Taming the beast of time
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Status quaestionis

 Historical linguistics has partaken in what Janda (2013) has called the 'quantitative turn' (Hilpert &
Gries 2016; Jenset & McGillivray 2017; Van de Velde & Petré 2020)

* This involves the use of TIME as an explanatory variable
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What's the problem?

» "historical linguistics (...) can be thought of as the art of making the best use of bad data" (Labov
1994: 11)

* historical linguistics can be thought of as the art of making the best use of bad methods

e Time is an odd beast:

"[T]he fact that time is a dynamic process provides challenges in formulating a model that are not present
in settings where a typical linear or logistic regression model might be applied." (Hosmer et al. 2008: 2).



What's the problem?

* Some concrete problems with generalized linear models (Van de Velde & De Smet
2022; Van de Velde, manuscript, for solutions):

* Non-independence: autocorrelation

* Generalized linear models assume a smooth monotonic increase/decrease, not a wavering
back-and-forth process

e Sampling is often unequally distributed over the observed time span

* Mutant hosts (often treated as random factors) may fall out of use by lexical replacement, or
may display a skewed distribution



Methods to consider

* Time series analysis (Koplenig 2017; Koplenig et al. 2016; Van de Velde & Petré 2020: 346-350),
including Granger causality (Moscoso del Prado Martin 2014; Rosemeyer & Van de Velde 2020)

* Survival analysis (Van de Velde & Keersmaekers 2020)

* Markov Models (Van de Velde & De Smet 2022)



Part 1: Time Series Analysis and
Granger Causality



Granger causality

* Correlation does not imply causation

 Historical linguists don't do why questions (Aitchison 2013: 142)

e How can we detect causation?



Correlation and causation

* word order ~ 1 / inflectional morphology

word order as grammatical strategy
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Granger causality

* Technique for comparing two supposedly causally related time series (Granger 1969; Thurman &
Fisher 1988)

* General idea: which is better?
a) forecast time series A by prior values of A? -
b) forecast time series A by prior values of A and prior values of B? - compare

\

c) forecast time series B by prior values of B? . - compare
d) forecast time series B by prior values of B and prior values of A? [ compare

* Example: alcohol intake ~ drunkenness
a) forecast drunkenness by prior values of drunkenness? = () because of seasonality and autocorrelation
b) forecast drunkenness by prior values of alcohol intake? =
c) forecast alcohol intake by prior values of alcohol intake? = ©)
d) forecast alcohol intake by prior values of drunkenness? = ()



Granger causality

* Technique for comparing two supposedly causally related time series (Granger 1969; Thurman &

Fisher 1988; Lesmeister 2013) \
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Granger causality

* Technique for comparing two supposedly causally related time series (Granger 1969; Thurman &

Fisher 1988; Lesmeister 2013)
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soft ARIMA model
for time series analysis

* General idea: which is better?
a) forecast time series A by prior values of A?
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b) forecast time series A by prior values of A and prior values of B? |

c) forecast time series B by prior values of B?

- compare
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d) forecast time series B by prior values of B and prior values of A? |

* Example: alcohol intake ~ drunkenness
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Granger causality

* A linguistic case study on Brazilian Portuguese (collaboration with Malte Rosemeyer)

1. Onde foi vocé? [unclefted]
where  go.PST.PFV.IND.35G  you
'Where did you go?"

2. Onde (é) que vocé foi? [wh-cleft]
where  be.PRS.IND.35G that you £0.PST.PFV.IND.3SG
'Where did you go?"

3. E a Maria  que cheg-ou [that-cleft]
be.PRS.IND.35G DET.DEF.F Maria  that arrive-PST.PFV.IND.3SG
'It is Maria that arrived’

* Rise in SV word order (no more V2-induced inversion) may have triggered the increased use of clefts



Granger causality

hypotheses:

* Three time series: e
a) SV word order e e
b) wh-clefts
c) that-clefts ° ° ° Q o °



Granger causality

Three time series:
a) SV word order

b) wh-clefts

c) that-clefts

time series SV order

log-transformed fraquency per 100,000 tokens

1800

1000

2000

time series clefted wh-interrogatives

W o
5° .
o -
£ .
E ']
E &1
a 4ol %
=
'E’ M
g 41

o
2
E *

2_
4

=

o
- |

1800 1900

hypotheses:

566 60 ¢

time series non-inverted declarative that-clefts

lag-transfarmed frequency per million tokens

1800

‘ﬁ‘

J

g

1900

.'..l*

2000




hypotheses:

Granger causality
O OO0 OC

* Three time series:
a) SV word order : 0
b) wh-clefts
c) that-clefts () () (») @ @ ()

#Granger tests#
set.order=1

grangertest(QCY.ts ~ SVY.ts, order=set.order, na.action = na.omit)
grangertest(sSvy.ts ~ QCY.ts, order=set.order, na.action = na.omit)
grangertest(DCY.ts ~ SVY.ts, order=set.order, na.action = na.omit)
grangertest(svy.ts ~ DCY.ts, order=set.order, na.action = na.omit)
grangertest(DCY.ts ~ QCY.ts, order=set.order, na.action = na.omit)
grangertest(QCY.ts ~ DCY.ts, order=set.order, na.action = na.omit)



Granger causality

* Three time series:
a) SV word order
b) wh-clefts
c) that-clefts

Summary of the pairwise Granger Causality tests between the four time series
(light gray shading: p < 0.05, dark gray shading: p < 0.01)

SVword ‘That’-clefts Clefted wh-
order interrogatives
SVword order - p =0.0410
causing
‘That’-clefts  p=0.2872 - p = 0.5007
causing
Clefted wh- p=0.1143 p=0.0172 -

interrogatives
causing

hypotheses:
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Granger causality

* Three time series:
a) SV word order
b) wh-clefts
c) that-clefts

Summary of the pairwise Granger Causality tests between the four time series
(light gray shading: p < 0.05, dark gray shading: p < 0.01)
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Part 2: Survival Analysis



Survival analysis

* Technique to model or predict the time of an 'event’, e.g. a patient's death, failure of a machine,
winning a Nobel price ...

* Widely applied in different fields, under various names:
* Medical sciences: 'survival analysis'
* Engineering: 'reliability analysis' (e.g. infamous bathtub curve)
e Economics: 'duration analysis'
* Sociology: 'event history analysis'

—— Kaplan Meier Estimate

Survival Analysis
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Survival analysis

e Different curves:

0

age in relative units
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« Survival function S(t), with the aid of the Kaplan-Meier estimator (non-parametric) S(t)
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* More advanced: Cox Proportional Hazard model (parametric)



Case study: survival of words in post-classical Greek

* Details: Van de Velde, Freek & Alek Keersmaekers. 2020. ‘What are the determinants of survival curves of
words? An evolutionary linguistics approach’. Evolutionary Linguistic Theory 2(2): 127-137.

* Dataset of 2217 tokens in Greek papyri from the period 331Bc-835AD, almost all of which from Egypt, coded for
various variables:

y A B C D E F G b

1 |LEMMA v|F’OS ~ |POS SPEC ~ FREQ |~ |[YEAR FIRST|~ YEAR LAST ~ WORDS SUBCORPUS |~ | PHON SIZE
2 |&€ a cardinal 277 -257 710 997702 2
3 |wvA n lexicaal 279 -259 352 903235 3
4 |gmtnptw v lexicaal 10 -161 352 740334 8
5 |éomnépa n lexicaal 12 136 559 518126 6
6 [Saulw " lexicaal 10 -18 752 731920 5
7 |&avakplolg n lexicaal 11 -241 270 689209 9
8 mpoafoln n lexicaal 13 -260 375 919692 8
9 8dvelov n lexicaal 205 -257 570 957183 7
10 |oupBolatoypadocg n lexicaal 12 452 719 83961 15
11 |kevrnvaplog n lexicaal 11 315 710 168216 11
12 |évypartoc a lexicaal 23 -221 254 627458 9
13 |anoywpéw v lexicaal 13 -258 180 582216 8
14,3 a numeral_symbol 14 -244 248 649742 2
15 |ikeola n lexicaal 12 317 570 122967 6
16 |SloKEW v lexicaal 100 -263 697 993049 7
17 (ofa a numeral_symbol 11 -245 705 927667 3
18 |popoc n lexicaal 284 -259 641 984532 5
19 |eUkaipog d lexicaal 17 -257 311 822575 8
20 |émibavic a lexicaal 320 -212 392 796410 8



Case study: survival of words in post-classical Greek

* Details: Van de Velde, Freek & Alek Keersmaekers. 2020. ‘What are the determinants of survival curves of
words? An evolutionary linguistics approach’. Evolutionary Linguistic Theory 2(2): 127-137.

* Dataset of 2217 tokens in Greek papyri from the period 3318c-835AD, almost all of which from Egypt, coded for
various variables:

Variable Levels or range Type frequency
Size (in characters) Numeric, range [1; 17] 2217
Size (3 equally spaced groups) Small 1105
Medium 1077
Large 35
First attestation Numeric, range [331Bc; 3BC | 2217
Last attestation Numeric, range [235B¢; 700AD] 2217
Part-of-speech Noun 1019
Verb 863
Adjective 335
Frequency (transformed) Numeric, range [—2.00; 1.15] 2217
Frequency (3 equally spaced groups) Low 1732
Medium 451
High 34

Observed span (in years) Numeric, range [15; 1056 ] 2217
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Figure 1. Kaplan-Meier Curve for survival of all types (n=2217). The x-axis gives the
time span in years over which a lexeme has been observed. It is not the date of attestation.

‘Censored’ types (words that are still alive in 700AD) are indicated as crosses (+)



Strata
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significant (log-rank test), p < 0.001
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Figure 3. Kaplan-Meier Curve for survival of PHONETIC SIZE strata. The x-axis gives the

time span in years over which a lexeme has been observed. ‘Censored’ types are indicated

as crosses (+)

Difference between strata is
significant (log-rank test), p < 0.001



Strata = POS =noun +POS=adj =+ POS=verb
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Figure 4. Kaplan-Meier Curve for survival of PART-OF-SPEECH strata. The x-axis gives
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Difference between strata is
significant (log-rank test), p < 0.001



Strata +POS =noun +-POS=adj = POS=verb
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< Pagel et al. (2007): N>V > A
= Grossman & Polis (2017)

Different strategies: V are innovative because they are derivationally mutilated or undergo polysemous radiation



Extra

Parametric approach: Cox Proportional Hazard model car still at risk in the denominator-

o

 Hazard function:

A(t; Z) = 2o (¢) e(EF BiZi)



Cox Proportional Hazard Model

ariable Coefficient Z-score p-value

Frequency Numeric —0.717 —13.135 <10.0001

Phonetic size Numeric 0.123 10.443 <0.0001
Part-of-speech Noun (reference level) — -

Adjective —0.118 —1.606 0.0899

Verb —0.281 —5.316 <0.0001

First attestation Numeric 0.005 10.574 <0.0001




Part 3: Multi-State Markov Model



Multi-State Markov Model

e Belongs to the family of Survival Analysis
* Deals with lexical replacement
* Does not assume a smooth, (generalized) linear trend
* Does not assume continuous sampling (as opposed to many time-series analyses)



Multi-state Markov Model
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Case study on Dutch preterite formation
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Case-study: Germanic preterites (Dutch)

* Germanic languages have two morphological strategies for building preterites
(not counting analytic perfects, he has written a book):

1. Strong inflection
* English sing —sang
e Ablaut, based on Indo-European aspectual system (perfect > preterite)

2. Weak inflection

English work — worked
Dental suffix, based on a analytic formation [VERB + *d"eh,-, *d"oh - ('did")]



Case-study: Germanic preterites (Dutch)

* Diachrony has been studied intensely:

* E.g. Anderwald, 2012; Cuskley et al., 2014 on 19th-century English; Lieberman et al., 2007 on
Old English to Present-day English, Carroll et al., 2012 on Old High German to Present-day
German, De Vriendt, 1965 on 16th-century Dutch; De Smet & Van de Velde, 2019, 2020, De

Smet 2021 on 9th-century to 20th-century Dutch.
* Long-term drift, over many centuries

e Strong to weak, weak to strong, lexical death



Multi-state Markov Model

e Each verb (type) is a 'patient’
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Multi-state Markov Model

. PSI—{—ﬂf:gSt:r
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Data and methods

Dutch preterites

285 verb types, 14314 tokens
800AD to 2000AD

Based on database De Smet (2021)

Covariates that are known to play a role:

* Frequency (based on log,, token frequency of preterite of verb stem), ternary: high, medium, low

* Ablaut pattern (pres — pret — part), ternary: ABB, ABA, ABC
Theoretical application to linguistics (Krylov 1995)
R package msm (Jackson, 2011, 2019)

to:

from:

strong
strong 10741
weak 240
dead 0

weak
265
3009

dead
38
17




Multi-state Markov Model, for Dutch preterites

, mf if ABC ) ABA
l’ir:; ( Z ( T) ) — qf.?mmmﬁ(ﬁrs zmj' [ f,]' ‘H?L- th f f;' ‘|‘,|Br_; z.-‘iﬂ{_ “J‘ ‘|‘,|Br_; Z:'l!j‘.-‘if ” )

(mf = mid-frequency, ht: high-frequency, ABC: vowel pattern ABC, ABA:
vowel pattern ABA)



Results

covariate transition coefficient confidence interval
low (reference level)
FREQUENCY mid from strong to weak 1.06 [0.74, 1.54]
from strong to dead 0.03 [0.01, 0.10]
from weak to strong 2.38 [1.56, 3.64]
from weak to dead 0.20 [0.06, 0.66]
high from strong to weak 0.37 [0.24, 0.57]
from strong to dead <0.01 [<0.01, >100.00]
from weak to strong 252 [1.56, 4.08]
from weak to dead <0.01 [0.00, o<]
VOWEL PATTERN ABB (reference level)
ABC from strong to weak 1.44 [1.00, 2.08]
from strong to dead 1.31 [0.58, 2.93]
from weak to strong 0.46 [0.32, 0.67]
from weak to dead 0.34 [0.06, 1.99]
ABA from strong to weak 3.80 [2.86, 5.06]
from strong to dead 0.93 [0.36, 2.41]
from weak to strong 0.66 [0.49, 0.89]

from weak to dead 0.76 [0.25, 2.32]




Transition probability matrix for t = 100 (years).

to:

from: strong weak dead
strong 0.861 0.139 <0.001
weak 0.510 0.490 <0.001
dead 0.000 0.000 1.000

Transition probability matrix for t = 500 (years).
to:

from: strong weak dead
strong 0.786 0.213 <0.001
weak 0.781 0.219 <0.001

dead 0.000 0.000 1.000

Transition probability matrix for t = 1000 (years).
to:
from: strong weak dead

strong 0.785 0.215 <0.001

weak 0.785 0.215 <0.001

dead 0.000 0.000 1.000

Sojourn times (in years).

estimate standard error lower upper

strong 445 36 379 522

weak 122 10 104 143
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Contact me for:

* Questions

Help with your own research
Full R code
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Exchange of ideas

freek.vandevelde@kuleuven.be

(Or google me)
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