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Status quaestionis

• Historical linguistics has partaken in what Janda (2013) has called the 'quantitative turn' (Hilpert & 
Gries 2016; Jenset & McGillivray 2017; Van de Velde & Petré 2020)

• This involves the use of TIME as an explanatory variable



What's the problem?

• "historical linguistics (…) can be thought of as the art of making the best use of bad data" (Labov
1994: 11)

• historical linguistics can be thought of as the art of making the best use of bad methods

• Time is an odd beast:

"[T]he fact that time is a dynamic process provides challenges in formulating a model that are not present 
in settings where a typical linear or logistic regression model might be applied." (Hosmer et al. 2008: 2).



What's the problem?

• Some concrete problems with generalized linear models (Van de Velde & De Smet 
2022; Van de Velde, manuscript, for solutions):

• Non-independence: autocorrelation

• Generalized linear models assume a smooth monotonic increase/decrease, not a wavering 
back-and-forth process

• Sampling is often unequally distributed over the observed time span

• Mutant hosts (often treated as random factors) may fall out of use by lexical replacement, or 
may display a skewed distribution



Methods to consider

• Time series analysis (Koplenig 2017; Koplenig et al. 2016; Van de Velde & Petré 2020: 346-350), 
including Granger causality (Moscoso del Prado Martín 2014; Rosemeyer & Van de Velde 2020)

• Survival analysis (Van de Velde & Keersmaekers 2020)

• Markov Models (Van de Velde & De Smet 2022)



Part 1: Time Series Analysis and 
Granger Causality



Granger causality

• Correlation does not imply causation

• Historical linguists don't do why questions (Aitchison 2013: 142)

• How can we detect causation?



Correlation and causation

• word order ~ 1 / inflectional morphology

cor. synthesis: -0.72
cor. isolation: 0.79
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Granger causality

• Technique for comparing two supposedly causally related time series (Granger 1969; Thurman & 
Fisher 1988)

• General idea: which is better?
a) forecast time series A by prior values of A?

b) forecast time series A by prior values of A and prior values of B?

c) forecast time series B by prior values of B?

d) forecast time series B by prior values of B and prior values of A?

• Example: alcohol intake ~ drunkenness

a) forecast drunkenness by prior values of drunkenness? 🙂 because of seasonality and autocorrelation

b) forecast drunkenness by prior values of alcohol intake?😄

c) forecast alcohol intake by prior values of alcohol intake?🙂

d) forecast alcohol intake by prior values of drunkenness?😕

compare

compare
compare
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Granger causality

• A linguistic case study on Brazilian Portuguese (collaboration with Malte Rosemeyer)

1. Onde foi você? [unclefted]
where go.PST.PFV.IND.3SG you
'Where did you go?'

2. Onde (é) que você foi? [wh-cleft]
where be.PRS.IND.3SG that you go.PST.PFV.IND.3SG

'Where did you go?'

3. É a Maria que cheg-ou [that-cleft]
be.PRS.IND.3SG DET.DEF.F Maria that arrive-PST.PFV.IND.3SG

'It is Maria that arrived'

• Rise in SV word order (no more V2-induced inversion) may have triggered the increased use of clefts



Granger causality

• Three time series:
a) SV word order

b) wh-clefts

c) that-clefts
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Part 2: Survival Analysis



Survival analysis

• Technique to model or predict the time of an 'event', e.g. a patient's death, failure of a machine, 
winning a Nobel price ...

• Widely applied in different fields, under various names:

• Medical sciences: 'survival analysis'

• Engineering: 'reliability analysis' (e.g. infamous bathtub curve)

• Economics: 'duration analysis'

• Sociology: 'event history analysis'

not like this: but like this:



Survival analysis

• Different curves:

• Survival function 𝑆 𝑡 , with the aid of the Kaplan-Meier estimator (non-parametric) መ𝑆 𝑡

መ𝑆 𝑡 =

1 𝑖𝑓 𝑡 < 𝑡1

ෑ

𝑡𝑗 ≤ 𝑡

1 −
𝑑𝑗

𝑟𝑗
𝑖𝑓 𝑡1 ≤ 𝑡

• More advanced: Cox Proportional Hazard model (parametric)

dj number of dead at time tj

rj number of patients at risk at time tj



Case study: survival of words in post-classical Greek

• Details: Van de Velde, Freek & Alek Keersmaekers. 2020. ‘What are the determinants of survival curves of 
words? An evolutionary linguistics approach’. Evolutionary Linguistic Theory 2(2): 127-137.

• Dataset of 2217 tokens in Greek papyri from the period 331BC-835AD, almost all of which from Egypt, coded for 
various variables:
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Difference between strata is 
significant (log-rank test), p < 0.001
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Difference between strata is 
significant (log-rank test), p < 0.001



Pagel et al. (2007): N > V > A

 Grossman & Polis (2017)

Different strategies: V are innovative because they are derivationally mutilated or undergo polysemous radiation



Extra

• Parametric approach: Cox Proportional Hazard model

• Hazard function:

෠λ 𝑡𝑗 =
𝑑𝑗

𝑟𝑗

𝜆 𝑡; 𝑍 = 𝜆0 𝑡 𝑒 σ𝑖
𝑛 𝛽𝑖𝑍𝑖

car still at risk in the denominator:



Cox Proportional Hazard Model



Part 3: Multi-State Markov Model



Multi-State Markov Model

• Belongs to the family of Survival Analysis 
• Deals with lexical replacement

• Does not assume a smooth, (generalized) linear trend

• Does not assume continuous sampling (as opposed to many time-series analyses)



Multi-state Markov Model

Healthy Sick

Dead



Case study on Dutch preterite formation



Case-study: Germanic preterites (Dutch)

• Germanic languages have two morphological strategies for building preterites
(not counting analytic perfects, he has written a book):

1. Strong inflection
• English sing – sang

• Ablaut, based on Indo-European aspectual system (perfect > preterite)

2. Weak inflection
• English work – worked

• Dental suffix, based on a analytic formation [VERB + *dheh1-, *dhoh1- ('did')]



Case-study: Germanic preterites (Dutch)

• Diachrony has been studied intensely:
• E.g. Anderwald, 2012; Cuskley et al., 2014 on 19th-century English; Lieberman et al., 2007 on 

Old English to Present-day English, Carroll et al., 2012 on Old High German to Present-day 
German, De Vriendt, 1965 on 16th-century Dutch; De Smet & Van de Velde, 2019, 2020, De 
Smet 2021 on 9th-century to 20th-century Dutch.

• Long-term drift, over many centuries

• Strong to weak, weak to strong, lexical death



Multi-state Markov Model

• Each verb (type) is a 'patient'

Strong Weak

Dead



Multi-state Markov Model



Data and methods

• Dutch preterites

• 285 verb types, 14314 tokens

• 800AD to 2000AD

• Based on database De Smet (2021)

• Covariates that are known to play a role:
• Frequency (based on log10 token frequency of preterite of verb stem), ternary: high, medium, low

• Ablaut pattern (pres – pret – part), ternary: ABB, ABA, ABC

• Theoretical application to linguistics (Krylov 1995)

• R package msm (Jackson, 2011, 2019)



Multi-state Markov Model, for Dutch preterites



Results
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Contact me for:

• Questions

• Help with your own research

• Full R code

• Helpful bibliographic references

• Exchange of ideas

• …

freek.vandevelde@kuleuven.be

(Or google me)

mailto:freek.vandevelde@arts.kuleuven.be
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