROUND

Algorithm 1: Basic DPLL algorithm
1 function DPLL(ψ):
2 if ψ contains empty clause then
3 return false
4 else if ψ contains no clauses then
5 return true
6 pick a literal l in ψ
7 return DPLL(ψ|l) or DPLL(ψ|¬l)

Algorithm 2: Basic #DPLL algorithm
1 function #DPLL(ψ, w):
2 if ψ contains empty clause then
3 return 0
4 else if ψ contains no clauses then
5 return

∏
unassigned variable v(w(v) + w(¬v))

6 pick a literal l in ψ
7 return #DPLL(ψ|l, w)× w(l) + #DPLL(ψ|¬l, w)× w(¬l)

X left, then assigning ¬X definitely leads to a conflict and we should instead
assign X to be true. The assignment of X may introduce more unit clauses,
causing even more literals to be assigned. This optimisation, of assigning and
propagating unit clause literals, reduces the exploration of invalid assignments
and is used by all modern solver implementations.

The basic #DPLL algorithm. While the DPLL algorithm is designed to
address the satisfiability problem, a slight adaptation of the algorithm, which
we refer to as #DPLL, can be used to address (weighted) model counting
problems (Birnbaum and Lozinskii, 1999). In Algorithm 2 we have replaced
return false and true to instead return weighted model counts. When an
assignment leads to a satisfied ψ, it returns 1. When the assignment is
partial the weights of the unassigned variables must be considered, i.e., return∏

unassigned variable v(w(v) +w(¬v)). In line 7 the weight of each assignment l is
incorporated.

CDCL. Conflict-driven clause learning (CDCL) is a variant of the DPLL
algorithm through which the solving of many practical satisfiability problems
became feasible (Sang et al., 2004; Schrag, 1997; Silva and Sakallah, 1996).
This variant analyses the cause of conflicts, learns from it and, in contrast to

COUNTING VIA THE #DPLL ALGORITHM 17

DPLL which backtracks to the previous assignment, back jumps to an earlier
assignment that caused the conflict. This efficiently avoids exploring many
invalid assignments, and all modern satisfiability solvers and model counters
based on search have adopted this optimisation. The CDCL algorithm can
also be used for counting, similar to how DPLL was extended to #DPLL. In
this dissertation we do not differentiate between the #DPLL and the #CDCL
algorithm, i.e., the statements that concern #DPLL are also applicable to
#CDCL unless stated otherwise.

2.3.2 #DPLL with Component Caching

As previously mentioned, the #DPLL algorithm and its CDCL variant have
seen several optimisations. Arguably one of the most impactful optimizations for
model counting specifically has been component caching (Bacchus et al., 2003;
Sang et al., 2004). Component caching identifies subformulas (or components)
that can be solved independently and memoizes them, allowing for a shallower
search tree.

Definition 5 (component). Consider a partitioning of a formula ψ into sets
of clauses ψ = C1 ∪ · · · ∪ Cn such that vars(Ci) ∩ vars(Cj) = ∅ for i 6= j. Then
each Ci is called a component of ψ, and we have |Rψ| =

∏n
i=1 |RCi |.

Example 9 (component). Consider the formula ψ and its conditioning ψ|B :

ψ



A ∨ ¬C

¬A ∨ ¬B ∨ C

D ∨ ¬E

¬D ∨ E ∨B

ψ|B


A ∨ ¬C

¬A ∨ C

D ∨ ¬E

The first two clauses of ψ|B do not share any variables with the third clause. This
means that ψ|B can be split up into the two components C1 = {A∨¬C,¬A∨C}
and C2 = {D ∨ ¬E} such that |Rψ|B | = |RC1 ||RC2 |.

To more clearly illustrate the computational advantage of decomposing ψ into
components C1 and C2, consider that ψ implies checking 2|vars(ψ)| assignments
while by decomposing we must only check 2|vars(C1)| + 2|vars(C2)| assignments.
This high-level intuition also explains why decomposing ψ does not provide the
same significant benefit to solving satisfiability problems as it does with solving
counting problems, because the satisfiability problems are only concerned with
finding just one model.

18 BACKGROUND

Algorithm 3 illustrates the basic #DPLL algorithm from before but now includes
unit propagation and component decompositioning. While the combination of
component decompositioning with clause learning and backjumping (CDCL)
has proven to be beneficial in practice (Sang et al., 2004), we exclude it from
our discussion as it is not important to illustrate our contributions. In our
implementation of Chapter 4 we do employ the combination. Also note that
Algorithm 3 performs unweighted model counting. A weighted version is possible
through minor adaptations, but it is unnecessary for Chapter 4 that focuses on
unweighted counting.

As illustrated in the previous example and seen in the algorithm, component
decompositioning (line 20) is not restricted to the algorithm’s beginning and
can instead be performed after every literal assignment, more specifically after
unit propagation (line 12). Component decompositioning is usually also paired
with caching: when a component is solved, it is stored alongside its model count
(line 8) so that when an identical component is encountered later in the search
tree the cached value can be reused (line 3).

Algebraic model counting. It turns out that the #DPLL algorithm can also
easily be used to perform algebraic model counting. After adapting the algorithm
to perform weighted model counting, update the weights of each literal and
replace the operations + and × with ⊕ and ⊗ respectively.

2.4 Counting via Knowledge Compilation

We now discuss the topic of knowledge compilation and start by reiterating that
model counting is #P-complete in general (Valiant, 1979a). There is however a
class of formula representations where counting is tractable: the class of (s)d-
DNNF formulas (Darwiche and Marquis, 2002). Compiling any formula into
such a form is being studied in the field of knowledge compilation. Even though
counting via d-DNNF compilation may appear as a very different approach
compared to using the #DPLL algorithm, the two are actually strongly related
as the search trace of the #DPLL algorithm forms a d-DNNF representation.

We first elaborate on the d-DNNF and sd-DNNF class in Section 2.4.1, before
elaborating more on the connection with #DPLL in Section 2.4.2. Finally,
in Section 2.4.3, we briefly discuss decision diagrams that belong to the d-
DNNF class but are compiled using a different approach than the traces of
a #DPLL algorithm. Section 2.4.3 is based on our publication discussed in
Chapter 5 (Derkinderen and De Raedt, 2020).

COUNTING VIA KNOWLEDGE COMPILATION 19

Algorithm 3: #DPLL algorithm with component caching.
1 function GetModelCount(ψ):
2 if ψ in cache then
3 return CacheGet(ψ)
4 else
5 pick a literal l in ψ
6 |Rψl | ← CountConditioned(ψ, l)
7 |Rψ¬l | ← CountConditioned(ψ, ¬l)
8 CacheInsert(ψ, |Rψl |+ |Rψ¬l |)
9 return |Rψl |+ |Rψ¬l |

10 end
11 function CountConditioned(ψ, l):
12 ψl ← propagate units on ψ|l
13 if ψl contains empty clause then
14 return 0
15 else if ψl contains no clauses then
16 v ← number of unassigned variables in ψl
17 return 2v
18 else
19 |Rψl | ← 1
20 C ← DisjointComponents(ψl)
21 for Ci ← C do
22 |Rψl | ← |Rψl | × GetModelCount(Ci)
23 end
24 return |Rψl |
25 end

2.4.1 sd-DNNF Formulas

The class of sd-DNNF formulas is composed of those that satisfy the following
properties: smooth (s), deterministic (d), decomposable (D), and are in negation
normal form (NNF) (Darwiche and Marquis, 2002).

Definition 6 (negation normal form (NNF)). A formula ψ is in negation
normal form iff negation only occurs on the literals in ψ, and the only other
Boolean operators are ∧ and ∨.

Definition 7 (deterministic). An NNF formula ψ is deterministic iff for all
disjunctions

∨
i αi in ψ, the disjuncts are pairwise logically inconsistent, i.e.,

αi ∧ αj is unsatisfiable for each i 6= j.

20 BACKGROUND

Definition 8 (decomposable). An NNF formula ψ is decomposable iff for all
conjunctions

∧
i αi in ψ, no variables are shared between the conjuncts, i.e.,

vars(αi) ∩ vars(αj) = ∅ for each i 6= j.

Definition 9 (smooth). An NNF formula ψ is smooth iff for all disjunctions∨
i αi in ψ, each disjunct αi contains the same variables, i.e., vars(αi) =

vars(αj).

The weighted model count of a formula ψ in sd-DNNF can be computed in time
linear in the size of the representation. Since smoothness can be obtained in
polynomial time when ψ is a d-DNNF (Darwiche and Marquis, 2002; Shih et al.,
2019), we consider the d-DNNF properties as most important and primarily
focus on obtaining those. The procedure to obtain the weighted model count of
an sd-DNNF formula consists of replacing each literal l with its weight w(l),
and each ∨ and ∧ with + and × respectively. This results in a computational
graph that, when evaluated bottom-up, exactly yields the weighted model
count (Darwiche, 2000). We call the computational graph resulting from this
procedure an arithmetic circuit (Darwiche, 2002). This procedure is not just
limited to weighted model counting but is also applicable to the algebraic variant
by replacing each ∨ and ∧ with the semiring operations ⊕ and ⊗ respectively.
We refer to Kimmig et al. (2017) for a formal exposition on why this works.

Example 10. The propositional formula (B ∨ C) ∧ (¬B ∨ A) satisfies the
NNF property but is neither deterministic, nor decomposable, nor smooth. It is
not deterministic because, for example, B and C in (B ∨ C) are not logically
inconsistent. It is not decomposable because B occurs in both branches of the
∧-node. It is not smooth because, for example, the branches of (B ∨ C) do
not mention the same set of variables. In contrast, Figure 2.1a illustrates a
logically equivalent formula that does satisfy the d-DNNF properties (but is
not smooth because of the bottom left ∨-node). Figure 2.1b shows the same
representation after its transformation into an arithmetic circuit, that can be
used to compute the weighted model count (while smoothing during the evaluation
of the representation as to account for w(C) + w(¬C)).

2.4.2 Traces of the #DPLL Algorithm

The traces of the #DPLL algorithm introduced in Section 2.3 form a d-DNNF
formula (Darwiche, 2004; Huang and Darwiche, 2005):

decision Each decision in the #DPLL algorithm corresponds to a deterministic
∨-node (X ∧ ψ|X) ∨ (¬X ∧ ψ|¬X) of which the inner ∧-nodes are
decomposable.

COUNTING VIA KNOWLEDGE COMPILATION 21

∨

∧

C ∨

¬B ∧

B A

∧

¬C

(a) d-DNNF

+

×

w(C) +

w(¬B) ×

w(B) w(A)

×

w(¬C)

(b) arithmetic circuit

Figure 2.1: A d-DNNF and arithmetic circuit representation of the propositional
formula (B ∨ C) ∧ (¬B ∨A).

propagation By determining literal X through (unit) propagation on ψ, the
algorithm produces a decomposable ∧-node of the form X ∧ ψ|X .

component decompositioning The component decompositioning introduced
before decomposes ψ into independent components C1, . . . , Cn that by
definition do not share any variables. This results in a decomposable
∧-node C1 ∧ · · · ∧ Cn (slightly abusing notation since Ci is a set of clauses).

The traces are also in negation normal form since the only operands are {∧,∨,¬}
and negation only occurs on the literal leaf nodes.

The formulas produced by the traces of a #DPLL algorithm belong to a subclass
of d-DNNF, namely Decision-DNNF. The Decision in this class refers to the fact
that all ∨-nodes are of a specific form, namely (X ∧ ψ|X) ∨ (¬X ∧ ψ¬X) with
X a propositional variable (Darwiche and Marquis, 2002; Oztok and Darwiche,
2014).

Knowledge compilers that are based on amortizing the trace of a #DPLL
algorithm are also called top-down knowledge compilers. Examples include
c2d (Darwiche, 2004), dSharp (Muise et al., 2012), miniC2D (Oztok and
Darwiche, 2015), D4 (Lagniez and Marquis, 2017), and sharpSAT-TD (Kiesel
and Eiter, 2023).

This connection between the #DPLL algorithm and knowledge compilation
also makes clearer how these procedures operate: they essentially solve the
weighted model counting equation by applying distributivity, associativity, and

22 BACKGROUND

commutativity to drastically reduce the number of required computations. This
is the mathematical view. However, they recognize that formula ψ dictates the
computations and therefore take a more logical perspective instead (Derkinderen
et al., 2023c).

2.4.3 Decision Diagrams

Opposite to top-down compilers are bottom-up compilers, which, as the name
implies, process a formula ψ from the bottom of its expression to the top.
Suppose for example that ψ is (A ∨ ¬B) ∧ (¬A ∨ C). In this case, a bottom-up
compiler would first represent the two conjuncts (here each a disjunction) before
performing the conjunction operation itself. This process implies the existence
of an apply-operation defined for the target language.

Ordered binary decision diagrams (Bryant, 1986) and sentential decision
diagrams (Darwiche, 2011) are two examples of target languages that
are subclasses of d-DNNF and for which bottom-up compilers have been
developed (Choi and Darwiche, 2013; Somenzi, 1997).

A sentential decision diagram (SDD) represents a propositional logic formula
and is either a constant (true > or false ⊥), a literal or a decomposition node
{(p1, s1), . . . , (pn, sn)}. The latter represents

∨n
i=1 pi ∧ si with pi and si both

SDDs. A decomposition node is an ∨-node that partitions the theory into
disjoint children (pi, si) called the elements of the decomposition node. Each
element is graphically represented as a paired box where the left and right
boxes are respectively called the prime pi and sub si (cf. Figure 2.2). The
pair (pi, si) represents a conjunction of both (∧-node). si represents the parent
theory conditioned on pi (cf. Example 11). The disjointness of the elements is
specifically caused by the prime of each element, i.e., ∀i 6= j : pi ∧ pj = ⊥. For
a more thorough explanation of the decomposition we refer to Darwiche (2011).

Example 11. The root r in Figure 2.2 represents the propositional formula
ψ = (A ∧ B) ∨ (C ∧ D) ∨ (B ∧ C). Call the children of r, from left to right,
r1, r2 and r3 and the formula they represent 〈r1〉, 〈r2〉 and 〈r3〉. The prime of r1
represents ¬B, and the sub of r1 represents ψ conditioned on ¬B which equals
C ∧ D. The conjunction of both the prime and sub of r1 forms the formula
〈r1〉 = ¬B ∧ C ∧D. The formula of r is the disjunction of each of its children:
〈r〉 = ψ = 〈r1〉 ∨ 〈r2〉 ∨ 〈r3〉.

A vtree is a full binary tree where each SDD variable appears in a leaf node
(Figure 2.3). Denote with vl and vr the left and right subtree of vtree v. A vtree
guides the construction of an SDD by determining the variables present in the
primes and subs of each SDD node. When node {(p1, s1), . . . , (pn, sn)} respects

COUNTING VIA KNOWLEDGE COMPILATION 23

5

C D ¬C⊥

3

¬B C ⊤

1

¬A B A ⊥

1

A B ¬A⊥

Figure 2.2: A sentential decision diagram representing propositional formula
(A ∧B) ∨ (C ∧D) ∨ (B ∧C). A circle represents an ∨-node, while a paired-box
represents an ∧-node consisting of two children: the prime and sub.

vtree node v, the variables in each pi and si are determined by respectively
the variables in vl and vr, and each pi (si) respects vl (vr). Graphically, the
number in the decomposition node refers to the vtree node that it respects
(Figure 2.2 and 2.3). The following is the formal SDD definition introduced
by Darwiche (2011). The definition uses 〈α〉 to denote the boolean function
represented by the SDD α.

Definition 10 (sentential decision diagram (SDD)). α is an SDD that respects
vtree v iff:

- α = ⊥ or α = >.
Semantics: 〈⊥〉 = false and 〈>〉 = true.

- α = X or α = ¬X and v contains variable X.
Semantics: 〈X〉 = X and 〈¬X〉 = ¬X.

- α = {(p1, s1), . . . (pn, sn)}, v is internal, p1, . . . , pn are SDDs that respect
the subtrees of vl, s1, . . . , sn are SDDs that respect the subtrees of vr, and
〈p1〉, . . . , 〈pn〉 is a partition.
Semantics: 〈α〉 =

∨n
i=1〈pi〉 ∧ 〈si〉.

Example 12. We denote the root node in Figure 2.2 as r and the root of the
vtree in Figure 2.3 as v. The primes of r only involve A and B since vl only
contains A and B. The subs of r only involve C and D since vr only contains
C and D. We say r respects v (node label 3).

24 BACKGROUND

1

A
0

B
2

3

5

C
4

D
6

Figure 2.3: The vtree used for the sentential decision diagram in Figure 2.2.

The strong determinism (Pipatsrisawat and Darwiche, 2010) and structured
decomposability (Pipatsrisawat and Darwiche, 2008) of SDDs allow for an efficient
apply operation that is key to a bottom-up compiler. For the purpose of this
dissertation we neither discuss in detail these two properties, nor the apply-
algorithm, and instead refer to Darwiche (2011). However, strong determinism
relates to the specific form of the ∨-node where each branch is disjoint because
of the disjointness of the primes, and structured decomposability refers to the
vtree guidance.

Counting via SDD. Because SDD is a subclass of d-DNNF, we can again
replace the ∨-nodes (circle) and ∧-nodes (paired box) in an SDD with
respectively + and ×, and the literals with their weights, to obtain an arithmetic
circuit that represents the weighted model count (after accounting for the
smoothness requirement). Furthermore, when replacing the + and × with the
more general ⊕ and ⊗ operations, and the leaf values with semiring elements,
we obtain what we refer to as an algebraic circuit. The latter circuit can be
used to compute the algebraic model count (Kimmig et al., 2017).

Relation to OBDD. Ordered binary decision diagrams (OBDD), which were
developed prior to SDD, form a subclass of SDD that arise when only
conditioning on single variables (i.e., a right-linear vtree) rather than sentences.
More specifically, they arise when each vtree node v is a Shannon vtree node,
i.e., when each left vtree branch vl only contains a single variable (Oztok and
Darwiche, 2015).

2.5 Background Theories

Chapters 6 and 7 move beyond the limitation of propositional logic to discrete

BACKGROUND THEORIES 25

variables, extending the focus to background theories. In this setting, the
semantics of a formula are extended with additional types of atoms that are
interpreted by specific background theories. The theory most relevant to this
dissertation is linear real arithmetic (LRA). Other notable theories include
(linear) integer arithmetic (LIA) and fixed-size bit vectors (BV). Compared
to a propositional formula, an LRA formula may additionally contain LRA
atoms. More formally,

Definition 11 (LRA formula). (Morettin et al., 2019) An LRA formula ψ is
inductively defined as a propositional formula ψ, a conjunction or disjunction
of two LRA formulas, the negation of an LRA formula ¬ψ, or an LRA atom
of the form

∑
i cixi ./ c with ci, c ∈ R, xi ∈ R, and ./ ∈ {<,>,≤,≥,=, 6=}.

Importantly, this dissertation will only focus on quantifier-free theories, which
is reflected in the previous definition.

Example 13 (LRA formula). Consider the following LRA formula:

[(x ≤ 0) ∨ (x ≥ 1)] ∧ [A ∨ (x ≤ 0)]

As a consequence of the background theory, x ≤ 0 implies ¬(x ≥ 1), even when
this is not explicitly part of the formula representation.

Chapter 3

Probabilistic and
Neural-Symbolic Logic
Programming

This chapter is based on the following submission:

V. Derkinderen, R. Manhaeve, P. Zuidberg Dos Martires, and L.
De Raedt (2023c). “Semirings for Probabilistic and Neural-Symbolic
Logic Programming”. Accepted with minor revision in International
Journal of Approximate Reasoning

The preliminaries in the previous chapter have made clear the connection
between counting and knowledge compilation. In this chapter we discuss in
more detail their application within probabilistic logic programming (PLP), a
field that focuses on integrating probabilistic models into programming languages
based on logic. While originally PLP focused on discrete probabilities, more
recent approaches have incorporated continuous distributions as well as neural
networks, effectively yielding neural-symbolic methods. This chapter provides
an overview and synthesis of this domain, through the 15-year journey of
the ProbLog PLP language (De Raedt et al., 2007) and its variants, thereby
contributing a unified algebraic perspective on the different flavors of PLP.

This chapter contributes to answering the research question:

27

28 PROBABILISTIC AND NEURAL-SYMBOLIC LOGIC PROGRAMMING

RQ1: What tasks can be cast into an algebraic model
counting problem?

The remainder of this chapter is organised as follows: in Section 3.1 we provide a
historical overview of probabilistic logic programming and list the contributions
of this chapter. In Section 3.2 we give a brief introduction to logic programming
and how logic programs can be extended to a wide variety of domains such
as statistical relational AI and neural-symbolic AI. We also show how these
extensions are generalized by the concept of the algebraic fact and the use
of semirings. In Section 3.3 we give a brief explanation of how inference is
performed for algebraic logic programming, and in Section 3.4 we study learning
for such programs. Finally, we give an overview of related work and applications
in Section 3.5, followed by concluding remarks in Section 3.6.

Throughout the chapter we focus on intuitions and on the simplest setting for
PLP based on labeled facts, rather than exhaustively covering all (syntactic)
variations for which we refer to the literature for technical details.

3.1 Introduction

3.1.1 History of Probabilistic Logic Programming

Probabilistic logic programming (De Raedt and Kimmig, 2015; Riguzzi,
2018) integrates probabilistic programming (Goodman et al., 2016) with
logic programming (Flach, 1994; Lloyd, 2012). It has a rich tradition
dating back to the early 1990s. In particular, Dantsin (1990), Ng and
Subrahmanian (1992), Poole (1993) adapted ideas by Nilsson (1986) and
Pearl (1988) on probabilistic graphical models and logics towards a logic
programming framework. Sato (1995) and Poole (1997) then introduced the
ideas of distribution semantics and independent choice logic, respectively, which
allows for the extension of (deterministic) logic programs (Flach, 1994) with
probabilistic facts. Probabilistic facts play a role similar to the parentless nodes
in Bayesian networks: they are marginally independent of one another, and
dependencies are induced by the rules of a logic program. Sato (1995) also
introduced the first learning algorithm for a programming language constituting
– to the best of our knowledge – the first probabilistic programming language
with built-in support for machine learning.

Following the works of Sato and Poole, an explosion happened in probabilistic
logic programming leading to a plethora of inference and learning techniques,
along with extensions of the original distribution semantics (Kersting and

INTRODUCTION 29

De Raedt, 2000; Sato and Kameya, 1997; Vennekens et al., 2004). Some of
these works are concerned with faster inference using knowledge compilation
technology (in ProbLog (De Raedt et al., 2007)) and approximate inference
(Vlasselaer et al., 2015) as well as extensions towards continuous distributions
(Gutmann et al., 2011a), the use of semirings (Eisner and Filardo, 2010; Kimmig
et al., 2011; Orsini et al., 2017), neural networks (Manhaeve et al., 2018; Yang
et al., 2020), and dynamics (Vlasselaer et al., 2016). For a broad overview of
probabilistic logic programming and related techniques we refer the reader to
(Riguzzi, 2018) and (De Raedt and Kimmig, 2015).

It is noteworthy that in parallel to the developments in probabilistic logic
programming, similar advances were made in the field of probabilistic relational
databases (Van den Broeck, Suciu, et al., 2017). Just like for probabilistic logics,
the idea of probabilistic databases dates back to the mid-eighties (Barbará
et al., 1992; Cavallo and Pittarelli, 1987; Gelenbe and Hebrail, 1986) and has
consequently been developed since (Antova et al., 2006; Benjelloun et al., 2006;
Dalvi and Suciu, 2007; Fuhr, 1995; Fuhr and Rölleke, 1997; Grohe et al., 2022;
Lakshmanan et al., 1997; Olteanu et al., 2009).

3.1.2 Synthesizing Probabilistic Logic Programming Varia-
tions

The key contribution of this chapter is the insight that many extensions of the
basic PLP framework can be cast within a unified algebraic logic programming
framework (Eisner and Filardo, 2010; Kimmig et al., 2011), in which the
standard probability semiring is replaced by another, sometimes special purpose
semiring.

Replacing the probability semiring with an arbitrary semiring allows us to
generalize probabilistic logic programming towards many other inference and
learning tasks. This is akin to the use of semirings in graphical models, in which
the sum-product algorithm can be replaced by a max-product to obtain the
most probable state instead of the probability.

To provide evidence for our claim we provide a synthesis of the many variants of
the ProbLog language (De Raedt et al., 2007) that were developed in the 15-year
journey in probabilistic logic programming. More specifically, we will introduce
a unified semiring framework that generalizes probabilistic logic programming
to an algebraic logic programming framework with corresponding inference and
learning algorithms based on semirings. We will also show how to obtain 1) pure
Prolog, that is definite clause logic, 2) ProbLog, the extension of Prolog with
the probabilistic facts, 3) DeepProbLog, an extension of ProbLog with neural

30 PROBABILISTIC AND NEURAL-SYMBOLIC LOGIC PROGRAMMING

predicates, and 4) DC-ProbLog, an extension of ProbLog towards continuous
distributions, as special cases of the unified framework. The key advantage
of casting these PLP frameworks with a unified algebraic PLP framework is
that it leads to a surprisingly simple synthesis of different complex language
constructs. Furthermore, it turns out that – just like for the sum-product and
max-product algorithms of graphical models – a single semiring-based algorithm
can be used for inference and learning with all these frameworks. While the
use of semirings in PLP is not new (Eisner and Filardo, 2010; Kimmig et al.,
2017; Orsini et al., 2017), it is the first time that it is used to describe the four
frameworks mentioned above in a unified way.

3.2 From Logic Programs to Algebraic Logic Pro-
grams

We will first introduce definite clause logic, which forms the basis of logic
programming and the programming language Prolog. Afterwards we will
consider variations in which facts are labeled, that are used in probabilistic and
neural-symbolic logic programs.

3.2.1 Logic Programming

Logic programming is based on definite clauses. These are expressions of the
form h :– b1, ..., bN where h and bi are logical atoms. A logical atom a(t1, ..., tK)
consists of a predicatesymbol a of arity K (often denoted a/K), followed by
K terms ti. Terms then are either constants, logical variables, or structured
terms of the form f(t1, ..., tL) with f a functor and the ti terms. A clause of
the form h :– b1, ..., bN states that h is true whenever all bi’s are true. When
N = 0, the clause is a fact and it is assumed to be true. A substitution θ is
an expression of the form {V1 = t1, . . . , VN = tN} where the Vi are different
variables and the ti’s are terms. Applying a substitution θ to an expression
e (term or clause) yields the instantiated expression eθ where all variables Vi
in e have been replaced by their corresponding terms ti in e. For example,
applying the substitution θ = {X = ann, Y = bob} to parent(X,Y) results in
parent(ann,bob). When an expression does not contain any variables, it is
called ground. Logic programs consist of two main components: 1) a set of
facts F that define the atoms that are considered true, and 2) a set of rules (or
clauses) C that allow the program to derive new atoms from the given set of facts
through resolution. A logic program combined with its semantics defines the
entailment relationship (|=), which defines all the atoms that can be derived

FROM LOGIC PROGRAMS TO ALGEBRAIC LOGIC PROGRAMS 31

using the given facts and rules. For further details on logic programming, we
refer to Flach (1994).

Facts are a basic constituent of logic programs, they represent atoms that
are true. We will now show how they can be extended to cope with discrete,
continuous, neural, and algebraic labels that form the basis of modern PLP.

3.2.2 Probabilistic Facts

The probabilistic fact is a generalisation of the logic fact, in which the fact is
annotated with a probability of being true instead of being deterministically
true. This lifts logic programming to probabilistic logic programming (PLP).

Definition 12 (probabilistic fact). A probabilistic fact is an expression of the
form p :: f where f is a ground fact that is true with a probability p ∈ [0, 1].

Introducing the probabilistic fact to the logic programming language Prolog
resulted in the PLP language ProbLog (De Raedt et al., 2007).

Definition 13 (ProbLog program). A ProbLog program is a triple (F , w, C)
where F is a set of probabilistic facts, w is a function mapping each ground
probabilistic fact f ∈ F to its probability p, its negation ¬f to 1− p, and C is a
set of definite clauses. Syntactically, for each probabilistic fact p :: f in F , the
symbol f must be unique (with respect to F), and must not appear as the head
h of any definite clause in C.

Example 14 (Bayesian network). The ProbLog program below models a variant
of the well-known sprinkler Bayesian network. It contains three probabilistic
facts and three rules.

1 % Probabilistic facts
2 0.25 :: cloudy.
3 0.8 :: humid.
4 0.5 :: sprinkler.
5

6 % Rules
7 rain :- cloudy, humid.
8 wet :- rain.
9 wet :- sprinkler.

When considering all probabilistic facts in a program, the probability that a set
of probabilistic facts F ′ ⊆ F is true, and all other facts in the program (F \ F ′)

32 PROBABILISTIC AND NEURAL-SYMBOLIC LOGIC PROGRAMMING

false, is given by (Kimmig et al., 2017):

PF (F ′) =
(∏
fi∈F ′

w(fi)
)(∏

fi∈F\F ′
(1− w(fi))

)
(3.1)

A set of facts F ′ ⊆ F of a program, combined with the rules C again form a
deterministic program. In this way, the probabilistic facts induce a probability
distribution over all the deterministic programs. The set of all atoms that are
entailed to be true from F ′ and C together is often referred to as a possible
world.

Example 15 (possible worlds). Consider the ProbLog program in Example 14.
The set of all ground probabilistic facts F is {cloudy, humid, sprinkler}. An
example F ′ is {cloudy, humid} ⊂ F , which has probability

PF (F ′) = (0.25× 0.8)× (1− 0.5) = 0.1 (3.2)

The possible world entailed by F ′ in the ProbLog program is the set

{cloudy, humid, rain, wet} (3.3)

A different F ′ would lead to a different possible world; the table below shows all
the possible worlds of this ProbLog program along with their probability.

Possible world PF (F ′)
{} 0.075
{cloudy} 0.025
{humid} 0.3
{cloudy, humid, rain, wet} 0.1
{sprinkler, wet} 0.075
{sprinkler, cloudy, wet} 0.025
{sprinkler, humid, wet} 0.3
{sprinkler, cloudy, humid, rain, wet} 0.1

Definition 14 (success probability). The success probability P (G) of a query G
considers all possible worlds in which G is entailed, and sums their probabilities.

P(F,w,C)(G) =
∑
F ′⊆F

F ′∪C |=G

PF (F ′) (3.4)

=
∑
F ′⊆F

F ′∪C |=G

(∏
fi∈F ′

w(fi)
)(∏

fi∈F\F ′
(1− w(fi))

)
(3.5)

FROM LOGIC PROGRAMS TO ALGEBRAIC LOGIC PROGRAMS 33

Example 16. The success probability for query G = wet considers all possible
worlds where G is true (those with a bold probability in Example 15’s table):
P (wet) = 0.1 + 0.075 + 0.025 + 0.3 + 0.1 = 0.6

3.2.3 Neural Facts

Just like the probabilistic fact is a generalisation of the fact, the neural fact is a
generalisation of the probabilistic fact. Instead of the probability being fixed,
or treated as a single learnable parameter, the probability of the neural fact is
parameterized by a neural network. This allows for the introduction of a neural
probabilistic logic programming language, which is a type of neural-symbolic
integration. One of the simplest forms of the neural fact is where its probability
is defined by a neural network binary classifier. Introducing this neural fact to
the ProbLog language leads to the introduction of DeepProbLog (Manhaeve
et al., 2021a).

Definition 15 (neural fact). A neural fact is an expression of the form

nn(nr, [x1, . . . , xk]) :: r(x1, . . . , xk).

where r is a predicate symbol, nn is a reserved functor, nr uniquely identifies a
neural network model that defines a probability distribution over the Boolean
domain {true, false}, conditioned on the ground inputs to the neural network
x1, . . . , xk.

The semantics of the neural fact are defined in terms of the semantics of regular
probabilistic facts. A neural fact of the form nn(nr, [x1, . . . , xk]) :: r(x1, . . . , xk)
represents a probabilistic fact fnr(x1, . . . , xk) :: r(x1, . . . , xk) where fnr is the
function defined by network nr.

Example 17 (neural fact). Extending on Example 14, we can use a neural
network to predict whether the day will be cloudy, based on additional information
that is provided, such as pressure and temperature.

1 nn(cloudnet, [18◦C, 998hPa]) :: cloudy(18◦C, 998hPa).
2 0.8 :: humid.
3 0.5 :: sprinkler.
4

5 % Rules
6 rain(T,P) :- cloudy(T,P), humid.
7 wet(T,P) :- rain(T,P).
8 wet(_,_) :- sprinkler.

34 PROBABILISTIC AND NEURAL-SYMBOLIC LOGIC PROGRAMMING

We can now query this model for the probability of wet, given a certain
temperature and pressure: P (wet(18◦C, 998 hPa)).

The concept of the neural fact, which can be used to encode binary classifiers, can
be extended to the neural annotated disjunction in order to encode multiclass
classifiers. For more details, we refer to Manhaeve et al. (2021a).

3.2.4 Distributional Facts and Indicator Facts

As ProbLog and DeepProbLog only allow for (neural) probabilistic facts, they
are inherently restricted to discrete random variables. We alleviate this by
introducing so-called distributional facts and indicator facts1 (Zuidberg Dos
Martires et al., 2023).

Definition 16 (distributional fact). A distributional fact is of the form x ∼ d,
with x being a ground term, and d a ground term whose functor denotes a
probability distribution. The distributional fact states that the ground term x is
a random variable distributed according to d.

Definition 17 (indicator fact). An indicator fact is an expression of the form
σ :: f where f is a ground fact labeled with a measurable set σ.

Similar to probabilistic facts in regular ProbLog programs (cf. Definition 13),
we require from each indicator fact σ :: f that f is unique across all facts, and
does not occur in the head of any clause. Also for each distributional fact x ∼ d,
x must be unique.

Example 18. We rewrite the program in Example 14 using distributional and
indicator facts. Note how the program separates into two layers. On the one
hand, we have the distributional facts that define how random variables are
distributed. On the other hand, we have logical rules. The link between the two
layers is made by the indicator facts that are each labeled with a measurable set
using the random variables introduced by the distributional facts.

1 % Distributional facts
2 xc ~ flip(0.25).
3 xh ~ flip(0.8).
4 xs ~ flip(0.5).
5

6 % Indicator Facts

1Zuidberg Dos Martires et al. (2023) implicitly introduced indicator facts by means of
Boolean comparison predicates.

FROM LOGIC PROGRAMS TO ALGEBRAIC LOGIC PROGRAMS 35

7 [xc = 1]::cloudy.
8 [xh = 1]::humid.
9 [xs = 1]::sprinkler.

10

11 % Rules
12 rain :- cloudy, humid.
13 wet :- rain.
14 wet :- sprinkler.

Example 19. In Example 14 and Example 18 we modeled the humidity as a
Boolean random variable. Extending ProbLog with continuous random variables
allows us now to model the humidity as a continuous variable. Using, for instance,
a beta distribution, we model the relative humidity as a random variable that
takes values in the [0, 1] interval.

1 % Distributional facts
2 xc ~ flip(0.25).
3 xh ~ beta(4,2).
4 xs ~ flip(0.5).
5

6 % Indicator Facts
7 [xc = 1]::cloudy.
8 [xh > 0.6]::humid.
9 [xs = 1]::sprinkler.

10

11 % Rules
12 rain :- cloudy, humid.
13 wet :- rain.
14 wet :- sprinkler.

As we model the humidity as a continuous random variable we use an inequality
instead of an equality in Line 8.

We now define the probability of a query G being true in the distributional
program, similar to Definition 14. This requires a new definition due to the
indicator facts, previously probabilistic facts, that are each associated with an
indicator function σ(·) rather than a probability w. An additional expectation
operator is needed to obtain a probability (cf. Definition 18) because, due to
the indicator functions, the result otherwise would merely represent a set of
random events that are described through those indicators. We illustrate this
in Example 21.

36 PROBABILISTIC AND NEURAL-SYMBOLIC LOGIC PROGRAMMING

Definition 18 (expected success value (Zuidberg Dos Martires et al., 2023)).
The expected success probability P (G) of a query G is given by

P(F,σ,C)(G) = E

 ∑
F ′⊆F

F ′∪C |=G

 ∏
fi∈F ′

σ(fi)

 ∏
fi∈F\F ′

σ(¬fi)


 (3.6)

where σ(·) is a function that maps indicator facts to measurable indicator
functions.

Example 20 (indicator functions). The function σ(·) in Definition 18 maps
the indicator facts from Example 18 to indicator functions as follows:

σ(cloudy) = Jxc = 1K

σ(humid) = Jxh > 0.6K

σ(sprinkler) = Jxs = 1K

σ(¬cloudy) = Jxc = 0K

σ(¬humid) = Jxh ≤ 0.6K

σ(¬sprinkler) = Jxs = 0K

Here we use Iverson brackets J·K to denote the indicator function: whenever the
relation inside an Iverson bracket holds it evaluates to 1. Otherwise, it evaluates
to 0.

Example 21. Using Definition 18 and the fact that we can interchange the
expectation and the summation (Miosic and Zuidberg Dos Martires, 2021;
Zuidberg Dos Martires et al., 2023; Zuidberg Dos Martires et al., 2019b), we
can compute the success probability for the query G = wet in a similar fashion
to Example 16. For the world {cloudy, humid, rain, wet} we get:

E
[
Jxc = 1KJxh > 0.6KJxh = 0K

]
= E

[
Jxc = 1K

]
E
[
Jxh > 0.6K

]
E
[
Jxh = 0K

]
= 0.25× 0.66304× 0.5 = 0.08288

Note that the expectation operator is necessary to map the random event (encoded
with Iverson brackets) to a probability. We can compute in a similar fashion
the probabilities of the remaining worlds.

The program in Example 19 is rather simple in terms of functional dependencies
between random variables. For instance, none of the parameters of any of
the distributions depends on the parameters of another random variable.
Furthermore, the labels of the indicator facts are all univariate. This means,
effectively, that all the random variables are independent of each other, which
allowed us to break down the expectation in Example 21. Note however that

FROM LOGIC PROGRAMS TO ALGEBRAIC LOGIC PROGRAMS 37

Definition 18 is more general and does allow for functional dependencies between
random variables (e.g., when the mean of a normal distribution is a random
variable itself) and also for multivariate labels of indicator facts (e.g., when an
indicator depends on more than one random variable). We refer the interested
reader to Zuidberg Dos Martires et al. (2023) for an in-depth and formal
exposition of such cases. We also note that De Smet et al. (2023) generalize
distributional facts to so-called neural distributional facts, which allows them
to unify neural and discrete-continuous PLP. The main idea is that parameters
of distributional facts are allowed to be the output of neural networks.

3.2.5 Algebraic Facts

The previously introduced concepts of probabilistic fact, neural fact, and
indicator fact can each be generalised into an algebraic fact, a concept first
discussed in aProbLog (Kimmig et al., 2011).
Definition 19 (algebraic fact). An algebraic fact is an expression of the form
a :: f where f is a fact and a is an element of a commutative semiring’s domain.

Recall from Chapter 2, Definition 3, that the commutative semiring is an
algebraic construct that defines a multiplication ⊗ and addition ⊕ operation
over a domain of values. As such, it defines the actual computation that is
executed for a given formula. The properties of the commutative semiring
ensure that the calculated result is correct. As shown in Kimmig et al. (2011),
using a different semiring amounts to solving a different task that used to be
considered separately. We take this idea further and show how using different
semirings allows a single framework to generalize a variety of frameworks that
were originally considered to be distinct.

In this generalisation a program has four components (F , w, C,S) where S is
a commutative semiring and w is a function mapping both facts f and their
negation ¬f to elements of S’s domain A. In contrast to the weight function w
in a regular ProbLog program, the weight of ¬fi may be different from 1−w(fi).
The inference task within such a program is generalised to Equation 3.7. Note
the use of the semiring operations ⊗ and ⊕, which replaced × and +. We also
replaced P(F,w,C)(G) with AMC(F,w,C,S)(G) since it is no longer necessarily a
probability.

AMC(F,w,C,S)(G) =
⊕
F ′⊆F

F ′∪C |=G

(⊗
fi∈F ′

w(fi)
)(⊗

fi∈F\F ′
w(¬fi)

)
(3.7)

Example 22. Consider the program in Example 14. When using the semiring
(R,max,×, 0, 1), the output of the query instead becomes the most probable

38 PROBABILISTIC AND NEURAL-SYMBOLIC LOGIC PROGRAMMING

explanation. Indeed, ⊗ = × means that the weight of a model is still its
probability, and by choosing ⊕ = max the most probable model is selected.

While the example above is also solving a probabilistic task, the algebraic
framework is certainly not restricted to probabilities alone. In fact, the semiring
elements A can be anything as long as we define the proper operations over them:
preference values, distances, weights, tuples, sets, ... Several other extensions
built around this framework include reasoning over second-order queries (Verreet
et al., 2022a), decision making via the expected utility semiring (Derkinderen
and De Raedt, 2020) as shown in Chapter 5, and parameter learning via the
gradient semiring (Kimmig et al., 2011). More information on the latter is
provided in Section 3.4.

Comparing Equation 3.7 to Equation 3.6 we see that the probability of a query
to a discrete-continuous probabilistic program can be formulated in terms of
an algebraic model count as well. Indeed, the structure within the expectation
operator in P(F,σ,C)(G) (Equation 3.6) is equivalent to the structure of an AMC
call (Equation 3.7), resulting in:

P(F,σ,C)(G) = E
[
AMC(F,σ,C,S)(G)

]
(3.8)

A similar formulation is also used by De Smet et al. (2023), Miosic and Zuidberg
Dos Martires (2021), Zuidberg Dos Martires et al. (2023), and Zuidberg Dos
Martires et al. (2019b).

The necessity of the semiring properties originates from the AMC equation,
which inherently does not impose any restrictions on the ordering of the ⊕ and
⊗ operations: commutativity and associativity must therefore hold for both.
Furthermore, the distributivity property, together with the aforementioned
properties, enables the equation to be factorized which allows it to be computed
more efficiently. In contrast, systems wherein the operation ordering does
matter operate with more procedural semantics. As such, the aforementioned
procedure using AMC does not work as is. As an example we refer to Orsini
et al. (2017), where, when the semiring properties are violated, the semantics
rely on the ordering of the (Prolog) rules.

3.3 Inference

We now discuss inference for algebraic logic programs. Inference happens in
three steps: 1) logical inference, 2) translation to an algebraic model counting
problem, 3) calculating the algebraic model count. This pipeline is illustrated
in Figure 3.1. We now discuss each step in detail.

INFERENCE 39

program
with

query

relevant
ground

program

set of
proofs

AMC
problem

weighted
d-DNNF

answer
to query

logical
inference

translation
to AMC

calculate AMC

OR

Figure 3.1: The three step pipeline to perform inference in algebraic logic
programs, consisting of logical inference (Section 3.3.1), translation to an AMC
problem (Section 3.3.2), and finally, solving that problem to obtain the query
answer (Section 3.3.3).

3.3.1 Logical Inference

The first step concerns the logical inference, for which we discern two different
but related approaches.

The first approach is proving, which uses SLD resolution to calculate the set of
all proofs for a query G. SLD resolution uses a backward chaining, goal-oriented
approach. A goal is a sequence of atoms ?– l1, ..., ln. The initial goal is the
query. At each step, the algorithm chooses a clause h :– b1, . . . , bn whose head
h unifies with the first atom l1 in the goal, with the substitution θ, i.e. hθ = l1θ.
The application of resolution yields a new goal, ?–(b1, . . . bn, l2, . . . , lj)θ. This
is repeated until the goal is empty, resulting in a successful proof, or until no
more clauses can be applied, in which case the proof fails. It is possible that
multiple clauses can be applied to a goal, which leads to different branches in
the SLD tree and the possibility of multiple proofs for a single query.

The second approach is to construct the relevant ground program PG. Grounding
replaces each rule c containing variables {V1, ..., Vk} by all instances cθ where θ
is a substitution {V1 = c1, ...Vk = ck} and the ci are constants or other ground
terms appearing in the domain. If G is not ground, the grounding will compute
all possible answer substitutions Gθ. To keep inference tractable, it is key to
only consider the part of the ground program that is relevant to the query (i.e.
the grounded facts and rules are used in the derivations of the query). Again,
SLD resolution is used to find the relevant grounding.

Example 23 (logical inference). We demonstrate the different steps of inference
by extending Example 14 to reason about separate days of the week. For ease
of modeling (and grounding), we also use rules annotated with probabilities, a

40 PROBABILISTIC AND NEURAL-SYMBOLIC LOGIC PROGRAMMING

wet(sunday)

rain(sunday) sprinkler(sunday)

cloudy(sunday)

day(sunday)

day(sunday)

Figure 3.2: The SLD tree for Example 23. The two branches represent the two
separate proofs for the query wet(sunday).

purely syntactical construct2.

1 day(monday).
2 ...
3 day(sunday).
4

5 0.25 :: cloudy(Day) :- day(Day).
6 0.5 :: sprinkler(Day) :- day(Day).
7

8 0.8 :: rain(Day) :- cloudy(Day).
9

10 wet(Day) :- rain(Day).
11 wet(Day) :- sprinkler(Day).

We query the probability of the grass being wet on Sunday, i.e. P (wet(sunday)).
We first consider the proving approach. The proving procedure is easily visualized
as an SLD tree, shown in Figure 3.2. There are two proofs for our query, one
where the grass is made wet by the sprinkler, and one where it is rainy and
cloudy.

For the grounding approach, we only consider the part that is relevant to the
query wet(sunday), so the variable Day only needs to be substituted with sunday.
The resulting relevant ground program is:

2For example, the rule 0.25 :: cloudy(sunday) :- day(sunday) is syntactic sugar
for a rule cloudy(sunday) :- cloudy_on_day(sunday), day(sunday) and a fact 0.25 ::
cloudy_on_day(sunday).

INFERENCE 41

1 day(sunday).
2

3 0.25 :: cloudy(sunday) :- day(sunday).
4 0.5 :: sprinkler(sunday) :- day(sunday).
5

6 0.8 :: rain(sunday) :- cloudy(sunday).
7

8 wet(sunday) :- rain(sunday).
9 wet(sunday) :- sprinkler(sunday).

3.3.2 Translation to Algebraic Model Counting

In the next step of the inference we map our results onto propositional logical
formulas.

It is important to realise that the possible worlds of a ProbLog program
discussed in Section 3.2.2 are simply models of a theory formed by that program.
Considering this equivalence, the probability query P (G) (Equation 3.4) can be
identified as an instance of the weighted model counting problem. Consequently,
the problem of computing P (G) can be addressed by transforming it into a
weighted model counting problem for which several solvers exist.

Example 24 (weighted model count). Consider the propositional theory ψ and
weight function w below. The models of ψ, denoted as Rψ, correspond exactly
to the possible worlds of Example 14. Additionally, because we have chosen the
weights w appropriately, the weighted model count is the probability of wet being
true, WMC(ψ,w) = 0.6.

ψ =
(
rain ⇐⇒ cloudy ∧ humid

)
∧
(
wet ⇐⇒ rain ∨ sprinkler

)
w = {cloudy 7→ 0.25,¬cloudy 7→ 0.75, humid 7→ 0.8,¬humid 7→ 0.2,

sprinkler 7→ 0.5,¬sprinkler 7→ 0.5, rain 7→ 1,¬rain 7→ 1,

wet 7→ 1,¬wet 7→ 0}

Similarly, the algebraic query (Equation 3.7) can be identified as an instance of
algebraic model counting.

Example 25 (algebraic model count). (Derkinderen and De Raedt, 2020) Con-
sider Example 24 but using semiring S = (R,max,×, 0, 1), then AMC(ψ,S, α) =
0.3, the highest model weight out of all models in Rψ.

42 PROBABILISTIC AND NEURAL-SYMBOLIC LOGIC PROGRAMMING

The construction of the logical formula itself depends on how the previous
inference step was performed. In the proving approach, the proofs for a query
G are combined into a logical formula

G↔
∨

E∈Proofs(G)

∧
fi∈E

fi

where fi ∈ E are the probabilistic facts used in proof E.

In the grounding approach, Clark’s completion can be used for cycle-free
programs. Clark’s completion constructs a formula

h↔
∨

(h :– b1,...,bn)∈PG

b1 ∧ · · · ∧ bn

for each set of rules with the same ground head h, whose bodies are b1, . . . , bn.
Cyclical programs first need to be turned into equivalent acyclic programs
through cycle breaking. For this, we refer to Fierens et al. (2015). The
propositional theory ψ in Example 24 would for instance follow from this
grounding approach.

3.3.3 Solving Model Counting

The process of efficiently computing the weighted model count has already
been extensively discussed in Chapter 2, and will be touched upon more in
Chapter 4 and 5. A major functional advantage of the compilation approach that
ProbLog uses, and that is discussed in Section 2.4, is that the computational
graph can be re-used for several queries, or with a different w. In this way the
largest computational cost is amortized, and re-evaluation is linear in the graph
size. This is especially useful for parameter learning as then only w varies, e.g.,
learning in DeepProbLog (Manhaeve et al., 2021a).

Example 26 (sd-DNNF). Figure 3.3 shows the ProbLog program of Example 14
in sd-DNNF, the theory ψ of which was already illustrated in Example 24. The
corresponding representation of WMC(ψ) is illustrated in Figure 3.4.

Importantly, the ability to easily extend the procedure to algebraic model
counting allows ProbLog to generalise to other inference tasks, and to other
language variants.

INFERENCE 43

∨

∧ ∧

wet ∨

∨

¬wet ¬rain ¬sprinkler

∧ ∧

rain cloudy humid ∨

sprinkler

¬rain

¬sprinkler ∧ ∧

cloudy

¬humid

¬cloudy ∨

humid

Figure 3.3: An sd-DNNF corresponding to the ProbLog program in Example 14.

+

× ×

w(wet) +

+

w(¬wet) w(¬rain) w(¬sprinkler)

× ×

w(rain) w(cloudy) w(humid) +

w(sprinkler)

w(¬rain)

w(¬sprinkler) × ×

w(cloudy)

w(¬humid)

w(¬cloudy) +

w(humid)

Figure 3.4: A WMC(ψ) representation of Figure 3.3.

44 PROBABILISTIC AND NEURAL-SYMBOLIC LOGIC PROGRAMMING

3.4 Learning

The generalisations of the fact as discussed in Section 3.2 can also introduce
parameters to the logic program. For probabilistic facts, the probability itself
can be learned, and would thus be a parameter of the model. Similarly, the
distributions in the distributional facts can have learnable parameters, e.g.
the mean and standard deviation of a normal distribution. For the neural
predicate, the weights of the neural networks are usually considered to be
learnable parameters.

We now consider the parameter learning setting. Given a program with
parameters W, a set Q of tuples (G, p) with G a query and p the target
probability, and a loss function L, compute:

arg min
W

1
|Q|

∑
(G,p)∈Q

L(PW(G), p) (3.9)

Earlier approaches to parameter learning used an expectation-maximization
approach. Recently, gradient-based optimization has become the dominant
strategy for learning. AMC enables us to automatically derive gradients for the
parameters in the program through the use of the gradient semiring, which we
explain in Section 3.4.1. After the gradients have been calculated, standard
gradient-based optimizers can be used. When the parameters are contained in
differentiable structures (e.g. in a neural network), they are easy to optimize in
conjunction with other parameters, as the same gradient-based techniques can
be used.

3.4.1 Gradient Semiring

To derive gradients, we use the gradient semiring (Kimmig et al., 2011). The
elements of this semiring are tuples(

p,
∂p

∂x

)
where p is a probability, and ∂p

∂x is the partial derivative of that probability with
respect to a parameter x. This is easily extended to a vector of parameters
~x = [x1, . . . , xN]T , the concatenation of all N parameters in the ground program.
The elements of the semiring then become tuples

(p,∇p)

LEARNING 45

where p is a probability and ∇p the gradient of p with respect to all parameters
in ~x. Addition ⊕, multiplication ⊗ and the neutral elements with respect to
these operations are defined as follows:

(p1,∇p1)⊕ (p2,∇p2) = (p1 + p1,∇p1 +∇p2) (3.10)

(p1,∇p1)⊗ (p2,∇p2) = (p1p2, p2∇p1 + p1∇p2) (3.11)

e⊕ = (0,~0) (3.12)

e⊗ = (1,~0) (3.13)

Note that the first element of the tuple performs ProbLog’s probability
computation, whereas the second element computes the gradient of the first
element.

To perform parameter learning in ProbLog, we use the following mapping:

w(f) = (p,~0) for p :: f with fixed p (3.14)

w(fi) = (pi, ei) for t(pi) :: fi with learnable pi (3.15)

w(¬f) = (1− p,−∇p) with w(f) = (p,∇p) (3.16)

where the vector ei has a 1 in the i-th position and 0 in all others.

Example 27. We demonstrate the joint learning of probabilistic parameters and
the neural network’s parameters for the program in Example 17. For this example,
we learn the parameter of humid and jointly train the cloudnet network. We use
cross-entropy as our loss function L = −(p log(P (G)) + (1− p) log(1− P (G))),
with p the target probability and P (G) the probability predicted using the current
weight parameters. Since the target probability is 1, L is − log(P (G)). To update
the parameters, we need to compute

∂L
∂X

= ∂L
∂P (G)

∂P (G)
∂X

= −1
P (G)

∂P (G)
∂X

To compute this gradient, we need both P (G) and ∂P (G)
∂X , which we can calculate

using the gradient semiring. The resulting arithmetic circuit after all stages of
inference is given in Figure 3.5. The final gradients are thus ∂L

∂humid = −0.41
and ∂L

∂cloudy(18◦C,998 hPa) = −0.54.

46 PROBABILISTIC AND NEURAL-SYMBOLIC LOGIC PROGRAMMING

wet(18℃,998hPa)

⨂

⨁

0.6,[1,0]

0.24,[0.4,0.3]

humidcloudy(18℃,998hPa) sprinkler

cloudnet

18℃,998hPa

¬sprinkler

t(0.8),[0,1] 0.5,[0,0] 0.5,[0,0]

0.74,[0.4,0.3]

Figure 3.5: The arithmetic circuit for Example 27. Each node is annotated with
an element from the gradient semiring, where the two elements of the gradient
represent the partial derivative of the probability for the output with respect to
the neural network, and the probabilistic parameter respectively.

3.5 Related Work and Applications

There a many more variants of the logical fact introduced in related work. We
discuss a few more in this section. DTProbLog (Van den Broeck et al., 2010) is
a decision-theoretic variant of ProbLog that adds the decision fact, along with
the possibility of assigning utilities to atoms. The probabilistic facts, rules, and
utilities define an expected utility given a set of values for the decision facts.
These values thus define a decision problem that needs to be solved to maximize
the expected utility. BetaProbLog (Verreet et al., 2022a) further generalizes
the concept of the probabilistic fact by replacing the single probability (i.e. a
point estimate) with a beta distribution which additionally models the epistemic
uncertainty over the probability of the fact. NeurASP (Yang et al., 2020) takes
the idea of the neural fact and applies it to answer set programming, a different
logic programming language where it is called the neural atom. In Belle and
De Raedt (2020), the authors introduce semiring programming, a declarative
framework where semirings are used to model and solve a wide variety of tasks
in AI. In Scallop (Huang et al., 2021), semirings are used to define approximate
inference to alleviate the intractability that methods such as DeepProbLog
encounter. In (Zuidberg Dos Martires, 2021), the authors investigate the setting
in which the semiring operations are functions that have to be learned. Other
work involving semirings and their application onto functional programming

CONCLUSION 47

includes Dolan (2013) and Berg et al. (2022).

An application domain well suited for algebraic and probabilistic logic
programming is the field of robotics. Here, the probabilistic modelling and
reasoning capabilities have been used for object tracking, affordance, and object
manipulation (Antanas et al., 2019; Moldovan et al., 2012a, 2018, 2012b, 2011;
Nitti et al., 2014; Persson et al., 2020; Zuidberg Dos Martires et al., 2020), for
representing and tracking cognitive knowledge about the environment (Mekuria
et al., 2019; Veiga et al., 2019; Yang et al., 2023), and for performing the
uncertain decision making itself (Bueno et al., 2016; Derkinderen and De Raedt,
2020; Latour et al., 2017; Nitti et al., 2015, 2017; Van den Broeck et al., 2010;
Venturato et al., 2022).

Other application tasks include activity recognition (McAreavey et al., 2017;
Skarlatidis et al., 2015; Smith et al., 2021; Sztyler et al., 2018), consistency-based
diagnosis (Hommersom and Bueno, 2016), modeling incomplete and imprecise
information (Doherty and Szalas, 2022), system prognostics (Vlasselaer and
Meert, 2012), ontology matching and querying (van Bremen et al., 2019,
2020; Wang, 2015), probabilistic argumentation (Hung, 2017; Mantadelis
and Bistarelli, 2020; Totis et al., 2021), solving word-problems (Dries et al.,
2017; Suster et al., 2021), automating video montages (Aerts et al., 2016),
epidemiological modelling (Weitkämper et al., 2021), game-playing (Thon et al.,
2008, 2011), event processing (Apriceno et al., 2021; Roig Vilamala et al., 2023;
Xing et al., 2019), modelling probabilistic routing networks (Berg et al., 2021),
and biology (De Maeyer et al., 2013, 2016, 2015; De Raedt, 2007; Groß et al.,
2019; Kimmig and Costa, 2012).

3.6 Conclusion

In this chapter we provided an overview and synthesis, contributing a unified
algebraic perspective on PLP that describes how logic programming can be
extended to a wide variety of settings by generalizing the concept of the fact.
We have shown how these extensions are all special cases of the concept of
the algebraic fact, where facts are labeled with elements from commutative
semirings, and the conjunction and disjunction are replaced with multiplication
and addition respectively. We have further shown a recipe for efficient inference
and learning for programs that include such algebraic facts. Finally, we have
discussed other works that perform similar extensions, and where these systems
have been applied. Going forward, it would be valuable to look into what benefits
the use of semirings has for other languages and programming paradigms.

Chapter 4

Exploiting Symmetry for
Model Counting

A large part of this chapter was previously published as:

T. van Bremen, V. Derkinderen, S. Sharma, S. Roy, and K. S.
Meel (2021). “Symmetric Component Caching for Model Counting
on Combinatorial Instances”. In: Proceedings of the 35th AAAI
Conference on Artificial Intelligence. AAAI Press, pp. 3922–3930

Timothy van Bremen, Shubham Sharma, and I, have each contributed equally
to the publication. Timothy and I conceived the idea and created a prototype.
During the development process we found the other now co-authors had
independently worked on this as well. We collaborated, implementing the
idea within Ganak and have equally contributed to the publication writing.

Parts of the conference article have been restructured and rewritten to function
as a chapter in this dissertation. The discussion on applying our contributions
to projected model counting and weighted model counting is a novel addition.

Model counting is a fundamental problem in artificial intelligence with a wide
variety of applications such as probabilistic inference (cf. the previous chapter
and Chavira and Darwiche (2008)), neural network verification (Baluta et al.,
2019), computational biology (Sashittal and El-Kebir, 2020), and the like.
Consequently, the problem of model counting has been subject to intense

49

50 EXPLOITING SYMMETRY FOR MODEL COUNTING

theoretical and practical investigations over the past four decades. The seminal
work of Valiant (1979b) showed that model counting is #P-complete. Despite
this complexity result, many problem instances are feasible in practice due to
the ability of modern model counting algorithms to exploit the structure present
in those instances.

In this chapter we increase the amount of exploitable structure by taking
advantage of certain structural symmetries present within the instance formula
ψ. We explain how these symmetries can be detected and exploited through a
minor change in the #DPLL model counting algorithm that was introduced in
Chapter 2. This change reduces the counting search space, thereby improving
the algorithm’s run time (when many symmetries are present).

Our contribution answers the question:

RQ2.1: How to exploit structural symmetry while model
counting on propositional logic formulas?

The remainder of this chapter is organized as follows: we first situate our
contribution on a high-level in Section 4.1, and present the related work in
Section 4.2. Notations and preliminaries are presented in Section 4.3, and the
primary technical contribution, i.e., symmetric component caching, is presented
in Section 4.4 and 4.5. Afterwards, we present an empirical analysis of our
contribution in Section 4.6 and finally conclude in Section 4.7.

4.1 Introduction

Practical strategies for model counting span a variety of approaches, from
approximate techniques (Soos and Meel, 2019; Stockmeyer, 1983) with
probabilistic error bounds, to exact counting (Aziz et al., 2015; Bayardo Jr and
Pehoushek, 2000; Birnbaum and Lozinskii, 1999; Lagniez and Marquis, 2017;
Oztok and Darwiche, 2015; Sang et al., 2004; Thurley, 2006). Many solvers use
variants of the classic DPLL algorithm for SAT solving (Davis et al., 1962), with
optimizations geared towards model counting (Birnbaum and Lozinskii, 1999).
One prominent optimization used in such algorithms is component caching:
during the search process subsets of clauses that can be solved independently
(referred to as components) are identified, solved, and cached. When the same
component appears again along a different search path, the model count of
the component can simply be returned from the cache, alleviating the need to
recompute it (Bacchus et al., 2003).

INTRODUCTION 51

The exact representation scheme used for storing components in the cache differs
between solvers: Cachet (Sang et al., 2004, 2005) uses a simple encoding where
the literals in each clause are represented as integers with clauses separated by a
sentinel. sharpSAT (Thurley, 2006) uses a hybrid encoding that achieves a more
compact representation. D4 expanded on the idea of compact representations,
obtaining even better results (Lagniez and Marquis, 2021). Ganak (Sharma
et al., 2019) introduced the notion of a probabilistic cache: the component
encodings are hashed into a yet smaller representation to enable better cache
utilization but, in the process, paying a price with a (small) probability of
incorrect counts due to hash collisions. The algorithm is parametrized by
the probability of collision, which can be set as small as the user desires,
at the expense of poorer cache utilization due to longer hash lengths. In
addition, Ganak adds several other optimizations that allowed it to significantly
outperform other state-of-the-art model counters.

However, all existing cache indexing schemes (including that of Ganak) declare
a cache hit only on exact matches on components. We make an important
observation that there are components that are structurally identical but differ
only in the variables appearing in the formula. Because components employ
variables disjoint from the rest of the formula, the model counts can also be
transferred across such structurally identical components. Such symmetric
components occur naturally in many instances, particularly those arising from
combinatorial problems. It is worth remarking that the counting variants
of many combinatorial problems also enjoy straightforward reductions to
#SAT, such as n-queens, quasigroup (Latin square) completion, and graph
k-colouring (Aloul et al., 2002; Gomes and Shmoys, 2002; Lauria et al., 2017;
Wang et al., 2020; Yang, 1991).

Our primary contribution is exploiting the inherent symmetry exhibited in
combinatorial problems for component caching-based model counters. To this
end, we propose and formalise the notion of symmetric component caching—
allowing for the use of cached model counts even across components that are
only structurally identical (symmetric) and not exact matches. We first prove
that the proposed scheme is sound when combined with clause learning. Then,
we augment the state-of-the-art counter Ganak with symmetric component
caching, along with several low-level but crucial technical improvements. The
resulting counter, called SymGanak, outperforms the state-of-the-art model
counter Ganak on PAR-2 score and number of instances solved, achieving
significant performance gains in terms of run time.

52 EXPLOITING SYMMETRY FOR MODEL COUNTING

4.2 Related Work

We are not the first to explore symmetry in propositional logic: the use of
precomputed symmetry-breaking predicates to speed up SAT solving dates back
to 1996 (Crawford et al., 1996). More recent work has extended this idea with
more efficient symmetry-breaking formulas (Devriendt et al., 2016). Taking a
different approach, others have examined how symmetry information can be
used at run time for SAT solvers (Sabharwal, 2009).

Outside of SAT solving, Kitching and Bacchus (2007) explored symmetry in
the context of solving constraint optimization problems with decomposable
objective functions. Salmon and Poupart (2019) exploited symmetry while
solving partially observable Markov decision processes, which were encoded as
stochastic satisfiability problems. Due to their setting, they used a different
encoding to detect symmetries. Bart et al. (2014) exploited symmetry to achieve
space savings in knowledge compilation. We also note that a rich literature on
symmetry exists in the adjacent domain of lifted inference, in which the aim
is to develop algorithms that exploit symmetries in graphical models to speed
up probabilistic inference. Although many such algorithms assume a relational
representation of the input, several approaches do target non-relational input
models; see, for example, Bui et al. (2013), Holtzen et al. (2019), and Niepert
(2012).

In the context of propositional model counting specifically, Wang et al. (2020)
studied the use of existing model counting algorithms on formulas conjoined
with symmetry-breaking predicates, thus effectively counting models up to
isomorphism. SymGanak differs in that it counts all models of the formula,
and does not rely on symmetries of the input formula itself—rather, it
exploits symmetry amongst the components encountered during run time of the
algorithm. Note that, in principle, this does not require symmetry to be present
in the input formula for our approach to be effective: if a variable ordering
can be chosen in such a way that propagating variables in this order leads to
structurally identical components, this will suffice to see performance gains over
existing counters. We compare different variable ordering heuristics later in
this paper and also examine the implications of our approach when integrating
with many of the features (such as clause learning) present in modern model
counters.

BACKGROUND 53

4.3 Background

Before proceeding to the primary contribution of this chapter we list the needed
preliminaries, the majority of which is already provided in Chapter 2. We
specifically, however, remind the reader of the concepts related to components
and component decompositioning. Afterwards, we explain a few notions related
to graph theory (Section 4.3.2) that are key to detecting structural symmetries
in formulas.

As is common in many model counters, we assume the input propositional
formula ψ to be in conjunctive normal form (cf. Chapter 2).

4.3.1 #DPLL with Component Caching

The concepts of components and component decompositioning were both previ-
ously introduced in Section 2.3.2. As a reminder, component decompositioning
partitions the formula ψ into a set of components C such that the components
do not share any variables with each other. These components can be solved
(i.e., counted) independently, resulting in a more shallow search process. A
#DPLL-based model counter that implements component caching furthermore
caches the model counts from each solved component such that the results can
be reused when the same component is encountered again later on.

Algorithm 4 illustrates a #DPLL algorithm with component caching. This
algorithm is similar to the one shown in Chapter 2 but makes explicit the
encoding call that occurs while caching (Encode(ψ) in line 2). Designing efficient
encodings for the components has been an important research direction (Sang
et al., 2004, 2005; Sharma et al., 2019; Thurley, 2006). More compact encodings
improve cache utilization, allowing the memoization of more components for a
given cache size. Our contribution will alter the encoding.

4.3.2 Isomorphism

Definition 20 (coloured graph). A coloured graph is a three-tuple G =
(V,E, P), where (V,E) specifies an undirected graph and P = {Vi}ki=1 is a
partition of the vertices into k distinct colours. We further denote colour(v) = i
if v ∈ Vi.

Given two coloured graphs, one can ask if they are isomorphic.

54 EXPLOITING SYMMETRY FOR MODEL COUNTING

Algorithm 4: #DPLL algorithm with component caching.
1 function GetModelCount(ψ):
2 encoding ← Encode(ψ)
3 if encoding in cache then
4 return CacheGet(encoding)
5 else
6 pick a literal l in ψ
7 |Rψl | ← CountConditioned(ψ, l)
8 |Rψ¬l | ← CountConditioned(ψ, ¬l)
9 CacheInsert(encoding, |Rψl |+ |Rψ¬l |)

10 return |Rψl |+ |Rψ¬l |
11 end
12 function CountConditioned(ψ, l):
13 ψl ← propagate units on ψ|l
14 if ψl contains empty clause then
15 return 0
16 else if ψl contains no clauses then
17 v ← number of unassigned variables in ψl
18 return 2v
19 else
20 |Rψl | ← 1
21 C ← DisjointComponents(ψl)
22 for Ci ← C do
23 |Rψl | ← |Rψl | × GetModelCount(Ci)
24 end
25 return |Rψl |
26 end

Definition 21 (coloured graph isomorphism). Given two coloured graphs G =
(V1, E1, P1) and H = (V2, E2, P2), G and H are said to be isomorphic if there
exists a bijection π : V1 → V2 such that:

• ∀v, w ∈ V1: (v, w) ∈ E1 ⇐⇒ (π(v), π(w)) ∈ E2

• ∀v ∈ V1: colour(v) = colour(π(v))

The (coloured) graph isomorphism problem is to determine whether or not two
(coloured) graphs are isomorphic. The coloured graph isomorphism problem is
polynomial-time reducible to its uncoloured counterpart (Schweitzer, 2009), so
we will omit the word “coloured” when appropriate. Although the complexity-
theoretic status of the graph isomorphism problem remains open, relatively

SYMMETRIC COMPONENTS 55

efficient algorithms exist in practice (McKay and Piperno, 2014). A closely
related problem is that of graph canonization, which is to compute the canonical
labelling of a given graph.

Definition 22 (canonical labelling). Given graphs G and H, a canonical
labelling of a graph G is a new graph Canon(G), such that H is isomorphic to
G if and only if Canon(G) = Canon(H).

As implied by the name, Canon(G) is effectively a relabelling of G. Thus, given
an oracle for graph canonization, verifying isomorphism between graphs can be
done by computing the canonical labelling for each graph and checking whether
the resulting graphs are identical. The strength of this approach is that it
allows checking isomorphism of a graph with many graphs at once, through for
example a hash table of canonized graphs.

4.4 Symmetric Components

As a contribution, we observe that the model count of a component is not
affected by the following operations:

• re-ordering the literals in a clause

• re-ordering the clauses in a component

• renaming the variables within a component to new variable symbols.

We propose an approach that captures these symmetries to improve the reuse
of cached model counts. Let us first formally define the notion of symmetric
components,

Definition 23 (symmetric components). Two formulas ψ1 and ψ2 are said to
be (semantically) symmetric if there is a bijection π : lits(ψ1)→ lits(ψ2) such
that Rψ2 = Rπ(ψ1) and ∀l ∈ lits(ψ1) : ¬π(l) = π(¬l).

Example 28 (symmetric components). Suppose we observe the following two
components in different places in our search tree. We can show that the two
components are semantically symmetric: for the mapping π = {A 7→ ¬C,C 7→
A,D 7→ B} (fixing all other literals), we have RC2 = Rπ(C1).

C1

{
¬A ∨ C

A ∨ C ∨D
C2

{
¬C ∨A ∨B

A ∨ C

56 EXPLOITING SYMMETRY FOR MODEL COUNTING

Detecting symmetries. We employ the following two-step process to detect
if two components are symmetric: (i) first encode the formulas ψ1 and ψ2 as
graphs Gr(ψ1) and Gr(ψ2); then (ii) check whether their canonical labellings are
equal, i.e., Canon(Gr(ψ1)) = Canon(Gr(ψ2)). We first outline the encoding in
step (i).

Definition 24 (Aloul et al., 2002). The graph representation of ψ, denoted
Gr(ψ) = (V,E, P), is a coloured graph constructed in the following manner:

1. Add a node nci to V with colour(nci) = red for each clause ci in ψ.

2. Add a node nli to V with colour(nli) = blue for each literal li in lits(ψ).

3. Add an edge (nli , nlj) joining each literal li with its negated counterpart
lj.

4. Add an edge (nci , nli) if li occurs in the clause ci, thus joining every clause
node with its constituent literal nodes.

Example 29. Using the definition above, both C1 and C2 from Example 28 yield
a graph with the same structure. This is illustrated in Figure 4.1.

Figure 4.1: The graph representation Gr(C1) and Gr(C2) of Example 28.

We now state our primary soundness argument for the symmetric component
cache:

Theorem 1. Given two components ψ1 and ψ2, if Canon(Gr(ψ1)) =
Canon(Gr(ψ2)) then |Rψ1 | = |Rψ2 |.

Proof Sketch. It will suffice to show that if Canon(Gr(ψ1)) = Canon(Gr(ψ2)),
then ψ1 and ψ2 are semantically symmetric. Any formula recovered from a graph
Gr(ψ1) (Gr(ψ2)) is semantically symmetric to ψ1 (ψ2): this is because it is unique
up to a reordering of clauses and literals, and relabelling of literals. The same
statement holds after canonical labelling: that is, any formula reconstructed
from Canon(Gr(ψ1)) (Canon(Gr(ψ2))) is semantically symmetric to ψ1 (ψ2) since
the canonical labelling of a graph yields a bijection on the nodes such that

IMPLEMENTATION: SYMGANAK 57

colours and edges are preserved (see Definition 21 and 22). Thus, putting the
two statements together we get that if Canon(Gr(ψ1)) = Canon(Gr(ψ2)), then
ψ1 and ψ2 are semantically symmetric.

To conclude, we can store each component ψ into the cache using as an index
their canonical graph Canon(Gr(ψ)). By doing so, components that are identical
up to a renaming of the variables, and a re-ordering of the literals and clauses,
will be identified as such and their model count will be reused.

4.5 Implementation: SymGanak

The previously described approach was incorporated within Ganak (Sharma
et al., 2019), a state-of-the-art model counter that won the 2020 model counting
competition in the unweighted model counting track (Fichte et al., 2020). We
refer to the resulting implementation as SymGanak and describe the details of
its relevant optimizations below.

Probabilistic symmetric component caching (PSCC). To improve cache
utilization, SymGanak calculates an m-bit hash of each canonical labelling
using the hash family Hcl(n,m) mapping {0, 1}n → {0, 1}m (Lemire and Kaser,
2016). While probabilistic component caching (PCC) was initially proposed
in Ganak, we adapt the scheme to work with cached graphs. The string
that is hashed is created from the vertices and edges of the canonical labelling
Canon(Gr(ψ)) in sorted order. This hash (rather than the canonical labelling
itself) is stored in the cache. Hashing makes the solver probabilistic due to the
risk of a hash collision, but the confidence δ (influencing the hash length m)
is configurable by the user and can be set to a small value for high confidence.
The probabilistic guarantees proven for PCC in Ganak (Sharma et al., 2019)
continue to hold for PSCC in SymGanak.

Final encoding. Algorithm 5 shows the final algorithm of the Encode(·)
function (referred to in Algorithm 4) for SymGanak. To compute an encoding
for a component ψ, SymGanak computes the canonical labeling of the graph
representation of ψ (line 3). SymGanak then randomly samples a hash function
from the hash function family Hcl(n,m) (line 4), and finally computes a hash
of the canonical labelling to add to the component cache (line 5).

58 EXPLOITING SYMMETRY FOR MODEL COUNTING

Algorithm 5: Encoding symmetric components
1 function Encode(ψ):
2 graph ← Gr(ψ)
3 canonical_label ← Canon(graph)
4 h ← Hcl(n,m)
5 return h(canonical_label)

Bounded component analysis. Modern model counters typically integrate
some form of conflict-driven clause learning, recording failed search paths
as conflict clauses that guide backtracking. SymGanak employs bounded
component analysis (Sang et al., 2004), such that the learned clauses are used
to prune the search space but are not included in the cached component
representation. This is similar to what is done in prior model counters
(like sharpSAT and Ganak) and is necessary to take full advantage of the
component scheme. Indeed, if learned clauses were included in the cached
representation, then they may not only grow much larger in size but may
make it harder to find identical components, i.e., get cache hits (Sang et al.,
2004). However, note that even for “classical” component caching schemes,
bounded component analysis is not trivial: Sang et al. (2004) showed that extra
care must be taken when integrating component caching with clause learning.
When exploring unsatisfiable parts of the search tree, model counts found for
components under this part of the tree must be discarded from the cache, as
reusing them may otherwise lead to incorrect results. Fortunately, as long as
all components under a given assignment are satisfiable, the approach is sound:
below we prove that this result continues to hold when caching symmetric
components. As part of the proof, we use Rψ↓P to denote the projection of Rψ
onto a subset of the variables P (that is, the models in Rψ restricted to literals
formed only from P).

Lemma 1. Let π be a partial assignment such that F |π is satisfiable, and let
A be a component of F |π, and G|π a set of learned clauses of F reduced by π.
Then |RA| = |RA∧G|π↓vars(A)|.

Proof. This lemma follows from 1 and 2 below which respectively prove that
any projected model of A ∧G|π is also a model of A, and vice versa.

1. Any model of RA∧G|π↓vars(A) is clearly a model of A (because A ∧ G|π
implies A).

2. By Theorem 1 of Sang et al. (2004), any model mA of A can be extended
to a model of F |π ∧ G|π. Now since A ∧ G|π is implied by F |π ∧ G|π

IMPLEMENTATION: SYMGANAK 59

(because A is a component of F |π), mA can also be extended to a model
of A ∧ G|π. Hence, it follows that for any model mA of A we have
mA ∈ RA∧G|π↓vars(A).

Theorem 2. Symmetric component caching, in combination with bounded
component analysis and clause learning, still yields the correct model count as
long as we remove all sibling components and their descendants from the cache
when encountering an unsatisfiable component.

Proof. Using clause learning, when encountering component A as part of a
satisfiable formula F |π, its model count will be computed as |RA∧G|π↓vars(A)|.
This is because the model count is computed using guidance from the learned
clauses (which may contain variables not in vars(A)). In bounded component
analysis, this value will be cached as the model count of component A: the
soundness of this, even for symmetric component caching, is guaranteed by
Lemma 1 (subject to pruning unsatisfiable siblings and their descendants). Any
component B symmetric to A can safely reuse this value because |RA| = |RB |
by Theorem 1.

Handling binary clauses. The component encoding scheme used in Cachet, a
precursor to sharpSAT represents cached components as a combination of the
unassigned variables and an identifier for each clause in the component (Sang
et al., 2004). Thurley (2006) observed that the presence of binary clauses
can be inferred from the presence of the unassigned variables, and therefore
proposed a sound caching scheme that did not store the identifier corresponding
to binary clauses. Lagniez and Marquis (2021) later expanded on this idea,
by realising that the same trick can be more generally applied to clauses that
have not been shortened by the current variable assignment. Interestingly, the
arguments about the soundness of Thurley’s encoding scheme (and the more
general scheme of Lagniez and Marquis) do not hold under the symmetric
caching scheme. Therefore, in a significant departure from sharpSAT and its
derivatives such as Ganak, we do explicitly encode all clauses. Fortunately,
the probabilistic component caching scheme introduced in Ganak alleviates
potential space efficiency drawbacks as our cache consists of the hashes of
components.

Hybrid thresholding. Searching for a component in the SymGanak cache is
computationally expensive as compared to previous caching schemes. Thus,
there exists a delicate balance between the time spent on cache lookups and the

60 EXPLOITING SYMMETRY FOR MODEL COUNTING

gains from a cache hit. For this purpose, SymGanak employs the following
scheme, which we call hybrid thresholding: we fix configurable parameters l and
u (empirically determined), for the minimum and maximum number of variables
a component must contain to be eligible for symmetric component caching. If
the number of variables in a component lies outside of these bounds (either
|vars(C)| > u or |vars(C)| < l), SymGanak instead uses the traditional caching
scheme of Ganak. This scheme is motivated by the following observations:

• the overhead of computing the canonical labeling for small components is
often higher than simply solving these components;

• large components have a high cost of computing the canonical labeling
and a small likelihood of obtaining a cache hit.

Hence, in both of the above cases, we ignore symmetry detection and resort to
PCC (as used in Ganak) which is both fast and has high cache utilization.

Variable selection heuristics. Along with packaging existing heuristics like
VSADS (Sang et al., 2005) and CSVSADS (Sharma et al., 2019), we introduce
a novel variable selection heuristic, Isomorphic Cache State and Variable State
Aware Decaying Sum (ICSVSADS), that is motivated by CSVSADS but is also
symmetry aware. More concretely, whenever a cache hit occurs, we decrease the
scores of all variables in that component, as well as the scores of all variables
that have previously formed a component symmetric to it.

For example, in Ganak, when (x∨y∨z) yields a cache hit under the CSVSADS
heuristic, the score of x, y, and z is decreased to discourage branching on those
variables in the future. If we were to branch on any of those variables in the
future, it would be impossible to obtain a cache hit on the same component
below that point in the search tree. We extend this idea to SymGanak with
ICSVSADS, such that when (x ∨ y ∨ z) is hit as a result of the symmetric
component (a ∨ ¬b ∨ c), we not only discourage branching on x, y and z, but
also on a, b and c. The heuristic is otherwise identical to CSVSADS.

4.6 Experiments

We integrated the caching scheme proposed above on top of the existing state-
of-the-art model counter, Ganak. The code has been released as a branch
of the mainline Ganak implementation1. We employed Nauty (McKay and

1https://github.com/meelgroup/ganak

https://github.com/meelgroup/ganak

EXPERIMENTS 61

Piperno, 2014) to perform graph canonization. It is worth remarking that
SymGanak also provides an option to turn off PSCC, and thereby behaves
as a deterministic counter. We performed a detailed empirical evaluation on a
large suite of benchmarks arising from combinatorial instances, to answer the
following research questions:

RQ1 How do different variable branching heuristics impact the performance of
SymGanak?

RQ2 How does the run time performance of SymGanak compare with respect
to the state-of-the-art model counter Ganak?

Our empirical study leads to a surprising conclusion: first, we observed that the
VSADS heuristic achieves better run time performance than the other branching
heuristics. We also observed that SymGanak outperforms Ganak, both in
terms of PAR-2 score2 and the number of instances solved. Our results are in
line with often observed behavior in the context of SAT solving: the choice of
heuristics depends on the class of benchmarks. As pointed out in Section 4.1,
combinatorial benchmarks not only serve as important challenging problems
but improvements in automated reasoning have paved a way for the discovery
and proofs of challenging mathematical theorems. In this context, we expect
our empirical study to motivate further studies on designing efficient counting
schemes for combinatorial instances.

4.6.1 Implementation and Experimental Setup

We evaluated SymGanak on 212 instances from a wide range of combinatorial
benchmark classes: Battleships, n-queens, grid Bayesian networks, k-colouring
of grid graphs, quasigroup (Latin square) completion, FPGA switch-boxes, and
logic synthesis, among several others. Details on all of the benchmark classes
can be found in the technical Appendix A.

We performed our experiments on a high-performance computer cluster, with
each node having an Intel Xeon E5-2690 v3 CPU with 24 cores and 96GB of
RAM. We used all 24 cores per node, with a memory limit set to 4GB per core.
Every instance, for each tool, was executed on a single core.

For Ganak and SymGanak, we set the default confidence value of δ = 0.05, a
maximum component cache size of 2GB, and a timeout of 5000 seconds. For

2The PAR-2 score (penalized average run time), as used in the SAT 2018
Competition (Heule et al., 2019), is the average run time assigning a run time of two
times the time limit (instead of a “not solved” status) for each unsolved benchmark.

62 EXPLOITING SYMMETRY FOR MODEL COUNTING

0 20 40 60 80 100 120
instances

0

1000

2000

3000

4000

5000
CP

U
tim

e
(s

)

SymGANAK(VSADS)
SymGANAK(ICSVSADS)
SymGANAK(CSVSADS)

Figure 4.2: Cactus plot comparing different variable branching heuristics in
SymGanak

SymGanak, we empirically determined 10 and 250 to be good lower and upper
bound values for hybrid thresholding (see Section 4.5). SymGanak (similar to
Ganak) uses the independent support (IS) (Ivrii et al., 2016) of the formula to
accelerate the search; due to cost considerations, IS is used only if fewer than
500 conflicts are detected after 500 000 decisions. We ran both Ganak and
SymGanak with this setting. All other parameters were set to their default
values as in Ganak.

The cactus plots (Figures 4.2 and 4.3) show the number of instances solved
(x-axis) by the respective tool in a given amount of time (y-axis); a point (x, y)
on the plots represents that x benchmarks were solved by the counter in y
seconds. All run time results are included in Appendix A.

4.6.2 Results

RQ1: Comparing branching heuristics. Figure 4.2 compares the different
branching heuristics available in SymGanak. We found it surprising
that VSADS outperforms both the cache-aware heuristics (CSVSADS and
ICSVSADS). A detailed analysis of these heuristics on our set of benchmarks

EXPERIMENTS 63

shows that these heuristics are incomparable: of all the instances, VSADS,
CSVSADS, and ICSVSADS were the most effective heuristic in 34, 16 and
12 instances respectively; they had comparable performance3 in 60 instances,
while they all timed out for 85 instances. So, though VSADS is the dominant
heuristic in 34 instances, one of the two cache-aware heuristics emerges as the
winner in 28 instances.

Among CSVSADS and ICSVSADS, our symmetry aware heuristic ICSVSADS
has the same performance as CSVSADS. A deeper examination revealed that
SymGanak (ICSVSADS) made fewer decisions on average than SymGanak
(CSVSADS) (149 000 vs 181 000), suggesting that the gains of improved cache
utilization may have outweighed the additional bookkeeping required to keep
track of variables used in each component. Translating this improved cache
performance to run time improvements seems to be an interesting challenge for
future work.

RQ2: Impact of the symmetric component cache (SymGanak versus Ganak).
As the VSADS branching heuristic performs the best for both SymGanak and
Ganak on our benchmarks, we compared both of these tools with VSADS.
Figure 4.3 shows that SymGanak outperforms Ganak: while SymGanak
solves 16 more instances and achieves a lower PAR-2 score of 0.87× that of
Ganak, there was only a single instance solved by Ganak that timed out
on SymGanak. Figure 4.4 shows a scatter plot comparing their run time on
individual instances.

The performance of SymGanak can be attributed to the fact that by exploiting
symmetries, SymGanak can obtain both a higher number of cache hits as well
as cache hits on larger components4. Over all instances solved by both Ganak
and SymGanak, the average component size of each cache hit was 79.7 for
SymGanak and only 58.2 for Ganak; the mean number of decisions made by
SymGanak was approximately 302 000, compared to 1.4 million for Ganak.

To understand the results above in greater detail, Figure 4.5 shows a detailed
distribution of cache hits for a representative n-queens instance: SymGanak has
component cache hits with over 100 variables, about an order of magnitude larger
than the largest components hit by Ganak. Even on the smaller components,
SymGanak manages to obtain substantially more cache hits than Ganak.

3Finishing within one second of each other.
4We define the size of a component as the number of variables appearing in it.

64 EXPLOITING SYMMETRY FOR MODEL COUNTING

0 20 40 60 80 100 120
instances

0

1000

2000

3000

4000

5000
CP

U
tim

e
(s

)

SymGANAK
GANAK

Figure 4.3: Cactus plot comparing SymGanak and Ganak

10 1 100 101 102 103 104

SymGANAK
10 1

100

101

102

103

104

GA
NA

K

5000 sec. timeout
50

00
 se

c.
 ti

m
eo

ut

Figure 4.4: Scatter plot comparing SymGanak and Ganak

CONCLUSION 65

0 10 20 30 40 50 60 70 80 90 100
Component size

0
10
20
30
40
50
60
70
80
90

100...
202

...
411

...
623

Ca
ch

e
hi

ts
Symm
No-Symm

Figure 4.5: Cache hit distribution for an n-queens problem instance (n = 12,
144 variables). For each component size (x-axis), the number of cache hits for
components of that size (y-axis). The figure was generated using the CSVSADS
heuristics, turning off both random restarts and hybrid thresholding for easier
analysis. Be mindful of the y-axis values.

4.7 Conclusion

We investigated the effect of caching symmetric components in #DPLL-based
model counting algorithms. To evaluate our approach, we implemented the
concept into a new counter SymGanak, an extension of Ganak, and compared
their performance.

Although the detection of symmetries comes with a computational cost, we
showed that detecting larger components more often can reduce the overall
time needed to solve them, as illustrated by a reduced PAR-2 score and a
greater number of benchmarks solved by SymGanak. This opens the door to
further research in faster methods for detecting symmetric components. We
also evaluated the performance of SymGanak under several variable selection
heuristics. While we made some first steps in identifying a novel variable selection
heuristic (ICSVSADS) that could work well with symmetric component caching,
improving this remains an open problem for future research.

66 EXPLOITING SYMMETRY FOR MODEL COUNTING

While our choice of Ganak as the base tool was in line with the typical practice
in the SAT community where improvements are shown on top of winning solvers
of recent years, it would be interesting to pursue integration of symmetric
component caching in other state-of-the-art model counting systems such as
D4 (Lagniez and Marquis, 2017).

4.8 Beyond Unweighted Counting

Weighted model counting. Recall from Section 2.2 that the weighted model
counting problem generalizes the unweighted variant by associating weights with
models, via the weights on their literals. The idea proposed in this work can
also be extended to weighted model counting, but it does require a modification
to the graph encoding Gr(ψ). This modification is necessary because variables
in the weighted variant are not interchangeable when their literals have different
weights. Consider as example, that A ∨B has the same model count as C ∨D.
However, if w(A) 6= w(C), then the weighted model count is different. In order
to not consider the variables interchangeable, the graph encoding must be
adapted, colouring literals based on their weight such that a different weight
implies a different colour and vice versa. The graph isomorphism procedure will
consequently differentiate also based on weight.

Projected model counting. In projected model counting problems, the input
additionally includes a set of priority variables K ⊆ V (Aziz et al., 2015).
Rather than counting the number of satisfying assignments to V, we are then
instead interested in the number of assignments to K that can be extended to
a satisfying assignment for V. Similar to the weighted model counting problem,
the proposed symmetry detection procedure must be adapted to distinguish
priority variables from non-priority variables, because these are again not
interchangeable. Definition 24 can, for example, be adapted to colour the
literals of each priority variable light blue, and the literals of each non-priority
variable dark blue.

Chapter 5

Decision Making: A Tale of
Three Operations

This chapter was previously published as:

V. Derkinderen and L. De Raedt (2020). “Algebraic Circuits for
Decision Theoretic Inference and Learning”. In: Proceedings of the
24th European Conference on Artificial Intelligence, ECAI. vol. 325.
IOS Press, pp. 2569–2576. doi: 10.3233/FAIA200392

The introduction in Section 5.1 is adapted to better integrate within this
dissertation. Section 5.2 is a reduced version of the original because of the
preliminaries already discussed in detail in Chapter 2.

Whilst the previous chapter focused primarily on unweighted model counting
problems, we now again focus on the weighted and algebraic counting variants.
This chapter emphasizes the generality (and limitations) of the algebraic
model counting framework by exploring a decision making setting that requires
reasoning over uncertainty, decisions, and utility values. This setting involves
three operations: addition and multiplication to compute the expected value
of each possible scenario, and an (arg)max operation to choose the best set of
decisions.

This chapter contributes to answering the research question:

67

https://doi.org/10.3233/FAIA200392

68 DECISION MAKING: A TALE OF THREE OPERATIONS

RQ2.1: What tasks can be cast into an algebraic model
counting problem?

The remainder of this chapter is organized as follows: in Section 5.1 we situate
our contributions and provide a brief introduction, followed by the preliminary
background in Section 5.2: a definition of X-constrained sentential decision
diagrams. Afterwards, we discuss the problem of finding the most optimal
decision given an uncertain environment, in Section 5.3, and introduce a
learning problem setting that we solve with the proposed algebraic framework, in
Section 5.4. We close with related work and a conclusion in Section 5.5 and 5.6
respectively.

5.1 Introduction

Knowledge compilation is important for inference in probabilistic models, which
are ubiquitous in artificial intelligence (De Raedt et al., 2016; Koller and
Friedman, 2009; Marquis, 2008). Inference and learning for such models is
computationally hard. Nonetheless, there has been steady progress in developing
tractable representations and algorithms for supporting a wide range of tasks.
Especially techniques of knowledge compilation (Darwiche and Marquis, 2002)
have been instrumental in speeding up inference in Bayesian networks and
Statistical Relational AI (De Raedt et al., 2016).

It is well-known that a wide range of algorithms can be generalised using
semirings, for instance, belief propagation with the sum-product and max-
product algorithms. The key idea, as explained in Chapter 2 and 3, is to replace
the traditional addition and product operations by semiring operations ⊕ and ⊗
(cf. algebraic model counting Equation 2.2). This has inspired work on algebraic
model counting (Kimmig et al., 2011, 2017) where rather than using the standard
probabilistic semiring, a range of other semirings are used to solve a wide
range of inference tasks, including max-product, sensitivity analysis, gradient
computation, and even weighted model integration (Zuidberg Dos Martires
et al., 2019b).

In this chapter, rather than considering the standard probabilistic setting, we
consider decision theoretic extensions and investigate how we can adapt and
apply the compilation approach to cope with some of the resulting inference and
learning problems. One way of viewing this is as the transition from standard
Bayesian networks to influence diagrams or from a probabilistic programming
language (such as ProbLog (Fierens et al., 2015)) to its decision theoretic
extension (such as DT-ProbLog (Van den Broeck et al., 2010)).

CONSTRAINED SENTENTIAL DECISION DIAGRAM 69

We specifically focus on the following two inference tasks. First, finding the
optimal decision in a given uncertain environment, in a one-shot setting. This
means that we seek to find the set of decisions that maximises the expected
utility, while all decisions are made at once before any observations. This task
requires three operations – (arg)max, addition, and multiplication, which already
indicates that it is unclear how to apply the standard counting techniques. We
will discuss two approaches to this task, both centered around algebraic model
counting. The first approach yields an exact solution but involves adapting
the algebraic framework to handle a violation of the semiring properties, by
constraining the variable ordering. The approach is based on earlier work on
the Same-Decision Probability task (Oztok et al., 2016). The second approach is
more approximate and views the arithmetic version of the formula representation
as a function with unknown values (decisions) that have to be optimised. We
then show how to optimise this function by applying the algebraic framework
within a gradient ascent algorithm. As a second inference task we briefly discuss
a utility learning problem, that we tackle by minimising a loss function using
gradient descent, applying again the algebraic framework.

To validate the contributions, we implement them as an extension of
DT-ProbLog. The code and data are available at https://github.com/
VincentDerk/Paper-AC-Decisions-Learning.

5.2 Constrained Sentential Decision Diagram

Necessary to the work in this chapter is the class of sentential decision diagrams
(SDD) introduced in Section 2.4.3. For parts of our contribution we require an
X-constrained SDD: an SDD is X-constrained when the vtree satisfies certain
conditions. The following definitions are based on Oztok et al. (2016).
Definition 25. Given a vtree t containing vtree node v, over respectively
variables vars(t) and vars(v), the set of variables X outside of v is defined as
X = vars(t) \ vars(v).
Definition 26 (X-constrained vtree node). A vtree node v is X-constrained
iff v appears on the right-most path of the vtree and X is the set of variables
outside v.
Definition 27 (X-constrained SDD node). An SDD is X-constrained iff it
respects an X-constrained vtree. An SDD node is X-constrained iff it respects
an X-constrained vtree node.
Example 30 (X-constrained SDD). The vtree in Figure 5.1 is both {A,B}-
and {A,B,C}-constrained because of respectively node 5 and 6. The SDD in
Figure 5.1 is consequently both {A,B}- and {A,B,C}-constrained.

https://github.com/VincentDerk/Paper-AC-Decisions-Learning
https://github.com/VincentDerk/Paper-AC-Decisions-Learning

70 DECISION MAKING: A TALE OF THREE OPERATIONS

5

C D ¬C⊥

3

¬B C ⊤

1

¬A B A ⊥

1

A B ¬A⊥

1

A
0

B
2

3

5

C
4

D
6

Figure 5.1: A sentential decision diagram representing (A∧B)∨(C∧D)∨(B∧C),
and its vtree.

We use the SDD package1 to implement the algorithms proposed in this chapter.
The package supports both SDD and X-constrained SDDs. The latter will be
necessary for Section 5.3.1.

5.3 Maximising Decisions

Proceeding with the decision making setting, we first explain how algebraic
model counting can be used to compute an expected utility.

Expected utility. When each literal is associated with both a probability and
a utility, then the expected utility can be computed using AMC, similar to the
probability approach. We denote with u(m) and p(m) the utility and probability
of a model m and with uv (u¬v) the utility obtained from variable v being true
(false). The expected utility of m is defined as eu(m) = p(m) × u(m). The
expected utility of a formula ψ, eu(ψ), is defined in Equation 5.1 2 and can be
computed using the AMC framework.

eu(ψ) =
∑
m∈Rψ

p(m)︷ ︸︸ ︷
(
∏
l∈m

pl)

u(m)︷ ︸︸ ︷
(
∑
l∈m

ul)︸ ︷︷ ︸
eu(m)

(5.1)

Define the labeling function α such that α(v) = (pv, pv × uv), then the expected
utility semiring defined below can be used to compute eu(ψ).

1The SDD package is available at http://reasoning.cs.ucla.edu/sdd/
2This is an expectation over the utility of a model, E[u(m)], which in turn is an additive

function of the utilities associated with each literal of the model.

http://reasoning.cs.ucla.edu/sdd/

MAXIMISING DECISIONS 71

Definition 28 (expected utility semiring). The expected utility semiring
(A,⊕,⊗, e⊕, e⊗) with

• A = {(p, eu)|p ∈ R≥0, eu ∈ R}

• (p1, eu1)⊕ (p2, eu2) = (p1 + p2, eu1 + eu2)

• (p1, eu1)⊗ (p2, eu2) = (p1p2, p1eu2 + p2eu1)

• e⊕ = (0, 0) and e⊗ = (1, 0)

is an instance of the expectation semiring (Eisner, 2002) and can be used to
compute the expected utility of a theory.

Maximising expected utility. A more complicated problem arises when we
introduce decision variables and seek the assignment of truth values to those
decisions that maximises the expected utility. We refer to this problem as the
maximum expected utility (MEU) problem. We focus on its one-shot decision
setting where all decisions are made before observing any stochastic variable.
That is, each set of instantiated decisions d, leads to a set of possible models
(scenarios) making up the expected utility (Equation 5.1) for d.

Definition 29 (maximum expected utility (MEU) problem). The maximum
expected utility problem consists of a propositional logic formula ψ over a set of
decision variables D and a set of stochastic variables S. Similar to Equation 5.1,
each literal is associated with a probability and a utility such that eu(ψ ∧ d) is
the expected utility for a particular instantiation d of the decision variables D.
The MEU task consists of finding the optimal truth assignment d such that the
expected utility is maximised:

argmax
d

∑
m∈Rψ∧d

(
∏
l∈m

pl)(
∑
l∈m

ul) (5.2)

While this task consists of three operations (max, sum, and product), a semiring
is a structure of only two. It is therefore not obvious how to apply AMC.

On a high-level, the MEU problem can be framed as a one stage stochastic
constraint optimisation problem (SCOP) (Walsh, 2002). That is, there are
decisions that afterwards lead to several possible scenarios, whose probability is
determined through stochastic variables, and the goal is to optimise the expected
utility (Tarim et al., 2006). However, while stochastic constraints play a central
role within SCOP, we do not consider these here. In that sense, this work is
closer to Latour et al. (2017), who consider in more detail how to compactly

72 DECISION MAKING: A TALE OF THREE OPERATIONS

represent probabilities within the stochastic constraints and objective function
in a manner that constraint solvers can be used for solving the problem. The
MEU problem also relates to the more general Plausibility-Feasibility-Utility
framework (Pralet et al., 2007) that was previously introduced to unify several
formalisms.

Example 31. Consider the problem of vaccinating persons in a social network.
A logic propositional formula ψ can be used to describe the spreading mechanism
of a disease based on the health and social information of each person (e.g.,
friendship relations) (S) and their vaccination status (D). There are costs
associated with treating an infected person, but also with vaccinations. The
MEU problem can be used to optimise and determine which persons to vaccinate.

Example 32. Consider a small more concrete problem, deciding whether to
use machine A. Using A has a cost of −3 but, when there is no failure, it also
yields a reward of 4.

(profit ∧ useA ∧ ¬failure)∨
(¬profit ∧ ¬useA)∨
(¬profit ∧ failure)

puseA = 1.0, p¬useA = 1.0, uuseA = −3, u¬useA = 0
pprofit = 1.0, p¬profit = 1.0, uprofit = 4, u¬profit = 0
pfailure = 0.6, p¬failure = 0.4, ufailure = u¬failure = 0

5.3.1 Constrained Algebraic Circuit

To obtain the expected utility of a set of decision assignments d, we need to
sum all the models with the same set of decisions. This implies an ordering that
the circuit needs to adhere to in order to compare decisions in a valid manner.
More specifically, when using SDDs, the algebraic circuit must first condition
on the decision variables before considering the rest. X-constrained SDDs with
X = D have exactly this property (Figure 5.2). This can be seen as follows.
By definition, the D-constrained SDD nodes represent the whole formula ψ
conditioned on an assignment for each decision, ψ|d. Such a node represents
a disjunction of all the models with the same decisions. The algebraic circuit
will thus first combine models with the same set of decisions before combining
(comparing) with models of other decisions, as was required.

The vtree can be used to determine whether an or-node of the X-constrained
SDD represents a summation or a maximisation. Alternatively, the decision
information can also be stored in the semiring elements in the form of a decision
set L, performing maximisation when the sets of decisions are different. To stay

MAXIMISING DECISIONS 73

3

P ¬F ¬P F

1

A ¬A¬P

Figure 5.2: An {A}-Constrained SDD modelling Example 32. The variables are
abbreviated: A = useA, P = profit and F = failure.

close to the algebraic framework, we choose to illustrate the latter approach
and use the following structure (A,⊕,⊗, e⊕, e⊗), dynamically defining the
⊕-operation:

{w(v) = (pv, pv × uv,Lv)|v ∈ D ∪ S ∪ ¬D ∪ ¬S} ⊂ A (5.3)

with Lv = {v} and L¬v = {¬v} or Lv = ∅ = L¬v depending on whether v is a
decision.

a⊕ b =
{
max(a, b), if La 6= Lb

(pa + pb, eua + eub,La), otherwise
(5.4)

a⊗ b = (papb, paeub + pbeua,La ∪ Lb) (5.5)

e⊕ = (0, 0,D ∪ ¬D) (5.6)

e⊗ = (1, 0, ∅) (5.7)

max(a, b) =


a, if b = e⊕

b, else if a = e⊕

a, else if euapa ≥
eub
pb

b, otherwise

(5.8)

This structure (Equation 5.3 to 5.8) extends the expectation semiring to track
the decision sets L and to perform max when required. For a set of decision
assignments, the probability of all models must sum to one. This is not

74 DECISION MAKING: A TALE OF THREE OPERATIONS

necessarily the case when constraints are present and we therefore normalize
when comparing expected utilities: eua

pa
≥ eub

pb
(Equation 5.8). Additional cases

can be added to prevent division by 0 when pa = 0 or pb = 0. When such a
case occurs, the other value must be chosen. Note that this structure is not a
semiring as the associativity property is only satisfied within the X-constrained
context. This is expected and the reason we require an X-constrained SDD. If
associativity was satisfied in general, then any SDD would have been sufficient.

5.3.2 Unconstrained Algebraic Circuit

Constraining the vtree to be X-constrained limits the class of valid SDDs. As
a consequence, this could lead to larger circuits. To avoid this, we introduce
another approach that maximizes outside of the circuit and does not rely on a
constrained ordering. Instead, it treats the algebraic circuit as a function where
the decision values are unknown and have to be chosen such that the output of
the function, the expected utility, is maximized. This works as follows. When
the probability of each decision variable is set to either 0 or 1 (and its negation
to 1 or 0), the output of the circuit is the expected utility of that decision set.
Hence, optimising these parameters will maximise the expected utility. We
solve this maximisation via gradient ascent and compute the gradient using
the circuit and the algebraic model counting framework. In contrast to the
constrained approach, which is exact and therefore ensures an optimal decision,
the unconstrained approach that uses gradient ascent may never find the optimal
decision, for example because of local maxima.

Implementation. To ensure that the probability of a decision d remains within
[0, 1], we use the sigmoid function: pd = σ(z) = 1

1+e−z whose derivative is given
by σ′(z) = σ(z)(1−σ(z)). We optimise the function represented by the algebraic
circuit (Equation 5.9) via gradient ascent and use algebraic circuits to obtain
the required gradients (Equation 5.10 to 5.14).

EU =
∑
m∈Rψ

U(m)× P (m) (5.9)

∂EU

∂di
=
∑
m∈Rψ

U(m)× ∂P (m)
∂di

(5.10)

P (m) is a combination of stochastic variables S and decision variables D that
are in m. In the following equations we will explicitly differentiate between the

MAXIMISING DECISIONS 75

positive literals and negative literals (Equation 5.11).

P (m) =
(∏
s∈m,
s∈S

ps
)(∏
¬s∈m,
s∈S

p¬s
)(∏

d∈m,
d∈D

pd
)(∏
¬d∈m,
d∈D

(1− pd)
)

(5.11)

thus, if di ∈ m

∂P (m)
∂di

= (1− σ(di))P (m) (5.12)

and if instead ¬di ∈ m

∂P (m)
∂di

= −(1− σ(di))P (m) (5.13)

This means that the gradient with respect to di can be obtained by computing
the sigmoid of di, the expected utility where di is true and where di is false
(Equation 5.14). The last two each result in one (parallel) circuit evaluation.

∂EU

∂di
=
(∑
m∈Rψ,
di∈m

U(m)∂P (m)
∂di

)
+
(∑
m∈Rψ,
¬di∈m

U(m)∂P (m)
∂di

)

= (1− σ(di))
(∑
m∈Rψ∧di

EU(m)
)

+ (σ(di)− 1)
(∑
m∈Rψ∧¬di

EU(m)
)

(5.14)

Alternatively, we can use out-of-the-box automatic differentiation techniques
that are present in, for example, PyTorch (Paszke et al., 2019) or Ten-
sorFlow (Martín Abadi et al., 2015), with the algebraic circuit as their
computational graph (Zuidberg Dos Martires et al., 2019a).

The decision values returned by this approach are in the range of [0, 1] and affect
the weight with which models contribute to the expected utility. Insufficient
measures to prevent local maxima or insufficient time can cause the decisions
to not exactly correspond to either 0 or 1. To obtain the best decisions from
the found values, several approaches can be investigated. Examples include
rounding to the nearest integer, evaluating different decisions for which the
value is far from 0 and 1, treating the results as a stochastic policy, etc. In our
implementation, we choose to set each final parameter to the nearest integer in
order to have a deterministic policy and use random restarts to mitigate local
maxima.

76 DECISION MAKING: A TALE OF THREE OPERATIONS

5.3.3 Experiments

In our experiments, rather than using the low-level AMC encodings directly, we
use the higher-level probabilistic programming language ProbLog3 to specify
models and queries. These models are then compiled into AMC problems
using the mechanics of aProbLog (Kimmig et al., 2011). We implement our
approaches for DT-ProbLog by using the mechanics of aProbLog (Kimmig
et al., 2011). The data set is constructed as follows. Well-known Bayesian
networks (Scutari, n.d.), Survey (Scutari and Denis, 2014), Asia (Lauritzen
and Spiegelhalter, 1988) and Earthquake (Korb and Nicholson, 2010) are first
compiled into ProbLog programs using ProbLog’s existing conversion script.
Next, we add decisions to the programs by converting each parent node of the
Bayesian network with two possible values into a decision. If this results in less
than four decisions, any node of the Bayesian network not yet considered has a
chance of 0.5 to introduce a new decision. Each value of the node has an equal
probability of being affected by this new decision. Finally, we introduce utilities
using two different approaches. The first approach considers each atom t and
adds a utility value for t with a probability of 0.8 and for ¬t with a probability
of 0.3. The utility values themselves are uniformly sampled from [−50, 50]. The
second approach instead introduces five new separate atoms with a positive
and negative utility, and for each new atom samples five interpretations from
the program. The samples serve as rules for the new atom to become satisfied.
The second approach happens before adding the decisions. The first approach
happens afterwards, to allow decisions to also have utilities. Using this process,
we construct 60 DT-ProbLog programs (20 for Asia, Earthquake, and Survey),
half of them constructed with the first utility approach and half of them with
the second. The number of rules in the resulting programs ranges from 38 up to
108, the number of utilities from 7 to 23, and the number of decisions from 1 to
6. The memory consumption of larger networks (e.g. Sachs (Scutari, n.d.)) was
too high to consider here. This is due to the rather naive standard encoding
of Bayesian networks as ProbLog programs, which could be optimized using
more compact encodings, a better vtree heuristic, or when better configuring
the SDD package. Our experiments are designed to answer two questions.

Q1) Does the unconstrained approach provide optimal solutions? That is, do
the decisions resulting from the unconstrained approach lead to the highest
expected utility? We experimented on the 60 DT-ProbLog programs comparing
both approaches. For 85% of the programs, the difference was less than 0.1.
The average difference over the experiments is 1.472 and the average relative
difference is 0.057. We conclude that overall, the unconstrained approach

3ProbLog is available at https://dtai.cs.kuleuven.be/problog/

https://dtai.cs.kuleuven.be/problog/

LEARNING UTILITY PARAMETERS 77

Table 5.1: Statistics on the executions for the constrained (c) and unconstrained
(u) approach for each dataset D (Earthquake (e), Asia (a) and Survey (s)) and
for all datasets combined (g). The average compile time (CT), run time (RT),
and SDD size are provided. The run time includes the compilation time.

D Appr. avg. CT (s) avg. RT (s) avg. SDD Size (# nodes)

g c 4.0 4.3 1 480 603
u 2.5 41.0 1 055 494

e c 0.0 0.0 2065
u 0.0 1.1 2244

a c 0.0 0.1 12539
u 0.0 3.3 5539

s c 11.9 12.7 4 427 204
u 7.5 118.6 3 158 698

provides promising results. Further investigation into problems of a larger size
would be interesting.

Q2) How does the constrained ordering impact the circuit size, compile- (CT)
and run time (RT) compared to the unconstrained approach? We report on
the average compile-, run time, and SDD size in Table 5.1. It is clear that
constraining the circuit can lead to larger circuits4. However, the unconstrained
approach trades compile time for more evaluation time and currently becomes
slower than the constrained approach. This part of the implementation can still
be optimised, e.g., by using a better random restart configuration or using more
optimized tools such as PyTorch (Paszke et al., 2019) or TensorFlow (Martín
Abadi et al., 2015).

We conclude that to scale to larger problem sizes, more work is required on the
used encoding, vtree heuristics, random restart configuration, etc. Regardless,
we have shown that algebraic model counting and algebraic circuits provide an
expressive framework that can also solve decision theoretic tasks.

5.4 Learning Utility Parameters

Several techniques have already been introduced to learn the probability
parameters in ProbLog (Gutmann et al., 2008, 2011b). The most recent

4The reported circuit sizes were obtained from the SDD package and can include dead
nodes left over from the construction process.

78 DECISION MAKING: A TALE OF THREE OPERATIONS

addition jointly learns the parameters of probabilistic facts and those of neural
networks by optimising a loss function using gradient descent (Manhaeve et al.,
2018). This approach integrates well with ProbLog’s inference as the gradient
can also be computed using the algebraic circuit. We will use the same approach
and define a loss function that we use as an approximate signal, allowing us to
learn a utility parameter for each variable.

Setting. The input of our learning task is based on a set of interpretations
{m1, . . . ,mM} called examples. These examples we only observe partially Q
= {q1, . . . , qM}. For each of the interpretations mj , we also observe the total
utility ũj , Ũ = {ũ1, . . . , ũM}. The output of this learning task consists of
the positive and negative utility, respectively ui,p and ui,n, associated with
each propositional variable fi. We focus on the utilities here and assume the
probability parameter of each variable is already known. This can be relaxed in
two ways. On the one hand, we can learn the probabilities first, ignoring the
utility values, after which we are in our described setting. On the other hand,
the assumption can be relaxed when the loss function is extended with a signal
concerning the likelihood of the observations. Though it could be interesting to
compare the performance of these different approaches empirically, this is left for
further work. We also assume that of each example, all decisions are observed.
Our approach works for both one-shot and sequential decision problems.

Approach. To learn the utility parameters, we minimize the following loss
function:

MSE(Q, Ũ , ψ) = 1
M

M∑
j=1

(ceu(qj , ψ)− ũj)2 (5.15)

ceu(qj , ψ) =
∑
m∈Rψ

P (m|qj)u(m) (5.16)

The intuition behind this equation is that we minimize the difference between
the utility we expect ceu(qj) and the utility that was actually observed ũj . The
former is defined by u(m) and P (m|qj). The assumption that all decisions are
fully observed, simplifies the calculation of P (m|qj) and is reasonable as long
as the decisions are not made by an unknown third party. Our approach also
works for partially observed decisions when each decision has an associated
probability. When assuming optimal behavior, the calculation of P (m|qj) and
our minimization approach becomes more complex.

LEARNING UTILITY PARAMETERS 79

To optimize Equation 5.15, we employ a gradient descent approach and use an
algebraic circuit to compute the gradient ∂MSE(Q,Ũ,ψ)

∂ui,p
(Equation 5.17).

2
M

M∑
j=1

(ceu(qj , ψ)︸ ︷︷ ︸
Part1

−ũj)
∑
m∈Rψ

δi,m,pP (m|qj)︸ ︷︷ ︸
Part2

(5.17)

δi,m,p =
{

1 if fi ∈ m,
0 otherwise

(5.18)

The gradient for the negative utility parameter ui,n is similar to Equation 5.17
except that we use δi,m,n instead of δi,m,p.

δi,m,n =
{

0 if fi ∈ m
1 otherwise

(5.19)

Part 1 of Equation 5.17 can be computed using the expected utility semiring
querying for qj conditioned on qj . Part 2 of that equation can be computed
using the probability semiring querying for qj ∧ fi (or qj ∧¬fi for the ui,n case)
conditioned on qj .

Experiments. The correct DT-ProbLog programs are constructed using the
process described for maximisation (Section 5.3). To simplify the experiment
setup, we do not add decisions to the programs. To construct the partially
observed examples, we sample from the programs and leave out each observed
atom with a probability of pdrop. The input program of the learning task is the
original program with for each utility variable a chance of 0.5 that it is made
unknown.

To evaluate our approach we answer the following questions. Q1) Is the MSE
loss function a good indicator when our aim is to 1) predict the utility of an
interpretation, 2) recover the correct values or 3) make good decisions? Q2)
How does the partial observability affect the results? We consider three metrics
to answer both questions, mean squared sampled error (MSSE), mean relative
error (MRE), and relative regret. The MSSE (Q1.1, Q2) is closest to what we
are optimising and is evaluated by sampling ns = 100 interpretations, comparing
the total utility of the interpretation tc with the total utility of the learned values
tl: 1

ns

∑ns
i=1(tc− tl)2. The MRE (Q1.2) is used to compare how close the learned

utility values xi are to the actual values x̃i, using the relative error to normalise
for large (small) x̃i. When there are nv learned values,MRE = 1

nv

∑nv
i=1 |

xi−x̃i
x̃i
|.

80 DECISION MAKING: A TALE OF THREE OPERATIONS

0 20 40 60 80

0

1,000

2,000

3,000

4,000

0.4

0.6

0.8

1

epoch

M
S
E

M
S
S
E

M
R
E

(a) with pdrop = 0.7

0 20 40 60 80

500

1,000

1,500

2,000

2,500

0.2

0.4

0.6

0.8

1

epoch

M
S
E

M
S
S
E

M
R
E

(b) with pdrop = 0.8

Figure 5.3: The learning progress of a Survey network.

If we use the learned program for decision making, then the regret metric is
more interesting, but also more complex to compute. The regret (Q1.3) is
based on the utility to expect when taking decisions based on the learned model.
Denote dl as the optimal decisions according to the learned model, dt as the
true optimal decisions, and eu(d) as the expected utility when taking decisions
d. Then the relative regret is defined as | eu(dt)−eu(dl)

eu(dt) | and computed using
the maximisation approaches described in this chapter. This metric requires
decisions that we add to the program in a manner equivalent to the procedure
described for the maximisation approach (Section 5.3).

Q1) We have tested the learning approach on five different Survey, Earthquake,
and Asia networks, each for varying values of pdrop5. Each experiment was
given 80 epochs to converge and 150 partially observed examples to train on.
Figure 5.3b shows that while optimising our loss function, the MSSE and MRE
successfully decrease as well. This suggests the MSE can be used as an indicator
to optimise MSSE and MRE. It is possible that when optimising too long, the
MSSE and MRE can increase again due to overfitting to MSE. This is more
noticeable for MRE (Figure 5.3a) than for MSSE. The relative regret is low,
even for high pdrop (Figure 5.4). Q2) We investigate the effect of pdrop on the
MSSE (Figure 5.5). As expected, it generally becomes harder to learn with an
increased pdrop.

We conclude that AMC techniques can be adapted to perform utility learning.
To investigate larger problems with more parameters, we first need improvements
to obtain smaller circuits.

5Due to a non-deterministic ordering originating in the ProbLog database, an increase
in pdrop can cause previously unobserved atoms to become observed. It is however still
impossible for more atoms to become observed.

RELATED WORK 81

0 0.2 0.4 0.6 0.8

0

0.5

1

1.5

pdrop

R
el
.
R
eg
re
t

Figure 5.4: Relative regret for 180
Survey networks.

0 0.2 0.4 0.6 0.8

0

200

400

600

800

pdrop

M
S
S
E

Figure 5.5: The MSSE for five different
Survey networks, over different degrees
of partial observability (pdrop).

5.5 Related Work

Maximisation. Our maximisation approaches address the same problem as DT-
ProbLog (Van den Broeck et al., 2010). Their approach consists of manipulating
binary decision diagrams while we use a more general AMC approach applied
to SDDs. Our approaches also retain the circuit so that it can be used for
other tasks (e.g. learning utilities) or an extension of this task (e.g. stochastic
constraints). Finally, DT-ProbLog did not yet consider a learning setting.
Sum-product-max networks and decision circuits have a structure similar to our
constrained circuit approach (Bhattacharjya and Shachter, 2012; Melibari et al.,
2016). They determine the operations of each node during the construction
process. Our approach emphasises the power of an algebraic circuit and AMC,
dynamically defining the operations. Due to the higher-level definition, we
can also reuse existing compilation tools. This AMC approach provides more
flexibility towards extended or different tasks (Li and Eisner, 2009). Finally, we
have also introduced an approach that does not constrain the variable ordering
and a learning task. A #DPLL approach can also maximise the expected
utility (Apsel and Brafman, 2012; Majercik and Littman, 1998). This is related
to our approach as the traces of #DPLL can be used to form an arithmetic
circuit. The advantage of materializing the circuit is that it can be reused,
significantly reducing the cost of re-evaluating the theory with different input
weights. This is especially beneficial for the utility learning approach which
requires multiple evaluations to obtain gradients. Another example of a task
that requires multiple evaluations is sensitivity analysis (Darwiche, 2000). AND-
OR graphs are related to #DPLL and algebraic circuits (Dechter, 1999; Dechter

82 DECISION MAKING: A TALE OF THREE OPERATIONS

and Mateescu, 2007). Work in that domain is often used in a probabilistic
setting but can also be applied to the maximum expected utility problem (Lee
et al., 2019; Marinescu, 2009). Those approaches often start from an influence
diagram while we start from an expressive DT-ProbLog program. Furthermore,
as a main difference to the work on AND-OR graphs, our contribution includes
the application of algebraic circuits to utility learning and an unconstrained
circuit approach. This has not been considered by those other approaches.

Utility learning. There is a lot of work already performed in the context of
utility learning. However, to the best of our knowledge there is none that is
situated in our setting, that is, with partially observed interpretations and the
total utility of that interpretation. In terms of data structure, the work on
sum-product-max networks (Melibari et al., 2016) is the most similar but it
considers a fully observed setting. Markov decision processes and influence
diagrams (also known as Bayesian decision networks) are two alternatives for
modelling a decision problem. We are not aware of any work for those models
that considers our setting. In general, utility information is not provided and
instead obtained indirectly for example by preference elicitation (Chajewska
et al., 2000; Rothkopf and Dimitrakakis, 2011) or based on interpretations with
optimal behavior (Ng and Russell, 2000; Suryadi and Gmytrasiewicz, 1999).
The latter is the case in the domain of inverse reinforcement learning (Ng and
Russell, 2000) where an unknown utility function, for example of a Markov
decision process, is learned from examples containing optimal behavior.

5.6 Conclusion

Algebraic circuits are versatile structures. We have shown at the level of
AMC how maximising the expected utility and utility learning can be solved.
Because we defined this at the high level of AMC, we were able to reuse the
algebraic circuit mechanics of the existing probabilistic languages (aProbLog
and DTProbLog) without adding new constructs to them. We have shown
two approaches for the maximisation problem and we introduced a novel
learning setting where unknown utility values are learned from partially observed
interpretations with observed utilities. This learning task can be tackled by a
gradient descent approach, using algebraic circuits to compute the gradients.
The circuit size and compilation time rapidly increase for larger problems and
are currently an obstacle to scaling our approaches. In future work, we plan to
investigate ways of improving this by adapting our methods (e.g. encodings)
or improving knowledge compilation tools. Finally, we plan to extend the
maximisation approaches to sequential problems (Venturato et al., 2022).

Chapter 6

Variable Ordering for
Weighted Model Integration

This chapter was previously published as:

V. Derkinderen, E. Heylen, P. Zuidberg Dos Martires, S. Kolb,
and L. De Raedt (2020). “Ordering Variables for Weighted Model
Integration”. In: Proceedings of the 36th Conference on Uncertainty
in Artificial Intelligence, UAI. ed. by R. P. Adams and V. Gogate.
Vol. 124. AUAI Press, pp. 879–888

The bottom-up min-fill heuristic introduced in the publication was devised
during a brainstorming session with P. Zuidberg Dos Martires and S. Kolb.
The hypergraph decompositioning algorithm within the publication instead
originates from the master thesis of E. Heylen. I formalised the variable ordering
analysis based on existing work in the discrete variable domain, providing a more
principled basis for all the proposed heuristics. I implemented the additional
heuristics, ran all experiments borrowing existing code from the aforementioned
master thesis, and contributed to the publication writing process.

The introduction in Section 6.1, and background in Section 6.2 were rewritten to
better integrate within this dissertation. Especially the background on weighted
model integration and its connection to knowledge compilation was extended
with more detail and examples.

83

84 VARIABLE ORDERING FOR WEIGHTED MODEL INTEGRATION

We now move beyond classical propositional formulas, and investigate counting
with background theories. This alleviates the previous limitation to discrete
problems, expanding inference to discrete-continuous domains. A challenging
task within this broader setting is weighted model integration, which uses a
formula ψ to define models of interest similar to propositional counting. In
contrast to the propositional setting, ψ may contain continuous variables such
that ψ essentially represents the (continuous) regions over which to integrate with
respect to a given weight function (Belle et al., 2015). Knowledge compilation
techniques have shown to be beneficial also for solving these integration problems
(cf. the solver F-XSDD(BR) (Kolb et al., 2019b)).

For d-DNNF compilers, the order in which to branch on variables has shown
to greatly influence the size of the final representations. Additionally, when
using them for weighted model integration, the variable ordering also heavily
impacts the order in which we can optimally integrate out the variables. This
chapter discusses that impact and proposes several ordering heuristics for the
discrete-continuous domain. Our contribution relates to the research question:

RQ2.2 Can we extend variable ordering heuristics devel-
oped for the discrete domain to also work well for discrete-
continuous domains?

The remainder of this chapter is organized as follows: Section 6.1 introduces
the problem of finding a good variable ordering with continuous variables for
weighted model integration, and summarizes our contributions. Section 6.2
formally introduces the problem of weighted model integration and explains its
connection to knowledge compilation, partially contributing to the first research
question on counting applications. With Section 6.3, we first explain the impact
of the variable ordering and discuss ordering heuristics for a chain of variables.
Afterwards in Section 6.4, we discuss the case of a tree-structured ordering,
important for targeting the SDD class that requires a vtree. The experiments
and conclusions are presented in Section 6.5 and 6.6 respectively.

6.1 Introduction

The d-DNNF compilation algorithms are not the only algorithms influenced by a
variable ordering. Others that in a similar fashion heavily rely on finding a good
ordering include the sum-product algorithm (Pearl, 1982), variable elimination
(VE) (Zhang and Poole, 1994), or bucket elimination (Dechter, 1999). Finding
the optimal variable ordering in which to marginalize out single random variables
is an NP-complete problem (Arnborg, 1985). However, several polynomial time

WEIGHTED MODEL INTEGRATION 85

heuristic schemes have been developed (Darwiche, 2009; Dechter, 2013; Kjærulff,
1990).

Weighted model integration (WMI) (Belle et al., 2015) is a counting task involving
continuous variables. It consists of two linked ‘subproblems’: the combinatorial
problem also present in weighted model counting, and the integration of the
continuous variables. Algorithms for both subproblems are characterized by a
variable order, sometimes a variable tree, that heavily influences their efficiency.
In practice, for many WMI problems the integration of continuous variables is
the main bottleneck. However, in the WMI literature it is typically assumed
that a (good) ordering is provided by the user (Kolb et al., 2018, 2019b), which
is unrealistic. Therefore, in this chapter, we study the problem of automatically
determining a good variable ordering in the context of WMI.

As a first key contribution of this chapter, we show how variable ordering
techniques established for discrete variables can be extended to the discrete-
continuous setting (Section 6.3). This is not straightforward as problems with
continuous variables exhibit additional dependencies that impact the difficulty of
the integration steps. Consequently, this contribution allows us to develop (tree-
based) ordering techniques for a state-of-the-art WMI solver F-XSDD(BR) (Kolb
et al., 2019b).

The second contribution of this chapter is BU-MiF, a novel heuristic that
produces a variable (tree) ordering for the discrete-continuous domain, and
which has no direct analog in the discrete domain. We extend F-XSDD(BR) with
our new heuristic and experimentally show its benefits on a set of benchmark
problems using PyWMI (Kolb et al., 2019a), indicating better performance than
currently available orderings. Furthermore, the BU-MiF heuristic allows the
F-XSDD(BR) algorithm to perform well on a set of benchmark problems from
a tractable subset of WMI, outperforming the specialized SMI solver (Zeng and
Van den Broeck, 2019) that was introduced to tackle this class of problems.

6.2 Weighted Model Integration

Weighted model integration as a problem was introduced by Belle et al. (2015),
extending weighted model counting from its propositional logic setting to the
domain of modulo theories, for instance to support LRA formulas such as
(x1 + x2 > 15) =⇒ A (cf. Chapter 2). In order to explain the relation to
weighted model counting, we will rewrite its formulation, step-wise introducing
support for continuous variables.

Recall from Chapter 2 the weighted model counting definition, which enumerates

86 VARIABLE ORDERING FOR WEIGHTED MODEL INTEGRATION

all models m of a formula ψ. Below, we repeat the equation but abstract the
weight function of a model w(m) that was previously defined as a product of
the weight of its literals.

WMC(ψ,V, w) =
∑
m|=ψ

w(m) (6.1)

Instead of enumerating all models of ψ, we now enumerate all truth assignments
over propositional variables V and only sum those satisfying ψ by using an
indicator function denoted with Iverson brackets, Jm |= ψK, that evaluates to 1
when the indicator is satisfied, and 0 otherwise.

WMC(ψ,V, w) =
∑
m∈BM

Jm |= ψKw(m) (6.2)

with M equal to the number of propositional variables, i.e., |V|.

Finally, we support continuous variables: we partition V into a set b of
propositional variables and a set x of continuous variables. The assignment m
is similarly partitioned into mb and mx.

WMI(ψ,V, w) =
∑

mb∈BM

∫
Jm |= ψKw(m) dx (6.3)

Definition 30 (weighted model integration (WMI)). Given

• a set b of M Boolean variables,

• a set x of N real variables,

• a weight function w : BM×RN→R≥0,

• and a support ψ in the form of a modulo theory formula over V = b ∪ x,

the weighted model integral is given by Equation 6.3.

When the set of real variables x is empty, the WMI task reduces to a standard
weighted model counting task. Even though the WMI equation is flexible in the
type of background theory used, we confine our explanations in this chapter to
using LRA formulas.

Example 33 (WMI example). Consider a WMI problem, over b = ∅ and
x = {x1, x2}, with weight function w(x) = 2x1x2 +x2

1 and the following support
ψ.

ψ = (0 ≤ x1, x2 ≤ 10) ∧
(

(x1 + x2 < 10) ∨ (2x1 + x2 < 13)
)

WEIGHTED MODEL INTEGRATION 87

0 2 4 6 8 10

x1

0

2

4

6

8

10

x
2

x1 + x2 < 10

2x1 + x2 < 13

Figure 6.1: The x1, x2 space limited to x1, x2 ∈ [0, 10], with the regions satisfying
x1 + x2 < 10 or 2x1 + x2 < 13 coloured. This illustrates the WMI problem of
Example 33.

We slightly abused notation to write the [0, 10] bounds more compactly. The
space represented by ψ is illustrated in Figure 6.1. The task of weighted model
integration is to correctly integrate over this space. The region satisfying x1 +
x2 < 10 partially overlaps with the region satisfying 2x1 + x2 < 13. This
complicates WMI solvers, which must not erroneously consider regions more
than once.

Knowledge compilation in WMI. Similar to knowledge compilation ap-
proaches for WMC, WMI has also received attention from this direction in
order to build solvers. Such solvers have either been based on extended algebraic
decision diagrams (Kolb et al., 2018) or extended SDDs (XSDDs) (Zuidberg
Dos Martires et al., 2019b). These extended representations allow, in addition
to Boolean variables, also the use of LRA atoms. In the case of XSDD,
this is accomplished by abstracting ψ to a propositional version through the
introduction of new fresh Boolean variables for each LRA atom. The resulting
formula is then completely propositional, and is compiled using an existing
SDD compiler. The state-of-the-art WMI solver F-XSDD(BR) (Kolb et al.,
2019b) uses XSDDs to represent the support ψ. They then analyse the compiled

88 VARIABLE ORDERING FOR WEIGHTED MODEL INTEGRATION

representation to push the integration of variables closer to the leaf nodes,
because that produces smaller intermediate results, and leads to fewer integration
calls. This is shown in the example below.
Example 34 (second WMI example). Suppose b = ∅, x = {x0, x1, . . . , x4},
w(x) = x1x2, and

ψ =
{

(x0 < 5) ∨ (x0 < x1) ∨ (x0 < x2) ∨ (x1 + 2 < x2)∨
(x0 < x3) ∨ (x0 < x4) ∨ (x3 + 2 < x4)

Figure 6.2 shows the result of 1) creating a d-DNNF representation of the
abstracted support ψ, after which 2) the d-DNNF is turned into an equation
and the integration operations along with the weight function are pushed down
lower into the equation. More details on how knowledge compilation helps to
solve WMI problems are provided in Appendix B, as they are unnecessary for
the remainder of this chapter.

Our ability to push the integration lower into the SDD representation depends
on both the formula ψ and the vtree that was used to guide the SDD during
construction. Meaning, the ability to push down the integration can be
influenced by choosing a good vtree. A major problem, however, is that
vtree heuristics aim for succinct representations: they are completely agnostic
to the LRA atoms underlying the abstracted variables, and the integration
procedure. We resolve this problem by proposing new heuristics that focus on
finding a good order in which to integrate out continuous variables, which can
then be used to produce a good variable ordering (or vtree) to guide the SDD
construction.

The previous WMI example had a simple weight function consisting of one
term. For more complex weight functions — F-XSDD(BR) supports piece-wise
polynomial weight functions — we refer to a longer explanation in Appendix B,
and the relevant F-XSDD(BR) literature, Kolb (2019) and Kolb et al. (2019b).
This does neither affect the analysis in this chapter, nor the contributed variable
ordering heuristics.

6.3 Variable Orderings

We first illustrate the impact of the variable ordering (Section 6.3.1) before
discussing heuristics (Section 6.3.2), and in both cases we first discuss the
discrete domain before moving to the novel continuous part.

The focus of this section is a simple variable ordering, a chain. We therefore use
a variable elimination algorithm in our explanation, rather than a knowledge

VARIABLE ORDERINGS 89

+

× ∫0

∫0 ∫1..4x1x2 ×

⟦x0<5⟧ ⟦x0≥5⟧ +

× ×

∫1x1 + ∫3,4 +

× × ∫3 ∫1x1 ∫1x1

⟦x0<x1⟧ ×⟦x0≥x1⟧ ∫2x2

×

∫3 ∫4 ×

⟦x0≥x2⟧ ⟦x1+2≥x2⟧

⟦x0<x3⟧ ⟦x0≥x3⟧ +

∫4 ∫4

⟦x0<x4⟧ ×

⟦x0≥x4⟧ ⟦x3+2<x4⟧

⟦x0≥x1⟧ +

∫2x2 ∫2x2

⟦x0<x2⟧ ×

⟦x0≥x2⟧ ⟦x1+2<x2⟧

Figure 6.2: The WMI equation of Example 34. Both the weight function x1x2
and the integration operations have been pushed lower into the equation. Symbol∫
i
denotes the integration of xi:

∫
dxi. When the node is an intermediate node,

the integration is performed over the result of the node below it. When it is
instead a leaf node, the result is performed over 1, i.e.,

∫
1dxi. Usually this

means integrating over the variable’s domain bounds that are excluded from
the representation, for example

∫
J0 < xi < 10Kdxi.

90 VARIABLE ORDERING FOR WEIGHTED MODEL INTEGRATION

A P(A)
true 0.4
false 0.6

A B P(B|A)
true true 0.9
true false 0.1
false true 0.2
false false 0.8

B C P(C|B)
true true 0.6
true false 0.4
false true 0.7
false false 0.3

Table 6.1: Conditional probability tables P (A), P (B|A), and P (C|B).

compiled approach. The variable tree (or vtree) structure is discussed afterwards,
in Section 6.4.

6.3.1 How to Exploit Structure

Weighted Model Counting. We explain the discrete setting in the context of
conditional probabilities, also called factors. Consider the problem of computing
the probability P (C) using the factors P (A), P (B|A), and P (C|B) in Table 6.1.
This can be done as follows:

P (C) =
∑
A

∑
B P (A,B,C) (6.4)

=
∑
A

∑
B P (C|B)P (B|A)P (A) (6.5)

In variable elimination approaches, evaluating this translates to first computing∑
B P (C|B)P (B|A)P (A), resulting in a new factor f(A,C). The size of an

intermediate factor is exponential in the number of its variables causing both
the time and space complexity to be exponential. Fortunately, distributivity,
commutativity, and associativity can be used to reduce the number of operations
that have to be performed. We can for example push inside the summation
over A:

P (C) =
∑
B P (C|B)

∑
A P (A)P (B|A) (6.6)

This leads to an intermediate factor f(B)=
∑
A P (A)P (B|A) depending on only

one variable. The complexity is now no longer necessarily exponential in the
number of variables but is instead determined by the problem structure and the
variable ordering d — here d=(B,A). The importance of the latter becomes
apparent if we consider d=(A,B) instead:

P (C) =
∑
A P (A)

∑
B P (B|A)P (C|B) (6.7)

We obtain the factor f(A,C)=
∑
B P (B|A)P (C|B), depending on two variables

instead of one.

VARIABLE ORDERINGS 91

Unfortunately, finding a variable ordering that leads to intermediate factors with
the lowest maximum number of variables is in general NP-complete (Dechter,
2013).

Weighted Model Integration. Pushing the sum operation inside, as done in
the discrete case, has also been studied for the continuous case (Kolb et al.,
2019b), the key difference being that integrations are pushed inside instead of
summations.

Reconsider the definition of a weighted model integral (cf. Equation 6.3), using∑
b to denote

∑
mB∈BM . Let us assume, for the sake of simplicity, that the

weight function w does not depend on Boolean variables and fully factorizes,
i.e., it is separable into factors depending only on single continuous variables:

WMI(ψ,V, w) =
∑

b

∫
Jm |= ψK

[=w(mx)︷ ︸︸ ︷∏
xi

wi(xi)
]
)dx (6.8)

Such separable weight functions allow us to push inside integrations over specific
variables in an integrand. For instance, consider the function p(z):

p(z) =
∫

(J0<z<1KJy≤zKJx≤yKxyz) dxdy (6.9)

Due to the separable weight function xyz we can push the integrations over x
and y inside the integrand, similar to pushing inside summations in the discrete
case.

p(z) = J0<z<1K
(∫

Jy≤zK
(∫

Jx≤yKxdx
)
ydy
)
z (6.10)

Similarly again to the discrete setting, choosing different orders in which to
push inside the integrations can have tremendous effects on the space and time
requirements of running an inference algorithm.

Example 35. Given the weight function w = 1 and support

ψ =
(∧

i={1,...,4}(x0≤xi)
)
∧
∧
i={0,...,4}(0≤xi≤1) (6.11)

92 VARIABLE ORDERING FOR WEIGHTED MODEL INTEGRATION

where x1, x2, x3, and x4 all interact with x0. If we first integrate out x0 we
obtain:∫

JψKwdx0=x1Jx1<x2KJx1<x3KJx1<x4K
∏
i={1,2,3,4}J0 ≤ xi ≤ 1K+

x2Jx1≥x2KJx2<x3KJx2<x4K
∏
i={1,2,3,4}J0 ≤ xi ≤ 1K+

x3Jx1≥x2KJx2≥x3KJx3<x4K
∏
i={1,2,3,4}J0 ≤ xi ≤ 1K+

x3Jx1<x2KJx1≥x3KJx3<x4K
∏
i={1,2,3,4}J0 ≤ xi ≤ 1K+

x4Jx1≥x2KJx2≥x3KJx3≥x4K
∏
i={1,2,3,4}J0 ≤ xi ≤ 1K+

x4Jx1≥x2KJx2<x3KJx2≥x4K
∏
i={1,2,3,4}J0 ≤ xi ≤ 1K+

x4Jx1<x2KJx1<x3KJx1≥x4K
∏
i={1,2,3,4}J0 ≤ xi ≤ 1K+

x4Jx1<x2KJx1≥x3KJx3≥x4K
∏
i={1,2,3,4}J0 ≤ xi ≤ 1K (6.12)

However, first integrating out x1 instead yields the more compact intermediate
result, resulting in more efficient subsequent computations (the symbolic
expression tree representing the integrand is much smaller).∫

JψKwdx1 = (1−x0)(
∏
i={2,3,4}Jx0<xiK)(

∏
i={0,2,3,4}J0 ≤ xi ≤ 1K) (6.13)

Even though Kolb et al. (2019b) studied pushing inside integrations, they did
not develop any heuristics to do so. Their approach relied on hand-crafting
specific integration orders for specific problems. In the following we delineate
how variable ordering strategies in the discrete setting can be adapted for the
continuous domain.

6.3.2 How to Order Variables

Finding the best variable ordering (i.e., smallest intermediate size) is in general
NP-complete. In practice, we instead use heuristics. We first introduce
additional concepts used to analyse and find good variable orderings. Then, we
explain three simple and common variable ordering heuristics that use these
concepts. While this explanation is based on existing work for discrete problems
(Darwiche, 2009; Dechter, 2013), we show how to apply it to the continuous
problem setting, a problem that, to the best of our knowledge, has not yet
received much attention prior to the publication of this work.

VARIABLE ORDERINGS 93

C

A

B

C

A

C

B
∑
B

∑
A

x3 x4

Figure 6.3: The interaction graph for factors f(A), f(A,B) and f(B,C) (middle),
the graph when B is summed out (left) and the graph when A is summed out
(right).

Interaction Graphs

An important structure used to analyse a discrete problem is the interaction
graph of factors (Darwiche, 2009).

Definition 31 (interaction graph). Let V be a set of vertices and E a set of
edges. A factor interaction graph G=(V,E) of a set of factors {f1, . . . , fn}
is an undirected graph with a vertex vi ∈ V for each variable xi and an edge
between two nodes, vj and vk when the corresponding variables xj and xk appear
together in at least one factor (we say that xj and xk co-appear or interact).

Before we can eliminate a variable v when applying variable elimination, we
must first multiply all factors in which v appears. After eliminating v, we obtain
a factor containing all the variables that were in the multiplied factors. In
the factor interaction graph, these two steps correspond to connecting all the
neighbors of v and removing v from the graph. The additional edges are called
fill-in edges. In this process, the number of variables in the resulting factor is
equal to the number of neighbors of v while the size of a factor is exponential
in the number of variables.

Example 36. In the discrete example of factors P (A), P (B|A) and P (C|B),
A interacts with B and B interacts with C (Figure 6.3, middle). Eliminating B
results in new interaction between A and C (Figure 6.3, left) while eliminating A
does not result in any new interactions (Figure 6.3, right). This shows that first
eliminating A is more beneficial as the intermediate factor f(A,B) is smaller
(fewer neighboring variables).

In order to utilize the concept of interaction graph for continuous domains,
we introduce the concept of an interaction graph of LRA atoms. Such an
interaction graph is obtained by interpreting the LRA atoms as factors. The
vertices in the interaction graph then correspond to real variables appearing in
the atomic literals and they are connected to each other if they jointly appear

94 VARIABLE ORDERING FOR WEIGHTED MODEL INTEGRATION

x0

x1

x4

x2

x3

x1

x4

x2

x3

x0

x4

x2

x3∫ 𝑑x0 ∫ 𝑑x1

Figure 6.4: The interaction graph of Example 35 (middle), the graph when x0
is integrated out (left) and the graph when x1 is integrated out (right).

in at least one atomic literal. This elegant mapping of atomic modulo theory
literals to factors allows us to deploy the concepts on variable ordering developed
for the discrete setting in the continuous setting.

Example 37. In Equation 6.11, x0 interacts with all other continuous variables
(Figure 6.4, middle). Integrating out x0 results in new inequalities in which
x1, x2, x3 and x4 interact with each other (Equation 6.12). In the interaction
graph this implies the removal of x0 and the addition of new edges (dashed,
Figure 6.4, left). When integrating out x1 instead, no new edges are introduced in
the interaction graph (Figure 6.4, right), implying a more compact intermediate
result (Equation 6.13).

If a continuous variable v occurs in multiple inequalities with other continuous
variables X, integrating out v will yield inequalities between all the variables of
X. This process also exhibits an exponential relation for the discrete-continuous
setting between the number of neighbors for v and the size of the result after
integrating out v. This is related to the exponential complexity of Fourier-
Motzkin elimination (Imbert, 1990).

An interaction graph and a variable ordering together form an ordered graph.
The following two definitions are from Dechter (2013).

Definition 32 (ordered graph). Given an undirected graph G = (V,E), the
ordered graph (G, d) is obtained by ordering the nodes along ordering d. The
parents of a node v are the nodes connected to v (see E) which occur earlier
in the ordering. The width of node v in (G, d) is the number of parents v has.
The width of ordered graph (G, d) is the maximum width of all nodes in (G, d).

Definition 33 (induced ordered graph). An induced ordered graph (G∗, d)
of (G, d) is an ordered graph obtained from (G, d) by processing the nodes in
reverse order of d (last to first, top to bottom). A node is processed by adding
edges between all its parents. The induced width of ordered graph (G, d) is the
maximum number of parents any node has in (G∗, d). The induced width of
graph G is the minimal induced width over all possible orderings d.

VARIABLE TREES 95

The process to construct (G∗, d) matches the behavior of an interaction graph
when eliminating variables in the reverse order of d. Given a variable elimination
approach for a discrete setting with starting interaction graph G and elimination
ordering d, the number of variables in the largest intermediate factor is equal
to the induced width of (G, d) plus one. The time and space complexity of the
variable elimination approach is exponential in the induced width (Dechter,
2013).

Heuristic Variable Ordering

Given an interaction graph G, d should be chosen such that the induced width
of (G, d) is minimal. This minimizes the size of the intermediate factors for the
discrete setting and the size of the resulting equation (symbolic expression tree)
for the hybrid setting. Unfortunately, finding the induced width of a graph
is NP-complete in general (Dechter, 2013). Nevertheless, there are reasonable
heuristics such as min-degree, min-induced-width and min-fill. Min-degree
constructs the ordering d for interaction graph G in reverse order by iteratively
selecting the variable v with the lowest degree in G and removing v and its
edges from G. This idea is also used in linear decision diagrams (Chaki et al.,
2009) to perform existential quantification of continuous variables. Min-induced-
width and min-fill are similar but connect all neighbors of v before removing it.
Min-induced-width selects the node with the lowest degree but, because of the
modification, also accounts for previously added edges. Min-fill selects v based
on the minimum number of edges required to connect the neighbors (the fill-in
edges). None of the heuristics work best on all problems. In general, min-fill
has shown to be usually slightly better than min-induced-width, and min-degree
has shown to be the worst of the three (Dechter, 2013; Kask et al., 2011; Koller
and Friedman, 2009).

The three heuristics originate from the work in the discrete setting. When we
construct the interaction graph for the continuous case by treating atomic LRA
literal as factors, the interaction graph provides the same kind of information
as for the discrete case (minimise the induced width). We can therefore also
apply these heuristics to the continuous setting.

6.4 Variable Trees

Instead of performing computations on factors (cf. Section 6.3), we investigate
a search-based approach that consists of recursively conditioning on variables.
Consider for example

∑
A P (B = 1|A)P (A), previously solved by taking the

96 VARIABLE ORDERING FOR WEIGHTED MODEL INTEGRATION

product of both P (B = 1|A) and P (A) before eliminating A. A search-based
approach solves this problem by first conditioning on A = 0, computing the
product, and summing it with the result of conditioning on A = 1. The
advantage of this approach, when evaluated in a depth-first manner, is that it
requires less memory compared to reasoning over complete factors (A = 0 and
A = 1 at the same time). An extension of this approach exploits independencies
that result from conditioning on variables. The order in which variables are
branched on is in this extension a tree of variables instead of a simple chain
variable ordering.

6.4.1 AND/OR Graphs

An OR-tree is formed by repeatedly conditioning on variables according to
variable ordering d (Figure 6.5). Each conditioning represents an OR-node
(circle) branching on the different possible values for the variable. A path or
trace in the tree represents an assignment to each variable such that in a leaf
node the variables in all factors have been instantiated to a value. Instead
of computing the weight for each leaf as the product of instantiated factors,
distributivity is used to push instantiated factors as close to the root as possible.
This means that as soon as all variables of a factor have been instantiated, the
value of the factor can be taken into account (placed on the edge), reducing
computations (Dechter, 2013). More formally, each factor f(X) can be taken
into account when all values for variables X have been assigned a value.

Example 38. The two leaves on the left of Figure 6.5 only differ in the
assignment for C. Instead of computing P (A = 0)P (B = 0|A = 0)P (C = 0|B =
0) for the left leaf, P (A = 0)P (B = 0|A = 0)P (C = 1|B = 0) for the right leaf
and summing up the results, distributivity can be used to push the shared part,
P (A = 0)P (B = 0|A = 0), higher in the tree.

An AND/OR tree is an extension that exploits more independencies. For
example, after conditioning on B, P (C|B) becomes independent from P (A)×
P (B|A) (Figure 6.6). This is used to split the computations into multiple
parts (AND-node with a branch for A and one for C), graphically represented
by connections going to multiple OR-nodes after a decision. When a subtree
occurs multiple times, the parents can refer to the same subtree, reusing the
computations. This behavior can be obtained through caching and results in
graphs instead of trees. The AND/OR structure is not guided by a simple
variable ordering but by a variable tree (Figure 6.6).

VARIABLE TREES 97

1* 2*
A

0

C

0 1

1

C

0 1

B

0

3* 4* 7* 8*

A

0

C

0 1

1

C

0 1

1

3* 4*

5* 6*

7* 8*

Nr. Factors

1* P (A=0)P (B=0|A=0)
2* P (A=1)P (B=0|A=1)
3* P (C=0|B=0)
4* P (C=1|B=0)
5* P (A=0)P (B=1|A=0)
6* P (A=1)P (B=1|A=1)
7* P (C=0|B=1)
8* P (C=1|B=1)

Figure 6.5: OR-tree with d = B,A,C and table of weights (x*).

1* 2*

B

0

A C

0 1

3* 4*

1

A C

5* 6* 7* 8*

0 1 0 1 0 1

CA

B

Figure 6.6: AND/OR-tree (left) and its guiding variable tree (right). B = 0
(and B = 1) splits into two OR-nodes, A and C, indicating an AND-node.

A guiding tree is only valid for a problem when variables that co-occur in a factor
are not split over different AND branches. Given a problem with interaction
graph G, any tree of G is a valid guiding tree for that problem (Dechter, 2013).

Definition 34 (pseudo tree). A pseudo tree of interaction graph G = (V,E)
is a directed rooted tree T = (V,E′) with the back-arc property. This property
states that for each edge e, if e ∈ E and e /∈ E′ then e is a back-arc edge, i.e.,
an edge that connects a node with one of its ancestors (Dechter, 2013). The
back-arc property ensures that variables that occur in the same factor are not
split over different AND branches.

98 VARIABLE ORDERING FOR WEIGHTED MODEL INTEGRATION

1

B0

0

B2 B1

0 1

𝑥0 ≤ 𝑥2

0 1

0 1

𝑥0 ≤ 𝑥1

0 1

2* 3*

4* 5* 6*

∫ 𝑑x2 ∫ 𝑑x1

∫ 𝑑x0
1*

Nr. Weights

1* J0 ≤ x0 ≤ 1K
2* J0 ≤ x2 ≤ 1K
3* J0 ≤ x1 ≤ 1K
4* Jx0 ≤ x2K
5* c2Jx0 > x1K
6* c1Jx0 ≤ x1K

Figure 6.7: AND/OR Graph and weight table (x*) for the continuous setting.

For example, when A and C would have co-occurred, an AND node cannot split
the factors. In the guiding tree there would be a connection between A and C
(Figure 6.6), violating the back-arc property.

So far, we conditioned on discrete variables, branching over the values in their
domains. This is more challenging for continuous variables. We propose to
branch on the atomic LRA literals instead, which can be considered as branching
over different value intervals. This also implies that the guiding tree will contain
LRA atoms instead of continuous variables.

Example 39. The AND/OR graph in Figure 6.7 represents the following
problem, ∫ [

c1Jx0≤x1KJx0≤x2K(
∏
i=0,1,2J0≤xi≤1K)+ (6.14)

c2Jx0>x1KJx0≤x2K(
∏
i=0,1,2J0≤xi≤1K)

]
dx0dx1dx2

with Bi = J0 ≤ xi ≤ 1K and c1 and c2 as two constants. The weight of all grey
decisions is 0 and for all others it is equal to the decision itself (see table). The
structure allows parallel integration of x1 and x2 (Figure 6.8).

To evaluate this structure, perform + and × bottom-up for each OR- and AND-
node and integrate out continuous variables as soon as possible. For example,
after obtaining Jx0 ≤ x2KB2, we can integrate out x2 as it does not occur at
any later point. The order in which continuous variables can be integrated out
forms an integration tree (Figure 6.8, left).

VARIABLE TREES 99

B1
x2

x0

x1

B0

B2

𝑥0 ≤ 𝑥2 𝑥0 ≤ 𝑥1
Figure 6.8: Integration tree and a guiding tree respecting it.

Definition 35 (integration tree). An integration tree is a pseudo tree where
each node is associated with a continuous variable, except for the root node where
it is optional. When the interaction graph contains disconnected subgraphs, the
root of the integration tree can be empty.

Previously the ordering to compute the induced-width was the variable ordering
d, now it is specified by the ancestor relation in the integration tree.

Integrating out continuous variables yields new inequalities, much like the
intermediate factors created in the discrete setting. However, our continuous
approach branches on LRA atoms (corresponding to factors in the discrete
setting). Do note that newly introduced inequalities do not become part of the
search structure, only of the intermediate computations. The complexity of
evaluating the structure is influenced by the depth of the guiding tree and the
complexity of the partial integrations and their intermediate results. The latter
is related to the induced-width of the integration tree. While the guiding tree
affects the size of the structure, we empirically found minimising the integration
time to be more important. Hence, we propose to first use heuristics to find an
integration tree of continuous variables and only then convert the tree into a
pseudo tree of LRA atoms that respects this integration order (Figure 6.8).

Sentential Decision Diagrams. We explained the role of variable ordering and
how to analyse its influence, in the context of AND/OR graphs. We stress that
our AND/OR graph in the context of continuous variables is solely illustrative.
F-XSDD(BR), the state-of-the-art approach that we extend and evaluate in
the experiments, instead uses an SDD compiler. Even though there are many
differences between these two structures (e.g. conditioning on a variable versus
a sentence in SDDs), the role of the variable ordering and its influence on the
computations remains the same. We chose to illustrate the influence using
AND/OR graphs as its existing literature on orderings is closer in focus to our
approach. A pseudo tree of LRA atoms and Boolean variables used to guide

100 VARIABLE ORDERING FOR WEIGHTED MODEL INTEGRATION

the construction of an AND/OR graph can easily be translated into a vtree to
guide an SDD. Boolean variables are not constrained by the integration tree. In
our implementation we use them to heuristically balance the vtree. This aspect
of the procedure has potential for improvements, by considering the impact on
the representation size, which we leave for future work.

6.4.2 Pseudo-Tree Heuristics

The size (and complexity) of AND/OR graphs are controlled by their guiding
tree. Finding a minimal height pseudo tree is, similar to minimal induced
width, NP-complete (Dechter, 2013). We discuss three heuristics, the first two
minimise the induced width, and the third one minimises the tree height. The
second heuristic is novel, the first and third were adapted to the continuous
setting.

Top-Down Pseudo-Tree. This heuristic constructs a pseudo tree in two steps.
First, obtain a variable ordering d through, for example, the previously discussed
min-fill approach. Second, given the induced interaction graph G along d, a
pseudo tree can be constructed top-down by traversing the induced-ordered
G in a depth first manner starting from the first variable in d and prioritising
variables earlier in d to break ties (Dechter, 2013).

Bottom-Up Pseudo-Tree. The first step in the previous approach, obtaining
d, is unaware of the second step, constructing the pseudo tree. When breaking
ties, it hence does not consider the effects on the height of the resulting tree. We
propose a new heuristic that interleaves both steps and constructs the pseudo
tree bottom-up. By interleaving, the variable selection heuristic can consider
the effect on the tree height and make decisions to minimise it. Our heuristic
keeps track of several tree roots (branches that are being extended in parallel,
bottom-up) which are iteratively extended with new variables. When a variable
v is added, it either 1) extends a root, 2) yields a new root or 3) combines
multiple roots, depending on whether any of the variables in the current trees
were previously neighbors (interacted with) of v. The next variable to add to
the trees is selected using a min-fill metric, breaking ties by prioritising the
variable that results in the most shallow trees. We refer to our heuristic as
balanced bottom-up min-fill (BU-MiF).

Minimize Height. To minimise the height of a pseudo tree, a hypergraph
decompositioning approach can be used to create a (roughly) balanced tree. To

EXPERIMENTS 101

convert the problem into a hypergraph, create a vertex for each factor and a
hyperedge for each variable v, connecting all factors that contain v. A pseudo
tree can be obtained from the hypergraph by recursively partitioning the vertices
into two (roughly) balanced sets while minimising the cut (hyperedges crossing
the two sets) (Dechter, 2013). When a variable is instantiated (cut), factors
can become independent and can be solved separately (AND-node).

Continuous Setting. The first two heuristics can be applied to continuous
variables by changing the variable selection process to use interaction graphs
adapted to the continuous setting (Section 6.3). For the continuous setting, these
heuristics return an integration tree, providing the order in which to integrate
out continuous variables (Figure 6.8, left). When employing an approach that
conditions on LRA literals instead of continuous variables, the integration tree
must first be converted into a guiding tree of literals respecting that ordering
(Figure 6.8, right). When using SDDs, the integration tree should instead
be converted into a vtree. This two-step decomposition is not present in the
discrete case and is crucial to apply these heuristics to the hybrid setting.

Using the hypergraph decompositioning approach, a vtree can also be created
directly by recursively partitioning the variables in two sets (minimising the
cut), forming the left and right subtrees of the vtree. When using LRA atoms
as vertices and hyperedges as shared continuous variables, the min-cut has an
additional meaning compared to the discrete setting. The min-cut is the set of
variables shared by the LRA atoms in both sets, indicating the depth at which
those variables can be integrated out. By minimising this cut, we minimise
the number of variables that can only be integrated out high in the structure,
maximising deeper and smaller integrations.

6.5 Experiments

PyWMI is a software package designed to solve WMI problems. It includes the
state-of-the-art solver F-XSDD(BR) which compiles WMI problems to XSDDs
heuristically minimising the height by balancing the vtree. This heuristic is
agnostic to which continuous variables occur in a modulo theory atom and
how these continuous variables interact. We extend this solver with the vtree
heuristics discussed in Section 6.4.2, yielding a more robust solver that no longer
has to rely on a user-provided ordering. This process consists of constructing 1)
the interaction graph of the problem, 2) the integration tree using the discussed
heuristics, 3) a vtree that respects the ordering of the integration tree, 4) the
XSDD using that vtree and 5) evaluating the XSDD to obtain the result.

102 VARIABLE ORDERING FOR WEIGHTED MODEL INTEGRATION

0 5 10 15 20 25 30 35
Problem size (n)

0

10

20

30

Ti
m

e
(s

)

dual(n)

0 5 10 15 20 25 30 35
Problem size (n)

xor(n)

0 5 10 15 20 25 30 35
Problem size (n)

mutex(n)

0 2 4 6 8 10
Problem size (n)

click(n)

0 5 10 15 20 25 30 35 40
Problem size (n)

0

20

40

60

Ti
m

e
(s

)

star(n)

0 5 10 15 20 25 30 35 40
Problem size (n)

3ary(n)

0 5 10 15 20 25 30 35 40
Problem size (n)

path(n)

Balanced
Right-linear
HG-MC
TD-MiF
BU-MiF
Manual
SMI

Figure 6.9: Comparison of run times for different variable ordering heuristics.
Using the F-XSDD(BR) solver, the run times include time spent on the variable
ordering heuristics (negligible), the compilation step, and the evaluation step.

We consider seven problem templates whose size is controlled by parameter
n: dual(n), xor(n), mutex(n), click(n), star(n), 3ary(n) and path(n) (Kolb
et al., 2019b; Zeng and Van den Broeck, 2019). The last three problem classes
belong to a subset of tractable WMI problems. The SMI solver (Zeng and
Van den Broeck, 2019) is specialized to exploit this type of problem structure
and has outperformed F-XSDD(BR) on these problems. We evaluate three sets
of heuristics: 1) hypergraph decompositioning (HG-MC) and top-down min-fill
(TD-MiF), both of which we adapted from the discrete setting; 2) our new
bottom-up min-fill heuristic (BU-MiF); and 3) F-XSDD(BR)’s current heuristic
(balanced) and a right-linear heuristic (corresponding to a chain variable order,
forming an OBDD). For the first four problems we also compare to the Manual
approach, which uses the balanced heuristic on a variable order manually
adjusted by Kolb et al. (2019b) and is considered to lead to a good ordering.
For the last three problems, we compare to SMI.

For every problem, each heuristic ran 10 times with randomized orderings for
increasing n. The minimum, maximum, and average run times are recorded.
For the first four problems we run up to n = 35 with time-out t = 30s, and
for the last three problems up to n = 40 with t = 60s. If, in one iteration, a
heuristic times out for a given value of n, its run time is set to the time-out,
and larger values of n are skipped. All results are shown in Figure 6.9. Code is
available at https://github.com/VincentDerk/BU-MiF.

https://github.com/VincentDerk/BU-MiF

EXPERIMENTS 103

Q1: How does top-down min-fill (TD-MiF) compare to the newly
introduced balanced bottom-up min-fill (BU-MiF) heuristic? Both
BU-MiF and TD-MiF perform similar in terms of total run time on the used
benchmarks. The bottom-up approach of BU-MiF, however, always it to be
more consistent, breaking ties by focusing on the balance of the integration tree.
This is especially apparent on the xor(n)) benchmark: BU-MiF’s performance is
very consistent while TD-MiF’s is more variable (larger gap between maximum
and minimum run time).

Q2: Do the contributed heuristics improve the problem-agnostic
heuristics (balanced and right-linear)? Analysing the run time results
of Figure 6.9, we conclude that the proposed heuristics perform significantly
better than the previously used heuristics that were problem-agnostic (balanced
and right-linear). Only the click(n) results are less favorable. Our investigation
shows that for the click benchmark the interactions between the continuous
variables, on which our heuristics are based, do not have a large impact. In this
case it is more advantageous to consider optimising the SDD size itself, which
our heuristics currently ignore. Indeed, the Manual heuristic that performed a
lot better here had an SDD size of 5 for both n = 6 and n = 7 while the BU-MiF
heuristic averaged an SDD size of 6145 and 1537 respectively. BU-MiF currently
converts the integration tree into a vtree that respects the integration order and
balances the literals (including Boolean variables) to minimise the depth of the
SDD. In future work we can optimize this conversion by analysing the logical
formula to obtain more succinct SDDs that still respect the integration order.

There is a relatively large difference between the minimum and maximum run
time for the balanced and right-linear heuristics, compared to the newly proposed
heuristics. This indicates that the proposed heuristics are less susceptible to
unfavorable input orders from the user, yielding a faster and more robust solver.
Especially the BU-MiF heuristic is very consistent in terms of resulting run
time.

In addition, BU-MiF, HG-MC and TD-MiF also improve over SMI. We found
that SMI spends a lot of time finding the integration intervals. The complexity
of SMI can be super-exponential in the worst case (Zeng and Van den Broeck,
2019), for instance, with a path primal graph such as in path(n). In contrast,
on these benchmark problem instances, the run times of our newly contributed
heuristics appear to merely grow linearly.

Q3: Should we minimise the induced-width or the depth of the
integration tree? We compared the hypergraph decomposition heuristic
(HG-MC) with BU-MiF (min-fill metric to minimise the induced-width). In
general, they seem to perform similarly. We computed the induced-width of
the solutions returned by both approaches and found that, except for path(n),

104 VARIABLE ORDERING FOR WEIGHTED MODEL INTEGRATION

they had the same induced-width. The path(n) problem, where depth was
prioritised over induced-width, suggests that optimising the induced-width is
more important. Additional benchmark instances are necessary to reach a
conclusive result. However, it is more likely that for some instances it is better
to optimise the induced-width while for others it is better to prioritise the depth.
A similar conclusion was reached for the discrete-variable setting (Dechter,
2013).

6.6 Conclusion

A crucial element of performing efficient probabilistic inference over discrete
random variables is the order in which variables are marginalized out. In
this chapter we have shown that the importance of variable ordering also
extends to problems in the discrete-continuous domain. We analyzed the
influence of the variable ordering in the continuous setting by identifying
parallels between probabilistic inference over discrete and continuous random
variables and mapping concepts from the discrete setting, such as interaction
graphs, to the continuous setting. This allowed us to adapt variable ordering
heuristics developed for discrete random variables to perform probabilistic
inference over continuous ones.

We introduced a new heuristic (BU-MiF), which significantly outperforms
previous heuristics (Balanced, Right-linear) and is more robust than the
heuristics adapted from the discrete setting (HG-MC, TD-MiF). BU-MiF also
allows F-XSDD(BR) to outrun the specialized SMI solver on a set of benchmark
problems from the tractable WMI subclass it addresses.

Future work includes investigating ways to exploit additional information about
the logical structure of the WMI support. This could lead to smaller (more
succinct) compiled representations for problems such as the click(n) problem.
An adaptation of our heuristic to an iterative anytime scheme can also be
considered (Kask et al., 2011).

Chapter 7

Modulo Theory Compilation

This chapter was previously presented at the Workshop on Counting and
Sampling 2023:

V. Derkinderen, P. Zuidberg Dos Martires, S. Kolb, and P. Morettin
(2023d). “Top-Down Knowledge Compilation for Counting Modulo
Theories”. In: CoRR abs/2306.04541. accepted at Workshop on
Counting and Sampling at SAT 2023. doi: 10.48550/arXiv.2306.
04541

I helped conceive the problem and initial compilation idea during a brainstorming
session with S. Kolb. I then further refined the idea based on existing DPLL(T)
literature, developed a prototype version, and led the publication’s writing
process. Minor changes were made to improve clarity and integration within
this dissertation.

We previously discussed variable ordering heuristics for counting in the context
of continuous variables, i.e., for weighted model integration. The reader may
have noticed, however, that the knowledge compilation techniques themselves
remained agnostic to the background theory. Indeed, the F-XSDD(BR) solver
used in the experiments of Chapter 6 abstracts the support formula ψ and uses
a propositional SDD compiler. This means, for example, that the compiler is
unaware that (x < y) ∧ (y < 0) implies (x < 0), which may negatively affect
downstream tasks such as weighted model integration.

105

https://doi.org/10.48550/arXiv.2306.04541
https://doi.org/10.48550/arXiv.2306.04541

106 MODULO THEORY COMPILATION

In this chapter we discuss knowledge compilation for counting in the context
of background theories and propose a new framework for compilation in this
setting. We thereby contribute to the research question:

RQ2.3 How to perform knowledge compilation for counting
over modulo theory formulas?

The remainder of this chapter is organized as follows: Section 7.1 provides a brief
introduction. Section 7.2 contains preliminaries, introducing the satisfiability
modulo theory problem and how to solve it using the DPLL(T) algorithm.
Section 7.3 then discusses the d-DNNF properties in the context of counting
with background theories, with a specific focus on (linear) real arithmetic.
Afterwards, in Section 7.4, different compilation strategy choices are discussed.
Finally, Section 7.5 puts forward the proposed research direction for a future
knowledge compiler. The chapter concludes in Section 7.6.

7.1 Introduction

Recall that a key motivation of knowledge compilation is to compile a logical
formula into a target language whose properties allow for certain tasks to be
performed in time polynomial in the representation size (Darwiche and Marquis,
2002), and that d-DNNF is the target language of interest when counting over
a logical formula (Section 2.4.1). Furthermore, Huang and Darwiche realised
that d-DNNF compilation can be achieved through exhaustive DPLL search by
simply storing the search traces (Darwiche, 2004; Huang and Darwiche, 2005)
(Section 2.4.2).

Top-down knowledge compilers, which are based on exhaustive DPLL, have
primarily been focused on model counting over propositional logic formulas. In
comparison, few works exist that consider formulas with an implicit background
theory (Barrett and Tinelli, 2018). Additionally, those few works focus on
specific background theories (Chaki et al., 2009; Koriche et al., 2015; Møller
et al., 1999; Niveau, 2012; Sanner et al., 2011). A more general algorithmic
framework, that we propose here, is missing.

In this chapter we do consider counting in the context of background theories,
and discuss compilation strategy choices for the quantifier-free background
theory setting. Most importantly, we draw parallels with the propositional
counting variant and identify a DPLL(T) (Nieuwenhuis et al., 2006) based
approach as a promising direction for a future knowledge compiler.

BACKGROUND 107

7.2 Background

The classic satisfiability problem, or SAT, is defined over propositional logic.
Its analogue in the background theory setting is called the satisfiability modulo
theory problem, SMT for short (Barrett et al., 2009). This problem extends SAT
with respect to a certain decidable background theory T , notable examples of
which include linear real (LRA) or integer (LIA) arithmetic and fixed-size bit
vectors (BV), for which we refer to Section 2.5. The SMT task is to determine
whether there exists an assignment to the variables such that the input formula
ψ is satisfied with respect to T . For example, suppose the LRA formula ψ
is (x < y) ∨

(
A ∧ (x > 10)

)
, then m = {x 7→ 11, y 7→ 0, A 7→ true} is a

model, as part of the T -satisfying truth assignment {(x < y) 7→ false, (x >
10) 7→ true,A 7→ true}. We stress the important distinction between model
and T -satisfying truth assignment, the latter of which assigns a truth to each
LRA atom such that it is consistent with both the background theory T and
formula ψ.

DPLL(T) is a generalisation of the DPLL algorithm, designed to solve SMT
problems (Nieuwenhuis et al., 2006). The key difference with the classic DPLL
algorithm is that DPLL(T) involves a theory-specific solver that interacts
with the DPLL algorithm, using the background theory T to propagate
additional atoms when possible. For instance in a prior example, when
assigning both (x < y) and (y < 0) to true, the theory-specific solver would
automatically propagate (x < 0) to be true. We note that most current
implementations are actually extensions of the conflict-driven clause learning
(CDCL) algorithm, which augments the DPLL algorithm with conflict clause
learning and backjumping (Moura and Bjørner, 2008; Nieuwenhuis et al., 2006;
Schrag, 1997). For the purpose of our discussion we will use DPLL(T) to refer
to both DPLL(T) and its CDCL(T) augmentation, similar to how we have been
using the term DPLL.

Just as SMT generalizes SAT with additional theories, counting modulo theories
(#SMT) generalizes model counting (#SAT) with additional theories. In stark
contrast with the purely propositional setting, formulas involving numerical
theories may have infinitely many models. While in this paper we mainly
consider the quantifier-free LRA setting, we expect the proposed ideas to apply
to a broader set of quantifier-free theories.

108 MODULO THEORY COMPILATION

7.3 d-DNNF for Modulo Theory

We now discuss in more detail the d-DNNF properties (Darwiche and Marquis,
2002) in the context of #SMT.

Similar to the DPLL algorithm, negation only occurs in the leaf nodes when
tracing the DPLL(T) algorithm. The fact that atoms can be associated with
additional logic (e.g. LRA atoms such as x<5), and that a theory-specific solver
aids the propagation process, does not change this. The traces of a DPLL(T)
algorithm are also deterministic, i.e., the children of each ∨-node do not share
any models, because every decision associated with ∨ still partitions the models.
The decomposability property is defined as ∧-node branches not sharing any
variables. In the modulo theory setting this needs further specification, because
different atoms can still be linked together through their inner logic (e.g., shared
continuous variables).

Decomposability on the level of atoms is insufficient to ensure the decompos-
ability of counting tasks on the formula. Consider the following example where
the ∧-branches do not share any atoms, but do share variables:

[(x < 5) ∨ (x < y)] ∧ [(x > 10) ∨ (y > 10)]

Here, {(x < 5), (x ≥ y)} and {(x > 10), (y > 10)} are satisfying truth
assignments for respectively the left and right ∧-branch. Together, however, they
do not form a theory-satisfying truth assignment because (x < 5) and (x > 10)
clearly conflict. The benefit of decomposing on the level of variables is that
the previous situation is impossible, making it easier to ensure that each truth
assignment is indeed theory-consistent. Unfortunately such decomposability
can not be achieved in general. Consider as an example(

(x < y − 1) ∨ (x > y + 1)
)
∧
(
¬(x < y − 1) ∨ (x > 20)

)
where every LRA atom mentions x. Clearly it is impossible to represent
this formula while enforcing variable decomposability. For the purpose of
our discussion on modulo theory compilation, we will therefore use the d in
d-DNNF to refer to decomposability on an atomic level rather than on a
variable level. The idea behind this is that it 1) ensures the generality of
our compilation approaches to the purely propositional setting, 2) allows us
to associate weights to LRA atoms, because the decomposability prevents
situations such as (x > 10) ∧ (x > 10) which would otherwise consider the
same weight more than once, and 3) prevents representations from containing
(x ≤ 10) ∧ (x > 10), thereby improving theory consistency.

In addition to these d-DNNF properties we expect that all truth assignments
captured by the compiled formula are theory satisfiable. This is not necessarily

COMPILATION STRATEGIES 109

ensured when using a theory-agnostic compilation approach, which we discuss in
more detail in the next section. For now, note that the traces of an exhaustive
DPLL(T) algorithm will produce exactly such d-DNNF formulas where each
truth assignment is theory satisfiable.

7.4 Compilation Strategies

7.4.1 Theory Aware versus Theory Agnostic

Approaches for compiling a formula with respect to a background theory T can
be divided into two categories: theory-aware versus theory-agnostic approaches.
In case of the latter, a Boolean abstraction of the input formula ψ is first created,
i.e., the formula that is obtained by replacing every theory atom in ψ with
a fresh Boolean atom. Afterwards, the Boolean abstraction can be compiled
into a d-DNNF formula using any off-the-shelf propositional compiler. As a
consequential benefit, advancements made to those compilers are automatically
inherited. Evidently, theory-agnostic approaches also have a downside compared
to approaches that are more theory-aware. Namely, since the compiler is unaware
of T , the resulting d-DNNF formula may contain truth assignments that are
not consistent with T . For instance, when abstracting ψ = (x ≤ 0) ∨ (x ≥ 1),
both literals originating from the abstraction could be assigned to true, forming
a T -unsatisfiable truth assignment. It is then up to the downstream inference
algorithm that uses the resulting d-DNNF to deal with the inconsistent models,
typically impacting negatively the run time of the downstream task. For
example, this theory-agnostic approach was adopted by Kolb et al. (2019b) in
their F-XSDD(BR) solver discussed in Chapter 6, for solving weighted model
integration problems, i.e., weighted #SMT problems over LRA formulas. As a
consequence, a potentially large number of intermediate computations during
the online integration procedure would result in regions with no models and
would be discarded.

Figure 7.1 shows an example of a formula representation that may result from
a theory-agnostic approach (7.1a), compared to a theory-aware approach (7.1b
and 7.1c). In this example, the formula representation shrank once the theory
was considered. This is not always necessarily the case: the effect that theory
awareness has on the representation size heavily depends on the exploitable
structure, which may increase or decrease. Depending on the application
requirements, we could even consider a more condensed representation that
omits theory-implied atoms (Figure 7.1c).

110 MODULO THEORY COMPILATION

+

×

B2 +

¬B1 ×

B1 A

×

¬B2

(a)

+

×

B2 ¬B1

×

¬B2×

B1 A

(b)

+

B2 ×

B1 A

(c)

Figure 7.1: Different representations of (B1∨B2)∧(¬B1∨A), with abbreviations
B1 = (x < y − 1), B2 = (x > y + 1), and A = (x > 20).

7.4.2 Eager versus Lazy Solving

It is possible to exploit the existing purely propositional tools while still achieving
theory awareness, by first adapting the Boolean abstracted input formula ψ in a
way that no theory unsatisfiable truth assignments arise. This idea was used by
early SMT solvers, where it is called ‘eager solving’ (Nieuwenhuis et al., 2006).
For example, if ψ includes both (x ≤ 0) and (x ≥ 1), which were respectively
abstracted into A0 and A1, then also add A0 =⇒ ¬A1 or A1 =⇒ ¬A0 to ψ.
Afterwards, because ψ is purely propositional, any SAT solver (or in our case
d-DNNF compiler) can be used. Since the adapted abstraction step is also
present in eager SMT solvers, we can simply implement an eager theory compiler
by using an existing eager SMT solver as the foundation, swapping their SAT
solver for a propositional d-DNNF compiler.

A major disadvantage of the eager approach is that depending on the theory T , it
may introduce many additional variables, and greatly increase the formula size of
the abstracted input formula ψ. For this reason, numerical theory SMT solvers
have instead progressed towards using a so-called ‘lazy solving’ (Nieuwenhuis
et al., 2006) approach that we discuss next. This does not mean, however, that
the eager approach has become irrelevant. It still forms the state-of-the-art
SMT approach for certain theories such as BV1. We hypothesize that similar
conclusions can be drawn for the compilation setting, i.e., that a lazy approach
is most suitable for numeric background theories.

In the most basic form, the lazy approach involves purely propositional reasoning
over ψ, and verifying (partial) assignments with a theory solver to make sure
that every model is indeed theory satisfiable. Enhancements of this approach

1The 2022 SMT competition winner of the incremental quantifier-free BV track was Yices
2 (Dutertre, 2014), which uses bit blasting for BV, an eager solving approach.

COMPILATION STRATEGIES 111

have progressed to a more proactive design where the theory solver instead helps
to propagate atoms and learn conflict clauses. This approach is the DPLL(T)
(or CDCL(T)) algorithm discussed in Section 7.2 and is used by most state-of-
the-art SMT solvers, including cvc5 (Barbosa et al., 2022), SMTInterpol (Christ
et al., 2012), MathSAT (Cimatti et al., 2013), Z3 (Moura and Bjørner, 2008),
Yices (Dutertre, 2014), and OpenSMT (Hyvärinen et al., 2016).

7.4.3 Top-down versus Bottom-up Compilation

Recall that DPLL-based compilers are so-called top-down compilers: they start
the compilation process from the whole input formula and work their way down
(by branching on literals). In contrast, bottom-up compilers process an input
formula ψ from the bottom of the expression to the top. For example, if ψ is
(A ∨ ¬B) ∧ (¬A ∨ C), then the two conjuncts are separately compiled before
processing the conjunction itself. This design implies an apply-operation that
performs conjunction, disjunction, and negation. The apply-operation enables
the incremental construction of (multiple) formulas, while a top-down compiler
requires the complete formula to be known upfront. To achieve an efficient
apply-operation, however, the target language of bottom-up compilers is usually
restricted to strongly deterministic and structured decomposable NNF, such
as OBDD and the more general SDD class (Darwiche, 2011; Pipatsrisawat
and Darwiche, 2008), strict subsets of d-DNNF. In comparison, #DPLL
based top-down compilers instead produce Decision-DNNF, a strict superset
of OBDD (Darwiche and Hirth, 2020) (but not of SDD with which it partially
overlaps).

An advantage of bottom-up compilation is that it does not restrict the input
form. In contrast, top-down compilation tools are commonly restricted to
formulas in conjunctive normal form (CNF). While it is possible to translate any
propositional formula into CNF, this costs time and may result in an exponential
expression (when using De Morgan’s law), or requires introducing additional
variables (Tseitin, 1983).

An advantage of top-down compilation is that it has available the full information
contained within ψ. This assumption allows more informed decisions, in turn
leading to more compact compiled formulas. Oppositely, ψ may only become
incrementally available to the bottom-up compilation, or it may have a pre-
analysis step that considers the whole formula ψ to determine a suitable guiding
structure (cf. static variable ordering heuristics for OBDD (Rice and Kulhari,
2008) or vtree heuristics for SDD (Darwiche, 2011)), but that structure can be
suboptimal for intermediate formula representations. This naturally leads to the
second point, which is that even when the final d-DNNF produced by bottom-up

112 MODULO THEORY COMPILATION

compilation is small, the intermediate results of the apply-operation may grow to
be very large, severely impacting the run time and memory requirements (Huang
and Darwiche, 2004).

In terms of compilation in the modulo theory domain, almost all algorithms so far
are bottom-up approaches. For example, the work on extended algebraic decision
diagrams (XADD) (Sanner et al., 2011) uses a bottom-up approach. Within their
implementation, they used a feasibility checker of a linear programming solver
to prune theory unsatisfiable paths during- or after bottom-up compilation,
observing impressive XADD size reductions. Other bottom-up compilers include
work on difference decision diagrams (Møller et al., 1999) and linear decision
diagrams (Chaki et al., 2009). Niveau (2012) proposed both a bottom-up and a
top-down approach for compiling to interval automata and set-labeled diagrams.
Koriche et al. (2015) created a top-down compiler targeting multi-valued decision
diagrams.

7.5 Traces of an Exhaustive DPLL(T) Algorithm

In line with top-down compilation for the propositional setting, we propose
to compile modulo theory formulas by storing the search traces generated by
an exhaustive DPLL(T) algorithm. This is a theory-aware, top-down, lazy
approach, which we hypothesize to be very suitable for compiling formulas with
numerical background theories such as LRA.

Existing SMT solvers based on the DPLL(T) framework form a natural
implementation starting point. As explained in Section 7.2, the traces
of such an approach form d-DNNF formulas. To further augment the
implementation, it is worth investigating optimisations developed for #DPLL.
For example, component decompositioning discussed in Chapter 4 is rarely
used for satisfiability problems but has shown to be highly beneficial for model
counting and compiling, especially in combination with caching (Bacchus et al.,
2003). The augmentations are not straightforward, however, because of the
implicit interactions between atoms: components must be decomposed on a
variable level (rather than atom level), and previous decisions must be properly
considered. Especially the latter is a novel challenge for caching. Consider
the following example formula ψ′:

(
(x < 3) ∨ (x > 5)

)
∧
(
(y < 0) ∨ (y > 4)

)
.

Generally, branching on (x > 5) does not imply (y < 0). However, if (x+ y) < 5
is a decision that has lead to the intermediate formula ψ′, then branching on
(x > 5) while compiling ψ′ does imply (y < 0). This shows that the compiled
form of ψ′ is indeed influenced by previous decisions. This is in contrast to the

CONCLUSION & FUTURE WORK 113

propositional setting, where after making a decision l and adapting formula ψ,
the remaining formula ψ|l (here ψ′) is independent of previous decisions.

Related work. To the best of our knowledge, we are the first to propose a
general theory-aware top-down lazy compiler. The closest related works are
of De Salvo Braz et al. (2016) and Ma et al. (2009), who use a DPLL(T)-like
approach to count over modulo theories, but do not consider storing the traces for
compilation. The work of Feldstein and Belle (2021), in contrast, does consider
compilation but is positioned further from DPLL(T), excluding optimizations
such as conflict clause learning. Moreover, there is limited background theory
support, for example, atoms with arithmetic expressions such as x+ y < 2 are
not possible. Koriche et al. (2015) does support linear constraints, compiling
a constraint network into a multi-valued decision diagram using a top-down
approach, but only considers finite domains.

7.6 Conclusion & Future Work

We have provided a discussion on compilation strategies for (top-down) d-
DNNF compilation for quantifier-free modulo theories. We specifically propose
compilation through an exhaustive version of the DPLL(T) algorithm, drawing
parallels with the propositional setting’s evolution from SAT to #SAT. In future
work, we aim to finalise the development of a tool based on these ideas, and
plan to further investigate component decompositioning and caching for modulo
theories. Additionally, refining the d-DNNF properties based on application
requirements is of great interest.

Chapter 8

Conclusion

The journey within this dissertation has centered around model counting and
knowledge compilation, and both their roles within state-of-the-art inference
algorithms. This chapter concludes that journey, providing a summary of the
included contributions and a discussion of future research perspectives.

8.1 Summary

This dissertation focussed on two overall research questions. What tasks can be
cast into algebraic model counting problems? And how to then efficiently
solve those algebraic model counting problems? We now summarize our
contributions.

AMC as a Unifying Framework

Algebraic model counting is a very general problem into which several tasks can
be cast by selecting the appropriate semiring. In other words, it forms a unifying
framework. For instance, reasoning over possible worlds (that is, models) to
address probability queries is a task that can naturally be cast as an algebraic
model counting problem. Chapter 3 highlights this through a synthesis of the
15-year journey of the probabilistic logic programming language of ProbLog
and its variants. It explains how inference in these languages is unifiable under
the algebraic framework. Furthermore, the applicability of the algebraic model
counting framework is certainly not limited to answering probabilistic questions:

115

116 CONCLUSION

Chapter 5 demonstrates this within a decision making under uncertainty setting.
We specifically note the expected utility semiring, the ability to easily compute
gradients, and the adaptation that deals with three operations instead of two.
These findings contribute to the research question:

RQ1) What tasks can be cast into algebraic model counting
problems?

This question is important: probabilistic inference benefits from algebraic
model counting, and others might too. Additionally, it helps to increase our
understanding of the limitations of algebraic model counting, and how to adapt
for them (e.g., to support three operations). Consequently, future research could
continue to address this line of questioning: what other problems can be cast
into algebraic model counting, or into the adaptation with three operations?
Another related but more theoretical question: can we devise a framework of
semirings (see also the work of Belle and De Raedt (2020), in the context of
weighted model counting)? For example, nesting the expectation semiring into
itself yields a second-order expectation semiring (Li and Eisner, 2009). What
transformations on a semiring result again in a semiring? Such questions may
(indirectly) help in understanding what sort of tasks can be cast into algebraic
model counting.

Exploiting Symmetry

Exploiting structural symmetry present in model counting instances can
drastically reduce the search space. Important is how to achieve this; an
efficient detection of symmetries is non-trivial. In Chapter 4 we proposed
an approach that involves only a minor change to the component caching
mechanism of existing #DPLL-based model counters. Specifically, we found
that storing the components in a way that cache hits occur when components
are symmetrical is a very interesting approach: the idea requires few changes to
existing implementations and transforms the challenge of efficient symmetry
detection to the problem of efficiently computing canonical labels of a graph.
The latter relates to solving graph isomorphism and is solved by existing tools
such as Nauty (McKay and Piperno, 2014). This work answers the following
research question

RQ2.1) How to exploit structural symmetry while model counting
on propositional logic formulas?

SUMMARY 117

Empirically, we observed that the approach leads to a considerable reduction
in the number of decisions required by the #DPLL algorithm. Despite the
computational overhead associated with the new component representation,
the approach translated into an increased number of solved combinatorial
benchmark instances for SymGanak compared to Ganak (Sharma et al.,
2019). To reduce the overhead incurred by detecting symmetries, several
directions can be explored.

First, it is unclear still how to predict in advance whether many symmetries
will be found in a particular instance. The proposed approach is able to exploit
symmetries that only emerge after conditioning on variables, which significantly
improves its ability to exploit symmetries, but also makes it harder to predict
in advance whether many symmetries will be found. In particular because
the emergence of symmetry depends on the order in which the algorithm
branches on variables. A better understanding of this process would make it
easier to selectively decide whether to activate the symmetry detecting caching
mechanism for a given instance, or on a lower level, for a specific component
encountered within that instance.

Second, we can further investigate variable ordering heuristics to find more
symmetries. For example, it is worth exploring the integration of our approach
with the D4 model counter (Lagniez and Marquis, 2017), which contains a
variable selection and component decompositioning heuristic that might work
particularly well together. The intuitive reasoning behind this statement is that
the D4 heuristic aims to find many components, while more components also
increases the chance of resulting in (symmetric) cache hits.

Third, alternative to the understanding of when the computational overhead
is worth incurring, is a broader investigation into the symmetry detection
mechanism and how to make it faster. For example, approximate graph
isomorphism methods can be considered, as well as intermediate caching
schemes.

Finally, while this dissertation has contributed to model counting, the symmetry
caching mechanism could also prove useful for knowledge compilation, creating
more compact representations. Related to this research direction is the work of
Bart et al. (2014).

Our findings, that identifying symmetries in subproblems can be beneficial
when solutions are shared among symmetric subproblems, raises an interesting
question. Namely, whether these ideas can be applied more generally to search-
based approaches beyond those for model counting. For instance, in SAT
solving, or more broadly, constraint programming, or planning. In case of SAT
solving, we note that existing work in this direction incorporates symmetry

118 CONCLUSION

breaking clauses to reduce the SAT search space, which is different from the
approach we propose to investigate here. In case of constraint programming, we
note that the branch-and-bound based algorithms used in this domain relate to
the search-based approach that is DPLL. An interesting direction of research
would be to explore this connection deeper and further exploit symmetry in
this context (Kitching and Bacchus, 2007). In case of exploiting symmetries
within knowledge compilation, we note that compilation tools have also been
used while solving optimisation problems, e.g., while solving 0/1-integer linear
programs (Becker et al., 2005). We hence speculate that the ideas presented in
this dissertation may also benefit such domains.

Orthogonal to the research directions mentioned above, which use symmetry
detection to solve subproblems faster, we can also use symmetry detection to
unify subproblems (in the context of learning). For instance, the detection of
symmetries may also help to identify higher-order abstractions in planning or
inductive logic programming (Hocquette et al., 2023).

Knowledge compilation for modulo theories.

While knowledge compilation for counting over propositional theories has been
well studied, research for counting with respect to a background theory is a
lot less available. Among their use cases is the emerging domain of neuro-
symbolic AI that aims to integrate both paradigms of symbolic and neural AI.
In Chapter 7 we concluded with an interesting research direction to remedy the
gap. Namely, we proposed a framework for compiling formulas with respect
to a background theory, inspired by the evolution that occurred within the
propositional domain: moving from DPLL to traces of a #DPLL algorithm.
We expect this framework to work for any quantifier-free background theory.
Our work on variable ordering and knowledge compilation thereby contributes
to addressing the following research questions.

RQ2.2) Can we extend variable ordering heuristics developed for the
discrete domain to also work well for discrete-continuous domains?
RQ2.3) How to perform knowledge compilation for counting over
modulo theory formulas?

Neuro-symbolic AI is not the only research area that benefits from more general
knowledge compilation tools. Another research area that we investigated is
weighted model integration. Here, compilation tools are used to more compactly
represent and guide the required computations.

FUTURE PERSPECTIVE 119

The order in which to integrate out continuous variables has a large impact on
weighted model integration solvers. This is analogous to the purely propositional
case where the order in which to eliminate Boolean variables also has a large
impact on the run time of elimination algorithms (e.g. weighted model counting,
bucket elimination,...). As it turns out, the foundations on which Boolean
variable ordering heuristics have been developed can also be adapted to apply
to continuous variables. We showed this in Chapter 6 and proposed a novel
heuristic based on these findings, called balanced bottom-up min-fill (BU-MiF).
The experiments conducted with the WMI solver indicate a very significant
improvement compared to previous ordering heuristics.

Nevertheless, further improvements are still possible. The proposed heuristics,
for instance, only consider the integration order and ignore the representation
size because the former is generally more important. There are cases, however,
where also considering the representation size is needed (see the click graph
example in Section 6.5). Ideally, the heuristics are adapted to consider both.
As a second source of improvement: we contributed a static variable ordering
heuristic, but the proposed #DPLL(T) based framework of Chapter 7 enables
us to also investigate the use of a dynamic heuristic that allows the variable
order to be different per decision branch.

Based on the observed improvements in our setting, we conclude this contribution
with two higher-level takeaways. First, when compiled representations are used
in an atypical setting, it is highly recommended to reconsider the existing
heuristics. Second, (hyper-)parameters that have a considerable impact on
the run time or result of an algorithm must not be left to the user to decide
because they do not necessarily have the expertise to make this decision properly.
Providing heuristics, in the simplest case a suitable default, furthermore eases
integration of the algorithm within other packages.

8.2 Future Perspective

We now look ahead and consider the future of counting and knowledge
compilation in the broader context of AI developments. This allows us to identify
remaining open challenges, and provide possible broader research directions to
help resolve or alleviate them.

Recent successes in artificial intelligence, particularly in the domain of generative
models, have caused a large surge of public interest. This, in turn, has led to a
large increase in the demand for suitable infrastructure and capable hardware.
Also gaining in popularity within the AI community is neuro-symbolic AI
(NeSy), a recent research domain that tries to combine the neural approaches,

120 CONCLUSION

which have proven to be very powerful, with the more traditional symbolic
approaches, that are typically more principled and trustworthy (Hitzler and
Sarker, 2021; Hochreiter, 2022; Manhaeve et al., 2021b).

Knowledge compilation is highly relevant to NeSy, as it allows to compactly
represent knowledge in ways that allow efficient reasoning and integration with
neural approaches. This is proven by the DeepProbLog language (Manhaeve
et al., 2021a), a pioneering NeSy framework whose connection to counting
and knowledge compilation has been described in Chapter 3. Other NeSy
examples using knowledge compilation include semantic loss (Xu et al., 2018)
and Scallop (Huang et al., 2021). We can therefore regard the compilation
techniques discussed (and improved) in this dissertation as key to enabling
further advancements in NeSy. Drawing parallels with the increased demand
in hardware capabilities, we can consider knowledge compilation to be part of
the infrastructure that enables NeSy and logic based reasoning in general, and
anticipate an increase in their use.

The open challenges that primarily hinder this progress are scalability and
accessibility. Below, we provide more detail on these two challenges.

Theory Aware Knowledge Compilation

The first challenge concerns accessibility. For example, a very common NeSy
benchmark problem is MNIST addition (Manhaeve et al., 2018) whose knowledge
ψ could be compactly represented as digit1 + digit2 = digit3, where each digiti
is an integer variable. Using compilation tools, this could automatically be
transformed into a representation that allows efficient counting. Unfortunately,
due to the limitations of used libraries and tools, applications often manually
resort to a propositional version that introduces several Boolean variables for
each digit (one representing digit1 = 1, one representing digit1 = 2, and so on),
and introduces many constraints over those Boolean variables.

Within this dissertation we have therefore contributed to laying the foundations
for more theory-aware knowledge compilation tools that support ψ. Still,
to obtain a formal knowledge compilation map akin to the propositional
setting (Darwiche and Marquis, 2002), a lot more work is required from both
a theoretical and practical perspective. For instance, open questions include:
what properties (like d-DNNF) are required for what applications, how to
achieve these properties while compiling, and from a more practical perspective,
how to transfer the benefits of caching and component decompositioning in the
propositional domain to a more general setting.

Neuro-symbolic AI is not the only domain that would benefit from a

FUTURE PERSPECTIVE 121

broader formalization of useful logical properties and tools to compile into
such representation (Wang et al., 2023). Other examples include formal
verification (Spallitta et al., 2022; Tang et al., 2023), and real-time SMT
solving (similar to how current propositional compilers facilitate real-time SAT
solving), which is for example used in product configuration applications (Popov
et al., 2023; Sundermann et al., 2020; Thüm, 2020). We therefore expect this
challenge to become even more relevant in the next few years.

Scalability

The primary benefits of neuro-symbolic AI, compared to current neural based
methods, are the increase in robustness, trustworthiness, and the ability to learn
from less data because knowledge can be manually inserted into the system.
Key to the adaptation of NeSy is an efficient integration of the neural and
symbolic reasoning. Given the current architectures in this domain, we expect
to see improvements across three axis, over the next decade.

First, the improvement of knowledge compilation tools which will enable larger
problem settings. Of importance here is the further theoretical development
of the knowledge compilation map and the development of better tools. For
instance, by exploiting symmetry, which relates to first-order inference. In brief:
the ability to obtain smaller knowledge representations faster. Improvements
along this axis will most likely also benefit other research areas that use
knowledge compilation tools or weighted model counters.

Second, is the encoding of knowledge and how it is used within a neuro-symbolic
architecture. This is different from the previous axis, as this focuses on what
the knowledge is rather than what representation it is compiled into.

Third, is the adaptation to more efficiently execute on existing hardware, and
the creation of new specialized hardware. One of the reasons that neural based
methods became so relevant was the increase in data availability and compute,
the latter being in the form of GPUs. Computations within the symbolic
reasoning part of NeSy architectures currently form irregular dataflows which
makes them less suitable to GPU usage (Shah et al., 2023). We expect to see
improvements in this area over the next decade.

Appendix A

SymGanak: Results

This appendix chapter contains a description of the problem instances used
for the experiments in Chapter 4 (Section A.1), and the empirical results
(Section A.2) of those experiments.

A.1 Problem Classes

Our benchmarks are comprised of CNF instances from several different problem
classes, that we explain below.

battleship There are 12 Battleship problems that were used in the evaluation
of miniSAT-SPFS (Devriendt et al., 2012), and that originate from the 2011
SAT competition. They encode a type of puzzle that is similar to the
classical two player board game with the same name. The instances were
obtained from https://github.com/JoD/minisat-SPFS/tree/master/cnf%
20test%20files/battleship.

fpga There are 20 instances that represent FPGA routing problems, introduced
by Aloul et al. (2002). Those instances were obtained from http://www.aloul.
net/benchmarks.html.

counting There are 9 counting principle instances where the model count
represents the number of different ways that a set of M elements can be

123

https://github.com/JoD/minisat-SPFS/tree/master/cnf%20test%20files/battleship
https://github.com/JoD/minisat-SPFS/tree/master/cnf%20test%20files/battleship
http://www.aloul.net/benchmarks.html
http://www.aloul.net/benchmarks.html

124 SYMGANAK: RESULTS

partitioned into sets of size p. The instances were generated using the CNFGen
tool (Lauria et al., 2017).

kcolor There are 23 instances of k-colouring graph problems, either with a
grid structure (14 instances) or with a r structure (9 instances). The instances
were generated using the CNFGen tool (Lauria et al., 2017).

parity There are 21 parity principle instances, where the model count of each
instance represents the number of different ways that pairs can be formed with
the n elements. The instances were generated using the CNFGen tool (Lauria
et al., 2017).

tseitin There are 16 instances representing Tseitin transformation problems
with either a grid (7 instances) or a random (9 instances) structure. The
instances were generated using the CNFGen tool (Lauria et al., 2017).

grid There are 30 instances that represent grid problems: A grid network
is an N × N grid, where each node has at most two directed edges to its
neighbors, one right and one down. The model count is related to the
number of paths between source (upper-left node) and sink (bottom-right
node). The instances were obtained from https://www.cs.rochester.edu/u/
kautz/Cachet/Model_Counting_Benchmarks/Grid.zip.

latin-squares There are 30 instances that represent quasigroup (Latin
square) completion problems. Each model corresponds to the completion
of a Latin square. These instances were generated using the code at https:
//github.com/HelgeS/lsencode (Gomes and Shmoys, 2002).

mcnc There are 17 instances from the LGSynth91 benchmark, primarily from
the domains of logic synthesis and optimization. The instances were obtained
from https://ddd.fit.cvut.cz/prj/Benchmarks/.

nqueens-classic There are 17 n-queens problems using the classical encoding
where each variable denotes the presence of a queen in a specific cell. The in-
stances were generated using the code from https://sites.google.com/site/
haioushen/search-algorithm/solvean-queensproblemusingsatsolver.

https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/Grid.zip
https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/Grid.zip
https://github.com/HelgeS/lsencode
https://github.com/HelgeS/lsencode
https://ddd.fit.cvut.cz/prj/Benchmarks/
https://sites.google.com/site/haioushen/search-algorithm/solvean-queensproblemusingsatsolver
https://sites.google.com/site/haioushen/search-algorithm/solvean-queensproblemusingsatsolver

RESULTS 125

nqueens-symmetry There are 11 n-queens problems specified using an
encoding where each queen is uniquely identified (Wang et al., 2020). The
instances were generated as described in that paper, using the Alloys tool
(https://alloytools.org/).

problog The 6 ProbLog programs were created by compiling Bayesian
Networks into the probabilistic logic programming language ProbLog (Fierens
et al., 2015), which in turn transformed them into CNFs. The Bayesian Networks
can be found at https://www.bnlearn.com/bnrepository/.

A.2 Results

The full results of our experiments are given in the tables below. A cactus
plot showing that for our benchmarks, Ganak (VSADS) is superior to Ganak
(CSVSADS), is shown in Figure A.1.

0 20 40 60 80 100 120
instances

0

1000

2000

3000

4000

5000

CP
U

tim
e

(s
)

GANAK(VSADS)
GANAK(CSVSADS)

Figure A.1: Cactus plot comparing the VSADS and CSVSADS heuristic for
Ganak.

https://alloytools.org/
https://www.bnlearn.com/bnrepository/

126 SYMGANAK: RESULTS

Table A.1: Experimental results comparing different variable selection heuristics
for SymGanak (here shortened to Sym): VSADS, CSVSADS (shortened to
CSV), and ICSVSADS (shortened to ISCV).

Benchmark Vars Clauses Sym Sym Sym
(VSADS) (CSV) (ICS)

battleship
1 91 322 TO TO TO
2 120 484 TO TO TO
3 153 693 TO TO TO
4 170 865 TO TO TO
5 180 910 TO TO TO
6 190 955 TO TO TO
7 276 1662 TO TO TO
8 364 2562 TO TO TO
9 378 2653 TO TO TO
10 435 3270 TO TO TO
11 496 3976 TO TO TO
12 1368 16308 TO TO TO

count
1 495 162372 0.44 0.43 0.45
2 455 61440 1.69 1.68 1.69
3 1820 1652576 249.19 251.40 240.35
4 816 165258 222.88 218.51 223.65
5 1330 377076 4632.97 4641.06 4697.19
6 2024 765096 TO TO TO
7 2925 1421577 TO TO TO
8 4060 2466480 TO TO TO
9 70 4768 0.03 0.04 0.03

fpga
1 120 448 240.65 108.07 227.55
2 120 448 496.11 168.33 224.51
3 135 549 956.80 287.67 92.92
4 135 549 67.49 113.84 78.84
5 180 820 TO TO TO
6 198 968 TO TO TO
7 198 968 TO TO TO
8 216 1128 1359.87 813.65 771.42
9 216 1128 1131.68 1154.13 1168.06
10 144 560 TO TO TO
11 144 560 TO TO TO

Continued on next page

RESULTS 127

Table A.1 – Continued from previous page
Benchmark Vars Clauses Sym Sym Sym

(VSADS) (CSV) (ICS)
12 162 684 TO TO TO
13 162 684 TO TO TO
14 195 905 TO TO TO
15 195 905 TO TO TO
16 215 1070 TO TO TO
17 234 1242 TO TO TO
18 234 1242 TO TO TO
19 176 759 TO TO TO
20 176 759 TO TO TO

grid
1 460 521 8.51 18.85 19.25
2 460 551 11.98 3.53 3.31
3 672 803 1089.01 TO TO
4 672 791 928.99 TO TO
5 672 739 241.60 511.95 504.96
6 924 1115 1091.05 TO TO
7 924 1121 839.70 TO TO
8 1216 1479 600.62 TO TO
9 1216 1417 615.32 TO TO
10 1548 1783 813.23 TO TO
11 460 463 0.13 0.16 0.16
12 672 653 2.71 1.09 1.16
13 1216 1197 403.33 TO TO
14 1548 1515 474.43 TO TO
15 2121 2091 342.43 TO TO
16 2121 2115 447.69 TO TO
17 2332 2299 432.93 TO TO
18 2553 2579 1217.73 TO TO
19 2784 2683 TO TO TO
20 3276 3167 979.83 TO TO
21 924 799 0.08 0.06 0.06
22 1065 957 0.36 0.28 0.30
23 1377 1213 0.01 0.02 0.01
24 1377 1211 0.14 0.13 0.13
25 1548 1357 1.70 0.83 0.80
26 1548 1335 0.19 0.16 0.15
27 1729 1515 4.97 3.40 3.60
28 2553 2219 1.38 0.72 0.77

Continued on next page

128 SYMGANAK: RESULTS

Table A.1 – Continued from previous page
Benchmark Vars Clauses Sym Sym Sym

(VSADS) (CSV) (ICS)
29 3276 2841 0.02 0.01 0.01
30 12300 10719 TO TO TO

kcolor
1 360 930 2.23 2.88 3.00
2 360 1080 7.81 9.30 8.83
3 360 1230 0.01 0.01 0.02
4 375 950 23.15 42.04 39.05
5 375 1100 39.98 44.46 52.61
6 375 1250 0.01 0.01 0.01
7 390 970 28.56 11.40 12.09
8 390 1120 333.21 372.50 366.97
9 390 1270 29.91 29.98 34.09
10 300 940 TO TO TO
11 400 1420 TO TO TO
12 48 136 0.01 0.01 0.01
13 64 208 0.01 0.01 0.03
14 75 220 0.02 0.02 0.02
15 100 335 7.27 6.87 10.52
16 108 324 0.12 0.13 0.14
17 144 492 1305.31 4290.39 TO
18 147 448 9.13 9.48 11.24
19 196 679 TO TO TO
20 192 592 323.13 526.61 259.54
21 256 896 TO TO TO
22 243 756 TO TO TO
23 324 1143 TO TO TO

mcnc
1 1133 2702 TO TO TO
2 1793 4138 1036.74 TO 3281.58
3 2543 5655 TO TO TO
4 3388 7946 TO TO TO
5 549 1430 TO TO TO
6 4792 11307 TO TO TO
7 4864 12048 TO TO TO
8 7230 16680 TO TO TO
9 826 1878 TO TO TO
10 1429 9648 32.43 35.81 35.24
11 853 2102 56.59 63.87 57.01

Continued on next page

RESULTS 129

Table A.1 – Continued from previous page
Benchmark Vars Clauses Sym Sym Sym

(VSADS) (CSV) (ICS)
12 2639 6775 TO TO TO
13 6502 17723 204.18 207.33 206.89
14 621 2024 55.21 59.87 60.37
15 1196 16806 64.09 73.27 73.19
16 410 2831 20.22 22.21 23.16
17 1322 3858 TO TO TO

nqueens-classic
1 100 1490 0.07 0.07 0.07
2 121 2002 0.65 0.56 0.55
3 144 2620 12.60 12.79 10.95
4 169 3354 153.04 144.17 149.94
5 196 4214 3258.77 2446.95 2371.73
6 225 5210 TO TO TO
7 256 6352 TO TO TO
8 289 7650 TO TO TO
9 324 9114 TO TO TO
10 361 10754 TO TO TO
11 9 34 0.01 0.01 0.00
12 16 84 0.00 0.01 0.00
13 25 170 0.01 0.01 0.01
14 36 302 0.01 0.01 0.02
15 49 490 0.01 0.01 0.01
16 64 744 0.02 0.02 0.02
17 81 1074 0.05 0.03 0.04

nqueens-symmetry
1 209655 538129 112.92 96.92 105.57
2 248253 638159 494.38 559.88 485.47
3 290021 746495 TO TO TO
4 334959 863131 TO TO TO
5 13757 36335 0.08 0.08 0.07
6 20189 53759 0.19 0.19 0.19
7 27771 74409 0.38 0.39 0.38
8 36503 98279 1.04 1.02 1.03
9 112881 287935 1.90 1.96 2.02
10 141969 363011 7.75 6.97 8.76
11 174227 446411 29.90 30.56 29.18

parity
Continued on next page

130 SYMGANAK: RESULTS

Table A.1 – Continued from previous page
Benchmark Vars Clauses Sym Sym Sym

(VSADS) (CSV) (ICS)
1 4950 485200 TO TO TO
2 190 3440 0.34 0.35 0.35
3 231 4642 0.62 0.63 0.62
4 276 6096 0.85 0.86 0.85
5 325 7826 6.42 6.92 7.06
6 378 9856 123.12 105.78 83.11
7 435 12210 726.89 718.18 756.41
8 496 14912 4755.42 4837.29 4881.85
9 561 17986 TO TO TO
10 630 21456 TO TO TO
11 703 25346 TO TO TO
12 780 29680 TO TO TO
13 861 34482 TO TO TO
14 946 39776 TO TO TO
15 1035 45586 TO TO TO
16 1128 51936 TO TO TO
17 1225 58850 TO TO TO
18 1770 102720 TO TO TO
19 2415 164290 TO TO TO
20 3160 246560 TO TO TO
21 4005 352530 TO TO TO

problog
1 1488 4064 2.30 1.58 2.11
2 660 1817 0.52 0.52 0.88
3 8428 24255 TO TO TO
4 5494 17313 669.34 767.48 837.41
5 2594 8705 0.15 0.17 0.19
6 2931 7746 88.84 63.58 163.24

qwh
1 1000 13800 TO TO TO
2 1000 9100 TO TO TO
3 438 2509 0.69 0.72 0.72
4 438 1591 2.13 2.02 2.17
5 460 2716 9.99 9.96 9.75
6 519 2068 TO TO TO
7 506 3118 3551.92 3470.94 3583.48
8 506 1994 TO TO TO
9 568 3752 TO TO TO

Continued on next page

RESULTS 131

Table A.1 – Continued from previous page
Benchmark Vars Clauses Sym Sym Sym

(VSADS) (CSV) (ICS)
10 616 3678 18.95 22.22 17.34
11 616 2279 116.54 87.47 100.76
12 445 2420 0.03 0.03 0.04
13 445 1478 0.12 0.12 0.13
14 648 4281 TO TO TO
15 648 2696 TO TO TO
16 591 3443 94.11 85.84 94.03
17 517 2997 9.14 9.40 9.68
18 639 3891 76.51 134.17 71.61
19 639 2424 1313.92 854.22 773.68
20 664 4123 1865.32 1881.04 1992.97
21 683 4283 TO TO TO
22 1189 7745 131.52 69.63 85.55
23 1189 4850 1902.40 2938.28 3047.77
24 1555 9534 TO TO TO
25 125 825 0.14 0.04 0.05
26 125 525 18.97 13.18 6.55
27 3572 26027 TO TO TO
28 3572 16789 TO TO TO
29 4979 43754 TO TO TO
30 4979 28574 TO TO TO

tseitin
1 150 1152 TO TO TO
2 200 2418 2.29 2.40 2.29
3 250 4348 13.50 13.60 13.41
4 150 830 0.01 0.00 0.01
5 200 2073 214.13 87.73 86.81
6 250 3442 TO TO TO
7 150 772 0.00 0.00 0.00
8 200 1309 1.32 1.37 1.34
9 250 2091 TO TO TO
10 180 648 1.27 1.27 1.26
11 24 72 0.01 0.01 0.02
12 40 128 0.02 0.01 0.02
13 60 200 0.04 0.03 0.03
14 84 288 0.08 0.08 0.07
15 112 392 0.21 0.22 0.22
16 144 512 0.56 0.56 0.56

132 SYMGANAK: RESULTS

Table A.2: Experimental results comparing Ganak and SymGanak (shortened
to Sym) with the variable selection heuristics CSVSADS (shortened to CSV)
and VSADS. The first column, B, represents the numbered benchmarks.

B Vars Clauses Ganak Sym Ganak Sym
(CSV) (CSV) (VSADS) (VSADS)

battleship
1 91 322 TO TO TO TO
2 120 484 TO TO TO TO
3 153 693 TO TO TO TO
4 170 865 TO TO TO TO
5 180 910 TO TO TO TO
6 190 955 TO TO TO TO
7 276 1662 TO TO TO TO
8 364 2562 TO TO TO TO
9 378 2653 TO TO TO TO
10 435 3270 TO TO TO TO
11 496 3976 TO TO TO TO
12 1368 16308 TO TO TO TO
count
1 495 162372 0.74 0.43 0.64 0.44
2 455 61440 647.00 1.68 2.06 1.69
3 1820 1652576 125.86 251.40 113.38 249.19
4 816 165258 TO 218.51 34.26 222.88
5 1330 377076 TO 4641.06 505.81 4632.97
6 2024 765096 TO TO TO TO
7 2925 1421577 TO TO TO TO
8 4060 2466480 TO TO TO TO
9 70 4768 0.01 0.04 0.02 0.03
fpga
1 120 448 1715.59 108.07 1238.84 240.65
2 120 448 2390.99 168.33 TO 496.11
3 135 549 TO 287.67 TO 956.80
4 135 549 TO 113.84 302.01 67.49
5 180 820 TO TO TO TO
6 198 968 TO TO TO TO
7 198 968 TO TO TO TO
8 216 1128 TO 813.65 TO 1359.87
9 216 1128 TO 1154.13 TO 1131.68
10 144 560 TO TO TO TO
11 144 560 TO TO TO TO

Continued on next page

RESULTS 133

Table A.2 – Continued from previous page
B Vars Clauses ganak Sym ganak Sym

(CSV) (CSV) (VSADS) (VSADS)
12 162 684 TO TO TO TO
13 162 684 TO TO TO TO
14 195 905 TO TO TO TO
15 195 905 TO TO TO TO
16 215 1070 TO TO TO TO
17 234 1242 TO TO TO TO
18 234 1242 TO TO TO TO
19 176 759 TO TO TO TO
20 176 759 TO TO TO TO
grid
1 460 521 TO 18.85 18.13 8.51
2 460 551 TO 3.53 15.73 11.98
3 672 803 TO TO 20.66 1089.01
4 672 791 TO TO 20.93 928.99
5 672 739 TO 511.95 20.64 241.60
6 924 1115 TO TO 29.30 1091.05
7 924 1121 TO TO 45.25 839.70
8 1216 1479 TO TO 71.69 600.62
9 1216 1417 TO TO 62.19 615.32
10 1548 1783 TO TO 241.99 813.23
11 460 463 0.03 0.16 0.06 0.13
12 672 653 1.27 1.09 0.90 2.71
13 1216 1197 TO TO 36.28 403.33
14 1548 1515 TO TO 31.54 474.43
15 2121 2091 TO TO TO 342.43
16 2121 2115 TO TO 155.46 447.69
17 2332 2299 TO TO 74.73 432.93
18 2553 2579 TO TO 724.94 1217.73
19 2784 2683 TO TO TO TO
20 3276 3167 TO TO TO 979.83
21 924 799 0.03 0.06 0.02 0.08
22 1065 957 0.06 0.28 0.06 0.36
23 1377 1213 0.02 0.02 0.02 0.01
24 1377 1211 0.04 0.13 0.03 0.14
25 1548 1357 0.75 0.83 1.83 1.70
26 1548 1335 0.05 0.16 0.05 0.19
27 1729 1515 0.58 3.40 0.69 4.97
28 2553 2219 0.17 0.72 0.93 1.38

Continued on next page

134 SYMGANAK: RESULTS

Table A.2 – Continued from previous page
B Vars Clauses ganak Sym ganak Sym

(CSV) (CSV) (VSADS) (VSADS)
29 3276 2841 0.01 0.01 0.01 0.02
30 12300 10719 TO TO TO TO
kcolor
1 360 930 1.05 2.88 1.36 2.23
2 360 1080 2.39 9.30 2.37 7.81
3 360 1230 0.01 0.01 0.02 0.01
4 375 950 7.68 42.04 4.83 23.15
5 375 1100 11.10 44.46 11.16 39.98
6 375 1250 0.01 0.01 0.01 0.01
7 390 970 9.12 11.40 18.73 28.56
8 390 1120 95.29 372.50 92.25 333.21
9 390 1270 9.17 29.98 8.88 29.91
10 300 940 TO TO TO TO
11 400 1420 TO TO TO TO
12 48 136 0.01 0.01 0.01 0.01
13 64 208 0.16 0.01 0.14 0.01
14 75 220 0.03 0.02 0.03 0.02
15 100 335 8.70 6.87 7.45 7.27
16 108 324 0.21 0.13 0.23 0.12
17 144 492 TO 4290.39 TO 1305.31
18 147 448 3.36 9.48 2.66 9.13
19 196 679 TO TO TO TO
20 192 592 234.09 526.61 154.72 323.13
21 256 896 TO TO TO TO
22 243 756 TO TO TO TO
23 324 1143 TO TO TO TO
mcnc
1 1133 2702 TO TO TO TO
2 1793 4138 4800.98 TO 870.24 1036.74
3 2543 5655 TO TO TO TO
4 3388 7946 TO TO TO TO
5 549 1430 TO TO TO TO
6 4792 11307 TO TO TO TO
7 4864 12048 TO TO TO TO
8 7230 16680 TO TO TO TO
9 826 1878 TO TO TO TO
10 1429 9648 48.04 35.81 45.35 32.43
11 853 2102 5.38 63.87 6.35 56.59

Continued on next page

RESULTS 135

Table A.2 – Continued from previous page
B Vars Clauses ganak Sym ganak Sym

(CSV) (CSV) (VSADS) (VSADS)
12 2639 6775 TO TO TO TO
13 6502 17723 9.13 207.33 8.41 204.18
14 621 2024 8.27 59.87 7.16 55.21
15 1196 16806 6.51 73.27 5.56 64.09
16 410 2831 4.63 22.21 4.14 20.22
17 1322 3858 TO TO TO TO
nqueens-classic
1 100 1490 0.09 0.07 0.08 0.07
2 121 2002 1.93 0.56 1.76 0.65
3 144 2620 11.46 12.79 12.05 12.60
4 169 3354 188.77 144.17 180.15 153.04
5 196 4214 2520.96 2446.95 2753.17 3258.77
6 225 5210 TO TO TO TO
7 256 6352 TO TO TO TO
8 289 7650 TO TO TO TO
9 324 9114 TO TO TO TO
10 361 10754 TO TO TO TO
11 9 34 0.00 0.01 0.01 0.01
12 16 84 0.01 0.01 0.01 0.00
13 25 170 0.00 0.01 0.00 0.01
14 36 302 0.01 0.01 0.01 0.01
15 49 490 0.02 0.01 0.01 0.01
16 64 744 0.01 0.02 0.01 0.02
17 81 1074 0.04 0.03 0.03 0.05
nqueens-symmetry
1 209655 538129 126.41 96.92 136.80 112.92
2 248253 638159 496.39 559.88 596.34 494.38
3 290021 746495 TO TO TO TO
4 334959 863131 TO TO TO TO
5 13757 36335 0.08 0.08 0.06 0.08
6 20189 53759 0.21 0.19 0.20 0.19
7 27771 74409 0.37 0.39 0.36 0.38
8 36503 98279 1.05 1.02 1.06 1.04
9 112881 287935 1.96 1.96 1.95 1.90
10 141969 363011 7.53 6.97 7.54 7.75
11 174227 446411 28.70 30.56 25.72 29.90
parity

Continued on next page

136 SYMGANAK: RESULTS

Table A.2 – Continued from previous page
B Vars Clauses ganak Sym ganak Sym

(CSV) (CSV) (VSADS) (VSADS)
1 4950 485200 TO TO TO TO
2 190 3440 1.39 0.35 1.29 0.34
3 231 4642 4.47 0.63 4.26 0.62
4 276 6096 16.31 0.86 14.44 0.85
5 325 7826 108.51 6.92 47.42 6.42
6 378 9856 161.71 105.78 154.36 123.12
7 435 12210 2754.80 718.18 2666.69 726.89
8 496 14912 TO 4837.29 TO 4755.42
9 561 17986 TO TO TO TO
10 630 21456 TO TO TO TO
11 703 25346 TO TO TO TO
12 780 29680 TO TO TO TO
13 861 34482 TO TO TO TO
14 946 39776 TO TO TO TO
15 1035 45586 TO TO TO TO
16 1128 51936 TO TO TO TO
17 1225 58850 TO TO TO TO
18 1770 102720 TO TO TO TO
19 2415 164290 TO TO TO TO
20 3160 246560 TO TO TO TO
21 4005 352530 TO TO TO TO
problog
1 1488 4064 0.70 1.58 1.14 2.30
2 660 1817 0.15 0.52 0.16 0.52
3 8428 24255 2640.48 TO TO TO
4 5494 17313 760.50 767.48 1120.54 669.34
5 2594 8705 0.12 0.17 0.14 0.15
6 2931 7746 66.27 63.58 77.77 88.84
qwh
1 1000 13800 TO TO TO TO
2 1000 9100 TO TO TO TO
3 438 2509 0.35 0.72 0.35 0.69
4 438 1591 1.45 2.02 1.74 2.13
5 460 2716 5.92 9.96 6.46 9.99
6 519 2068 TO TO TO TO
7 506 3118 3646.05 3470.94 3510.71 3551.92
8 506 1994 TO TO TO TO
9 568 3752 TO TO TO TO

Continued on next page

RESULTS 137

Table A.2 – Continued from previous page
B Vars Clauses ganak Sym ganak Sym

(CSV) (CSV) (VSADS) (VSADS)
10 616 3678 16.85 22.22 15.54 18.95
11 616 2279 107.99 87.47 96.55 116.54
12 445 2420 0.03 0.03 0.03 0.03
13 445 1478 0.11 0.12 0.10 0.12
14 648 4281 TO TO TO TO
15 648 2696 TO TO TO TO
16 591 3443 76.12 85.84 78.77 94.11
17 517 2997 5.55 9.40 6.62 9.14
18 639 3891 84.37 134.17 131.35 76.51
19 639 2424 924.06 854.22 893.15 1313.92
20 664 4123 2885.93 1881.04 1958.53 1865.32
21 683 4283 TO TO TO TO
22 1189 7745 86.91 69.63 124.49 131.52
23 1189 4850 3529.40 2938.28 1956.08 1902.40
24 1555 9534 TO TO TO TO
25 125 825 18.01 0.04 16.66 0.14
26 125 525 11.32 13.18 25.67 18.97
27 3572 26027 TO TO TO TO
28 3572 16789 TO TO TO TO
29 4979 43754 TO TO TO TO
30 4979 28574 TO TO TO TO
tseitin
1 150 1152 TO TO TO TO
2 200 2418 TO 2.40 TO 2.29
3 250 4348 TO 13.60 TO 13.50
4 150 830 0.01 0.00 0.01 0.01
5 200 2073 TO 87.73 TO 214.13
6 250 3442 TO TO TO TO
7 150 772 0.00 0.00 0.00 0.00
8 200 1309 TO 1.37 TO 1.32
9 250 2091 TO TO TO TO
10 180 648 TO 1.27 TO 1.27
11 24 72 0.02 0.01 0.01 0.01
12 40 128 0.06 0.01 0.05 0.02
13 60 200 2.51 0.03 0.31 0.04
14 84 288 TO 0.08 TO 0.08
15 112 392 TO 0.22 TO 0.21
16 144 512 TO 0.56 TO 0.56

138 SYMGANAK: RESULTS

Table A.3: Benchmark names with their associated instance number.

instance Benchmark
battleship

1 battleship-07-13
2 battleship-08-15
3 battleship-09-17
4 battleship-10-17
5 battleship-10-18
6 battleship-10-19
7 battleship-12-23
8 battleship-14-26
9 battleship-14-27
10 battleship-15-29
11 battleship-16-31
12 battleship-24-57

count
1 count12-4
2 count15-3
3 count16-4
4 count18-3
5 count21-3
6 count24-3
7 count27-3
8 count30-3
9 count8-4

fpga
1 fpga10-8-sat
2 fpga10-8-sat-rcr
3 fpga10-9-sat
4 fpga10-9-sat-rcr
5 fpga12-10-sat-rcr
6 fpga12-11-sat
7 fpga12-11-sat-rcr
8 fpga12-12-sat
9 fpga12-12-sat-rcr
10 fpga12-8-sat
11 fpga12-8-sat-rcr
12 fpga12-9-sat
13 fpga12-9-sat-rcr
14 fpga13-10-sat
15 fpga13-10-sat-rcr

Continued on next page

RESULTS 139

Table A.3 – Continued from previous page
instance Benchmark

16 fpga13-11-sat-rcr
17 fpga13-12-sat
18 fpga13-12-sat-rcr
19 fpga13-9-sat
20 fpga13-9-sat-rcr

grid
1 grid-50-10-10-q
2 grid-50-10-6-q
3 grid-50-12-3-q
4 grid-50-12-4-q
5 grid-50-12-6-q
6 grid-50-14-5-q
7 grid-50-14-9-q
8 grid-50-16-10-q
9 grid-50-16-7-q
10 grid-50-18-2-q
11 grid-75-10-7-q
12 grid-75-12-10-q
13 grid-75-16-5-q
14 grid-75-18-5-q
15 grid-75-21-5-q
16 grid-75-21-7-q
17 grid-75-22-6-q
18 grid-75-23-3-q
19 grid-75-24-8-q
20 grid-75-26-1-q
21 grid-90-14-6-q
22 grid-90-15-3-q
23 grid-90-17-7-q
24 grid-90-17-8-q
25 grid-90-18-1-q
26 grid-90-18-9-q
27 grid-90-19-10-q
28 grid-90-23-10-q
29 grid-90-26-1-q
30 grid-90-50-6-q

kcolor
1 kcolor.gnm120-150
2 kcolor.gnm120-200
3 kcolor.gnm120-250

Continued on next page

140 SYMGANAK: RESULTS

Table A.3 – Continued from previous page
instance Benchmark

4 kcolor.gnm125-150
5 kcolor.gnm125-200
6 kcolor.gnm125-250
7 kcolor.gnm130-150
8 kcolor.gnm130-200
9 kcolor.gnm130-250
10 kcolor.grid10k3
11 kcolor.grid10k4
12 kcolor.grid4k3
13 kcolor.grid4k4
14 kcolor.grid5k3
15 kcolor.grid5k4
16 kcolor.grid6k3
17 kcolor.grid6k4
18 kcolor.grid7k3
19 kcolor.grid7k4
20 kcolor.grid8k3
21 kcolor.grid8k4
22 kcolor.grid9k3
23 kcolor.grid9k4

mcnc
1 mcnc-C1355
2 mcnc-C1908
3 mcnc-C2670
4 mcnc-C3540
5 mcnc-C499
6 mcnc-C5315
7 mcnc-C6288
8 mcnc-C7552
9 mcnc-C880
10 mcnc-apex5
11 mcnc-apex6
12 mcnc-pair
13 mcnc-t481
14 mcnc-term1
15 mcnc-too-large
16 mcnc-x1
17 mcnc-x3

nqueens-classic
1 nqueens-classic-10

Continued on next page

RESULTS 141

Table A.3 – Continued from previous page
instance Benchmark

2 nqueens-classic-11
3 nqueens-classic-12
4 nqueens-classic-13
5 nqueens-classic-14
6 nqueens-classic-15
7 nqueens-classic-16
8 nqueens-classic-17
9 nqueens-classic-18
10 nqueens-classic-19
11 nqueens-classic-3
12 nqueens-classic-4
13 nqueens-classic-5
14 nqueens-classic-6
15 nqueens-classic-7
16 nqueens-classic-8
17 nqueens-classic-9

nqueens-symmetry
1 nqueens-symmetry-10-5
2 nqueens-symmetry-11-5
3 nqueens-symmetry-12-5
4 nqueens-symmetry-13-5
5 nqueens-symmetry-4-4
6 nqueens-symmetry-5-4
7 nqueens-symmetry-6-4
8 nqueens-symmetry-7-4
9 nqueens-symmetry-7-5
10 nqueens-symmetry-8-5
11 nqueens-symmetry-9-5

parity
1 parity100
2 parity20
3 parity22
4 parity24
5 parity26
6 parity28
7 parity30
8 parity32
9 parity34
10 parity36
11 parity38

Continued on next page

142 SYMGANAK: RESULTS

Table A.3 – Continued from previous page
instance Benchmark

12 parity40
13 parity42
14 parity44
15 parity46
16 parity48
17 parity50
18 parity60
19 parity70
20 parity80
21 parity90

problog
1 problog-alarm
2 problog-child
3 problog-hailfinder
4 problog-munin
5 problog-pathfinder
6 problog-pigs

qwh
1 qwh10.h100
2 qwh10.h100.min
3 qwh15.h120
4 qwh15.h120.min
5 qwh15.h121
6 qwh15.h121.min
7 qwh15.h122
8 qwh15.h122.min
9 qwh15.h125
10 qwh20.h165.r.s10
11 qwh20.h165.r.s10.min
12 qwh20.h165.r.s1337
13 qwh20.h165.r.s1337.min
14 qwh20.h165.r.s20
15 qwh20.h165.r.s20.min
16 qwh20.h165.r.s5
17 qwh20.h166.rb40.s10
18 qwh20.h166.r.s10
19 qwh20.h166.r.s10.min
20 qwh20.h167.r.s10
21 qwh20.h171.rb50.s10
22 qwh30.h320

Continued on next page

RESULTS 143

Table A.3 – Continued from previous page
instance Benchmark

23 qwh30.h320.min
24 qwh33.h381
25 qwh5.h25
26 qwh5.h25.min
27 qwh50.h750.bal
28 qwh50.h750.bal.min
29 qwh50.h825.bal
30 qwh50.h825.bal.min

tseitin
1 tseitin.gnm120-150.s1
2 tseitin.gnm120-200.s1
3 tseitin.gnm120-250.s1
4 tseitin.gnm125-150.s1
5 tseitin.gnm125-200.s1
6 tseitin.gnm125-250.s1
7 tseitin.gnm130-150.s1
8 tseitin.gnm130-200.s1
9 tseitin.gnm130-250.s1
10 tseitin.grid10.s1
11 tseitin.grid4.s1
12 tseitin.grid5.s1
13 tseitin.grid6.s1
14 tseitin.grid7.s1
15 tseitin.grid8.s1
16 tseitin.grid9.s1

Appendix B

F-XSDD(BR) with Complex
Weight Functions

This appendix chapter is a continuation of Example 34 in Chapter 6 that
illustrated a weighted model integration problem where the weight function is
a single term. We now describe the procedure that allows F-XSDD(BR) to
handle more general weight functions.

Weight function. F-XSDD(BR) natively supports piece-wise polynomial
weight functions, which it represents using an extended algebraic decision diagram
(XADD) introduced by Sanner et al. (2011). This diagram is similar to an
ordered binary decision diagram, but allows decisions based on LRA atoms and
maps to polynomial expressions rather than a Boolean value 0 or 1. Furthermore,
algorithms have been developed to perform algebraic operations with XADDs.
For example, the result of XADD1 ×XADD2 is again an XADD. Consider the
example adapted from Kolb (2019), where ite denotes an if-then-else:

w = ite(A, 2x+ y, x2y)× ite(y < 5, 3, 2) (B.1)

The XADD corresponding to this weight function is illustrated in Figure B.1.

Support formula. F-XSDD(BR) uses an extended sentential decision diagram
(XSDD) (Zuidberg Dos Martires et al., 2019b) to represent the support ψ. This
representation is based on the more general SDD class, and represents an LRA
formula by abstracting it to a propositional formula, compiling the result using

145

146 F-XSDD(BR) WITH COMPLEX WEIGHT FUNCTIONS

A

y < 5 y < 5

4x + 2y 6x + 3y 3x2y 2x2y

Figure B.1: The XADD representation of the weight function in Equation B.1.
A dashed line originating from a node indicates negation. For example, the
path following the dashed lines from the top to the bottom right indicates that
when A is false, and y < 5 is false, the weight is 2x2y.

an SDD compiler, while maintaining a mapping of freshly introduced Boolean
variables to their corresponding LRA atom.

Weighted model integration procedure. The XADD weight function can be
viewed a set of tuples 〈ψi, wi〉, one for each polynomial leaf node in the XADD.
Essentially, ψi represents the collection of truth assignments in w leading to
the same weight function polynomial wi. For example, using Equation B.1, this
looks as follows

〈ψ1, weight1〉 = 〈A ∧ (y < 5) , 6x+ 3y〉 (B.2)

〈ψ2, weight2〉 = 〈A ∧ (y ≥ 5) , 4x+ 2y〉 (B.3)

〈ψ3, weight3〉 = 〈¬A ∧ (y < 5) , 3x2y〉 (B.4)

〈ψ4, weight4〉 = 〈¬A ∧ (y ≥ 5) , 2x2y〉 (B.5)

While in this example each path in the XADD leads to a unique weight, it is
possible for multiple paths to lead to the same weight, in which case they are
combined in one ψi. This view of the XADD as tuples is easily established
implementation-wise. At this point, each satisfying truth assignment of ψi maps
to the same weight wi, so we convert ψi into an XSDD conjoined with the
support ψ: ψ ∧ ψi. This transforms the weighted model integration problem
over piece-wise polynomial weight functions, into an integration problem over
polynomials only, i.e., we perform a WMI computation for each ψ ∧ ψi over
polynomial wi, and aggregate the results. The conjunction ψ ∧ ψi is possible

F-XSDD(BR) WITH COMPLEX WEIGHT FUNCTIONS 147

through the efficient apply operation available for SDDs (and hence XSDDs).
Finally, the sum rule of integration states that integrating over an polynomial
is equivalent to integrating independently over each term of the polynomial,
and summing the results. This transforms the problem into integrating over a
polynomial’s term, where we lower the integration into the representation of
ψ ∧ ψi, as discussed in Chapter 6. Figure B.2 illustrates an equation resulting
from this procedure, prior to pushing down the integration. The equation
that then results from pushing down the integration is included in Chapter 6,
Figure 6.2. Afterwards, the procedure performs a bottom-up evaluation, using
XADDs to represent the intermediate results because these support algebraic
operations and are relatively succinct. For more information on the whole
procedure or technical details concerning the integration, we refer to Kolb et al.
(2019b) and Kolb (2019).

148 F-XSDD(BR) WITH COMPLEX WEIGHT FUNCTIONS

∫0..4x1x2

+

⟦x0<5⟧ ×

⟦x0≥5⟧ +

× +

× + ⟦x0<x1⟧ ×

⟦x0≥x1⟧ × ⟦x0<x3⟧ × ⟦x0≥x1⟧ +

⟦x0≥x2⟧ ⟦x1+2≥x2⟧ ⟦x0≥x3⟧ +

⟦x0<x4⟧ ×

⟦x0≥x4⟧ ⟦x3+2<x4⟧

⟦x0<x2⟧ ×

⟦x0≥x2⟧ ⟦x1+2<x2⟧

Figure B.2: This is part of the integration problem of Example 34, in Section 6.2.
It shows the situation prior to pushing down the integration lower into the
equation.

Bibliography

Aerts, B., T. Goedemé, and J. Vennekens (2016). “A Probabilistic Logic
Programming Approach to Automatic Video Montage”. In: Proceedings of
the 22nd European Conference on Artificial Intelligence, ECAI. Vol. 285. IOS
Press, pp. 234–242 (cit. on p. 47).

Aloul, F. A., A. Ramani, I. L. Markov, and K. A. Sakallah (2002). “Solving
Difficult SAT Instances in the Presence of Symmetry”. In: Proceedings of the
39th Design Automation Conference, DAC. ACM, pp. 731–736 (cit. on p. 51,
56, 123).

Antanas, L., P. Moreno, M. Neumann, R. P. de Figueiredo, K. Kersting, J. Santos-
Victor, and L. De Raedt (2019). “Semantic and geometric reasoning for
robotic grasping: a probabilistic logic approach”. In: Autonomous Robots 43.6,
pp. 1393–1418 (cit. on p. 47).

Antova, L., C. Koch, and D. Olteanu (2006). “MayBMS: Managing Incomplete
Information with Probabilistic World-Set Decompositions”. In: Proceedings
of the 23rd International Conference on Data Engineering, ICDE. IEEE
Computer Society, pp. 1479–1480 (cit. on p. 29).

Apriceno, G., A. Passerini, and L. Serafini (2021). “A Neuro-Symbolic Approach
to Structured Event Recognition”. In: 28th International Symposium on
Temporal Representation and Reasoning, TIME. Vol. 206. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 11:1–11:14 (cit. on p. 47).

Apsel, U. and R. I. Brafman (2012). “Lifted MEU by Weighted Model Counting”.
In: Proceedings of the 26th AAAI Conference on Artificial Intelligence. AAAI
Press (cit. on p. 81).

Arnborg, S. (1985). “Efficient Algorithms for Combinatorial Problems on Graphs
with Bounded, Decomposability—a Survey”. In: BIT 25.1, pp. 2–23. issn:
0006-3835 (cit. on p. 84).

Aziz, R. A., G. Chu, C. J. Muise, and P. J. Stuckey (2015). “#∃SAT: Projected
Model Counting”. In: Theory and Applications of Satisfiability Testing - SAT.
Vol. 9340. Springer, pp. 121–137 (cit. on p. 50, 66).

149

150 BIBLIOGRAPHY

Bacchus, F., S. Dalmao, and T. Pitassi (2003). “DPLL with Caching: A new
algorithm for #SAT and Bayesian Inference”. In: Electronic Colloquium on
Computational Complexity, ECCC 10.003 (cit. on p. 17, 50, 112).

Baluta, T., S. Shen, S. Shinde, K. S. Meel, and P. Saxena (2019). “Quantitative
Verification of Neural Networks and Its Security Applications”. In: SIGSAC
Conference on Computer and Communications Security, CCS. ACM, pp. 1249–
1264 (cit. on p. 49).

Barbará, D., H. Garcia-Molina, and D. Porter (1992). “The Management
of Probabilistic Data”. In: IEEE Transactions on Knowledge and Data
Engineering 4.5, pp. 487–502 (cit. on p. 29).

Barbosa, H., C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner,
A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar (2022). “cvc5: A Versatile
and Industrial-Strength SMT Solver”. In: Tools and Algorithms for the
Construction and Analysis of Systems, TACAS. Vol. 13243. Lecture Notes in
Computer Science. Springer, pp. 415–442 (cit. on p. 111).

Barrett, C. W., R. Sebastiani, S. A. Seshia, and C. Tinelli (2009). “Satisfiability
Modulo Theories”. In: Handbook of Satisfiability. Vol. 185. IOS Press, pp. 825–
885 (cit. on p. 107).

Barrett, C. W. and C. Tinelli (2018). “Satisfiability Modulo Theories”. In:
Handbook of Model Checking. Springer, pp. 305–343 (cit. on p. 106).

Bart, A., F. Koriche, J. Lagniez, and P. Marquis (2014). “Symmetry-Driven
Decision Diagrams for Knowledge Compilation”. In: Proceedings of the 21st
European Conference on Artificial Intelligence, ECAI. Vol. 263. IOS Press,
pp. 51–56 (cit. on p. 52, 117).

Bayardo Jr, R. J. and J. D. Pehoushek (2000). “Counting Models Using
Connected Components”. In: Proceedings of the 17th National Conference
on Artificial Intelligence and 12th Conference on Innovative Applications of
Artificial Intelligence, AAAI/IAAI, pp. 157–162 (cit. on p. 50).

Becker, B., M. Behle, F. Eisenbrand, and R. Wimmer (2005). “BDDs in a
Branch and Cut Framework”. In: WEA. Vol. 3503. Springer, pp. 452–463
(cit. on p. 118).

Belle, V. and L. De Raedt (2020). “Semiring programming: A semantic
framework for generalized sum product problems”. In: International Journal
of Approximate Reasoning 126, pp. 181–201. issn: 0888-613X. doi: 10.1016/
j.ijar.2020.08.001 (cit. on p. 46, 116).

Belle, V., A. Passerini, and G. Van den Broeck (2015). “Probabilistic Inference
in Hybrid Domains by Weighted Model Integration”. In: Proceedings of the
24th International Joint Conference on Artificial Intelligence, IJCAI. AAAI
Press, pp. 2770–2776 (cit. on p. 5, 84, 85).

Benjelloun, O., A. D. Sarma, A. Halevy, and J. Widom (2006). “ULDBs:
Databases with Uncertainty and Lineage”. In: Proceedings of the 32nd

https://doi.org/10.1016/j.ijar.2020.08.001
https://doi.org/10.1016/j.ijar.2020.08.001

BIBLIOGRAPHY 151

International Conference on Very Large Data Bases, VLDB. Vol. 6. ACM,
pp. 953–964 (cit. on p. 29).

Berg, B. van den, T. van Bremen, V. Derkinderen, A. Kimmig, T. Schrijvers, and
L. De Raedt (2021). “From Probabilistic NetKAT to ProbLog: New Algorithms
for Inference and Learning in Probabilistic Networks”. In: International
Conference on Probabilistic Programming, Extended Abstracts (cit. on p. 47,
176).

Berg, B. van den, T. Schrijvers, J. McKinna, and A. Vandenbroucke (2022).
“Forward- or Reverse-Mode Automatic Differentiation: What’s the Difference?”
In: CoRR abs/2212.11088 (cit. on p. 47).

Bhattacharjya, D. and R. D. Shachter (2012). “Evaluating influence diagrams
with decision circuits”. In: CoRR abs/1206.5257 (cit. on p. 81).

Birnbaum, E. and E. L. Lozinskii (1999). “The Good Old Davis-Putnam
Procedure Helps Counting Models”. In: Journal of Artificial Intelligence
Research 10, pp. 457–477 (cit. on p. 16, 50).

Bliem, B. and M. Järvisalo (2019). “Centrality Heuristics for Exact Model
Counting”. In: 31st IEEE International Conference on Tools with Artificial
Intelligence, ICTAI. IEEE, pp. 59–63. doi: 10.1109/ICTAI.2019.00017 (cit.
on p. 15).

Bryant, R. E. (1986). “Graph-Based Algorithms for Boolean Function
Manipulation”. In: IEEE Transactions on Computers 35.8, pp. 677–691 (cit.
on p. 22).

Bueno, T. P., D. Mauá, L. N. de Barros, and F. G. Cozman (2016).
“Markov Decision Processes Specified by Probabilistic Logic Programming:
Representation and Solution”. In: 5th Brazilian Conference on Intelligent
Systems, BRACIS, pp. 337–342 (cit. on p. 47).

Bui, H. H., T. N. Huynh, and S. Riedel (2013). “Automorphism Groups of
Graphical Models and Lifted Variational Inference”. In: Proceedings of the
29th Conference on Uncertainty in Artificial Intelligence, UAI. AUAI Press
(cit. on p. 52).

Cavallo, R. and M. Pittarelli (1987). “The Theory of Probabilistic Databases”.
In: Proceedings of 13th International Conference on Very Large Data Bases,
VLDB, pp. 71–81 (cit. on p. 29).

Chajewska, U., D. Koller, and R. Parr (2000). “Making Rational Decisions Using
Adaptive Utility Elicitation”. In: Proceedings of the 17th National Conference
on Artificial Intelligence and 12th Conference on Innovative Applications of
Artificial Intelligence, AAAI/IAAI. Ed. by H. A. Kautz and B. W. Porter.
AAAI Press / The MIT Press, pp. 363–369. isbn: 0-262-51112-6 (cit. on
p. 82).

Chaki, S., A. Gurfinkel, and O. Strichman (2009). “Decision Diagrams for
Linear Arithmetic”. In: Proceedings of 9th International Conference on Formal

https://doi.org/10.1109/ICTAI.2019.00017

152 BIBLIOGRAPHY

Methods in Computer-Aided Design, FMCAD. IEEE, pp. 53–60. doi: 10.
1109/FMCAD.2009.5351143 (cit. on p. 95, 106, 112).

Chavira, M. and A. Darwiche (2008). “On probabilistic inference by weighted
model counting”. In: Artificial Intelligence 172.6-7, pp. 772–799 (cit. on
p. 49).

Choi, A. and A. Darwiche (2013). “Dynamic Minimization of Sentential Decision
Diagrams”. In: Proceedings of the 27th AAAI Conference on Artificial
Intelligence. Ed. by M. desJardins and M. L. Littman. AAAI Press (cit. on
p. 22).

Christ, J., J. Hoenicke, and A. Nutz (2012). “SMTInterpol: An Interpolating
SMT Solver”. In: Model Checking Software - 19th International Workshop,
SPIN. Vol. 7385. Lecture Notes in Computer Science. Springer, pp. 248–254
(cit. on p. 111).

Cimatti, A., A. Griggio, B. J. Schaafsma, and R. Sebastiani (2013). “The
MathSAT5 SMT Solver”. In: Tools and Algorithms for the Construction
and Analysis of Systems - 19th International Conference, TACAS. Vol. 7795.
Lecture Notes in Computer Science. Springer, pp. 93–107 (cit. on p. 111).

Crawford, J. M., M. L. Ginsberg, E. M. Luks, and A. Roy (1996). “Symmetry-
Breaking Predicates for Search Problems”. In: Proceedings of the 5th
International Conference on Principles of Knowledge Representation and
Reasoning, KR, pp. 148–159 (cit. on p. 52).

Dalvi, N. and D. Suciu (2007). “Efficient query evaluation on probabilistic
databases”. In: The International Journal on Very Large Data Bases, VLDB
16.4, pp. 523–544. doi: 10.1007/s00778-006-0004-3 (cit. on p. 29).

Dantsin, E. (1990). “Probabilistic Logic Programs and their Semantics”. In:
Proceedings of the First Russian Conference on Logic Programming, pp. 152–
164 (cit. on p. 28).

Darwiche, A. (2000). “A Differential Approach to Inference in Bayesian
Networks”. In: Proceedings of the 16th Conference in Uncertainty in Artificial
Intelligence, UAI. Ed. by C. Boutilier and M. Goldszmidt. Morgan Kaufmann,
pp. 123–132. isbn: 1-55860-709-9 (cit. on p. 20, 81).

Darwiche, A. (2002). “A Logical Approach to Factoring Belief Networks”. In:
Proceedings of the 8th International Conference on Principles and Knowledge
Representation and Reasonin, KR, pp. 409–420 (cit. on p. 20).

Darwiche, A. (2004). “New Advances in Compiling CNF to Decomposable
Negation Normal Form”. In: Proceedings of the 16th Eureopean Conference
on Artificial Intelligence, ECAI. IOS Press, pp. 318–322. isbn: 9781586034528
(cit. on p. 20, 21, 106).

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks.
Cambridge University Press. isbn: 978-0-521-88438-9 (cit. on p. 1, 85, 92,
93).

https://doi.org/10.1109/FMCAD.2009.5351143
https://doi.org/10.1109/FMCAD.2009.5351143
https://doi.org/10.1007/s00778-006-0004-3

BIBLIOGRAPHY 153

Darwiche, A. (2011). “SDD: A New Canonical Representation of Propositional
Knowledge Bases”. In: Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, IJCAI, pp. 819–826. doi: 10.5591/978-1-57735-
516-8/IJCAI11-143 (cit. on p. 22, 23, 24, 111).

Darwiche, A. and A. Hirth (2020). “On the Reasons Behind Decisions”. In:
Proceedings of the 24th European Conference on Artificial Intelligence, ECAI.
Vol. 325. IOS Press, pp. 712–720. doi: 10.3233/FAIA200158 (cit. on p. 111).

Darwiche, A. and P. Marquis (2002). “A Knowledge Compilation Map”. In:
Journal of Artificial Intelligence Research 17.1, pp. 229–264. issn: 1076-9757.
doi: 10.1613/jair.989 (cit. on p. 2, 18, 19, 20, 21, 68, 106, 108, 120).

Davis, M., G. Logemann, and D. W. Loveland (1962). “A Machine Program for
Theorem-Proving”. In: Communications of the ACM 5.7, pp. 394–397. doi:
10.1145/368273.368557 (cit. on p. 15, 50).

Davis, M. and H. Putnam (1960). “A Computing Procedure for Quantification
Theory”. In: Journal of the ACM 7.3, pp. 201–215. doi: 10.1145/321033.
321034 (cit. on p. 15).

De Maeyer, D., J. Renkens, L. Cloots, L. De Raedt, and K. Marchal (2013).
“PheNetic: network-based interpretation of unstructured gene lists in E. coli”.
In: Molecular bioSystems 9 (7), pp. 1594–1603. doi: 10.1039/C3MB25551D
(cit. on p. 47).

De Maeyer, D., B. Weytjens, L. De Raedt, and K. Marchal (2016). “Network-
Based Analysis of eQTL Data to Prioritize Driver Mutations”. In: Genome
Biology and Evolution 8.3, pp. 481–494. issn: 1759-6653. doi: 10.1093/gbe/
evw010 (cit. on p. 47).

De Maeyer, D., B. Weytjens, J. Renkens, L. De Raedt, and K. Marchal (2015).
“PheNetic: network-based interpretation of molecular profiling data”. In:
Nucleic Acids Research 43.W1, W244–W250. issn: 0305-1048. doi: 10.1093/
nar/gkv347 (cit. on p. 47).

De Raedt, L. (2007). “ProbLog and its Application to Link Mining in Biological
Networks”. In: Mining and Learning with Graphs, MLG. Ed. by P. Frasconi,
K. Kersting, and K. Tsuda (cit. on p. 47).

De Raedt, L., K. Kersting, S. Natarajan, and D. Poole (2016). “Statistical
Relational Artificial Intelligence: Logic, Probability, and Computation”. In:
Synthesis Lectures on Artificial Intelligence and Machine Learning 10.2,
pp. 1–189. doi: 10.2200/S00692ED1V01Y201601AIM032 (cit. on p. 68).

De Raedt, L. and A. Kimmig (2015). “Probabilistic (logic) programming
concepts”. In: Machine Learning 100.1, pp. 5–47. doi: 10.1007/s10994-015-
5494-z (cit. on p. 28, 29).

De Raedt, L., A. Kimmig, and H. Toivonen (2007). “ProbLog: A Probabilistic
Prolog and Its Application in Link Discovery”. In: Proceedings of the 20th
International Joint on Artificial Intelligence, IJCAI. Vol. 7, pp. 2462–2467
(cit. on p. 1, 27, 29, 31).

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.3233/FAIA200158
https://doi.org/10.1613/jair.989
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1039/C3MB25551D
https://doi.org/10.1093/gbe/evw010
https://doi.org/10.1093/gbe/evw010
https://doi.org/10.1093/nar/gkv347
https://doi.org/10.1093/nar/gkv347
https://doi.org/10.2200/S00692ED1V01Y201601AIM032
https://doi.org/10.1007/s10994-015-5494-z
https://doi.org/10.1007/s10994-015-5494-z

154 BIBLIOGRAPHY

De Salvo Braz, R., C. O’Reilly, V. Gogate, and R. Dechter (2016). “Probabilistic
Inference Modulo Theories”. In: Proceedings of the 25th International Joint
Conference on Artificial Intelligence, IJCAI, pp. 3591–3599 (cit. on p. 113).

De Smet, L., P. Zuidberg Dos Martires, R. Manhaeve, G. Marra, A. Kimmig,
and L. De Readt (2023). “Neural Probabilistic Logic Programming in Discrete-
Continuous Domains”. In: Proceedings of the 39th Conference on Uncertainty
in Artificial Intelligence, UAI. Ed. by R. J. Evans and I. Shpitser. Vol. 216.
PMLR, pp. 529–538 (cit. on p. 37, 38).

Dechter, R. (1999). “Bucket Elimination: A Unifying Framework for Reasoning”.
In: Artificial Intelligence 113.1-2, pp. 41–85 (cit. on p. 81, 84).

Dechter, R. (2013). Reasoning with Probabilistic and Deterministic Graphical
Models: Exact Algorithms. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers. doi: 10 . 2200 /
S00529ED1V01Y201308AIM023 (cit. on p. 85, 91, 92, 94, 95, 96, 97, 100, 101,
104).

Dechter, R. and R. Mateescu (2007). “AND/OR Search Spaces for Graphical
Models”. In: Artificial Intelligence 171.2-3, pp. 73–106. issn: 0004-3702. doi:
10.1016/j.artint.2006.11.003 (cit. on p. 81).

Derkinderen, V., J. Bekker, and P. Smet (2023a). “Optimizing workforce
allocation under uncertain activity duration”. In: Computers & Industrial
Engineering 179, p. 109228. doi: 10.1016/j.cie.2023.109228 (cit. on
p. 175).

Derkinderen, V., J. Bekker, and P. Smet (2023b). Replication Data for: Opti-
mizing Workforce Allocation under Uncertain Activity Duration. Version V1.
url: https://doi.org/10.48804/YHMU7R (cit. on p. 176).

Derkinderen, V. and L. De Raedt (2020). “Algebraic Circuits for Decision
Theoretic Inference and Learning”. In: Proceedings of the 24th European
Conference on Artificial Intelligence, ECAI. Vol. 325. IOS Press, pp. 2569–
2576. doi: 10.3233/FAIA200392 (cit. on p. 9, 13, 18, 38, 41, 47, 67, 176).

Derkinderen, V., E. Heylen, P. Zuidberg Dos Martires, S. Kolb, and L. De Raedt
(2020). “Ordering Variables for Weighted Model Integration”. In: Proceedings
of the 36th Conference on Uncertainty in Artificial Intelligence, UAI. Ed. by
R. P. Adams and V. Gogate. Vol. 124. AUAI Press, pp. 879–888 (cit. on p. 9,
83, 175).

Derkinderen, V., R. Manhaeve, P. Zuidberg Dos Martires, and L. De Raedt
(2023c). “Semirings for Probabilistic and Neural-Symbolic Logic Program-
ming”. Accepted with minor revision in International Journal of Approximate
Reasoning (cit. on p. 8, 22, 27, 175).

Derkinderen, V., P. Zuidberg Dos Martires, S. Kolb, and P. Morettin (2023d).
“Top-Down Knowledge Compilation for Counting Modulo Theories”. In: CoRR
abs/2306.04541. accepted at Workshop on Counting and Sampling at SAT
2023. doi: 10.48550/arXiv.2306.04541 (cit. on p. 10, 105, 176).

https://doi.org/10.2200/S00529ED1V01Y201308AIM023
https://doi.org/10.2200/S00529ED1V01Y201308AIM023
https://doi.org/10.1016/j.artint.2006.11.003
https://doi.org/10.1016/j.cie.2023.109228
https://doi.org/10.48804/YHMU7R
https://doi.org/10.3233/FAIA200392
https://doi.org/10.48550/arXiv.2306.04541

BIBLIOGRAPHY 155

Devriendt, J., B. Bogaerts, M. Bruynooghe, and M. Denecker (2016). “Improved
Static Symmetry Breaking for SAT”. In: Theory and Applications of
Satisfiability Testing - SAT. Vol. 9710. Springer, pp. 104–122 (cit. on p. 52).

Devriendt, J., B. Bogaerts, B. D. Cat, M. Denecker, and C. Mears (2012).
“Symmetry Propagation: Improved Dynamic Symmetry Breaking in SAT”.
In: IEEE 24th International Conference on Tools with Artificial Intelligence
ICTAI. IEEE Computer Society, pp. 49–56 (cit. on p. 123).

Doherty, P. and A. Szalas (2022). “A landscape and implementation framework
for probabilistic rough sets using ProbLog”. In: Information Sciences 593,
pp. 546–576. doi: 10.1016/j.ins.2021.12.062 (cit. on p. 47).

Dolan, S. (2013). “Fun with Semirings: A functional pearl on the abuse of
linear algebra”. In: ACM SIGPLAN International Conference on Functional
Programming, ICFP. ACM, pp. 101–110. doi: 10.1145/2500365.2500613
(cit. on p. 47).

Dries, A., A. Kimmig, J. Davis, V. Belle, and L. De Raedt (2017). “Solving
Probability Problems in Natural Language”. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence, IJCAI, pp. 3981–
3987. doi: 10.24963/ijcai.2017/556 (cit. on p. 47).

Dutertre, B. (2014). “Yices 2.2”. In: Computer Aided Verification - 26th
International Conference, CAV. Vol. 8559. Springer, pp. 737–744. doi: 10.
1007/978-3-319-08867-9_49 (cit. on p. 110, 111).

Eisner, J. (2002). “Parameter Estimation for Probabilistic Finite-State
Transducers”. In: Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pp. 1–8. doi: 10.3115/1073083.1073085
(cit. on p. 3, 71).

Eisner, J. and N. W. Filardo (2010). “Dyna: Extending Datalog for Modern AI”.
In: Datalog Reloaded - First International Workshop, Datalog 2010. Revised
Selected Papers. Ed. by O. de Moor, G. Gottlob, T. Furche, and A. J. Sellers.
Vol. 6702. Springer, pp. 181–220. doi: 10.1007/978-3-642-24206-9_11
(cit. on p. 29, 30).

Feldstein, J. and V. Belle (2021). “Lifted Reasoning Meets Weighted Model
Integration”. In: Proceedings of the 37th Conference on Uncertainty in
Artificial Intelligence, UAI. Vol. 161. AUAI Press, pp. 322–332 (cit. on
p. 113).

Fichte, J. K., M. Hecher, and F. Hamiti (2020). “The Model Counting
Competition 2020”. In: CoRR abs/2012.01323 (cit. on p. 57).

Fierens, D., G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon,
G. Janssens, and L. De Raedt (2015). “Inference and learning in probabilistic
logic programs using weighted Boolean formulas”. In: Theory and Practice
of Logic Programming 15.3, pp. 358–401. doi: 10.1017/S1471068414000076
(cit. on p. 2, 8, 42, 68, 125).

https://doi.org/10.1016/j.ins.2021.12.062
https://doi.org/10.1145/2500365.2500613
https://doi.org/10.24963/ijcai.2017/556
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.3115/1073083.1073085
https://doi.org/10.1007/978-3-642-24206-9_11
https://doi.org/10.1017/S1471068414000076

156 BIBLIOGRAPHY

Flach, P. (1994). Simply Logical: Intelligent Reasoning by Example. John Wiley.
isbn: 0471941522 (cit. on p. 1, 28, 31).

Fuhr, N. (1995). “Probabilistic Datalog - A Logic For Powerful Retrieval
Methods”. In: Proceedings of the 18th annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 282–290.
doi: 10.1145/215206.215372 (cit. on p. 29).

Fuhr, N. and T. Rölleke (1997). “A Probabilistic Relational Algebra for the
Integration of Information Retrieval and Database Systems”. In: ACM
Transactions on Information Systems, TOIS 15.1, pp. 32–66. doi: 10.1145/
239041.239045 (cit. on p. 29).

Gelenbe, E. and G. Hebrail (1986). “A Probability Model of Uncertainty in
Data Bases”. In: Second International Conference on Data Engineering. IEEE,
pp. 328–333. doi: 10.1109/ICDE.1986.7266237 (cit. on p. 29).

Gomes, C. P. and D. Shmoys (2002). “Completing Quasigroups or Latin Squares:
A Structured Graph Coloring Problem”. In: proceedings of the Computational
Symposium on Graph Coloring and Generalizations, pp. 22–39 (cit. on p. 51,
124).

Goodman, N. D., J. B. Tenenbaum, and T. P. Contributors (2016). Probabilistic
Models of Cognition. http://probmods.org/v2. Accessed: 2023-7-12 (cit.
on p. 28).

Grohe, M., B. L. Kaminski, J.-P. Katoen, and P. Lindner (2022). “Generative
Datalog with Continuous Distributions”. In: Journal of the ACM 69.6, 46:1–
46:52. doi: 10.1145/3559102 (cit. on p. 29).

Groß, A., B. Kracher, J. Kraus, S. Kühlwein, A. Pfister, S. Wiese, K. Luckert,
O. Pötz, T. Joos, D. Van Daele, L. De Raedt, M. Kühl, and H. Kestler (2019).
“Representing dynamic biological networks with multi-scale probabilistic
models”. In: Communications Biology 2.1, p. 21. doi: 10.1038/s42003-018-
0268-3 (cit. on p. 47).

Gutmann, B., I. Thon, A. Kimmig, M. Bruynooghe, and L. De Raedt (2011a).
“The Magic of Logical Inference in Probabilistic Programming”. In: Theory
and Practice of Logic Programming 11.4-5, pp. 663–680 (cit. on p. 29).

Gutmann, B., A. Kimmig, K. Kersting, and L. De Raedt (2008). “Parameter
Learning in Probabilistic Databases: A Least Squares Approach”. In: Machine
Learning and Knowledge Discovery in Databases, European Conference,
ECML/PKDD, pp. 473–488. doi: 10.1007/978-3-540-87479-9_49 (cit.
on p. 77).

Gutmann, B., I. Thon, and L. De Raedt (2011b). “Learning the Parameters of
Probabilistic Logic Programs from Interpretations”. In: Machine Learning
and Knowledge Discovery in Databases - European Conference, ECML/PKDD.
Ed. by D. Gunopulos, T. Hofmann, D. Malerba, and M. Vazirgiannis. Vol. 6911.
Springer, pp. 581–596. isbn: 978-3-642-23779-9. doi: 10.1007/978-3-642-
23780-5_47 (cit. on p. 77).

https://doi.org/10.1145/215206.215372
https://doi.org/10.1145/239041.239045
https://doi.org/10.1145/239041.239045
https://doi.org/10.1109/ICDE.1986.7266237
http://probmods.org/v2
https://doi.org/10.1145/3559102
https://doi.org/10.1038/s42003-018-0268-3
https://doi.org/10.1038/s42003-018-0268-3
https://doi.org/10.1007/978-3-540-87479-9_49
https://doi.org/10.1007/978-3-642-23780-5_47
https://doi.org/10.1007/978-3-642-23780-5_47

BIBLIOGRAPHY 157

Heule, M. J. H., M. Järvisalo, and M. Suda (2019). “SAT Competition 2018”. In:
Journal on Satisfiability, Boolean Modeling and Computation 11.1, pp. 133–
154. doi: 10.3233/SAT190120 (cit. on p. 61).

Hitzler, P. and M. K. Sarker, eds. (2021). Neuro-Symbolic Artificial Intelligence:
The State of the Art. Vol. 342. Frontiers in Artificial Intelligence and
Applications. IOS Press. isbn: 978-1-64368-244-0. doi: 10.3233/FAIA342
(cit. on p. 120).

Hochreiter, S. (2022). “Toward a Broad AI”. In: Communications of the ACM
65.4, pp. 56–57. issn: 0001-0782. doi: 10.1145/3512715 (cit. on p. 120).

Hocquette, C., S. Dumancic, and A. Cropper (2023). “Learning Logic Programs
by Discovering Higher-Order Abstractions”. In: CoRR abs/2308.08334 (cit.
on p. 118).

Holtzen, S., T. D. Millstein, and G. Van den Broeck (2019). “Generating and
Sampling Orbits for Lifted Probabilistic Inference”. In: Proceedings of the
35th Conference on Uncertainty in Artificial Intelligence, UAI. Vol. 115,
pp. 985–994 (cit. on p. 52).

Hommersom, A. and M. L. P. Bueno (2016). “Toward Computing Conflict-
Based Diagnoses in Probabilistic Logic Programming”. In: Proceedings of the
3rd International Workshop on Probabilistic Logic Programming, PLP@ILP.
Vol. 1661. CEUR Workshop Proceedings, pp. 29–38 (cit. on p. 47).

Huang, J., Z. Li, B. Chen, K. Samel, M. Naik, L. Song, and X. Si (2021).
“Scallop: From Probabilistic Deductive Databases to Scalable Differentiable
Reasoning”. In: Advances in Neural Information Processing Systems, NeurIPS
34, pp. 25134–25145 (cit. on p. 46, 120).

Huang, J. and A. Darwiche (2004). “Using DPLL for Efficient OBDD
Construction”. In: Theory and Applications of Satisfiability Testing - SAT
(cit. on p. 112).

Huang, J. and A. Darwiche (2005). “DPLL with a Trace: From SAT to Knowledge
Compilation”. In: Proceedings of the 19th International Joint Conference on
Artificial Intelligence, IJCAI, pp. 156–162 (cit. on p. 20, 106).

Hung, N. D. (2017). “Inference and Learning in Probabilistic Argumentation”.
In: Multi-disciplinary Trends in Artificial Intelligence - 11th International
Workshop, MIWAI. Vol. 10607. Springer, pp. 3–17. doi: 10.1007/978-3-
319-69456-6_1 (cit. on p. 47).

Hyvärinen, A. E. J., M. Marescotti, L. Alt, and N. Sharygina (2016).
“OpenSMT2: An SMT Solver for Multi-core and Cloud Computing”. In:
Theory and Applications of Satisfiability Testing - SAT. Vol. 9710. Springer,
pp. 547–553. doi: 10.1007/978-3-319-40970-2_35 (cit. on p. 111).

Imbert, J.-L. (1990). “About Redundant Inequalities Generated by Fourier’s
Algorithm”. In: Proceedings of the Fourth International Conference on
Artificial Intelligence: Methodology, Systems, Applications, AIMSA. Elsevier,
pp. 117–127 (cit. on p. 94).

https://doi.org/10.3233/SAT190120
https://doi.org/10.3233/FAIA342
https://doi.org/10.1145/3512715
https://doi.org/10.1007/978-3-319-69456-6_1
https://doi.org/10.1007/978-3-319-69456-6_1
https://doi.org/10.1007/978-3-319-40970-2_35

158 BIBLIOGRAPHY

Ivrii, A., S. Malik, K. S. Meel, and M. Y. Vardi (2016). “On computing Minimal
Independent Support and its applications to sampling and counting”. In:
Constraints 21.1, pp. 41–58. doi: 10.1007/s10601-015-9204-z (cit. on
p. 62).

Karp, R. M. (1972). “Reducibility Among Combinatorial Problems”. In:
Complexity of Computer Computations. The IBM Research Symposia Series.
Plenum Press, New York, pp. 85–103 (cit. on p. 14).

Kask, K., A. Gelfand, L. Otten, and R. Dechter (2011). “Pushing the Power of
Stochastic Greedy Ordering Schemes for Inference in Graphical Models”. In:
Proceedings of the 25th AAAI Conference on Artificial Intelligence (cit. on
p. 95, 104).

Kersting, K. and L. De Raedt (2000). “Bayesian Logic Programs”. In: Proceedings
of the 10th International Conference on Inductive Logic Programming, Work-
in-progress reports, pp. 1–18 (cit. on p. 28).

Kiesel, R. and T. Eiter (2023). “Knowledge Compilation and More with
SharpSAT-TD”. In: Proceedings of the 20th International Conference
on Principles of Knowledge Representation and Reasoning, KR. Ed. by
P. Marquis, T. C. Son, and G. Kern-Isberner, pp. 406–416. doi: 10.24963/
kr.2023/40 (cit. on p. 21).

Kimmig, A. and F. Costa (2012). “Link and Node Prediction in Metabolic
Networks with Probabilistic Logic”. In: Bisociative Knowledge Discovery:
An Introduction to Concept, Algorithms, Tools, and Applications. Vol. 7250.
Springer, pp. 407–426. isbn: 978-3-642-31830-6. doi: 10.1007/978-3-642-
31830-6_29 (cit. on p. 47).

Kimmig, A., G. Van den Broeck, and L. De Raedt (2011). “An Algebraic Prolog
for Reasoning about Possible Worlds”. In: Proceedings of the 25th AAAI
Conference on Artificial Intelligence (cit. on p. 8, 29, 37, 38, 44, 68, 76).

Kimmig, A., G. Van den Broeck, and L. De Raedt (2017). “Algebraic model
counting”. In: Journal of Applied Logic 22, pp. 46–62. doi: 10.1016/j.jal.
2016.11.031 (cit. on p. 3, 13, 14, 20, 24, 30, 32, 68).

Kitching, M. and F. Bacchus (2007). “Symmetric Component Caching”.
In: Proceedings of the 20th International Joint Conference on Artificial
Intelligence, IJCAI, pp. 118–124 (cit. on p. 52, 118).

Kjærulff, U. (1990). “Triangulation of graphs–algorithms giving small total state
space”. In: Research report (cit. on p. 85).

Kolb, S. (2019). “Learn + Solve: Learning and Solving Constrained Hybrid
Inference Problems”. PhD thesis. KU Leuven (cit. on p. 88, 145, 147).

Kolb, S., M. Mladenov, S. Sanner, V. Belle, and K. Kersting (2018). “Efficient
Symbolic Integration for Probabilistic Inference”. In: Proceedings of the 27th
International Joint Conference on Artificial Intelligence, IJCAI (cit. on
p. 85, 87).

https://doi.org/10.1007/s10601-015-9204-z
https://doi.org/10.24963/kr.2023/40
https://doi.org/10.24963/kr.2023/40
https://doi.org/10.1007/978-3-642-31830-6_29
https://doi.org/10.1007/978-3-642-31830-6_29
https://doi.org/10.1016/j.jal.2016.11.031
https://doi.org/10.1016/j.jal.2016.11.031

BIBLIOGRAPHY 159

Kolb, S., P. Morettin, P. Z. D. Martires, F. Sommavilla, A. Passerini,
R. Sebastiani, and L. D. Raedt (2019a). “The pywmi Framework and Toolbox
for Probabilistic Inference using Weighted Model Integration”. In: Proceedings
of the 28th International Joint Conference on Artificial Intelligence, IJCAI,
pp. 6530–6532. doi: 10.24963/ijcai.2019/946 (cit. on p. 85).

Kolb, S., P. Zuidberg Dos Martires, and L. De Raedt (2019b). “How to
Exploit Structure while Solving Weighted Model Integration Problems”. In:
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence,
UAI. Vol. 115. AUAI Press, pp. 744–754 (cit. on p. 7, 9, 84, 85, 87, 88, 91,
92, 102, 109, 147).

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models - Principles
and Techniques. MIT Press. isbn: 978-0-262-01319-2 (cit. on p. 68, 95).

Korb, K. B. and A. E. Nicholson (2010). Bayesian artificial intelligence. CRC
press (cit. on p. 76).

Koriche, F., J. Lagniez, P. Marquis, and S. Thomas (2015). “Compiling
Constraint Networks into Multivalued Decomposable Decision Graphs”. In:
IJCAI. AAAI Press, pp. 332–338 (cit. on p. 106, 112, 113).

Körner, P., M. Leuschel, J. Barbosa, V. S. Costa, V. Dahl, M. V. Hermenegildo,
J. F. Morales, J. Wielemaker, D. Diaz, and S. Abreu (2022). “Fifty Years
of Prolog and Beyond”. In: Theory and Practice of Logic Programming 22.6,
pp. 776–858. doi: 10.1017/S1471068422000102 (cit. on p. 1).

Kuiter, E., S. Krieter, C. Sundermann, T. Thüm, and G. Saake (2023). “Tseitin or
not Tseitin? The Impact of CNF Transformations on Feature-Model Analyses”.
In: Software Engineering. Vol. P-332. LNI. Gesellschaft für Informatik e.V.,
pp. 83–84 (cit. on p. 15).

Lagniez, J. and P. Marquis (2017). “An Improved Decision-DNNF Compiler”.
In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAI, pp. 667–673. doi: 10.24963/ijcai.2017/93 (cit.
on p. 15, 21, 50, 66, 117).

Lagniez, J.-M. and P. Marquis (2021). “About Caching in D4 2.0”. In: Workshop
on Counting and Sampling (cit. on p. 51, 59).

Lakshmanan, L. V., N. Leone, R. Ross, and V. S. Subrahmanian (1997).
“ProbView: A Flexible Probabilistic Database System”. In: ACM Transactions
on Database Systems, TODS 22.3, pp. 419–469. doi: 10.1145/261124.261131
(cit. on p. 29).

Latour, A. L. D., B. Babaki, A. Dries, A. Kimmig, G. Van den Broeck,
and S. Nijssen (2017). “Combining Stochastic Constraint Optimization and
Probabilistic Programming - From Knowledge Compilation to Constraint
Solving”. In: Principles and Practice of Constraint Programming - 23rd
International Conference, CP. Vol. 10416. Springer, pp. 495–511. doi: 10.
1007/978-3-319-66158-2_32 (cit. on p. 47, 71).

https://doi.org/10.24963/ijcai.2019/946
https://doi.org/10.1017/S1471068422000102
https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.1145/261124.261131
https://doi.org/10.1007/978-3-319-66158-2_32
https://doi.org/10.1007/978-3-319-66158-2_32

160 BIBLIOGRAPHY

Lauria, M., J. Elffers, J. Nordström, and M. Vinyals (2017). “CNFgen:
A Generator of Crafted Benchmarks”. In: Theory and Applications of
Satisfiability Testing - SAT. Vol. 10491. Springer, pp. 464–473 (cit. on
p. 51, 124).

Lauritzen, S. L. and D. J. Spiegelhalter (1988). “Local Computations
with Probabilities on Graphical Structures and Their Application to
Expert Systems”. In: Journal of the Royal Statistical Society: Series B
(Methodological) 50.2, pp. 157–194 (cit. on p. 76).

Lee, J., R. Marinescu, A. T. Ihler, and R. Dechter (2019). “A Weighted Mini-
Bucket Bound for Solving Influence Diagram”. In: Proceedings of the 35th
Conference on Uncertainty in Artificial Intelligence, UAI. Ed. by A. Globerson
and R. Silva. AUAI Press, p. 432 (cit. on p. 82).

Lemire, D. and O. Kaser (2016). “Faster 64-bit universal hashing using carry-less
multiplications”. In: Journal of Cryptographic Engineering 6.3, pp. 171–185.
doi: 10.1007/s13389-015-0110-5 (cit. on p. 57).

Li, Z. and J. Eisner (2009). “First- and Second-order Expectation Semirings
with Applications to Minimum-risk Training on Translation Forests”. In:
Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, EMNLP. Singapore: Association for Computational Linguistics,
pp. 40–51. isbn: 978-1-932432-59-6 (cit. on p. 81, 116).

Lloyd, J. W. (2012). Foundations of Logic Programming. Springer Science &
Business Media (cit. on p. 28).

Ma, F., S. Liu, and J. Zhang (2009). “Volume Computation for Boolean
Combination of Linear Arithmetic Constraints”. In: 22nd International
Conference on Automated Deduction, CADE. Vol. 5663. Springer, pp. 453–468.
doi: 10.1007/978-3-642-02959-2_33 (cit. on p. 113).

Majercik, S. M. and M. L. Littman (1998). “Using Caching to Solve Larger
Probabilistic Planning Problems”. In: Proceedings of the 15th National/Tenth
Conference on Artificial Intelligence/Innovative Applications of Artificial
Intelligence, AAAI/IAAI. Menlo Park, CA, USA: American Association for
Artificial Intelligence, pp. 954–959. isbn: 0-262-51098-7 (cit. on p. 81).

Manhaeve, R., S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt (2018).
“DeepProbLog: Neural Probabilistic Logic Programming”. In: Advances in
Neural Information Processing Systems, NeurIPS. Ed. by S. Bengio, H. M.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
pp. 3753–3763 (cit. on p. 8, 29, 78, 120).

Manhaeve, R., S. Dumančić, A. Kimmig, T. Demeester, and L. De Raedt (2021a).
“Neural probabilistic logic programming in DeepProbLog”. In: Artificial
Intelligence 298, p. 103504 (cit. on p. 33, 34, 42, 120).

Manhaeve, R., G. Marra, T. Demeester, S. Dumancic, A. Kimmig, and L. D.
Raedt (2021b). “Neuro-Symbolic AI = Neural + Logical + Probabilistic
AI”. In: Neuro-Symbolic Artificial Intelligence: The State of the Art. Ed. by

https://doi.org/10.1007/s13389-015-0110-5
https://doi.org/10.1007/978-3-642-02959-2_33

BIBLIOGRAPHY 161

P. Hitzler and M. K. Sarker. Vol. 342. Frontiers in Artificial Intelligence and
Applications. IOS Press, pp. 173–191. doi: 10.3233/FAIA210354 (cit. on
p. 120).

Mantadelis, T. and S. Bistarelli (2020). “Probabilistic abstract argumentation
frameworks, a possible world view”. In: International Journal of Approximate
Reasoning 119, pp. 204–219 (cit. on p. 47).

Marinescu, R. (2009). “A New Approach to Influence Diagrams Evaluation”.
In: Research and Development in Intelligent Systems XXVI, Incorporating
Applications and Innovations in Intelligent Systems XVII, SGAI. Ed. by
M. Bramer, R. Ellis, and M. Petridis. Springer, pp. 107–120. isbn: 978-1-
84882-983-1. doi: 10.1007/978-1-84882-983-1_8 (cit. on p. 82).

Marquis, P. (2008). Knowledge Compilation: A Sightseeing Tour. In Tutorial
notes, ECAI’08, 2008. available on-line (cit. on p. 68).

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng (2015). TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. url: https://www.tensorflow.org/
(cit. on p. 75, 77).

McAreavey, K., K. Bauters, W. Liu, and J. Hong (2017). “The Event Calculus
in Probabilistic Logic Programming with Annotated Disjunctions”. In:
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems, AAMAS. ACM, pp. 105–113 (cit. on p. 47).

McCarthy, J. (1959). Programs with common sense (cit. on p. 1).
McCarthy, J., M. Minsky, N. Rochester, and C. E. Shannon (Aug. 1955). A
Proposal for the Dartmouth Summer Research Project on Artificial Intelligence.
url: https://raysolomonoff.com/dartmouth/boxa/dart564props.pdf
(cit. on p. 1).

McKay, B. D. and A. Piperno (2014). “Practical graph isomorphism, II”. In:
Journal of Symbolic Computation 60, pp. 94–112 (cit. on p. 55, 60, 116).

Mekuria, D. N., P. Sernani, N. Falcionelli, and A. F. Dragoni (2019). “A
Probabilistic Multi-Agent System Architecture for Reasoning in Smart
Homes”. In: IEEE International Symposium on INnovations in Intelligent
SysTems and Applications, INISTA, pp. 1–6. doi: 10.1109/INISTA.2019.
8778306 (cit. on p. 47).

Melibari, M., P. Poupart, and P. Doshi (2016). “Sum-Product-Max Networks
for Tractable Decision Making”. In: Proceedings of the 25th International

https://doi.org/10.3233/FAIA210354
https://doi.org/10.1007/978-1-84882-983-1_8
https://www.tensorflow.org/
https://raysolomonoff.com/dartmouth/boxa/dart564props.pdf
https://doi.org/10.1109/INISTA.2019.8778306
https://doi.org/10.1109/INISTA.2019.8778306

162 BIBLIOGRAPHY

Joint Conference on Artificial Intelligence, IJCAI, pp. 1846–1852 (cit. on
p. 81, 82).

Miosic, I. and P. Zuidberg Dos Martires (2021). “Measure Theoretic Weighted
Model Integration”. In: CoRR abs/2103.13901 (cit. on p. 36, 38).

Moldovan, B., L. Antanas, and M. Hoffmann (2012a). “Opening Doors: An
Initial SRL Approach”. In: Inductive Logic Programming - 22nd International
Conference, ILP. Vol. 7842. Springer, pp. 178–192. doi: 10.1007/978-3-
642-38812-5_13 (cit. on p. 47).

Moldovan, B., P. Moreno, D. Nitti, J. Santos-Victor, and L. De Raedt (2018).
“Relational affordances for multiple-object manipulation”. In: Autonomous
Robots 42.1, pp. 19–44. doi: 10.1007/s10514-017-9637-x (cit. on p. 47).

Moldovan, B., P. Moreno, M. van Otterlo, J. Santos-Victor, and L. De Raedt
(2012b). “Learning relational affordance models for robots in multi-object
manipulation tasks”. In: IEEE International Conference on Robotics and
Automation, ICRA, pp. 4373–4378. doi: 10.1109/ICRA.2012.6225042 (cit.
on p. 47).

Moldovan, B., M. van Otterlo, L. De Raedt, P. Moreno, and J. Santos-Victor
(2011). “Statistical Relational Learning of Object Affordances for Robotic
Manipulation”. In: Latest Advances in Inductive Logic Programming, ILP,
Late Breaking Papers. Imperial College Press / World Scientific, pp. 95–103.
doi: 10.1142/9781783265091_0012 (cit. on p. 47).

Møller, J. B., J. Lichtenberg, H. R. Andersen, and H. Hulgaard (1999). “Dif-
ference Decision Diagrams”. In: Computer Science Logic, 13th International
Workshop, CSL. Vol. 1683. Springer, pp. 111–125. doi: 10.1007/3-540-
48168-0_9 (cit. on p. 106, 112).

Morettin, P., A. Passerini, and R. Sebastiani (2019). “Advanced SMT techniques
for weighted model integration”. In: Artificial Intelligence 275 (cit. on p. 25).

Morrison, D. R., S. H. Jacobson, J. J. Sauppe, and E. C. Sewell (2016). “Branch-
and-bound algorithms: A survey of recent advances in searching, branching,
and pruning”. In: Discret. Optim. 19, pp. 79–102 (cit. on p. 14).

Moura, L. M. de and N. S. Bjørner (2008). “Z3: An Efficient SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS. Vol. 4963. Springer, pp. 337–340. doi:
10.1007/978-3-540-78800-3_24 (cit. on p. 107, 111).

Muise, C. J., S. A. McIlraith, J. C. Beck, and E. I. Hsu (2012). “Dsharp:
Fast d-DNNF Compilation with sharpSAT”. In: Canadian Conference on AI.
Ed. by L. Kosseim and D. Inkpen. Vol. 7310. Springer, pp. 356–361. isbn:
978-3-642-30352-4. doi: 10.1007/978-3-642-30353-1_36 (cit. on p. 21).

Ng, A. Y. and S. J. Russell (2000). “Algorithms for Inverse Reinforcement
Learning”. In: Proceedings of the 17th International Conference on Machine
Learning ICML. Morgan Kaufmann, pp. 663–670 (cit. on p. 82).

https://doi.org/10.1007/978-3-642-38812-5_13
https://doi.org/10.1007/978-3-642-38812-5_13
https://doi.org/10.1007/s10514-017-9637-x
https://doi.org/10.1109/ICRA.2012.6225042
https://doi.org/10.1142/9781783265091_0012
https://doi.org/10.1007/3-540-48168-0_9
https://doi.org/10.1007/3-540-48168-0_9
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-30353-1_36

BIBLIOGRAPHY 163

Ng, R. and V. S. Subrahmanian (1992). “Probabilistic Logic Programming”.
In: Information and Computation 101.2, pp. 150–201. doi: 10.1016/0890-
5401(92)90061-J (cit. on p. 28).

Niepert, M. (2012). “Markov Chains on Orbits of Permutation Groups”. In: Pro-
ceedings of the 28th Conference on Uncertainty in Artificial Intelligence,UAI.
AUAI Press, pp. 624–633 (cit. on p. 52).

Nieuwenhuis, R., A. Oliveras, and C. Tinelli (2006). “Solving SAT and SAT
Modulo Theories: From an Abstract Davis–Putnam–Logemann–Loveland
Procedure to DPLL(T)”. In: Journal of the ACM 53.6, pp. 937–977. issn:
0004-5411. doi: 10.1145/1217856.1217859 (cit. on p. 106, 107, 110).

Nilsson, N. J. (1986). “Probabilistic logic”. In: Artificial intelligence 28.1, pp. 71–
87 (cit. on p. 28).

Nitti, D., V. Belle, and L. De Raedt (2015). “Planning in Discrete and Continuous
Markov Decision Processes by Probabilistic Programming”. In: Machine
Learning and Knowledge Discovery in Databases - European Conference,
ECML/PKDD. Vol. 9285. Springer, pp. 327–342. doi: 10.1007/978-3-319-
23525-7_20 (cit. on p. 47).

Nitti, D., V. Belle, T. D. Laet, and L. De Raedt (2017). “Planning in hybrid
relational MDPs”. In: Machine Learning 106.12, pp. 1905–1932. doi: 10.
1007/s10994-017-5669-x (cit. on p. 47).

Nitti, D., T. De Laet, and L. De Raedt (2014). “Relational Object Tracking and
Learning”. In: IEEE International Conference on Robotics and Automation,
ICRA. IEEE, pp. 935–942. doi: 10.1109/ICRA.2014.6906966 (cit. on
p. 47).

Niveau, A. (2012). “Compilation de connaissances pour la décision en ligne :
application à la conduite de systèmes autonomes. (Knowledge compilation for
online decision-making : application to the control of autonomous systems)”.
PhD thesis. Paul Sabatier University, Toulouse, France (cit. on p. 106, 112).

Olteanu, D., J. Huang, and C. Koch (2009). “SPROUT: Lazy vs. Eager Query
Plans for Tuple-Independent Probabilistic Databases”. In: Proceedings of
the 25th International Conference on Data Engineering, ICDE. IEEE. IEEE
Computer Society, pp. 640–651. doi: 10.1109/ICDE.2009.123 (cit. on
p. 29).

Orsini, F., P. Frasconi, and L. De Raedt (2017). “kProbLog: an algebraic Prolog
for machine learning”. In: Machine Learning 106.12, pp. 1933–1969. doi:
10.1007/s10994-017-5668-y (cit. on p. 29, 30, 38).

Oztok, U., A. Choi, and A. Darwiche (2016). “Solving PPPP-Complete Problems
Using Knowledge Compilation”. In: Principles of Knowledge Representation
and Reasoning: Proceedings of the 15th International Conference, KR, pp. 94–
103 (cit. on p. 69).

Oztok, U. and A. Darwiche (2014). “On Compiling CNF into Decision-DNNF”.
In: Principles and Practice of Constraint Programming - 20th International

https://doi.org/10.1016/0890-5401(92)90061-J
https://doi.org/10.1016/0890-5401(92)90061-J
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1007/978-3-319-23525-7_20
https://doi.org/10.1007/978-3-319-23525-7_20
https://doi.org/10.1007/s10994-017-5669-x
https://doi.org/10.1007/s10994-017-5669-x
https://doi.org/10.1109/ICRA.2014.6906966
https://doi.org/10.1109/ICDE.2009.123
https://doi.org/10.1007/s10994-017-5668-y

164 BIBLIOGRAPHY

Conference, CP. Ed. by B. O’Sullivan. Vol. 8656. Springer, pp. 42–57. doi:
10.1007/978-3-319-10428-7_7 (cit. on p. 21).

Oztok, U. and A. Darwiche (2015). “A Top-Down Compiler for Sentential
Decision Diagrams”. In: Proceedings of the 24th International Joint Conference
on Artificial Intelligence, IJCAI, pp. 3141–3148 (cit. on p. 21, 24, 50).

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala (2019). “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems,
NeurIPS. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett. Curran Associates, Inc., pp. 8024–8035 (cit. on p. 75,
77).

Pearl, J. (1982). “Reverend Bayes on Inference Engines: A Distributed
Hierarchical Approach”. In: Proceedings of the National Conference on
Artificial Intelligence, AAAI, pp. 133–136 (cit. on p. 84).

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of
plausible inference. Elsevier (cit. on p. 28).

Persson, A., P. Zuidberg Dos Martires, L. De Raedt, and A. Loutfi (2020).
“Semantic Relational Object Tracking”. In: IEEE Transactions on Cognitive
and Developmental Systems 12.1, pp. 84–97. doi: 10.1109/TCDS.2019.
2915763 (cit. on p. 47).

Pipatsrisawat, T. and A. Darwiche (2008). “New Compilation Languages Based
on Structured Decomposability”. In: Proceedings of the 23rd AAAI Conference
on Artificial Intelligence. Vol. 8, pp. 517–522 (cit. on p. 24, 111).

Pipatsrisawat, T. and A. Darwiche (2010). “A Lower Bound on the Size of
Decomposable Negation Normal Form”. In: Proceedings of the 24th AAAI
Conference on Artificial Intelligence (cit. on p. 24).

Poole, D. (1993). “Probabilistic Horn Abduction and Bayesian Networks”. In:
Artificial Intelligence 64.1, pp. 81–129. doi: 10.1016/0004-3702(93)90061-
F (cit. on p. 28).

Poole, D. (1997). “The Independent Choice Logic for Modelling Multiple Agents
Under Uncertainty”. In: Artificial intelligence 94.1-2, pp. 7–56. doi: 10.1016/
S0004-3702(97)00027-1 (cit. on p. 28).

Popov, M., T. Balyo, M. Iser, and T. Ostertag (2023). “Construction of
Decision Diagrams for Product Configuration”. In: ConfWS. Vol. 3509. CEUR
Workshop Proceedings, pp. 108–117 (cit. on p. 121).

Pralet, C., G. Verfaillie, and T. Schiex (2007). “An Algebraic Graphical Model
for Decision with Uncertainties, Feasibilities, and Utilities”. In: J. Artif. Intell.
Res. 29, pp. 421–489 (cit. on p. 72).

https://doi.org/10.1007/978-3-319-10428-7_7
https://doi.org/10.1109/TCDS.2019.2915763
https://doi.org/10.1109/TCDS.2019.2915763
https://doi.org/10.1016/0004-3702(93)90061-F
https://doi.org/10.1016/0004-3702(93)90061-F
https://doi.org/10.1016/S0004-3702(97)00027-1
https://doi.org/10.1016/S0004-3702(97)00027-1

BIBLIOGRAPHY 165

Rice, M. and S. Kulhari (2008). “A Survey of Static Variable Ordering Heuristics
for Efficient BDD/MDD Construction”. In: University of California, Technical
Report, p. 130 (cit. on p. 111).

Riguzzi, F. (2018). Foundations of Probabilistic Logic Programming. Gistrup,
Denmark: River Publishers. isbn: 9788770220187 (cit. on p. 28, 29).

Roig Vilamala, M., T. Xing, H. Taylor, L. Garcia, M. Srivastava, L. Kaplan,
A. Preece, A. Kimmig, and F. Cerutti (2023). “DeepProbCEP: A neuro-
symbolic approach for complex event processing in adversarial settings”.
In: Expert Systems with Applications 215, p. 119376. issn: 0957-4174. doi:
10.1016/j.eswa.2022.119376 (cit. on p. 47).

Rothkopf, C. A. and C. Dimitrakakis (2011). “Preference Elicitation and Inverse
Reinforcement Learning”. In: Machine Learning and Knowledge Discovery
in Databases - European Conference, ECML/PKDD. Ed. by D. Gunopulos,
T. Hofmann, D. Malerba, and M. Vazirgiannis. Berlin, Heidelberg, pp. 34–48.
isbn: 978-3-642-23808-6 (cit. on p. 82).

Russell, S. J. and P. Norvig (2010). Artificial Intelligence - A Modern Approach,
Third International Edition. Pearson Education. isbn: 978-0-13-207148-2 (cit.
on p. 1).

Sabharwal, A. (2009). “SymChaff: exploiting symmetry in a structure-aware
satisfiability solver”. In: Constraints 14.4, pp. 478–505. doi: 10.1007/s10601-
008-9060-1 (cit. on p. 52).

Salmon, R. and P. Poupart (2019). “On the Relationship Between Satisfiability
and Markov Decision Processes”. In: Proceedings of the 35th Conference on
Uncertainty in Artificial Intelligence, UAI. Ed. by A. Globerson and R. Silva.
Vol. 115. AUAI Press, pp. 1105–1115 (cit. on p. 52).

Sang, T., F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi (2004). “Combining
Component Caching and Clause Learning for Effective Model Counting”. In:
Theory and Applications of Satisfiability Testing - SAT (cit. on p. 16, 17, 18,
50, 51, 53, 58, 59).

Sang, T., P. Beame, and H. A. Kautz (2005). “Heuristics for Fast Exact
Model Counting”. In: Theory and Applications of Satisfiability Testing -
SAT. Vol. 3569. Springer, pp. 226–240 (cit. on p. 15, 51, 53, 60).

Sanner, S., K. V. Delgado, and L. N. de Barros (2011). “Symbolic Dynamic
Programming for Discrete and Continuous State MDPs”. In: Proceedings of
the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI.
AUAI Press, pp. 643–652 (cit. on p. 106, 112, 145).

Sashittal, P. and M. El-Kebir (2020). “Sampling and summarizing transmission
trees with multi-strain infections”. In: Bioinformatics 36.Supplement-1,
pp. i362–i370. doi: 10.1093/bioinformatics/btaa438 (cit. on p. 49).

Sato, T. (1995). “A Statistical Learning Method for Logic Programs with
Distribution Semantics”. In: Proceedings of the 12th International Conference

https://doi.org/10.1016/j.eswa.2022.119376
https://doi.org/10.1007/s10601-008-9060-1
https://doi.org/10.1007/s10601-008-9060-1
https://doi.org/10.1093/bioinformatics/btaa438

166 BIBLIOGRAPHY

on Logic Programming, ICLP. Ed. by L. Sterling. MIT Press, pp. 715–729
(cit. on p. 28).

Sato, T. and Y. Kameya (1997). “PRISM: A Language for Symbolic-Statistical
Modeling”. In: Proceedings of the 15th International Joint Conference on
Artificial Intelligence, IJCAI. Vol. 97, pp. 1330–1339 (cit. on p. 29).

Schrag, R. J. B. R. (1997). “Using CSP Look-Back Techniques to Solve Real-
World SAT Instances”. In: Proceedings of the 14th National Conference on
Artificial Intelligence and 9th Innovative Applications of Artificial Intelligence
Conference, AAAI/IAAI. AAAI Press / The MIT Press, pp. 203–208 (cit.
on p. 16, 107).

Schweitzer, P. (2009). “Problems of Unknown Complexity: Graph isomorphism
and Ramsey theoretic numbers”. PhD thesis. Saarland University (cit. on
p. 54).

Scutari, M. (n.d.). BNLearn: Bayesian Network Repository. http : / / www .
bnlearn.com/bnrepository/. Accessed: 2019-11-10 (cit. on p. 76).

Scutari, M. and J.-B. Denis (2014). Bayesian networks: with examples in R.
Chapman and Hall/CRC (cit. on p. 76).

Shah, N., W. Meert, and M. Verhelst (2023). Efficient Execution of Irregular
Dataflow Graphs: Hardware/Software Co-optimization for Probabilistic AI and
Sparse Linear Algebra. Springer. isbn: 978-3-031-33136-7. doi: 10.1007/978-
3-031-33136-7 (cit. on p. 121).

Sharma, S., S. Roy, M. Soos, and K. S. Meel (2019). “GANAK: A Scalable
Probabilistic Exact Model Counter”. In: Proceedings of the 28th International
Joint Conference on Artificial Intelligence, IJCAI, pp. 1169–1176. doi: 10.
24963/ijcai.2019/163 (cit. on p. 15, 51, 53, 57, 60, 117).

Shih, A., G. Van den Broeck, P. Beame, and A. Amarilli (2019). “Smoothing
Structured Decomposable Circuits”. In: Advances in Neural Information
Processing Systems, NeurIPS, pp. 11412–11422 (cit. on p. 20).

Silva, J. P. M. and K. A. Sakallah (1996). “GRASP - a new search algorithm
for satisfiability”. In: International Conference on Computer-Aided Design,
ICCAD. IEEE, pp. 220–227. doi: 10.1109/ICCAD.1996.569607 (cit. on
p. 16).

Skarlatidis, A., A. Artikis, J. Filipou, and G. Paliouras (2015). “A probabilistic
logic programming event calculus”. In: Theory and Practice of Logic
Programming 15.2, pp. 213–245. doi: 10.1017/S1471068413000690 (cit. on
p. 47).

Smith, G., R. P. A. Petrick, and V. Belle (2021). “Intent Recognition in Smart
Homes with ProbLog”. In: PerCom Workshops. IEEE, pp. 430–431 (cit. on
p. 47).

Somenzi, F. (1997). “CUDD: CU decision diagram package”. In: Public Software,
University of Colorado (cit. on p. 22).

http://www.bnlearn.com/bnrepository/
http://www.bnlearn.com/bnrepository/
https://doi.org/10.1007/978-3-031-33136-7
https://doi.org/10.1007/978-3-031-33136-7
https://doi.org/10.24963/ijcai.2019/163
https://doi.org/10.24963/ijcai.2019/163
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1017/S1471068413000690

BIBLIOGRAPHY 167

Soos, M. and K. S. Meel (2019). “BIRD: Engineering an Efficient CNF-XOR SAT
Solver and Its Applications to Approximate Model Counting”. In: Proceedings
of the 33rd AAAI Conference on Artificial Intelligence. AAAI Press, pp. 1592–
1599. doi: 10.1609/aaai.v33i01.33011592 (cit. on p. 50).

Spallitta, G., G. Masina, P. Morettin, A. Passerini, and R. Sebastiani (2022).
“SMT-based Weighted Model Integration with Structure Awareness”. In:
Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence,
UAI. PMLR, pp. 1876–1885 (cit. on p. 121).

Stockmeyer, L. J. (1983). “The Complexity of Approximate Counting”. In:
Proceedings of the 15th Annual ACM Symposium on Theory of Computing,
STOC. ACM, pp. 118–126. doi: 10.1145/800061.808740 (cit. on p. 50).

Sundermann, C., T. Thüm, and I. Schaefer (2020). “Evaluating #SAT solvers
on industrial feature models”. In: VaMoS. ACM, 3:1–3:9 (cit. on p. 121).

Suryadi, D. and P. J. Gmytrasiewicz (1999). “Learning Models of Other Agents
Using Influence Diagrams”. In: Proceedings of the 7th International Conference
on User Modeling. Secaucus, NJ, USA, pp. 223–232. isbn: 3-211-83151-7 (cit.
on p. 82).

Suster, S., P. Fivez, P. Totis, A. Kimmig, J. Davis, L. De Raedt, and
W. Daelemans (2021). “Mapping probability word problems to executable
representations”. In: Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP. Association for Computational
Linguistics, pp. 3627–3640. doi: 10.18653/v1/2021.emnlp-main.294 (cit.
on p. 47).

Sztyler, T., G. Civitarese, and H. Stuckenschmidt (2018). “Modeling and
Reasoning with ProbLog: An Application in Recognizing Complex Activities”.
In: PerCom Workshops. IEEE Computer Society, pp. 259–264 (cit. on p. 47).

Tang, Y., K. Hatano, and E. Takimoto (2023). “Boosting-Based Construction of
BDDs for Linear Threshold Functions and Its Application to Verification of
Neural Networks”. In: DS. Vol. 14276. Springer, pp. 477–491 (cit. on p. 121).

Tarim, A., S. Manandhar, and T. Walsh (2006). “Stochastic Constraint
Programming: A Scenario-Based Approach”. In: Constraints An Int. J. 11.1,
pp. 53–80 (cit. on p. 71).

Thon, I., N. Landwehr, and L. De Raedt (2008). “A Simple Model for Sequences
of Relational State Descriptions”. In: Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML/PKDD. Ed. by W.
Daelemans, B. Goethals, and K. Morik, pp. 506–521. isbn: 978-3-540-87481-2.
doi: 10.1007/978-3-540-87481-2_33 (cit. on p. 47).

Thon, I., N. Landwehr, and L. De Raedt (2011). “Stochastic relational processes:
Efficient inference and applications”. In: Machine Learning 82.2, pp. 239–272.
doi: 10.1007/s10994-010-5213-8 (cit. on p. 47).

Thüm, T. (2020). “A BDD for Linux?: the knowledge compilation challenge for
variability”. In: SPLC (A). ACM, 16:1–16:6 (cit. on p. 121).

https://doi.org/10.1609/aaai.v33i01.33011592
https://doi.org/10.1145/800061.808740
https://doi.org/10.18653/v1/2021.emnlp-main.294
https://doi.org/10.1007/978-3-540-87481-2_33
https://doi.org/10.1007/s10994-010-5213-8

168 BIBLIOGRAPHY

Thurley, M. (2006). “sharpSAT - Counting Models with Advanced Component
Caching and Implicit BCP”. In: Theory and Applications of Satisfiability
Testing - SAT. Vol. 4121. Springer, pp. 424–429. doi: 10.1007/11814948_38
(cit. on p. 50, 51, 53, 59).

Totis, P., A. Kimmig, and L. De Raedt (2021). “SMProbLog: Stable Model
Semantics in ProbLog and its Applications in Argumentation”. In: CoRR
abs/2110.01990 (cit. on p. 47).

Tseitin, G. S. (1983). “On the Complexity of Derivation in Propositional
Calculus”. In: Automation of Reasoning: 2: Classical Papers on Computational
Logic 1967–1970. Ed. by J. H. Siekmann and G. Wrightson. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 466–483. isbn: 978-3-642-81955-1. doi: 10.
1007/978-3-642-81955-1_28 (cit. on p. 15, 111).

Vaezipoor, P., G. Lederman, Y. Wu, C. J. Maddison, R. B. Grosse, S. A. Seshia,
and F. Bacchus (2021). “Learning Branching Heuristics for Propositional
Model Counting”. In: Proceedings of the 35th AAAI Conference on Artificial
Intelligence. AAAI Press, pp. 12427–12435 (cit. on p. 15).

Valiant, L. G. (1979a). “The complexity of computing the permanent”. In:
Theoretical Computer Science 8.2, pp. 189–201 (cit. on p. 14, 18).

Valiant, L. G. (1979b). “The Complexity of Enumeration and Reliability
Problems”. In: SIAM Journal on Computing 8.3, pp. 410–421. doi: 10 .
1137/0208032 (cit. on p. 50).

van Bremen, T., V. Derkinderen, S. Sharma, S. Roy, and K. S. Meel (2021).
“Symmetric Component Caching for Model Counting on Combinatorial
Instances”. In: Proceedings of the 35th AAAI Conference on Artificial
Intelligence. AAAI Press, pp. 3922–3930 (cit. on p. 9, 12, 14, 49, 175).

van Bremen, T., A. Dries, and J. C. Jung (2019). “Ontology-Mediated Queries
over Probabilistic Data via Probabilistic Logic Programming”. In: Proceedings
of the 28th ACM International Conference on Information and Knowledge
Management, CIKM. ACM, pp. 2437–2440. doi: 10.1145/3357384.3358168
(cit. on p. 47).

van Bremen, T., A. Dries, and J. C. Jung (2020). “onto2problog: A Probabilistic
Ontology-Mediated Querying System using Probabilistic Logic Programming”.
In: Künstliche Intelligenz 34.4, pp. 501–507. doi: 10.1007/s13218-020-
00670-x (cit. on p. 47).

Van den Broeck, G., D. Suciu, et al. (2017). “Query Processing on Probabilistic
Data: A Survey”. In: Foundations and Trends® in Databases 7.3-4, pp. 197–
341. doi: 10.1561/1900000052 (cit. on p. 29).

Van den Broeck, G., I. Thon, M. v. Otterlo, and L. De Raedt (2010).
“DTPROBLOG: A Decision-theoretic Probabilistic Prolog”. In: Proceedings
of the 24th AAAI Conference on Artificial Intelligence. AAAI Press,
pp. 1217–1222 (cit. on p. 46, 47, 68, 81).

https://doi.org/10.1007/11814948_38
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1137/0208032
https://doi.org/10.1137/0208032
https://doi.org/10.1145/3357384.3358168
https://doi.org/10.1007/s13218-020-00670-x
https://doi.org/10.1007/s13218-020-00670-x
https://doi.org/10.1561/1900000052

BIBLIOGRAPHY 169

Veiga, T., M. Silva, R. Ventura, and P. U. Lima (2019). “A Hierarchical Approach
to Active Semantic Mapping Using Probabilistic Logic and Information
Reward POMDPs”. In: Proceedings of the 29th International Conference on
Automated Planning and Scheduling, ICAPS, pp. 773–781 (cit. on p. 47).

Vennekens, J., S. Verbaeten, and M. Bruynooghe (2004). “Logic programs with
annotated disjunctions”. In: Proceedings of the 20th International Conference
on Logic Programming, ICLP. Springer, pp. 431–445 (cit. on p. 29).

Venturato, G., V. Derkinderen, P. Zuidberg Dos Martires, and L. De Raedt
(2022). “Towards Tractable Dynamic Decision Making With Circuits”. In: 5th
Workshop on Tractable Probabilistic Modeling at UAI 2022 (cit. on p. 47, 82,
176).

Venturato, G., V. Derkinderen, P. Zuidberg Dos Martires, and L. De Raedt
(2024). “Inference and Learning in Dynamic Decision Networks Using
Knowledge Compilation”. In: Accepted in Proceedings of the 38th AAAI
Conference on Artificial Intelligence. AAAI Press (cit. on p. 175).

Verreet, V., V. Derkinderen, P. Zuidberg Dos Martires, and L. De Raedt
(2022a). “Inference and Learning with Model Uncertainty in Probabilistic
Logic Programs”. In: Proceedings of the 36th AAAI Conference on Artificial
Intelligence. AAAI Press, pp. 10060–10069 (cit. on p. 38, 46, 175).

Verreet, V., V. Derkinderen, P. Zuidberg Dos Martires, and L. De Raedt
(2022b). “Inference and Learning with Model Uncertainty in Probabilistic
Logic Programs”. In: International Conference on Logic Programming, ICLP
(Recently Published Paper Track) (cit. on p. 176).

Vlasselaer, J. and W. Meert (2012). “Statistical relational learning for
prognostics”. In: Proceedings of the 21st Belgian-Dutch Conference on Machine
Learning, pp. 45–50 (cit. on p. 47).

Vlasselaer, J., G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt (2015).
“Anytime Inference in Probabilistic Logic Programs with TP-Compilation”.
In: Proceedings of the 24th International Joint Conference on Artificial
Intelligence, IJCAI. Vol. 2015, pp. 1852–1858 (cit. on p. 29).

Vlasselaer, J., G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt
(2016). “TP-Compilation for inference in probabilistic logic programs”. In:
International Journal of Approximate Reasoning 78, pp. 15–32. doi: 10.1016/
j.ijar.2016.06.009 (cit. on p. 29).

Walsh, T. (2002). “Stochastic Constraint Programming”. In: ECAI. IOS Press,
pp. 111–115 (cit. on p. 71).

Wang, W., M. Usman, A. Almaawi, K. Wang, K. S. Meel, and S. Khurshid
(2020). “A Study of Symmetry Breaking Predicates and Model Counting”. In:
Tools and Algorithms for the Construction and Analysis of Systems - 26th
International Conference, TACAS. Vol. 12078. Springer, pp. 115–134. doi:
10.1007/978-3-030-45190-5_7 (cit. on p. 51, 52, 125).

https://doi.org/10.1016/j.ijar.2016.06.009
https://doi.org/10.1016/j.ijar.2016.06.009
https://doi.org/10.1007/978-3-030-45190-5_7

170 BIBLIOGRAPHY

Wang, Y. (2015). “ProbLog Program Based Ontology Matching”. In: Knowledge
Science, Engineering and Management - 8th International Conference, KSEM.
Vol. 9403. Springer, pp. 778–783. doi: 10.1007/978-3-319-25159-2_72
(cit. on p. 47).

Wang, Z., S. Vijayakumar, K. Lu, V. Ganesh, S. Jha, and M. Fredrikson (2023).
“Advances in Neural Information Processing Systems, NeurIPS”. In: (cit. on
p. 121).

Weitkämper, F., B. Sarbu, and K. Sun (2021). “Modelling Infectious Disease
Dynamics with Probabilistic Logic Programming”. In: Workshops co-located
with the 37th International Conference on Logic Programming, ICLP.
Vol. 2970. CEUR Workshop Proceedings (cit. on p. 47).

Xing, T., M. R. Vilamala, L. Garcia, F. Cerutti, L. M. Kaplan, A. D. Preece, and
M. B. Srivastava (2019). “DeepCEP: Deep Complex Event Processing Using
Distributed Multimodal Information”. In: IEEE International Conference
on Smart Computing, SMARTCOMP. IEEE, pp. 87–92. doi: 10 . 1109 /
SMARTCOMP.2019.00034 (cit. on p. 47).

Xu, J., Z. Zhang, T. Friedman, Y. Liang, and G. V. den Broeck (2018). “A
Semantic Loss Function for Deep Learning with Symbolic Knowledge”. In:
ICML. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 5498–
5507 (cit. on p. 120).

Yang, S. (1991). Logic Synthesis and Optimization Benchmarks User Guide:
Version 3.0. Tech. rep. MCNC Technical Report (cit. on p. 51).

Yang, W.-C., G. Marra, G. Rens, and L. De Raedt (2023). “Safe Reinforcement
Learning via Probabilistic Logic Shields”. In: Proceedings of the 17th
International Workshop on Neural-Symbolic Learning and Reasoning, NeSy.
Vol. 3432. CEUR Workshop Proceedings, pp. 428–429 (cit. on p. 47).

Yang, Z., A. Ishay, and J. Lee (2020). “NeurASP: Embracing Neural Networks
into Answer Set Programming”. In: Proceedings of the 29th International
Joint Conference on Artificial Intelligence, IJCAI, pp. 1755–1762. doi: 10.
24963/ijcai.2020/243 (cit. on p. 29, 46).

Zeng, Z. and G. Van den Broeck (2019). “Efficient Search-Based Weighted
Model Integration”. In: Proceedings of the 35th Conference on Uncertainty in
Artificial Intelligence, UAI. Vol. 115, pp. 175–185 (cit. on p. 85, 102, 103).

Zhang, N. L. and D. Poole (1994). “A simple approach to Bayesian network
computations”. In: Proceedings of the 10th Canadian Conference on Artificial
Intelligence, CSCSI, pp. 171–178 (cit. on p. 84).

Zuidberg Dos Martires, P. (2020). “From Atoms to Possible Worlds: Probabilistic
Inference in the Discrete-Continuous Domain”. PhD thesis. KU Leuven (cit.
on p. 4).

Zuidberg Dos Martires, P. (2021). “Neural Semirings”. In: Proceedings of the
15th International Workshop on Neural-Symbolic Learning and Reasoning,
NeSy. Vol. 2986. CEUR Workshop Proceedings, pp. 94–103 (cit. on p. 46).

https://doi.org/10.1007/978-3-319-25159-2_72
https://doi.org/10.1109/SMARTCOMP.2019.00034
https://doi.org/10.1109/SMARTCOMP.2019.00034
https://doi.org/10.24963/ijcai.2020/243
https://doi.org/10.24963/ijcai.2020/243

BIBLIOGRAPHY 171

Zuidberg Dos Martires, P., L. De Raedt, and A. Kimmig (2023). “Declarative
Probabilistic Logic Programming in Discrete-Continuous Domains”. In: CoRR
abs/2302.10674. doi: 10.48550/arXiv.2302.10674 (cit. on p. 8, 34, 36, 37,
38).

Zuidberg Dos Martires, P., V. Derkinderen, R. Manhaeve, W. Meert, A. Kimmig,
and L. De Raedt (2019a). “Transforming probabilistic programs into algebraic
circuits for inference and learning”. In: Program Transformations for ML
Workshop at NeurIPS 2019 (cit. on p. 75, 176).

Zuidberg Dos Martires, P., A. Dries, and L. De Raedt (2019b). “Exact and
Approximate Weighted Model Integration with Probability Density Functions
Using Knowledge Compilation”. In: Proceedings of the 33rd AAAI Conference
on Artificial Intelligence, pp. 7825–7833. doi: 10 . 1609 / aaai . v33i01 .
33017825 (cit. on p. 36, 38, 68, 87, 145).

Zuidberg Dos Martires, P., N. Kumar, A. Persson, A. Loutfi, and L. De Raedt
(2020). “Symbolic Learning and Reasoning With Noisy Data for Probabilistic
Anchoring”. In: Frontiers Robotics AI 7, p. 100 (cit. on p. 47).

https://doi.org/10.48550/arXiv.2302.10674
https://doi.org/10.1609/aaai.v33i01.33017825
https://doi.org/10.1609/aaai.v33i01.33017825

Curriculum Vitae

Vincent Derkinderen obtained his Bachelor of Informatics degree in 2016 at
KU Leuven. Two years later and at the same university, he completed his
Master of Engineering degree in the field of Computer Science, graduating
magna cum laude. His specialization was Artificial Intelligence, and the title
of his master thesis was “Subgraph Search in Arithmetic Circuits for Efficient
Hardware Design”.

He officially started his doctoral studies in October 2018, under the supervision
of Prof. dr. Luc De Raedt at the DTAI (Declarative Languages and Artificial
Intelligence) lab in Leuven. Shortly afterwards, he received a PhD fellowship
from the Research Foundation – Flanders (FWO) through the strategic basic
research grant 1SA5520N, for the time period of November 2019 to 2023, for
which he is very grateful. During this period, he has served as a workflow
chair for the IJCAI-ECAI 2022 conference, has served as a program committee
member for several conferences, including the UAI conference where he won a top
reviewer award in 2023, and has reviewed for the Journal of Machine Learning
Research (JMLR). In December 2023, he will defend his doctoral dissertation
titled “Knowledge Compilation and Counting: an Algebraic Journey”

173

List of publications

Journal articles

V. Derkinderen, J. Bekker, and P. Smet (2023a). “Optimizing workforce
allocation under uncertain activity duration”. In: Computers & Industrial
Engineering 179, p. 109228. doi: 10.1016/j.cie.2023.109228

V. Derkinderen, R. Manhaeve, P. Zuidberg Dos Martires, and L. De Raedt
(2023c). “Semirings for Probabilistic and Neural-Symbolic Logic Programming”.
Accepted with minor revision in International Journal of Approximate Reasoning

Conference proceedings

G. Venturato, V. Derkinderen, P. Zuidberg Dos Martires, and L. De Raedt
(2024). “Inference and Learning in Dynamic Decision Networks Using Knowledge
Compilation”. In: Accepted in Proceedings of the 38th AAAI Conference on
Artificial Intelligence. AAAI Press

V. Verreet, V. Derkinderen, P. Zuidberg Dos Martires, and L. De Raedt
(2022a). “Inference and Learning with Model Uncertainty in Probabilistic
Logic Programs”. In: Proceedings of the 36th AAAI Conference on Artificial
Intelligence. AAAI Press, pp. 10060–10069

T. van Bremen, V. Derkinderen, S. Sharma, S. Roy, and K. S. Meel
(2021). “Symmetric Component Caching for Model Counting on Combinatorial
Instances”. In: Proceedings of the 35th AAAI Conference on Artificial
Intelligence. AAAI Press, pp. 3922–3930

V. Derkinderen, E. Heylen, P. Zuidberg Dos Martires, S. Kolb, and L. De Raedt
(2020). “Ordering Variables for Weighted Model Integration”. In: Proceedings

175

https://doi.org/10.1016/j.cie.2023.109228

176 LIST OF PUBLICATIONS

of the 36th Conference on Uncertainty in Artificial Intelligence, UAI. ed. by
R. P. Adams and V. Gogate. Vol. 124. AUAI Press, pp. 879–888

V. Derkinderen and L. De Raedt (2020). “Algebraic Circuits for Decision
Theoretic Inference and Learning”. In: Proceedings of the 24th European
Conference on Artificial Intelligence, ECAI. vol. 325. IOS Press, pp. 2569–2576.
doi: 10.3233/FAIA200392

Workshop papers & extended abstracts

V. Derkinderen, P. Zuidberg Dos Martires, S. Kolb, and P. Morettin (2023d).
“Top-Down Knowledge Compilation for Counting Modulo Theories”. In: CoRR
abs/2306.04541. accepted at Workshop on Counting and Sampling at SAT 2023.
doi: 10.48550/arXiv.2306.04541

G. Venturato, V. Derkinderen, P. Zuidberg Dos Martires, and L. De Raedt
(2022). “Towards Tractable Dynamic Decision Making With Circuits”. In: 5th
Workshop on Tractable Probabilistic Modeling at UAI 2022

V. Verreet, V. Derkinderen, P. Zuidberg Dos Martires, and L. De Raedt
(2022b). “Inference and Learning with Model Uncertainty in Probabilistic
Logic Programs”. In: International Conference on Logic Programming, ICLP
(Recently Published Paper Track)

B. van den Berg, T. van Bremen, V. Derkinderen, A. Kimmig, T. Schrijvers, and
L. De Raedt (2021). “From Probabilistic NetKAT to ProbLog: New Algorithms
for Inference and Learning in Probabilistic Networks”. In: International
Conference on Probabilistic Programming, Extended Abstracts

P. Zuidberg Dos Martires, V. Derkinderen, R. Manhaeve, W. Meert, A. Kimmig,
and L. De Raedt (2019a). “Transforming probabilistic programs into algebraic
circuits for inference and learning”. In: Program Transformations for ML
Workshop at NeurIPS 2019

Published data

V. Derkinderen, J. Bekker, and P. Smet (2023b). Replication Data for:
Optimizing Workforce Allocation under Uncertain Activity Duration. Version V1.
url: https://doi.org/10.48804/YHMU7R

https://doi.org/10.3233/FAIA200392
https://doi.org/10.48550/arXiv.2306.04541
https://doi.org/10.48804/YHMU7R

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DECLARATIVE LANGUAGES AND ARTIFICIAL INTELLIGENCE (DTAI)
Celestijnenlaan 200A box 2402

B-3001 Leuven

	Abstract
	Beknopte samenvatting
	List of Abbreviations
	Contents
	List of Figures
	List of Tables
	Introduction
	Knowledge Representation and Reasoning
	The Algebraic Journey
	Contributions
	Structure of the Thesis

	Background
	Propositional Logic
	Model Counting
	Counting via the #DPLL Algorithm
	The Basic #DPLL Algorithm
	#DPLL with Component Caching

	Counting via Knowledge Compilation
	sd-DNNF Formulas
	Traces of the #DPLL Algorithm
	Decision Diagrams

	Background Theories

	Probabilistic and Neural-Symbolic Logic Programming
	Introduction
	History of Probabilistic Logic Programming
	Synthesizing Probabilistic Logic Programming Variations

	From Logic Programs to Algebraic Logic Programs
	Logic Programming
	Probabilistic Facts
	Neural Facts
	Distributional Facts and Indicator Facts
	Algebraic Facts

	Inference
	Logical Inference
	Translation to Algebraic Model Counting
	Solving Model Counting

	Learning
	Gradient Semiring

	Related Work and Applications
	Conclusion

	Exploiting Symmetry for Model Counting
	Introduction
	Related Work
	Background
	#DPLL with Component Caching
	Isomorphism

	Symmetric Components
	Implementation: SymGanak
	Experiments
	Implementation and Experimental Setup
	Results

	Conclusion
	Beyond Unweighted Counting

	Decision Making: A Tale of Three Operations
	Introduction
	Constrained Sentential Decision Diagram
	Maximising Decisions
	Constrained Algebraic Circuit
	Unconstrained Algebraic Circuit
	Experiments

	Learning Utility Parameters
	Related Work
	Conclusion

	Variable Ordering for Weighted Model Integration
	Introduction
	Weighted Model Integration
	Variable Orderings
	How to Exploit Structure
	How to Order Variables

	Variable Trees
	AND/OR Graphs
	Pseudo-Tree Heuristics

	Experiments
	Conclusion

	Modulo Theory Compilation
	Introduction
	Background
	d-DNNF for Modulo Theory
	Compilation Strategies
	Theory Aware versus Theory Agnostic
	Eager versus Lazy Solving
	Top-down versus Bottom-up Compilation

	Traces of an Exhaustive DPLL(T) Algorithm
	Conclusion & Future Work

	Conclusion
	Summary
	Future Perspective

	SymGanak: Results
	Problem Classes
	Results

	F-XSDD(BR) with Complex Weight Functions
	Bibliography
	Curriculum Vitae
	List of publications

