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Abstract

One of the most pervasive tools from (numerical) linear algebra is, without any
doubt, the standard eigenvalue decomposition. Eigenvalues describe the intrin-
sic system dynamics of many natural and scientific phenomena; they explain
how a system evolves along the eigenvector direction. This makes eigenvalues
and eigenvectors indispensable in a wide array of problems. More importantly,
at least in the context of this dissertation, the standard eigenvalue decompo-
sition is also essential when addressing two critical, mathematical problems:
finding the common roots of a system of multivariate polynomials and com-
puting the eigenvalues of a multiparameter eigenvalue problem. Multivariate
polynomials and multiparameter eigenvalue problems offer natural tools for
representing the real world through mathematical models. As a consequence,
these two mathematical problems are critical in diverse fields from science and
engineering, including systems theory, computational biology and chemistry,
robotics, computer vision, and economics.

Solving multivariate polynomial systems remains a very challenging task,
in particular when dealing with high total degrees and many variables. There
exist various methodologies to compute the solutions, including symbolic meth-
ods, which use Gröbner bases or resultants, and efficient numerical iterative
methods like homotopy continuation, which track solution paths in continu-
ously deformed systems. In this dissertation, the problem is approached from
a (numerical) linear algebra perspective: we leverage the Macaulay matrix,
a structured matrix constructed from the coefficients of the polynomials, to
formulate a multidimensional realization problem within the right null space
of that Macaulay matrix. This multidimensional realization problem yields
standard eigenvalue problems, the eigenvalues of which correspond to the com-
mon roots of the multivariate polynomials. Although the Macaulay matrix
provides an interesting (numerical) linear algebra tool for solving multivari-
ate polynomial systems, the computation of a basis matrix for its right null
space is computationally expensive and limits its application potential. This
motivates the development of a complementary column space based Macaulay
matrix approach, which translates the multidimensional realization problem
to the column space (avoiding the right null space). Both subspaces of the
Macaulay matrix provide algorithms that find the common roots of the multi-
variate polynomials.

Multiparameter spectral theory generalizes the classic spectral theory of
linear operators to multiple linear operators linked by multiple spectral pa-



rameters. Its origins can be traced back to the problem of using separation
of variables to solve boundary-value problems for partial differential equations.
One way to solve such problems is via the eigenvalues of a multiparameter eigen-
value problem. Recently, it has been shown that (rectangular) multiparameter
eigenvalue problem are also useful in the identification of linear time-invariant
dynamical systems and model order reduction. Despite the extensive literature
about one-parameter eigenvalue problems, the multiparameter case has not
yet fully penetrated the general scientific community. Furthermore, the advent
of rectangular multiparameter eigenvalue problems in various applications has
uncovered the need for solution approaches. To fill this hiatus, this text ex-
tends the Macaulay matrix to the block Macaulay matrix, by replacing the
coefficients of the polynomials with the coefficient matrices of the rectangular
multiparameter eigenvalue problem. The translation of the solution approaches
in the right null space and column space of the Macaulay matrix to the block
Macaulay setting, resulting in some of the first (numerical) linear algebra tools
for solving rectangular multiparameter eigenvalue problems, is a major contri-
bution of this dissertation. The introduction of this block Macaulay matrix
is the final piece of the puzzle to assemble a uniform block Macaulay matrix
approach.

Both mathematical problems–systems of multivariate polynomial equations
and multiparameter eigenvalue problems–are at the heart of numerous applica-
tions. This text illustrates the critical nature of these two problems via several
motivational examples from systems theory. These examples originate from
the quest to find globally optimal models for single-input/single-output, linear
time-invariant dynamical systems, which involves tackling multivariate polyno-
mial optimization problems that minimize a certain polynomial cost function
subject to polynomial model constraints. Tackling these motivational exam-
ples immediately demonstrates the computational challenges that come with
the (block) Macaulay matrix algorithms. Therefore, this dissertation also cov-
ers the development of new techniques to exploit the structure and sparsity
of the involved (block) Macaulay matrices, which enable more efficient, yet
still reliable, solution methods. These techniques are combined into the novel
MacaulayLab toolbox and are used to solve the motivational examples in a
globally optimal way. Despite having its origin in a curiosity to understand the
dynamical behavior of systems, this research integrates insights from various
scientific domains and provides novel solution tools for very diverse applica-
tions, while relying on tool from numerical linear algebra.



Nederlandse Samenvatting

De standaard eigenwaardeontbinding is, ongetwijfeld, één van de krachtigste
gereedschappen uit (numerieke) lineaire algebra. Eigenwaarden beschrijven de
intrinsieke systeemdynamica van veel natuurlijke en wetenschappelijke feno-
menen; ze verklaren hoe een systeem zich ontwikkelt langs de richting van de
eigenvector. Dit maakt eigenwaarden en eigenvectoren onmisbaar in een breed
scala van problemen. Belangrijker nog, tenminste binnen de context van dit
proefschrift, is dat de standaard eigenwaardeontbinding ook essentieel is bij
het oplossen van twee fundamentele, wiskundige problemen: het vinden van de
gemeenschappelijke wortels van een stelsel van multivariate veeltermen en het
berekenen van de eigenwaarden van een multiparameter eigenwaardeprobleem.
Multivariate veeltermen en multiparameter eigenwaardeproblemen bieden een
natuurlijke manier aan om de echte wereld via wiskunde modellen te beschrij-
ven. Als een gevolg hiervan zijn deze twee wiskundige problemen cruciaal
in diverse vakgebieden, waaronder systeemtheorie, computationele biologie en
chemie, robotica, computervisie en economie.

Het oplossen van stelsels van multivariate veeltermvergelijkingen blijft een
zeer uitdagende taak, zeker bij hoge graden en veel veranderlijken. Er bestaan
verschillende manieren om de oplossingen te vinden, bijvoorbeeld symbolische
methoden, die gebruik maken van Gröbnerbasissen of resultanten, en efficiënte
numerieke iteratieve methoden zoals homotopievoortzetting, die oplossingspa-
den volgen in stelsels die continu worden vervormd. In dit proefschrift benade-
ren we het probleem vanuit een (numerieke) lineaire algebra hoek: we maken
gebruik van de Macaulaymatrix, een gestructureerde matrix opgebouwd uit
de coëfficiënten van de veeltermen, om een multidimensionaal realisatiepro-
bleem te formuleren binnen de rechter nulruimte van deze Macaulaymatrix.
Dit multidimensionel realisatieprobleem resulteert in standaard eigenwaarde-
problemen, de eigenwaarden hiervan komen overeen met de gemeenschappelijke
wortels van de multivariate veeltermen. Hoewel de Macaulaymatrix een inte-
ressante (numerieke) lineaire algebra techniek aanbiedt om stelsels van mul-
tivariate veeltermvergelijkingen op te lossen, beperkt de nodige berekenings-
tijd voor het bepalen van een basismatrix van de rechter nulruimte de toepas-
singsmogelijkheden. Dit motiveert onze ontwikkeling van een complementaire
kolomruimte-gebaseerde Macaulaymatrixmethode, waarin het multidimensio-
naal realisatieprobleem wordt vertaald naar de kolomruimte (wat het gebruik
van de rechter nulruimte vermijdt). Beide deelruimten van de Macaulayma-
trix creëren op deze manier algoritmes om de gemeenschappelijke wortels van



multivariate veeltermen te vinden.
Multiparameter spectrale theorie veralgemeent de klassieke spectrale theo-

rie van enkele lineaire operatoren naar meerdere lineaire operatoren verbonden
door middel van meerdere spectrale parameters. De oorsprong ervan kan wor-
den teruggevoerd naar het gebruik van scheiding van veranderlijken om rand-
waardeproblemen op te lossen voor partiële differentiaalvergelijkingen. Derge-
lijke problemen kunnen worden opgelost door middel van het bepalen van de ei-
genwaarden van multiparameter eigenwaardeproblemen. Recent is aangetoond
dat (rechthoekige) multiparameter eigenwaardeproblemen ook hun net hebben
tijdens de identificatie van lineaire tijdsinvariante dynamische systemen en mo-
delreductie. Ondanks de uitgebreide literatuur beschikbaar over één-parameter
eigenwaardeproblemen, blijft het multiparameter geval onbekend voor het me-
rendeel van de wetenschappelijke gemeenschap. Bovendien heeft de opkomst
van rechthoekige multiparameter eigenwaardeproblemen in verschillende toe-
passingen de behoefte aan oplossingsmethoden aan het licht gebracht. Om
deze lacune op te vullen, breidt dit proefschrift de Macaulaymatrix uit tot de
blok-Macaulaymatrix, door de coëfficiënten van de veeltermen te vervangen
door de coëfficiëntmatrices van het rechthoekige multiparameter eigenwaarde-
probleem. De vertaalstap van de oplossingsalgoritmes in de rechter nulruimte
en kolomruimte van de Macaulaymatrix naar de blok-Macaulaymatrix, wat re-
sulteert in enkele van de eerste (numerieke) lineaire algebramethoden voor het
oplossen van rechthoekige multiparameter eigenwaardeproblemen, is een be-
langrijke bijdrage in dit proefschrift. De introductie van deze matrix is het
laatste puzzelstuk om een uniform blok-Macaulaymatrixkader te vormen.

Beide wiskundige problemen–stelsels van multivariate veeltermvergelijkin-
gen en (rechthoekige) multiparameter eigenwaardeproblemen–staan centraal in
talloze toepassingen. Deze tekst illustreert de fundamentele aard van deze
twee problemen aan de hand van verschillende motiverende voorbeelden uit
systeemtheorie. Deze voorbeelden komen voort uit de zoektocht naar globaal
optimale modellen voor lineaire tijdsinvariante modellen met één ingang en één
uitgang, waarbij multivariate veeltermoptimalisatieproblemen worden opgelost
door een bepaalde kostfunctie (een veelterm) onderworpen aan modelrestric-
ties (ook veeltermen) te minimaliseren. De confrontatie met deze motiverende
voorbeelden legt onmiddellijk de computationele uitdagingen bloot die gepaard
gaan met de (blok-)Macaulaymatrixmethoden. Daarom behandelt deze tekst
ook de ontwikkeling van nieuwe technieken om de structuur en ijlheid van de
betrokken (blok-)Macaulaymatrices uit te buiten, wat efficiëntere, maar toch
betrouwbare, oplossingsmethoden mogelijk maakt. Deze technieken zijn ge-
combineerd in het MacaulayLab-softwarepakket en worden gebruikt om de mo-
tiverende voorbeelden op een globaal optimale manier op te lossen. Ondanks
dat dit onderzoek zijn oorsprong heeft in een nieuwsgierigheid om het dynami-
sche gedrag van systemen beter te begrijpen, integreert het inzichten uit ver-
schillende wetenschappelijke domeinen en biedt het nieuwe oplossingsmethoden
aan voor zeer uiteenlopende toepassingen, gebruikmakend van gereedschappen
uit numerieke lineaire algebra.
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ẽ (r) relative reconstruction error
‖e‖2 absolute residual error
‖e‖(r)2 relative residual error

Other symbols.
i imaginary unit
> monomial ordering
d∗ degree of regularity (except when denoted otherwise)
d◦ solution degree
i◦ desired iteration
Is identity matrix of size s× s
(A,B,C,D) state space representation
H(s) transfer function
h(t) impulse response in continuous time
hk impulse response in discrete time



List of Abbreviations

AR autoregressive
ARIMA autoregressive integrated moving-average
ARMA autoregressive moving-average
ARMAX autoregressive moving-average with exogeneous input

BKK Bernstein–Khovanskii–Kushnirenko

FLOP floating-point operation
FSR forward shift recursion

GEP generalized eigenvalue problem
GREVLEX graded reverse lexicographic
GRINVLEX graded inverse lexicographic
GRLEX graded lexicographic

HKP Hochstenbach–Košir–Plestenjak

LEX lexicographic
LTI linear time-invariant

MA moving-average
MEP multiparameter eigenvalue problem
MIMO multiple-input/multiple-output

OE output-error

PEP polynomial eigenvalue problem

RAM random-access memory
RC research contribution
RO research objective

SEP standard eigenvalue problem
SISO single-input/single-output
SVD singular value decomposition





Introduction



C
ha

pt
er

1.
In

tr
od

uc
ti

on
an

d
O

ut
lin

e

1



Introduction and Outline

This dissertation dives into the fascinating worlds of multivariate polynomials
and multiparameter eigenvalues problems. We approach these two, seemingly
unrelated, problems from a (numerical) linear algebra point of view and tackle
them via the novel, unifying block Macaulay matrix approach, which provides
us with new (numerical) linear algebra algorithms. The text uses applica-
tions from systems theory as motivational examples, but it also has the bold
ambition to introduce, from a (numerical) linear algebra point of view, some
fundamental concepts from the abstract and technical literature of algebraic
geometry and multiparameter spectral theory. The contributions of this re-
search enable a new perspective on applications from various fields of science
and engineering; a perspective with the ambition to tackle problems with ex-
actness or global optimality in mind. We believe that this dissertation will lead
to many new, interesting research challenges that can (and should) be tackled
by mathematicians and engineers in the (near) future.
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Outline. We start with a motivation in Section 1.1, building up to the central
research question of this dissertation. Afterwards, Section 1.2 presents the
novel, unifying block Macaulay matrix approach and shows how the Toeplitz
matrix, Macaulay matrix, block Toeplitz matrix, and block Macaulay matrix
are related. Next, in Section 1.3, we phrase the different research objectives of
this dissertation and, in Section 1.4, we advocate the software toolbox that we
have developed alongside the text. Finally, Section 1.5 outlines the different
chapters of the dissertation.
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1.1 Motivational prologue

This dissertation considers two mathematical problems that are critical in dif-
ferent applications from science and engineering: solving systems of multivari-
ate polynomial equations and computing the eigenvalues of multiparameter
eigenvalue problems (MEPs). The motivation for tackling these two, seem-
ingly unrelated, problems in one text stems from the fact that we encounter
them both while dealing with the applications that we tackle in our research.
Although this research lives at the interplay of various fields of science and engi-
neering, it all started with a curiosity in understanding the dynamical behavior
of systems.

As this motivational prologue intends to clarify, the road that has led to
the insights and algorithms in this dissertation was paved by the ambition to
truly understand the dynamical behavior of systems. However, the road quickly
took a detour and has evolved into the direction of considering the underlying
critical, mathematical problems that were encountered during this endeavor.
Since then, the goal of this research has been to solve these two mathematical
problems via novel (numerical) linear algebra techniques. In that sense, this
dissertation can be seen as a contribution to the field of (numerical) linear
algebra, motivated by examples that stem from the field of systems theory.

From dynamical behavior to measured data points
The dynamical behavior of systems is the topic of systems theory. One sound,
all-embracing definition for systems theory does not really exist, but Antoulas
[9] has done a nice attempt of summarizing its importance in science and en-
gineering:

“[Let] us attempt to define what is meant by [systems theory]. It is
a science which deals with phenomena whose complexity cannot be
described by simple laws. It is concerned not with the actual world
but with models of the actual world. System[s] theory is not only
descriptive like the natural sciences, but prescriptive as well. This
means that system[s] theory does not only tell us how systems are
(analysis), but how systems should be (synthesis).”

Systems theory is, thus, a science that examines and analyzes behavior, inter-
actions, and properties of complex systems, which are combinations of compo-
nents that act together and perform a certain objective [192]. A system does
not need to be physical, for example an industrial or biological system; the
concept of the system can also be applied to abstract, dynamical phenomena
such as those encountered in economics or sociology [192, 254]. An important
tool in systems theory is a mathematical model of a system. Via these mathe-
matical models, it is possible to describe the dynamical behavior of a system as
a function of, for example, time or space. In turn, these mathematical models
are used in all scientific disciplines to simulate, analyze, monitor, predict, and
control systems [254].
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There are two main roads to construct a mathematical model of a dynamical
system: a rigorous development from first principles (i.e., white box modeling)
or an experimental development from observed input/output data points of
the system (i.e., black box modeling or system identification). While physicists
(and others) are often more interested in the underlying physical laws when
deriving the mathematical models, engineers typically infer model parameters
of a chosen model structure from the available data points. Moreover, it is in a
practical setting not always possible to determine the exact model or the model
could lead to a too complex design. Engineers, therefore, typically resort to
system identification techniques to build their models.

System identification is the field of modeling dynamical systems from mea-
sured data points, or in the words of Ljung [158]:

“Inferring models from observations and studying their properties
is really what science is about. […] System identification deals with
the problem of building mathematical models of dynamical systems
based on observed data from the system.”

There exist many types of model classes that can be considered in such a
system identification attempt, and perhaps even more techniques to obtain the
parameters of these models. In general, an identified model tries to capture
the relations between input, output, and noise. It depends on a set of model
parameters, which are selected to obtain the best fit between the model and
the measured data points. We refer the interested reader to [95, 158, 254] for
an introduction into that subject.

Motivational example. A particular model, which we use throughout
this text as a motivational example, is the autoregressive moving-average
(ARMA) model. This model regresses an observed output sequence yk ∈ R,
for k = 1, . . . , N , on its own lagged values yk−i ∈ R (i = 1, . . . , na) and
on a linear combination of unobserved, latent input samples ek−j ∈ R
(j = 1, . . . , nc):

yk + α1yk−1 + · · ·+ αna
yk−na

= ek + γ1ek−1 + · · ·+ γnc
ek−nc

, (1.1)

where αi and γj are the na + nc model parameters [40]. It is an appropriate
model to describe a system that has its own behavior (i.e., the autoregressive
part) as well as a series of unobserved shocks (i.e., the moving-average part).
For example, stock prices may be shocked/influenced by some random exter-
nal factors, next to the autoregressive financial market indicators [210, 240].
The task of system identification is now in obtaining the model parameters
αi and γj for a given series of N measured data points yk.

From measured data points to seed equations
In our research, we only consider single-input/single-output (SISO), linear
time-invariant (LTI) models, more specifically, misfit-versus-latency models,
which is a broad model class that combines an unobserved, latent input (cf.,
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latency models, like the ARMA model) with a misfit on the input and output
(cf., misfit models, like the output-error (OE) model): an altered input/output
sequence must satisfy the imposed model equation, but this adaptation can be
achieved via a combination of a latent input and a misfit on the input/output
data points [155].

One important objective in our research is the aim for global optimality.
This optimality is captured in finding the global minimizers of the cost func-
tion that describes the fit between the identified model and the measured data
points, while the imposed model equations form the constrains of that opti-
mization problem. For the specific class of misfit-versus-latency models, the
optimization problems that need to be solved are multivariate polynomial op-
timization problems, which are optimization problems in which both the cost
function and the equality constraints are (multivariate) polynomials. The first-
order necessary conditions for optimality (i.e., the Karush–Kuhn–Tucker con-
ditions) correspond to a system of multivariate polynomial equations, the solu-
tions of which are the stationary points of the original cost function under the
constraints [190]. So, the system identification task of finding the globally op-
timal model parameters boils down to the problem of finding the solutions of a
system of multivariate polynomial equations. Furthermore, in our research [70,
71, 259], we have shown that in many cases this multivariate polynomial system
contains a certain structure (e.g., many of the variables only appear “linearly”
in the system) and we have exploited this structure to reformulate the prob-
lem as a (rectangular) MEP. These insights have led to the central research
question of this dissertation:

How do we solve systems of multivariate polynomial equations and
(rectangular) multiparameter eigenvalue problems?

We call multivariate root-finding and multiparameter eigenvalue-
finding the two critical problems of this dissertation.

Central Research Question

The practical need of people for algorithms that solve these two critical prob-
lems is motivated by, for example, the applications from systems theory that
we use as an illustration in this text.

Motivational example. If we retake our motivational example, then the
system identification task is about finding the unknown model parameters
αi and γj of the ARMA model for a given sequence of N output samples
yk, while minimizing the latent inputs ek (i.e., while making sure that the
model fits the measured data points as good as possible). This identification
problem is a multivariate polynomial optimization problem, in which we
minimize the squared 2-norm of the latent input vector e, with the constraint
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that the parameters must satisfy the model constraint in (1.1), i.e.,

min‖e‖22

subject to

na∑
i=0

αiyk−i =

nc∑
j=0

γjek−j ,
(1.2)

for k = 0, . . . , N − na. As we show in Chapter 7, this problem can
be rephrased both as a multivariate polynomial root-finding problem (i.e.,
a system of multivariate polynomial equations) and as a multiparameter
eigenvalue-finding problem (i.e., an MEP). The solution approaches that we
develop in this dissertation need to find very accurate solutions, in order to
retrieve the globally optimal parameters of the ARMA model.

From seed equations to standard eigenvalue problems
In order to solve the two critical, mathematical problems, we have considered
one very special object: the (block) Macaulay matrix. By considering
the univariate/one-parameter and multivariate/multiparameter case of each of
these two problems, they break down into four different seed problems: uni-
variate polynomial equations, multivariate polynomial equations, polynomial
eigenvalue problems, and multiparameter eigenvalue problems. We call them
seed problems because their (seed) equation(s) generate the (block) Macaulay
matrix that solve them. Figure 1.1 highlights the each of these four cases of
the (block) Macaulay matrix.

The block Macaulay matrix is the block (i.e., multiple-output) general-
ization of the well-known Macaulay matrix from algebraic geometry. The
Macaulay matrix, on the one hand, was first introduced in 1902 by Macaulay
[159] and has, since then, become an important tool in the study of multi-
variate polynomials. When dealing with systems of multivariate polynomial
equations, a Macaulay matrix constructed from the coefficients of the polyno-
mials of that system is never too far away. In the univariate case, the Macaulay
matrix reduces to the (banded1) Toeplitz matrix (one univariate polynomial)
or Sylvester matrix (two univariate polynomials). Its fundamental subspaces
(in a linear algebra sense) are intrinsically linked with the properties of the gen-
erating polynomials. On the other hand, the block Macaulay matrix has been
developed within the scope of this dissertation to tackle the rectangular MEPs
that emerged from the problems from systems theory that we were trying to
solve. Instead of (scalar) coefficients, a block Macaulay matrix is constructed
from the coefficient matrices of a rectangular MEP. In that sense, it extends the
(scalar) Macaulay matrix from the multivariate polynomial setting to the MEP
setting. When the eigenvalue problem only contains one spectral parameter,

1In the literature, this type of Toeplitz matrix is often called a banded Toeplitz matrix,
in order to make the distinction with full and circulant Toeplitz matrices. Since we only
consider the banded Toeplitz matrix, which is the univariate simplification of the Macaulay
matrix, we leave out the term “banded” in the remainder of this chapter. This is the same
for the block (banded) Toeplitz matrix.
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(multivariate)
root-finding

(multiparameter)
eigenvalue-finding

Case I: univariate
polynomial equations

Toeplitz matrix

scalar/single

Case III: polynomial
eigenvalue problems

block Toeplitz matrix

block/single

Case II: multivariate
polynomial equations

Macaulay matrix

scalar/multi

Case IV: multiparameter
eigenvalue problems

block Macaulay matrix

block/multi

We can
solve these four

seed equations by
exploiting the shift-

invariant subspaces of
their structured
block Macaulay

matrices

Figure 1.1. Unifying (block) Macaulay framework: the four different appear-
ances of the (block) Macaulay matrix allow us to solve four different cases of
seed problems by exploiting the scalar/block single/multi-shift-invariant sub-
spaces of the structured (block) Macaulay matrices that they generate.

the block Macaulay matrix is a block Toeplitz matrix. In a certain sense, the
Toeplitz matrix, Macaulay matrix, block Toeplitz matrix, and block Macaulay
matrix are four appearances of the same matrix and they constitute, together,
the so-called block Macaulay matrix framework, which allows us to in-
vestigate four different cases of seed problems via a novel, unifying approach
(Section 1.2).

In this text, we take a look at the fundamental subspaces of the (block)
Macaulay matrix to answer some fundamental questions about the seed equa-
tions. In particular, the right null space and column space of the (block)
Macaulay matrix are very interesting, since their structure provides us with
standard eigenvalue problems that yield the solutions of the original seed equa-
tion(s). In that sense, we continue along the approach of Stetter [229]:

“[…] matrix eigenproblems are not just some tool in the solution
of polynomial systems of equations [but] they represent the weakly
nonlinear nucleus to which the original, strongly nonlinear task may
be reduced.”
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However, we deal not only with systems of multivariate polynomial equations:
the (block) Macaulay matrix allows us to also tackle univariate polynomials,
polynomial eigenvalue problems, and rectangular MEPs.

This text dives into the fascinating worlds of (multivariate) polynomials
and (multiparameter) eigenvalues problems, via the novel, (unifying) block
Macaulay matrix approach. Contrary to the above-mentioned approach of
Stetter (which still contains a symbolic step), we consider these problems via a
pure numerical linear algebra point of view, with inspirations from realization
theory, similar as in Dreesen et al. [80]:

“Notice that this [approach] is a system-theoretical interpretation
of Stetter’s eigenvector method, which has been discovered indepen-
dently by several researchers in the 1980s and 1990s. [While these
researchers] employ a Groebner basis approach to find the system
matrices, the proposed method in this article uses a linear algebra
formulation and does not require the computation of a Groebner ba-
sis, and is therefore more reminiscent of matrix-based methods like
the ones of Jónsson and Vavasis [127] and Mourrain [182].”

We only use (numerical) linear algebra techniques, leveraging the many decades
of advancements in that field with respect to computational efficiency and nu-
merical robustness. Our philosophy is identical to that of Batselier [21] and
Dreesen [78]; we extend their pure (numerical) linear algebra methodology in
this dissertation to other seed problems/equations. The algorithms presented
in this text do not always (or necessarily) outperform existing, dedicated meth-
ods, e.g., the homotopy continuation methods for solving systems of multivari-
ate polynomial equations are typically much more efficient than a Macaulay
matrix approach. However, we present a unifying approach that sticks as close
as possible to familiar language of and the well-understood techniques from
(numerical) linear algebra. Furthermore, the seed equation(s) may be obtained
from a noisy experimental setting, which requires taking into account the lim-
ited accuracy of the experiment. This (numerical) linear algebra approach
allows for a careful consideration of the numerical aspects while using finite-
precision arithmetics, contrary to, for example, symbolic methods.

This text uses applications from systems theory as motivational examples
and has the bold ambition to be a starting point to get introduced, from a
(numerical) linear algebra point of view, in the abstract and technical literature
of algebraic geometry and multiparameter spectral theory2. We think that this
block Macaulay matrix framework is also very powerful from a didactical point
of view: mathematicians and engineers with a working knowledge of linear
algebra will easily understand the concepts disseminated in this text and will be

2When writing this text, we have noticed the challenge of citing the original articles cor-
rectly. Sometimes Stigler’s law [233] was just lurking behind the corner, sometimes the
available information was rather scarce or ambiguous. Many of the references cited in sci-
entific papers have not been read by the authors that cited them, leading to a propagation
of errors through the literature [16]. Thanks to digitization of (old) sources, the task of
consulting scientific papers and books has become easier than ever. However, some sources
that have been cited frequently in the literature were not possible to retrieve, and we have
added the “only citation” note to those references in the bibliography.
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able to implement our methods without (a lot of) additional expert knowledge.
We believe that this dissertation3 will open many interesting research challenges
that can (and should) be tackled in the (near) future!

Motivational example. In order to solve the system of multivariate poly-
nomial equations or the rectangular MEP that we encounter when identify-
ing the model parameters of the ARMA model, we use one of the (block)
Macaulay matrix approaches explained in this dissertation:

• The system of multivariate polynomial equations can be tackled via its
associated Macaulay matrix.

• The block Macaulay matrix generated from the (rectangular) MEP can
be used to find the eigenvalues.

Multidimensional realization problems in the right null space or column space
of the (block) Macaulay matrix yield the solutions to the seed equation(s),
one of which corresponds to the global minimizer of the underlying multivari-
ate polynomial optimization problem (1.2). For a given sequence of output
data points, this (numerical) linear algebra approach results in the least-
squares globally optimal ARMA model. A summary of the different steps
needed to tackle this motivational example can be found in Figure 1.2.

1.2 Four block Macaulay matrices
What do “rooting (univariate/systems of multivariate) polynomials” and “solv-
ing (one-parameter/multiparameter) eigenvalue problems” have in common?
They are, in essence, four cases of related seed problems with increasing com-
plexity for which the solution set can be obtained via a shift-invariant subspace
of a structured (block) Macaulay matrix generated from that problem. By con-
sidering all four cases of seed problems in relation to the shift-invariant sub-
spaces of the structured matrices that they generate, we can provide a novel,
unifying block Macaulay matrix approach4, which constitutes the core of this
dissertation. Recall that Figure 1.1 shows how these four cases are connected
through the (block) Macaulay matrix.

3The contributions of this dissertation fit in the scope of the related ERC project (i.e.,
“Back to the roots of data-driven dynamical system identification”) of the candidate’s super-
visor, which aims at connecting, understanding, and using the structured (block) Macaulay
matrix to solve various problems in system identification. This ERC project lives at the in-
terface of algebraic geometry, operator theory, systems theory, and numerical linear algebra.
It combines notions from all four mathematical disciplines to create a coherent framework,
via the (block) Macaulay matrix, that can deal with inexact data. This dissertation, which
was also supported in part by an FWO Strategic Basic Research fellowship, has focussed
on the (numerical) linear algebra part of that interplay, with motivational examples from
systems theory in mind.

4An exposition of the intrinsic connection between these four cases, with numerical exam-
ples, can be found in [69]. The relations between these four cases of problems (and possible
application areas) was also the topic of the candidate’s plenary talk at the 2022 ERNSI
Workshop in System Identification.

https://homes.esat.kuleuven.be/~sistawww/bdm/backtotheroots/
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ARMA

latent input observed output

motivational example

solution approach

minimize misfit
subject to the ARMA model

{pi(x) = 0 : ∀i = 1, . . . , s} M(λ)z = 0

system of multivariate
polynomial equations

M(λ)z = 0

rectangular multiparam-
eter eigenvalue problem

Macaulay matrix block Macaulay matrix

eigenvalue problems that yield the globally optimal parameters

Figure 1.2. Summary of the different steps in (globally optimal) solving the
motivational example of this dissertation: The problem of finding the optimal
parameters of the ARMA model corresponds to a multivariate polynomial opti-
mization problem, which can be rephrased as a system of multivariate polyno-
mial equations or a rectangular MEP. The (block) Macaulay matrix approaches
in this dissertation translate these seed problems into eigenvalue problems that
yield the globally optimal parameters of the motivational problem.
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Each new case adds an additional layer of complexity, but the same steps
to go from the seed equation(s) to the solutions can be taken for each case [69]:
Firstly, we generate additional equations by multiplying the given seed equation
by monomials of increasing degree. We call this process forward shift recur-
sion (FSR), because it generates a (block) Macaulay matrix from this seed
equation(s) by shifting the coefficients or coefficient matrices in a structured
fashion. Next, the right null space of this structured matrix is computed, which
exhibits for each case of seed equation(s) a specific type of shift-invariance. By
exploiting this shift-invariant structure, we finally obtain the solutions via (one
of multiple) multidimensional realization problem(s). This provides a very di-
dactical and unifying approach to tackling these four cases of seed problems.
In essence, it transforms more difficult problems into standard eigenvalue prob-
lems, via multidimensional realization theory, using (numerical) linear algebra
techniques only.

Case I: univariate polynomial equation(s). The first seed equation is
the univariate polynomial equation, e.g.,

p(x) = c0 + c1x+ c2x
2 + c3x

3 = 0. (1.3)

We want to find the roots x|(j) ∈ C, j = 1, . . . , 3, of the polynomial p(x).
Starting from the seed equation (1.3), it is possible to generate new equations
by multiplying p(x) by monomials xα (α is the power of x), i.e.,(

c0 + c1x+ c2x
2 + c3x

3
)
= 0,

x
(
c0 + c1x+ c2x

2 + c3x
3
)
= 0,

x2
(
c0 + c1x+ c2x

2 + c3x
3
)
= 0,

...

(1.4)

This process is called scalar forward single-shift recursion and, when we
gather these equations in a structured matrix, we obtain a Toeplitz matrix.
For the seed equation in (1.3), the Toeplitz matrix has the following structure:


1 x x2 x3 x4 x5

1 c0 c1 c2 c3 0 0
x 0 c0 c1 c2 c3 0

x2 0 0 c0 c1 c2 c3


︸ ︷︷ ︸

Toeplitz matrix T


1
x
x2

x3

x4

x5


︸ ︷︷ ︸

v

= 0. (1.5)

The vector v is a vector in the right null space of this Toeplitz matrix. In
the special structure of v lies the key to solving the univariate polynomial
equation. As we explain in Appendix C, the null space of a Toeplitz matrix
is scalar single-shift-invariant, which means that shifting (i.e., multiplying)
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some elements of v by the variable x results in elements of that vector: 1
x
x2

 x−→

 xx2
x3

. (1.6)

Suppose that we know the three (affine and simple) solutions of (1.3), the
vector v evaluated in the different solutions spans a basis for the right null
space, which means that

V =
[
v|(1) v|(2) v|(3)

]
(1.7)

annihilates T . Shifting the first five rows of V , indicated by V , by the variable
x results in the last five rows of V , indicated by V , or

V

x|(1) 0 0

0 x|(2) 0

0 0 x|(3)

 = V . (1.8)

The eigenvalues of the matrix pencil
(
V ,V

)
are the solutions of (1.3). Of

course, we do not know V in advance, since it is constructed from the unknown
solutions x|(j). In Chapter 2, we show how to overcome this issue, among many
more important details (e.g., how the approach changes when the problem has
multiple solutions or solutions at infinity).

Case II: multivariate polynomial equations. When we consider a sys-
tem of multivariate polynomial equations, the polynomials consist of two
or more variables. For example,{

p1(x) = c00 + c10x1 + c01x2 = 0,

p2(x) = d00 + d20x
2
1 + d02x

2
2 = 0,

(1.9)

is a system of two bivariate polynomial equations. Similar to Case I, we gen-
erate new (multivariate) polynomial equations by multiplying p1(x) and p2(x)
with monomials of increasing total degree (Section 2.2.1), i.e.,

1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, . . . , (1.10)

and obtain a structured matrix, also known as the Macaulay matrix. For
the seed equations in (1.9), the Macaulay matrix has the following structure:


1 x1 x2 x2

1 x1x2 x2
2

1 c00 c10 c01 0 0 0
x1 0 c00 c10 c01 0 0
x2 0 0 c00 0 c10 c01
1 d00 0 0 d20 0 d02


︸ ︷︷ ︸

Macaulay matrix M


1
x1
x2
x21
x1x2
x22


︸ ︷︷ ︸

v

= 0. (1.11)
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We call this process scalar forward multi-shift recursion, because shifts
in multiple variables of the coefficients generate the pattern of the Macaulay
matrix. The structure of the null space now can be shifted by two different
variables instead of only one: x1

x21
x1x2

 x1←−

 1
x1
x2

 x2−→

 x2
x1x2
x22

. (1.12)

Therefore, we call the right null space of the Macaulay matrix scalar multi-
shift-invariant. In Chapter 2, we exploit this shift-invariance to solve systems
of multivariate polynomial equations. Not only its right null space, but also
the column space of the Macaulay matrix allows us to retrieve the common
roots of the generating seed polynomials (Section 2.5).

Case III: polynomial eigenvalue problems. The third case leaves the
field of algebraic geometry and enters the area of linear algebra. The polyno-
mial eigenvalue problem, for example,

M(λ)z =
(
A0 +A1λ+A2λ

2 +A3λ
3
)
z = 0, (1.13)

consists in finding the scalars λ and non-zero vectors z that solve this matrix
equation. Evidently, we can multiply (1.13) with monomials λα of increas-
ing degree (i.e., 1, λ, λ2, λ3, . . . ). The structured matrix that corresponds to
this block forwards single-shift recursion is the so-called block Toeplitz
matrix. For example, for (1.13),


1 λz λ2z λ3z λ4z λ5z

1 A0 A1 A2 A3 0 0
λ 0 A0 A1 A2 A3 0

λ2 0 0 A0 A1 A2 A3


︸ ︷︷ ︸

block Toeplitz matrix T


z
λz
λ2z
λ3z
λ4z
λ5z


︸ ︷︷ ︸

v

= 0, (1.14)

which is the same as (1.5) but with coefficient matrices instead of (scalar)
coefficients. While the right null space of the Toeplitz matrix is scalar single-
shift-invariant, the block Toeplitz matrix has a block single-shift-invariant
right null space, meaning that entire block rows can be shifted (instead of rows): z

λz
λ2z

 λ−→

 zλ
λ2z
λ3z

. (1.15)

Chapter 3 dives deeper into the extension of scalar shifts to block shifts.

Case IV: multiparameter eigenvalue problems. Finally, the most gen-
eral problem that fits into this block Macaulay matrix is the rectangular
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MEP. The rectangular MEP is discussed in-depth in Section 3.2. A linear
rectangular two-parameter eigenvalue problem is given by

M(λ)z = (A00 +A10λ1 +A01λ2)z = 0, (1.16)

where we search for the eigenvalues λ and non-zero eigenvectors z that solve this
matrix equation. The corresponding FSR consists of multivariate monomials
λω and we speak about the block forward multi-shift-recursion, because
the shifts of the coefficient matrices with the different eigenvalues generate the
pattern of the corresponding block Macaulay matrix. For the seed equation
in (1.16), the block Macaulay matrix has the following structure:


1 λ1z λ2z λ2

1z λ1λ2z λ2
2z

1 A00 A10 A01 0 0 0
λ1 0 A00 0 A10 A01 0
λ2 0 0 A00 0 A10 A01


︸ ︷︷ ︸

block Macaulay matrix M


z
λ1z
λ2z
λ21z
λ1λ2z
λ22z


︸ ︷︷ ︸

v

= 0. (1.17)

The block Macaulay matrix enforces its right null space to have a block multi-
shift-invariant structure, which combines the block single-shift-invariant struc-
ture of the block Toeplitz matrix with the scalar multi-shift-invariant structure
of the Macaulay matrix. For example, the structure of the right null space of
the block Macaulay matrix in (1.17) gives the following shift options: λ1z

λ21z
λ1λ2z

 λ1←−

 z
λ1z
λ2z

 λ2−→

 λ2z
λ1λ2z
λ22z

. (1.18)

The shift-invariance of the right null space and column space of the block
Macaulay matrix is exploited in Chapter 3, in order to solve rectangular MEPs.

1.3 Research objectives
The central research question of this dissertation is twofold; it is about mul-
tivariate root-finding and multiparameter eigenvalue-finding. Before mapping
both critical, mathematical problems into clear research objectives (ROs) that
we want to tackle in this dissertation, we need to phrase these two problems
more rigorously.

Multivariate root-finding. Let Pn = C[x1, . . . , xn] denote the ring of n-
variate polynomials with coefficients in C. A polynomial p(x) is an element of
this ring and defines a function (summation runs over non-zero coefficients cα)

p : Cn → C : x 7→ p(x) =
∑
cα 6=0

cαx
α (1.19)
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that maps a point from the affine space Cn onto a function value, with complex
coefficients cα ∈ C. Given s elements p1(x), . . . , ps(x) ∈ Pn, we define the map

S : Cn → Cs : x 7→ (p1(x), . . . , ps(x)). (1.20)

We are interested in the pre-image of the origin in Cs under this map,

S−1(0) = {x ∈ Cn : S(x) = 0}, (1.21)

which are the common roots of the polynomials. Therefore, S−1(0) is called
the set of solutions of the system of polynomial equations defined by these poly-
nomials. In this context, by multivariate root-finding, we mean computing
S−1(0).

Multiparameter eigenvalue-finding. Consider an n-variate polynomial
matrix pencil (summation runs over all non-zero coefficient matrices Aω):

M : Cn → Ck×l : λ 7→M(λ) =
∑

Aω 6=0

Aωλ
ω, (1.22)

that maps a point from the affine space Cn onto a matrix value, with matrices
Aω ∈ Ck×l and k ≥ l+n−1. Similar to the multivariate root-finding problem,
we can define another map

S ′ : Cn ×
(
Cl \ {0}

)
→ Ck : (λ, z) 7→M(λ)z. (1.23)

We are interested in the pre-image of the origin in Ck under this map,

S ′−1(0) =
{
(λ, z) ∈ Cn ×

(
Cl \ {0}

)
: M(λ)z = 0

}
. (1.24)

This set consists of all pairs that satisfy the relation M(λ)z = 0, which are
called eigenpairs. Note that this set is always infinite, because the eigenvectors
z associated to an eigenvalue λ span an eigenspace. We are only interested
in the basis vectors for the eigenspace associated with every eigenvalue λ. To
alleviate this issue, we formulate a different map

S : Cn → Sk×l : λ 7→M(λ), (1.25)

where Sk×l is the subspace of rank deficient matrices in Ck×l. We are interested
in the pre-image of Sk×l under this map,

S−1(0) = {λ ∈ Cn : M(λ) is rank deficient}. (1.26)

Therefore, S−1(0) is called the set of eigenvalues of the MEP defined by this
matrix polynomial. In this context, by multiparameter eigenvalue-finding,
we mean computing S−1(0). To obtain S ′−1(0), a basis for the eigenspace
associated with every λ has to be computed.
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What does “solving” mean? For both mathematical problems, we have
to ask ourselves what does “solving” mean? The answer is not that simple!
There are some issues when “solving” both problems:

• The set S−1(0) may be infinite.

• There may be no algorithm that computes the coordinates of S−1(0)
exactly in finite time.

In this dissertation, we (mainly) consider problems where the solution set is
finite, i.e., zero-dimensional. The text formulates necessary conditions for both
fundamental problems to have a zero-dimensional solution set. The second
issue means that there is no hope for developing algorithms for computing the
coordinates of the solutions of one of the two fundamental problems exactly in
finite time5. Motivated by this, by “solving”, we mean computing satisfactory
approximations of the coordinates of the solutions of each of the mathematical
problems via numerical algorithms. To determine whether an approximation
is satisfactory, we introduce error measurements later on in this text.

Different research objectives. Now, we give an overview of the different
ROs considered in this dissertation and explain how the two parts of the central
research question return in every RO6. The outline in Section 1.5 relates these
ROs to the corresponding chapters and publications. We want to stress that
every RO can be mapped onto one of the obtained research contributions (RCs):
every ROx.y leads to an RCx.y (Section 8.1).

RO1: Unifying (block) Macaulay matrix approach
The obvious first step to extend the Macaulay matrix to the block Macaulay
matrix and to develop the so-called unifying (block) Macaulay matrix approach.
This quest is the subject of the first research objective (RO1). The goal is to
obtain a unifying approach to tackle both systems of multivariate polynomials
and rectangular MEPs. The desired result of this RO is very straightforward:
develop novel approaches to tackle the four seed problems of Section 1.2. We
want to establish connections between the four seed equations and (better) un-
derstand the unifying (block) Macaulay matrix. This results into three smaller,
more specific, ROs: RO1.1, RO1.2, and RO1.3.

Create the unifying (block) Macaulay matrix framework and de-
velop novel algorithms to solve the different seed problems.R

O
1

5In the case of the univariate root-finding problem, for example, it is known that there
does not always exist an expression in radicals to determine the solutions of the polynomial
equations.

6Notice that the color of every RO agrees with the mathematical problem that it be-
longs to: red has to do with multivariate root-finding, green is related to multiparameter
eigenvalue-finding, and blue combines aspects from both problems.
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For multivariate root-finding, the (numerical) linear algebra connection be-
tween the seed equations and the Macaulay matrix has already been established
by Batselier [21] and Dreesen [78]. However, leveraging other aspects of this
connection, together with new insights from numerical linear algebra, should
provide us with better understanding and novel algorithms.

Create new Macaulay matrix algorithms to solve systems of mul-
tivariate polynomials more efficiently.

R
O

1.
1

While (multivariate) polynomials are intimately linked with the Macaulay
matrix, much less is known about rectangular MEPs. These problems have
not yet penetrated the linear algebra community as much as the well-known
one-parameter eigenvalue problems, although they are a quite natural general-
ization. Moreover, multiparameter spectral theory typically (except for some
scarce exceptions, e.g., [118, 134, 216]) only considers square formulations of
the MEP. Therefore, we want to formalize the rectangular MEP and explore
its properties rigorously in this RO. By extending the Macaulay matrix to the
block Macaulay matrix, we aim to develop tools for solving this type of prob-
lems. Together with the existing Macaulay matrix, this extension will create
the necessary tools for a unifying (block) Macaulay matrix approach.

Extend the Macaulay matrix to the block Macaulay matrix in
order to solve polynomial rectangular MEPs.

R
O

1.
2

While we approach the Macaulay matrix mainly from a multivariate poly-
nomial system solving perspective, and hence, not consider all the fundamental
subspaces of this important matrix, we still want to create a better understand-
ing of this matrix. Therefore, an investigation from a linear algebra point of
view must shed some light on the connections between the fundamental sub-
spaces of the Macaulay matrix and the (algebraic geometry) properties of its
generating polynomials. The goal is to create a complete overview of the known
(and a few new) connections.

Explore the different fundamental subspaces of the Macaulay ma-
trix and relate them to the generating polynomials.

R
O

1.
3

RO2: Efficient (block) Macaulay matrix software
While the theoretical development of the (block) Macaulay matrix provides a
nice tool to investigate a wide variety of problems, off-the-shelf implementations
of (block) Macaulay matrix algorithms are limited to small toy problems. To
tackle more interesting problems, we need efficient algorithms collected in a co-
herent, user-friendly toolbox. This is the topic of the second research objective
(RO2), which breaks up into two smaller ROs: RO2.1 and RO2.2.
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Develop efficient and reliable algorithms for the (block) Macaulay
matrix approaches.R

O
2

The first step towards this toolbox is the adaptation of the naive algorithms
into algorithms that exploit the sparsity and structure of the (block) Macaulay
matrix. This is a necessary step to improve the computation time and memory
usage. Batselier et al. [22] have already developed a recursive approach to
compute the right null space of a (scalar) Macaulay matrix, but in this RO
we want to create more efficient algorithms and deal with the block Macaulay
matrix.

Exploit sparsity and structure in the (block) Macaulay matrix to
improve computation time and memory usage.

R
O

2.
1

The second step is to combine all the developed algorithms into a software
toolbox that is user-friendly and fast. This requires a careful implementation
of the available and new algorithms, while keeping user-friendliness in mind.

Combine all advancements in one coherent software toolbox that
is user-friendly and fast.

R
O

2.
2

RO3: Applications from systems theory
Finally, we want to leverage the gained insights and use the novel (block)
Macaulay matrix algorithms that we develop in RO1 and RO2 to tackle the
problems that emerge in applications, for example from systems theory. These
applications have, in a certain sense, created the need for (block) Macaulay
matrix algorithms. In the third research objective (RO3), we deal with ap-
plications in a globally optimal way, leveraging the fact that we work with
accurate tools from (numerical) linear algebra. We consider three specific key
examples:

• Rephrasing the multivariate polynomial optimization problem in complex
variables as a rectangular MEP.

• Finding the globally optimal H2-norm reduced-order model from a high-
order SISO LTI model.

• Identifying the globally optimal least-squares model parameters of misfit-
versus-latency models (cf., the motivational example in Section 1.1).

The overarching question of RO3 is “Can we retrieve globally optimal solu-
tions for these key examples from systems theory?” To answer this question
positively, we rephrase the problems as a system of multivariate polynomial
equations or rectangular MEP. As it turns out, the reformulation as a rectan-
gular MEP has certain advantages.
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Use the novel (block) Macaulay matrix algorithms to tackle prob-
lems from systems theory with global optimality in mind.R

O
3

1.4 MacaulayLab: About the implementation
An essential deliverable of this dissertation is the software that has been de-
veloped in parallel with the theoretical research. The new algorithms that
have been developed in this dissertation (but also adaptations of some existing
algorithms) are implemented in MacaulayLab, which is a toolbox entirely writ-
ten in Matlab. The current version of the toolbox contains almost 8000 lines
of code and uses (block) Macaulay matrices to solve systems of multivariate
polynomial equations and rectangular MEPs, using well-established numeri-
cal linear algebra tools in floating-point arithmetics (for example, the singular
value, eigenvalue and QR decomposition). Some features of MacaulayLab are:

• iterative, recursive, and sparse algorithms to solve the four seed problems;

• a monomial ordering and polynomial basis independent implementation
(the user can decide to work in the standard monomial basis, the Cheby-
shev polynomial basis, or in his/her own polynomial basis);

• different approaches to determine upper bounds on the number of (affine)
solutions; and

• a database with many examples and benchmark problems.

Chapter 6 discusses the different capabilities and implementation of the toolbox
in more detail. It also positions the toolbox with respect to other solvers
available in Matlab.

In this text, (numerical) examples are often accompanied by a code block
that contains the necessary steps to replicate the results with MacaulayLab.
Matlab functions, like macaulay , are also highlighted in the body of the text
to differentiate them from other words. We want to encourage the reader to
experiment with the available toolbox.

Code 1.1. This is an example of a code block, in which the Matlab code is
highlighted in green. Typically, the code block also contains some additional
information about the involved functions or expected result.

>> M = macaulay(toy1,3);
>> size(M)

ans =
9 10
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MacaulayLab is available at www.macaulaylab.net and we provide the user-
manual of the toolbox in Appendix D. All numerical examples presented in
this dissertation are performed on a MacBook Pro that has an M1 CPU (2020)
working at 3.2GHz (8 cores) and 16GB random-access memory (RAM) or on a
Red Hat Enterprise Linux server infrastructure with 177 nodes that have each
two Intel Xeon Platinum 8360Y CPUs working at 2.4GHz (36 Ice Lake cores
each) and 256GB RAM (or 2048GB RAM for the “big memory nodes”). We
only used the server infrastructure for large-scale experiments. We indicate
results obtained via these high-performance nodes always with the symbol ♣.

1.5 Outline of the dissertation
Now, we give the outline of the dissertation and summarize the content of each
of the next chapters. The body of the text is organized into three different
parts: Part I: Fundamentals, Part II: Algorithms, and Part III: Applications.
Figure 1.3 contains a schematic overview of the different chapters, in which
links between chapters (and appendices) are indicated by (dashed) arrows. The
tackled ROs are also indicated per chapter. Most of the chapters are derived
from (one or multiple) published articles, for that reason every chapter is rather
self-containing. Note that in some chapters, for the sake of readability, some of
the historical information and additional references are moved to a dedicated
historical and bibliographical notes section.

Part I: Fundamentals
The first part of the dissertation develops the novel, unifying block Macaulay
matrix approach (RO1). It considers the four cases of seed problems that we
want to tackle in this dissertation: (univariate and multivariate) polynomial
equations in Chapter 2 and (one-parameter and multiparameter) eigenvalue
problems in Chapter 3. Both chapters formalize the problems clearly, set the
required notation, and provide the necessary tools, like important definitions
and theorems, to tackle them. Chapters 2 and 3 develop (block) Macaulay
matrix approaches to solve these seed problems. Furthermore, the algebraic
properties of the different fundamental subspaces of the Macaulay matrix are
investigated, from a linear algebra point of view, in Chapter 4.

• In Chapter 2, we revisit the Macaulay matrix and discuss some of its
properties. We focus on the right null space and column space to solve
systems of multivariate polynomial equations, using numerical linear al-
gebra tools only (RO1.1).

(article relevant for this chapter: [258])

• Afterwards, in Chapter 3, we investigate the rectangular MEP and extend
the Macaulay matrix to the block Macaulay matrix. We propose two
novel algorithms to solve rectangular MEPs (RO1.2).

(article relevant for this chapter: [261])

www.macaulaylab.net


24 Chapter 1. Introduction and Outline

Chapter 1
Introduction and Outline

P
art

I:
Fundam

entals

C
hapter

2
R

oot-F
inding

via
the

M
acaulay

M
atrix

C
hapter

3
E

igenvalue-F
inding

via
the

B
lock

M
acaulay

M
atrix

C
hapter

4
Fundam

entalSubspaces
ofthe

M
acaulay

M
atrix

P
art

II:
A

lgorithm
s

C
hapter

5
R

ecursive
A

lgorithm
s

for
the

(B
lock)

M
acaulay

M
atrix

C
hapter

6
M

acaulayLab:
A

bout
the

Im
plem

entation

P
art

III:
A

pplications

C
hapter

7
A

pplications
in

System
s

T
heory

C
om

plex
optim

ization

M
odelorder

reduction

System
identification

Chapter 8
Conclusion and Future Work

A
ppendix

A
A

lgebraic
G

eom
etry

and
C

om
m

utative
A

lgebra

A
ppendix

B
N

um
ericalLinear

A
lgebra

A
ppendix

C
System

s
T

heory
and

Shift-Invariant
Subspaces

A
ppendix

D
U

ser-M
anualofthe

M
acaulayLab

Toolbox

R
O

1.1

R
O

1.2

R
O

1.3

R
O

2.1

R
O

2.2

R
O

3

F
igure

1.3.
O

verview
ofthe

the
different

chapters
ofthis

dissertation.
T

he
dashed

arrow
s

indicate
the

link
betw

een
the

different
parts

ofthe
text,w

hile
the

fullarrow
s

propose
a

naturalreading
order

ofthe
chapters.



Section 1.5. Outline of the dissertation 25

• Chapter 4 summarizes the algebraic properties of the polynomials that
are hiding in the different fundamental subspaces of the Macaulay matrix
(RO1.3).

Part II: Algorithms
• Chapter 5 contains recursive algorithms to update a numerical basis ma-

trix of the null space of the block row, block Toeplitz, and block Macaulay
matrix. These recursive algorithms give rise to double recursive (block)
Macaulay matrix algorithms to deal with systems of multivariate poly-
nomial equations and MEPs. The techniques from this chapter help to
exploit the sparsity and structure in the (block) Macaulay matrix, leading
to more efficient solution algorithms (RO2.1).

(articles relevant for this chapter: [260, 262])

• Chapter 6 gives an overview of the MacaulayLab toolbox; its structure,
the most important implementation decisions capabilities, a comparison
with other Matlab toolboxes, and the test database (RO2.2).

(technical report relevant for this chapter: [257])

Part III: Applications
The third part of the text applies the algorithms described above to applications
in systems theory (RO3). These are the applications that have pushed us in
the direction of algebraic geometry and multiparameter spectral theory. The
insights we gain and algorithms we develop in Parts I and II are essential
tools to solve the resulting systems of multivariate polynomial equations and
rectangular MEPs. In Chapter 7, we give an overview of a wide range of
problems from various scientific domains that can be phrased as a system of
multivariate polynomial equations or an eigenvalue problem, but we focus on
three key examples from systems theory in particular (RO3). Although each
of the globally optimal methodologies is a very interesting research problem in
its own right, we consider them here as motivational examples to evaluate the
contributions from Parts I and II.

• In essence, many of the problems in systems theory are multivariate poly-
nomial optimization problems. Therefore, we consider multivariate poly-
nomial optimization problems and show how to deal with real-valued
polynomial cost functions in complex variables. We extend the relation
between complex polynomial optimization of univariate polynomial cost
functions and polynomial eigenvalue problems to the multivariate case (a
rectangular MEP).

(article relevant for this section: [263])
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• Next, we show a reformulation of the H2-norm optimal model order re-
duction problem of SISO LTI high-order models into a rectangular MEP.
While the original article ends up with an inhomogeneous rectangular
MEP, we show that the globally optimal reduced-order model can be
found as one of the eigenvalues of a homogeneous rectangular MEP, al-
lowing us to use the algorithms from Chapter 3.

(article relevant for this section: [3])

• Lastly, we consider least-squares system identification problems that can
be rephrased as rectangular MEPs. We deal with misfit-versus-latency
models, but the focus of Chapter 7 is on ARMA models.

(articles relevant for this section: [152, 259])

Conclusion and Appendices
Afterwards, Chapter 8 summarizes the different RCs of this dissertation and
points at ideas for future work. The text is supported by four appendices that
contain additional, but non-essential, material.

• In Appendix A, we provide the reader with a rehearsal of some relevant
concepts from algebraic geometry and commutative algebra can be en-
countered in the text.

• The essential tools from numerical linear algebra are summarized in Ap-
pendix B.

• Appendix C discusses the concept of (backward) shift-invariance in-depth,
an important notion within the block Macaulay matrix framework.

• Finally, Appendix D contains the user-manual of MacaulayLab, the soft-
ware toolbox that has been developed in parallel with the theoretical
research in this dissertation.
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Root-Finding via the
Macaulay Matrix

We revisit the intricate relation between multivariate polynomials and the
Macaulay matrix that is constructed from the coefficients of these polynomi-
als. While each of the four fundamental subspaces of the Macaulay matrix
has a profound algebraic connection with its generating polynomials, the focus
of this chapter is solely on the right null space and column space, since they
provide a way to retrieve the common roots of the system of multivariate poly-
nomials. These common roots often play an important role in applications, for
example, when identifying the globally optimal parameters of an autoregressive
moving-average model.

The right null space and column space of the Macaulay matrix enable nu-
merical linear algebra algorithms to solve the system of multivariate polynomial
equations that generates this Macaulay matrix. We show in this chapter how
a multidimensional realization problem in the right null space of the Macaulay
matrix results in one (or multiple) eigenvalue problem(s), the eigenvalues and
eigenvectors of which yield the solutions of the polynomial equations. We also
develop a complementary solution approach, which considers the column space
of the Macaulay matrix instead of its right null space. This chapter includes
an in-depth discussion of the different aspects of multivariate root-finding via
the Macaulay matrix.
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Contribution. Our main contribution is a novel, complementary approach
that finds the common roots of a system of multivariate polynomials from the
information in the column space of the Macaulay matrix, without computing
a numerical basis matrix of its right null space.

Relevant article. This chapter is an adaptation of [258]. The candidate was
the main author of the original article, developed the theoretical contributions,
and implemented the accompanying code and experiments. This chapter differs
in several parts from the original article, in order to give a more complete and
didactic overview.

Outline. Firstly, in Section 2.1, we introduce the problem of multivariate
root-finding and sketch the current state-of-the-art. Section 2.2, subsequently,
contains a summary about multivariate polynomials and their most important
properties, i.e., the algebraic geometry concepts that are used throughout the
remainder of the text. Afterwards, we rigorously define the Macaulay matrix
and highlight two of its four fundamental subspaces in Section 2.3. We show
how to solve systems of multivariate polynomial equations using the right null
space of the Macaulay matrix in Section 2.4, and we translate this multivariate
system solving approach to the column space in Section 2.5. Section 2.6 in-
cludes several extensions to both multivariate root-finding approaches. Finally,
in Section 2.7, we conclude this chapter and point at ideas for future research.
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2.1 Introduction

Determining the roots of a univariate polynomial or the common roots of a
system of multivariate polynomials is a very old problem [66, 194]. It has a
long and rich history that can be traced back to the Ancient Near East. For ex-
ample, the Babylonians and Egyptians (about 2000 B.C.) already solved linear
and quadratic equations by methods similar to those we teach to high school
students today [194]. The difficulty of the equations and the performance of the
solution approaches have evolved a lot since then. Because many problems in
science and engineering require some kind of mathematical modeling step and
(multivariate) polynomials provide a natural tool for doing this, they appear
in a myriad of today’s applications, e.g., in robotics, economics, computational
chemistry and biology, computer vision, and systems theory. Section 7.2.1 con-
tains a more elaborate overview of possible application domains with examples.
Also in this dissertation, we study multivariate1 polynomials, in particular the
numerical linear algebra methods that find their common roots.

Within mathematics, algebraic geometry is the branch that studies (multi-
variate) polynomial equations and varieties, which are the geometrical objects
defined by the zero sets of these polynomials [66]. The roots of algebraic geom-
etry go back to Descartes’ introduction of coordinates to describe points in the
Euclidean space and the idea in his book La Géométrie of describing curves and
surfaces by algebraic equations [66, 75, 211]. For most of the 19th and 20th
century, the main focus of algebraic geometry was more on abstract algebra
than on polynomial system solving, resulting powerful general theorems and
striking conjectures [66].

Although the centuries of advancements in the field had developed a de-
tailed understanding of many specific examples, the symbolic tools available
at that time were unfeasible for polynomial systems coming from applications,
due to the scale of such problems and the inexact nature of the coefficients of
the polynomials. The scale of the problems would require too much time for
the symbolic tools to terminate, while the inexact coefficients in measurements
would result in very large integers when represented as rational numbers. This
clearly establishes the need for more robust numerical algorithms that pro-
duce reliable results in floating-point arithmetic. Surprisingly, there was not
much attention for these numerical algorithms until the second half of the 20th
century, when the development of Buchberger’s algorithm sparked a renewed
interest in the computational aspects of algebraic geometry [66, 242]. Also
from numerical analysis and numerical linear algebra, new algorithms for mul-
tivariate polynomial system solving have emerged since the end of the previous
century [78, 194].

1The problem of solving a multivariate polynomial system has two very recognizable spe-
cial cases: univariate polynomial equations (in which the number of variables and polynomial
equations is equal to one) and systems of multivariate linear equations (in which the total
degree of every equation is equal to one). Both special cases are linear algebra problems and
there exist dedicated solution methods that can tackle very large problem instances. Note
that the Macaulay matrix approaches presented in this chapter could also be used to tackle
these two special cases.
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Multivariate polynomial system solving
Typically, multivariate polynomial system solving approaches are divided into
two classes of methods: (i) algebraic root-finding methods transform the poly-
nomials into a univariate root-finding problem or eigenvalue problem via alge-
braic manipulations, while (ii) iterative root-finding methods employ numerical
techniques to identify (some of) the solutions. A more elaborate overview can
be found in the “historical and bibliographical notes” of this chapter.

Algebraic root-finding methods

These methods use algebraic operations to deduce the structure of the quotient
ring described by the system of multivariate polynomials, which contains the
common roots of these polynomials. One way to uncover this structure is via
a Gröbner basis. The methods of Faugère [88, 89] and their extensions are
currently the most efficient methods to compute a Gröbner basis. Gröbner
bases have dominated computer algebra since their inception, but remain com-
putationally very expensive and are based upon infinite precision (symbolic)
computations and, therefore, employ rational numbers. This often results in
huge coefficients (for example, coefficients with tens or hundreds of digits),
which means that their extensions to floating-point arithmetic are known to
be rather cumbersome [138, 230]. The numerical instability of Gröbner basis
computations have limited their use in a numerical context [242]. This major
drawback has motivated the introduction of border bases [14, 181] and trun-
cated normal forms [185, 243], which greatly improve the numerical stability.

Another algebraic way to solve multivariate polynomial equations is by us-
ing (numerical) linear algebra operations to deduce the structure of the quotient
ring. This approach finds its origin with the work on resultants in the 18th
and 19th century, but has been neglected in most of the algebraic geometry
literature until the work of Lazard and Stetter (and coworkers) during the
1980s: Lazard [153, 154] observed the resemblance between Buchberger’s al-
gorithm and Gaussian elimination of a Macaulay matrix, while Auzinger and
Stetter [14] rigorously established the connection between multivariate polyno-
mial system solving and eigenvalue decompositions. This was further explored
by, among others, Corless et al. [61], Emiris and Mourrain [87], Hanzon and Ji-
betean [106], Mourrain and Pan [183], and Stetter [229]. However, Stetter [230]
observed that, at that time, the only way to obtain the common roots of mul-
tivariate polynomials as the eigenvalues of a matrix using commonly available
software was via Gröbner basis methods. Hence, the approach was partially
symbolic of nature. Batselier, De Moor, and Dreesen [21, 78, 80] have over-
come this hurdle and developed a pure (numerical) linear algebra approach to
multivariate root-finding, using the right null space of a rectangular Macaulay
matrix.

Iterative root-finding methods

Iterative root-finding methods, e.g., Newton and quasi-Newton methods, do not
suffer from the floating-point issues that Gröbner basis computations experi-
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ence, but are heuristic: they do not guarantee to find the correct solutions and
strongly depend on their initial guesses. One particular type of iterative algo-
rithms to solve systems of multivariate polynomial equations are the homotopy
continuation methods, which employ a hybrid mixture of techniques from alge-
braic geometry and nonlinear optimization to continuously deform a starting
system with known solutions into the required system with unknown solutions,
while tracking the solutions [157, 265]). Homotopy continuation methods are
inherently parallel, i.e., each isolated solution can be computed independently.
They are currently among the most competitive algorithms to solve systems
of multivariate polynomial equations, although issues with ill-conditioning still
exist (i.e., path jumping). Their main disadvantage is that they only work for
square systems, in which the number of equations is equal to the number of
variables.

Another type of iterative root-finding methods are subdivision methods,
which employ domain reductions for an iterative refinement of the subregions
where the common roots of the multivariate polynomials may be located [184].

A numerical Macaulay matrix perspective
In this chapter, we (re-)consider the intimate link between multivariate poly-
nomial equations and linear algebra. We tackle the multivariate root-finding
problem via the Macaulay matrix, as set out in Section 1.3:

We present numerical linear algebra approaches to find the common
roots of a system of multivariate polynomials, where we assume that
the set of common roots is zero-dimensional. These approaches aim
to compute satisfactory approximations of the coordinates of the
common roots in the affine (complex) space.

The central object of this chapter is the Macaulay matrix, a sparse and struc-
tured matrix that is constructed from the coefficients of multivariate polyno-
mials. Macaulay [159, 160] introduced this matrix for the first time in 1902
in the context of resultant theory, generalizing earlier work done by Sylvester
[239]. Each of the four fundamental subspaces of the Macaulay matrix has a
profound algebraic connection with the multivariate polynomials that generate
that matrix, but, in this chapter, we focus solely on the right null space and
column space, since they enable numerical linear algebra approaches to retrieve
the common roots of the polynomial system.

We revisit the multivariate root-finding approach via right null space of the
Macaulay matrix, which has originally been formulated by Batselier, De Moor,
and Dreesen [21, 78, 80], in a clear and didactic fashion. A multidimensional re-
alization problem in that right null space results in one (or multiple) eigenvalue
problem(s), the eigenvalues and eigenvectors of which yield the common roots
of the multivariate polynomials that generate the Macaulay matrix. Recently,
we have shown that it is also possible to retrieve the common roots from an
equivalent multidimensional realization problem in the column space of that
Macaulay matrix [258]. Both numerical linear algebra approaches rely on the
decades of advancements in numerical linear algebra, using well-established
floating-point algorithms to compute the necessary (intermediate) results.
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Motivational example. As already mentioned in Section 1.1, the prob-
lem of finding the globally optimal parameters of the autoregressive moving-
average (ARMA) model corresponds to solving a system of multivariate poly-
nomial equations (Section 7.5). Indeed, a multivariate polynomial optimiza-
tion problem can be cast as a polynomial system via the Lagrangian [190].
For example, if we consider a sequence of N = 4 output samples yk ∈ R and
a first-order ARMA model, then we can rewrite (1.2) via the Lagrangian as
a system of s = 9 polynomial equations in n = 9 variables,

x̂ = (α, γ, e1, e2, e3, e4, l1, l2, l3), (2.1)

where li ∈ C are the Lagrange multipliers. The corresponding polynomial
system that yields the optimal first-order ARMA model for the given output
sequence (after eliminating the latent input samples ek) is

p1(x) = y2 + α1y1 + 4l1 + 4γ1l2 + 4γ21 l1 = 0,

p2(x) = y3 + α1y2 + 4l2 + 4γ1l3 + 4γ21 l2 + 4γ1l1 = 0,

p3(x) = y4 + α1y3 + 4l3 + 4γ1l2 + 4γ21 l3 = 0,

p4(x) = γ1l
2
1 + γ1l

2
2 + l1l2 + γ1l

2
3 + l2l3 = 0,

p5(x) = y1l1 + y2l2 + y3l3 = 0,

(2.2)

where the n = 5 variables are

x = (α, γ, l1, l2, l3). (2.3)

We describe in this chapter numerical linear algebra approaches to solve such
a polynomial system.

2.2 Multivariate polynomials
A multivariate polynomial consists of a finite number of monomials.

Definition 2.1. A monomial in n variables x1, . . . , xn is the power product

xα =

n∏
i=1

xαi
i = xα1

1 · · ·xαn
n , (2.4)

where the multi-index α = (α1, . . . , αn) ∈ Nn is an n-tuple of nonnegative
exponents and |α| =

∑n
i=1 αi is the total degree of the monomial xα.

Example 2.1. Some examples of monomials are:

• in one variable, x2 corresponds to α = (2), with |α| = 2;
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• in two variables, x31x42 corresponds to α = (3, 4), with |α| = 7; and

• in three variables, x21x83 corresponds to α = (2, 0, 8), with |α| = 10.

Note that x0 = 1 corresponds to α = (0, . . . , 0).

Definition 2.2. The set of all monomials in n variables is indicated by
Cn, while Cnd ⊂ Cn denotes the set of all the monomials in n variables with
total degree ≤ d.

A complex multivariate polynomial is a finite linear combination of different
monomials with complex coefficients.

Definition 2.3. A complex multivariate polynomial p(x1, . . . , xn), or
p(x), in n variables is a finite linear combination of monomials xα ∈ Cn with
coefficients cα ∈ C:

p(x) =
∑
A
cαx

α, (2.5)

where the summation runs over all the multi-indices α in the set A.

The set A = {α : cα 6= 0} ⊂ Nn contains all multi-indices α present in p(x)
(i.e., all the multi-indices with non-vanishing coefficient cα). This set A =
supp(p(x)) is called the support of p(x). The total degree of a (complex)
multivariate polynomial, denoted by deg(p(x)), corresponds to the maximum
total degree of the monomials in its support. Notice that different (complex)
multivariate polynomials can have the same support.

Example 2.2. Consider the complex multivariate polynomial

p1(x) = 1 + 2x21x2 + 3x1x
2
2, (2.6)

which has a total degree equal to 3 and its support is

A = {(0, 0), (2, 1), (1, 2)}. (2.7)

Every tuple (i, j) in A corresponds to a monomial xi1x
j
2. The complex mul-

tivariate polynomial

p2(x) = 3i + 10x21x2 + (3 + i)x1x
2
2 (2.8)

has the same total degree and support.

Definition 2.4. The set of all complex polynomials p(x) in n variables
is denoted by Pn, while the set of all complex polynomials in n variables of
total degree ≤ d is denoted by Pn

d ⊂ Pn.
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The set of all complex polynomials p(x) in n variables, Pn, is a ring (Ap-
pendix A.1 contains more information about rings, fields, and vector spaces).
In the literature, this polynomial ring is often denoted by C[x1, . . . , xn], which
we only use in this text when we need to stress the field K = C or the order
of the variables2. The elements of Pn are multivariate polynomials, which can
be seen as functions

p : Cn → C : x = (x1, . . . , xn) 7→ p(x) =
∑
A
cαx

α. (2.9)

In words: given a point a = (a1, . . . , an) ∈ Cn in the affine space (Defini-
tion 2.7), a multivariate polynomial (by replacing every xi by ai) yields a point
p(a) in C.

Multivariate polynomials appear typically in systems of multivariate poly-
nomial equations: 

p1(x) =
∑
A1

cα1
xα1 = 0,

...

ps(x) =
∑
As

cαsx
αs = 0.

(2.10)

Given these s elements p1(x), . . . , ps(x) of Pn, the polynomial system defines
the map

S : Cn → Cs : x 7→ (p1(x), . . . , ps(x)). (2.11)
In the multivariate root-finding problem, we are interested in the pre-image of
the origin in Cs under this map, i.e., in

S−1(0) = {a ∈ Cn : S(a) = 0}. (2.12)

This set consists of all points a ∈ Cn satisfying the relations

p1(x) = · · · = ps(x) = 0. (2.13)

Therefore, S−1(0) is called the set of solutions of the polynomial equations.
In the context of this dissertation, by solving the system, we mean computing
S−1(0). Because it is in general not possible to compute S−1(0) exactly, we
mean computing satisfactory approximations of the coordinates of the solutions
in the affine space Cn via numerical algorithms. Furthermore, we assume that
set of solutions is zero-dimensional (i.e., finite3), which typically happens when
s ≥ n.

The set of solutions S−1(0) of a system of multivariate polynomial equations
corresponds to an affine variety4. After taking a closer look at the vector space

2In this text, we mainly consider polynomials with complex coefficients. We always con-
sider the polynomial ring Pn = C[x1, . . . , xn], except when denoted otherwise. We drop,
therefore, the term complex in the remainder of this text. However, there exist applications
where the field K of the polynomial ring K[x1, . . . , xn] is not the field of complex numbers.
Examples are the real field R in robotics [222] and the finite field Fq in cryptography [214].

3However, systems with infinitely many solutions can also be “solved”, in a certain
sense [221, 222].

4Some nuance is added in Footnote 10.
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of polynomials (Section 2.2.1), we take a closer look at affine varieties and ideals,
two important objects from algebraic geometry (Section 2.2.2). Afterwards, the
number of solutions in S−1(0) is investigated (Section 2.2.3).

2.2.1 Vector space of polynomials
It is easy to show that the set of all polynomials in n variables of total degree
≤ d, Pn

d , forms a vector space over C: addition and multiplication by a scalar
are defined in a natural way. The zero element of the vector space is the zero
polynomial p(x) ≡ 0 (i.e., cα = 0 for all α). The monomials in Cnd form a
canonical basis for Pn

d : this canonical basis is called the standard monomial
basis. The number of monomials in the set Cnd , which is also the dimension of
Pn
d , can be counted via combinatorics. The number of k-combinations, i.e., a

selection of k elements where the order of selection does not matter, from a set
with n elements is given by (

n

k

)
=

n!

k!(n− k)!
. (2.14)

Proposition 2.1. The set Cnd contains
(
d+n
n

)
monomials,

(
d+n−1

n

)
of them

have a total degree exactly equal to d.

Proof. This proposition follows from formulas in combinatorics.

Note that in practice (the cardinality of) the support of a multivariate
polynomial may be very small compared to (the cardinality of) the associated
basis. Such polynomials are called sparse, in analogy with the word sparse in
linear algebra. Indeed, the number of different monomials in the set Cnd grows
rapidly with the number of variables n and the maximum total degree d. This
combinatorial explosion is visible in Figure 2.1 and resurfaces several times in
this dissertation.

Example 2.3. There are 1 221 759 monomials in the set Cnd for degree d = 40
and n = 5 variables:

#C540 =

(
45

5

)
=

45!

5!40!
= 1 221 759. (2.15)

Code 2.1. Via nbmonomials(d,n) , it is possible to determine the number
of monomials for degree d and n variables.
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maximum total degree d

#
Cn d

Figure 2.1. Combinatorial explosion of the number of monomials in the set
Cnd with respect to the maximum total degree d and number of variables n.
The cardinality of Cnd is given for n = 1 ( ), n = 2 ( ), n = 3 ( ), n = 4
( ), and n = 5 ( ).

>> nbmonomials(40,5)

ans =
1221759

With respect to a basis, the coefficients of a multivariate polynomial p(x)
are the components of p(x) as an element of the vector space Pn

d . Of course,
it is also possible to use another polynomial basis than the standard monomial
basis for Pn

d , e.g., the basis given by the multivariate Chebyshev or Legendre
polynomials (Section 2.6.3). A polynomial can be written as its coefficient
vector p multiplied by a vector v that contains all the basis polynomials. For
example, the univariate polynomial

p(x) = 3 + 2x+ x2 =
[
3 2 1

][
1 x x2

]T
. (2.16)

This univariate polynomial then corresponds to p(x) = pTv. For multivariate
polynomials, something similar exists:

p(x) = p(x1, x2) = 6 + 5x1 + 4x2 + 3x21 + 2x1x2 + x22 (2.17)

can be represented by the vector

p =
[
6 5 4 3 2 1

]T
, (2.18)
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where the vector of monomials is

v =
[
1 x1 x2 x21 x1x2 x22

]T
. (2.19)

It is possible to order the terms of multivariate polynomials in different ways,
and (algebraic) results, like the Gröbner basis, often depend on that mono-
mial ordering5. In order to have an unambiguous notation, this representation
requires a consensus about the ordering of the monomials.

Definition 2.5. Given a monomial ordering, a multivariate polynomial
p(x) ∈ Pn

d ,

p(x) =

k∑
i=1

cix
αi , (2.20)

can be represented unambiguously by its vector representation p, which
is a vector that contains its coefficients ordered according to the selected
monomial ordering, i.e.,

p = vp(x)w
T
=
[
c1 c2 · · · ck−1 ck

]T
, (2.21)

where ci is the ith coefficient cα of p(x) in the selected monomial ordering
(i = 1, . . . , k). The operator v·w denotes the arrangement of the coefficients
cα (not the associated monomials) of p(x) as a row vector.

The monomial ordering used throughout this text is the graded inverse lexico-
graphic (GRINVLEX) ordering, which is sometimes also known as the graded
xel ordering or degree negative lexicographic ordering [27, 65]. It is graded
because it first compares the degrees of the two monomials/multi-indices and
applies the inverse/negative lexicographic ordering when there is a tie. Al-
though we mainly use the GRINVLEX ordering in this text, the remainder
remains valid for any graded monomial ordering6.

Definition 2.6. When considering two n-tuples α,β ∈ Nn and |α| > |β| or
|α| = |β| where in the element-wise difference α−β ∈ Zn the left-most non-
zero element of the tuple is negative, two monomials are ordered xα > xβ

by the graded inverse lexicographic (GRINVLEX) ordering.

Example 2.4. The GRINVLEX ordering orders the monomials in n = 3
variables as

1 < x1 < x2 < x3 < x21 < x1x2 < x1x3 < x22 < x2x3 < x23 < x31 < . . . (2.22)

5It is well-known that a Gröbner basis with respect to the lexicographic monomial ordering
is typically more complex than with respect to the reverse lexicographic ordering [90].

6For a more detailed overview of relevant monomial orderings in algebraic geometry, we
refer the interested reader to [65, 66].
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2.2.2 Affine varieties and ideals
The two main objects of algebraic geometry are affine varieties and ideals.
However, before we consider the definition of an affine variety, we must specify
the affine space.

Definition 2.7. Given the field of complex numbers C and a positive integer
n, the n-dimensional affine space over C is the set

Cn = {a = (a1, . . . , an) : a1, . . . , an ∈ C}. (2.23)

As a set, the n-dimensional space Cn consists of all n-tuples of complex num-
bers. For low n, these affine spaces look very familiar: n = 1 is the affine line
and n = 2 is the affine plane. Affine varieties are points, curves, and surfaces
(and higher-dimensional objects) defined by the (common) roots of (multivari-
ate) polynomials. An affine variety is a subspace of the affine space7, namely
the subspace defined by zero sets of polynomials, as explained below.

Definition 2.8. If p1(x), . . . , ps(x) are polynomials in Pn, then it is possible
to define the set

V(p1(x), . . . , ps(x)) = {a ∈ Cn : pi(a) = 0 for all 1 ≤ i ≤ s}. (2.24)

The set V(p1(x), . . . , ps(x)) is called the affine variety defined by the poly-
nomials p1(x), . . . , ps(x).

Thus, an affine variety is the set of all affine solutions of a given system of
multivariate polynomial equations.

Example 2.5. Two trivial affine varieties are V(0) = Cn and V(1) = ∅. Ev-
ery point a = (a1, . . . , an) is also an affine variety: V(x1 − a1, . . . , xn − an) =
a.

Affine varieties have many interesting properties, for which we refer the
reader to [65, 66]. When the affine variety is zero-dimensional, it consists of
isolated points. In this case, the different affine solutions are written as

x|(j) = aj ∈ V(p1(x), . . . , ps(x)) ⊂ Cn, j = 1, . . . ,ma, (2.25)

which means that the variables are evaluated in each of the affine solutions
(with some arbitrary order assumed on the affine solutions).

Another important object in algebraic geometry is the ideal. Where vari-
eties are geometric objects, ideals are their algebraic counterparts (there exist
a lot of equivalent properties between them, see [65]). The importance of ideals
lies in the fact that they allow computing with varieties.

7The affine complex space is in this setting also often called the ambient space of the affine
variety, sometimes denoted explicitly as VCn .



42 Chapter 2. Root-Finding via the Macaulay Matrix

Definition 2.9. A subset I ⊆ Pn is an ideal if it satisfies the following three
requirements:

1. 0 ∈ I (with 0 the zero polynomial).

2. If p(x), q(x) ∈ I, then (p+ q)(x) ∈ I.

3. If p(x) ∈ I and r(x) ∈ Pn, then (rp)(x) ∈ I.

Lemma 2.1. Consider the polynomials p1(x), . . . , ps(x) ∈ Pn. The set

〈p1(x), . . . , ps(x)〉 =

{
s∑

i=1

hi(x)pi(x) : h1(x), . . . , hs(x) ∈ Pn

}
(2.26)

is an ideal.

Proof. In the proof of this lemma, we check each of the requirements of Def-
inition 2.9:

1. 0 ∈ 〈p1(x), . . . , ps(x)〉, because we can set hi(x) = 0 for all i.

2. For p(x) =
∑s

i=1 fi(x)pi(x) and q(x) =
∑s

i=1 gi(x)pi(x), it holds
that (p+ q)(x) =

∑s
i=1(fi(x) + gi(x))pi(x) =

∑s
i=1 hi(x)pi(x) ∈

〈p1(x), . . . , ps(x)〉.

3. For p(x) =
∑s

i=1 hi(x)pi(x) and r(x) ∈ Pn, it holds that (rp)(x) =∑s
i=1(r(x)hi(x))pi(x) =

∑s
i=1 h̃i(x)pi(x) ∈ 〈p1(x), . . . , ps(x)〉.

This proofs that 〈p1(x), . . . , ps(x)〉 is an ideal.

Example 2.6. Consider the multivariate polynomials

p1(x) = x1 − x22 and p2(x) = x1x2. (2.27)

The set

〈p1(x), p2(x)〉 =

{
2∑

i=1

hi(x)pi(x) : h1(x), h2(x) ∈ P2

}
(2.28)

is an ideal. It is possible to show that

p3(x) = x21 (2.29)

is an element of this ideal, because

x21 = x1p1(x) + x2p2(x) = x1
(
x1 − x22

)
+ x2(x1x2). (2.30)
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The set 〈p1(x), . . . , ps(x)〉 denotes the ideal generated by p1(x), . . . , ps(x) and,
therefore, the polynomials p1(x), . . . , ps(x) are often called the generators of
the ideal. Every other polynomial in this ideal can be constructed from these
polynomials: they are polynomial consequences. We say that an ideal I is
finitely generated if there exists a finite number of polynomials p1(x), . . . , ps(x)
so that I = 〈p1(x), . . . , ps(x)〉 and say that p1(x), . . . , ps(x) form a basis of the
ideal. There is an amazing fact, also known as Hilbert’s basis theorem, that
states that every ideal of Pn is finitely generated8.

Theorem 2.1 (Hilbert’s basis theorem). Every ideal I ⊂ Pn has a finite
generating set. That is, I = 〈p1(x), . . . , ps(x)〉 for some p1(x), . . . , ps(x) ∈ I.

Proof. A proof of this theorem can be found in [65, p. 77].

Note that an ideal may have many different polynomial bases, for example,
Gröbner bases obtained via different monomial orderings.

Example 2.7. The ideal I =
〈
2x21 + 3x22 − 11, x21 − x22 − 3

〉
is constructed

from the polynomials p1(x) = 2x21 + 3x22 − 11 and p2(x) = x21 − x22 − 3. One
can show that the polynomials q1(x) = x21 − 4 and q2(x) = x22 − 1 generate
the same ideal. Both sets of polynomials are polynomial bases of that I.

Ideals are closely related to affine varieties (cf., the geometry-algebra equiv-
alence), as the following proposition shows.

Proposition 2.2. If p1(x), . . . , ps(x) and q1(x), . . . , qt(x) are bases of the
same ideal in Pn, so that 〈p1(x), . . . , ps(x)〉 = 〈q1(x), . . . , qt(x)〉, then holds
that V(p1(x), . . . , ps(x)) = V(q1(x), . . . , qt(x)).

Proof. Every polynomial qj(x), j = 1, . . . , t, can be written as a lin-
ear combination

∑s
i=1 hi(x)pi(x), since it is a polynomial in the ideal

〈p1(x), . . . , ps(x)〉. ∀a ∈ V(p1(x), . . . , ps(x)), qj(a) =
∑s

i=1 hi(a)pi(a) = 0.
Hence, a ∈ V(q1(x), . . . , qt(x)), which implies that V(p1(x), . . . , ps(x)) ⊆
V(q1(x), . . . , qt(x)). Equality follows from repeating the same argument in
the other direction.

Proposition 2.2 shows that affine varieties are actually determined by ideals,
not only polynomials. We can even go one step further and define a special
ideal.

8As discussed in [66], Hilbert’s basis theorem expands beyond the ring of complex poly-
nomials. We restrict the definition in this text to Pn for readability. Note that a polynomial
basis does have a fixed minimum number of elements, like in linear algebra. Two different
minimal polynomial bases can have a different number of basis elements [230].
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Definition 2.10. Let V ⊂ Cn be an affine variety and define the set

I(V) = {p(x) ∈ Pn : p(a) = 0 for all a ∈ V}. (2.31)

Lemma 2.2. If V ∈ Cn is an affine variety, then I(V) is an ideal.

Proof. A proof of this lemma can be found in [65, p. 32].

So, we go from polynomials, which form an ideal, to an affine variety, which
defines again an ideal9. The goal in this text is to identify the affine solutions
of systems of multivariate polynomial equations (in the specific situation when
the affine solution set is zero-dimensional). Since the solutions of the entire
ideal generated by the polynomials of this system are the same as the solu-
tions of these polynomials (Proposition 2.2), we can rephrase our objective as
identifying the affine variety of the ideal generated by the given polynomials10.

2.2.3 Number of solutions
An important question immediately rises: “How many solutions does the sys-
tem of multivariate polynomial equations have?” For a univariate equation, the
fundamental theorem of algebra answers this question (Theorem A.1). When
the number of variables n > 1, more advanced results come into the picture.
The multivariate extension of the fundamental theorem of algebra is Bézout’s
theorem.

Theorem 2.2 (Bézout’s theorem). For any square system (i.e., s = n) of
multivariate polynomial equations p1(x) = · · · = pn(x) = 0, the number of
isolated solutions when the solution set is zero-dimensional, i.e., the number
of isolated points in the zero-dimensional affine variety V(p1(x), . . . , pn(x)) ⊂
Cn, is at most

mb = d1 · · · dn =

n∏
i=1

di, (2.32)

9Of course, this ideal again defines a new affine variety. Immediately a new question arises:
“Is this new affine variety the same as the initial affine variety?” The answer, however, is not
always yes and relies on Hilbert’s Nullstellensatz [65, 66].

10For any ideal I ⊂ Pn generated by polynomials p1(x), . . . , ps(x), we can consider the
affine variety V(I). However, some information can get lost in making this association. Two
different ideals I1 6= I2 ⊂ Pn may have the same affine variety, V(I1) = V(I2), but a different
geometric behavior. There can be points with a multiplicity greater than one, multiple curves,
embedded points, etc. An extension of the affine variety that deals with these issues is the
affine scheme, of which the affine variety can be seen as a subcategory [242]. We ignore affine
schemes in this dissertation and only consider zero-dimensional affine varieties together with
the multiplicity structure of each isolated solution. The interested reader can find more about
affine schemes in [82].
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where di is the total degree of pi(x). Moreover, there exists a subvariety
∇d1,...,dn

= V(∆d1
, . . . ,∆dn

) ( Cn such that, when the coefficients of the
square system p1(x), . . . , pn(x) 6∈ ∇d1,...,dn

, the variety V(p1(x), . . . , pn(x))
consists of precisely ma = mb different affine points.

Proof. A proof of this theorem can be found in [82, Theorem III-71].

The subvariety∇d1,...,dn
can be described by using resultants and discriminants.

It describes the polynomial systems for which the number of points in the zero-
dimensional affine variety is not equal to mb.

Example 2.8. For the trivial case of one univariate quadratic polynomial
p(x) = c0 + c1x+ c2x

2, the subvariety ∇2 is given by

∇2 = V
(
c2
(
c21 − 4c0c2

))
, (2.33)

where we recognize the discriminant for a univariate quadratic polynomial.
This means that polynomials for which c2

(
c21 − 4c0c2

)
6= 0 are not inside the

subvariety ∇2 and have exactly ma = d = 2 different affine roots.

Theorem 2.2 is an important result and provides an easy way to bound the
number of isolated affine solutions of a square system of n multivariate poly-
nomial equations in n variables. The difference between the actual number of
affine solutions ma and the Bézout number mb can be considered as the number
of solutions at infinity m∞:

mb = ma +m∞. (2.34)

The bound in Theorem 2.2 is almost always tight, in the sense that the only
polynomial systems with fewer affine solutions lie in that particular subvari-
ety. Unfortunately, applications often lead to systems in that subvariety, due
to their structure [241]. This has led to more advanced bounds on the num-
ber of isolated affine solutions, like Kushnirenko’s bound and the Bernstein–
Khovanskii–Kushnirenko theorem (Appendix A.3). In practice, we could try
to solve the polynomial equations (for example, with the algorithms presented
in this dissertation) and count the number of obtained affine solutions.

Remark 2.1. In a sense, Bézout’s theorem more naturally counts solutions
in the projective space Pn, where the number of solutions (counted with mul-
tiplicity) for a zero-dimensional variety is always equal to mb. The projective
space and projective varieties are defined in Section 4.2. A formulation of
Bézout’s theorem in the projective space is given in Appendix A.3.
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Figure 2.2. Real picture of the system of multivariate polynomial equations
in Example 2.9: p1(x) = x21+x

2
2−6x1+7 = 0 ( ) and p2(x) = x1−x2−3 = 0

( ). These two polynomial equations have 2 affine solutions ( ).

Example 2.9. Consider the intersection of a circle with a line (Figure 2.2),{
p1(x) = x21 + x22 − 6x1 + 7 = 0,

p2(x) = x1 − x2 − 3 = 0.
(2.35)

The Bézout number for this polynomial system equals mb = 2 · 1 = 2, which
agrees with the fact that the multivariate polynomials have two common
roots (2,−1) and (4, 1).

Code 2.2. It is possible to compute the Bézout number for a system via
bezout(system) . The polynomial system toy1 is part of MacaulayLab’s
database.

>> mb = bezout(toy1)

mb =
2
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Figure 2.3. Real picture of the system of multivariate polynomial equations
in Example 2.10: p1(x) = x21 − 3x22 + 1 = 0 ( ) and p2(x) = 3x21 − 1.5x22 −
x41 + x42 = 0 ( ). These two polynomial equations have 8 affine solutions ( ).

Example 2.10. Consider the variety V(p1(x), p2(x)) defined by the follow-
ing system of multivariate polynomials equations:{

p1(x) = x21 − 3x22 + 1 = 0,

p2(x) = 3x21 − 1.5x22 − x41 + x42 = 0.
(2.36)

The variety of this polynomial system is zero-dimensional and contains 8
affine points in C2 and no points at infinity (Figure 2.3), in accordance with
Bézout’s theorem:

mb = d1 · d2 = 2 · 4 = 8. (2.37)

Example 2.11. A system of multivariate polynomial equations that lies in
the subvariety ∇2,2 is {

p1(x) = x21 + x1x2 − 2 = 0,

p2(x) = x22 + x1x2 − 2 = 0.
(2.38)

The Bézout number of this polynomial system is mb = 22 = 4, but it only
has ma = 2 affine solutions (Figure 2.4). The two curves defined by (2.38)
have an asymptote and seem to intersect at infinity. In the projective space
P2, these two intersection points, given by (0, 1,−1) and (0,−1, 1), are also
solutions of the polynomial system.
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Figure 2.4. Real picture of the system of multivariate polynomial equations
in Example 2.11: p1(x) = x21+x1x2−2 = 0 ( ) and p2(x) = x22+x1x2−2 = 0
( ). These two polynomial equations have 2 affine solutions ( ).

2.3 Macaulay matrix and its subspaces
The polynomials pi(x) ∈ Pn, for i = 1, . . . , s, of a system of multivariate poly-
nomial equations in n variables x ∈ Cn constitute the so-called seed equations
of the corresponding Macaulay matrix. The Macaulay matrix is generated by
these seed equations via a forward shift recursion (FSR): multiplying the seed
equations (i.e., the generating polynomial equations) with different monomials
{xαi} of increasing total degree dri leads to “new” polynomial equations, the
coefficients of which are organized as the rows of the Macaulay matrix11.

Example 2.12. To introduce the Macaulay matrix, consider the polynomial
system (2.35) from Example 2.9, where p1(x) = 0 and p2(x) = 0 constitute
the seed equations. Multiplying p1(x) = 0 by x1 and x2 (i.e., {xα1} =
{x1, x2}), leads to two “new” polynomial equations:

x1
(
x21 + x22 − 6x1 + 7

)
= 0,

x2
(
x21 + x22 − 6x1 + 7

)
= 0.

(2.39)

We apply the same procedure for p2(x) = 0 with different monomials
{xα2} =

{
x1, x2, x

2
1, x1x2, x

2
2

}
to obtain all polynomial equations up to total

11This particular type of FSR is more precisely termed scalar forward multi-shift recur-
sion. Next to scalar forward multi-shift recursion, there also exist scalar forward single-shift
recursion, block forward single-shift recursion, and block forward multi-shift recursion (Sec-
tion 1.2). Chapter 3 considers the last type of FSR, when extending the Macaulay matrix to
the block Macaulay matrix.
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degree d = 3. When we structure the coefficients of these polynomial equa-
tions in a matrix according to a certain monomial ordering, we obtain the
Macaulay matrix of degree 3 (seed equations in red):



1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2

1 7 −6 0 1 0 1 0 0 0 0
x1 0 7 0 −6 0 0 1 0 1 0
x2 0 0 7 0 −6 0 0 1 0 1
1 −3 1 −1 0 0 0 0 0 0 0

x1 0 −3 0 1 −1 0 0 0 0 0
x2 0 0 −3 0 1 −1 0 0 0 0
x2
1 0 0 0 −3 0 0 1 −1 0 0

x1x2 0 0 0 0 −3 0 0 1 −1 0
x2
2 0 0 0 0 0 −3 0 0 1 −1


. (2.40)

Of course, we can further enlarge the Macaulay matrix by considering mono-
mials {xα1} and {xα2} of higher total degrees dr1 and dr2 , respectively. We
visualize the result for degree d = 5 in Figure 2.5.

Code 2.3. A Macaulay matrix of degree d can easily be constructed via
macaulay(system,d) .

>> M = macaulay(toy1,5);

Definition 2.11. Consider the system of multivariate polynomial equations
with polynomials pi(x) ∈ Pn, for i = 1, . . . , s, which serve as the seed equa-
tions. Let the total degree of every polynomial pi(x) be denoted by di. The
Macaulay matrix of degree d, Md ∈ Cpd×qd , contains the coefficients of
the seed equations and the equations generated by the FSR with monomials
of increasing total degrees dri = 1, . . . , (d− di), i.e.,

Md =

4

6

5

{xα1}p1(x)
...

{xαs}ps(x)

<

>

=

, (2.41)

where v·w is the (stacked) vector representation of the polynomials (Defini-
tion 2.5).

These shifted coefficients are indexed both in row direction (different monomials
of FSR) and column direction (different associated monomials) by the different
monomials of total degree at most d . The number of rows pd and columns qd
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p1(x)

p2(x)

Figure 2.5. Spy plot of the Macaulay matrix of degree 5 for the system of
multivariate polynomial equations in Example 2.9. The polynomial p1(x) is
multiplied by all monomials of total degree up to dr1 = 3 and the polynomial
p2(x) is multiplied by all monomials of total degree up to dr2 = 4. The red
dots ( ) indicate the coefficients of the seed equations, while the blue dots
( ) correspond with the shifted coefficients. The elements not shown are zero.
Vertical lines indicate the different degree blocks of the Macaulay matrix, while
horizontal dashed lines separate the monomials of different total degrees dri ,
i = 1, . . . , s in the FSR.

of Md are given by

pd =

s∑
i=1

(
d− di + n

n

)
=

s∑
i=1

(d− di + n)!

n!(d− di)!
(2.42)

and
qd =

(
d+ n

n

)
=

(d+ n)!

n!d!
. (2.43)

The actual structure of the Macaulay matrix depends on its monomial ordering
(an example is given in Section 2.6.3).

The system of multivariate polynomial equations and the “new” polynomial
equations obtained via the FSR can be written as the matrix-vector product
of the generated Macaulay matrix Md ∈ Cpd×qd and a structured vector vd ∈
Cqd×1:

Md



1
x1
...
xn
...
xd1
...
xdn


︸ ︷︷ ︸
v(d)

= 0. (2.44)
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Algorithm 2.1 Iterative root-finding via the Macaulay matrix
Require: p1(x), . . . , ps(x)

1: d← dmax = max(d1, . . . , ds)
2: Construct the Macaulay matrix of degree d
3: while d < d◦ do
4: Check the structure of null space or column space
5: if it is possible to find the affine common roots (Section 2.4.3) then
6: d = d◦
7: else
8: d← d+ 1
9: Construct the Macaulay matrix of degree d

10: end if
11: end while
12: Find the affine common roots x|(j), for j = 1, . . . ,ma, in the null space

(Algorithm 2.2) or in the column space (Algorithm 2.3)
13: return x|(j), for j = 1, . . . ,ma

We increase the degree d of Md until it is large enough and reaches the solution
degree d◦, a notion on which we elaborate in Section 2.4.3. The vector vd is a
vector in the right null space of Md and has a special multivariate Vandermonde
structure, which is enforced by the FSR that generates the rows of Md.

In the structure of both the right null space and the column space lies the key
to solving the generating system of multivariate polynomial equations. Note
that also the other two fundamental subspaces of the Macaulay matrix (i.e., the
row space and left null space) have an interpretation in terms of the algebraic
properties of the generating polynomial equations. Chapter 4 dives deeper
into the algebraic geometry interpretations of all four fundamental subspaces
of the Macaulay matrix, while we focus in this chapter solely on multivariate
polynomial system solving; hence, we only consider the (right12) null space
(Section 2.4) and column space (Section 2.5) to develop two complementary
multivariate root-finding algorithms. The skeleton of both multivariate root-
finding algorithms is very similar (Algorithm 2.1): the Macaulay matrix is
iteratively enlarged until the structure of the null space or column space yields
the affine common roots of the polynomials.

Remark 2.2. Note that horizontal and vertical lines separate degree blocks
in matrices and vectors (e.g., in (2.44) or in Figure 2.5). A degree block
contains all the rows/columns that correspond to monomials of the same
total degree (e.g., the rows that correspond to x21, x1x2, and x22).

Remark 2.3. To alleviate the notational complexity, we no longer specify the
degree d explicitly in the remainder of this chapter (unless when necessary),
but we assume it to be large enough, i.e., d ≥ d◦ (Section 2.4.3).

12In the remainder of this chapter, we no longer mention the qualification right explicitly.
We always consider the right null space, except when denoted otherwise.
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2.4 Null space based approach
We now exploit the structure of the null space of the Macaulay matrix in order
to find the solutions of its seed equations, i.e., the system of multivariate poly-
nomial equations. Firstly, we consider only polynomial equations with simple,
affine, and isolated solutions, which allows us to show that a multidimensional
realization problem in the structured null space yields the exact affine solutions
(Section 2.4.1). Secondly, we study the influence of solutions with multiplic-
ity greater than one (Section 2.4.2). Thirdly, we explain the notion of a large
enough degree (i.e., the solution degree d◦) and show how to deflate the solu-
tions at infinity (Section 2.4.3). Finally, we summarize the entire null space
based root-finding algorithm (Section 2.4.4).

2.4.1 Multidimensional realization theory
We start our explanation with the multivariate Vandermonde basis matrix of
the null space of the Macaulay matrix where we assume that we know all the
solutions (Section 2.4.1.1). Afterwards, we generalize this procedure to any
(numerical) basis matrix of the null space (Section 2.4.1.2).

2.4.1.1 Multivariate Vandermonde basis matrix

We consider, for didactic purposes, a system of multivariate polynomial equa-
tions that only has ma simple (i.e., algebraic multiplicity is one), affine (i.e.,
non-infinite), and isolated solutions (i.e., the solution set is zero-dimensional).
When recursively increasing the degree d of the Macaulay matrix M , the nul-
lity (i.e., the dimension of the null space) grows, until it stabilizes at the
Bézout number mb (= ma, in this case). For a Macaulay matrix of degree
d ≥ d◦ (Section 2.4.3), there exists a multivariate Vandermonde vector v|(j)
(j = 1, . . . ,ma) in the null space of M for each solution of the system and,
together, these basis vectors span the entire null space of M . They naturally
form the multivariate Vandermonde basis matrix V ∈ Cq×ma of degree d ≥ d◦
(same degree as M):

V =
[
v|(1) · · · v|(ma)

]
=



1 · · · 1
x1|(1) · · · x1|(ma)

...
...

xn|(1) · · · xn|(ma)

x21
∣∣
(1)

· · · x2n
∣∣
(ma)

...
...


. (2.45)

The structured V does suspect that the (affine) null space of the Macaulay
matrix has a “special shift structure”. Mathematically, this “special shift struc-
ture” can be written as (when we shift some rows with the first variable x1)

S1V︸ ︷︷ ︸
before shift

Dx1
= Sx1

V︸ ︷︷ ︸
after shift

, (2.46)
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where the diagonal matrix Dx1 ∈ Cma×ma contains the different solutions
for the variable x1 and the row selection matrices S1 ∈ Rma×q and Sx1 ∈
Rma×q select the rows before and after the shift, respectively. In order for
this expression to cover all the affine solutions, the row selection matrix S1

has to select ma linearly independent rows from V (then S1V is square and
nonsingular). Actually, from algebraic geometry, it follows that these linearly
independent rows correspond to the (affine) standard monomials [21, 66, 78].
We say that the rows in Sx1V are hit by the shift with x1. Notice that the
construction of Sx1

depends on the chosen S1. The next example illustrates
this interesting property.

Example 2.13. Consider again system (2.35), which has only ma = 2 sim-
ple, affine, and isolated solutions (2,−1) and (4, 1). The multivariate Van-
dermonde basis matrix V of degree d = 2 is equal to (we can construct it
from the known solutions)

V =
[
v|(1) v|(2)

]
=


1 1
2 4
−1 1
4 16
−2 4
1 1

. (2.47)

When we take a vector from V , i.e., v|(j), and multiply the first two elements
by x1|(j), the elements obtained after the multiplication are again part of that
vector: [

1
x1

]
(j)

[
x1
x21

]
(j)

.
x1|(j)

We can also write this multiplication, by means of two row selection matrices
S1 and Sx1

, as (
S1 v|(j)

)
x1|(j) =

(
Sx1

v|(j)
)
, (2.48)

with

S1 =

[1 2 3 4 5 6

1 0 0 0 0 0
0 1 0 0 0 0

]
(2.49)

and

Sx1
=

[1 2 3 4 5 6

0 1 0 0 0 0
0 0 0 1 0 0

]
. (2.50)

Or, numerically, for all solutions of (2.35) at once as[
1 1
2 4

]
︸ ︷︷ ︸
S1V

[
2 0
0 4

]
︸ ︷︷ ︸

Dx1

=

[
2 4
4 16

]
︸ ︷︷ ︸

Sx1V

. (2.51)
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Code 2.4. We need to construct the vandermonde(d,n,X) basis matrix
from the solutions X = [2 -1; 4 1] before we can shift.

>> V = vandermonde(2,2,[2 -1; 4 1]); % d = n = 2

We can construct shift matrices via shiftmatrix(d,n,rows,shift) , where
shift determines the specific shift operation. If we shift the first two rows,
then we need to use rows = [1 2] .

>> rows = [1 2];
>> S1 = shiftmatrix(2,2,rows,[1 0 0]); % shift with 1
>> Sx1 = shiftmatrix(2,2,rows,[1 1 0]); % shift with 1*x1

The “special shift structure” from (2.51) can then be retrieved:

>> (S1*V)*diag([2 4])

ans =
2 4
4 16

>> Sx1*V =

ans =
2 4
4 16

This “special shift structure” does not restrict itself to the variable x1, but
applies to all variables. It even holds for a shift polynomial g(x) in the variables
x of the system of multivariate polynomial equations. When we shift some rows
of V with the shift polynomial g(x) = cα1x

α1 + · · ·+ cαk
xαk , then

S1V︸ ︷︷ ︸
before shift

Dg = cα1Sxα1V + · · ·+ cαk
SxαkV︸ ︷︷ ︸

after shift

, (2.52)

where the diagonal matrix Dg ∈ Cma×ma contains the evaluations of the shift
polynomial g(x) in the different solutions of the system. Hence, (2.52) corre-
sponds to the expression

(SgV ) = (S1V )Dg, (2.53)

when combining the different row selection matrices in the right-hand side. The
row combination matrix13 Sg ∈ Rma×q selects the linear combination of rows

13When the shift is merely a monomial of (some of the) variables, the row combination
matrix Sg is a row selection matrix because every shift only hits one row.
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hit by the shift with g(x).

Example 2.13 (continuing from p. 53). If we multiply the first two rows
of (2.47) by the shift polynomial g(x) = 2x1+3x2, then the row combination
matrix Sg equals

Sg =

[1 2 3 4 5 6

0 2 3 0 0 0
0 0 0 2 3 0

]
, (2.54)

while S1 is given by (2.49). Numerically, we obtain instead of (2.51) the
expression [

1 1
2 4

]
︸ ︷︷ ︸
S1V

[
1 0
0 11

]
︸ ︷︷ ︸

Dg

=

[
1 11
2 44

]
︸ ︷︷ ︸

SgV

, (2.55)

because the evaluation of the shift polynomial in the two common roots is
equal to g(x)|(1) = 1 and g(x)|(2) = 11.

Code 2.5. Shifting with a shift polynomial g(x) = 2x1 + 3x2 is per-
formed by supplementing a shift polynomial shift = [2 1 0; 3 0 1] to
shiftmatrix .

>> Sg = shiftmatrix(2,2,rows,[2 1 0; 3 0 1]);
>> (S1*V)*diag([1 11])

ans =
1 11
2 44

>> Sg*V =

ans =
1 11
2 44

2.4.1.2 Any numerical basis matrix

In practice, the multivariate Vandermonde basis matrix V of the null space
is not known in advance, since it is constructed from the unknown solutions.
The practical multidimensional realization problem uses a numerical basis ma-
trix Z ∈ Cq×ma of the null space of the Macaulay matrix M instead. This
numerical basis matrix is obtained, for example, via the singular value or QR
decomposition [97]. Before translating this theoretical multidimensional real-
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ization problem14 into a practical one, the next proposition makes this “special
shift structure” more concrete.

Proposition 2.3 (Appendix C). The (affine) null space of the Macaulay
matrix is (backward) scalar multi-shift-invariant. This means that if
we select a row of a basis matrix of the null space and multiply/shift this row
with one of the variables, then we obtain another row of that basis matrix
(when the degree is large enough, i.e., d ≥ d◦).

Therefore, as the scalar multi-shift-invariance is a property of the null space
as a vector space and not of its specific basis matrix (Appendix C), a numerical
basis matrix Z can be used. There exists a relation between these two bases,
namely V = ZT , with T ∈ Cma×ma a nonsingular transformation matrix.
This relation transforms (2.53) into a generalized eigenvalue problem (GEP)

(SgZ)T = (S1Z)TDg, (2.56)

where T contains the eigenvectors and Dg the eigenvalues of the matrix pencil
(SgZ,S1Z). This can also be written as a standard eigenvalue problem (SEP):

(S1Z)
−1

(SgZ)T = TDg. (2.57)

The matrix of eigenvectors T could be used to retrieve the multivariate Van-
dermonde matrix V , via V = ZT and a normalization of the first row. This
approach to set-up an eigenvalue problem that yields the solutions of the poly-
nomial system is closely related to traditional eigenvalue computation of the
multiplication matrices in algebraic geometry. Section 4.5 explains in more
depth how both eigenvalue problems are related.

Example 2.14. Assume that the degree d of the Macaulay matrix for sys-
tem (2.35) is the solution degree d◦ = 2. We compute a numerical basis
matrix Z of the null space of its Macaulay matrix: Z ∈ C6×2 because this
example has two (affine) solutions. The first two rows of Z are linearly in-
dependent, so when we shift with x1, we can use S1 and Sx1 from (2.49)
and (2.50), respectively. If we decide to shift the first two rows with x2, then
Sx2
∈ R2×6 is given by

Sx2 =

[1 2 3 4 5 6

0 0 1 0 0 0
0 0 0 0 1 0

]
. (2.58)

Solving (2.57) twice results in the diagonal matrices

Dx1 =

[
2 0
0 4

]
(2.59)

14We actually know that, when the nullity of the Macaulay matrix stabilizes at the total
number of solutions, its null space can be modeled as the column space of an observability
matrix of a multidimensional descriptor system [80]. From that observation also stems the
title of Section 2.4.1; the null space based root-finding approach could be considered as a
multidimensional realization problem in the column space of that observability matrix.
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and
Dx2

=

[
−1 0
0 1

]
. (2.60)

By combining both eigenvalues, we obtain the common roots of (2.35). We
could also use T to reconstruct V :

V = ZT =


1 1
2 4
−1 1
4 16
−2 4
1 1

 (2.61)

after a normalization of the first row.

Code 2.6. We repeat the eigenvalue computation, but now start from a
numerical basis matrix of the null space, via null .

>> Z = null(macaulay(toy1,2));
>> eig(Sx1*Z,S1*Z)

ans =
2.0000
4.0000

We can repeat this for the other variable:

>> Sx2 = shiftmatrix(2,2,rows,[1 0 1]); % shift with 1*x2
>> eig(Sx2*Z,S1*Z)

ans =
-1.0000
1.0000

2.4.2 Solutions with multiplicity greater than one
When all solutions are simple, every solution of the system corresponds to
exactly one column in the multivariate Vandermonde basis matrix V of the
null space, and every column contributes to the nullity of the Macaulay matrix.
However, if solutions with multiplicity greater than one exist, the null space
of the Macaulay matrix no longer contains only the multivariate Vandermonde
solution vectors v|(j), but also linear combinations of the partial derivatives of
these solution vectors, i.e., it has become a confluent Vandermonde matrix [78].
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Möller and Stetter [176] and Dayton et al. [68] elaborate in more detail on the
consequences of solutions with multiplicity greater than one. Except for a loss
of numerical accuracy in computing eigenvalues with multiplicity greater than
one, multiplicity poses no problem for the above-described null space based
root-finding approach [79].

However, to counter this loss of accuracy, Corless et al. [62] have proposed
to use n+ 1 shift polynomials: one random shift polynomial,

g0(x) =

n∑
i=1

cixi, (2.62)

with every ci ∈ C a random complex number, and n shift polynomials

gi(x) = xi, (2.63)

for i = 1, . . . , n. The first random shift polynomial g0(x) has only multiplic-
ities that come from common roots that are really identical (with probability
one). A Schur decomposition of (S1Z)

−1
(Sg0Z) yields the upper triangular

matrix Dg0 and orthonormal matrix Q via planar rotations or Householder
transformations:

QDg0Q
H = (S1Z)

−1
(Sg0Z), (2.64)

where Q−1 = QH because the matrix Q is orthonormal. The fact that the
triangular form in (2.64) is obtained via planar rotations or Householder trans-
formations results in a more accurate decomposition in the presence of mul-
tiplicities. By re-using the matrix Q, every component xi|(j) of the solution
of the system is on the jth position of the diagonal of the upper triangular
matrices Dxi

, i.e.,
Dx1

= QH(S1Z)
−1

(Sg1Z)Q,

...

Dxn = QH(S1Z)
−1

(SgnZ)Q.

(2.65)

Every upper triangular matrix Dxi
contains the different evaluations in one

variable:

Dxi
=

xi|(1) × ×

0
. . . ×

0 0 xi|(ma)

 (2.66)

Example 2.14 (continuing from p. 56). Instead of a single shift poly-
nomial or using a reconstruction of the Vandermonde basis matrix, we
now use n + 1 shift polynomials to retrieve the solutions. We shift with
g0(x) = 2x1 + 3x2 to determine D0 and Q via (2.64), where Sg0 is given
in (2.54). By re-using the matrix Q, we can retrieve the common roots by
combining the diagonal elements of

Dx1 = QH(S1Z)
−1

(Sx1Z)Q,

Dx2 = QH(S1Z)
−1

(Sx2Z)Q,
(2.67)



Section 2.4. Null space based approach 59

where the row selection matrices for this example are already given in (2.49),
(2.50) and (2.58). Since the solution components of a solution are at the
same position on the diagonal of D1 and D2, we do not need to reconstruct
V .

Code 2.7. We repeat the previous eigenvalue computations, but now use
the Schur decomposition:

>> [Q,~] = schur(inv(S1*Z)*(Sg*Z), `complex');
>> diag(Q'*inv(S1*Z)*(Sx1*Z)*Q)

ans =
2.0000
4.0000

An additional clustering step can be used to refine the solutions further [62].
After all, when working with floating-point algorithms, it is possible that exact
multiplicity (i.e., different solutions that are numerically identical) is destroyed.
By clustering the obtained solutions, for example, based on the their values in
g0(x), similar solutions are considered to belong to the same cluster. If the solu-
tions are clustered based on their values in the random shift polynomial g0(x),
then the solutions in the same cluster should be very similar. The accuracy of
the solutions could be improved by taking the mean value of every obtained xi
in the same cluster. However, this clustering step remains a heuristic: things
can go wrong. For example, when different clusters are not well-separated, the
clustering algorithm can consider two different clusters as one cluster and using
the mean of the two clusters for every xi in both clusters can deteriorate the
overall accuracy [62].

Example 2.15. Consider the system with multiplicities larger than one{
p1(x) = (x2 − 2)

3
= 0,

p2(x) = x1 − x2 + 1 = 0.
(2.68)

This system has a solution (1, 2) with multiplicity 3. If the random shift
polynomial is g0(x) = 1.4193x1 + 0.2916x2, then

Q =

−0.0000− 0.6531i 0.0000 + 0.1785i −0.7359 + 0.0000i
0.0000− 0.3106i 0.0000− 0.9495i 0.0453 + 0.0000i
−0.0000− 0.6907i 0.0000 + 0.2581i 0.6755 + 0.0000i

 (2.69)

and

Dg0 =

2.0025 + 0.0000i 3.7559 + 0.0000i 0.0001 + 5.1484i
0.0000 + 0.0000i 2.0025− 0.0000i 0.0001 + 4.6904i
0.0000 + 0.0000i 0.0000 + 0.0000i 2.0024 + 0.0000i

. (2.70)
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Re-using the matrix Q from (2.69) for the other shift problems results in

Dx1
=

1.0000 + 0.0000i 2.1953 + 0.0000i 0.0000 + 3.0092i
0.0000 + 0.0000i 1.0000− 0.0000i 0.0000 + 2.7415i
0.0000− 0.0000i 0.0000− 0.0000i 1.0000 + 0.0000i

 (2.71)

and

Dx2
=

2.0000 + 0.0000i 2.1953 + 0.0000i 0.0000 + 3.0092i
0.0000− 0.0000i 2.0000− 0.0000i 0.0000 + 2.7415i
0.0000− 0.0000i 0.0000− 0.0000i 2.0000 + 0.0000i

, (2.72)

from which the triple solution (1, 2) can be retrieved with accuracy 4.8×10−5.
A clustering algorithm considers the evaluations of the random shift polyno-
mial g0(x) in the three solutions and identifies them as one cluster. For every
variable, xi, the geometric mean of the values of the solution components in
that cluster can be used as an improved value for all xi|(j), j = 1, . . . , 3.
Using this clustering step, we improve the accuracy to 4.6× 10−15.

Example 2.16. A larger example shows how the clustering step helps to
improve the accuracy, especially when real solutions are split into conjugate
pairs. The system

p1(x) = −2− 7x1 + 14x31 − 7x51 + x71 − x72 − x82
+
(
7− 42x21 + 35x41 − 7x61

)
x2 +

(
16 + 42x1 − 70x31 + 21x51

)
x22

+
(
−14 + 70x21 − 35x41

)
x32 +

(
−20− 35x1 + 35x31

)
x42

+
(
7− 21x21

)
x52 + (8 + 7x1)x

6
2,

p2(x) = 7− 42x21 + 35x41 − 7x61 − 7x62 − 8x72

+ 2
(
16 + 42x1 − 70x31 + 21x51

)
x2 + 3

(
−14 + 70x21 − 35x41

)
x22

+ 4
(
−20− 35x1 + 35x31

)
x32 + 5

(
7− 21x21

)
x42

+ 6(8 + 7x1)x
5
2

(2.73)

is taken from [165] and has 49 real solutions (13 simple solutions and 18
solutions with multiplicity equal to 2). However, after computing the eigen-
values via the Schur decompositions, we obtain 13 simple, real solutions
and 36 complex solutions, which appear in 18 complex conjugate pairs (Ta-
ble 2.1). After clustering the evaluations of the random shift polynomial
g0(x) = −2.9443x1 + 1.4384x2, we notice that the conjugate pairs belong to
the same cluster. The geometric mean of each conjugate pair results in 18
real solutions with multiplicity equal to 2.

2.4.3 About the notion of a large enough degree
One central question in the above-described approach remains unanswered:
“What is the solution degree d◦?” When increasing the degree d by invoking
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Table 2.1. Solutions for system (2.73) obtained before the clustering step.
There are 13 simple, real solutions, while the 18 real solutions with multiplicity
equal to 2 split into complex conjugate pairs. Clustering the evaluations of the
random shift polynomial g0(x) = −2.9443x1 +1.4384x2 gathers these complex
conjugate pairs in the same cluster, after which the geometric mean of the
cluster results in the 18 real solutions with multiplicity equal to 2.

x1 x2 g0(x)

−0.0086± 0.0881i −1.8845∓ 0.1825i −2.6853∓ 0.5220i
−0.3838∓ 0.1787i 1.5422∓ 0.3258i 3.3482± 0.0576i
0.0555 + 0.0000i −1.5814 + 0.0000i −2.4380 + 0.0000i
0.6279± 0.1760i 1.8408∓ 0.0458i 0.7991∓ 0.5842i
−1.3614± 0.4866i −1.8952∓ 0.0806i 1.2823∓ 1.5485i
−0.2011 + 0.0000i 1.2425 + 0.0000i 2.3795 + 0.0000i
−0.5781± 0.0395i 0.5092∓ 0.7348i 2.4344∓ 1.1733i
0.9986∓ 0.0368i −0.8187∓ 0.0500i −4.1179± 0.0365i
0.8470 + 0.0000i 1.4849 + 0.0000i −0.3581 + 0.0000i
1.8930 + 0.0000i 1.8758 + 0.0000i −2.8753 + 0.0000i
−1.8224∓ 0.4311i 0.0993∓ 0.5550i 5.5085± 0.4710i
−0.3159± 0.1849i −0.8770∓ 0.5556i −0.3313∓ 1.3435i
0.9936 + 0.0000i 1.3975 + 0.0000i −0.9152 + 0.0000i
−0.7182 + 0.0000i −1.3384 + 0.0000i 0.1896 + 0.0000i
−0.9966 + 0.0000i −1.4220 + 0.0000i 0.8888 + 0.0000i
−2.2254± 0.1452i −1.1306∓ 0.5494i 4.9260∓ 1.2176i
1.1654 + 0.0000i −0.2382 + 0.0000i −3.7741 + 0.0000i
−3.1906± 0.4831i −1.9452∓ 0.0800i 6.5962∓ 1.5374i
2.7581± 0.2466i 1.6080∓ 0.2319i −5.8077∓ 1.0597i
2.5896∓ 0.3197i 0.6983∓ 0.4135i −6.6199± 0.3465i
1.3211± 0.0184i 0.3496∓ 0.3334i −3.3869∓ 0.5339i
3.0356± 0.0913i 1.8383± 0.0142i −6.2933∓ 0.2482i
−1.1374∓ 0.2113i 0.0632∓ 0.1137i 3.4397± 0.4586i
1.1235 + 0.0000i 0.8992 + 0.0000i −2.0145 + 0.0000i
−3.3685∓ 0.3429i −1.3803∓ 0.4465i 7.9323± 0.3674i
3.8185∓ 0.1335i 1.8324∓ 0.2014i −8.6072± 0.1033i
2.3703 + 0.0000i 0.9587 + 0.0000i −5.5999 + 0.0000i
1.3435 + 0.0000i 0.4718 + 0.0000i −3.2771 + 0.0000i
−0.0865 + 0.0000i −0.2216 + 0.0000i −0.0640 + 0.0000i
−2.6299± 0.5018i −1.3988± 0.2009i 5.7310∓ 1.1885i
−4.0934 + 0.0000i −2.0236 + 0.0000i 9.1415 + 0.0000i
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multiplications with more monomials in the FSR, the nullity of the Macaulay
matrix M eventually stabilizes at the total number of solutions mb in the case
of a zero-dimensional solution set (Section 2.6.1 discusses the case when the
solution set is not zero-dimensional). It is possible to monitor this behavior by
checking the nullity of M for increasing d. When d is equal to the degree of
regularity d∗, any basis matrix of the null space has mb linearly independent
columns and, when checking the rank of this basis matrix from top to bottom,
at least one linearly independent row per degree block15. The structure of a
basis matrix for d > d∗ depends on whether the system has only affine solutions
(Section 2.4.3.1) or affine solutions and solutions at infinity (Section 2.4.3.2).

2.4.3.1 Only affine solutions

When the system only has affine solutions (mb = ma), these linearly inde-
pendent rows correspond to the affine standard monomials. For larger degrees
d > d∗, they remain stable at their respective positions and new degree blocks
contain no additional linearly independent rows. The basis matrix consists of
two zones: a regular zone that contains the linearly independent rows related
to the affine standard monomials and a gap zone without additional linearly
independent rows. The degree d is equal to the solution degree d◦ when the
gap zone exists of dg degree blocks, for a shift polynomial with total degree
equal to dg.

Example 2.17. Consider again system (2.35) and use the linear shift poly-
nomial g(x) = 2x1 + 3x2. We iteratively build a Macaulay matrix M for
increasing degrees d = 2, . . . , 4 (as described in Algorithm 2.1), which results
in the following properties:

d size rank nullity
2 4× 6 4 2
3 9× 10 8 2
4 16× 15 13 2

For this example, we notice that the nullity of M has already stabilized for
degree d = 2. If we want to shift with a linear shift polynomial, the solution
degree d◦ is equal to 2. We compute a numerical basis matrix Z of the null
space. Performing row-wise rank checks from top to bottom shows that for
d = 2 the gap zone can indeed accommodate the shift polynomial (∗ indicates
a degree block without any additional linearly independent rows):

d standard monomials
2 1 |x1 | ∗
3 1 |x1 | ∗ | ∗
4 1 |x1 | ∗ | ∗ | ∗

15These linearly independent rows are related to the standard monomials, which is discussed
in more depth in Section 4.5. In that section, we also link the row selection procedure with
the Gröbner basis, border basis, and truncated normal forms.
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d = 2

Z

d∗ = 3 d = 4 d = 5

(a) Only affine solutions

d = 2

Z

d∗ = 3 d = 4

gap

d = 5

gap

compressed basis matrix of the null space W 11

(b) Affine solutions and solutions at infinity

Figure 2.6. Basis matrix of the null space of a Macaulay matrix M , which
grows by invoking more multiplications with monomials in the FSR (increasing
degree d). At a certain degree d∗ (in this example d∗ = 3), the nullity stabilizes
at the total number of solutions mb. In the situation with only affine solutions
(Figure 2.6a), the linearly independent rows of the basis matrix, checked from
top to bottom, correspond to the affine standard monomials and stabilize at
their respective positions (indicated by dashed lines). New degree blocks con-
tain no additional linearly independent rows when d > d∗. The basis matrix
consists of a regular zone ( ) and a gap zone ( ). However, when the system
has solutions at infinity (Figure 2.6b), the linearly independent rows of the
basis matrix that correspond to the standard monomials related to the solu-
tions at infinity (also indicated by dashed lines) move to higher degree blocks
when d > d∗; they constitute the singular zone ( ) of the basis matrix. A gap
zone emerges in the rows that separates these two types of linearly independent
rows, and the influence of the solutions at infinity can be deflated via a column
compression.
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We continue with a numerical basis matrix Z ∈ C10×2 of its null space (for
d = 2) and observe that the first two rows of Z, which correspond to the
variables 1 and x1, are linearly independent. As the nullity is 2, there are no
solutions at infinity. The matrix Z has a structure similar as in Figure 2.6a:
the first two degree blocks form the regular zone, while the other degree blocks
belong to the gap zone. An application of the multiple Schur decompositions
on this Z, as in Example 2.14, results in the common roots of the system.

2.4.3.2 Affine solutions and solutions at infinity

Sometimes, a system also has solutions at infinity, due to the sparsity of the
polynomials or interactions of some higher degree coefficients. The nullity of
the Macaulay matrix after stabilization corresponds to the total number of
solutions mb of the system, which is now the sum of the number of affine
solutions and the number of solutions at infinity (mb = ma + m∞). Every
solution spans one basis vector in this null space, hence all the columns of the
numerical basis matrix are linear combinations of affine solutions and solutions
at infinity. Next to the affine standard monomials, also linearly independent
rows related to the standard monomials that correspond to solutions at infinity
appear in the basis matrix. When we increase the degree (d > d∗), the linearly
independent rows that correspond to the affine standard monomials remain
again stable at their respective positions, but the standard monomials that
correspond to the solutions at infinity move to higher degree blocks when the
FSR proceeds. Eventually, a gap in the rows emerges that separates both
types of linearly independent rows. This gap grows when we keep increasing
the degree d > d∗. Now, the basis matrix consists of three zones: a regular zone,
a gap zone, and a singular zone that contains the linearly independent rows
related to the standard monomials that correspond to the solutions at infinity.
A column compression [78, 251] can remove the influence of the solutions at
infinity from the null space.

Theorem 2.3. A numerical basis matrix Z =
[
ZT

1 ZT
2

]T of the null space
of the Macaulay matrix M is a q×mb matrix, which can be partitioned into a
s×mb matrix Z1 (that contains the regular zone and gap zone) and a (q−s)×
mb matrix Z2 (that contains the singular zone), with rank(Z1) = ma < mb.
Furthermore, let the singular value decomposition of Z1 = UΣQT. Then,
W = ZQ is called the column compression of Z and can be partitioned
as

W =

[
W 11 0
W 21 W 22

]
, (2.74)

where W 11 is the s×ma compressed numerical basis matrix of the (regular
and gap zone of the) null space.
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Proof. A proof of this theorem can be found in [78, p. 97].

Remark 2.4. It is also possible to compute W 11 as the ma left-most left
singular vectors of Z1 in Theorem 2.3.

This column compression deflates the solutions at infinity and enables a straight-
forward use of the above-described affine null space based root-finding approach
as if no solutions at infinity were present (we simply replace Z in (2.56) by
W 11), provided that the gap zone can accommodate for the shift polynomial
g(x), which means that the monomials with highest total degree hit by the shift
must be present in the gap zone. Hence, the solution degree d◦ corresponds
to the degree d for which the gap zone consists of dg degree blocks, for a shift
polynomial with total degree equal to dg. This happens at d◦ = d∗+dg, where
d∗ typically corresponds to the degree for which the nullity has stabilized, but
there also are more difficult situations (Example 2.19).

Example 2.18. Consider the polynomial system (2.38), which has 2 affine
solutions and 2 solutions at infinity. We iteratively build the Macaulay matrix
M for degrees d = 2, . . . , 4 (as described in Algorithm 2.1) and obtain the
following properties:

d size rank nullity
2 2× 6 2 4
3 6× 10 6 4
4 12× 15 11 4

The nullity remains stable from degree d∗ = 2 onwards. When we compute
a numerical basis matrix Z of the null space and perform row-wise rank
checks from top to bottom, we notice that the null space has a different
structure than in the previous example (∗ indicates a degree block without
any additional linearly independent rows):

d standard monomials
2 1 |x1 |x21, x22
3 1 |x1 | ∗ |x31, x32
4 1 |x1 | ∗ | ∗ |x41, x42

Similar to Figure 2.6b, the null space consists, from degree d = 3 onwards, of
three zones. A degree d◦ = 3 Macaulay matrix suffices to find a gap zone of
degree dg = 1 and to shift with a linear shift polynomial g(x). We perform a
column compression on Z ∈ C10×4 in order to remove the solutions at infinity
and obtain W 11 ∈ C6×2 (Theorem 2.3). Schur decompositions (2.65) result
in the affine solutions of the system: (1, 1) and (−2,−2).
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Code 2.8. From the numerical basis matrix of the null space, we can find
the degree of the gap zone and number of affine solutions via gap(Z,d,n) .

>> Z = null(macaulay(toy3,4));
>> [dgap, ma] = gap(Z,4,2)

dgap =
2

ma =
1

We remove the solutions at infinity via a column compression:

>> W11 = columncompression(Z,n,dgap);

The function shiftnullspace(W11,shiftpoly) sets-up and solves the dif-
ferent shift problems. shiftpoly is the polynomial g0(x) that determines the
orthonormal matrix Q used in the other n shift problems with gi(x) = xi.

>> D = shiftnullspace(W11,[randn(2,1) eye(2)]);
>> solutions = [D{2}, D{3}] % combine x1 and x2

solutions =
1.0000 1.0000
-2.0000 -2.0000

Example 2.19. Sometimes, the situation is more difficult. Consider the
system of multivariate polynomial equations

p1(x) = x1x2 − 3 = 0,

p2(x) = x21 − x23 + x1x3 − 5 = 0,

p3(x) = x33 − 2x1x2 + 7,

(2.75)

and iteratively build the Macaulay matrix M for degree d = 3, 4, . . . (as
described in Algorithm 2.1):

d size rank nullity
3 9× 20 9 11
4 24× 35 23 12
5 50× 56 44 12
6 90× 84 72 12
7 147× 120 108 12
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Algorithm 2.2 Null space based root-finding algorithm
Require: Macaulay matrix M ∈ Cp×q of degree d◦ (Algorithm 2.1)

1: Compute a numerical basis matrix Z of the null space of M
2: Identify the gap zone and the number of affine solutions ma via row-wise

rank tests on Z (Section 2.4.3)
3: Use Theorem 2.3 to obtain the compressed numerical basis W 11 of the null

space (note that if mb = ma, then W 11 = Z)
4: For a user-defined shift polynomial g0(x), solve the Schur decomposition

QDg0Q
−1 = (S1Z)

−1
(Sg0Z), (2.76)

where the matrices S1, Sg0 , Q, and Dg0 are defined as in (2.64)
5: Retrieve the different components xi|(j) of the solutions from Dxi in (2.65)
6: return x|(j), for j = 1, . . . ,ma

The nullity remains stable from degree d = 4 onwards, but when we compute
a numerical basis matrix Z of the null space and perform row-wise rank
checks from top to bottom, we notice that the null space only has a large
enough gap zone from degree d◦ = 7 onwards (∗ indicates a degree block
without any additional linearly independent rows):

d standard monomials
3 1 |x1, x2, x3 |x21, x1x3, x22, x2x3 |x31, x32, x22x3
4 1 |x1, x2, x3 |x21, x1x3, x22 |x31, x32, x22x3 |x42, x32x3
5 1 |x1, x2, x3 |x21, x1x3, x22 |x32 |x42, x32x3 |x52, x42x3
6 1 |x1, x2, x3 |x21, x1x3 |x32 |x42 |x52, x42x3 |x62, x52x3
7 1 |x1, x2, x3 |x21, x1x3 | ∗ |x41 |x52 |x62, x52x3 |x72, x62x3

An analysis of this polynomial system learns that the degree of regularity
d∗ = 6, which is higher than the degree for which the nullity has stabilized.

2.4.4 Null space based root-finding algorithm
We summarize the different steps of the null space based root-finding algorithm
in Algorithm 2.2.

Remark 2.5. Algorithm 2.2 only selects the linearly independent rows that
correspond to the affine standard monomials. However, the row-wise rank
checks from top to bottom to identify the linearly independent rows are
numerically not very robust. Instead of selecting ma linearly independent
rows of Z, the row selection matrix S1 ∈ Rl×q can also select entire degree
blocks of Z (but needs to contain at least ma linearly independent rows to
cover all the affine solutions). The row combination matrix Sg ∈ Rl×q selects
again the rows in Z that are hit by the shift. Mathematically, a rectangular
matrix pencil (SgZ,S1Z) is considered or the pseudo-inverse (.†) is used to
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obtain a solvable SEP

(S1Z)
†
(SgZ)T = TDg. (2.77)

Shifting entire degree blocks replaces the row-wise rank checks by more effi-
cient degree block-wise rank checks. For accuracy reasons, a Schur decom-
position replaces the eigenvalue decomposition in (2.77):

QDgQ
−1 = (S1Z)

†
(SgZ). (2.78)

Example 2.20. To wrap up the null space based approach, we consider a
polynomial system from magnetism [131],

p1(x) = 2(x2 + x3 + x4 + x5 + x6 + x7) + x1 − 1 = 0,

p2(x) = 2(x1x6 + x2x5 + x2x6 + x3x4)− x6 = 0,

p3(x) = 2(x1x5 + x2x4 + x2x6 + x3x7) + x23 − x5 = 0,

p4(x) = 2(x1x4 + x2x3 + x2x5 + x3x6 + x4x7)− x4 = 0,

p5(x) = 2(x1x3 + x2x4 + x3x5 + x4x6 + x5x7) + x22 − x3 = 0,

p6(x) = 2(x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x5x6)− x2 = 0,

p7(x) = 2
(
x22 + x23 + x24 + x25 + x26 + x27

)
+ x21 − x1 = 0,

(2.79)

which is a polynomial system in n = 7 variables. Via Algorithm 2.1, we
can determine that the solution degree d◦ = 7. The corresponding Macaulay
matrix M is a 6468× 3432 matrix. Since (2.79) has mb = 64 solutions, the
basis matrix of the null space is a 3432 × 64 matrix. The rank tests reveal
that all the solutions are affine, hence no column compression is necessary.
This polynomial system can be solved in 6.12 s (averaged over 30 experi-
ments) via the row-wise approach, while it only takes 4.65 s (averaged over
30 experiments) via the block-wise approach mentioned in Remark 2.5. The
maximum absolute residual error16of the row-wise approach and block-wise
approach is 3.71× 10−11 and 3.44× 10−12, respectively (both averaged over
30 experiments).

Remark 2.6. A correct basis matrix of the null space is essential in obtain-
ing good absolute residual errors16 for the solutions: Using a less accurate
basis matrix to compute the solutions directly influences these errors. The
accuracy of the computed basis matrix limits the maximum absolute residual
errors of the solutions that can be obtained, but approximations of the so-
lutions can still be obtained. The influence of a wrong rank check, however,

16 We calculate the absolute residual error by substituting the computed solutions(
x∗
1, . . . , x

∗
n

)
in the polynomials and taking the sum of the 2-norm of the residuals, i.e.,

‖e‖2 =
∑s

i=1‖pi(x∗)‖2. More information about the error measures used in this text can be
found in Appendix B.2.3.
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is more severe. Wrongly estimating the number of affine solutions can have
devastating consequences for the obtained solutions (with cases in which the
obtained solutions are completely wrong).

2.5 Column space based approach
In this section, we consider the column space of the Macaulay matrix instead
of its null space. The complementarity between both subspaces (Section 2.5.1)
enables an equivalent column space based root-finding approach (Section 2.5.2).
Although not strictly necessary, we also translate the column compression of
the null space to a complementary compression of the column space of the
Macaulay matrix (Section 2.5.3). Afterwards, we summarize the different steps
of the column space based root-finding algorithm (Section 2.5.4).

2.5.1 Complementarity with the null space
The null space and column space of an arbitrary matrix share an intrinsic
complementarity.

Lemma 2.3. Consider a matrix M ∈ Rp×q, with rank(M) = r ≤ min(p, q).
Let Z ∈ Cq×(q−r) be a full column rank matrix, the columns of which gen-
erate a basis matrix of the null space of M , such that MZ = 0. Using a
row permutation matrix P , reorder the rows of Z into PZ =

[
ZT

A ZT
B

]T
and partition the columns of the matrix M accordingly with P−1 so that
MP−1 =

[
MA MB

]
. Consequently, MZ = MP−1PZ = MAZA +

MBZB = 0 and the following property holds:

rank(MB) = r ⇔ rank(ZA) = q − r. (2.80)

Proof. A proof of this lemma can be found in [78, p. 41].

The choice of the row permutation matrix P is not unique, there exist many
possibilities to identify q − r linearly independent rows in Z. However, this
lemma is more than a simple rank property, it expresses a complementarity
for maximal sets17 of linearly independent rows in Z with respect to maximal
sets of linearly independent columns in M . Obviously, we have MAZA =
−MBZB , such that MA = −MB

(
ZBZ

−1
A

)
expresses the linearly dependent

columns of M as a linear combination of the linearly independent ones and
ZB = −

(
M †

BMA

)
ZA expresses the linearly dependent rows of Z as a linear

combination of the selected linearly independent ones. This lemma leads to an

17A set of linearly independent rows is said to be maximal when it can not be expanded to
another set of linearly independent rows by addition of any linearly independent row.
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important observation when applying it on growing submatices: when indexing
the linearly independent rows of Z (row-wise from top to bottom), it turns out
that the “corresponding” columns of M are linearly dependent columns on
the other columns of M (column-wise from right to left), as the next example
illustrates.

Example 2.21. Consider a matrix M ∈ R4×7 and a basis matrix of its null
space Z ∈ R7×3:

MZ =


−2 0 0 2 0 0 0
0 −2 0 2 0 1 1
0 0 −2 0 0 1 1
−2 0 0 1 1 0 0





1 1 0
−1 1 0
−1 1 0
1 1 0
1 1 0
−1 1 1
−1 1 −1


= 0. (2.81)

The linearly independent rows of Z, checked from top to bottom, are indexed
as {1, 2, 6}. At the same time, the linearly dependent columns of M , checked
from right to left, are also indexed as {1, 2, 6}, in accordance to Lemma 2.3.

We can now apply Lemma 2.3 to the Macaulay matrix and any basis matrix
of its null space. Observe that we can replace Z by a linear transformation ZT ,
so Lemma 2.3 is independent of the choice of basis matrix. The solutions of a
system of multivariate polynomial equations give rise to standard monomials
that correspond to the linearly independent rows of the basis matrix of the
null space. When checking the rank of this basis matrix row-wise from top to
bottom, every linearly independent row corresponds to one standard monomial.
If we gather these linearly independent rows in a matrix ZA, which has full rank
q−r, then we know, because of Lemma 2.3, that there exists a partitioning MB

of the columns of the Macaulay matrix, which has full rank r. Consequently,
the remaining columns MA of the Macaulay matrix linearly depend on the
columns of MB . They correspond to the linearly independent rows of the
basis matrix of the null space, and hence, every linearly dependent column of
the Macaulay matrix, checked from right to left, also corresponds to exactly
one standard monomial. This results in the following corollary.

Corollary. The solutions of a system of multivariate polynomial equations
are related to both the linearly dependent columns of the Macaulay matrix
(checked column-wise from right to left) and to the linearly independent rows
of the basis matrix of its null space (checked row-wise from top to bottom).

Figure 2.7 visualizes the complementarity between both fundamental subspaces.
Note that the gap zone in the basis matrix of the null space is a gap of linearly
dependent rows, while the gap zone in the Macaulay matrix is a gap of linearly
independent columns.
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gap

gap

= 0

M

Z

Figure 2.7. Complementarity of the null space and the column space of a
Macaulay matrix: the standard monomials related to the solutions of a system
of multivariate polynomial equations give rise to linearly independent rows in
the basis matrix of the null space and to linearly dependent columns in the
Macaulay matrix. If we check the rank of this basis row-wise from top to bot-
tom, every linearly independent row corresponds to one solution. Because of the
complementarity between the null space and column space of the Macaulay ma-
trix, the linearly dependent columns of the Macaulay matrix, checked column-
wise from right to left, correspond to the same standard monomials. In both
matrices, we identify three zones: the regular zone ( ), the gap zone ( ), and
the singular zone ( ).

2.5.2 Equivalent column space realization theory

Consider, for a polynomial system with zero-dimensional solution set, again a
Macaulay matrix M ∈ Cp×q, with degree equal to its solution degree d = d◦,
and a numerical basis matrix W ∈ Cq×mb of its null space after a column
compression (Theorem 2.3). A shift of the linearly independent rows of the
compressed basis matrix W 11 with a shift polynomial g(x) results in the ex-
pression

(SgW 11)T = (S1W 11)TDg, (2.82)

where the matrices S1, Sg, T , and Dg are defined as in (2.56).
Next, we define two new matrices B and C. The matrix B ∈ Cma×ma con-

tains all the linearly independent rows of the matrix W 11, which corresponds
to the selection S1W 11 in (2.82), and is partitioned so that shifting with g(x)
each of its top mh rows (denoted by B1) only hits rows inside B and shifting
with g(x) each of its bottom mc = ma − mh rows (denoted by B2) hits at
least one row not in B. We gather the mc linear combination of rows hit by
shifting the rows of B2 in the matrix C ∈ Cmc×ma and rewrite (2.82) as a
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matrix pencil (A,B), [
S′

gB

C

]
︸ ︷︷ ︸

A

T =

[
B1

B2

]
︸ ︷︷ ︸

B

TDg, (2.83)

where S′
g is the mh×ma row combination matrix that selects the mh = ma−mc

linear combinations of rows in B hit by shifting the rows of B1. Shifting the
rows in B1 leads to linear combinations of rows only in B (B1 → S′

gB) and
shifting the rows in B2 leads to linear combinations of rows in B and/or not
in B (B2 → C). For example, if we shift the ith row of B2 and g(x) hits
the µth row of B (bµ) and the νth row of W (wν – not in B), then the ith
row of C is equal to cµbµ + cνwν (the coefficients cµ and cν come from the
shift polynomial). The matrix Dg is again a diagonal matrix that contains the
evaluations of the shift polynomial g(x) in the different solutions. The matrix
B can be extracted from the column matrix in the left-hand side, after which
an SEP appears (with BT as its matrix of eigenvectors):[

S′
g

CB−1

]
BT = BTDg. (2.84)

The matrix B is invertible because it contains ma linearly independent rows
by construction (the rows that correspond to the affine standard monomi-
als). In the remainder of this section, we translate (2.84) to the column space
via Lemma 2.3, avoiding the computation of a numerical basis matrix of the
null space.

Example 2.22. When we consider system (2.35), we start by identifying the
linearly dependent columns (from right to left) of M . Like in Example 2.9, we
notice that d◦ = 2 and that the two left-most columns are linearly dependent
on the other columns (from right to left), which means that the first two rows
of W 11 (i.e., 1 and x1) constitute B. The rows in C depend on the particular
shift:

• For a shift with x1, the rows that correspond to x1 and x21 are hit. This
means that C contains only the 4th row (i.e., x21). The matrix B could
be split into B1 with the first row and B2 with the second row. The
row selection matrix S′

g selects the second row from B.

• When we shift with the polynomial g(x) = x21, the matrix C contains
the 4th (x21) and 7th (x31) row. The matrix B1 is empty and no row
selection matrix S′

g is needed.

• Choosing the same shift polynomial as in Example 2.17, g(x) = 2x1 +
3x2, results again in an empty B1 matrix. The matrix C contains two
combinations of rows: two times the 2nd (x1) row with three times the
3rd (x2) row and two times the 4th (x21) row with three times the 5th
(x1x2) row.
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The matrices B and C contain rows (or linear combination of rows) of the
matrix W 11. We define the matrix D ∈ Cmr×ma (with mr = s−ma −mc) as
the matrix that contains the remaining rows of W 11, such that every row of
W 11 is represented once in B, C, or D. For example, if a row in C contains
a linear combination of multiple rows of W , then that row of C represents
only one of those rows in the linear combination. The other rows of the linear
combination need to be represented by other rows of C, or they are included
in B or D. Consequently, we can reorder the basis matrix W as

PW =


B 0
C 0
D 0

W 21 W 22

, (2.85)

where the matrix P is a q×q row combination matrix that is invertible (because
it is square and of full column rank by construction) and does not alter the
rank structure of W (because it takes linear combinations of rows that already
depend linearly on the rows in B). Using Lemma 2.3, the columns of the
Macaulay matrix can be reordered in accordance to the reordered basis matrix
of the null space and obtain

[
N1 N2 N3 N4

]︸ ︷︷ ︸
N


B 0
C 0
D 0

W 21 W 22

 = 0, (2.86)

where every matrix N i ∈ Cp×qi corresponds to a subset of the columns (or
linear combinations of columns) of M . We call N = MP−1 ∈ Cp×q the re-
ordered Macaulay matrix. Now, we apply a backward QR decomposition18

on N , which yields

Q


R14 R13 R12 R11

R24 R23 R22 0
R34 R33 0 0
R44 0 0 0




B 0
C 0
D 0

W 21 W 22

 = 0, (2.87)

or, if we pre-multiply both sides by Q−1 = QH (the labels denote the number

18Essentially, the backward QR decomposition triangularizes the reordered Macaulay ma-
trix N as the traditional forward QR decomposition, but starts with the last column of N
and iteratively works towards the first column of N . Its result is similar to the result of the
traditional forward QR decomposition of the matrix with all its columns flipped.
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of rows/columns of the different blocks19),


ma mc mr q−s

q−s R14 R13 R12 R11

mr R24 R23 R22 0
mc R34 R33 0 0

p−q+ma R44 0 0 0




B 0
C 0
D 0

W 21 W 22

 = 0. (2.88)

Note that R44 is always a zero matrix, since the rows of B are linearly inde-
pendent and the complementarity of Lemma 2.3. From (2.88), it follows that
R33C = −R34B, which means that

CB−1 = −R−1
33 R34, (2.89)

because R33 is always of full rank (since the rows of C depend linearly on
the rows of B and the complementarity of Lemma 2.3). This relation helps to
remove the dependency on the null space in (2.84) and yields a solvable SEP
in the column space (with H = BT ),[

S′
g

−R−1
33 R34

]
H = HDg, (2.90)

or a GEP (to avoid the computation of the inverse of R33),[
S′

g

−R34

]
H =

[
Imh

0

0 R33

]
HDg, (2.91)

with Imh
∈ Nmh×mh the identity matrix. The matrix of eigenvectors H =

BT corresponds to the partitioned linearly independent rows of the (affine)
Vandermonde basis matrix V , because the nonsingular transformation matrix
T relates the rows of the numerical basis matrix W 11 (or B) to the rows of V .
Consequently, the eigenvalues in Dg and eigenvectors in H yield the solutions of
the system of multivariate polynomial equations. Note that this complementary
column space based approach does not require a column compression (although
it does exist, see Section 2.5.3) to deflate the solutions at infinity, because the
backward (Q-less) QR decomposition already separates them implicitly.

Example 2.22 (continuing from p. 72). We now continue the previous
example and set up the GEP in (2.91) for a shift with g(x) = 2x1 +3x2. We

19A closer analysis of the flipped upper triangular matrix R reveals two special cases.
Firstly, W 21 and W 22 are absent from W when there are no solutions at infinity. As a
consequence, (2.86) no longer contains N4 and q − s = 0, which means that we can ignore
the first block row and last block column of R (Example 2.22). Secondly, the size of the
Macaulay matrix M determines the size of R44: when p > q the matrix R44 is tall, but
when p < q the matrix R44 is wide and absent when p = q − ma. Note that it can even
happen that p = q−mb < q−ma when the system has solutions at infinity (Example 2.23):
then we need to use a larger degree d or remove the linearly dependent columns in N4,
which correspond to the standard monomials related to the solutions at infinity, to ensure
that p ≥ q −ma and to obtain the structure of R as presented in (2.88).
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build the row combination matrix P ∈ R6×6,

P =


1 0 0 0 0 0
0 1 0 0 0 0
0 2 3 0 0 0
0 0 0 2 3 0
0 0 0 0 1 0
0 0 0 0 0 1

, (2.92)

where the first two rows of P select the linearly independent rows of B, the
next two rows of P creates the linear combinations of rows of C, and the
remaining rows of P result in D. We do not multiply Z by P , but we use
P−1 to reorder the columns of M into the matrices N1, N2, and N3. Since
there are no solutions at infinity, we do not have a matrix N4 (Footnote 19).
The backward (Q-less) QR decomposition of N = MP−1 results in the
matrix

R =

[ 2 2 2

2 R24 R23 R22

2 R34 R33 0

]
, (2.93)

from which the matrices R33 and R34 of (2.91) can be extracted. The GEP
yields the same matrix Dg as in Example 2.13, namely

Dg =

[
1 0
0 11

]
. (2.94)

Code 2.9. After creating the rowcombinationmatrix(d,n,rows,shift) ,
we can reorder the Macaulay matrix. We use the same shift polynomial as
in Code 2.5. We use the same rows as in the null space based approach, so
rows = [1 2] .

>> P = rowcombinationmatrix(2,2,rows,[2 1 0; 3 0 1]);
>> N = M*inv(P);

The Q-less backward QR decomposition results in the same eigenvalues:

>> [~,R] = qr(fliplr(N)); R = fliplr(R);
>> R33 = R(3:4,3:4); R34 = R(3:4,1:2);
>> eig(-R34,R33)

ans =
1.0000
11.0000
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Example 2.23. Next, we consider system (2.38) to illustrate the influence
of solutions at infinity. A similar analysis as in Example 2.11 (but now on
the columns from right to left), shows us that, for degree d = 3, the 6 × 10
corresponding Macaulay matrix already has a gap zone. However, for this
Macaulay matrix p = q −mb = 6 < q −ma = 8, the special case mentioned
in Footnote 19. We have two options to proceed:

• We can alleviate this problem by considering a larger degree of the
Macaulay matrix; the Macaulay matrix eventually will become tall.

• We can remove the linearly dependent columns that correspond to stan-
dard monomials related to the solutions at infinity. Since we identify
these m∞ = 2 linearly dependent columns with the column-wise rank
checks, it is easy to remove them. We continue with a new Macaulay
matrix of size 6 × 8, where p = q̃ − ma = 6 because only the affine
solutions remain.

Remark 2.7. Contrary to the null space based approach, where all the dif-
ferent components of the solutions can be retrieved from the (affine) mul-
tivariate Vandermonde basis matrix V , the matrix H in the column space
based approach does not necessarily contain all the components of the so-
lutions. Therefore, a good choice of one or multiple shift polynomials gi(x)
is indispensible, so that the matrices Dgi yield the remaining components.
Another strategy is to always shift with a random shift polynomial g0(x),

QDg0Q
−1 =

[
S′

g0

R−1
33 R34

]
, (2.95)

and the n different variables gi(x) = xi,

QDx1Q
−1 =

[
S′

x1

R−1
33 R34

]
,

...

QDxn
Q−1 =

[
S′

xn

R−1
33 R34

]
,

(2.96)

which are similar Schur decompositions as in Section 2.4.2. The matrices
R33 and R34 have to be re-computed for every shift.

Example 2.24. Remember that for (2.35), the first two columns of a degree
d = 2 Macaulay matrix are linearly dependent on the other columns (from
right to left), which means that the matrix H only contains the evaluations of
the standard monomials 1 and x1 in the solutions. If we use the shift polyno-
mial g(x) = x21, then (2.91) only contains information about the first variable
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x1 in the solutions. Using n + 1 Schur decompositions, as in Remark 2.7,
alleviates this issue.

2.5.3 Complementary column compression
Because of the structure of the backward QR decomposition, the influence of
the solutions at infinity disappear implicitly when working in the column space.
However, there also exists a complementary column compression in the column
space that compresses the Macaulay matrix and can reduce the computational
complexity of the column space based approach in some situations.

Theorem 2.4. The Macaulay matrix M =
[
M1 M2

]
of appropriate de-

gree d is a p×q matrix, which can be partitioned into a p×(q− l) matrix M1

(that contains the columns that correspond to the affine solutions and the
gap) and a p× l matrix M2 (that contains the columns that corresponds to
the solutions at infinity), with rank(M2) = l−m∞. Furthermore, let the QR
decomposition with column pivoting of M2P = QR =

[
Q1 Q2

]
R. The

matrix Q2 ∈ Cp×(p−l+m∞) is an orthogonal basis of the left null space of M2.
Then, N = QH

2 M is called the complementary column compression of
M and can be partitioned as

N =
[
N1 0

]
, (2.97)

where N1 is the (p − l + m∞) × (q − l) matrix that corresponds to the
compressed Macaulay matrix.

Proof. Partition the Macaulay matrix M =
[
M1 M2

]
and pre-multiply

by the matrix QH
2 . Consequently, N = QH

2 M =
[
QH

2 M1 QH
2 M2

]
. Since

the matrix Q2 is an orthogonal basis matrix of the left null space of M2, the
matrix QH

2 M2 = 0 and the theorem is proven.

Note that this matrix Q2 does not have to be calculated explicitly, but is
computed at a certain point.

2.5.4 Column space based root-finding algorithm
We summarize the different steps of the column space based root-finding algo-
rithm in Algorithm 2.3.

Remark 2.8. Note that, when the shift polynomial g(x) is merely a mono-
mial of (some of the) variables, the row combination matrix P is a row
permutation matrix (every hit consists of only one row), and its inverse P−1

is equal to its transpose PT. Applying PT to the Macaulay matrix M cor-
responds to reordering the columns of M in accordance to PW , which is
quite easy to implement (no explicit construction of P is necessary).
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Algorithm 2.3 Column space based root-finding approach
Require: Macaulay matrix M ∈ Cp×q of degree d◦ (Algorithm 2.1)

1: Replace M by the flipped upper triangular matrix R of its QR decompo-
sition (optional)

2: Determine the linear dependent columns from right to left and reorder M
or R as in (2.86)

3: Use Theorem 2.4 to obtain the compressed reordered matrix N1 (optional)
4: Compute the (Q-less) backward QR decomposition of the reordered matrix

N (or the compressed N1)
5: For a user-defined shift polynomial g0(x), solve the Schur decomposition

QDg0Q
−1 =

[
Imh

0

0 R33

]−1[
S′

g0

−R34

]
, (2.98)

where the matrices S′
g0 , R34, R34, Q, and Dg0 are defined as in (2.91)

and (2.95)
6: Retrieve the different components xi|(j) of the solutions from Dxi in (2.96)
7: return x|(j), for j = 1, . . . ,ma

Example 2.24 (continuing from p. 76). When the shift is a monomial,
for example, g(x) = x1, the permutation and inverse permutation matrix are

P =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (2.99)

and

P−1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, (2.100)

which do not have to be constructed explicitly. We can simply select the
corresponding columns of M directly.

Example 2.25. We repeat Example 2.20 and solve (2.79) via the column
space of the Macaulay matrix. The solution degree d◦ = 7 and we construct
a Macaulay matrix M ∈ C6468×3432. It is possible to replace M by the
flipped upper triangular matrix R ∈ C3432×3432 of its QR decomposition,
which is a size reduction of almost 50%. The rank tests, on the columns
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of the Macaulay matrix, reveal that the polynomial system has 64 affine
solutions. Since we only use linear shift polynomials, we do not build P
explicitly, but re-order the columns of M instead. This polynomial system
can be solved in 3708.51 s (averaged over 30 experiments), which is much
slower than via the null space. The main culprit is performing the column-
wise rank checks on the Macaulay matrix, which considers larger matrices
than the row-wise rank checks on the basis matrix of the null space. Note
that, by using R instead of M for the rank checks, it is possible to speed
up the computations, the polynomial system can then be solved in 2032.88 s
(averaged over 30 experiments). The maximum absolute residual error16 of
this approach is 1.21× 10−10 (averaged over 30 experiments).

2.6 Extensions to the root-finding approaches
In this section, we present some extensions to the above-described root-finding
approaches. We show how to deal with a positive-dimensional solution set at
infinity (Section 2.6.1), how a special shift polynomial might be useful (Sec-
tion 2.6.2), and how to adapt the Macaulay matrix when the polynomials are
given in another polynomial basis (Section 2.6.3).

2.6.1 Positive-dimensional solution sets at infinity
Due to sparsity and interactions of the higher-degree coefficients of the polyno-
mials, not only isolated solutions at infinity, but also positive-dimensional solu-
tion sets at infinity may prevail. When the solution set of a system of multivari-
ate polynomial equations is positive-dimensional (so, the number of solutions is
infinite), the nullity of the Macaulay matrix does not stabilize. However, if the
affine part of the solution set is zero-dimensional and the positive-dimensional
part lives entirely at infinity, then the Macaulay matrix approaches can in some
situations still be used to solve the system. Figure 2.8 sketches how the nullity
and a basis matrix of the null space of the Macaulay matrix behave in this
case. On the one hand, the linearly independent rows that correspond to the
standard monomials associated with the affine solutions stabilize at their re-
spective positions from a certain degree d∗ on, as described in Section 2.4.3.
The linearly independent rows that correspond to the standard monomials
associated with the solutions at infinity, on the other hand, keep moving to
higher degree blocks when further increasing the degree d > d∗ and, since the
solution set at infinity is positive-dimensional, more linearly independent rows
keep appearing in these higher degree blocks (Figure 2.8). A gap zone in the
rows without any additional linearly independent rows still emerges in some
situations (when d > d∗). Similar to the zero-dimensional case, the solution
degree d◦ implies that the basis matrix can accommodate the shift polynomial,
which means again that the gap zone must be able to accommodate the shift
polynomial, so that a column compression or backward QR decomposition can
deflate the (infinitely many) solutions at infinity. Afterwards, Algorithm 2.2
or Algorithm 2.3 yield the solutions similar as in the zero-dimensional case.
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Example 2.26. Consider a system of multivariate polynomial equations with
a positive-dimensional solution set at infinity,

p1(x) = x1 + x2 − 1 = 0,

p2(x) = x1x3 + x2x4 = 0,

p3(x) = x1x
2
3 + x2x

2
4 − 1 = 0,

p4(x) = x1x
3
3 + x2x

3
4 = 0.

(2.101)

When iteratively building the Macaulay matrix M for degree d = 4, . . . 20,
the nullity does not stabilize:

d size rank nullity
4 56× 70 50 20
5 125× 126 103 23
6 246× 210 185 25
7 441× 330 303 27
...

...
...

...
18 17766× 7315 7266 49
19 22021× 8855 8804 51
20 27000× 10626 10573 53

However, when we compute a numerical basis matrix Z of the null space and
perform row-wise rank checks from top to bottom for every degree, we notice
that there emerges a gap zone at a certain degree (∗ indicates a degree block
without any additional linearly independent rows):

d standard monomials
4 1 |x1, x3 |x21, x1x3, x23, x24 |x31 · · ·
5 1 |x1, x3 |x21 |x31, x21x3, x33, x34 · · ·
6 1 |x3 |x21 |x31 |x41, x31x3, x43, x44 · · ·
7 1 |x3 | ∗ |x31 |x41 |x51, x41x3, x53, x54 · · ·

So, from the basis matrix Z ∈ C330×27 of the null space of the Macaulay
matrix for degree d◦ = 7, we can retrieve the solutions when we use a col-
umn compression to deflate the (infinitely many) solutions at infinity. The
resulting compressed basis matrix W 11 ∈ C15×2 can be used to set-up the
Schur decompositions in Algorithm 2.2.

Code 2.10. When dealing with a positive-dimensional solution set, the nu-
merical basis matrix of the null space must be checked for every degree. If
there is no gap zone, then gap throws an error.
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>> Z = null(macaulay(toy4,6));
>> [dgap, ma] = gap(Z,6,4)

No gap found! Maybe increase the degree?

If there is a gap zone, then the positive-dimensional solution set at infinity
can be removed and the isolated affine solutions are computed as before.

>> Z = null(macaulay(toy4,7));
>> [dgap, ma] = gap(Z,7,4) >> dgap =

2

ma =
= 2

>> W11 = columncompression(Z,ma,dgap);
>> D = shiftnullspace(W11,[randn(2,1) eye(2)],1,NaN);
>> solutions = [D{2}, D{3}, D{4}, D{5}]

solutions =
0.5000 0.5000 -1.0000 1.0000
0.5000 0.5000 1.0000 -1.0000

2.6.2 Special shift polynomials
In the previous sections, we have not yet spent much attention to the shift
polynomial. Clearly, from a numerical perspective, it is interesting to use a
random shift polynomial together with n shifts in the different variables. The
random shift polynomial avoids the situation in which distinct solutions are
wrongly considered to be equal, deteriorating the accuracy of the eigenvalue
or Schur decompositions. However, in some applications, selecting a special
shift polynomial may yield an additional benefit [78]. Since the eigenvalues
of (2.56) and (2.91) correspond to the evaluations of the shift polynomial in
the different solutions, we can use this GEP or Schur decomposition to evaluate
a polynomial, e.g., the cost function of the underlying optimization problem
or an additional constraint on the variables. For example, when considering a
multivariate polynomial optimization problem, shifting with the cost function
makes it possible to only compute the minimizer, avoiding the need for checking
all the stationary points against the cost function.

There is an important remark when using a special shift polynomial: Al-
though it is possible to use a shift polynomial of arbitrary high degree, a degree
dg > 1 is not interesting from a computational perspective since it requires a
gap zone of more degree blocks, thus, implies using a higher solution degree



82 Chapter 2. Root-Finding via the Macaulay Matrix
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compressed basis matrix of the null space W 11

Figure 2.8. Nullity and basis matrix of the null space of a Macaulay matrix
M , which grows by invoking more multiplications with monomials in the FSR
(increasing degree d), when the solution set at infinity is positive-dimensional.
Because the solution set at infinity is positive-dimensional, the nullity does
not stabilize: more linearly independent rows that correspond to the standard
monomials related to the solutions at infinity keep appearing in the higher
degree blocks. However, since the affine solution set is zero-dimensional, at
a certain degree d∗ (in this example d∗ = 3), the linearly independent rows
that correspond to the standard monomials associated with the affine solutions
stabilize at their respective positions ( ). Similar to the zero-dimensional case,
the solution degree d◦ corresponds to the degree of M for which the gap zone
( ) must be able to accommodate the shift polynomial, so that we can deflate
the (infinitely many) solutions at infinity via a column compression or backward
QR decomposition ( ).
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d◦. This naive approach of using a special shift polynomial may pose compu-
tational restrictions on the applicability. However, there are two alternative
approaches that circumvent this high degree of the shift polynomial:

• We can incorporate the cost function σ(x) in the polynomial system as
an additional variable xn+1 and add the equation

px+1(x̃) = xn+1σ(x)− 1 = 0 (2.102)

to the polynomial system. If we now shift with this new variable g0(x) =
xn+1, the eigenvalues correspond to the reciprocals of the cost function
evaluated in the different stationary points [71, 262].

• We can combine different shift matrices as a matrix polynomial and de-
duce a high degree shift from the eigenvalues of that matrix polyno-
mial [230].

These two approaches result in a linear shift polynomial, so a gap zone of
only one degree block. The former approach considers a system of multivariate
polynomial equations with an additional equation and variable, while the later
approach requires combining multiple shift matrices.

Example 2.27. Consider a multivariate polynomial optimization problem,
which minimizes the so-called two-dimensional three-hump camel back func-
tion [43, 177],

min
x

2x21 − 1.05x41 +
1

6
x61 + x1x2 + x22,

subject to x31 − x2 = 0.
(2.103)

The stationary points of the cost function subject to the constraint can be
found by solving the polynomial system

p1(x) = 4x1 − 4.2x31 + x51 + x2 + 3x21x3 = 0,

p2(x) = x1 + 2x2 − x3 = 0,

p3(x) = x31 − x2 = 0,

(2.104)

where x3 represents the Lagrange multiplier. The polynomial system has
ma = 5 affine solutions. In order to shift with

g0(x) = 2x21 − 1.05x41 +
1

6
x61 + x1x2 + x22, (2.105)

which has dg = 6, the gap zone has to contain 6 degree blocks. Indeed, that
puts a computational strain on the Macaulay matrix algorithm, since d◦ = 12
results in a 704 × 455 Macaulay matrix, compared to a 80 × 84 Macaulay
matrix when a linear shift polynomial is used.

In order to work with smaller Macaulay matrices, one of the two above-
mentioned alternatives can be used:
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• We can introduce a new variable x4, which corresponds to the function
value of the cost function. After adding a new polynomial equation,
namely x4g0(x)− 1 = 0, the largest eigenvalue of

(S1Z)
−1

(Sx4Z) (2.106)

corresponds to the global minimum.

• Because the matrices Di commute, we could also build the matrix poly-
nomial g0

(
(S1Z)

−1
(Sx1Z), (S1Z)

−1
(Sx2Z)

)
and compute its small-

est eigenvalue.

2.6.3 Another polynomial basis or monomial ordering
Within this text, we mainly consider the standard monomial basis, representing
a polynomial p(x) ∈ Pn

d as a finite linear combination of monomials xα with
complex coefficients cα,

p(x) =
∑
A
cαx

α, (2.107)

where the summation runs over all the exponents in the support A (Defini-
tion 2.3). However, a polynomial can also be represented in a different polyno-
mial basis

p(x) =
∑
B
cβbβ(x), (2.108)

where the polynomials bβ(x) are part of a set of polynomials that form a basis
for Pn

d . The complex coefficients cβ and support B might be different when
using another polynomial basis. Two examples are the multivariate Chebyshev
or Legendre polynomials.

When a multiplication of two basis polynomials can be written as a linear
combination of basis polynomials, i.e.,

bα(x)bγ(x) =
∑
B
cβbβ(x), (2.109)

it is also possible to construct a Macaulay matrix for a system of multivari-
ate polynomial equations in that polynomial basis. The null space based and
column space based root-finding algorithm can be constructed in terms of this
polynomial basis. While in some areas of mathematics, other polynomial bases
are well established (e.g., in approximation theory [247, 248]), more research
is necessary to fully grasp the consequences of working in another polynomial
basis with the Macaulay matrix.

Example 2.28. Consider a system of multivariate polynomial equations in
the multivariate Chebyshev basis of the first kind, i.e.,{

p1(x) = a00t00(x) + a01t01(x) + a10t10(x) = 0,

p2(x) = b00t00(x) + b01t01(x) + b10t10(x) = 0,
(2.110)
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where the polynomials tij(x) ∈ P2 are multivariate Chebyshev polynomials
of the first kind [247], defined as

tij(x) = ti(x1)tj(x2), (2.111)

with ti(x1) ∈ P1 the ith univariate Chebyshev polynomial of the first kind
in x1 and tj(x2) ∈ P1 the jth univariate Chebyshev polynomial of the first
kind in x2. The first six bivariate Chebyshev polynomials of the first kind
(in GRINVLEX ordering) are

t00(x) = t0(x1)t0(x2) = 1, (2.112)
t10(x) = t1(x1)t0(x2) = x1, (2.113)
t01(x) = t0(x1)t1(x2) = x2, (2.114)
t20(x) = t2(x1)t0(x2) = 2x21 − 1, (2.115)
t11(x) = t1(x1)t1(x2) = x1x2, (2.116)
t02(x) = t0(x1)t2(x2) = 2x22 − 1. (2.117)

(2.118)

For Chebyshev polynomials, the property

tk(xi)tl(xi) =
1

2

(
tk+l(xi) + t|k−l|(xi)

)
(2.119)

holds, which means that we can create a Macaulay matrix by applying a
FSR, using (2.119) to rewrite (2.44) for (2.110) as



t00 t10 t01 t20 t11 t02

t00 a00 a10 a01 0 0 0
t10

1
2a10 a00 0 1

2a10 a01 0
t01

1
2a01 0 a00 0 a10

1
2a01

t00 b00 b10 b01 0 0 0
t10

1
2b10 b00 0 1

2b10 b01 0
t01

1
2b01 0 b00 0 b10

1
2b01




t00
t10
t01
t20
t11
t02

 = 0. (2.120)

For example, in order to create the second row of the Macaulay matrix, the
polynomial p1(x) has to be multiplied with t10(x),

p1(x)t10(x) = a00t10(x)t00(x) + a10t10(x)t10(x) + a01t10(x)t01(x) (2.121)

= a00t10(x) +
a10
2

(t20(x) + t00(x)) + a01t11(x), (2.122)

via property (2.119). Clearly, the structure of the Macaulay matrix is entirely
different. But, also for other basis polynomials, the shift-invariant structure
of the null space and column space allow us to set-up multidimensional real-
ization problems that yield the common roots of the generating polynomials.

It is also possible to consider another monomial ordering. As mentioned
before, the actual structure of the Macaulay matrix depends on the chosen
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monomial ordering.

Example 2.29. To visualize the influence of the monomial ordering on the
structure of the Macaulay matrix, we consider a system of random multivari-
ate polynomials in three variables,

p1(x) =
∑
A
aαx

α = 0,

p2(x) =
∑
A
bαx

α = 0,

p3(x) =
∑
A
cαx

α = 0,

(2.123)

where the support A consists of all the monomials of total degree ≤ 3 and
the coefficients aα, bα, cα ∈ C are random numbers. The structure of the
Macaulay matrix in the graded lexicographic (GRLEX) ordering is differ-
ent from the structure when the GRINVLEX ordering is used, as visualized
in Figure 2.9

Code 2.11. It is possible to construct the Macaulay matrix in any polyno-
mial basis or monomial ordering. basis and order should be two functions
that implement the basis multiplication and the position of a monomial in
the monomial ordering. The system walsh_cheb is given in the Chebyshev
polynomial basis and is part of MacaulayLab’s database.

>> basis = @basischeb; % Chebyshev polynomial basis
>> order = @ordergrevlex; % grevlex monomial ordering
>> M = macaulay(walsh_cheb,3,basis,order);

2.7 Conclusion
We revised the numerical linear algebra approach that uses the right null space
of a Macaulay matrix to solve systems of multivariate polynomial equations.
We pointed at the complementarity of the right null space and column space
of this Macaulay matrix and proposed a novel, complementary root-finding
algorithm that considers the columns space of the Macaulay matrix instead.
Contrary to null space based approach, the column space based approach does
not require an explicit computation of a numerical basis matrix of the right
null space, i.e., an expensive singular value decomposition, but directly works
on the data in the columns of the Macaulay matrix. In that context, we also
proposed the complementary column space compression, which compresses the
Macaulay matrix and removes the influence of the solutions at infinity. This
compression step is not strictly necessary in the column space based approach,
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(a) Macaulay matrix in GRINVLEX ordering

(b) Macaulay matrix in GRLEX ordering

Figure 2.9. Macaulay matrix in two different monomial orderings for the
random multivariate polynomial system (2.123). The Macaulay matrix has a
different structure in the GRINVLEX ordering than in the GRLEX ordering,
while the seed equations are the same polynomial equations in both figures.
While the coefficients of the seed equations, indicated by red dots ( ), are at
the same positions in both Macaulay matrices, the shifted coefficients, indicated
by blue dots ( ), appear at different positions.
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since the backward QR decomposition already removes the solutions at infinity
implicitly. We provided three extensions to both root-finding algorithms that
can be useful in particular applications: (i) dealing with positive-dimensional
solution sets at infinity, (ii) using special shift polynomials, and (iii) changing
the polynomial basis and monomial ordering.

Motivational example. To illustrate the above-mentioned contributions,
we retake the motivational example and solve the polynomial system in (2.2)
via the developed numerical linear algebra approaches for a random sequence
of output data, namely

y =


0.1001
−0.5445
0.3035
−0.6003

. (2.124)

The solutions of the polynomial system are the critical points of the opti-
mization problem in (1.2). The solution that results in the smallest value
of the cost function corresponds to the globally optimal parameters of the
first-order ARMA model. Both the null space based and column space based
approach retrieve the different critical points for a 1800×1287 Macaulay ma-
trix of degree d◦ = 8. There is only one real solution for this data sequence,
namely α1 = 0.3817 and γ1 = −0.5789. Table 2.2 contains a comparison of
the different solution approaches. Using block-wise rank checks clearly has
a computational advantage in this example, while the numerical robustness
is not clear from this polynomial system (there are no difficult rank checks).
These block-wise rank checks are not yet available in the column space based
approach, resulting in a slower computation of the solutions. Furthermore,
the fact that the Macaulay matrix is tall results in more expensive rank
checks in the column space based approach, compared to the row-wise null
space based approach. The current column space based approach does not
yet exploit the fact that the Macaulay matrix is very sparse and structured.

Two of the above-mentioned extensions to the root-finding algorithms
come into the picture while solving the motivational example:

• The solution set of the polynomial system is not zero-dimensional.
However, since the affine part of the solution set is zero-dimensional,
the solutions can be retrieved after deflating the (infinite number of)
solutions at infinity, either via a column compression or the backward
QR decomposition.

• Since the cost function of the related optimization problem can be
written as a polynomial

g0(x) = l21γ
2
1 + l22γ

2
1 + 2l1l2γ1 + l21 + l23γ

2
1 + 2l2l3γ1 + l22 + l23 (2.125)

it can be used as special shift polynomial. The resulting eigenvalues
then correspond to the evaluations of the cost function in the stationary
point, resulting in a good approach to identify the globally optimal
parameters of the ARMA model.
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Table 2.2. Mean computation time and maximum absolute residual error16 for
solving the motivational example via the different numerical linear approaches
developed in this chapter, averaged over 30 experiments. The block-wise null
space based approach performs the rank checks on entire degree blocks, leading
to a much faster execution. Because the Macaulay matrix is tall, the column-
wise column space based approach has to perform more expensive rank checks
than the row-wise null space based approach, while the number of rank checks
is exactly the same.

approach time max‖e‖2

block-wise null space 0.86 s 1.7× 10−12

row-wise null space 9.00 s 1.6× 10−12

column-wise column space 288.05 s 2.0× 10−13

Considering both solution approaches, it would be interesting to gain more
insight in the numerical properties of the algorithms; making claims about the
numerical stability and assessing how every step influences the absolute residual
errors16 of the solutions. This insight may result in techniques to circumvent
troublesome steps in the algorithms. Furthermore, the complementary column
space based root-finding algorithm has created several research opportunities:

• As highlighted by the motivational example, the column space based
approach only works column-wise, while the null space based approach
considers entire degree blocks. The latter is preferred, both from a com-
putational and numerical perspective. One of our current research efforts
exists in enabling also a degree block-wise column space based approach.
Furthermore, the column space based approach does not yet exploit the
structure and sparsity of the Macaulay matrix, which can provide a com-
putational advantage compared to working with the unstructured and
dense (right) null space.

• Furthermore, systems of multivariate polynomial equations in applica-
tions are often structured. The most common structure that appears in
practical problems is the sparsity of the support. Clearly, implementa-
tions that exploit this inherent structure of the polynomial systems have
the potential to be computational much more efficient than general pur-
pose solvers [30, 32, 34].

• An additional research question emerges from the observation that it is
possible to build the Macaulay matrix with a different polynomial basis
and monomial ordering: “Can the change of polynomial basis or mono-
mial ordering result in superior numerical and/or computational proper-
ties?”
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Historical and bibliographical notes
The available literature on (multivariate) root-finding is enormous. In the
remainder of this chapter, we try to give an overview of the existing algorithms
and position their historical evolution. More information and references can be
found in standard books, such as [65, 66, 83, 222, 237].

Gröbner basis and Buchberger’s algorithm
As mentioned in the introduction, the main focus of algebraic geometry in most
of the 19th and 20th century was more on abstract algebra than on multivari-
ate polynomial system solving. The computational aspects only re-emerged in
the 1960s with Buchberger’s work [49] on manipulating systems of multivariate
polynomial equations. Buchberger’s algorithm computes a so-called Gröbner
basis20, which has been one of the main tools to solve systems of multivariate
polynomial equations ever since. A Gröbner basis is a set of multivariate poly-
nomials that have desirable properties, especially useful in computations with
polynomials [238]. Loosely speaking, the Buchberger’s can be understood as
the polynomial generalization of the Gaussian elimination algorithm or as the
multivariate generalization of the Euclidean greatest common divisor (GCD)
algorithm [78]. Via its Gröbner basis, it is possible to reduce the problem of
solving the multivariate polynomial system into several univariate root-finding
problems.

Gröbner bases have become the backbone of nearly all computational al-
gorithms in algebraic geometry. Since then, more computational and applied
results came forth from algebraic geometry, and a dedicated subarea, called
computational algebraic geometry or computer algebra, gained more attention.
Computer algebra has become very important in the past 50 years, thanks to
the exploded available computing power [66].

The methods of Faugère [88, 89] and their extensions, like G2V [92] and
ImpG2V [94], are currently considered to be the most efficient methods to
compute a Gröbner basis. Gröbner bases have dominated computer algebra
since their inception, but remain computationally very expensive21 and are
based upon infinite precision (symbolic) computations and, therefore, employ
rational numbers. This often results in huge coefficients (e.g., coefficients with
tens or hundreds of digits), which means that their extensions to floating-point
arithmetic are known to be rather cumbersome [138, 230]. The numerical
instability of Gröbner basis computations have limited their use in numerical
context [242]. This major drawback has motivated the introduction of border

20Hironaka [115] independently discovered this concept one year earlier and called it a
standard basis. The interested reader finds nice introductions to the Gröbner basis in the
short text by Sturmfels [238] or in the books by Cox et al. [65, 66].

21It is well-known that, in the worst-case, the complexity of computing a Gröbner basis is
doubly exponential in the number of variables [175]. However, it is important to note that
this is only an upper bound on the complexity. These worst-case estimates have led to the
unfortunately widespread belief that using Gröbner bases is not useful for systems beyond
simple toy problems, but for some special classes of systems of multivariate polynomial
equations, implementations like Faugère’s F5 methods, can be very efficient [17].
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bases [14, 181] and truncated normal forms [185, 243], which greatly improve
the numerical stability.

Solutions via resultants
This approach finds its origin with the work by, for example, Sylvester [239]
and Macaulay [159, 160], in the 18th and 19th century. There are several ways
of using resultants for solving a system of polynomial equations. One strat-
egy involves employing the u-resultant, which recovers the solution coordinates
through a GEP [127]. Another approach is to use resultants to eliminate vari-
ables from the equations, the so-called hidden variable resultants [52, 163,
164, 188, 224]. This leads to a polynomial eigenvalue problem (PEP), which
can be solved again via standard techniques from linear algebra. Diverse resul-
tant constructions, e.g., Sylvester, Macaulay, Bézoutian, and Cayley resultants,
are available. The resultant approach is especially useful in the bivariate set-
ting [224]. Despite yielding satisfactory results in practice, these methods are
intrinsically numerically unstable due to the inherent “projecting away some
variables”, as shown by Noferini and Townsend [191].

Other Macaulay matrix algorithms
Despite their manifest common historical ground, the linear algebra link be-
tween multivariate polynomials and eigenvalue problems has been neglected
in most of the algebraic geometry literature since the end of the nineteenth
century until well into the twentieth century. During the 1980s, the work of
Lazard and Stetter (and coworkers) revived the interest in matrix-based meth-
ods for solving systems of multivariate polynomial equations: Lazard [153,
154] observed the resemblance between Buchberger’s algorithm and Gaussian
elimination of a Macaulay matrix, while Auzinger and Stetter [14] rigorously
established the connection between multivariate polynomial system solving and
eigenvalue decompositions only a few years later. This was further explored
by, among others, Corless et al. [61], Emiris and Mourrain [87], Hanzon and
Jibetean [106], Mourrain and Pan [183], and Stetter [229].

However, Stetter [230] observed that, at that time, the only way to obtain
the common roots as the eigenvalues of a matrix using commonly available
software was via Gröbner basis methods; hence, the approach was partially
symbolic of nature. Batselier, De Moor, and Dreesen [21, 78, 80] have overcome
this hurdle and developed a pure (numerical) linear algebra approach to solve
systems of multivariate polynomial equations, using the right null space of a
rectangular Macaulay matrix and techniques from systems theory and linear
algebra to create a multidimensional realization problem in the right null space
of the Macaulay matrix that contains the solutions of the system.

Recently, some new adaptations to the Macaulay matrix approach have been
considered. Truncated normal forms have been introduced in [185, 243, 244]
to counter the numerical issues with the selection of the standard monomials.
The Macaulay matrix can also be adapted such that the resulting matrices
are smaller, which is interesting from computational point of view. By only
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considering the monomials in the dilated Newton polytope of the support of
the polynomials, the approach of Bender [30] and Bender and Telen [32] does
not require to construct all the rows/columns of the Macaulay matrix. In [31],
systems of multivariate polynomials are solved over the toric variety.

Another interesting adaptation to mention is the work of Vanderstukken
and De Lathauwer [255], Vanderstukken et al. [256], and Widdershoven et al.
[274], in which the shift problems in the right null space of the Macaulay matrix
are combined into a tensor and a tensor decomposition yields the common roots
of the generating polynomials.

Iterative root-finding methods
One particular type of iterative root-finding methods are the homotopy contin-
uation methods, which employ a hybrid mixture of techniques from algebraic
geometry and nonlinear optimization to continuously deform a starting sys-
tem with known solutions into the required system with unknown solutions,
while tracking the solutions (see, for example, [157] and [265]). Homotopy con-
tinuation methods are inherently parallel, i.e., each isolated solution can be
computed independently. They are currently among the most competitive al-
gorithms to solve systems of multivariate polynomial equations, although issues
with ill-conditioning still exist (i.e., path jumping). Their main disadvantage
is that they only work for square polynomial systems, which have as many
polynomial equations as variables.

An additional category of iterative root-finding methods are subdivision
methods. These methods employ domain reductions for an iterative refinement
of the subregions where the solutions may be located. An example of such a
method is the algorithm presented in [184].

Deterimental representations
It is a well-known fact that the roots of a univariate polynomial can be com-
puted as the eigenvalues of its companion matrix (Appendix A.3.1). This allows
us to numerically compute the roots of a univariate polynomial via efficient
tools from numerical linear algebra, an approach used in, for example, Matlab.
In [197, 201], this idea is extended to bivariate polynomial systems. Given two
bivariate polynomials, p1(x) and p2(x), matrices Bij are constructed such that{

det(B10 + x1B11 + x2B12) = p1(x),

det(B20 + x1B21 + x2B22) = p2(x).
(2.126)

This problem corresponds to solving the square multiparameter eigenvalue
problem {

(B10 + x1B11 + x2B12)x1 = 0,

(B20 + x1B21 + x2B22)x2 = 0,
(2.127)

which could be solved again with standard tools from numerical linear algebra,
or even with the algorithms from the next chapter (Section 3.2.2.1).
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Real algebraic geometry
Although we compute in this text all the complex solutions of the system,
some applications are only concerned with the real solutions. The number
of real solutions can be much smaller than the number of complex solutions.
Real solutions of polynomial systems and specific real solution methods are
studied in the field of real algebraic geometry [38, 226]. Finding only the real
solutions without computing all complex solutions first (the approach taken in
this dissertation) is a hard problem that is still largely open. One reason is the
fact that field of complex numbers C is algebraically closed, while the field of
real numbers R is not. In fact, C is the algebraic closure R of R, which means
that C is the smallest of all fields K containing R such that every nonconstant
polynomial in R[x1, . . . , xn] has a solution in K. One possible set of methods
to compute the solutions in Rn are the above-mentioned subdivision methods.
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Eigenvalue-Finding via the
Block Macaulay Matrix

We extend the traditional (scalar) Macaulay matrix from multivariate poly-
nomial system solving to the block Macaulay matrix in the multiparameter
eigenvalue problem setting. The introduction of the block Macaulay matrix
enables a natural methodology to deal with (polynomial) rectangular multi-
parameter eigenvalue problems, but can also be used to solve one-parameter
eigenvalue problems and (linear) square multiparameter eigenvalue problems.

We develop, in this chapter, two approaches that use the block Macaulay
matrix to solve rectangular multiparameter eigenvalue problems. On the one
hand, a multidimensional realization problem in the right null space of the block
Macaulay matrix constructed from the coefficient matrices of a rectangular mul-
tiparameter eigenvalue problem results in a standard eigenvalue problem. The
eigenvalues and eigenvectors of that standard eigenvalue problem yield the so-
lutions of that rectangular multiparameter eigenvalue problem. On the other
hand, we propose a complementary approach to solve rectangular multiparam-
eter eigenvalue problems that considers the data in the column space of block
Macaulay matrix directly, avoiding the computation of a numerical basis ma-
trix of the right null space. This chapter includes an in-depth discussion of the
different aspects of multiparameter eigenvalue-finding via the block Macaulay
matrix.
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Contributions. We try to create an enhanced understanding of the rectan-
gular multiparameter eigenvalue problem and introduce the block Macaulay
matrix. By levering two of the fundamental subspaces of the block Macaulay
matrix constructed from its coefficient matrices, we propose two complemen-
tary approaches to solve a rectangular multiparameter eigenvalue problem.

Related article. This chapter is an adaptation of [261]. The candidate was
the main author of the original article, developed the theoretical contributions,
and implemented the accompanying code and experiments. This chapter differs
in several parts from the original article, in order to give more complete and
didactic overview and avoid repetition with Chapter 2.

Outline. Firstly, we introduce the problem and sketch the current state-
of-the-art in Section 3.1. Section 3.2, subsequently, contains the definition
and most important properties of the rectangular multiparameter eigenvalue
problem. Afterwards, we rigorously define the block Macaulay matrix and
highlight two of its four fundamental subspaces in Section 3.3. The right null
space of this block Macaulay matrix has a special (backward) block multi-shift-
invariant structure, which allows us to find the eigenvalues of the problem via
a multidimensional realization problem in that right null space. We develop
the null space based algorithm to solve rectangular multiparameter eigenvalue
problems in Section 3.4 and translate it to the column space in Section 3.5.
Finally, in Section 3.6, we conclude this chapter and suggest interesting future
research paths.
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3.1 Introduction
Many natural and scientific phenomena exhibit intrinsic system dynamics that
can be captured in a one-parameter eigenvalue problem. The eigenvalues and
eigenvectors that correspond to those phenomena describe the proper1 evolu-
tion of the system dynamics along the eigenvector directions. Eigenvalue prob-
lems prevail often in nature and science, in problems where the understanding
of the underlying system’s behavior is crucial. More particularly, eigenvalues
form the cornerstone of systems theory: They characterize stability, controlla-
bility, and observability of linear time-invariant (LTI) dynamical systems [128],
arise in the steady-state solutions to linear-quadratic regulators and Kalman
filtering problems [129], solve model order reduction problems, like modal ap-
proximation [8, 208], etc. Section 7.2.2 provides other examples of applications
in which eigenvalue and eigenvectors problems play an important role. For some
phenomena, however, a single spectral parameter does not capture the system
dynamics entirely and multiple spectral parameters, or tuples of eigenvalues,
come into the picture.

Multiparameter spectral theory generalizes the classic spectral theory of
linear operators to multiple linear operators linked by multiple spectral pa-
rameters [217]. Historically, multiparameter spectral theory has its roots in
the classical problem of solving boundary-value problems for partial differen-
tial equations by the method of separation of variables [13, 96, 200, 217]. For
example, the vibration problem of an elliptic membrane in two elliptic coor-
dinates, i.e., the two-dimensional Helmholtz equation, leads to the study of a
pair of ordinary differential equations, both of which share two spectral param-
eters. This corresponds to a two-parameter spectral problem [200, 217]. The
presence of multiple spectral parameters links the evolution of the different
ordinary differential equations obtained from the separation of variables in an
elementary fashion. Other boundary-value problems give rise to more involved
multiparameter spectral problems.

One approach of solving these multiparameter spectral problems numeri-
cally is by considering the related algebraic multiparameter eigenvalue problem
(MEP), for example, obtained after a discretization or collocation method [96,
200]. The obtained problems are so-called square multiparameter eigen-
value problems: square MEPs (sometimes called standard MEPs) are sys-
tems of multiple multiparameter square matrix pencils [118]. Some of the early
work with respect to this multiparameter formulation are by Atkinson [12],
Atkinson and Mingarelli [13], Carmichael [54–56], and Volkmer [267].

Recently, we have shown within our research group that the least-squares
identification of LTI dynamical systems is, in essence, also an MEP, more
specifically, a rectangular multiparameter eigenvalue problem [70, 71,

1The prefix eigen- is adopted from the German word eigen, which means proper and was
presumably first coined by Hilbert [114]. The use of the German prefix eigen may seem odd
in the English language, but is now standard in the English literature to refer to the solutions
of a matrix pencil. However, and this might sound surprising to some readers, its use in the
United States has not always been so common. In fact, over the past two centuries the words
proper, latent, characteristic, secular, and singular have all been used as alternatives for the
prefix eigen [105, 246].
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259]. Also theH2-norm optimal model order reduction problem can be recast as
a rectangular MEP [3, 6, 148]. These rectangular problems differ from square
MEPs in that they consist of a single rectangular matrix pencil. The first
detailed studies2 of the rectangular MEP were by Khazanov [134, 136], who
rigorously analyzed the spectrum of polynomial multiparameter problems, and
by Shapiro and Shapiro [216], who looked at the multivariate linear matrix
pencil in the context of the Heine–Stieltjes spectral problem.

Multiparameter eigenvalue computing
The literature about one-parameter eigenvalue problems is quite expanded.
There exist many techniques to solve standard eigenvalue problems (SEPs)
and generalized eigenvalue problems (GEPs), with adaptations to tackle very
large matrices when there is structure or sparsity involved [213, 270] or the ma-
trices are not square [110, 281]. Polynomial eigenvalue problems (PEPs) are
usually linearized into larger GEPs [113, 161, 162, 245] and the resulting matrix
pencils are solved via one of the many available, efficient SEP or GEP solvers.
However, despite their applicability and the natural relation to one-parameter
eigenvalue problems, MEPs have not yet been widely diffused among the gen-
eral scientific community. This chapter tries to alleviate this hiatus. Below, we
discuss solution approaches for both square and rectangular problems. A more
elaborate overview can be found in the “historical and bibliographical notes”
of this chapter.

Square multiparameter eigenvalue problems

Square MEPs are typically solved via simultaneous triangularization of the
associated system of coupled GEPs [117, 126, 198, 218]. This approach works
for any number of spectral parameters and retrieves all the solutions, but is
limited by the size of the matrices in the system of coupled GEPs. Also iterative
nonlinear optimization algorithms can be used to retrieve one (or some) of the
solutions, but these optimization approaches are heuristic (they depend on an
initial guess) and may have issues with convergence. More efficient algorithms,
like homotopy continuation methods and subspace techniques (e.g., Jacobi–
Davidson or Arnoldi), have been developed in the last two decades to counter
issues with scalability and convergence.

Furthermore, it is even possible to convert quite a few square MEPs into
equivalent rectangular MEPs (Section 3.2.2). In that sense, the two block
Macaulay matrix approaches described in this chapter also supplement the set
of existing techniques to solve square problems.

Rectangular multiparameter eigenvalue problems

While they provided a theoretical analysis of the problem and established an
initial bound on the number of affine solutions, Shapiro and Shapiro [216] did

2Before that, a more general problem with m×n matrices, where m ≥ n, appeared under
the name eigentuple-eigenvector problem in [35, 36] and as a rank-reducing perturbation
problem in [273].
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not present any numerical algorithms. Khazanov [132, 133, 137] has proposed
iterative algorithms (with and without linearization step) to determine the
eigenvalues of multivariate polynomial matrix pencils. The iterative algorithms
in [35–37, 273] could also be applied to rectangular MEPs. In our work [69–71,
261, 262], we have introduced the block Macaulay matrix, which allows us to
solve rectangular MEPs via numerical linear algebra techniques.

Very recently, two additional approaches have emerged to tackle linear rect-
angular MEPs. These approaches transform the problem into linear square
MEPs [6, 118]. These transformations (Section 3.2.2) allows us to also use the
(efficient) algorithms developed for square MEPs [118].

A numerical block Macaulay matrix perspective
We focus in this chapter on rectangular MEPs. We tackle the multiparame-
ter eigenvalue-finding problem via the block Macaulay matrix, as we set out
in Section 1.3:

We present numerical linear algebra approaches to find the tuples
of eigenvalues of a rectangular multiparameter eigenvalue problem,
where we assume that the solution set is zero-dimensional. These
approaches aim to compute satisfactory approximations of the co-
ordinates of the eigenvalues in the affine (complex) space.

The central object of this chapter is the block Macaulay matrix, a sparse and
structured matrix that is constructed from the coefficient matrices of the rect-
angular MEP. In [71, 259], we have introduced this matrix for the first time in
order to solve the rectangular MEPs that we obtained in a system identifica-
tion context. The complementarity of the right null space and column space
has enabled two multiparameter eigenvalue-finding approaches that use a dif-
ferent fundamental subspace of the block Macaulay matrix. This observation
stems from a similar complementarity in multivariate polynomial system solv-
ing3, in which the right null space and column space of the traditional (scalar)
Macaulay matrix both give rise to a multivariate root-finding algorithm [258].

Motivational example. Where we consider in Chapter 2 a reformulation
of the globally optimal autoregressive moving-average (ARMA) model iden-
tification problem as a system of multivariate polynomial equations, the un-
derlying optimization problem (1.2) can also be rephrased as a rectangular
MEP (as we explain in Section 7.5). For example, if we consider a sequence
of N = 4 output samples yk ∈ R and a first-order ARMA model, then we can
rewrite (1.2) as a quadratic rectangular two-parameter eigenvalue problem

M(λ)z =
(
A00 +A10λ1 +A01λ2 +A02λ

2
2

)
z = 0, (3.1)

where the n = 2 spectral parameters correspond to λ = (α, γ) and the
coefficient matrices Aω are 11 × 10 real matrices. We can use the block

3MEPs are essentially disguised systems of multivariate polynomial equations with some
variables that only appear “linearly”. In that sense, the block Macaulay matrix approach is
related to other sparse resultant matrices, like Newton matrices [85, 87].
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Macaulay matrix approaches developed in this chapter to solve this problem
and obtain the globally optimal ARMA model parameters.

3.2 Multiparameter eigenvalue problems
In linear algebra, a matrix-valued function with complex coefficient matrices
Aω ∈ Ck×l for some (multivariate) variable λ = (λ1, . . . , λn) ∈ Cn,

M(λ) =
∑
W

Aωλ
ω, (3.2)

where the summation runs over all the multi-indices ω = (ω1, . . . , ωn) ∈ Nn in
the set W = {ω : Aω 6= 0}, is called a (multivariate) matrix pencil. The
multi-indices ω label the powers of the eigenvalues in the monomials λω =∏n

i=1 λ
ωi
i = λω1

1 · · ·λωn
n and index the associated coefficient matrices Aω =

A(ω1,...,ωn). The total degree of a monomial is equal to the sum of its powers,
denoted by |ω| =

∑n
i=1 ωi, and the highest total degree of all the monomials

is the degree of a matrix pencil, denoted by dmax or deg(M(λ)). To keep the
notation unambiguous, we use the graded inverse lexicographic (GRINVLEX)
ordering to order different (multivariate) monomials (Definition 2.6). However,
the remainder of this chapter remains valid for any graded monomial ordering.

Example 3.1. A multi-index ω = (0, 2, 5) labels the monomial λ22λ53 (with
total degree 7) and indexes the associated coefficient matrix A025 in the
matrix pencil (3.2).

The corresponding problem, in which we look for the values of the (multi-
variate) variable λ that make one (or multiple) matrix pencil(s) column rank
deficient is called the MEP. In that sense, the scalar variables λi ∈ C, for
i = 1, . . . , n, are called the eigenvalue parameters of the MEP, and we or-
ganize them together in tuples of eigenvalues λ. Notice that the definition
of the rectangular MEP uses the important assumption that the rectangular
matrix pencil has full normal rank, an explanation of which is given in the
following definition. When the normal rank is not full, the situation becomes
more difficult to analyze and solve [135].

Definition 3.1. The normal rank of a matrix pencil M(λ) with rectan-
gular coefficient matrices Aω ∈ Ck×l, k ≥ l is defined as

nrank(M(λ)) = max
λ

rank(M(λ)). (3.3)

The matrix pencil has full normal rank when nrank(M(λ)) = l.
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Definition 3.2. Given coefficient matrices Aω ∈ Ck×l (with k ≥ l + n −
1) that lead to a full normal rank matrix pencil M(λ), the rectangular
multiparameter eigenvalue problem (rectangular MEP) consists in
finding all n-tuples λ = (λ1, . . . , λn) ∈ Cn and corresponding vectors z ∈
Cl×1 \ {0}, so that

M(λ)z =

(∑
W

Aωλ
ω

)
z = 0, (3.4)

where the summation runs over all the multi-indices in the set W. The n-
tuples λ = (λ1, . . . , λn) and (non-zero) vectors z are the eigenvalues and
eigenvectors of the rectangular MEP, respectively.

The set W = {ω : Aω 6= 0} ⊂ Nn contains all multi-indices ω present in the
matrix pencil (i.e., all the multi-indices with non-vanishing coefficient matrix
Aω). Therefore, W = supp(M(λ)) is sometimes called the support of the
matrix pencil (analogue to the definition of the support of a polynomial).

Another way to phrase the (rectangular4) MEP is by considering the eigen-
values for which the rank drops below the normal rank of the matrix pencil.

Corollary. Given the problem in (3.4), the tuple λ ∈ Cn is an eigenvalue if

rank(M(λ)) < nrank(M(λ)). (3.5)

Given Definition 3.2, a matrix pencil can be seen as an n-variate matrix-
valued function

M : Cn → Ck×l : λ 7→M(λ) =
∑
W

Aωλ
ω (3.6)

that maps a point from the affine space Cn onto a matrix value. In words:
given a point a = (a1, . . . , an) ∈ Cn in the affine space (Definition 2.7), a
matrix pencil yields a rectangular matrix M(a) in Ck×l. We can define a map

S : Cn → Sk×l : λ 7→M(λ), (3.7)

where Sk×l is the subspace of rank deficient matrices in Ck×l. We are interested
in the pre-image of Sk×l under this map,

S−1(0) = {λ ∈ Cn : M(λ) is rank deficient}. (3.8)

Therefore, S−1(0) is called the set of eigenvalues of the MEP defined by this
matrix polynomial. In this context, by multiparameter eigenvalue-finding, we
mean computing S−1(0). Because it is in general not possible to compute

4In the remainder of this chapter, we no longer mention the qualification rectangular
explicitly. We always consider rectangular problems, except when denoted otherwise (for
example, in Section 3.2.2, when comparing with the square problem formulation).
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Table 3.1. Four different types of (multiparameter) eigenvalue problems,
organized according to the structure of the monomials in the (multivariate)
matrix pencil M(λ).

linear polynomial

single
eigenvalue

(n = 1)

Type I Type II

{1, λ} λω

SEP/GEP PEP

multiple
eigenvalues

(n > 1)

Type III Type IV

λi λω =
∏n

i=1 λ
ωi
i

linear MEP polynomial MEP

S−1(0) exactly, we mean computing satisfactory approximations of the coordi-
nates of the solutions in the affine space Cn via numerical algorithms. Further-
more, we assume that the set of solutions is zero-dimensional (i.e., finite), which
results in the size condition on the coefficient matrices. The size condition on
the coefficient matrices is a necessary (but not a sufficient) condition in order
for the MEP to have a zero-dimensional solution set: there are k equations and
one non-triviality constraint on z (e.g., ‖z‖2 = 1) in l+n unknowns (l elements
in the eigenvectors z and n eigenvalues), thus k + 1 ≥ l + n. The problem of
solving the MEP, in which we look for the eigenpairs (λ, z) that solve (3.4),
is closely related to the multiparameter eigenvalue-finding problem. Given the
eigenvalues, it is possible to also compute an associated eigenvector for every
obtained eigenvalue.

Now, we give an overview of the different MEPs and mention the lineariza-
tion of a polynomial MEP to a linear one (Section 3.2.1). We relate the rectan-
gular problem with the square MEP and show to transform one problem for-
mulation into the other one (Section 3.2.2). The number of points in S−1(0),
i.e., the number of solutions of a MEP, is discussed afterwards (Section 2.2.3).

3.2.1 Different matrix pencils and linearizations

When the matrix pencil is a univariate matrix-valued polynomial in λ, we
recognize the well-known one-parameter eigenvalue problem. Particular cases
are the SEP and GEP for dmax = 1 and PEP for dmax > 1. Multiparame-
ter eigenvalue problems have multivariate matrix pencils that involve multiple
eigenvalue parameters λ = (λ1, . . . , λn) instead of single eigenvalues λ. Also
in the multiparameter case, we differentiate linear (dmax = 1) and polyno-
mial (dmax > 1) problems. Based on the structure of the monomials in the
(multivariate) matrix pencil M(λ), we can organize (multiparameter) eigen-
value problems according to a two-dimensional grid: single eigenvalues versus
multiple eigenvalues and linear versus polynomial (Table 3.1).



104 Chapter 3. Eigenvalue-Finding via the Block Macaulay Matrix

Example 3.2 (Type I – SEP/GEP). There are two types of linear one-
parameter eigenvalue problems, namely the SEP A0z = zλ, or (A0 − Iλ)z =
0, and the GEP A0z = A1zλ, or (A0 −A1λ)z = 0.

Example 3.3 (Type II – PEP). PEPs of degree dmax > 1 fit in the grid
of Table 3.1 under Type II. The monomials have a univariate power structure
λi, (∑

W
Aωλ

ω

)
z =

(
dmax∑
i=0

Aiλ
i

)
z = 0, (3.9)

which means that the single-index ω runs from 0 to dmax. For example, a
polynomial eigenvalue problem of degree dmax = 4 has five coefficient matri-
ces Ai ∈ Ck×l (k ≥ l) and is given by(

A0 +A1λ+A2λ
2 +A3λ

3 +A4λ
4
)
z = 0. (3.10)

Example 3.4 (Type III – linear MEP). Consider the linear two-
parameter eigenvalue problem (dmax = 1),

(A00 +A10λ1 +A01λ2)z = 0, (3.11)

with coefficient matrices Aω ∈ R3×2, for example,

A00 =

2 6
4 5
0 1

,A10 =

1 0
0 1
1 1

, and A01 =

4 2
0 8
1 1

,
This MEP has ma = 3 affine solutions (Table 3.2).

Example 3.5 (Type IV – polynomial MEP). Finally, consider a
quadratic two-parameter eigenvalue problem (dmax = 2) with only four mono-
mials, (

A00 +A10λ1 +A11λ1λ2 +A02λ
2
2

)
z = 0, (3.12)

which has four coefficient matrices Aω ∈ R3×2,

A00 =

1 2
3 4
3 4

,A10 =

2 1
0 1
1 3

,A11 =

3 4
2 1
0 1

, and A02 =

1 2
4 2
2 1

.
This MEP has mb = 12 solutions, ma = 9 of which are affine (Ta-
ble 3.3). Notice that the summation in (3.12) only runs over multi-indices
ω = (0, 0), (1, 0), (1, 1), and (0, 2). Hence, the support of this matrix pencil
does not contain all combinations of indices.
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Similar to linearizations of PEPs [113, 161, 162, 245] and polynomial square
MEPs [120, 186], the rectangular matrix pencil can also be linearized. In Exam-
ple 3.6, we show how to linearize a quadratic two-parameter eigenvalue problem
without taking into account any additional structure or sparsity pattern in the
coefficient matrices. Other, more compact, linearizations are possible, for ex-
ample, when certain coefficient matrices are not present in the support [118].

Example 3.6. If we consider a quadratic two-parameter eigenvalue problem,(
A00 +A10λ1 +A01λ2 +A20λ

2
1 +A11λ1λ2 +A02λ

2
2

)
z = 0, (3.13)

with k× l coefficient matrices Aω ∈ Ck×l, then we can linearize this problem
into a (k + 2l)× 3l linear two-parameter eigenvalue problem,

(
Â00 + Â10λ1 + Â01λ2

) z
λ1z
λ2z

 = 0, (3.14)

with “new” coefficient matrices Â ∈ C(k+2l)×3l,

Â00 =

A00 A10 A01

0 −I l 0
0 0 −I l

, Â10 =

0 A20 A11

I l 0 0
0 0 0

,
and Â01 =

0 0 A02

0 0 0
I l 0 0

.
Note that the block Macaulay matrix introduced in Section 3.3 implicitly

linearizes the generating MEP. Therefore, it allows us to tackle polynomial
MEPs directly, without explicit linearization step.

3.2.2 Relations with square problem formulation
Recently, it has been shown that square and rectangular multiparameter eigen-
value problem formulations are related. A good understanding of this relation
is currently limited to linear problems. Of course, because of the existing lin-
earization techniques, it is also possible to rephrase a polynomial square MEP
as a linear rectangular MEP. Before showing these relations, we first need to
give a short summary about linear square MEP.

Definition 3.3. Given square coefficient matrices Bij ∈ Cli×li , the linear
square multiparameter eigenvalue problem (linear square MEP)
consists in finding all n-tuples λ = (λ1, . . . , λn) ∈ Cn and corresponding
vectors xi ∈ Cli×1 \ {0}, so that

N i(λ)xi =

Bi0 +

n∑
j=1

Bijλj

xi = 0, (3.15)
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for i = 1, . . . , n. The n-tuples λ = (λ1, . . . , λn) and (non-zero) vectors
z = x1 ⊗ · · · ⊗ xn ∈ Cl×1 \ {0} (with l = l1 · · · ln) are the eigenvalues
and eigenvectors of the linear square MEP, respectively.

In the generic case, (3.15) has l = l1 · · · ln solutions, which are the com-
mon roots of the system of n multivariate characteristic polynomial equations
det(N i(λ)) = 0, for i = 1, . . . , n.

Example 3.7. On the first page of his book, Volkmer [267] used the following
linear square two-parameter eigenvalue problem to introduce several aspects
of multiparameter spectral theory:{

N 1(λ)x1 = (B10 +B11λ1 +B12λ2)x1 = 0,

N 2(λ)x2 = (B20 +B21λ1 +B22λ2)x2 = 0,
(3.16)

with square coefficient matrices

B10 =

4 0 0
0 0 0
0 0 0

,B11 =

1 0 0
0 6 0
0 0 1

,B12 =

0 1 0
1 0 1
0 1 0

,
B20 =

[
20 0
0 0

]
,B21 =

[
0
√
3√

3 0

]
, and B22 =

[
7 0
0 1

]
.

An important family of matrices constructed from the coefficient matrices
of the linear square MEP (3.15) are the Kronecker operator determinants ∆i ∈
Cl×l. These matrices are given by

∆0 =

∣∣∣∣∣∣∣
B11 · · · B1n

...
...

Bn1 · · · Bnn

∣∣∣∣∣∣∣
⊗

(3.17)

=
∑
σ∈Sn

sgn(σ)B1σ1 ⊗ · · · ⊗Bnσn , (3.18)

and, for i = 1, . . . , n,

∆i = −

∣∣∣∣∣∣∣
B11 · · · B1,i−1 B10 B1,i+1 · · · B1n

...
...

...
...

...
Bn1 · · · Bn,i−1 Bn0 Bn,i+1 · · · Bnn

∣∣∣∣∣∣∣
⊗

, (3.19)

= −
∑
σ∈Sn
σi→0

sgn(σ)B1σ1
⊗ · · · ⊗Bnσn

, (3.20)

where |·|⊗ corresponds to the determinant operation in which every element is a
coefficient matrix and every multiplication is replaced by a Kronecker product.
When ∆0 is a singular matrix, the linear square MEP is called singular. A
linear square MEP with generic matrices is nonsingular.
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Theorem 3.1. A linear square MEP, as defined in Definition 3.3, is equiva-
lent with its associated system of coupled GEPs,

∆1z = λ1∆0z,

...
∆nz = λn∆0z,

(3.21)

when the problem is nonsingular, i.e., when det(∆0) 6= 0.

Proof. A proof and explanation of this theorem can be found in [11].

When the problem is nonsingular, the matrices ∆−1
0 ∆i, for i = 1, . . . , n, com-

mute and the eigenvalues of (3.21) and (3.15) agree.

Remark 3.1. The situation is more complicated when the problem is singu-
lar. In this case, the eigenvalues of (3.15) correspond to the common regular
part of (3.21), see, for more information, [139, 187]. There are several ap-
plications in which singular linear square MEPs appear (sometimes after a
linearization step), e.g., [120, 139, 187].

Now, we have all the prerequisites to consider the translation of a square
problem into a rectangular one via the Kronecker operator determinants, as
proposed by Vermeersch and De Moor [261] (Section 3.2.2.1), and in the other
direction via the compressed Kronecker operator products or sketching, as pro-
posed by Alsubaie [6] and Hochstenbach et al. [118] (Section 3.2.2.2).

3.2.2.1 From square to rectangular problems

As shown by Atkinson [12], a regular linear square MEP is equivalent to its
associated system of coupled GEPs (Theorem 3.1):

(3.15)⇔


∆1z = λ1∆0z,

...
∆nz = λn∆0z.

(3.22)

Via this system of associated coupled GEPs, it is possible to transform the
linear square MEP into its equivalent rectangular form:

∆1

...
∆n

−
∆0

...
0

λ1 − · · · −
 0

...
∆0

λn
z = 0. (3.23)

This transformation leads to a linear rectangular MEP where the number of
rows k is strictly larger than the minimum l + n − 1. Since the Kronecker
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operator determinants ∆i typically result in large coefficient matrices, this
approach should only be applied to small problems. Furthermore, we need to
be careful in the case of singular problems (i.e., when ∆0 is a singular matrix),
where the equivalence between the square problem and the associated system
of coupled GEPs is not straightforward, as discussed in Remark 3.1.

Example 3.8. We illustrate this relation via the linear square two-parameter
eigenvalue problem in Example 3.7. The associated system of coupled GEPs
is given by {

∆1z = ∆0λ1z,

∆2z = ∆0λ2z,
(3.24)

where the Kronecker operator determinants ∆i are 6× 6 matrices:

∆0 = B11 ⊗B22 −B12 ⊗B21, (3.25)
∆1 = B12 ⊗B20 −B10 ⊗B22, (3.26)
∆2 = B10 ⊗B21 −B11 ⊗B20. (3.27)

The equivalent linear rectangular MEP in (3.23),([
∆1

∆1

]
−
[
∆0

0

]
λ1 −

[
0
∆0

]
λ2

)
z = 0, (3.28)

has the same solutions as (3.16) and can be solved via one of the block
Macaulay matrix algorithms developed in this chapter.

3.2.2.2 From rectangular to square problems

It is also possible to transform a linear rectangular5 MEP into a related linear
square problem. There are two techniques to obtain this related linear square
MEP, via sketching [118] or via compressed Kronecker products [6]. The former
retrieves the coefficient matrices of a linear square MEP, which allows the use
of iterative solvers, while the latter solves the associated system of coupled
GEPs. The latter is thus appropriate for problems small enough such that
these GEPs can be solved via a direct solver.

Randomized or deterministic sketching. The idea behind sketching is
simple, yet very powerful: via n probabilistic or deterministic projections,
square matrix pencils are obtained that form together a related linear square
MEP:

(3.4)⇒


N 1(λ)x1 = P 1(A0···0 +A1···0λ1 + · · ·+A0···1λn)x1 = 0,

...
N n(λ)xn = P n(A0···0 +A1···0λ1 + · · ·+A0···1λn)xn = 0,

(3.29)

5Hochstenbach et al. [118] have also discussed quadratic rectangular MEPs, but in essence
this extension simply corresponds to adding a linearization step before or after the transfor-
mation.
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where the matrices P i ∈ Cl×k can be random matrices, which is called random-
ized sketching, or row selection matrices, which is called deterministic sketching,
chosen with as goal to obtain a nonsingular square problem. The implication
in (3.29) only goes in one direction: the related linear square MEP has more
solutions than the original linear rectangular MEP, due to the fact that the
vectors xi are not necessarily colinear (i.e., they do not correspond to the same
eigenvector z in (3.4)). For a large n, only a modest portion of the obtained
solutions is also a solution to the rectangular MEP (see, for example, the nu-
merical experiment in [118]). Note that a lot of the sparsity gets lost when
using random sketching matrices P i and the sketching procedure ends up with
more coefficient matrices than in the original rectangular MEP. However, this
transformation allows us to employ the existing efficient (subspace) methods for
linear square MEPs to tackle the original rectangular MEP. For more details,
we refer the interested reader to [118].

Example 3.9. We illustrate this transformation via the linear rectangular
two-parameter eigenvalue problem in (3.11), which has three affine solutions
(Table 3.2). In order to obtain a related linear square MEP via sketching,
we use two 2× 3 row-selection matrices P 1 and P 2,

P 1 =

[
1 0 0
0 1 0

]
and P 2 =

[
0 1 0
0 0 1

]
. (3.30)

to pre-multiply (3.11):{
N 1(λ)x1 = (P 1A00 + P 1A10λ1 + P 1A01λ2)x1 = 0,

N 2(λ)x2 = (P 2A00 + P 2A10λ1 + P 2A01λ2)x2 = 0,
(3.31)

The related linear square MEP has four solutions, three of them correspond to
the solutions of the original rectangular MEP, as in Table 3.2. The spurious
solution (−2.2580, 1.0369) is a solution with two non-colinear vectors x1 and
x2, and is, thus, not a solution of (3.11).

Compressed Kronecker products. Alsubaie [6] has derived a numerical
method to solve linear rectangular MEPs by transforming the problem into a
GEP that yields one of the spectral parameters. In that numerical approach
to reduce a rectangular MEP into a square GEP lies the idea of the second
technique, as highlighted by Hochstenbach et al. [118]. From the rectangular
coefficient matrices, rectangular Kronecker operator determinants ∆̃i ∈ Ckn×ln

can be built that contain the same solutions as the original rectangular MEP,
but also other solutions. A subsequent reduction step [6] of the associated
system of coupled GEPs yields a problem with the same solutions as (3.4):

(3.4)⇒


∆̃1w = λ1∆̃0w,

...

∆̃nw = λ1∆̃0w,

⇒


∆̂1ŵ = λ1∆̂0ŵ,

...

∆̂nŵ = λ1∆̂0ŵ.

(3.32)
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The reduction step in (3.32) uses the observation of Alsubaie [6] that the vectors
w = z ⊗ · · · ⊗ z span a subspace of dimension

(
k
l

)
in Cl ⊗ · · · ⊗ Cl. Indeed,

if z =
[
z1 · · · zl

]T, then the elements of w are wi1···il = zi1 · · · zil . In this
tensor product, many coefficients are permutations, i.e., wσ1···σl

= wi1···il . Via
the definition of an ln ×

(
k
l

)
matrix T that extracts only one permutation per

coefficient, we can create smaller operator determinants

∆̂i = L∆̃iT ∈ C(
k
l)×(

k
l), (3.33)

where each row of T has exactly one non-zero element and each column contains
at least one non-zero element and at most l! non-zero elements. The matrix L
is a generic nonsingular matrix6 of size

(
k
l

)
×kn. The matrix T compresses the

problem, since Tw = z, and therefore

∆−1
0 ∆iT = TGi, (3.34)

where Gi is a restriction of ∆−1
0 ∆i to the invariant subspace [118]. In an

efficient implementation of this transformation, it is even possible to exploit
the sparsity of the pre-multiplication (viz., L can be sparse and have the same
effect) and post-multiplication or even to avoid explicitly building most of these
matrices altogether ([6] provides such a sparse approach). This is important,
since ∆̃i can become very large. Note that this is not a full transformation of
a rectangular MEP into a linear square MEP, i.e., the coefficient matrices Bij

are not obtained explicitly, only the associated system of coupled reduced Kro-
necker operator determinants ∆̂i. Hence, we can not use the efficient numerical
methods designed for square MEPs that operate directly on the coefficient ma-
trices. For more details, we refer the interested reader to [6, 118].

Example 3.9 (continuing from p. 109). In order to obtain these solu-
tions via a system of coupled GEPs, we construct the rectangular Kronecker
operator determinants ∆̃i ∈ C9×4 from the rectangular coefficient matrices
of (3.11). After pre-multiplication with

L =

0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0
0 0 0 0 0 1 0 −1 0

 (3.35)

and post-multiplication with

T =


1 0 0
0 1 0
0 1 0
0 0 1

, (3.36)

6In deriving the second technique, Hochstenbach et al. [118] have actually used this fact,
by starting from the previous technique and constructing L as Q(P 1 ⊗ · · · ⊗ Pn), where Q is
a generic matrix. This is an intermediate result in [118] and provides an different derivation
for the matrix L than in [6]. Futhermore, it shows that it is possible to combine the first
technique with this compression step in order to remove the spurious solutions that appear
in the sketching procedure.
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the reduced Kronecker operator determinants ∆̂i = L∆̃iT ∈ C3×3 are ob-
tained. Solving (3.32) results in the three solutions of (3.11) in Table 3.2.

3.2.3 Number of solutions
The fact that the matrix pencil consists of rectangular matrices results in a dif-
ferent definition of the multivariate characteristic polynomial equations. Before
giving this definition, consider the following selection procedure:

[M(λ)]i = Sσi
M(λ), (3.37)

where Sσi
∈ Nl×k is a row selection matrix that selects the rows that correspond

to the ith l-combination σi of the k row indices of M(λ). There are exactly(
k
l

)
such l-combinations, hence i runs from 1 to

(
k
l

)
, cf., (2.14).

Definition 3.4. If we consider an MEP with matrix pencil M(λ) as defined
in Definition 3.2, then the multivariate polynomial equations

χi(λ) = det([M(λ)]i) = 0, (3.38)

for i = 1, . . . ,
(
k
l

)
, are the multivariate characteristic polynomial equa-

tions of that MEP.

The common roots of the resulting system of multivariate characteristic poly-
nomial equations7 correspond to the eigenvalues of the MEP. This system is an
overdetermined system, because the vectors in the null space of every square
matrix [M(λ)]i need to be colinear, for i = 1, . . . ,

(
k
l

)
.

Example 3.10. When looking at Example 3.4, the multivariate character-
istic polynomial equations are

χ1(λ) = 14 + 7λ1 − 28λ2 − λ21 − 12λ1λ2 − 32λ22 = 0,

χ2(λ) = 2− 3λ1 + λ21 + λ21 + 3λ1λ2 + 2λ22 = 0,

χ3(λ) = 4− λ1 − λ2 − λ21 − 9λ1λ2 − 8λ22 = 0.

(3.39)

This overdetermined system of polynomial equations has three affine solu-
tions, as visualized in Figure 3.1. The common roots of (3.39) correspond
to the eigenvalues of (3.11), which can be verified with the numerical results
in Table 3.2.

Applying Bézout’s theorem directly on the obtained system of multivariate
characteristic polynomial equations is not possible, since the system is overde-
termined. However, two bounds on the number of affine eigenvalues do exist.
The first bound has been given by Shapiro and Shapiro [216] and considers

7Sometimes the term secular equation is used to denote a characteristic polynomial equa-
tion. This comes from the fact that the characteristic polynomial was used to calculate the
secular perturbations of planetary orbits in, for example, the work of Lagrange [44].
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Figure 3.1. Real picture of the system of three multivariate characteristic
polynomial equations derived in Example 3.10. The common roots ( ) of the
polynomials χ1(λ) ( ), χ2(λ) ( ), and χ3(λ) ( ) correspond to the eigen-
values of the linear two-parameter eigenvalue problem in (3.11).

linear MEPs , while the second bound by Hochstenbach et al. [118] gives an
upper bound on the number of affine solutions for a polynomial MEP.

Theorem 3.2 (Shapiro–Shapiro bound). For a linear n-parameter eigen-
value problem (dmax = 1), as defined in Definition 3.2, with a zero-
dimensional solution set, the number of affine eigenvalues is at most equal
to

mb =

(
l + n− 1

l

)
. (3.40)

Proof. A proof of this theorem can be found in [216].

A sufficient condition for the linear problem to have finitely many solutions for
an arbitrary matrix A0···0 is that

rank(A1···0λ1 + · · ·+A0···1λn) = n (3.41)

for all λ 6= 0.

Example 3.11. Applying Theorem 3.2 to the linear two-parameter eigen-
value problem in (3.11), we retrieve the exact number of affine solutions of
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the problem as

mb =

(
2 + 2− 1

2

)
=

(
3

2

)
= 3, (3.42)

where the number of columns l = 2. This agrees also with the number of
common roots of (3.39).

Code 3.1. The Shapiro–Shapiro bound for a linear MEP can be computed
via shapiro(mep) . toymep1 corresponds to problem (3.11) and is part of
MacaulayLab’s database.

>> shapiro(toymep1)

ans =
3

Theorem 3.3 (Hochstenbach–Košir–Plestenjak bound). For a poly-
nomial n-parameter eigenvalue problem, as defined in Definition 3.2, with
zero-dimensional solution set, the number of affine eigenvalues is at most
equal to

mb = dnmax

(
l + n− 1

n

)
. (3.43)

Proof. A proof of this theorem can be found in [118].

Example 3.12. For polynomial MEPs, Theorem 3.3 gives an upper bound
on the number of affine eigenvalues. For example, for the quadratic two-
parameter eigenvalue problem in (3.12), an upper bound is given by

mb = 22
(
2 + 2− 1

2

)
= 4

(
3

2

)
= 12, (3.44)

where the number of columns l = 2. Notice that the number of affine so-
lutions for this problem is 9 < 12, since the MEP has also 3 solutions at
infinity.
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Code 3.2. The HKP bound can be computed via hkp(mep) . toymep2 is
part of MacaulayLab’s database.

>> hkp(toymep2)

ans =
12

Similar as for the system of multivariate polynomial equations (Remark 2.1),
the eigenvalue solutions of the MEP can also be considered in the projective
space Pn, where we consider the homogeneous MEP,

Mh
(
λ̃
)
z =

(∑
W

Aωλ
dmax−|ω|
0 λω

)
z = 0, (3.45)

and the projective eigenvalues λ̃ = (λ0, λ1, . . . , λn), for which an equivalence
relation ∼ exists on the non-zero points of Cn+1 (Section 4.2). The above-
mentioned solutions at infinity can then be interpreted as the solutions for
which λ0 = 0.

3.3 Block Macaulay matrix and its subspaces
An essential result of this dissertation is the development of methods to solve
MEPs. In order to achieve this result, we need to introduce a new matrix, the
block Macaulay matrix. Similar to Macaulay matrix for polynomial systems,
the right null space and column space of the block Macaulay matrix lead to
the solutions of the generating MEP.

The MEP M(λ)z = 0 constitutes the so-called seed equation of the corre-
sponding block Macaulay matrix. The block Macaulay matrix is generated by
this seed equation via a forward shift recursion (FSR)8: multiplying the seed
equation (i.e., the MEP) with different monomials {λα} of increasing total de-
gree dr leads to “new” matrix equations, the coefficient matrices of which are
organized as the block rows of the block Macaulay matrix.

Example 3.13. To introduce the block Macaulay matrix, consider the
quadratic two-parameter eigenvalue problem in (3.12),(

A00 +A10λ1 +A11λ1λ2 +A02λ
2
2

)
z = 0. (3.46)

Multiplying the MEP by the two eigenvalues λ1 and λ2, leads to two “new”
matrix equations:

λ1
(
A00 +A10λ1 +A11λ1λ2 +A02λ

2
2

)
z = 0

λ2
(
A00 +A10λ1 +A11λ1λ2 +A02λ

2
2

)
z = 0.

(3.47)

8This block forward multi-shift recursion is the block extension of the scalar forward
multi-shift recursion in Section 2.3.
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We can continue this process with monomials of increasing total degree dr,
i.e.,

λ1, λ2︸ ︷︷ ︸
dr=1

, λ21, λ1λ2, λ
2
2︸ ︷︷ ︸

dr=2

, λ31, λ
2
1λ2, . . .︸ ︷︷ ︸

dr≥3

(3.48)

and arrange the resulting coefficient matrices in a block Macaulay matrix
(seed equation in red):



z λ1z λ2z λ2
1z λ1λ2z λ2

2z λ3
1z λ2

1λ2 λ1λ
2
2

1 A00 A10 0 0 A11 A02 0 0 0 · · ·
λ1 0 A00 0 A10 0 0 0 A11 A02 · · ·
λ2 0 0 A00 0 A10 0 0 0 A11 · · ·
λ2
1 0 0 0 A00 0 0 A10 0 0 · · ·

...
...

...
...

...
...

...
...

...
. . .

. (3.49)

When we further enlarge the block Macaulay matrix with monomials of
higher total degree dr in the FSR, we obtain a sparse and structured ma-
trix, as visualized in Figure 3.2 (for degree d = 6).

Code 3.3. A block Macaulay matrix of degree d can easily be constructed via
macaulay(mep,d) . Notice that this is the same function as for the (scalar)
Macaulay matrix.

>> M = macaulay(toymep2,6);

Definition 3.5. Consider the MEP M(λ)z = 0, which serves as the seed
equation. Let the total degree of the MEP be denoted by dmax. The block
Macaulay matrix of degree d, Md ∈ Cpd×qd , contains the coefficient ma-
trices of the seed equation and the matrix equations generated by the FSR
with monomials of increasing total degree dr = 1, . . . , (d− dmax), i.e.,

Md =

3{
n∏

i=1

λdi
i

}
M(λ)z

;

, (3.50)

where v·w denotes the arrangement of the shifted coefficient matrices Aω (not
the associated eigenvalues or eigenvectors) of the matrix equations in block
rows.

These shifted coefficient matrices are indexed both in row (different monomi-
als of the FSR) and column (different associated monomials) direction by the
different monomials in the eigenvalues of total degree at most d. The number
of rows pd and columns qd of Md are given by

pd = k

(
d− dmax + n

n

)
= k

(d− dmax + n)!

n!(d− dmax)!
(3.51)
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dr = 1

dr = 2

dr = 3

dr = 4

Figure 3.2. Spy plot of the block Macaulay matrix of degree 6 for the
quadratic two-parameter eigenvalue in Example 3.13. The elements of the seed
equation, i.e., the generating MEP, are indicated with red dots ( ), while the
elements of the “new” matrix equations obtained by multiplying with mono-
mials of total degree dr ≥ 1 in the FSR are indicated with blue dots ( ). For
didactic purposes, we indicate the zero elements/matrices that come from the
seed equation with gray dots ( ). The elements not shown are zero. Vertical
lines indicate the different degree blocks, while horizontal dashed lines separate
the monomials of different total degree dr in the FSR.
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and
qd = l

(
d+ n

n

)
= l

(d+ n)!

n!d!
. (3.52)

The actual structure of the block Macaulay matrix depends on its monomial
ordering (Definition 2.6).

The MEP and the “new” matrix equations obtained via the FSR can be
written as the matrix-vector product of the generated block Macaulay matrix
Md ∈ Cpd×qd and a structured vector vd ∈ Cqd×1:

Md



z
zλ1

...
zλn

...
zλd1

...
zλdn


= 0. (3.53)

We increase the degree d of the block Macaulay matrix Md until it reaches
the solution degree d◦, a notion on which we elaborate in Section 3.4.3.
The vector vd is a vector in the right null space of Md and has a special
block multivariate Vandermonde structure, which is enforced by the consecutive
block FmSRs that generate the block rows of Md. In the structure of both the
(right9) null space (Section 3.4) and the column space (Section 3.5) of Md lies
the key to solving its generating MEP. The iterative block Macaulay matrix
solution approach (Algorithm 3.1) looks very similar as in the Macaulay matrix
approach in Chapter 2.

Remark 3.2. Similar to Remark 2.2, we also use horizontal and vertical
lines to separate different degree blocks in matrices and vectors (e.g., in Fig-
ure 3.2). Furthermore, we make a distinction between block rows/columns
and degree blocks. A block row/column gathers all the rows/columns that
correspond to one monomial (e.g., all the rows that belong to λ21), while a
degree block contains all the block rows/columns that correspond to mono-
mials of the same total degree (e.g., all the rows that belong to λ21, λ1λ2, and
λ22). A degree block contains multiple block rows/columns (except when the
total degree is zero or the number of variables is equal to one).

Remark 3.3. To alleviate the notational complexity, we no longer specify the
degree d explicitly in the remainder of this chapter (unless when necessary),
but we assume it to be large enough, i.e., d ≥ d◦ (Section 3.4.3).

9In the remainder of this chapter, we no longer mention the qualification right explicitly.
We always consider the right null space, except when denoted otherwise.
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Algorithm 3.1 Iterative eigenvalue-finding via the block Macaulay matrix
Require: M(λ)

1: d← dmax
2: Construct the block Macaulay matrix of degree d
3: while d < d◦ do
4: Check structure of null space or column space
5: if it is possible to find the affine eigenvalues (Section 3.4.3) then
6: d = d◦
7: else
8: d← d+ 1
9: Construct the block Macaulay matrix of degree d

10: end if
11: end while
12: Find the affine eigenvalues λ|(j), for j = 1, . . . ,ma, in the null space (Al-

gorithm 3.2) or column space (Algorithm 3.3)
13: return λ|(j), for j = 1, . . . ,ma

3.4 Null space based approach

We now exploit the structure of the null space of the block Macaulay matrix
in order to find the solutions of its seed equation, i.e., the MEP that we want
to solve. We show again that a multidimensional realization problem in the
structured null space10 yields the affine solutions of the MEP (Section 3.4.1).
Next, we use Schur decompositions to improve the accuracy in the presence
of solutions with multiplicity greater than one (Section 3.4.2) and translate
the notion of a large enough degree (i.e., the solution degree d◦) to the block
Macaulay matrix in order to deal with the solutions at infinity (Section 3.4.3).
Finally, we summarize the different steps of the null space based eigenvalue-
finding algorithm (Section 3.4.4).

3.4.1 Multidimensional realization theory

We use the same two-step exposition as in Section 2.4.1: we look at the block
multivariate Vandermonde basis matrix (Section 3.4.1.1) and generalize it to
any (numerical) basis matrix of the null space of the block Macaulay matrix
(Section 3.4.1.2).

10Similar to the null space of the Macaulay matrix, the null space of the block Macaulay
matrix (for a sufficiently large degree) can be modeled as the column space of an observability
matrix of a multidimensional descriptor system [259]. The observability matrix is constructed
with output matrices instead of output vectors. From this observation also stems the title
of Section 3.4.1; the null space based eigenvalue-finding approach could be considered as a
multidimensional realization problem in the column space of that observability matrix.
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3.4.1.1 Block multivariate Vandermonde basis matrix

We consider, again for didactic purposes, an MEP that only has ma simple (i.e.,
algebraic multiplicity is one), affine (i.e., non-infinite), and isolated solutions
(i.e., the solution set is zero-dimensional). For a block Macaulay matrix M of
degree d ≥ d◦ (Section 3.4.3), there exists a block multivariate Vandermonde
vector v|(j) (j = 1, . . . ,ma) in the null space of M for every solution of the
MEP and, together, these basis vectors span the entire null space of M . They
naturally form the block multivariate Vandermonde basis matrix V ∈ Cq×ma

of degree d ≥ d◦ (same degree as M):

V =
[
v|(1) · · · v|(ma)

]
=



z|(1) · · · z|(ma)

(λ1z)|(1) · · · (λ1z)|(ma)

...
...

(λnz)|(1) · · · (λnz)|(ma)(
λ21z

)∣∣
(1)

· · ·
(
λ21z

)∣∣
(ma)

...
...


. (3.54)

Comparing V with (2.45) supports the hypothesis that V has a similar “special
shift structure” as the basis matrix of the null space of the (scalar) Macaulay
matrix. Mathematically, this “special shift structure” can again be written as
(when we shift some (block) rows with the shift polynomial g(λ))

S1V︸ ︷︷ ︸
before shift

Dg = cα1Sλω1V + · · ·+ cωk
SλωkV︸ ︷︷ ︸

after shift

= SgV , (3.55)

where the diagonal matrix Dg ∈ Cma×ma contains the evaluations of the shift
polynomial g(λ) = cω1λ

ω1 + · · ·+cωk
λωk in the different solutions of the MEP

and the row selection matrices S1 and Sλω select the (block) rows before and
after the shift, respectively. Hence, (3.55) corresponds to the expression

(SgV ) = (S1V )Dg, (3.56)

when combining the different row selection matrices in the right-hand side.
We say that the rows in SgV are hit by the shift with g(λ). In order for this
expression to cover all the affine solutions, the row selection matrix S1 ∈ Rma×q

has to select ma linearly independent rows from V (then S1V is square and
nonsingular). The row combination matrix11 Sg ∈ Rma×q, on the other hand,
simply selects the linear combination of rows hit by the shift with g(λ).

Example 3.14. Consider the linear two-parameter eigenvalue problem
from Example 3.4 and construct a block multivariate Vandermonde matrix
(we suppose that the solutions are known). In order to shift the first three
(linearly independent) rows (z1, z2, λ1z1) with a shift polynomial g(λ) = 4λ32,

11When the shift is merely a monomial of (some of the) eigenvalues, the row combination
matrix Sg is a row selection matrix because every shift only hits one row.
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we need a degree d◦ = 4 basis matrix of the null space. The row selection
matrix S1 ∈ R3×30 corresponds to

S1 =


1 2 3 4 30

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

. (3.57)

After shifting z1, z2, λ1z1 by g(λ) = 4λ32, the monomials hit correspond to the
19th (λ32z1), 20th (λ32z2), and 27th (λ1λ32z1) row of the basis matrix. They
can be selected by Sg ∈ R3×30,

Sg =


1 18 19 20 21 26 27 28 29 30

0 · · · 0 4 0 0 · · · 0 0 0 0 0
0 · · · 0 0 4 0 · · · 0 0 0 0 0
0 · · · 0 0 0 0 · · · 0 4 0 0 0

. (3.58)

The shift problem is given by

S1V

−10.3979 0 0
0 0.0007 0
0 0 −0.2928

 = SgV . (3.59)

Code 3.4. The block Vandermonde basis matrix of the null space is con-
structed from the different eigenvalues lambda and eigenvectors z .

>> V = vandermonde(4,2,lambda,z);

If we want to shift the first three rows in the block Vandermonde basis ma-
trix, we also need to supplement the length of the eigenvector l = 2 to
shiftmatrix(d,n,rows,shift,l) .

>> rows = [1 2 3]; % shift row 1, 2, and 3
>> l = 2; % eigenvector have length 2
>> S1 = shiftmatrix(2,2,rows,[1 0 0],l); % shift with 1
>> Sg = shiftmatrix(2,2,rows,[4 0 3],l); % shift with g(x)

This gives us the shift problem from (3.59):

>> diag(inv(S1*V)*(Sg*V))

ans =
-10.3979
0.0007
-0.2928
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3.4.1.2 Any numerical basis matrix

Similar as in Section 2.4.1.2, a numerical basis matrix Z ∈ Cq×ma of the null
space of the block Macaulay matrix M can be used instead of the unknown
block multivariate Vandermonde basis matrix V . Before translating the the-
oretical multidimensional realization problem into a practical one, the next
proposition makes this “special shift structure” more concrete for the block
case.

Proposition 3.1 (Appendix C). The (affine) null space of the block
Macaulay matrix is (backward) block multi-shift-invariant. This means
that if we select a block row of a basis matrix of the null space and multi-
ply/shift this block row with one of the eigenvalues, then we obtain another
block row of that basis matrix (when the degree is large enough, i.e., d ≥ d◦).

The block multi-shift-invariance is a property of the null space as a vector
space and not of its specific basis matrix (Appendix C). Via a linear transfor-
mation V = ZT , the block multivariate Vandermonde basis matrix V can be
replaced by any numerical basis matrix Z, with T ∈ Cma×ma a nonsingular
transformation matrix, transforming (3.56) into a solvable GEP,

(SgZ)T = (S1Z)TDg, (3.60)

where T contains the eigenvectors and Dg the eigenvalues of the matrix pencil
(SgZ,S1Z). Alternatively, we can also consider the SEP

(S1Z)
−1

(SgZ)T = TDg. (3.61)

Then, the matrix of eigenvectors T could be used again to obtain V (via
V = ZT and a normalization), and hence, to find the affine solutions of the
MEP from the null space of the block Macaulay matrix.

Example 3.15. Assume that the solution degree d◦ of the block Macaulay
matrix generated by (3.11) is 2. We compute a numerical basis matrix Z of
its null space: Z ∈ C12×3 because this MEP has three (affine) solutions. The
first three rows are linearly independent, so we shift these rows with λ1 and
λ2 to obtain the eigenvalues of the MEP. We can use S1 from (3.57), while
Sλ1 and Sλ2 are given by

Sλ1
=


1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0

 (3.62)

and

Sλ2 =


1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

. (3.63)
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Solving (3.61) twice results in the diagonal matrices

Dλ1
=

0.9338 0 0
0 1.3683 0
0 0 3.6026

 (3.64)

and

Dλ2 =

−1.3750 0 0
0 0.0552 0
0 0 −0.4183

. (3.65)

Code 3.5. Via a numerical basis matrix of the null space, we can set-up the
different eigenvalue problems.

>> Z = null(macaulay(toymep1),2);
>> Sl1 = shiftmatrix(2,2,rows,[1 1 0],l); % shift with 1*l1
>> Sl2 = shiftmatrix(2,2,rows,[1 0 1],l); % shift with 1*l2
>> eig(Sl1*Z,S1*Z)

ans =
0.9338
1.3683
3.6026

>> eig(Sl2*Z,S1*Z)

ans =
-1.3750
0.0552
-0.4183

3.4.2 Solutions with multiplicity greater than one
Dealing with solutions in the block multivariate Vandermonde basis matrix V
of the null space with a multiplicity greater than one is a similar problem as in
the (scalar) multivariate Vandermonde basis matrix. Multiplicity greater than
one results again in a Jordan normal form, which leads to inaccurate solutions
when working with floating-point algorithms (Section 2.4.2). In order to obtain
more accurate solutions, the Schur decomposition approach from Section 2.4.2
can also be used for the block Macaulay matrix. We extend the technique
of Corless et al. [62] to the MEP setting and use n+1 different shift polynomials:
one random shift polynomial,

g0(λ) =

n∑
i=1

ciλi, (3.66)
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with ci ∈ C is a random complex number, and n linear shift polynomials

gi(λ) = λi, (3.67)

for i = 1, . . . , n. A Schur decomposition of (S1Z)
−1

(Sg0Z) yields the upper
triangular matrix Dg0 and orthonormal matrix Q:

QDg0Q
H = (S1Z)

−1
(Sg0Z), (3.68)

where Q−1 = QH because the matrix Q is orthonormal. The unitary transfor-
mations that create the triangular form (3.68) result in more accurate eigen-
values than (3.60) in the presence of multiplicities. By re-using the matrix
Q, every eigenvalue parameter λi|(j) of the MEP is on the jth position of the
diagonal of the upper triangular matrices Dλi

, i.e.,

Dλ1
= QH(S1Z)

−1
(Sλ1

Z)Q,

...

Dλn = QH(S1Z)
−1

(SλnZ)Q,

(3.69)

where every upper triangular matrix Dλi contains the different evaluations in
one eigenvalue parameter:

Dλi
=

λi|(1) × ×

0
. . . ×

0 0 λi|(ma)

 (3.70)

An additional clustering step could also be used to even further improve the
accuracy (cf., the clustering step in Section 2.4.2).

Example 3.15 (continuing from p. 121). Instead of combining the dif-
ferent eigenvalues in Example 3.15 or reconstructing the block Vandermonde
basis matrix, we can use n+1 shift polynomials to retrieve the solutions. We
shift with a random linear polynomial in the eigenvalues g0(λ) to determine
Dg0 and Q via (3.68). By re-using the matrix Q, we can retrieve the same
solutions as in Example 3.15 via the diagonal elements of the Dλi

in (3.69):

Dλ1
= Q−1(S1Z)

−1
(Sλ1

Z)Q,

Dλ2
= Q−1(S1Z)

−1
(Sλ2

Z)Q.
(3.71)

3.4.3 About the notion of a large enough degree
When we move from the Macaulay matrix to the block Macaulay matrix, we
need to pose an important question: “Is the notion of the solution degree d◦
the same for the block Macaulay matrix?” The answer is simply yes! An
MEP can also have solutions at infinity, due to the singularity of some higher
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degree coefficient matrix or sparsity of the support. When increasing the degree
d by multiplying with more monomials in the FSR, the nullity of the block
Macaulay matrix M stabilizes for a certain d at the total number of solutions
mb = ma +m∞ in the case of a zero-dimensional solution set. We denote this
degree again by d∗. Every solution spans one basis vector in this null space;
hence, all the columns of the numerical basis matrix are linear combinations of
affine solutions and solutions at infinity.

For higher degrees d > d∗, the linearly independent rows that correspond to
the affine solutions remain stable at their respective positions and new degree
blocks contain no additional linearly independent rows (Figure 3.3a). Next to
the linearly independent rows related to the affine solutions, the basis matrix
of the null space can also contain linearly independent rows related to the
solutions at infinity. These linearly independent rows move to higher degree
blocks when we increase the degree (Figure 3.3b). Eventually, a gap in the
rows emerges that separates both types of linearly independent rows. The
basis matrix consists of two or three zones for d > d∗: a regular zone that
contains the linearly independent rows related to the affine solutions, a gap
zone without additional linearly independent rows, and, when the MEP has
solutions at infinity, a singular zone that contains the linearly independent
rows that correspond to the solutions at infinity. Via a column compression
(Theorem 2.3), we can deflate again the solutions at infinity and replace Z
in (3.60) by the compressed basis matrix W 11.

When we want to shift the linearly independent rows that correspond to the
affine solutions (3.60) with a shift polynomial g(λ) of degree dg, the gap zone
needs to be able to accommodate this shift, which means that the monomials
with highest total degree hit by the shift must be present in the gap zone.
Hence, the degree d of the block Macaulay matrix corresponds to the solution
degree d◦ when the gap zone consists of dg degree blocks.

Example 3.14 (continuing from p. 119). To solve the MEP in (3.11)
with only affine solutions, we iteratively build a block Macaulay matrix M
for increasing degree d = 1, . . . , 4 (as described in Algorithm 3.1). The
successive matrices M have the following properties:

d size rank nullity
1 3× 6 3 3
2 9× 12 9 3
3 18× 20 17 3
4 30× 30 17 3

For this example, we notice that the nullity of M has already stabilized for
degree d∗ = 1. If we want to shift with a cubic shift polynomial, the solution
degree d◦ of M is equal to 4. Computing a numerical basis matrix Z of the
null space and performing row-wise rank checks from top to bottom learn that
the solution degree d◦ = 4 results in a gap zone that can accommodate the
shift (∗ indicates a degree block without any additional linearly independent
rows):
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d = 2

Z

d∗ = 3 d = 4 d = 5

(a) Only affine solutions

d = 2

Z

d∗ = 3 d = 4

gap

d = 5

gap

compressed basis matrix of the null space W 11

(b) Affine solutions and solutions at infinity

Figure 3.3. Basis matrix of the null space of a block Macaulay matrix M ,
which grows by multiplying with monomials of higher total degrees in the FSR
(increasing degree d). At a certain degree d∗ (in this example d∗ = 3), the
nullity stabilizes at the total number of solutions mb. In the situation with only
affine solutions (Figure 3.3a), the linearly independent rows of the basis matrix,
checked from top to bottom, stabilize at their respective positions (indicated
by dashed lines). New degree blocks contain no additional linearly independent
rows when d > d∗. The basis matrix consists of a regular zone ( ) and a gap
zone ( ). However, when the system has solutions at infinity (Figure 3.3b), the
linearly independent rows of the basis matrix that are related to the solutions
at infinity (also indicated by dashed lines) move to higher degree blocks when
d > d∗; they constitute the singular zone ( ) of the basis matrix. A gap zone
emerges in the rows that separates these two types of linearly independent
rows, and the influence of the solutions at infinity can be deflated via a column
compression.
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Table 3.2. Numerical solutions and absolute residual errors12 of Example 3.4
obtained via the null space based algorithm.

λ1 λ2 max‖e‖2

0.9338 −1.3750 2.8× 10−14

1.3683 0.0552 6.0× 10−15

3.6026 −0.4183 2.6× 10−14

d standard monomials
1 z1, z2 |λ1z1
2 z1, z2 |λ1z1 | ∗
3 z1, z2 |λ1z1 | ∗ | ∗
4 z1, z2 |λ1z1 | ∗ | ∗ | ∗

We continue with a numerical basis matrix Z ∈ C30×3 of its null space (for
d = 4) and observe that the first three rows, which correspond to the variables
z1, z2, and λ1z1, are linearly independent. As the nullity is 3, there are no
solutions at infinity. After constructing the shift matrices, we can use (3.71)
to obtain the numerical solutions, which are shown in Table 3.2.

Code 3.6. It is possible to determine the degree of the gap zone and number
of affine solutions via gap(Z,d,n,l) , but now the length of the eigenvector
l is required to correctly iterate over the degree blocks.

>> [dgap,ma] = gap(Z,4,2,l)

dgap =
2

ma =
3

If there are only affine solutions, then there is no need for a column com-
pression. shiftnullspace(Z,shiftpoly,rows,l) determines the solutions
of the MEP.

12 We calculate the absolute residual error by substituting the computed eigenvalues(
λ∗
1, . . . , λ

∗
n

)
and eigenvectors z∗ in the MEP and determining the 2-norm of the residual

vector ‖e‖2 = ‖M(λ∗)z∗‖2. More information about the error measures used in this text
can be found in Appendix B.2.3.



Section 3.4. Null space based approach 127

>> D = shiftnullspace(Z,[4 0 3],rows,l);
>> solution = [D2, D3]

solution =
0.9338 -1.3750
1.3683 0.0552
3.6026 -0.4183

Example 3.16. Next, to illustrate the influence of solutions at infinity,
we consider the polynomial two-parameter eigenvalue problem from Exam-
ple 3.5 and use a shift polynomial g(λ) = λ1. We iteratively build the block
Macaulay matrix M for increasing degree d = 2, . . . , 5 (as described in Al-
gorithm 3.1) and obtain the following properties:

d size rank nullity
2 3× 12 3 9
3 9× 20 9 11
4 18× 30 18 12
5 30× 42 30 12

The nullity remains stable from degree d∗ = 4 onwards. When we compute a
numerical basis matrix Z of the null space and perform row-wise rank checks
from top to bottom, we notice that the null space contains three different
zones for d ≥ 5 (∗ indicates a degree block without any additional linearly
independent rows):

d standard monomials
2 z1, z2 |λ1z1, λ1z2, λ2z1, λ2z2 |λ21z1, λ21z2, λ1λ2z1
3 z1, z2 |λ1z1, λ1z2, λ2z1, λ2z2 |λ21z1, λ21z2, λ1λ2z1 |λ31z1, λ31z2
4 z1, z2 |λ1z1, λ1z2, λ2z1, λ2z2 |λ21z1, λ21z2, λ1λ2z1 |λ31z1 |λ41z1, λ41z2
5 z1, z2 |λ1z1, λ1z2, λ2z1, λ2z2 |λ21z1, λ21z2, λ1λ2z1 | ∗ |λ41z1 |λ51z1, λ51z2

A degree d = 5 block Macaulay matrix M suffices to solve this MEP with a
linear shift polynomial and is, thus, equal to d◦. We can compute a numerical
basis matrix Z ∈ C42×12 of the null space (since we have mb = 12 solutions)
and determine the gap via row-wise rank checks from top to bottom. The gap
indicates that this problem has ma = 9 affine solutions and m∞ = 3 solutions
at infinity. After a column compression, we are left with W 11 ∈ C20×9. The
n+ 1 Schur decompositions in (3.69) give us the solutions in Table 3.3.

Code 3.7. For a MEP with solutions at infinity, the gap zone separates
the regular zone and singular zone of the numerical basis matrix of the null
space.
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Table 3.3. Affine numerical solutions and absolute residual errors12 of Exam-
ple 3.5 obtained via the null space based algorithm.

λ1 λ2 max‖e‖2

1.4027± 0.3941i −1.3835∓ 0.8431i 5.1× 10−14

−0.9699± 0.7168i −0.1113± 0.5741i 1.1× 10−14

0.8543 + 0.0000i −0.9341 + 0.0000i 2.8× 10−15

0.2737 + 0.0751i −0.1917∓ 0.2408i 1.0× 10−14

−0.4497± 0.0662i 0.6094∓ 1.0534i 7.6× 10−14

>> Z = null(macaulay(toymep2,5));
>> [dgap,ma] = gap(Z,5,2,l)

dgap =
3

ma =
9

In this case, a column compression is necessary to retrieve the solutions.

>> W11 = columncompression(Z,n,dgap);
>> D = shiftnullspace(W11,[randn(2,1), eye(2)],rows,l);
>> solution = [D2, D3]

solution =
1.4027 + 0.3941i -1.3835 - 0.8431i
1.4027 - 0.3941i -1.3835 + 0.8431i
-0.9699 + 0.7168i -0.1113 + 0.5741i
-0.9699 - 0.7168i -0.1113 - 0.5741i
0.8543 + 0.0000i -0.9341 + 0.0000i
0.2737 + 0.0751i -0.1917 - 0.2408i
0.2737 - 0.0751i -0.1917 + 0.2408i
-0.4497 + 0.0662i 0.6094 - 1.0534i
-0.4497 - 0.0662i 0.6094 + 1.0534i

3.4.4 Null space based eigenvalue-finding algorithm
We summarize the different steps of the null space based eigenvalue-finding
algorithm in Algorithm 3.2.
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Algorithm 3.2 Null space based approach eigenvalue-finding algorithm
Require: Block Macaulay matrix M of degree d◦ (Algorithm 3.1)

1: Compute a numerical basis matrix Z of the null space of M
2: Determine the gap and the number of affine solutions ma via row-wise rank

checks from top to bottom in Z (Section 3.4.3)
3: Use Theorem 2.3 to obtain the compressed numerical basis matrix W 11 of

the null space
4: For a (user-defined) shift polynomial g0(λ), solve the Schur decomposition

QDg0Q
−1 = (S1Z)

−1
(Sg0Z), (3.72)

where the matrices S1, Sg0 , Q, and Dg0 are defined as in (3.68)
5: Retrieve the different components λi|(j) of the solutions from Dλi

in (3.69)
6: return λ|(j), for j = 1, . . . ,ma

Remark 3.4. To fully exploit the block multi-shift-invariance of the null
space, the row selection matrix S1 ∈ Rl×q can select entire block rows of Z
(with at least ma linearly independent rows to cover all the affine solutions):

QDgQ
−1 = (S1Z)

†
(SgZ). (3.73)

where the row combination matrix Sg ∈ Rl×q also selects entire block rows
of Z. The pseudo-inverse (.†) is used to obtain a solvable SEP. Shifting
entire blocks replaces the row-wise rank checks by more efficient block-wise
rank checks, which is interesting for both the numerical robustness and the
computational efficiency of the algorithm.

Example 3.17. To wrap up the null space based approach, we consider the
quadratic three-parameter eigenvalue problem constructed in [148] from a
model order reduction problem [101],

M(λ)z =
(
A000 +A100λ1 +A010λ2 +A001λ3

+A200λ
2
1 +A110λ1λ2 +A101λ1λ3 +A020λ

2
2

+A011λ2λ3 +A002λ
2
3

)
z = 0,

(3.74)

the 10× 8 coefficient matrices of which are given in (3.91) to (3.100) at the
end of this chapter. Via Algorithm 3.1, we determine that the solution de-
gree d◦ = 11. The block Macaulay matrix for this degree is M ∈ C2200×2912.
Rank tests on the basis matrix of the null space of M reveal that this problem
has a positive-dimensional solution set at infinity, but the affine part of the
solution set is zero-dimensional (cf., Section 2.6.1). So, the solutions at infin-
ity can be deflated via a column compression to construct W 11 ∈ C1760×209

and solve the different Schur decompositions in (3.68). This MEP can be
solved in 361.44 s (averaged over 30 experiments) via the row-wise approach,
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while it only takes 3.04 s (averaged over 30 experiments) via the block-wise
approach of Remark 3.4. The absolute residual errors12 of the row-wise ap-
proach are (in most of the experiments) very bad, due to possible wrong
rank decisions, while the maximum absolute residual error of the block-wise
approach is equal to 4.41× 10−8 (averaged over 30 experiments).

Remark 3.5. A correct selection of the linearly independent rows in the
row-wise approach is essential for obtaining satisfactory solutions (cf., Re-
mark 2.6). The previous example illustrates that wrong rank decisions have
fatal consequences for the algorithm. The block-wise approach is numerically
more robust.

3.5 Column space based approach
In this section, we consider the column space of the block Macaulay matrix
instead of its null space. The intrinsic complementarity between both funda-
mental subspaces (Section 2.5.1) enables a new, complementary algorithm to
solve MEPs, which works directly on the data in the columns (Section 3.5.1).
After explaining the approach, we summarize the different steps of the column
space based algorithm (Section 3.5.2).

3.5.1 Equivalent column space realization theory
Consider, for an MEP with zero-dimensional solution set, again a block Macaulay
matrix M ∈ Cp×q, with degree equal to its solution degree d = d◦, and a nu-
merical basis matrix W ∈ Cq×mb of its null space after a column compression
(Theorem 2.3). A shift of the linearly independent rows of the compressed basis
matrix W 11 with a shift polynomial g(λ) results in the expression

(SgW 11)T = (S1W 11)TDg, (3.75)

where the matrices S1, Sg, T , and Dg are defined as in (3.60). After introduc-
ing two new matrices B ∈ Rma×ma , which contains all the linearly independent
rows of W 11, and C ∈ Rmc×ma , with the linear combinations of rows hit by
the shift that contain a row not present in B, as in Section 2.5.2, we can
re-write (3.75) as [

S′
g

CB−1

]
BT = BTDg, (3.76)

where S′
g ∈ Rmh×ma is the row combination matrix that constructs the linear

combinations of rows hit inside B. The matrix B is invertible because it
contains ma linearly independent rows by construction. In this section, we
translate (3.76) to the column space via Lemma 2.3, avoiding the computation
of a numerical basis matrix of the null space.
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Example 3.18. When we consider again the MEP (3.11), we start by iden-
tifying the linearly dependent columns (from right to left) of M . Like in Ex-
ample 3.15, we notice that d∗ = 1 and that the three left-most columns are
linearly dependent on the other columns (from right to left), which means
that the first three rows of W 11 (i.e., z1, z2 and λ1z1) constitute B. The
rows in C depend on the particular shift:

• For a shift with λ1, the rows that correspond to λ1z1, λ1z2, and λ21z1
are hit. This means that C contains the 4th and 7th row (i.e., λ1z2
and λ21z1). The matrix B could be split into B1 with the first row and
B2 with the second and third row. The row selection matrix S′

g selects
the third row from B.

• When choosing g(λ) = 4λ32 as in Example 3.14, B1 is empty and C
contains 4 times the 19th, 20th, and 27th row.

We define, similar as in Section 2.5.2, the matrix D ∈ Cmr×ma (with mr =
s − ma − mc) as the matrix that contains the remaining rows of W 11, such
that every row of W 11 is represented once in B, C, or D. Consequently, we
can reorder the basis matrix W as

PW =


B 0
C 0
D 0

W 21 W 22

, (3.77)

where the matrix P is a q × q row combination matrix that is invertible and
does not alter the rank structure of W . Using Lemma 2.3, we can reorder the
columns of the block Macaulay matrix in accordance to PW and obtain

[
N1 N2 N3 N4

]︸ ︷︷ ︸
N


B 0
C 0
D 0

W 21 W 22

 = 0, (3.78)

where every matrix N i ∈ Cp×qi corresponds to a subset of the columns (or
linear combinations of columns) of M . We call N = MP−1 ∈ Cp×q the
reordered block Macaulay matrix. Now, we apply a backward (Q-less)
QR decomposition on N , which yields13


ma mc mr q−s

q−s R14 R13 R12 R11

mr R24 R23 R22 0
mc R34 R33 0 0

p−q+ma R44 0 0 0




B 0
C 0
D 0

W 21 W 22

 = 0, (3.79)

13A similar analysis of the upper triangular matrix R as in Footnote 19 of Chapter 2 reveals
that N4 is not present in N when there are no solutions at infinity (Example 3.18) and that
the size of the block Macaulay matrix M determines the size of R44 (Example 3.19).
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where the labels denote the number of rows/columns of the different blocks.
We notice that R33C = −R34B, which means that

CB−1 = −R−1
33 R34, (3.80)

because R33 is always of full rank. Note that R44 is always a zero matrix.
Relation (3.80) helps to remove the dependency on the null space in (3.76) and
yields a solvable SEP in the column space (with H = BT ),[

S′
g

−R−1
33 R34

]
H = HDg, (3.81)

or a GEP (to avoid the computation of the inverse of R33),[
S′

g

−R34

]
H =

[
Imh

0

0 R33

]
HDg, (3.82)

with Imh
∈ Nmh×mh the identity matrix. The matrix of eigenvector H = BT

corresponds to the partitioned linearly independent rows of the (affine) block
multivariate Vandermonde basis matrix V , because the nonsingular transfor-
mation matrix T relates the rows of the numerical basis matrix W 11 (or B)
to the rows of V . Consequently, the eigenvalues in Dg and eigenvectors in H
yield the solutions of the MEP. Note that this complementary column space
based approach does not require a column compression to deflate the solutions
at infinity, because the backward (Q-less) QR decomposition already separates
them implicitly.

Example 3.18 (continuing from p. 131). We now continue the previous
example and try to set up the GEP in (3.82) for a shift with g(λ) = 4λ32.
The corresponding row combination matrix P ∈ R30×30 is

P =


I3 0 0 0 0 0
0 0 4I2 0 0 0
0 0 0 0 4I1 0
0 I15 0 0 0 0
0 0 0 I6 0 0
0 0 0 0 0 I3

, (3.83)

where the first three rows of P select the linearly independent rows of B,
the next three rows of P select the rows of C (notice the factor 4), and
the remaining rows of P result in D. We do not multiply W by P , but
we use P−1 to reorder the columns of M into the matrices N1, N2, and
N3. Since there are no solutions at infinity, we do not have a matrix N4

(Footnote 13). The backward (Q-less) QR decomposition of N = MP−1

results in the matrix

R =


3 3 24

24 R24 R23 R22

3 R34 R33 0
3 R44 0 0

, (3.84)
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from which the matrices R33 and R34 of (3.82) can be extracted. The GEP
yields the same matrix Dg as in Example 3.14:

Dg =

−10.3979 0 0
0 0.0007 0
0 0 −0.2928

. (3.85)

Code 3.8. Similar as in Code 2.9, a row combination matrix can be built for
the block Macaulay matrix. Of course, the length of the eigenvector l = 2
is required.

>> P = rowcombinationmatrix(4,2,rows,[4 0 3],l);
>> N = M*inv(P);
>> [~,R] = qr(fliplr(N)); R = fliplr(R);
>> R33 = R(25:27,4:6); R34 = R(25:27,1:3);
>> eig(-inv(R33)*R34)

ans =
-10.3979
0.0007
-0.2928

Example 3.19. Next, we revisit the MEP in Example 3.5. Obviously, check-
ing the block Macaulay matrix at degree d◦ = 5 for linearly dependent
columns from right to left results in a similar analysis as before. Because
of the backward (Q-less) QR decomposition, we do not need to deflate the
solutions at infinity via a column compression. Note that M is not yet tall
and p = q −mb < q −ma (Footnote 13). We have two options to proceed:

• We can consider a block Macaulay matrix of a larger degree, since the
matrix will eventually become tall.

• We can remove the linearly dependent columns that correspond to so-
lutions at infinity in N4.

We choose in this numerical example the latter option and remove the 21st
(λ41z1), 31st (λ51z1), and 32nd (λ51z2) column from M when splitting into
N1, N2, N3, and N4. The numerical results are the same as with the null
space based approach (Table 3.3).

In the previous example, any shift polynomial with a power of λ2 yields
a perfectly reconstructible solution. But as mentioned in Remark 2.7, the
situation is sometimes more difficult, because the matrix H in the column space
based approach does not necessarily contain all the eigenvalue parameters. The
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same strategy as for the column space based root-finding approach can be used:
shift with a random shift polynomial g0(λ),

QDg0Q
H =

[
S′

g0

R−1
33 R34

]
, (3.86)

and the n different variables gi(λ) = λi,

QDλ1
QH =

[
S′

λ1

R−1
33 R34

]
,

...

QDλn
QH =

[
S′

λn

R−1
33 R34

]
,

(3.87)

which are similar Schur decompositions as in Section 3.4.2. The matrices R33

and R34 have to be re-computed for every shift.

Example 3.20. To illustrate, let us consider the following linear three-
parameter eigenvalue problem:

(A000 +A100λ1 +A010λ2 +A001λ3)z = 0, (3.88)

with four coefficient matrices Aω ∈ C4×2,

A000 =


2 3
2 5
0 1
1 1

,A100 =


1 0
0 1
1 1
2 1

,A010 =


4 2
2 3
3 1
3 1

, and A001 =


1 2
1 4
2 1
4 2

.
When we check the columns of the block Macaulay matrix M of degree
d = d◦ = 2 from right to left, we observe that the first four columns (which
correspond to z1, z2, λ1z1, and λ1z2) are linearly dependent on the other
columns. Thus, the matrix H contains references to the variables z1, z2, and
λ1 evaluated in each of the affine solutions, but no references to λ2 or λ3.
Hence, not one, but two shift polynomials (with references to λ2 and λ3) are
required to find all the components of the solutions via the eigenvalues of two
different GEPs. We can shift in this numerical example with g1(λ1, λ2, λ3) =
λ2 and g2(λ1, λ2, λ3) = λ3 to obtain also the two remaining eigenvalues in
Dg1 and Dg2 . In order to match the different eigenvalues λ2 and λ3, we can
use the matrix of eigenvectors H in both GEPs (because this problem only
has simple solutions) or re-use the matrix Q of the Schur decomposition.

3.5.2 Column space based eigenvalue-finding algorithm
We summarize the different steps of the column space based eigenvalue-finding
algorithm in Algorithm 3.3.
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Algorithm 3.3 Column space based eigenvalue-finding algorithm
Require: Block Macaulay matrix M of degree d◦ (Algorithm 3.1)

1: Replace M by the flipped upper triangular matrix R of its QR decompo-
sition (optional)

2: Determine the linearly dependent columns via rank checks from right to
left and reorder M or R as in (3.78)

3: Compute the (Q-less) backward QR decomposition of the reorderd block
Macaulay matrix N

4: For a user-defined shift polynomial g0(λ), solve the Schur decomposition

QDg0Q
−1 =

[
Imh

0

0 R33

]−1[
S′

g

−R34

]
, (3.89)

where the matrices S′
g, R34, R34, Q, and Dg0 are defined as in (3.82)

and (3.86)
5: Retrieve the different eigenvalues λi|(j) of the solutions from Dλi

in (3.87)
6: return λ|(j), for j = 1, . . . ,ma

Remark 3.6. Similar to Remark 2.8 from the Macaulay matrix, the inverse
permutation also reduces to a simple column re-ordering procedure when the
shift polynomial g(λ) is a monomial of (some of) the eigenvalues.

Example 3.21. We repeat Example 3.17 and solve (3.74) via the column
space of the block Macaulay matrix. The solution degree d◦ = 11 and the
constructed block Macaulay matrix M is of size 2200 × 2912. It is possible
to replace M by the flipped upper triangular matrix R ∈ C2200×2912 of its
QR decomposition, but this leads not to a size reduction in this example.
The rank tests, on the columns of the block Macaulay matrix, reveal again
that the system has 209 affine solutions and a positive-dimensional solution
set at infinity. Since we only use linear shift polynomials, we do not build P
explicitly, but re-order the columns of M instead. This MEP can be solved
in 1206.15 s (averaged over 30 experiments), which is much slower than via
the null space. The maximum absolute residual error12 of this approach is
1.11×10−8 when the column-wise rank checks succeed (cf., row-wise approach
in Example 3.17).

3.6 Conclusion
We introduced the block Macaulay matrix, which is an extension of the tradi-
tional (scalar) Macaulay matrix from polynomial system solving to the multi-
parameter eigenvalue setting. We exploited the complementarity between the
right null space and column space of the block Macaulay matrix to propose two
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Figure 3.4. Mean computation time per degree for the first-order ARMA
model identification problem with N = 4 data points, using the block-wise null
space based approach ( ), row-wise null space based approach ( ), and
column-wise column space based approach ( ), averaged over 30 experiments
(without standard deviations to keep the figure readable). We have also added
the necessary mean computation time to construct the Macaulay matrix ( ),
to compute a basis matrix for the null space ( ), and to perform the different
rank checks, when performed block-wise ( ) or row-wise ( ) on the basis
matrix of the null space or column-wise ( ) on the block Macaulay matrix.

approaches to solve (rectangular) multiparameter eigenvalue problems. The
null space based approach yields, after deflating the solutions at infinity with
a column compression, the affine eigenvalues of the problem. Contrary to the
null space based approach, the column space based approach does not require
an explicit computation of a numerical basis matrix of the right null space,
but considers the data in the columns of the block Macaulay matrix directly.
The influence of the solutions at infinity is removed implicitly in the column
space based approach via a backward (Q-less) QR decomposition. Note that
the extensions to the root-finding algorithms discussed in Section 2.6 can also
be incorporated in both block Macaulay matrix eigenvalue-finding algorithms:
these algorithms can also (i) deal with a positive-dimensional solution set at
infinity, (ii) use special shift polynomials, and (iii) work with a different poly-
nomial basis or monomial ordering.

Motivational example. Let us consider the first-order ARMA model iden-
tification problem for the same data sequence y ∈ R4×1 as in (2.124). We
solve the quadratic two-parameter eigenvalue problem,

M(λ)z =
(
A00 +A10λ1 +A01λ2 +A02λ

2
2

)
z = 0, (3.90)
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with 11 × 10 coefficient matrices as described in Section 7.5. One of the
solutions of this MEP corresponds to the globally optimal parameters of the
ARMA model, namely α1 = 0.3817 and γ1 = −0.5789. Both the null space
based and column space based solution approach find this solution. Note
that this MEP has a positive-dimensional solution set at infinity.

Similar to Table 2.2, the block-wise null space based approach for solving
the MEP is much faster than the row-wise null space based approach and
column-wise column space based approach. We compare (the iterative part
of) the different solution approaches in Figure 3.4. Using block-wise rank
checks clearly has a computational advantage in this example, while the
numerical robustness is not clear from this MEP (there are no difficult rank
checks). These block-wise rank checks are not yet available in the column
space based approach, resulting in a slower execution. Furthermore, the fact
that the Macaulay matrix is tall results more expensive rank checks in the
column space based approach, compared to the row-wise null space based
approach, while the number of rank checks is the same. The current column
space based approach does not yet exploit the fact that the Macaulay matrix
is very sparse and structured.

Notice that it takes more time to solve the first-order ARMA model iden-
tification problem for N = 4 data points via the block Macaulay matrix
approaches than via the Macaulay matrix approaches. However, for larger
N , the reformulation as an MEP scales better than the reformulation as a
polynomial system.

When the coefficient matrices grow, the computational complexity of both
algorithms increases rapidly. In particular the rank checks to determine the
linearly independent rows of the basis matrix or the linearly dependent columns
of the block Macaulay matrix are computationally expensive. This observation
opens several new research paths:

• The backward (Q-less) QR decomposition, which constitutes the core of
the column space based approach, has created several algorithmic op-
portunities. We want to improve the column space based algorithm by
exploiting the sparsity and structure of the block Macaulay matrix, by
considering block columns instead of columns (i.e., by taking fully advan-
tage of the backward block multi-shift-invariance), by looking into rank-
revealing QR decompositions, and by developing recursive techniques.

• Furthermore, the complementarity between both fundamental subspaces
may even yield more useful properties in the column space. Together
with a better understanding of MEPs, these properties could give us the
machinery to tackle much larger problems in the future.

• Advancements for the Macaulay matrix for polynomial system solving
are also an inspiration for the block Macaulay matrix algorithms.

• For square MEPs, subspace techniques make the transition from small
problems to large problems possible. Several subspace algorithms have
been explored for this type of problems, see, for example, [117, 121, 122].
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This immediately fuels the next question: “Can we also develop subspace
methods for rectangular MEPs?” The answer is yes! We are currently de-
veloping subspace techniques for rectangular MEPs. Preliminary results
are quite promising, so we hope that subspace techniques will enable us
to also solve large problems with the block Macaulay matrix algorithms.
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Historical and bibliographical notes

Below, we give some additional historical and bibliographical notes about solv-
ing (one-parameter and square multiparameter) eigenvalue problems.

One-parameter eigenvalue problems

There exist many techniques to solve SEPs and GEPs, with adaptations to
tackle very large matrices when there is structure or sparsity involved [213, 270].
When the problem is not square, a different solution approach is necessary, e.g.,
a combination with projections, as in [110, 281].

One of the most common strategies for solving a PEP is via a lineariza-
tion, which replaces the matrix polynomial by a matrix pencil with the same
spectrum, and then computes the eigenvalues of the linearized pencil [113, 161,
162, 245]. Many matrix polynomials arising from applications have additional
structure, leading to symmetries in the spectrum that are important for com-
putational methods to respect. It is useful to employ a structured linearization
for a matrix polynomial with structure [161, 162, 245].

Square multiparameter eigenvalue problems

Square MEPs are typically solved via simultaneous triangularization (i.e., via
the QZ algorithm) of the associated system of coupled GEPs [117, 126, 198,
218]. This approach works for any number of spectral parameters and retrieves
all the solutions, but is limited by the size of the matrices in the system of cou-
pled GEPs. Also iterative nonlinear optimization algorithms can be used to
retrieve one (or some) of the solutions, e.g., gradient descent techniques [36, 37,
48], minimal residual quotient iterations [35], or Newton-based methods [39],
but these optimization approaches are heuristic (they depend on an initial
guess) and result in numerical approximations of the eigenvalues and eigenvec-
tors.

In the last two decades, a renewed interest in the topic has led to sev-
eral efficient homotopy continuation algorithms [77, 196, 206] and subspace
approaches [117, 119, 121, 122, 212] to overcome issues with scalability and
convergence. These algorithms can also solve polynomial square MEPs, either
directly or after a linearization step [120, 206].

The problems that we discuss in this chapter are polynomial problems.
However, there exists an even more general class of problems: nonlinear MEPs,
which arise, for example, in the computation of critical delays of delay-differential
equations with multiple delays [199]. Some approaches to deal with (square)
nonlinear MEPs are outlined in [199].



140 Chapter 3. Eigenvalue-Finding via the Block Macaulay Matrix

Coefficient matrices of Example 3.17

The coefficient matrices of the MEP in (3.74) are

A000 =



b1 −a1 0 0 −1 0 0 0
b2 −a2 −a1 0 0 −1 0 0
b3 −a3 −a2 −a1 0 0 −1 0
b4 −a4 −a3 −a2 0 0 0 −1
b5 −a5 −a4 −a3 0 0 0 0
b6 −a6 −a5 −a4 0 0 0 0
b7 −a7 −a6 −a5 0 0 0 0
0 −a8 −a7 −a6 0 0 0 0
0 0 −a8 −a7 0 0 0 0
0 0 0 −a8 0 0 0 0


, (3.91)

A100 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
b1 0 0 0 2 0 0 0
b2 0 0 0 0 2 0 0
b3 0 0 0 0 0 2 0
b4 0 0 0 0 0 0 2
b5 0 0 0 0 0 0 0
b6 0 0 0 0 0 0 0
b7 0 0 0 0 0 0 0


, (3.92)

A010 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
b1 0 0 0 −2 0 0 0
b2 0 0 0 0 −2 0 0
b3 0 0 0 0 0 −2 0
b4 0 0 0 0 0 0 −2
b5 0 0 0 0 0 0 0
b6 0 0 0 0 0 0 0
b7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (3.93)

A001 =



0 0 0 0 0 0 0 0
b1 0 0 0 2 0 0 0
b2 0 0 0 0 2 0 0
b3 0 0 0 0 0 2 0
b4 0 0 0 0 0 0 2
b5 0 0 0 0 0 0 0
b6 0 0 0 0 0 0 0
b7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (3.94)
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A200 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1


(3.95)

A110 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0


, (3.96)

A101 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −2 0 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 −2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (3.97)

A020 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (3.98)
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A011 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (3.99)

and

A002 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (3.100)

The elements ai and bi are elements of the vectors

a =
[
1 10 46 130 239 280 194 60

]T (3.101)

and

b =
[
2 11.5 57.75 178.625 345.5 323.625 94.5

]T
, (3.102)

respectively.
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Fundamental Subspaces of
the Macaulay Matrix

As mentioned in Chapter 2, each of the four fundamental subspaces of the
Macaulay matrix has a profound algebraic connection with its generating poly-
nomials. In this chapter, we visit each of these fundamental subspaces and
interpret them in the language of algebraic geometry. We show how basic lin-
ear algebra concepts, like linear independence and matrix rank, coincide with
the properties of the polynomials in the Macaulay matrix. Throughout Chap-
ter 2, the Macaulay matrix has always defined for a certain degree and it is
important to understand how the dimensions and interpretations of its funda-
mental subspaces change as a function of this degree.
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Part I

2

3

4

Part II

5

6

Part III

7
Application 1

Application 2

Application 3

8

A B C D

Contribution. We give an overview of the different fundamental subspaces
of the Macaulay matrix: revisiting, summarizing, and extending the different
algebraic interpretations of this matrix. Notice that we gather in this chapter
contributions of numerous other authors.

Outline. The introduction in Section 4.1 presents the different fundamental
subspaces of the Macaulay matrix. Before we can consider the four different
fundamental subspaces, we give some essential information about the projec-
tive space in Section 4.2. Subsequently, we focus on each of the fundamental
subspaces separately: In Section 4.3, we consider the row space of the Macaulay
matrix and provide an interpretation of that subspace. Section 4.4 is about the
left null space and the link with the occurrence of syzygies in the row space,
which gives an expression for the degree of regularity. Section 4.5 contains an
interpretation of the null space based root-finding algorithm in the language
of algebraic geometry. The complementarity between the right null space and
column space creates the possibility for an interpretation of the column space
in Section 4.6. Finally, in Section 4.7, we draw some conclusions and point at
ideas for future work.
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4.1 Introduction
Throughout this dissertation, the Macaulay matrix (and its block extension)
play an important role. The Macaulay matrix is generated by a system of
multivariate polynomials. One can only image that some of the properties of
these polynomials should transfer to this matrix. Indeed, the linear algebra
properties of the Macaulay matrix are deeply intertwined with the polynomi-
als that generate it. We can use the Macaulay matrix for various problems,
such as elimination of variables [27], computing an approximate greatest com-
mon divisor [23], computing a Gröbner and border basis [26], solving the ideal
membership problem [26], and finding the affine/projective common roots of a
polynomial system [24, 258].

In this chapter, we approach the Macaulay matrix and the generating poly-
nomials from a linear algebra point of view. We relate basic linear algebra
concepts, like linear independence and matrix rank, with concepts from alge-
braic geometry. The key objects that we consider are the four fundamental
subspaces of the Macaulay matrix, connected with each other through two im-
portant theorems from linear algebra. We want to show that many question
about the polynomials can be answered via the Macaulay matrix, and that
the answers are often hiding in one of its fundamental subspaces. For didac-
tic purposes, we restrict ourselves in this chapter to the situation where the
generating system of multivariate polynomial equations has a zero-dimensional
solution set, although many touched concepts can be extended to the positive-
dimensional case.

Four fundamental subspaces
The idea of thinking about the four fundamental subspaces and their relations
goes back to Gilbert Strang in the 1970s [173]. Suppose that we consider a
matrix A ∈ Cp×q, which is a linear transformation from Cp to Cq, we can
associate four fundamental subspaces [234] with that matrix, two in Cp and
two in Cq. These subspaces are often called the fundamental subspaces of A:

1. The column space of A, denoted by C(A), is the set of all yc = Ax ∈ Cp

for which x is a nonzero vector in Cq. It is spanned by the columns of
the matrix A and its dimension is called the rank of the matrix.

2. The row space of A, denoted by R(A), is set of all xr = ATy ∈ Cq for
which y is a nonzero vector in Cp, which corresponds to C(AT). It is
spanned by the rows of the matrix A.

3. The right null space of A, denoted by N (A), is the set of all xn ∈ Cq for
which Axn = 0. Its dimension is called the nullity of the matrix.

4. The left null space of A, denoted by L(A), is the set of all yl ∈ Cp for
which ATyl = 0, which corresponds to N (AT).

Figure 4.1 contains a graphical depiction of the fundamental subspaces of an
arbitrary matrix. They are connected through the fundamental theorem of
linear algebra [236] and rank-nullity theorem [123]:
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Cq
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xn Axn = 0
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Figure 4.1. Graphical depiction of the fundamental subspaces of an arbitrary
matrix A ∈ Cp×q. These spaces are the row space R(A), the right null space
N (A), the column space C(A), and the left null space L(A). The vectors
xr ∈ Cq and xn ∈ Cq are vectors in the row space and right null space of A,
respectively. The vector b ∈ Cp lies in the column space of A, while x ∈ Cq is
a linear combination of xr and xn.

Theorem 4.1 (Fundamental theorem of linear algebra). Let us con-
sider an arbitrary complex matrix A ∈ Cp×q with rank r. The dimension of
the row space is equal to the dimension of the column space, i.e.,

dim(R(A)) = dim(C(A)) = r. (4.1)

Theorem 4.2 (Rank-nullity theorem). For any complex matrix A ∈
Cp×q, the rank-nullity theorem states that

rank(A) + nullity(A) = q. (4.2)

A natural approach to compute bases for these four fundamental is via
the singular value decomposition, where the left and right singular vectors
provide basis vectors for the different subspaces (more information about how
to compute these basis vectors in Appendix B). Also other approaches are
often used to retrieve a basis, for example, the QR decomposition with column
pivoting can be used to compute a basis for the right null space [97, 249].
There exist more advanced techniques to compute a basis when the matrix has
a particular structure [99, 167] or is constructed iteratively [22, 260].
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Applied to the Macaulay matrix
In this chapter, we want to focus on each of the fundamental subspaces of the
Macaulay matrix Md ∈ Cpd×qd , for various degrees d. The Macaulay matrix
Md is defined for a certain degree d and it is important to understand how its
dimensions and its fundamental subspaces change as a function of that degree
d. From the connections between the fundamental subspaces, it follows that

R(Md) = C(MT
d ), (4.3)

L(Md) = N (MT
d ), (4.4)

while Theorems 4.1 and 4.2 for Md and MT
d yield

pd = rd + ld, (4.5)
qd = rd + nd, (4.6)

where rd is the rank, ld the dimension of the left null space, and nd the nullity
of the Macaulay matrix for degree d.

The fundamental subspaces of the Macaulay matrix (Table 4.1) possess
interesting algebraic properties related to the generating system of multivariate
polynomial equations:

• Row space (Section 4.3): the row space can be interpreted in terms of
the consequences of the related homogeneous ideal.

• Left null space (Section 4.4): the left null space is linked to the syzygies
that occur in the row space and its dimension leads to an expression for
the degree of regularity d∗, which is of vital importance for the root-
finding algorithms in Chapter 2.

• Right null space (Section 4.5): the structure of the right null space,
when the degree d ≥ d∗, can be described in terms of differential function-
als (algebraic language), which is a key observation to solve the generating
system of multivariate polynomial equations via this subspace.

• Column space (Section 4.6): the complementarity between the null
space and column space allows us to also rephrase this solution approach
in the column space.

4.2 Projective space

Before diving into the different fundamental subspaces, we leave the affine
complex space and enter the projective space. This helps us to talk about
homogeneous polynomials and projective varieties (Section 4.2.1), and it allows
us to consider the homogeneous Macaulay matrix (Section 4.2.2).
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Table 4.1. Overview of the four fundamental subspaces of the Macaulay
matrix Md ∈ Cpd×qd of degree d with rank rd. Because of the fundamental
theorem of linear algebra, the dimension of the column space and row space
are equal to the rank of the matrix. The dimension of the left null space and
right null space (i.e., the nullity) are ld and nd, respectively.

subspace symbol dimension interpretation
row space R(Md) ⊂ Cqd rd Section 4.3

left null space L(Md) ⊂ Cpd ld Section 4.4
right null space N (Md) ⊂ Cqd nd Section 4.5
column space C(Md) ⊂ Cpd rd Section 4.6

4.2.1 Homogeneous polynomials and projective varieties
Systems of multivariate polynomial equations can, due to sparsity and algebraic
interactions among the coefficients of the polynomials, also have solutions at
infinity (Section 2.2.3). Because these points at infinity play an important
didactic role in this text, we discuss here projective varieties. A necessary
ingredient in this discussion is the homogeneous polynomial.

Definition 4.1. A polynomial p(x) ∈ Pn with a support A, such that |α|
is equal to the total degree of the polynomial for each α ∈ A, is called a
homogeneous polynomial.

A nonhomogeneous polynomial can easily be made homogeneous by introducing
an additional variable x0. The homogenization ph(x̃) of a polynomial p(x) ∈
Pn
d is the polynomial obtained by multiplying each term (i.e., each monomial)

of p(x) with a power of x0 so that its total degree becomes d. The vector space
of all homogeneous polynomials in n+1 variables and of degree d is denoted by
P̃n+1
d and its dimension is the same as Pn

d . To make clear when we also consider
the additional variable x0, we make a distinction between x = (x1, . . . , xn) and
x̃ = (x0, x1, . . . , xn).

Example 4.1. Consider two polynomials

p1(x) = x21 + 2x1x2 + 3x22 (4.7)

and
p2(x) = x2 + x21 − x31. (4.8)

The first polynomial p1(x) is a homogeneous polynomial, while the second
polynomial p2(x) is nonhomogeneous, because the monomials have different
total degrees. However, the second polynomial can be made homogeneous
by introducing the additional variable x0:

ph2 (x̃) = x20x2 + x0x
2
1 − x31. (4.9)

Moreover, dehomogenizing ph2 (x̃) by setting x0 = 1 results again in the orig-
inal polynomial p2(x).
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In order to describe solution sets of systems of multivariate homogeneous
polynomial equations, the projective space needs to be introduced [65].

Definition 4.2. The n-dimensional projective space Pn is the set of equiva-
lence classes on Cn+1 \ {0}. Each non-zero (n+1)-tuple ã defines a point in
Pn with homogeneous coordinates ã.

The above-mentioned equivalence relation ∼ on the non-zero points of Cn+1 is
defined by setting

(x′0, x
′
1, . . . , x

′
n) ∼ (x0, x1, . . . , xn) (4.10)

if there is a non-zero scalar δ ∈ C such that

(x′0, x
′
1, . . . , x

′
n) = (δx0, δx1, . . . , δxn). (4.11)

The origin 0 ∈ Cn+1 is not a point in the projective space Pn, because of the
equivalence relation ∼ this point would be associated with an infinite number
of projective points. The affine space Cn, however, can be retrieved as a “slice”
of the projective space:

Cn = {(1, x1, . . . , xn) ∈ Pn}. (4.12)

This means that given a projective point ã = (a0, a1, . . . , an) with a0 6= 0, its
affine counterpart is

(
1, a1

a0
, . . . , an

a0

)
. The projective points for which a0 = 0

are called points at infinity.
Just like affine varieties are subsets of the affine space Cn given by poly-

nomials in Pn, we can define projective varieties as subsets in the projective
space Pn given by homogeneous polynomials in P̃n+1.

Definition 4.3. If ph1 (x̃), . . . , phs (x̃) are homogeneous polynomials in P̃n+1,
then it is possible to define the set

V
(
ph1 (x̃), . . . , p

h
s (x̃)

)
=
{
ã ∈ Pn : phi (ã) = 0 for all 1 ≤ i ≤ s

}
. (4.13)

The set V
(
ph1 (x̃), . . . , p

h
s (x̃)

)
is called the projective variety defined by the

polynomials ph1 (x̃), . . . , phs (x̃).

We would like to also generalize the definition of an ideal to the projective
setting. However, being homogeneous is not preserved under the sum operation
in P̃n+1 [65]. If we sum homogeneous polynomials of different total degrees, the
sum will never be homogeneous. The ideal I generated by these homogeneous
polynomials ph1 (x̃), . . . , phs (x̃) contains nonhomogeneous polynomials. Never-
theless, each element of this I vanishes on all homogeneous coordinates of the
variety V

(
ph1 (x̃), . . . , p

h
s (x̃)

)
defined by the original homogeneous polynomials.

This builds up the following definition for a homogeneous ideal:
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Definition 4.4. An ideal I ⊂ P̃n+1 is said to be a homogeneous ideal if
for each p(x̃) ∈ I, the homogeneous components of p(x̃) are in I as well.

Unfortunately, most ideals do not have this property and are not homogeneous,
but the ideal I =

〈
ph1 (x̃), . . . , p

h
s (x̃)

〉
generated by the homogeneous polynomi-

als ph1 (x̃), . . . , phs (x̃) does [65]!

4.2.2 Homogeneous Macaulay matrix
The construction of the Macaulay matrix in Definition 2.11 can also be inter-
preted as the Macaulay matrix of the corresponding homogenized polynomi-
als.

Definition 4.5. Consider the system of homogeneous multivariate polyno-
mial equations with polynomials phi (x̃) ∈ P̃n+1, for i = 1, . . . , s, which
serve as the seed equations. Let the total degree of every polynomial phi (x̃)
be denoted by di. The homogeneous Macaulay matrix of degree d,
Md ∈ Cpd×qd , contains the coefficients of the seed equations and the equa-
tions generated by the FSR with all monomials of total degree dri = d − di
in the variables x0, x1, . . . , xn, i.e.,

Mh
d =

4

6

6

6

5

{
x̃α̃1

}
ph1 (x)

...{
x̃α̃s

}
phs (x)

<

>

>

>

=

, (4.14)

where v·w is the (stacked) vector representation of the polynomials (Defini-
tion 2.5).

This adaptation is possible because changing to homogeneous coordinates is
nothing more than a relabelling of the rows and columns of the Macaulay
matrix, its coefficients/elements remain the same.

Proposition 4.1. The Macaulay matrix M of degree d for the system of
multivariate polynomials p1(x), . . . , ps(x) is identical to the homogeneous
Macaulay matrix of degree d for the system of homogeneous polynomials
ph1 (x̃), . . . , p

h
s (x̃), obtained after homogenization, i.e.,

Mh
d = Md. (4.15)

We continue in this chapter with the homogeneous interpretation of the Macaulay
matrix and drop the superscript.

Example 4.2. Let us homogenize the polynomials in (2.35), yielding{
ph1 (x̃) = x21 + x22 − 6x1x0 + 7x20 = 0,

ph2 (x̃) = x1 − x2 − 3x0 = 0.
(4.16)
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The construction of the Macaulay matrix give us the same matrix as in (2.40),
but with a different labelling of the rows and columns.



x3
0 x2

0x1 x2
0x2 x0x

2
1 x0x1x2 x0x

2
2 x3

1 x2
1x2 x1x

2
2 x3

2

x0 7 −6 0 1 0 1 0 0 0 0
x1 0 7 0 −6 0 0 1 0 1 0
x2 0 0 7 0 −6 0 0 1 0 1
x2
0 −3 1 −1 0 0 0 0 0 0 0

x0x1 0 −3 0 1 −1 0 0 0 0 0
x0x2 0 0 −3 0 1 −1 0 0 0 0

x2
1 0 0 0 −3 0 0 1 −1 0 0

x1x2 0 0 0 0 −3 0 0 1 −1 0
x2
2 0 0 0 0 0 −3 0 0 1 −1


.

4.3 Row space interpretation
Consider a system of polynomials p1(x), . . . , ps(x) ∈ Pn and the Macaulay
matrix Md of degree d generated by these polynomials. Every row of Md

corresponds to a polynomial xαpi(x) of total degree ≤ d. The row space
R(M) contains all linear combinations of rows with maximum total degree
equal to d, hence all the multivariate polynomials{

s∑
i=0

hi(x)pi(x) : hi(x) ∈ Pn
d−di

}
. (4.17)

If we recall (2.26), then a polynomial ideal is defined as the set

〈p1(x), . . . , ps(x)〉 =

{
s∑

i=0

hi(x)pi(x) : hi(x) ∈ Pn

}
. (4.18)

So, it is now very tempting to say that

R(M) = 〈p1(x), . . . , ps(x)〉 ∩ Pn
d , 〈p1(x), . . . , ps(x)〉d, (4.19)

or in words: the row space of the Macaulay matrix contains all the polynomials
of the ideal 〈p1(x), . . . , ps(x)〉 from degree 0 up to d. However, this is not
necessarily true. The row space does not, in general, contain all polynomials of
degree d that can be written as a consequence of the original polynomials [24].

Example 4.3 (taken from [24]). Consider the following system of multi-
variate polynomial equations:{

p1(x) = x2 + 2x+ 1 = 0,

p2(x) = x2 + x+ 1 = 0.
(4.20)
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It follows that 1 ∈ 〈p1(x), p2(x)〉, because

(−1− x)p1(x) + (2 + x)p2(x) = 1. (4.21)

However, 1 /∈ R(M2), since
[
1 0 0

]
is not a vector in the row space of

M2, i.e.,

M2 =

[
1 2 1
1 1 1

]
. (4.22)

In fact, (4.21) tells us that 1 ∈ R(M3):

M3 =


1 2 1 0
0 1 2 1
1 1 1 0
0 1 1 1

. (4.23)

Deciding whether a given multivariate polynomial lies in the ideal generated
by some polynomials is called the ideal membership problem. A numerical
algorithm to check this via the Macaulay matrix is presented in [26].

As the previous counter example shows, the reason that not all polynomials
of degree d lie in the row space of the Macaulay matrix Md of degree d is
because it is possible that a polynomial combination of degree higher than
d is required. However, when we consider only homogeneous polynomials of
degree d, we can interpret the row space properly. Given a set of (possibly
nonhomogenous) polynomials p1(x), . . . , ps(x), we can interpret the row space
as the vector space

R(Md) =

{
s∑

i=1

hi(x̃)p
h
i (x̃) : hi(x̃) ∈ P̃n+1

d−di

}
, (4.24)

where phi (x̃) denotes the homogenization of pi(x) and the polynomials hi(x̃)
are also homogeneous. The homogeneity of the homogeneous ideal guarantees
that all homogeneous polynomials of degree d are contained in the R(Md),
which corresponds to

R(Md) =
〈
ph1 (x̃), . . . , p

h
s (x̃)

〉
d
. (4.25)

Then, an important consequence is that

dim
(〈
ph1 (x̃), . . . , p

h
s (x̃)

〉
d

)
= rd. (4.26)

When considering a matrix, the (row) rank of the matrix is often smaller
than the number of rows. What makes that rd ≤ pd for the Macaulay ma-
trix? This means that there are linearly dependent rows in the matrix. The
occurrence of linearly dependent rows is linked to polynomial combinations of
polynomials equal to zero, i.e.,

s∑
i=1

hi(x̃)p
h
i (x̃) = 0, (4.27)
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or, after dehomogenizing the polynomials,
s∑

i=1

hi(x)pi(x) = 0. (4.28)

A polynomial combination as in (4.28) is called a syzygy1. It is possible to
identify with each syzygy a linearly dependent row of the Macaulay matrix.
The linear dependence of this particular row is with respect to the other rows
of the Macaulay matrix. An important observation is that

xβ
s∑

i=1

hi(x)pi(x) = 0, (4.29)

which means that all monomial multiples of a syzygy will also be a syzygy
and that the corresponding rows in the Macaulay matrix will also be linearly
dependent. We call (4.28) a standard syzygy, and the monomial multiples (4.29)
are called derived syzygies. It can be shown that the number of standard
syzygies is finite, this is linked with Hilbert’s basis theorem [24, 66]. From linear
algebra perspective this means that a standard syzygy, which corresponds to
a linear combination of rows, generates more linear combinations of rows for
higher degrees, which results in linearly dependent rows associated with the
derived syzygies.

Example 4.4. Let us consider the system of multivariate polynomials
p1(x) = −3x2 + 6x1x2 − 1x22 + x21x2 − 3x1x

2
2 + x32 = 0,

p2(x) = 1 + 2x1 − 2x2 + x21 +−2x1x2 + x22 = 0,

p3(x) = −4x2 + x22 = 0.

(4.30)

The corresponding Macaulay matrix of degree d = 3 is equal to



x3
0 x2

0x1 x2
0x2 x0x

2
1 x0x1x2 x0x

2
2 x3

1 x2
1x2 x1x

2
2 x3

2

1(x) 0 0 −3 0 6 −1 0 1 −3 1
x0(x) 1 2 −2 1 −2 1 0 0 0 0
x1(x) 0 1 0 2 −2 0 1 −2 1 0
x2(x) 0 0 1 0 2 −2 0 1 −2 1
x0(x) 0 0 −4 0 0 1 0 0 0 0
x1(x) 0 0 0 0 −4 0 0 0 1 0
x2(x) 0 0 0 0 0 −4 0 0 0 1


, (4.31)

where we notice that the 6th row is a linear combination of the 1st, 4th, and
5th row. This corresponds to the polynomial combination

(x0 − x1)p3(x) + x2p2(x)− p1(x) = 0, (4.32)

1The Greek word συζυγια (syzygy) refers to an alignment of celestial bodies. Cayley
introduced the word in the field of mathematics, to denote linear relations between the minors
of a matrix. The words was later used by Hilbert in 1890 for polynomials: the polynomials
are thought to be in syzygy with each other, so that their polynomial combination is equal
to zero.
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which leads evidently to the standard syzygy

(1− x1)p3(x) + x2p2(x)− p1(x) = 0, (4.33)

Unsurprisingly, derived syzygies, like

x21((1− x1)p3(x) + x2p2(x)− p1(x)) = 0, (4.34)

also generate linearly dependent rows in (homogeneous) Macaulay matrices
of higher degrees.

4.4 Left null space interpretation
We can learn more about these syzygies by looking at the left null space of the
(homogeneous) Macaulay matrix. The left null space gives us more information
about the coefficients in these polynomial combinations. Remember that the
left null space of the Macaulay matrix Md is the vector space

L(Md) =
{
h ∈ Cpd×1 : hTMd = 0

}
. (4.35)

The multiplications hTMd are equivalent with

s∑
i=1

hi(x̃)p
h
i (x̃) = 0, (4.36)

where the vector h ∈ L(Md) contains the coefficients of all the polynomials
hi(x̃) in the linear combination (4.36).

Example 4.5. The polynomial combination (4.32) is equivalent with

−p1(x) + x2p2(x) + x0p3(x)− x1p3(x) = 0, (4.37)

which corresponds with a vector in the left null space

h =
[
−1 0 0 1 1 −1 0

]T
. (4.38)

This brings us to the interpretation of the dimension ld of the left null
space: it counts the total number of syzygies that occur in the row space.
After identifying the syzygies in the row space of the (homogeneous) Macaulay
matrix, by determining the linearly dependent rows, it is possible to write down
an expression for the dimension ld of the left null space [24]. Indeed, suppose
that we have identified a linearly dependent row in the Macaulay matrix with
respect to all the rows above it, this linear dependence expresses a certain
syzygy (4.28) and introduces a term to ld.
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Lemma 4.1 (Lemma 3.1 from [24]). If a standard syzygy has a total
degree dl, then it introduces a term(

d− dl + n

n

)
(4.39)

to the dimension ld of the left null space of the (homogeneous) Macaulay
matrix.

Proof. This follows from x
βj

j

∑s
i=1 hi(x)pi(x) = 0 and the fact that the total

number of monomials xβj

j at a degree d ≥ dl is given by (4.39).

Unfortunately, standard syzygies of the same set (i.e., that consider the
same polynomials) count some linearly dependent rows more than once, as the
next example illustrates.

Example 4.6 (taken from [24]). Consider the following system of multi-
variate polynomial equations:

p1(x) = x21x
2
2 + x3 = 0,

p2(x) = x1x2 − 1 = 0,

p3(x) = x21 + x3 = 0.

(4.40)

The first standard syzygy can be found in the rows of the corresponding
(homogeneous) Macaulay matrix of degree d = 4 and corresponds to the row

x1x2p
h
3 (x̃)→ x1x2p3(x). (4.41)

The remaining standard syzygies are all found for degree d = 6 and corre-
spond to the rows

x31x2p
h
2 (x̃)→ x31x2p2(x), (4.42)

x21x
2
2p

h
2 (x̃)→ x21x

2
2p2(x), (4.43)

x1x
2
2x3p

h
2 (x̃)→ x1x

2
2x3p2(x). (4.44)

The first group of standard syzygies, {x1x2p3(x)}, has only one element and
describes a syzygy of degree 4. It introduces a term(

d− 4 + 3

3

)
(4.45)

to the dimension ld of the left null space. Moreover, the second group of
three standard syzygies,

{
x31x2p2(x), x

2
1x

2
2p2(x), x1x

2
2x3p2(x)

}
, introduces

three times the term (
d− 6 + 3

3

)
. (4.46)
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to ld. It is now tempting to sum both contributions in ld, but taking three
times the binomial coefficient in (4.46) counts too many contributions. Take
for example the standard syzygies corresponding with the rows x31x2ph2 (x̃)
and x21x

2
2p

h
2 (x̃). Their least common multiple is x31x22ph2 (x̃), which means

that this row is counted twice if we take (4.46) three times.

One notices that each of these groups can be analyzed separately, because they
involve different polynomials. The derived syzygies can not involve more poly-
nomials phi (x̃) than in the standard syzygy, so there is no interference between
rows of different groups possible. Via the inclusion-exclusion principle, Batse-
lier et al. [24] have derived an algorithm that determines the expression for ld
correctly.

Theorem 4.3 (Inclusion-exclusion principle). Let A1, . . . , An be a col-
lection of finite sets, with |Ai| the cardinality of Ai. Then∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k+1

 ∑
i1≤...≤ik

|Ai1 ∩ · · · ∩Aik |

. (4.47)

Proof. A proof of this theorem can be found in [65, p. 454].

Applying this inclusion-exclusion principle on the standard syzygies removes
the derived syzygies that are counted more than once and results in a correct
expression for ld [24].

Example 4.6 (continuing from p. 156). For (4.40), the sets A1, A2 and
A3 are the monomial multiples of x31x2p2(x), x21x22p2(x), and x1x

2
2x3p2(x).

Their cardinality is given by (4.46), the cardinality of their intersections
correspond to

A1 ∩A2 =

(
d− 7 + 3

3

)
, (4.48)

A1 ∩A3 =

(
d− 8 + 3

3

)
, (4.49)

A2 ∩A3 =

(
d− 7 + 3

3

)
, (4.50)

A1 ∩A2 ∩A3 =

(
d− 8 + 3

3

)
, (4.51)

which uses the same formula as (4.39), but with the degree equal to the degree
of the least common multiple of the involved syzygies. A correct expression
for ld can now be found as

ld =

(
d− 4 + 3

3

)
+ 3

(
d− 6 + 3

3

)
− 2

(
d− 7 + 3

3

)
−
(
d− 8 + 3

3

)
+

(
d− 8 + 3

3

) (4.52)
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=

(
d− 4 + 3

3

)
+ 3

(
d− 6 + 3

3

)
− 2

(
d− 7 + 3

3

)
=

1

3
d3 − 2d2 +

2

3
d+ 9 (d ≥ 4).

Once ld is known for all degrees d, the rank rd and nullity nd of the Macaulay
matrix are also fully determined, via (4.5) and (4.6). An important consequence
of the dimension of the left null space is the degree of regularity d∗.

Definition 4.6. The minimal degree d∗ for which the dimension ld can be
computed correctly via the number of obtained syzygies is called the degree
of regularity.

The degree of regularity (sometimes called the Hilbert regularity) is of vital
importance when using the right null space or column space to solve systems
of multivariate polynomial equations. From the rank-nullity theorem of Md

(Theorem 4.2), it follows that

nd = qd − rd
= dim P̃n+1

d − dim
〈
ph1 (x̃), . . . , p

h
s (x̃)

〉
d

= dim P̃n+1
d /

〈
ph1 (x̃), . . . , p

h
s (x̃)

〉
d
.

(4.53)

When d∗ is reached, the nullity nd of the Macaulay matrix corresponds to the
projective Hilbert polynomial, meaning that it describes the dimension of the
projective variety [24].

Definition 4.7. The polynomial

nd = HP(d) = dim P̃n+1
d /

〈
ph1 (x̃), . . . , p

h
s (x̃)

〉
d
, ∀d ≥ d∗ (4.54)

is called the projective Hilbert polynomial. The degree of HP(d) equals
the dimension of the projective variety [65, p. 493].

This leads to the following theorem in the zero-dimensional situation:

Theorem 4.4. Consider a homogeneous ideal
〈
ph1 (x̃), . . . , p

h
s (x̃)

〉
d

with ex-
actly mb isolated projective common roots (counting multiplicities) and de-
gree of regularity d∗. We have that

nd = mb, ∀d ≥ d∗. (4.55)

Proof. This follows from (4.53) and Definition 4.6.
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Notice that, for s = n and a zero-dimensional ideal, then nd = mb is given by
Bézout’s theorem when d ≥ d∗.

The number of standard syzygies is finite [24]. This finiteness is intimately
linked with the occurrence of a Gröbner basis in the row space of the Macaulay
matrix [26]: the reduction to zero of every S-polynomial2 of a pair of polyno-
mials in the Gröbner basis provides one standard syzygy. This implies that it
is required to construct a Macaulay matrix Md for a degree which contains all
these S-polynomials. So, a stop criterion is needed to be able to decide whether
we have found all these S-polynomials or syzygies. Lazard [154] showed that,
in the zero-dimensional case, the maximal degree of a reduced Gröbner basis
is at most (

n∑
i=1

di

)
+ d0 − n+ 1, (4.56)

with d0 = 1 when n = s. This provides an upper bound on the degree at
which all standard syzygies can be found. However, in order to find d∗ via the
standard syzygies, it is required to construct a Macaulay matrix for a degree
larger than d∗. Macaulay [159] showed that it is possible to determine whether
a homogeneous polynomial system has a nontrivial common root by computing
the determinant of a submatrix of Md for d = (

∑n
i=1 di)− n+ 1. This results

in the maximal degree to check for d∗ [24], which is given by(
n∑

i=1

di

)
+ 1. (4.57)

In practice, it may not be useful to use the left null space to determine d∗,
but one can directly monitor the nullity of the right null space instead. Note
that Batselier et al. [24] have proposed two numerical algorithms to determine
this d∗, taking into account possible cancellations of the large combinatorial
terms involved in determining ld.

4.5 Right null space interpretation
In this section, we show how the projective common roots of a system of multi-
variate polynomials are connected to the right null space of the (homogeneous)
Macaulay matrix generated by these polynomials. The goal of this section is
to show that the matrices obtained via the shift-invariance approach of Chap-
ter 2 are related to the multiplication matrices used in traditional normal form
methods.

It is a classic result that for a polynomial system p1(x), . . . , ps(x) with a
finite number of affine common roots (i.e., an affine zero-dimensional variety),
the quotient ring R[I] = Pn/〈p1(x), . . . , ps(x)〉 is a finite-dimensional vector
space [21, 66, 230]. Through the multiplication structure of R[I], it is possible

2An essential ingredient in Buchberger’s algorithm to compute a Gröbner basis is the S-
polynomial. It name comes from “substraction” or “syzygy” polynomial and it is used to
eliminate leading terms from a system of polynomials. Its mathematical definition is given
in Definition A.10.
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to retrieve the common roots of the multivariate polynomials. This multipli-
cation structure can also be described via the right null space of the Macaulay
matrix. Therefore, the solution algorithm in Section 2.4 can be interpreted,
in a certain sense, as an extension/adaptation of the traditional eigenvalue-
eigenvector approach described by [229] to solve systems of multivariate poly-
nomial equations.

First, we show how the multiplicative structure of the quotient space leads
to a link between the affine common roots of a zero-dimensional system of
multivariate polynomials and the eigenvalues of a matrix (Section 4.5.1). Next,
we show how to set up similar “projective multiplication matrices” via the right
null space of the Macaulay matrix and interpret the associated row selection
procedure (Section 4.5.2).

4.5.1 Affine solutions and multiplication maps
Let us first consider the case where the ideal I = 〈p1(x), . . . , ps(x)〉 ⊂ Pn

describes an affine zero-dimensional variety V(I) ⊂ Cn. The set

[p]I = {q ∈ Pn : p(x)− q(x) ∈ I} (4.58)

is the set of all remainders of p(x) ∈ Pn modulo the ideal I. It is called
the residue class of p(x) modulo I. Every polynomial p(x) defines such a
residue class and we call p(x) a representative of [p]I . The set R[I] is the set
of all residue classes modulo I and is a vector space over C, since the scalar
multiplication and addition operations are well-defined [230]. Moreover, since
the multiplication is commutative, R[I] is a commutative ring and is called
often the quotient ring, denoted by Pn/〈p1(x), . . . , ps(x)〉.

Next, observe that, given a polynomial g(x), we can use multiplication to
define a linear map Ag from R[I] to itself:

Definition 4.8. For any g(x) ∈ Pn, we define the multiplication map
representing the multiplication with g(x) as the linear map

Ag : R[I]→R[I] : [f ]I 7→ [f ]I [g]I = [fg]I . (4.59)

SinceR[I] is a finite-dimensional vector space over C, we can represent the mul-
tiplication map by its matrix with respect to a basis B =

{
[b1]I , . . . , [bmb

]I
}

.
This mb ×mb matrix, where the number of projective solutions mb is equal to
the dimension of R[I], is called the multiplication matrix and denoted by Ag.
Its eigenvalues and eigenvectors have an important property:

Theorem 4.5 (Eigenvalue-eigenvector theorem). Let I ⊂ Pn be an
ideal with zero-dimensional variety V(I) = (a1, . . . ,amb

) and Ag the multi-
plication matrix for a multiplication map Ag with respect to a given basis
B =

{
[b1]I , . . . , [bmb

]I
}

. The eigenvalues of Ag are the evaluations of g(x)
in the mb points of the zero-dimensional variety and the row vector[

b1(aj) · · · bmb
(aj)

]
(4.60)
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lies in the left eigenspace for the eigenvalue g(aj), j = 1, . . . ,mb.

Proof. A proof of this theorem can be found in [66, Chapter 2].

This means that, if the coordinate functions x1, . . . , xn are among the basis
elements, then the coordinates of the solutions can be read of directly from the
left eigenvectors. Theorem 4.5 implies that the solutions of a system of multi-
variate polynomial equations can be retrieved from the multiplication structure
of the quotient space by computing the multiplication matrices Ax1

, . . . ,Axn

in the variables x1, . . . , xn and computing their eigenvalues. Note that the ma-
trix Axi

and Axj
, for any i and j, commute since xixj = xjxi. As a result,

the matrices Axi and Axj have common eigenspaces. Thus, the traditional
procedure to find all affine common roots can be summarized as:

1. Compute the multiplication matrices Ax1
, . . . ,Axn

for a particular basis
B of the quotient space R[I].

2. Perform a simultaneous triangularization of Ax1
, . . . ,Axn

to retrieve the
common roots of the system.

Where the second step can be tackled via standard algorithms from numerical
linear algebra (for example via Schur decompositions), the first step requires the
construction of these multiplication matrices. This involves computing so-called
normal forms, which map the obtained polynomials after multiplication onto
the basis along the ideal; hence, the name of these methods. Computing normal
forms can be done using symbolic techniques or via linear algebra methods.
We now present an approach via the right null space of the Macaulay matrix,
while Appendix A.5.2 considers the more “traditional” approach.

4.5.2 Projective solutions and the dual vector space
The attentive readers may see a lot of similarities between the above-mentioned
approach and the null space based root-finding algorithm that we have devel-
oped in Section 2.4. Indeed, as soon as d ≥ d∗ and the number of projective
common roots is finite, it is possible to obtain the homogeneous multiplica-
tion matrices via the right null space of the Macaulay matrix [24]. Let us
consider now a homogeneous ideal Id =

〈
ph1 (x̃), . . . , p

h
s (x̃)

〉
d

that describes
a projective zero-dimensional variety3 V(I). The quotient space is given by
R[I]d = P̃n+1

d /Id.
Theorem 4.5 can also be phrased in the projective space for homogeneous

multiplication maps [242]:

3Note that we consider the variety together with information about the multiplicity ’truc-
ture of each point in that variety as a solution for the generating polynomials. This is related
to Footnote 10 of Chapter 2 about schemes.
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Definition 4.9. For any g(x) ∈ Pn
d′ , we define the homogeneous multi-

plication map representing the multiplication with g(x) as the linear map

Ag : R[I]d →R[I]d+d′ : [f ]I 7→ [f ]Id
[g]Id′

= [fg]Id+d′
. (4.61)

Since R[I]d is a finite-dimensional vector space over C, we can represent the
multiplication map after fixing a basis B =

{
[b1]Id

, . . . , [bmb
]Id

}
by its matrix.

This mb×mb matrix is called the multiplication matrix and is denoted by Ag.
Its eigenvalues and eigenvectors again have an important property:

Theorem 4.6 (Projective eigenvalue-eigenvector theorem). Let Id ⊂
P̃n
d , with d ≥ d∗ be a homogeneous ideal with zero-dimensional projective

variety V(I) = (ã1, . . . , ãmb
) ⊂ Pn and Ag/h the homogeneous multiplica-

tion matrix for a homogeneous multiplication map Ag/h = A−1
h ◦ Ag with

respect to a given basis B =
{
[b1]Id

, . . . , [bmb
]Id

}
, where for the homoge-

neous polynomial h(x̃), it holds that h(ãj) 6= 0, for j = 1, . . . ,mb. The
eigenvalues of Ag/h are the evaluations of g(x̃)/h(x̃) in the mb points of the
zero-dimensional projective variety and the row vector[

b1(ãj) · · · bmb
(ãj)

]
(4.62)

lies in the left eigenspace for the eigenvalue g(ã)/h(ã), j = 1, . . . ,mb.

Proof. A proof of this theorem can be found in [242].

4.5.2.1 Shift-invariance structure of the right null space

As soon as d ≥ d∗ and the number of projective common roots is finite, a
basis matrix of the right null space can be written explicitly in terms of these
projective common roots [24]. This requires the notion of the dual vector
space. The dual space allows to describe the relation between the multiplication
structure and the composition of the multivariate Vandermonde basis matrix
of the right null space, by means of linear combinations of partial derivatives of
the monomial vectors. We denote the dual vector space of the set of projective
multivariate monomials C̃n+1

d by C̃n+1′

d

Definition 4.10. If j ∈ Nn
0 and ã ∈ Pn, then the differential functional

∂j(·)|a ∈ C̃
n+1′

d is defined by

∂j(·)|a =
1

j1! · · · jn!
∂j1+···+jn(·)
∂xj11 . . . ∂xjnn

∣∣∣∣∣
ã

(4.63)

where (·)|ã stands for the evaluation of x̃ in an affine point ã.
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A basis of the dual vector space of the row space R′(Md) can be given by
differential functionals evaluated in the projective common roots. Being ele-
ments of R′(Md), these differential functionals can be represented as column
vectors. Applying the differential functionals to the elements of the row space
is simply the matrix vector multiplication of the Macaulay matrix with these
functionals. A basis for the annihilator of the row space, which corresponds to
the right null space, consist of the differential functionals evaluated into each
projective common roots, taking into account multiplicities. We call this basis
the canonical right null space of Md, which can be seen as a generalization of
the multivariate Vandermonde basis that we have used in Section 2.4.1.1.

Definition 4.11. Consider the set of homogeneous polynomials
ph1 (x̃), . . . , p

h
s (x̃) with a zero-dimensional projective solution set. Let

m1, . . .mt be the multiplicities of the t different projective common roots
x̃|(j), such that sum mb = m1 + · · · + mt is equal to the Bézout number.
Then, for all d ≥ d∗, there exists a matrix V d of mb linearly independent
columns, so that

MdV d = 0. (4.64)

Furthermore, V d can be partitioned into

V d =
[
V

(1)
d · · · V

(t)
d

]
, (4.65)

such that each V
(j)
d consists of mj linear combinations of differential func-

tionals. We call this basis matrix of the right null space the canonical right
null space of the Macaulay matrix.

Note that the multiplicity structure of a certain common root is not unique.
Finding that multiplicity structure is an active area of research and goes way
beyond the scope of this chapter [68, 109, 284]. We suppose that we know this
structure for now and eliminate its need later on, similar to the approach taken
in Chapter 2.

Given the matrix V d, we can describe the monomial multiplicative structure
of P̃n+1

d as

Sxi,xj
V dDxi

= Sxj ,xi
V dDxj

, (4.66)

where the matrices Sxi,xj
and Sxj ,xi

select rows from the canonical right null
space V d. Since the multiplication with monomials is commutative, the mul-
tiplication matrices Dxi and Dxj must commute. This corresponds to com-
puting the homogeneous multiplication matrices for a monomial basis (selected
via Sxi,xj

and Sxj ,xi
) of R[I]d.

Example 4.7. Let us consider a system that has only one projective com-
mon root and suppose that d◦ = 2. We can write in this situation the
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multiplication property as

Sx1,x0



x20
∣∣
(1)

x0x1|(1)
x0x2|(1)
x21
∣∣
(1)

x1x2|(1)
x22
∣∣
(1)


︸ ︷︷ ︸

∂00(v)|(1)

x1|(1) = Sx0,x1



x20
∣∣
(1)

x0x1|(1)
x0x2|(1)
x21
∣∣
(1)

x1x2|(1)
x22
∣∣
(1)


︸ ︷︷ ︸

∂00(v)|(1)

x0|(1), (4.67)

where Sx1,x0 and Sx0,x1 select the correct rows for the equality to hold. Of
course, when the system has more than one projective common root, the
single shift is replaced with multiple shifts in the matrices Dxi

and Dxj
.

The canonical right null space, for two simple projective common roots, cor-
responds to

V =
[
∂00(v)|(1) ∂00(v)|(2)

]
, (4.68)

resulting in

Sx1,x0
V d

[
x1|(1) 0

0 x1|(2)

]
︸ ︷︷ ︸

Dx1

= Sx0,x1
V d

[
x0|(1) 0

0 x0|(2)

]
︸ ︷︷ ︸

Dx0

. (4.69)

When the second projective common root is the same as the first one, i.e., a
solution with multiplicity equal to two, the canonical right null space contains
two differential functionals evaluated in the same solution, for example,

V =
[
∂00(v)|(1) ∂10(v)|(1)

]
, (4.70)

which leads to upper-triangular matrices Dxi and Dxj in

Sx1,x0
V d

[
x1|(1) ×
0 x1|(1)

]
︸ ︷︷ ︸

Dx1

. = Sx0,x1
V d

[
x0|(1) ×
0 x0|(1)

]
︸ ︷︷ ︸

Dx0

. (4.71)

When we know that the common roots are affine, we can retrieve the shift
structure from (2.53) by setting x0 = 1, resulting in

S1V d

[
x1|(1) ×
0 x1|(1)

]
= Sx1

V dI. (4.72)

As shown in Section 2.4.1.2, we can replace the dependency on V d by a
numerical basis matrix of the right null space Zd:(

Sxi,xj
Zd

)
TDxi

=
(
Sxj ,xi

Zd

)
TDxj

, (4.73)

Let Jxi,xj
= P−1Dxi

D−1
xj

P be the Jordan normal form of Dxi
D−1

xj
, then we
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obtain (
Sxi,xj

Zd

)
TPJxi,xj

=
(
Sxj ,xi

Zd

)
TP . (4.74)

When there are only affine solutions, Dx0 is always diagonalizable. Solutions
at infinity require a more careful choice of monomials to shift with, or must
be deflated first (Theorem 2.3). This multiplication corresponds with the ap-
proach we have taken in Section 2.4. Of course, many details are hidden in the
numerical implementation of this idea, many of them are covered in Section 2.4.

4.5.2.2 Explanation of the row selections

One question remains unanswered: “How do we choose a basis for the quotient
space R[I]d?” Or similarly: “Which rows does the row selection matrix S1

need to pick?” There are several choices possible to create an invertible matrix
(S1Zd). Typically, one chooses the basis elements to be monomials. This could
be determined as the standard monomials from a Gröbner basis computation
or the linearly independent rows of the basis matrix of the null space [26].

In a numerical setting, however, it is better to use border bases or more
general bases to avoid amplifications of rounding errors [243]. Recently, Telen
and Van Barel [244] have presented an adaptive selection of the basis elements
via numerical linear algebra techniques, like the QR decomposition with op-
timal column pivoting. Note that in our numerical implementation, we do
not select some basis elements, but take all monomials up to a certain degree
(cf., Remark 2.5). This is numerically more robust than selecting only the rows
that correspond to the standard monomials. The advantages of this selection
is clearly visible in Example 2.20.

4.6 Column space interpretation
In Section 2.5, we have shown that it is also possible to solve a system of
multivariate polynomial equations via the column space of the (homogeneous)
Macaulay matrix. The fact that there are equivalent eigenvalue problems in
the column space suggests that there must be also be an interpretation of this
subspace in terms of the projective common roots. While this novel solution
approach gives an ubiquitous use to that fundamental subspace, it is at this
moment still unclear how to interpret it in the language of algebraic geometry.

Furthermore, the columns of the Macaulay matrix are labeled by the mono-
mials in Cnd or C̃n+1

d . The complementarity between the column space and the
right null space result in a correspondence between the linearly dependent
columns from right to left in the Macaulay matrix with the linearly indepen-
dent rows from top to bottom in the right null space; hence, they correspond
also to the standard monomials. The fact that the rank counts both the num-
ber of linearly independent rows in the row space, which correspond to the
linearly independent leading monomials in that row space [26], and the lin-
early independent columns in the colum space points also at a link with the
canonical decomposition of the set of monomials for a system of multivariate
polynomials [26].
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4.7 Conclusion
It is clear from this chapter that each of the fundamental subspaces of the (ho-
mogeneous) Macaulay matrix has a purpose. Many properties/questions from
algebraic geometry hide in one of the fundamental subspaces of the Macaulay
matrix. Although a full treatment of the column space is not yet available, it
is clear that there must also be an interpretation of this subspace in terms of
the generating polynomials.

The attempt to summarize the different fundamental subspaces of the Macaulay
matrix has created three potential research avenues:

• One of the current research efforts is to investigate the properties of the
column space of the Macaulay matrix. This may yield us a better inter-
pretation of the matrix and maybe also provide with additional algorith-
mic opportunities.

• Since the right null space of the Macaulay matrix can also be interpreted
in a system theoretic language as the column space of the observability
matrix of a multidimensional descriptor system, for which the eigenvalues
of the system matrices corresponds to the common roots of the polyno-
mials of the Macaulay matrix, a full system theoretic treatment of the
subspaces of the Macaulay matrix is also very interesting.

• Furthermore, we could ask ourselves the question whether we can come
up with a similar treatment of the block Macaulay matrix in the future.
The fact that the right null space of the block Macaulay matrix can also
be interpreted as the column space of a multidimensional observability
matrix fuels the idea that this might be possible [259].
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Historical and bibliographical notes
We refer at several places in this dissertation to the eigenvalue-eigenvector ap-
proach as Stetter’s eigenvalue-eigenvector approach (sometimes also called the
Stetter–Möller approach). The fundamental relation between eigenvalues and
the quotient ring of the ideal was probably already known in the late 19th and
early 20th century, being it in the specific mathematical language used at that
point in time [230]. The fact that there were numerical tools to solve eigenvalue
problems may have been a reason why this eigenvalue approach to solve multi-
variate polynomial systems was not elaborated further upon at that time. The
eigenvalue-eigenvector theorem has been linked also to Ludwig Stickelberger,
who has formulated a theorem similar to the one presented here [64, 230]. How-
ever, his theorem has been remained concealed for a long time through history.
In the 1980s, there were new allusions by Lazard [153, 154] in the direction of
a link between eigenvalues and the common roots of polynomials, but only in
terms of the eigenvalues. Stetter [229] established a few years later the connec-
tion between the eigenvalue decomposition (eigenvalues and eigenvectors) and
multivariate polynomial system solving.
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Recursive Algorithms for
the (Block) Macaulay

Matrix

As demonstrated in the previous chapters, the construction of the (block)
Macaulay matrix typically follows an iterative approach. In order to know
whether the solution degree has been reached, i.e., whether the right null space
of the (block) Macaulay matrix in the current iteration can accommodate the
shift polynomial, it is necessary to compute a basis matrix of this right null
space in every iteration and to examine the dimension or rank structure of
that computed basis matrix. Consequently, recursively updating the numerical
basis matrix of the right null space, while exploiting the inherent structure of
the matrices involved, can induce large savings in computation time. More-
over, the process of checking the rank structure of the computed basis matrix
is again an iterative procedure: this basis matrix can be interpreted as a block
row matrix, where every degree block corresponds to one block row, and the
rank structure must be checked by adding these block rows one by one.

In this chapter, we zoom in on the development of recursive techniques
for the null space based (block) Macaulay matrix approach. We discuss the
recursive computation of a basis matrix of the null space and the recursive
rank checks. Combining of both recursive techniques leads to double recur-
sive algorithms for polynomial system solving and multiparameter eigenvalue
computing.



1

Part I
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Part II
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Part III
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Application 1

Application 2

Application 3

8

A B C D

Contributions. Firstly, we introduce recursive algorithms to update a ba-
sis matrix of the right null space of the (block) Macaulay matrix and block
row matrix. Secondly, the proposed sparse adaptations in this chapter of the
recursive algorithms to update a basis matrix of the right null space for the
(block) Macaulay matrix results in a considerable reduction of the required
memory. Finally, by combining sparse and recursive techniques, double recur-
sive algorithms are able to solve systems of multivariate polynomial equations
and multiparameter eigenvalue problems more efficiently.

Relevant articles. This chapter contains the combined content of [260, 262].
The candidate was the main author of both original articles, developed the
theoretical contributions, and implemented the accompanying code and exper-
iments. The notation is changed compared to the original text for consistency,
some sections of the original articles are (re)moved from this chapter to avoid
redundancy, and other numerical examples are added to highlight the improve-
ments over the other chapters.

Outline. After introducing the different ingredients of the double recursive
algorithms in Section 5.1, we develop in Section 5.2 a recursive algorithm to
determine a numerical basis matrix of the right null space of the block Macaulay
matrix, which reduces to an algorithm that can be used for the Macaulay
matrix, when considering coefficients instead of coefficient matrices. Section 5.3
contains sparse adaptations for updating this basis matrix. Next, in Section 5.4,
we consider a recursive algorithm to update a numerical basis matrix of the
right null space of the block row matrix, i.e., to perform recursive rank checks.
In Section 5.5, we combine the different recursive and sparse techniques of this
chapter into double recursive algorithms. Section 5.6 concludes this chapter
and contains some ideas for future research.
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5.1 Introduction
The (right1) null space and column space of the Macaulay matrix play a crucial
role when solving the generating system of multivariate polynomial equations.
In Chapter 2, we have shown how to leverage the structure of the null space
in order to retrieve the common roots of the system of polynomials: a multi-
dimensional realization problem in a basis matrix of the null space that can
accommodate the shift yields the solutions. Similarly, the null space of the
block Macaulay matrix can be used to retrieve the eigenvalues of the (rect-
angular2) multiparameter eigenvalue problem (MEP) that generate that block
Macaulay matrix, as presented in Chapter 3. The computation of a numerical
basis matrix of the null space is an important step in both null space based
solution approaches.

As demonstrated in the previous chapters, the (block) Macaulay matrix is
typically constructed in an iterative fashion, since the solution degree is not
known in advance. In order to know whether the solution degree has been
reached (i.e., degree for which the null space can accommodate the shift), the
rank structure of the basis matrix of the null space needs to be checked in every
iteration. Checking that rank structure is again an iterative procedure, which
poses two computational problems: (i) efficiently updating the basis matrix for
subsequent degrees of the (block) Macaulay matrix and (ii) efficiently checking
the rank structure of that basis matrix in every iteration. In this chapter, we
address these two computational problems via recursive3 algorithms.

Ingredient 1: null space of a (block) Macaulay matrix
The required degree of the (block) Macaulay matrix in applications depends on
the properties of its null space. Because these properties can not be deduced
in advance, we need to enlarge the (block) Macaulay matrix iteratively and
compute in every iteration a new numerical basis matrix of the null space.
Several authors have already addressed the direct null space computation of
structured matrices [142, 167], but a recursive approach that exploits, next to
the structure and sparsity, the iterative nature of these special matrices clearly
has a lot of potential. Batselier et al. [22] have developed, therefore, a recursive
algorithm to update a numerical basis matrix of the null space of the Macaulay
matrix. However, algorithms to update a basis matrix of the null space of the
block Macaulay matrix were absent in the literature until our extension in [260].
Note that these algorithms can also be used to tackle the other matrices of the
(block) Macaulay approach: the algorithms can also deal with block (banded)
Toeplitz matrices, Macaulay matrices, and (banded) Toeplitz matrices.

1In the remainder of this chapter, we no longer mention the qualification right explicitly.
We always consider the right null space, except when denoted otherwise.

2In the remainder of this chapter, we no longer mention the qualification rectangular
explicitly. We always consider rectangular problems, except when denoted otherwise.

3We do not use the term recursion in its strict computer science meaning (“an algorithm
that calls itself on smaller input values”), but see it as an algorithm that performs the same
steps on different input values (“an algorithm that uses in every iteration the same approach
on new input values”), cf., the recursive least-squares algorithm [129].
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Ingredient 2: null space of a block row matrix
The question whether the null space can accommodate the shift can only be
answered by checking its rank structure. In the case of a zero-dimensional
solution set (i.e., every solution of the problem is an isolated point in the
solution space), the nullity of the (block) Macaulay matrix reveals the total
number of solutions, both affine and at infinity. After stabilization of that
nullity (i.e., when all solutions are present in the null space), rank checks on
growing submatrices of the numerical basis matrix are required to separate the
affine solutions from the solutions at infinity. Moreover, for problems with a
positive-dimensional solution set at infinity, these rank checks are required in
every iteration, because there is no stabilization of the nullity anymore. Since
a numerical basis matrix of the null space of a (block) Macaulay matrix is
typically a dense (i.e., non-sparse) tall matrix, it can be considered as a block
row matrix, where we iterate over its subsequent (degree) blocks in order to
determine the rank structure, i.e., we check the change of the rank for every
additional degree block of the numerical basis matrix in order to know whether
the null space has a gap zone to separate the affine solutions from the solutions
at infinity (Sections 2.4.3 and 3.4.3).

The iterative construction of a block row matrix is a very active subject
in the signal processing literature: in many signal processing applications [2,
178, 179], new data vectors in the (block) rows are appended continuously. The
process of appending new (block) rows induces the iterative structure naturally.
A mature body of literature already covers the (block) row-wise updating of
the singular value decomposition [50, 179] or tracking of a subspace [2, 179,
231, 232]. In this chapter, we restrict ourselves to the particular subproblem
where we only update in every iteration a basis matrix of the null space of
the block row matrix using results from the previous iteration, which we have
presented also in [260]. The block row matrix mainly under consideration in
this chapter is the basis matrix of the null space of a (block) Macaulay matrix:
we want to iterate over the different degree blocks of that matrix to obtain
the rank structure. A recursive algorithm that takes into account the iterative
nature of the problem can be very beneficial.

Combining both ingredients in one algorithm
In this chapter, we thus address these two computational problems and propose
recursive algorithms to update an orthogonal numerical basis matrix of the null
space of the (block) Macaulay and block row matrix, using results from the
previous iteration. We extend in this chapter the algorithm of Batselier et al.
[22] to the block Macaulay matrix and develop a sparse adaptation for both the
Macaulay and block Macaulay matrix, which avoids the explicit construction of
the (block) Macaulay matrix and results in a considerable memory improvement
compared to its dense counterparts. A similar insight for the block row matrix
allows us to recursively update a basis matrix of the null space of that matrix.
The combination of the recursive or sparse technique to compute a basis matrix
of the null space of the (block) Macaulay matrix with a recursive approach to
perform the rank checks in that basis matrix of the null space leads to double
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recursive algorithms to solve systems of multivariate polynomial equations and
MEPs. The computational results are impressive: when we use the null space
based block Macaulay matrix approach to solve, for example, a linear two-
parameter eigenvalue problem, we notice that the proposed double recursive
approaches are 95–276 times faster than the standard non-recursive approach.

Motivational example. The size of the multivariate polynomial system and
MEP that result in the globally optimal parameters of the first-order autore-
gressive moving-average (ARMA) model identification problem in Chapters 2
and 3 depends on the considered number of data points. When more data
points are considered, the problems quickly grow to become untractable for
the naive (block) Macaulay matrix algorithms in the previous chapters. The
(block) Macaulay matrix algorithms clearly exhibit an iterative character-
istic; different iterations are necessary before the degree d of the (block)
Macaulay matrix reaches the solution degree d◦. For example, in order
to solve the quadratic two-parameter eigenvalue problem in (3.90), a block
Macaulay matrix of degree d = 19 is necessary. From Figure 3.4, it is clear
that computing a basis matrix of the null space and performing the neces-
sary rank checks create a bottleneck for these (block) Macaulay approaches.
However, by applying the above-mentioned ingredients, it should be possible
to solve the polynomial system in (2.2) and MEP in (3.90) much faster!

Remark 5.1. Because of the different setting (i.e., we focus more on the
computational aspects), we use a different indexing in this chapter. We use
i for the iteration index and j to iterate over the coefficients and coefficient
matrices. The former index is related to the degree of the block row and
(block) Macaulay matrix, while the latter is related to the multi-index α
or ω. For example, a block Macaulay matrix in iteration i = 0 has degree
dmax and, if the generating MEP has two parameters, then j = 1, 2, 3 corre-
spond to ω = (0, 0), (1, 0), (0, 1), since we use the graded inverse lexicographic
(GRINVLEX) ordering.

Remark 5.2. In order to construct a random matrix M ∈ Rp×q with a
specific rank r, we multiply two random matrices N ∈ Rp×r and P ∈ Rr×q,
which have by construction a rank equal to r. Throughout this chapter,
we always use Matlab’s randn function to generate normally distributed
(pseudo)random matrices.

5.2 Recursive null space computations
In this section, we study the computation of a basis matrix of the null space of
the block Macaulay matrix4, which is an essential step in the null space based

4Note that the approach presented in this section has similarities with the recursive al-
gorithm presented in [22, Algorithm 3.1] when considering the (scalar) Macaulay matrix,
although it was developed independently (Remark 5.4).
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approach to solve MEPs. In accordance to Remark 5.1, the seed matrices are
indicated by a single subscript j, i.e., Aj ∈ Ck×l (j = 1, . . . , x+y). When we are
solving MEPs via the block Macaulay matrix, these seed matrices correspond
to the coefficient matrices of that MEP, e.g.,
M(λ) =

(
A00 +A10λ1 +A01λ2 +A20λ

2
1 +A11λ1λ2 +A02λ

2
2

)
z = 0

⇓
M(λ) =

(
A1 +A2λ1 +A3λ2 +A4λ

2
1 +A5λ1λ2 +A6λ

2
2

)
z = 0.

(5.1)

We make, in the remainder of this chapter, abstraction of the monomial that a
certain coefficient matrix is associated with. The structure of a block Macaulay
matrix is visualized in Figure 5.1. It is clear that this matrix is very structured
and sparse. This structure leads to a recursive definition of the block Macaulay
matrix M i ∈ Cpi×qi in iteration i:

M i =

[
M1

i−1 M2
i−1 0

0 Xi Y i

]
, (5.2)

where the matrix Xi ∈ Cmi×si gathers all the seed matrices A1, . . . ,Ax (but
also some zero matrices) below M2

i−1 and the matrix Y i ∈ Cmi×ti contains the
remaining seed matrices Ax+1, . . . ,Ax+y (and also some zero matrices) under
the zero block. Notice that the matrices Xi and Y i depend on i, because every
iteration consists of a different number of shifts σmax. The matrices Xi and
Y i, together with the iteration i and shift σ, are annotated in Figure 5.1. The
sizes5 of Xi and Y i depend on the number of shifts σmax in that particular i:

mi = k

(
i+ n− 1

n− 1

)
=

k

(n− 1)!
in−1 +O

(
in−2

)
, (5.3)

si = l

dmax−1∑
d=0

(
i+ d+ n− 1

n− 1

)
=

l

(n− 1)!
in−1 +O

(
in−2

)
, (5.4)

ti = l

(
i+ dmax + n− 1

n− 1

)
=

l

(n− 1)!
in−1 +O

(
in−2

)
, (5.5)

where n is the number of eigenvalues of the generating MEP (i.e., the number of
variables in the block Macaulay matrix) and dmax is the degree of the generating
MEP (i.e., the highest total degree of the monomials in the MEP). The block
Macaulay matrix M i in iteration i has degree dmax + i. The number of rows
pi and columns qi with respect to i can be deduced from (3.51) and (3.52) and
grow quickly, due to the combinatorial explosion of the number of shifts:

pi = k

(
i+ n

n

)
=

k

n!
in +O

(
in−1

)
, (5.6)

qi = l

(
i+ dmax + n

n

)
=

l

n!
in +O

(
in−1

)
. (5.7)

5The notation O describes the limit behavior of the size. The “Big-Oh” notation ϕ(t) =
O(ξ(t)) has a precise meaning in mathematics. It asserts that there exists some positive
constant C such that, for all t sufficiently close to an understood limit (e.g., t → 0 or
t→∞), ϕ(t) ≤ Cξ(t) [193, 249]. The focus is typically on the highest order operations that
are involved, as they tend to dominate the overall complexity [97].
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Xi Y i

Xσ
i

Y σ
i

shift σ

i = 0

i = 1

i = 2

i = 3

i = 4

Figure 5.1. Annotated visualization of the iterative construction of a block
Macaulay matrix M4 (n = 2 and dmax = 2) of the quadratic two-parameter
eigenvalue problem in (5.1) with rectangular seed matrices Aj ∈ R3×2, for
j = 1, . . . , 6. Due to the combinatorial explosion of the number of shifts, the
block Macaulay matrix grows quickly very large. Notice that the sizes of Xi

and Y i of the block Macaulay matrix depend on i, since the maximum number
of shifts σmax changes in every iteration.

Typically, the desired iteration i◦ of the block Macaulay matrix depends on
the structure of its null space and is not known in advance. Hence, when we
want to compute a numerical basis matrix of the null space for every iteration i,
e.g., in order to determine the solutions of the generating MEP, we have to ex-
tend the block Macaulay matrix in an iterative way and recompute a numerical
basis matrix of its null space in every iteration. Clearly, a recursive algorithm
to update this numerical basis matrix poses itself useful in this type of prac-
tical situations. We sketch the problem of iteratively updating the numerical
basis matrix of the null space of the block Macaulay matrix in Algorithm 5.1,
which is similar to the outline provided in Algorithm 3.1. Algorithm 5.1 also
fits in the polynomial system solving setting when using the Macaulay matrix,
as described in Algorithm 2.1.

In the remainder of this section, we develop a recursive algorithm to deter-
mine an orthogonal numerical basis matrix Zi of the null space of the block
Macaulay matrix M i (Section 5.2.1) and determine the computational com-
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Algorithm 5.1 Iterative updating of the (block) Macaulay matrix null space
Require: p1(x), . . . , ps(x) or M(λ)

1: i← 0
2: Construct the (block) Macaulay matrix M0

3: while i < i◦ do
4: Zi ← null(M i), for example, via Algorithm 5.2
5: if structure of the null space contains the solutions then
6: i = i◦
7: else
8: i← i+ 1
9: Determine Xi and Y i

10: M i ←
[
M1

i−1 M2
i−1 0

0 Xi Y i

]
11: end if
12: end while
13: return Zi◦

plexity afterwards (Section 5.2.2). numerical examples illustrate the properties
of the standard and recursive algorithm (Section 5.2.3).

5.2.1 Recursive algorithm
Consider a block Macaulay matrix M i−1 ∈ Cpi−1×qi−1 after i − 1 iterations
and an orthogonal numerical basis matrix Zi−1 ∈ Cqi−1×ni−1 of its null space,
with nullity ni−1, such that

M i−1Zi−1 = 0. (5.8)

If we now extend M i−1 with ti zero columns, then we can write

[
M i−1 0

][Zi−1 0
0 Iti

]
= 0. (5.9)

The nullity of this extended matrix
[
M i−1 0

]
equals ni−1 + ti. If we add

the next block row of the block Macaulay matrix, i.e., we consider the block
Macaulay matrix M i, then we know that there exists an orthogonal matrix
V i ∈ C(ni−1+ti)×ni , such that

[
M1

i−1 M2
i−1 0

0 Xi Y i

]Z1
i−1 0

Z2
i−1 0
0 Iti

V i =

[
0 0

XiZ
2
i−1 Y i

]
V i = 0, (5.10)

where Zi−1 is partitioned in accordance with M i−1. The top part is simplified
by the observation that M1

i−1Z
1
i−1 + M2

i−1Z
2
i−1 = M i−1Zi−1 = 0. Hence,

from the bottom part of (5.10), it follows that[
XiZ

2
i−1 Y i

]
V i = 0, (5.11)
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Algorithm 5.2 Recursive null space algorithm for the block Macaulay matrix
Require: Zi−1, Xi, and Y i

1: W i ←XiZ
2
i−1

2: V i ← null
([
W i Y i

])
3: Zi ←

[
Zi−1V

1
i

V 2
i

]
4: return Zi

which means that the V i is a basis matrix of the null space of
[
XiZ

2
i−1 Y i

]
and [

M1
i−1 M2

i−1 0
0 Xi Y i

]
︸ ︷︷ ︸

Mi

Z1
i−1V

1
i

Z2
i−1V

1
i

V 2
i


︸ ︷︷ ︸

Zi

= 0, (5.12)

where V i is partitioned into V 1
i ∈ Cni−1×ni and V 2

i ∈ Ct×ni . Consequently,
an orthogonal numerical basis matrix Zi of M i can be computed as

Zi =

[
Zi−1 0
0 It×t

]
V i =

[
Zi−1V

1
i

V 2
i

]
. (5.13)

We summarize in Algorithm 5.2 the different steps of the entire recursive ap-
proach. An efficient implementation, of course, tries to avoid the zero blocks
and uses fast multiplications that exploit the available structure, an improve-
ment that is naturally incorporated in a sparse adaptation (Algorithm 5.5).

Remark 5.3. Algorithm 5.2 considers an iteration-wise growth of the block
Macaulay matrix and recomputes the numerical basis matrix in an iteration-
wise fashion (cf., every iteration corresponds to one degree). One notices
easily that the same idea could also work if the recursive approach is applied
in a shift-wise fashion (i.e., for every shifted block row in the block Macaulay
matrix). Moreover, in a shift-wise fashion, the zero blocks are easier to iden-
tify and avoid. The main drawback of this alternative shift-wise implemen-
tation is the fact that, for every iteration, multiple multiplications and null
space computations are necessary, which cancels the above-mentioned com-
putational advantages. Section 5.2.3.1 contains a numerical example that
compares both approaches.

Remark 5.4. Algorithm 5.2 can also be used for (scalar) Macaulay matrices
and block banded (Toeplitz) matrices:

• For the former type of matrices, the recursive computation of a basis
matrix of the null space reduces to the algorithm presented in [22,
Algorithm 3.1], when the coefficient matrices are replaced by scalar
coefficients. One slight difference is that Algorithm 5.2 avoids the zero
matrix under M1

i−1 (Figure 5.2a).
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• When the number of parameters n = 1, the block Macaulay matrix
reduces to the latter type of matrices (Figure 5.2b). Since Algorithm 5.2
does not explicitly make use of the repetitive structure in the block
Macaulay matrix (i.e., the fact that same seed matrices appear in every
block row), it can be applied to tackle both block banded Toeplitz
matrices (the matrices X and Y are the same in every iteration) and
block banded matrices without fixed seed matrices (the matrices X and
Y are different in every iteration). Example 5.6 contains a numerical
example with such block (banded) Toeplitz matrices.

5.2.2 Computational complexity
The computational complexity of both the standard and the recursive ap-
proach is analyzed in this section. We derive theoretical expressions first
(Section 5.2.2.1) and, afterwards, we verify the results experimentally (Sec-
tion 5.2.2.2).

5.2.2.1 Theoretical complexity analysis

To determine the computational complexity, we substitute the number of rows
pi and columns qi of the block Macaulay matrix M i (5.6) and (5.7) into the
computational cost of computing the singular values and right singular vectors,
i.e., 4piq2i + 8q3i floating-point operations (FLOPs) [97, p. 493], which results
in the computational cost of the standard algorithm (in FLOPs):

4kl2

n!3
i3n +

8l3

n!3
i3n +O

(
i3n−1

)
= O

(
i3n
)
. (5.14)

Most of the times, the seed matrices Aj are square or close to square (i.e.,
k ≈ l):

12l3

n!3
i3n +O

(
i3n−1

)
= O

(
i3n
)
. (5.15)

The proposed recursive algorithm consists of three main steps (Algo-
rithm 5.2 – in FLOPs):

2misini−1 (multiplication – line 1),

4mi(ni−1 + ti)
2
+ 8(ni−1 + ti)

3 (null space computation – line 2),
2qi−1ni−1ni (multiplication – line 3).

The polynomial ni describes the nullity of M i with respect to the iteration i:

ni = qi − ri (5.16)
= qi − pi (5.17)

=
l

n!
in − k

n!
in +O

(
in−1

)
(5.18)

≤ φ

(n− 1)!
in−1 = O

(
in−1

)
, (5.19)



182 Chapter 5. Recursive Algorithms for the (Block) Macaulay Matrix

Xi Y i

i = 0

i = 1

i = 2

i = 3

(a) Macaulay matrix (iteration i = 3 and degree d = 5)

X Y

i = 0

i = 1

i = 2

i = 3

i = 4

(b) Block banded (Toeplitz) matrix (iteration i = 4 and degree d = 10)

Figure 5.2. Annotated visualization of a Macaulay matrix M3 and block
banded (Toeplitz) T 4. M3 consists of the same polynomials as in Figure 2.5,
but the rows have a different ordering: instead of ordering the different shifts
per polynomial, the Macaulay matrix is build iteratively and every iteration
corresponds to a higher degree. T 4 is the block (banded) Toeplitz matrix
that is generated from a polynomial eigenvalue problem with rectangular seed
matrices Aj ∈ R3×2, for j = 1, . . . , 6. Notice that the sizes of Xi and Y i of
the (block) Macaulay matrix depend on i, while this is not the case for X and
Y in the block banded (Toeplitz) matrix.
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Table 5.1. Dominant term(s) of the computational complexity (in FLOPs per
iteration i) of the standard and recursive algorithm to compute a numerical
basis matrix of the null space of the block Macaulay matrix M i, for both
rectangular k× l and square l× l seed matrices Aj . The rank ri is assumed to
be equal to the number of rows pi of M i for iteration i ≤ i◦ and two factors φ
and φ

′ are introduced that do not depend on i.

algorithm rectangular square

standard 4kl2+8l3

n!3 i3n 12l3

n!3 i
3n

recursive
(

φ
′3

(n−1)!3 + 2lφ2

n(n−1)!3

)
i3n−2 2kφ2

n(n−1)!3 i
3n−2

where we assume in (5.17) that the rank is equal to the number of rows for i < i◦
and introduce a factor φ (and also φ′ below) in (5.19) that does not depend on i,
but depends linearly on the size of the seed matrices (i.e., O(k, l)). We remove
the highest order terms in our upper bound, since k ≥ l in practical applications
(otherwise the nullity does not stabilize). The computational complexity of the
recursive algorithm is then bounded above by (in FLOPs)

φ
′3

(n− 1)!3
i3n−3 +

2lφ2

n(n− 1)!3
i3n−2 = O

(
i3n−2

)
, (5.20)

which remains the same expression when k = l (only the factors φ and φ
′

change).
The computational complexity of the recursive algorithm (per iteration i)

corresponds to O
(
i3n−2

)
, which is due to the dominating multiplication. If

we compare this to the standard singular value decomposition, which has a
computational complexity O(i3n), the recursive algorithm gains two orders of
magnitude. We summarize the computational complexities in Table 5.1.

5.2.2.2 Experimental complexity analysis

We use numerical examples to verify whether the derived computational com-
plexities in Table 5.1 are correct. First, we consider, for different iterations
i, the block Macaulay matrix generated by a linear 2-parameter eigenvalue
problem.

Example 5.1. We build, for different iterations i, the block Macaulay matrix
M i of a linear 2-parameter eigenvalue problem with 3 random seed matrices
Aj ∈ R21×20. For every iteration i, we consider the standard algorithm,
which computes the null space from M i, and the recursive algorithm, which
uses the new block rows of M i and previous basis matrix Zi−1 of the null
space. The log-log plot in Figure 5.3 shows that computation time of the
recursive algorithm with respect to i is two powers smaller than the standard
algorithm, as in Table 5.1.
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Figure 5.3♣. Experimental complexity analysis of the iteration i on the null
space computation for the block Macaulay matrix. The mean computation time
for the standard ( ) and recursive ( ) algorithm to compute a numerical
basis matrix of the null space of a block Macaulay matrix M i is averaged
over 30 experiments (the dashed lines indicate one standard deviation). M i

is generated by a linear 2-parameter eigenvalue problem with 3 random seed
matrices Aj ∈ R21×20. The computation times of both algorithms follow the
theoretical complexities ( ) in Table 5.1.

Next, we consider the influence of the size of the seed matrices on the
computation time, which should be cubic (Table 5.1).

Example 5.2. In Figure 5.4, we visualize the total time to compute a nu-
merical basis matrix of the null space of a block Macaulay matrix M15 from
i = 0 to the desired iteration i◦ = 15, i.e., the total computation time to iter-
atively reach i◦. We consider a linear 2-parameter eigenvalue problem with 3
random seed matrices Aj ∈ R(l+1)×l, where we increase the size of the seed
matrices during the numerical example. The computation time grows indeed
cubically with the number of columns of the seed matrices, as in Table 5.1.

Table 5.1 claims that the computation time strongly depends on the number
of variables. The following example supports this claim.

Example 5.3. We repeat the previous example, but now we consider a linear
n-parameter eigenvalue problem with n + 1 random seed matrices Aj ∈
R(4+n)×5, where we increase the number of parameters in every step. We
visualize in Figure 5.4 the total time to compute a numerical basis matrix
of the null space of a block Macaulay matrix for desired iteration i◦ = 15.
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Figure 5.4♣. Experimental complexity analysis of the seed matrix size k × l
on the null space computation for the block Macaulay matrix. The mean to-
tal computation time for the standard ( ) and recursive ( ) algorithm to
compute a numerical basis matrix of the null space of a block Macaulay matrix
M15 is averaged over 30 experiments (the dashed lines indicate one standard
deviation). M i is generated by a linear 2-parameter eigenvalue problem with
3 random seed matrices Aj ∈ R(l+1)×l. The computation times of both algo-
rithms follow the theoretical complexities ( ) in Table 5.1.

The influence of the number of parameters corresponds (more or less) to the
computational complexities derived in Table 5.1.

5.2.3 Some numerical examples
We illustrate the properties of the recursive null space computation via several
numerical examples with random seed matrices. We use the algorithms as we
would do in a practical setting: starting from the initial block Macaulay matrix
(i = 0) and increasing that matrix with one degree in every iteration. Note
that we have performed many more numerical examples, which the interested
reader can find in [260].

5.2.3.1 Random block Macaulay matrix

In the first numerical example, we consider random block Macaulay matrices
generated by a random linear 2-parameter eigenvalue problem.
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Figure 5.5♣. Experimental complexity analysis of the number of variables
n on the null space computation for the block Macaulay matrix. The mean
total computation time for the standard ( ) and recursive ( ) algorithm to
compute a numerical basis matrix of the null space of a block Macaulay matrix
M15 is averaged over 30 experiments (the dashed lines indicate one standard
deviation). M i is generated by a linear n-parameter eigenvalue problem with
n + 1 random seed matrices Aj ∈ R(4+n)×5. The computation times of both
algorithms follow the theoretical complexities ( ) in Table 5.1.

Example 5.4. We iteratively build a block Macaulay matrix M i and com-
pute a numerical basis matrix Zi of its null space. We consider a lin-
ear 2-parameter eigenvalue problem with 3 random full rank seed matrices
Aj ∈ R21×20. In Figure 5.6, we visualize the computation time and relative
reconstruction error6.

We observe experimentally that we gain two orders of magnitude in the com-
putational complexity, as Table 5.1 indicates, while the relative reconstruction
error6 remains more or less the same, close to machine precision.

Next, we take a closer look at Remark 5.3 and look at the influence of an
iteration-wise implementation versus a shift-wise implementation of the recur-
sive algorithm.

Example 5.5. Figure 5.7 contains a comparison the computation time for
the recursive algorithm, when applied iteration-wise and shift-wise. The re-
sults obtained for the block Macaulay matrices generated by a quadratic

6 We calculate the relative reconstruction error for the computation of a basis matrix of
the null space as ẽ (r) = ‖M iZi‖/‖M i‖. More information about the error measures used
in this text can be found in Appendix B.2.3.
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ẽ
(r

)

(b) Relative reconstruction error

Figure 5.6♣. Comparison of the mean computation time and the mean rel-
ative reconstruction error ẽ (r) between the standard ( ) and recursive ( )
algorithm applied to a block Macaulay matrix M i, averaged over 30 experi-
ments (the dashed lines indicate one standard deviation). The block Macaulay
matrix M i is generated by a linear 2-parameter eigenvalue problem with 3
random seed matrices Aj ∈ R21×20.
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Figure 5.7♣. Comparison of the mean computation time of a block Macaulay
matrix, averaged over 30 experiments (the dashed lines indicate one standard
deviation), when we apply the recursive algorithm iteration-wise ( ) and
shift-wise ( ). The block Macaulay matrix M i is generated by a quadratic
3-parameter eigenvalue problem with 10 random seed matrices Aj ∈ R22×20.

3-parameter eigenvalue problem support our claim that an iteration-wise im-
plementation of the recursive algorithm is faster than a shift-wise approach,
especially when the desired iteration i◦ is large. Note that there is no consid-
erable difference in relative reconstruction error6 between the shift-wise and
iteration-wise implementation.

5.2.3.2 Random block banded Toeplitz matrix

To illustrate Remark 5.4, we consider the following example.

Example 5.6. Consider the block banded Toeplitz matrix T i that con-
sists of two square seed matrices A1,A2 ∈ R20×20 with rank

([
A1 A2

])
=

rank
([
X Y

])
= 16 (which is close to the number of columns l = 20). In

every iteration i, we compute a numerical basis matrix of the null space of
T i via the standard and recursive algorithm. Clearly, the recursive approach
outperforms the full singular value decomposition, as shown in Figure 5.8.
Note that the relative reconstruction error6 of both approaches is more or
less the same.

The computation times of the standard and recursive algorithm for a block
banded Toeplitz matrix grow cubicly and linearly with respect to i, respectively
(as in Table 5.1 for n = 1).
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Figure 5.8♣. Comparison of the mean computation time between the stan-
dard ( ) and recursive ( ) algorithm applied to a block Toeplitz matrix
T i, averaged over 30 experiments (the dashed lines indicate one standard devi-
ation). T i consists of two square random seed matrices A1,A2 ∈ R20×20, such
that the rank r of

[
A1 A2

]
=
[
X Y

]
is equal to 16.

5.3 Sparse null space computations

Although an efficient implementation of Algorithm 5.2 may exploit the struc-
ture and sparsity pattern of the (block) Macaulay matrix, it still has two de-
fects: (i) it stores the entire matrix in the memory and (ii) it does not consider
the fact that the different shifts use the same coefficients or coefficient ma-
trices. This means that we keep a large, sparse (block) Macaulay matrix in
memory with a lot of redundancy, so avoiding the explicit construction and
exploiting the repetition of the matrix is very interesting. In this section, we
adapt the recursive null space computation and create sparse alternatives that
do not require to store or construct the (block) Macaulay matrix during exe-
cution. We replace the iterative null space updating problem in Algorithm 5.1
by Algorithm 5.3.

5.3.1 Macaulay matrix algorithm
To address both above-mentioned defects in the case of the Macaulay matrix,
we propose Algorithm 5.4, which is the sparse adaptation of [22, Algorithm 3.1].
It considers in every iteration the different shifts σk for every polynomial pk(x),
for k = 1, . . . , s, and divides the coefficients of the polynomials into two groups:
the first group (colx) belongs to Xi and is multiplied efficiently with the pre-
vious basis matrix of the null space Zi−1, the second group (coly) constructs
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Algorithm 5.3 Sparse updating of the (block) Macaulay matrix null space
Require: p1(x), . . . , ps(x) or M(λ)

1: i← 0
2: Construct the (block) Macaulay matrix M0

3: while i < i◦ do
4: Zi ← update-null(Zi−1)

†, via Algorithm 5.4 or Algorithm 5.5
5: if structure of the null space contains the solutions then
6: i = i◦
7: else
8: i← i+ 1
9: end if

10: end while
11: return Zi◦
† For i = 0, this line becomes Z0 ← null(M0), computed via the standard algorithm.

the matrix Y i. These different variables are indicated on the spy plot of a
Macaulay matrix in Figure 5.9 (cf., Figure 5.2a). At no point in this sparse
adaptation, the Macaulay matrix M i is build or stored in memory, but only
used implicitly through the position of its shifts. This adaptation leads to a
considerable reduction in necessary memory, as illustrated in the next example.

Example 5.7. Consider a system of five polynomials, each of degree di = 5,
with random real coefficients. We recursively build a Macaulay matrix M i

and compute a basis matrix of its null space via Algorithm 5.2 for every
iteration. Similarly, we use Algorithm 5.4 to construct the same basis matrix
without constructing M i. We do this experiment for iterations i = 0, . . . , 20,
and compare the necessary memory for every i. It is clear from Figure 5.10
that the sparse algorithm is much more memory efficient.

5.3.2 Block Macaulay matrix algorithm
In Algorithm 5.5, we propose a sparse adaptation that addresses the same two
shortcomings in the case of the block Macaulay matrix. It removes the explicit
construction of the block Macaulay matrix M i and incorporates the formation
of Xi and Y i into the recursive algorithm to build a basis matrix Zi of the
null space. For every shift σ in iteration i, Algorithm 5.5 first determines the
position of the shifted seed matrices Aj and partitions them into Xσ

i and Y σ
i

(cf., Figure 5.9). The blocks Xσ
i yield together with the previous numerical

basis matrix Zi−1 the matrix W σ
i , similar to Algorithm 5.2, but now per shift,

and the blocks Y σ
i result in Y i. The computation of V i and Zi are similar

to Algorithm 5.4. At no point in this sparse algorithm, M i is explicitly built
or stored in memory, but is only used implicitly through the position of its
shifts. We repeat the numerical example of Example 5.4 to show the memory
improvements obtained by this sparse adaptation.
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shift σk
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Figure 5.9. Annotated last iteration of the Macaulay matrix in Figure 5.2a.
For iteration i = 3, one of the shifts, σk, is highlighted together with the
allocation of the coefficients into colx and coly. Note that for the block
Macaulay matrix, the situation is very similar: only the index k disappears
and columns of coefficient matrices are selected instead of single coefficients.
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Figure 5.10♣. Comparison of the memory usage between the recursive ( )
and sparse ( ) algorithm applied to a Macaulay matrix M i. M i is generated
by a system of 5 multivariate polynomial equations, each of degree di = 5, with
random coefficients.
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Algorithm 5.4 Sparse null space algorithm for the Macaulay matrix
Require: Zi−1, p1(x), . . . , ps(x)

1: for every polynomial pk(x) with coefficients cj do
2: for every shift σk of iteration i (σk = 1, . . . , σkmax) do
3: col← positions of columns of cj at shift σk
4: colx ← col ≤ qi−1 (c1, . . . cx at shift σk)
5: coly ← col > qi−1 (cx+1, . . . cx+y at shift σk)
6: W σk

i ←
[
c1 · · · cx

]
Zi−1(colx)

7: Y σk
i (coly)←

[
cx+1 · · · cx+y

]
8: end for

9: W
pk(x)
i ←

 W 1
i

...
W σkmax

i

 and Y
pk(x)
i ←

 Y 1
i

...
Y σkmax

i


10: end for

11: W i ←


W

p1(x)
i
...

W
ps(x)
i

 and Y i ←


Y

p1(x)
i
...

Y
ps(x)
i


12: V i ← null

([
W i Y i

])
13: Zi ←

[
Zi−1V

1
i

V 2
i

]
14: return Zi

Example 5.8. We repeat Example 5.4, but now compare the recursive and
sparse algorithm. The sparse algorithm is much more memory efficient than
its recursive counterpart (Figure 5.11).

Note that for some orderings of the monomials in the (block) Macaulay
matrix, the structure can be exploited even further. For example, when using
the GRINVLEX ordering, like in Figure 5.1, Y i always contains Y i−1.

5.4 Recursive rank checks

The standard way to determine the rank structure of the null space of a (block)
Macaulay matrix is by considering the constructed basis matrix Zd of its null
space and compute the rank or nullity for every submatrix that has one more
degree block than the previous one, starting with the zeroth degree block (Fig-
ure 5.12). In that context, we can consider Zd as a block row matrix Ri

(i = 0, . . . , d with Rd = Zd) and we use a recursive algorithm to compute a
basis matrix of its null space, the intermediate results yielding the rank/nullity
structure of Zd.

After i iterations, a block row matrix Ri ∈ Cpi×qi consists of i+ 1 consec-
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Figure 5.11♣. Comparison of the memory usage between the recursive ( )
and sparse ( ) algorithm applied to a block Macaulay matrix M i. M i is
generated by a linear 2-parameter eigenvalue problem with 3 random seed ma-
trices Aj ∈ R21×20.

utive blocks7 (or block rows) Bi ∈ Ck×l:

Ri =


B0

B1

B2

...
Bi

 =

[
Ri−1

Bi

]
. (5.21)

The number of rows and columns of the block row matrix Ri is

pi = k(i+ 1), (5.22)
qi = l, (5.23)

respectively. Block row matrices appear in applications where the data only
gradually becomes available (e.g., online signal processing problems) or where
intermediate results are required (e.g., to determine the rank structure of the
matrix). In the former situation, the desired iteration i◦ of the block row
matrix is often not known in advance. Since Ri grows in every iteration i, its
null space also changes with respect to i. We denote an orthogonal numerical
basis matrix of the null space of Ri by U i ∈ Cqi×ni , such that

RiU i = 0, (5.24)

7Although we consider in this chapter consecutive blocks Bi with an equal number of
rows for didactical purposes, the extension to consecutive blocks with a different number of
rows is trivial and does not alter the proposed algorithm (Example 5.14).
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Algorithm 5.5 Sparse null space algorithm for the block Macaulay matrix
Require: Zi−1, A1, . . . ,Ax+y

1: for every shift σ of iteration i (σ = 1, . . . σmax) do
2: col← positions of columns of A1, . . . ,Ax+y at shift σ
3: colx ← col ≤ qi−1 (A1, . . . ,Ax at shift σ)
4: coly ← col > qi−1 (Ax+1, . . . ,Ax+y at shift σ)
5: W σ

i ←
[
A1 · · · Ax

]
Zi−1(colx)

6: Y σ
i (coly)←

[
Ax+1 · · · Ax+y

]
7: end for

8: W i ←

 W 1
i

...
W σmax

i

 and Y i ←

 Y 1
i

...
Y σmax

i


9: V i ← null

([
W i Y i

])
10: Zi ←

[
Zi−1V

1
i

V 2
i

]
11: return Zi

R0

rank = 1

R1

rank = 3

R2

rank = 3

R3

rank = 5

Figure 5.12. Graphical example of the iterative procedure to determine the
rank structure of a block row matrix Ri. A new seed matrix Bi is added
and the rank of Ri is computed. In the case of basis matrix of the null space
(Rd = Zd), the different zones of the basis matrix, i.e., the regular zone ( ),
gap zone ( ), and singular zone ( ), can be identified via these iterative rank
checks. Dashed lines denote linearly independent rows.
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Algorithm 5.6 Iterative updating of the block row matrix null space
Require: B0,B1, . . .

1: U0 ← null(R0) with R0 = B0

2: i← 1
3: while i ≤ i◦ do
4: Ri ←

[
Ri−1

Bi

]
5: U i ← null(Ri), for example, via Algorithm 5.7
6: i← i+ 1
7: end while
8: return U i◦

where ni corresponds to the nullity of Ri. In Algorithm 5.6, the problem is
stated more clearly: we extend the block row matrix Ri in an iterative way
and compute a numerical basis matrix U i of its null space in every iteration
using U i−1, until we reach the desired iteration i◦.

The standard algorithm to determine this numerical basis matrix is the
singular value decomposition and it does not consider the iterative nature of
the problem. Therefore, we propose a recursive algorithm that uses the existing
numerical basis matrix U i−1 ∈ Cqi−1×ni−1 of the null space of the block row
matrix Ri−1 ∈ Cpi−1×qi−1 to obtain U i (Section 5.4.1). We do not assume any
structure in the blocks Bi of Ri, apart from the iterative construction in (5.21).
Afterwards, we asses the computational complexity of this recursive algorithm
and compare it with the standard approach (Section 5.4.2). Finally, numerical
examples illustrate the theoretical derivations (Section 5.4.3).

5.4.1 Recursive algorithm
Consider a block row matrix Ri−1 ∈ Cpi−1×qi−1 after i − 1 iterations and an
orthogonal numerical basis matrix U i−1 ∈ Cqi−1×ni−1 of its null space:

Ri−1U i−1 = 0. (5.25)

When we append a new block Bi to obtain Ri, we know that there exists an
orthogonal matrix V i ∈ Cni−1×ni , so that[

Ri−1

Bi

]
︸ ︷︷ ︸

Ri

U i−1V i =

[
0

BiU i−1

]
V i = 0, (5.26)

because of (5.25). The matrix V i, on the one hand, is a basis matrix of the null
space of the matrix W i = BiU i−1 ∈ Ck×ni−1 . The nullity ni of Ri is at most
ni−1 because the block Bi adds (sometimes zero) linearly independent rows to
Ri. The matrix product U i = U i−1V i =

∏i
j=0 V j ∈ Cl×ni (with V 0 = U0),

on the other hand, is a numerical basis matrix of the null space of Ri. This
insight yields a recursive algorithm to update an orthogonal numerical basis
matrix of the null space of the block row matrix, which can also be used to
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Algorithm 5.7 Recursive null space algorithm for the block row matrix
Require: U i−1 and Bi

1: W i ← BiU i−1

2: V i ← null(W i)
3: U i ← U i−1V i

4: Return U i

track the rank/nullity of that block row matrix through different iterations. We
summarize the different steps to obtain U i given Bi in Algorithm 5.7, which
fits perfectly in Algorithm 5.6.

Remark 5.5. In Algorithm 5.7, a correct rank decision is essential to obtain
accurate results. For example, in the (limit) case when we add a new block
Bi of which all the rows depend linearly on the rows of the previous blocks
(B0, . . . ,Bi−1), the numerical basis matrix of the null space of Ri−1 also
annihilates the matrix Bi. Hence, W i = BiU i−1 (theoretically) equals
zero. When we determine V i in Algorithm 5.7 (line 2), we should obtain
an orthogonal matrix of full rank ni−1, e.g., an identity matrix. However,
due to numerical floating-point errors, the matrix W i is only close to zero
and we need to be very careful when computing V i. A careful rank check
in Algorithm 5.7 alleviates this problem in most situations, for example by
using an additional absolute tolerance or a more advanced rank decision
approach [143, 195].

Example 5.9. Consider a particular rank-10 block row matrix R1 ∈ R40×20,
which consists of two rank-5 blocks B0 ∈ R20×20 and B1 ∈ R20×20, and a
orthogonal basis matrix of its null space U1 ∈ C20×10. We create a new
block B2 = 2B0 + 3B1 ∈ R20×20 and construct R2 ∈ R60×20 as

R2 =

B0

B1

B2

 =

[
R1

B2

]
. (5.27)

Since the rows of B2 depend linearly on the rows of the first two blocks by
construction, the matrix W 2 = B2U1 is close (but not exactly equal) to
zero. All singular values have the same order of magnitude and, when using
a relative tolerance, the matrix W 2 could be considered to be of full rank.

Code 5.1. The illustration of the importance of correct rank decisions in Ex-
ample 5.9 can be implemented as follows:
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>> B0 = randn(20,5)*randn(5,20);
>> B1 = randn(20,5)*randn(5,20);
>> B2 = 2*B0 + 3*B1;
>> R1 = [B0; B1]; U1 = null(R1);
>> W2 = B2*U1;

While W 2 is numerically zero, its rank is equal to 10.

>> norm(W2)

ans =
2.8321e-14

>> rank(W2)

ans =
10

5.4.2 Computational complexity
The computational complexity for both the standard and recursive approach is
analyzed in this section; firstly, we derive theoretical expressions (Section 5.4.2.1)
and, afterwards, we verify the results experimentally (Section 5.4.2.2).

5.4.2.1 Theoretical complexity analysis

When computing a numerical basis matrix U i of the null space of the block row
matrix Ri via the standard algorithm (i.e., the singular value decomposi-
tion), we only use the singular values and right singular vectors. We substitute
the number of rows (5.22) and columns (5.23) of the block row matrix Ri, in
iteration i, into the computational cost of computing these singular values and
right singular vectors, which is about 4piq

2
i + 8q3i FLOPs [97, p. 493]. This

yields the computational complexity of the standard algorithm (in FLOPs):

4kl2(i+ 1) + 8l3 = 4kl2i+ 4kl2 + 8l3 = O(i). (5.28)

In some applications, the blocks Bi are square (i.e., k = l), which simpli-
fies (5.28):

4l3i+ 12l3 = O(i). (5.29)
The proposed recursive algorithm consists of three main steps (Algo-

rithm 5.7), each with their respective number of FLOPs:

2klni−1 (multiplication – line 1),
4kn2

i−1 + 8n3i−1 (null space computation – line 2),
2lni−1ni (multiplication – line 3).
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Table 5.2. Computational complexity (given in FLOPs per iteration i) of
the standard and recursive algorithm to determine a numerical basis matrix
of the null space of the block row matrix Ri, for both rectangular k × l and
square l × l blocks Bi. The given computational complexity of the recursive
algorithm is an upper bound and depends in practice on the rank of the blocks
Bi (i = 0, . . . , i).

algorithm rectangular square
standard 4kl2i+ 4kl2 + 8l3 4l3i+ 12l3

recursive 6kl2 + 10l3 16l3

The nullity ni of Ri is equal to l − ri ≤ l = O(1), where ri is the rank of Ri.
The total computational complexity of the recursive algorithm is thus bounded
above by (in FLOPs)

6kl2 + 10l3 = O(1), (5.30)

or when the blocks Bi are square (i.e., k = l) by

16l3 = O(1). (5.31)

When we compare the (theoretical) computational complexity of both ap-
proaches (Table 5.2), we notice that the number of FLOPs of the recursive
algorithm remains constant with respect to the iteration i, while the computa-
tional complexity of the standard algorithm depends linearly on i. This behav-
ior, of course, does not sound surprising, as the recursive algorithm uses results
from the previous iterations and matrices of (more or less) fixed sizes, while
the block row matrix Ri in the standard approach grows in every iteration.

5.4.2.2 Experimental complexity analysis

Firstly, we investigate the computational complexity to compute a basis matrix
of the null space with respect to iteration i.

Example 5.10. Consider a block row matrix Ri ∈ R(300i)×300 constructed
from random seed matrices Bi ∈ R300×300 of rank r = 3. We determine the
computation time to compute a basis matrix of the null space of this block
row matrix for different i. We visualize in Figure 5.13 the mean computation
time for both the standard and recursive algorithm. The recursive algorithm
remains under the constant line, while the computation time of the standard
algorithm grows linearly, as expected.

Secondly, we investigate the influence of the size of the seed matrices Bi on
the computation time.
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Figure 5.13♣. Experimental complexity analysis of the iteration on the null
space computation for the block row matrix. The mean computation time for
the standard ( ) and recursive ( ) algorithm to compute a numerical basis
matrix of the null space of a block row matrix Ri is averaged over 30 exper-
iments (the dashed lines indicate one standard deviation). In every iteration
i, we extend the block row matrix Ri−1 with a random block Bi ∈ R300×300

of rank r = 3. The computation time of the standard approach grows linearly
O(i), while the computation time of the recursive algorithms remains constant
O(1), as expected from the theoretical complexities ( ).

Example 5.11. We visualize in Figure 5.14 the total time to compute a
numerical basis matrix of the null space of a block row matrix R15 from i = 0
to the desired iteration i◦ = 15, i.e., the total computation time to iteratively
reach i◦. We consider in this numerical example a block row matrix Ri that
we extend in every iteration with a seed matrix Bi ∈ Rl×l for different values
of l. The computation time of both algorithms in Figure 5.14 grows cubicly
with respect to l, as expected.

5.4.3 Some numerical examples

We consider three additional experiments to illustrate the numerical properties
of the recursive algorithm: a random block row matrix with increasing rank
(or decreasing nullity), a random block row matrix of which the rank (and also
the nullity) stabilizes after i = 10 iterations, and a block row matrix with seed
matrices of varying size.
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Figure 5.14♣. Experimental complexity analysis of the seed matrix size on the
null space computation for the block row matrix. The mean computation time
for the standard ( ) and recursive ( ) algorithm to compute a numerical
basis matrix of the null space of a block row matrix R15 is averaged over
30 experiments (the dashed lines indicate one standard deviation). In every
iteration i, we extend the block row matrix Ri−1 with a random block Bi ∈
Rl×l of rank r = 2, until iteration i◦ = 15. The computation times of both
algorithms grow cubicly with respect to l, as expected from the theoretical
complexities ( ), which is O

(
l3
)

for the both algorithms.

5.4.3.1 Random block row matrix with increasing rank

The first numerical example consists of a block row matrix with random seed
matrices that increase the total rank in every iteration.

Example 5.12. Consider a block row matrix Ri ∈ R(300i)×300, which we
extend in every iteration i by a random matrix Bi ∈ R300×300 with rank
r = 3. The rank of Ri is equal to ri = max(3(i+ 1), 300). The recursive
algorithm clearly outperforms the standard algorithm (Figure 5.15), while
the relative reconstruction errors6 remain stable within the same order of
magnitude.

As mentioned in Section 5.4.2, the computation time of the standard algorithm
grows linearly with the respect to i, while the computation time of the recur-
sive algorithm remains more or less constant. Figure 5.15 even shows a small
decrease in the computation time for higher iterations, which is mainly because
of the decrease in the nullity (remember that we used the upper bound of the
nullity to determine the computational complexity of the recursive algorithm,
which is especially a good approximation when the number of blocks is small).
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Figure 5.15♣. Comparison of the mean computation time and the mean
relative reconstruction error ẽ (r) between the standard ( ) and recursive ( )
algorithm applied to a block row matrix Ri, averaged over 30 experiments (the
dashed lines indicate one standard deviation). In every iteration i, we extend
the block row matrix Ri−1 with a random block Bi ∈ R100×100 of rank r = 2.
The computation time of the recursive algorithm decreases for higher iterations,
because the input matrices become smaller in every iteration (since the nullity
decreases in every iteration).
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5.4.3.2 Random block row matrix with stabilizing rank

In the second numerical example, we look at a block row matrix with ran-
dom seed matrices where the total rank stabilizes after a certain number of
iterations.

Example 5.13. Consider the block row matrix Ri ∈ R(100i)×100 in which
the new blocks Bi after i = 10 iterations are linear combinations of the
previously appended blocks (viz., B0, . . . ,B10). The rank and nullity of Ri

stabilize after i = 10 iterations, and we notice that the computation time of
the recursive algorithm (Figure 5.16) becomes constant, i.e., the computa-
tional complexity now follows the theoretical O(1). Notice that the relative
reconstruction errors6 remain stable within the same order of magnitude.

Notice that the computation time first jumps at i = 11 before stabilizing. Due
to the rank stabilization after 10 iterations, the matrix W 11 is numerically
zero and considered as a matrix of full rank, the singular value decomposition of
which is computationally more expensive than of a low-rank matrix (like W 10).
This is completely in line with our earlier discussion about the importance of
a correct rank decision (Remark 5.5): when we are not careful and use wrong
rank decisions, the relative error of the recursive algorithm can rise quickly. The
combination of a relative and absolute tolerance avoids wrong rank decisions
in this numerical example.

5.4.3.3 Seed matrices with different number of rows

As mentioned in Footnote 7, the recursive algorithm does not explicitly require
that the number of rows of the seed matrices is equal. As an illustration of a
problem with different number of rows in every seed matrix Bi, we consider a
basis matrix of the Macaulay matrix and use the recursive algorithm to recover
its rank structure.

Example 5.14. The following system of 5-variate polynomial equations
(with maximum total degree dmax = 3) models a neural network by an adap-
tive Lotka–Volterra system [266]:

p1(x) = x1x
2
2 + x1x

2
3 + x1x

2
4 + x1x

2
5 − 1.1x1 + 1 = 0,

p2(x) = x2x
2
1 + x2x

2
3 + x2x

2
4 + x2x

2
5 − 1.1x2 + 1 = 0,

p3(x) = x3x
2
1 + x3x

2
2 + x3x

2
4 + x3x

2
5 − 1.1x3 + 1 = 0,

p4(x) = x4x
2
1 + x4x

2
2 + x4x

2
3 + x4x

2
5 − 1.1x4 + 1 = 0,

p5(x) = x5x
2
1 + x5x

2
2 + x5x

2
3 + x5x

2
4 − 1.1x5 + 1 = 0.

(5.32)

This system has an isolated zero-dimensional solution set with 233 affine
solutions and 10 solutions at infinity. The solution degree of the Macaulay
matrix is d◦ = 11, for which we observe a gap in its null space. In order
to check this, we consider a basis matrix Zd of its null space and use the
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Figure 5.16♣. Comparison of the mean computation time and the mean
relative reconstruction error ẽ (r) between the standard ( ) and recursive ( )
algorithm applied to a block row matrix Ri, averaged over 30 experiments (the
dashed lines indicate one standard deviation). In every iteration i, we extend
the block row matrix Ri−1 with a random block Bi ∈ R100×100 of rank r = 2,
until iteration i = 10. After 10 iterations, the newly appended blocks are linear
combinations of previously added blocks, hence the computational complexity
of the recursive algorithm stabilizes. The computation time for the recursive
algorithm jumps at i = 11 because the matrix W 11 is numerically zero.



204 Chapter 5. Recursive Algorithms for the (Block) Macaulay Matrix

recursive algorithm on the consecutive degree blocks. The basis matrix cor-
responds with a 4368 × 243 block row matrix R11 that consists of 11 seed
matrices Bi. The number of rows of Bi and the obtained rank structure can
be found in Table 5.3. From the rank checks, it is clear that the 9th degree
block corresponds to the gap zone. The standard algorithm executes the
rank checks in 0.2343 s, while the recursive algorithms retrieves the correct
rank structure in 0.0356 s.

Code 5.2. If we want to determine the rank structure of a basis matrix
of the null space recursively, then we need to check the nullity for growing
submatrices, adding one degree block in every iteration. The system noon5
is part of MacaulayLab’s database.

>> M = macaulay(noon5,11);
>> Z = null(M);

We can use the recursive algorithm to update a basis matrix U of its
null space, when considering Z as a block row matrix. The function
nullrecrrow(U,B) builds a numerical basis of the null space of a block
row matrix, using a numerical basis U of the null space of a lower degree
block row matrix and the new block B .

>> U = null(Z(1,:));
>> nullity = zeros(11,1);
>> for i = 1:11

B = Z(nbmonomials(i-1,5)+1:nbmonomials(i,5),:)
U = nullrecrrow(U,B);
nullity(i) = size(U,2);

end

This numerical example shows that the recursive algorithm is useful in the
polynomial system solving context, when checking the rank structure of the
null space of the (scalar) Macaulay matrix. Of course, the block row matrix
of Example 5.14 could easily be replaced with a basis matrix of the null space
of the block Macaulay matrix. This example gives rise to the idea of the next
section: double recursive algorithms to solve systems of multivariate polynomial
equations and MEPs.

5.5 Double recursive algorithms
By recognizing that the basis matrix of the null space of the (block) Macaulay
matrix is a block row matrix, we can combine the recursive/sparse null space
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Table 5.3. Summary of the linearly independent rows of the basis of the null
space of the Macaulay matrix that comprises the system in Example 5.14.

degree block(s) rows lin. indep. rows increase
0 1 1 1

0− 1 1− 6 6 5
0− 2 1− 21 21 30
0− 3 1− 56 51 30
0− 4 1− 126 96 45
0− 5 1− 252 147 51
0− 6 1− 462 192 45
0− 7 1− 792 222 30
0− 8 1− 1287 233 11
0− 9 1− 2002 233 0
0− 10 1− 3003 238 5
0− 11 1− 4368 243 5

computations with the recursive rank checks into double recursive algorithms:
we use (i) a recursive/sparse technique to construct a numerical basis matrix of
the null space of the (block) Macaulay matrix (Algorithms 5.2, 5.4 and 5.5) and
we apply (ii) a recursive technique for the block row matrix to check the rank
structure of that basis matrix (Algorithm 5.7). In particular, the sparse adapta-
tion is very useful, because it avoids the explicit construction of a large (block)
Macaulay matrix. We demonstrate the improvements in both computation time
and memory usage of the double recursive algorithms via several numerical ex-
amples. We compare five different combinations: standard-standard, standard-
recursive, recursive-standard, recursive-recursive, and sparse-recursive.

5.5.1 Polynomial system solving
We start with two systems of multivariate polynomial equations with random
coefficients, re-consider the Katsura system from Example 2.20, the Lotka–
Volterra system from Example 5.14, and tackle a reduced eight-dimensional
economical problem.

5.5.1.1 Systems of random multivariate polynomials

We start with a dense system of random multivariate polynomial equations,
meaning that all coefficients of the polynomials are random nonzero real num-
bers.

Example 5.15. The first system consists of three dense polynomials, each of
total degree di = 15, with random real coefficients. The different Macaulay
matrix algorithms require all i◦ = 28 iterations to obtain the common roots
of the system of multivariate polynomials. Table 5.4 contains the necessary
computation time, memory usage, and maximum absolute residual error8for
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Table 5.4♣. Obtained results of solving the dense system of three multivari-
ate polynomials in Example 5.15 (di = 15) via different recursive combinations.
The total computation time to build a numerical basis matrix of the correspond-
ing Macaulay matrix (requires i◦ = 28 iterations), the total memory usage to
obtain this basis matrix, and the maximum absolute residual error8 of the so-
lutions are averaged over 30 experiments.

combination time memory max‖e‖2

standard-standard 1081.67 s 2.05GB 2.09× 10−12

standard-recursive 922.35 s 2.14GB 2.39× 10−12

recursive-standard 322.94 s 2.05GB 1.89× 10−12

recursive-recursive 167.27 s 2.14GB 2.05× 10−12

sparse-recursive 180.10 s 501MB 2.38× 10−12

the different combinations of techniques. The recursive-recursive and sparse-
recursive combination are 6.5 and 4.2 times faster than the standard-standard
combination.

In Example 5.15, the double recursive algorithms are clearly more efficient,
while the maximum absolute residual errors8 are of the same order of magni-
tude. Furthermore, using the sparse approach (avoiding the construction of the
Macaulay matrix) leads to a considerable reduction in memory usage. Notice
that the experiments are ran on a server with a lot of available memory, so
there is no computation time advantage when considering the sparse variant.
In the previous example, the recursive-recursive combination is faster than the
sparse-recursive combination, because the same singular value decompositions
are computed but the sparse approach has some additional overhead. However,
when the polynomials are sparse, the sparse approach avoids many multiplica-
tions with zero and, hence, is faster than the recursive-recursive combination
even with the overhead. The next example demonstrates this behavior.

Example 5.16. The next system is a sparse system,
p1(x) = x121 + x122 + x123 − 4 = 0,

p2(x) = x121 + x122 − 5 = 0,

p3(x) = x61x
6
3 − 1 = 0,

(5.33)

which consists of three polynomials, each of total degree 12. Because the
polynomials are sparse, the sparse-recursive combination is faster than the
recursive-recursive combination, as shown in Table 5.5.

8 We calculate the absolute residual error for a polynomial system by substituting the
computed solutions

(
x∗
1, . . . , x

∗
n

)
in the polynomials and taking the sum of the 2-norm of the

residuals, i.e., ‖e‖2 =
∑s

i=1‖pi(x∗)‖2.
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Table 5.5♣. Obtained results of solving the sparse system of three multi-
variate polynomials in Example 5.16 (di = 12) via different recursive combi-
nations. The total computation time to build a numerical basis matrix of the
corresponding Macaulay matrix (requires i◦ = 22 iterations), the total memory
usage to obtain this basis matrix, and the maximum absolute residual error8

of the solutions are averaged over 30 experiments.

combination time memory max‖e‖2

standard-standard 572.14 s 536.32MB 5.46× 10−13

standard-recursive 462.46 s 560.19MB 5.55× 10−13

recursive-standard 142.22 s 536.32MB 5.22× 10−13

recursive-recursive 41.45 s 560.19MB 4.82× 10−13

sparse-recursive 36.71 s 131.30MB 4.94× 10−13

Table 5.6♣. Obtained results of solving the Katsura problem in Example 5.17
(di = 2) via different recursive combinations. The total computation time to
build a numerical basis matrix of the corresponding Macaulay matrix (requires
i◦ = 5 iterations), the total memory usage to obtain this basis matrix, and
the maximum absolute residual error8 of the solutions are averaged over 30
experiments.

combination time memory max‖e‖2

standard-standard 3.74 s 179.35MB 4.02× 10−12

standard-recursive 3.57 s 179.38MB 3.15× 10−12

recursive-standard 1.55 s 179.35MB 3.39× 10−12

recursive-recursive 1.56 s 179.38MB 2.38× 10−12

sparse-recursive 0.94 s 1.80MB 4.22× 10−12

5.5.1.2 Katsura, Lotka–Volterra, and reduced economics problem

Now, we take three systems (katsura6, noon5, and redeco8) from the database
with test problems (Section 6.5). The examples confirm the conclusions from
the examples with random polynomials.

Example 5.17. We use the sparse and recurse techniques to tackle the
polynomial system from Example 2.20. As Table 5.6 shows, the recursive-
recursive and sparse-recursive combinations are more than 14 times faster
than the standard-standard combination, while the maximum absolute resid-
ual errors8 are almost the same. The sparse construction of the basis matrix
of the null space avoids the construction of the 6468×3432 Macaulay matrix
(177.58MB). This is a clear improvement over the naive standard-standard
approach (both row-wise and block-wise) presented in Chapter 2.
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Table 5.7♣. Obtained results of solving the Lotka–Volterra problem in Exam-
ple 5.18 (di = 12) via different recursive combinations. The total computation
time to build a numerical basis matrix of the corresponding Macaulay matrix
(requires i◦ = 8 iterations), the total memory usage to obtain this basis matrix,
and the maximum absolute residual errors8 of the solutions are averaged over
30 experiments.

combination time memory max‖e‖2

standard-standard 37.57 s 233.35MB 6.54× 10−14

standard-recursive 37.54 s 233.83MB 6.54× 10−14

recursive-standard 2.78 s 233.35MB 1.41× 10−14

recursive-recursive 2.62 s 233.83MB 1.41× 10−14

sparse-recursive 2.63 s 8.97MB 7.15× 10−14

Example 5.18. We take again the Lotka–Volterra problem from Exam-
ple 5.14 and solve it via the different combinations of recursive and sparse
techniques. As visible in Table 5.7, the recursive-recursive and sparse-
recursive combinations are more than 14 times faster than the standard-
standard combination, while the maximum absolute residual errors8 are al-
most the same. The sparse construction of the basis matrix of the null space
avoids the construction of the 6435× 4368 Macaulay matrix (224.86MB).

Example 5.19. The following system of 8 polynomial equations in 8 vari-
ables with maximum total degree dmax = 2 is a reduced problem from eco-
nomical modeling [180, 266]:

p1(x) = x2x3 + x2 + x3x4 + x4x5 + x5x6 + x6x7 + x7x8 − x1 = 0,

p2(x) = x2x4 + x3x5 + x3 + x4x6 + x5x7 + x6x8 − 2x1 = 0,

p3(x) = x2x5 + x3x6 + x4 + x4x7 + x5x8 − 3x1 = 0,

p4(x) = x2x6 + x3x7 + x4x8 + x5 − 4x1 = 0,

p5(x) = x2x7 + x6 + x3x8 − 5x1 = 0,

p6(x) = x2x8 + x7 − 6x1 = 0,

p7(x) = x8 − 7x1 = 0,

p8(x) = x2 + x3 + x4 + x5 + x6 + x7 + x8 + 1 = 0.
(5.34)

This system has a zero-dimensional solution set with 64 solutions, all affine.
After i◦ = 5 iterations, all combinations have constructed a basis matrix of
the null space that contains these solutions. The recursive techniques are
much faster (more than 5 times faster) and result in similar absolute residual
errors8 (Table 5.8). Using the sparse approach requires less memory.
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Table 5.8♣. Obtained results of solving the reduced economics problem in Ex-
ample 5.19 (di = 12) via different recursive combinations. The total compu-
tation time to build a numerical basis matrix of the corresponding Macaulay
matrix (requires i◦ = 5 iterations), the total memory usage to obtain this basis
matrix, and the maximum absolute residual errors8 of the solutions are aver-
aged over 30 experiments.

combination time memory max‖e‖2

standard-standard 81.50 s 710.02MB 1.60× 10−13

standard-recursive 79.89 s 710.05MB 1.70× 10−13

recursive-standard 14.57 s 710.02MB 9.36× 10−13

recursive-recursive 14.58 s 710.05MB 9.97× 10−13

sparse-recursive 15.27 s 3.34MB 8.49× 10−13

5.5.2 Multiparameter eigenvalue solving
We start with two MEPs that have random coefficient matrices, but we also
tackle two problems in which the coefficient matrices are not random, namely
the MEP from Example 3.17 and the MEP that solves the least-squares real-
ization problem. Note that we have performed many more numerical examples,
for which we refer the interested reader to [260, 262].

5.5.2.1 Random multiparameter eigenvalue problems

We solve two MEPs with random rectangular coefficient matrices via the dif-
ferent combinations of recursive techniques.

Example 5.20. The first random MEP that we tackle is a linear two-
parameter eigenvalue problem,

M(λ)z = (A1 +A2λ1 +A3λ2)z = 0, (5.35)

with random coefficient matrices Aω ∈ R41×40. In order to solve the MEP,
we need a degree d = 40 block Macaulay matrix, hence i◦ = 39 iterations.
The computational results are summarized in Table 5.9. The recursive-
recursive and sparse-recursive combinations are 95 and 276 times faster than
the standard-standard combination, respectively. The maximum absolute
residual errors9are more or less the same.

Example 5.21. Consider the quadratic three-parameter eigenvalue problem,

M(λ)z =
(
A1 +A2λ1 +A3λ2 +A4λ3 +A5λ

2
1 +A6λ1λ2

+A7λ1λ3 +A8λ
2
2 +A9λ2λ3 +A10λ

2
3

)
z = 0,

(5.36)

9 We calculate the absolute residual error for an MEP by substituting the computed
eigenvalues

(
λ∗
1, . . . , λ

∗
n

)
and eigenvectors z∗ in the MEP and determining the 2-norm of the

residual vector ‖e‖2 = ‖M(λ∗)z∗‖2.
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Table 5.9♣. Obtained results of solving the linear two-parameter eigenvalue
problem in Example 5.20 (3 random seed matrices Aj ∈ R41×40) via different
recursive combinations. The total computation time to build a numerical basis
matrix of the corresponding Macaulay matrix (requires i◦ = 39 iterations), the
total memory usage to obtain this basis matrix, and the maximum absolute
residual errors9 of the solutions are averaged over 30 experiments.

combination time memory max‖e‖2

standard-standard 5573.10 s 9.49GB 8.13× 10−12

standard-recursive 5216.19 s 9.49GB 1.27× 10−11

recursive-standard 138.62 s 9.49GB 5.73× 10−12

recursive-recursive 58.79 s 9.49GB 1.37× 10−11

sparse-recursive 20.18 s 231.12MB 6.21× 10−12

Table 5.10♣. Obtained results of solving the quadratic three-parameter eigen-
value problem in Example 5.21 (10 random seed matrices Aj ∈ R12×10) via
different recursive combinations. The total computation time to build a nu-
merical basis matrix of the corresponding Macaulay matrix (requires i◦ = 23
iterations), the total memory usage to obtain this basis matrix, and the maxi-
mum absolute residual errors9 of the solutions are averaged over 30 experiments.

combination time memory max‖e‖2

standard-standard 1033.90 s 4.23GB 1.20× 10−11

standard-recursive 989.54 s 4.26GB 1.27× 10−11

recursive-standard 103.66 s 4.23GB 3.36× 10−12

recursive-recursive 42.43 s 4.26GB 2.78× 10−12

sparse-recursive 29.37 s 348.50MB 5.93× 10−12

with random seed matrices Aj ∈ R12×10. In order to solve the MEP, we
need a degree d = 25 block Macaulay matrix, hence i◦ = 23 iterations.
The computational results are summarized in Table 5.10. The recursive-
recursive and sparse-recursive combinations are 24 and 35 times faster than
the standard-standard combination, respectively.

The previous examples show clearly that the computation times of the
recursive-recursive and sparse-recursive combination are much smaller than the
standard-standard approach, while the maximum absolute residual errors9 of
the solutions are more or less the same. Moreover, the computation time re-
quired to perform the last iteration with the standard approach takes more
time than the total computation time of the recursive and sparse approach.
Hence, even if we know the desired iteration i◦ in advance, a recursive (or
sparse) construction of the basis matrix of the null space may still be advanta-
geous. Contrary to double recursive algorithms in polynomial system solving,
the sparse-recursive combination is faster than the recursive-recursive combi-
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Table 5.11♣. Obtained results of solving the quadratic three-parameter eigen-
value problem in Example 5.22 that originates from a model order reduction
problem via different recursive combinations. The total computation time to
build a numerical basis matrix of the corresponding Macaulay matrix (requires
i◦ = 9 iterations), the total memory usage to obtain this basis matrix, and
the maximum absolute residual errors9 of the solutions are averaged over 30
experiments.

combination time memory max‖e‖2

standard-standard 2.67 s 68.01MB 6.90× 10−10

standard-recursive 2.08 s 72.10MB 6.90× 10−10

recursive-standard 1.32 s 68.01MB 1.73× 10−11

recursive-recursive 0.95 s 72.10MB 1.73× 10−11

sparse-recursive 0.96 s 20.86MB 1.80× 10−11

nation, even when the problem has no sparse support. The explanation for this
additional speed-up lies in the multiplications that have to be performed during
the construction of the basis matrix of the null space of the block Macaulay ma-
trix: for the sparse block Macaulay matrix, the sparse implementation avoids
many multiplications with zero matrices, resulting in more multiplications but
with smaller matrices, exploiting the available structure of the involved ma-
trices. The sparse approach has the additional advantage of requiring much
less memory, which is important on computer systems with limited available
memory.

5.5.2.2 Model order reduction and system identification problem

Finally, we deal with two MEPs that do not have random coefficient matri-
ces, the model order reduction problem from Chapter 3 and the least-square
realization problem described in [71]. Other examples of applications that can
be tackled via MEPs are given in Chapter 7. The MEPs from that chapter
are good examples of problems for which these double recursive algorithms are
useful.

Example 5.22. We use the different combinations of recursive and sparse
techniques to solve the quadratic three-parameter eigenvalue problem (3.74)
from Example 3.17. As visible in Table 5.11, we can further reduce the
computation time obtained via the naive null space based implementation
from Chapter 3 (which corresponds to the standard-standard combination)
by applying the techniques developed in this chapter. Furthermore, the naive
implementation builds the 2200 × 2912 block Macaulay matrix explicitly,
which requires 51.25MB of memory.
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Example 5.23. Given a data sequence y0, . . . , yN−1 (y ∈ RN×1), find the
adapted data sequence ŷ0, . . . , ŷN−1 so that the misfit ‖y − ŷ‖22 is minimized
and ŷ ∈ RN×1 is the output of a model of pre-specified order n [71]:

ŷk = CAkx0, (5.37)

where x0 ∈ Rn×1 is the initial state, A ∈ Rn×n is the system matrix, and
C ∈ R1×n is the output vector. This problem is the least-squares realization
problem. In [71], it has been shown how this identification problem corre-
sponds to a quadratic MEP, with the number of parameters equal to n. When
we consider a model of order n = 2, we obtain a quadratic two-parameter
eigenvalue problem

M(λ)z =
(
A1 +A2λ1 +A3λ2 +A4λ

2
1 +A5λ1λ2 +A6λ

2
2

)
z = 0, (5.38)

with the coefficient matrices Aω ∈ R(3N−4)×(3N−5) as described by De Moor
[71]. We consider the MEP in Example 5.23 constructed from a series of
N = 6 random data points y, which results in 14 × 13 coefficient matrices
Aj , with j = 1, . . . , 6. This problem has a positive-dimensional solution
set at infinity, so we need to compute a basis matrix of the null space for
every degree and check its rank structure. A block Macaulay matrix of degree
i◦ = 22 has a gap zone that can accommodate the shift and allows us to deflate
the positive-dimensional solution set at infinity via a column compression.
In Table 5.12, we compare the computation time and maximum absolute
residual errors9 of the different combinations of standard/recursive/sparse
techniques. The recursive-recursive and sparse-recursive algorithm are much
faster than the standard-standard algorithm (non-recursive approach), while
resulting in more or less the same absolute residual errors. The recursive-
recursive and sparse-recursive combinations are 11 and 14 times faster than
the standard-standard combination, respectively.

5.6 Conclusion
We presented recursive techniques to update a numerical basis matrix of the
null space of the block Macaulay matrix and block row matrix. These recursive
techniques use the numerical basis matrix computed during the previous itera-
tion in order to efficiently determine an update. Furthermore, we also proposed
a sparse alternative implementation for the (block) Macaulay matrix, without
explicitly constructing this large (block) Macaulay matrix. We provided sev-
eral numerical examples to illustrate the properties of these algorithms and to
compare them with the standard full singular value decomposition. Further-
more, we combined recursive techniques into a double recursive algorithm to
solve systems of multivariate polynomial equations and MEPs more efficiently.
By exploiting the available structure and sparsity, we obtained impressive re-
ductions in computation time and memory usage compared to the existing
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Table 5.12♣. Obtained results of solving the quadratic two-parameter eigen-
value problem in Example 5.23 that originates from the least-squares realization
problem (with N = 6 random data points) via different recursive combinations.
The total computation time to build a numerical basis matrix of the correspond-
ing Macaulay matrix (requires i◦ = 22 iterations), the total memory usage to
obtain this basis matrix, and the maximum absolute residual errors9 of the
solutions are averaged over 30 experiments.

combination time memory max‖e‖2

standard-standard 15.56 s 142.81MB 3.27× 10−7

standard-recursive 12.36 s 143.82MB 3.37× 10−7

recursive-standard 4.54 s 142.81MB 4.31× 10−7

recursive-recursive 1.39 s 143.82MB 3.76× 10−7

sparse-recursive 1.05 s 13.22MB 3.15× 10−7

non-recursive approach, while keeping more or less the same accuracy. For
example, in our Lotka–Volterra example, we observed a factor 14 improvement
in computation time compared to the non-recursive approach and noticed that
the sparse implementation avoids the construction of a 6435× 4368 Macaulay
matrix. For the block Macaulay matrix, even more impressive time reductions
were demonstrated in this chapter: Example 5.20 shows how the recursive-
recursive and sparse-recursive combinations are 95 and 276 times faster than
the standard-standard combination, respectively. Also the memory improve-
ment, going from 9.49GB to 231.12MB, is remarkable.

Motivational example. Let us run the different combinations of recursive
techniques once more, but now on the polynomial system and MEP that
tackle the first-order ARMA model identification problem. To highlight the
improvements better, we consider for both problems a data sequence ofN = 6
random output values yk. The polynomial system consists of 7 cubic polyno-
mials in 7 variables, while the MEP is a quadratic two-parameter eigenvalue
problem with 17×16 coefficient matrices. The results are summarized in Ta-
ble 5.13: the double recursive algorithms indeed prove to be useful in both
multivariate root-finding and multiparameter eigenvalue-finding. As men-
tioned in Section 3.6, the MEP approach is more efficient when the number
of data points N increases.

Numerical examples on practical problems, like the first-order ARMA model
identification and the second-order least-square realization problem, motivated
the need for faster algorithms: the proposed recursive (and sparse) algorithms
clearly outperformed the standard approach. The recursive approach and
sparse adaptation have given us the opportunity to solve larger systems of
multivariate polynomial equations and MEPs (MEPs) than possible with the
standard approach. In the future, we will improve our current algorithms to
further push the limits:
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Table 5.13. Obtained results of solving the motivational example for a data
sequence of N = 6 random data points via a polynomial system or a quadratic
two-parameter eigenvalue problem. We apply the different combinations of
recursive techniques to both problems. The total computation time to build
a numerical basis matrix of the corresponding (block) Macaulay matrix, the
total memory usage to obtain this basis matrix, and the maximum absolute
residual errors8,9 of the solutions are averaged over 30 experiments.

combination time memory max‖e‖2

Macaulay
matrix

standard-standard 545.94 s 1.67GB 7.82× 10−15

standard-recursive 562.07 s 1.69GB 9.99× 10−15

recursive-standard 89.88 s 1.67GB 9.99× 10−15

recursive-recursive 91.34 s 1.69GB 4.03× 10−14

sparse-recursive 89.74 s 0.16GB 4.03× 10−14

block
Macaulay

matrix

standard-standard 1191.11 s 644.77MB 3.27× 10−8

standard-recursive 1200.62 s 647.10MB 3.37× 10−8

recursive-standard 34.76 s 644.77MB 4.31× 10−8

recursive-recursive 8.65 s 647.10MB 3.76× 10−8

sparse-recursive 9.16 s 41.63MB 3.15× 10−8

• Clearly, we do not yet exploit all the available structure. Some promising
research is done by various researchers at this time to exploit the quasi-
Toeplitz structure of the Macaulay matrix.

• We will also consider memory-efficient implementations (e.g., looking at
cache locality).

• Moreover, we currently investigate how to replace the second recursive
technique by more efficient procedures to reveal the rank structure (e.g.,
the URV algorithms in [2]).

• In many problems, this rank checks pose a huge burden on the solutions
algorithms. Analogue approaches for Hankel and block Hankel matrices
could also be useful in other application areas.

• Furthermore, we want to translate our efforts from the singular value
decomposition to the QR decomposition, enabling more efficient column
space based solution approaches for systems of multivariate polynomial
equations and MEPs. A fast and sparse implementation of the (Q-less)
QR decomposition is much faster than the traditional singular value de-
composition to compute a numerical basis matrix of the null space. There-
fore, one of our current research efforts is to improve current implemen-
tations and to exploit both the structure and the sparsity of the (block)
Macaulay matrix. Together with more efficient implementations, this will
give us the machinery to tackle much larger problems in the future.
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MacaulayLab: About the
Implementation

To utilize and test the algorithms discussed in the preceding chapters, it is
essential to implement them within a comprehensive toolbox. In this chapter,
we explore the implementation of these algorithms in the MacaulayLab toolbox,
which enables us to solve various applications, like those presented in Chapter 7.
For the software toolbox to be useful, it should strive for a good computational
efficiency and numerical robustness, while keeping user-friendliness in mind.
This requires a careful implementation of the available and new algorithms.
MacaulayLab not only provides a platform to solve systems of multivariate poly-
nomial equations and rectangular multiparameter eigenvalue problems, but also
includes a database with many test problems. The database serves as a means
to test MacaulayLab’s algorithms and the test problems provide benchmarks
for other toolboxes.
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Contributions. This chapter presents the implementation of the different
(block) Macaulay matrix algorithms in one coherent and user-friendly toolbox.
It provides an overview of the different implementation decisions that have been
made, compares the available solution approaches, and positions MacaulayLab
with respect to other toolboxes.

Outline. Firstly, we introduce MacaulayLab in Section 6.1, highlighting the
link with the other chapters of this dissertation. Section 6.2 contains an
overview of other software toolboxes to deal with system of multivariate polyno-
mial equations and (square and rectangular) multiparameter eigenvalue prob-
lems. Next, in Section 6.3, we dive into the implementation of the implemented
algorithms, highlighting the important implementation choices that have been
made. Furthermore, Section 6.4 is about one of MacaulayLab’s key features: its
independence from the choice of polynomial basis and monomial ordering. We
showcase in Section 6.5 the test problem database, while we evaluate the differ-
ent solution approaches of MacaulayLab and compare them with similar solvers
in Section 6.6. Finally, in Section 6.7, we conclude this chapter by outlining
possible upgrades in future releases.
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6.1 Introduction
An essential product of this research is, next to scientific contributions in the
dissertation, the accompanying software toolbox: MacaulayLab is a Matlab tool-
box that features algorithms to solve systems of multivariate polynomial equa-
tions and rectangular multiparameter eigenvalue problems (MEPs). While both
problem types seem unrelated at first, they are connected through the (block)
Macaulay matrix and, consequently, solved via a similar numerical linear al-
gebra methodology. In that sense, this toolbox is quite unique; the combined
nature of the two types of problems allows for one tool(box) to tackle them
both.

In this chapter, we discuss the implementation of the algorithms from Chap-
ters 2, 3 and 5, and we highlight several implementation details1. MacaulayLab
solves both types of problems by transforming them into multidimensional real-
ization problems in the right null space or column space of the (block) Macaulay
matrix constructed from the coefficients of the polynomials or the coefficient
matrices of the rectangular MEP. This transformation is obtained via itera-
tive, recursive, or sparse algorithms. Similarly, the required rank checks to
determine whether this right null space and column space contain the affine
solutions can also be performed recursively. In the end, only numerical linear
algebra tools are used, like singular value, QR, or eigenvalue decompositions–no
symbolic tools enter the picture. The toolbox relies on the decades of advance-
ments in numerical linear algebra, resulting in computationally efficient and
numerically robust algorithms. An important feature of MacaulayLab is that
all the algorithms are implemented without depending on a particular polyno-
mial basis or monomial ordering, allowing the user to choose what suits the
application best. It is known that in some situations an orthogonal polynomial
basis, like the Chebyshev polynomials, has superior numerical properties [247,
248], while results in algebraic geometry often depend on the chosen monomial
ordering [90]. Offering the user the choice to select a particular polynomial
basis and monomial ordering can thus be very useful in applications. Next to
the implementation of the many algorithms developed in the previous chapters,
this toolbox also features a database with test problems, which can be used
to test the toolbox or to benchmark other software packages. Evidently, the
toolbox has been developed to be very user-friendly and easy to use, whether
the user simply wants to solve the problem or wants to learn more about its
properties.

Motivational example. While the previous chapters provided different al-
gorithms to tackle multivariate polynomial systems or rectangular MEPs,
there are many (small and large) implementation details that have to be con-
sidered before we can effectively start to tackle challenges like the globally
optimal autoregressive moving-average (ARMA) model identification prob-
lems. The goal of this chapter is to develop a toolbox that combines the

1Notice that this chapter is not a guide on how to use MacaulayLab. For more information
about using the toolbox, we refer the interested reader to the user-manual in Appendix D.
We repeat once more that MacaulayLab is available online at www.macaulaylab.net.

www.macaulaylab.net
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different algorithms from the previous chapters and creates a user-friendly
approach to deal with these problems. By the end of this chapter, it should be
clear how MacaulayLab yields the globally optimal parameters of the ARMA
model.

6.2 Other software packages
Of course, there exist many other software packages to solve systems of multi-
variate polynomial equations or (square and rectangular) MEPs, mostly ded-
icated to tackling only one type of problems. We have compiled, to the best
of our knowledge, the following two lists of software packages to solve these
problems.

6.2.1 Systems of multivariate polynomial equations
Currently, the most efficient way of obtaining the common roots of a system of
multivariate polynomials with available software is via homotopy continuation
algorithms. These algorithms employ a mixture of techniques from algebraic
geometry and nonlinear optimization to continuously deform a starting system
with known solutions into the original system with unknown solutions, while
tracking the paths of the solutions (see, for example, [157, 221, 265]). Although
issues with ill-conditioning still exist, homotopy continuation methods are in-
herently parallel, i.e., each isolated solution can be computed independently,
and are currently among the most competitive algorithms to solve systems
of multivariate polynomial equations. Their main disadvantage is that they
only work for square (i.e., the number of equations is equal to the number
of unknown variables) systems of multivariate polynomial equations. Because
of their efficiency and applicability, software for homotopy continuation comes
in many flavours. Some toolboxes that use homotopy continuation to tackle
polynomial systems are PHCpack [264], HOMPACK [271], PHoM [103, 104],
HOM4PS [58], NAG4M2 [156] (part of Macaulay2), Bertini [19, 20], and Homo-
topyContinuation.jl [45].

Another approach to deal with systems of multivariate polynomial equations
is to reduce the problem into subsequent univariate root-finding problems or
eigenvalue problems. On the one hand, symbolic software packages, like Maple,
Singular, Magma, and msolve, use a symbolic approach to solve polynomial sys-
tems, by creating a Gröbner basis to create a triangular system that can be
solved via back-substitution or to construct the multiplication matrices (the
eigenvalues of which are related to the solutions of the polynomial system). It
is, on the other hand, also possible to rely solely on numerical linear algebra
techniques to rephrase polynomial systems as eigenvalue problems. Macaulay-
Lab falls into this category of solvers. Batselier [21] and Dreesen [78] have
also approached the problem via the Macaulay matrix and have implemented
their algorithms in the Matlab packages PNLA and RootFinding2, respectively.

2The Matlab package RootFinding is available upon request with its developer, Philippe
Dreesen.

http://homepages.math.uic.edu/~jan/PHCpack/phcpack.html
https://people.cs.vt.edu/~ltw/hompack/hompack90.html
http://www.hom4ps3.org
https://antonleykin.math.gatech.edu/NAG4M2
https://faculty.math.illinois.edu/Macaulay2/
https://bertini.nd.edu
https://www.juliahomotopycontinuation.org
https://www.juliahomotopycontinuation.org
https://github.com/kbatseli/PNLA_MATLAB_OCTAVE
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Similar to MacaulayLab, they both use the Macaulay matrix to set up one or
multiple multidimensional realization problems. While RootFinding is a quite
naive implementation of the Macaulay matrix approach as described in [78],
PNLA offers functions that take advantage of the structure and sparsity of the
Macaulay matrix. When the system consists of two bivariate polynomials, the
Matlab package BiRoots by Plestenjak and Hochstenbach [201] can be used,
which transforms the problem into a square MEP and solves this problem via
MultiParEig (see below). For users of the Julia language, we want to highlight
the packages AlgebraicSolvers.jl by Telen et al. [243] and JuliaEigenvalueSolver.jl
by Bender and Telen [32], which tackle the polynomial systems by using the
Macaulay (or a related) matrix to set up the multiplication matrices.

6.2.2 Multiparameter eigenvalue problems
In the literature, the available methods to tackle MEPs mainly concern square
problems. Small problems can be tackled via simultaneous triangularization
of the associated system of coupled generalized eigenvalue problems (GEPs),
while for larger problems subspace techniques and homotopy continuation al-
gorithms overcome the scalability issues of this simultaneous triangularization.
While implementations of these different approaches are available, the only
comprehensive toolbox to deal with square MEPs, to the best of our knowl-
edge, is MultiParEig by Plestenjak [198]. It features a wide array of algorithms
(both direct and iterative) and can deal with singular and non-singular prob-
lems.

MacaulayLab is the first toolbox that focusses on rectangular MEPs. Very
recently, Hochstenbach et al. [118] have shown that it is possible to translate
(linear) rectangular problems into a square formulation. This transformation,
together with the available methods for solving square MEPs, is added to Mul-
tiParEig in one of its last updates3, adding a second toolbox to list of software
packages that can solve rectangular MEPs. When the problem is not linear,
however, an additional linearization step is required (before or after the trans-
formation), while MacaulayLab deals with polynomial problems directly.

6.3 Implementation of MacaulayLab
As previously mentioned, MacaulayLab can deal with both systems of multi-
variate polynomial equations and (rectangular4) MEPs. In order to keep the
toolbox user-friendly, describing a problem is kept very simple. Both problem
types are internally represented by the same class problemstruct : all neces-
sary information is stored in the cell arrays coef and supp5. Although it is

3Methods to solve linear rectangular MEPs were added in version 2.7.0.0 of MultiParEig
(December 6, 2022).

4In the remainder of this chapter, we no longer mention the qualification rectangular
explicitly. We always consider rectangular MEPs, except when denoted otherwise.

5A cell array is a data type in Matlab with indexed data containers, called cells, where each
cell can contain any type of data. For MacaulayLab, each cell of coef and supp correspond
to one polynomial (matrix) equation. A multidimensional array in the corresponding coef

https://www.mathworks.com/matlabcentral/fileexchange/54159-biroots
https://gitlab.inria.fr/AlgebraicGeometricModeling/AlgebraicSolvers.jl/-/tree/master/
https://github.com/MBender/JuliaEigenvalueSolver
https://nl.mathworks.com/matlabcentral/fileexchange/47844-multipareig
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system of multivariate
polynomial equations eqs

n-parameter eigenvalue prob-
lem with coefficient matrices
mat and total degree dmax

systemstruct(eqs)
inherits from problemstruct inherits from problemstruct

mepstruct(mat,dmax,n)

problemstruct(coef,supp)

system mep

internal representationproblem

Figure 6.1. Construction of the data structure to represent a system of mul-
tivariate polynomial equations or an MEP. Both problem types are internally
represented by the same problemstruct : all necessary information is stored
in the cells coef and supp . The sub-classes systemstruct and mepstruct
provide constructors to set-up the problems more easily, but it is also possible
to submit the problem directly in its internal representation.

also possible to submit the problem directly in its internal representation, the
sub-classes systemstruct and mepstruct provide constructors to set-up the
specific problems more easily (Figure 6.1). The reason for using this dedicated,
uniform internal data structure is to allow that the functions of MacaulayLab
can manipulate both types of problems similarly. The two dedicated sub-classes
and related constructors make sure that the user supplies all the necessary in-
formation about the problem and allow for a more user-friendly interaction.
Especially in the case of a rectangular MEP this constructor is essential: from
the number of coefficient matrices, it is impossible to the determine the ex-
act structure of the rectangular MEP. For example, both a linear 5-parameter
eigenvalue problem and a quadratic 2-parameter eigenvalue problem comprises
of six coefficient matrices.

With the problem given in the correct data structure, the user submit it
to the solver, allowing MacaulayLab to identify the problem type and solve the
problem accordingly. When comparing the Macaulay matrix algorithm to solve
systems of multivariate polynomial equations (Algorithm 2.1) with the block
Macaulay matrix algorithm to solve MEPs (Algorithm 3.1), it is immediately
clear that both types of problems can be tackled by applying the same six steps
(Sections 6.3.1 to 6.3.6):

1. enlarge the solution subspace,

cell contains the coefficients/coefficient matrices, while a two-dimensional array in the supp
cell stores the support of these coefficients/coefficient matrices.
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2. check whether the solution subspace can accommodate the shift,

3. remove the solutions at infinity,

4. exploit the shift-invariance of the solution subspace,

5. cluster the affine solutions to obtain a better accuracy (optional), and

6. compute the residual errors of the obtained affine solutions (optional).

Figure 6.2 visualizes the main functions in MacaulayLab that enable these dif-
ferent steps and shows how they interact with each other. It is easy to identify
the six different steps as the key functions of the function diagram. (Notice that
enlarge and check are two local functions inside the solver macaulaylab .)
The solution methodology for both problem types is built around these six
steps and re-uses, because of the similarity between both problem types, most
of the functions. For example, the function macaulay builds a Macaulay or
block Macaulay matrix given the particular problem. While most of the time
the same functions can deal with both problem types, this requires a very
careful implementation that takes into account the subtle differences between
them. The toolbox is built in a modular fashion, which allows easy expan-
sions and improvements in future updates. For example, when we develop a
faster approach to compute the right null space of the (block) Macaulay matrix
or to perform the necessary rank checks, we can simply replace that function
by its more efficient counterpart (or add the option to choose between both
approaches).

Clearly, MacaulayLab contains many possibilities and has many options that
can be set via an options structure. As mentioned in Chapters 2 and 3, the
solutions of the problem can be retrieved using either the right null space or
column space of the (block) Macaulay matrix. Depending on this choice, the
shifts can be performed in one of those subspaces, indicated by <sub> (which is
null or column). How to obtain these solution subspaces can also be chosen;
iteratively, recursively, or sparsely. Note that many of the functions depend on
the chosen polynomial basis (implemented in <basis>) and monomial ordering
(implemented in <position>), more information about this feature is provided
in Section 6.4. To learn more about the different options, we refer the interested
reader to the manual of MacaulayLab (Appendix D).

Via the output, the user retrieves the (affine) solutions and additional prop-
erties of the given problem. When using the verbose option of MacaulayLab,
the output shows in real-time the stabilization diagram of the solution sub-
space and the current size of the gap zone, among many other things. The
verbose option can be very useful when the user wants to learn more about the
properties of the problem or the behavior of the algorithms (Figure 6.3). All
the necessary code related to the verbose output of the algorithms is put in
verbose , again with the modularity of the toolbox in mind.

In Sections 6.3.1 to 6.3.6, we dive deeper into the six different steps required
to solve a system of multivariate polynomial equations or MEP via the (block)
Macaulay matrix. We deal with one step at a time and highlight the different
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Figure 6.3. Output of MacaulayLab when solving the noon5 system from the
database via the default Macaulay matrix approach. When the verbose option
is enabled, the toolbox displays a lot of information about the problem, the
solution procedure, and the obtained (affine) solutions.
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implementation decisions. It is important to note that implementation deci-
sions always represent making a substantiated choice in the trade-off between
computational efficiency and numerical robustness.

6.3.1 Enlarge the solution subspace
The first step in the solution approach, whether we solve a system of multi-
variate polynomial equations or an MEP, is to build and enlarge the solution
subspace. MacaulayLab supports two solution subspaces: the right null space
and column space of the (block) Macaulay matrix. When we choose to use
the right null space as the solution subspace (Sections 2.4 and 3.4), we need
to build a basis matrix of the right null space of the (block) Macaulay matrix
and enlarge it until it contains a sufficiently large gap zone, which we check at
every iteration (see how in Section 6.3.2). Enlarging this basis matrix can be
done iteratively (via macaulay and null), recursively (via macaulayupdate
and nullrecrmacaulay), or sparsely (via nullsparsemacaulay). We have
developed these algorithms in Chapter 5. For the column space, we only need
to build the (block) Macaulay matrix in every iteration, which can again be
done iteratively or recursively (Sections 2.5 and 3.5).

It is important to note that, depending on the chosen polynomial basis and
monomial ordering, the resulting matrices can have a very different structure.
However, everything is implemented independent of the polynomial basis and
monomial ordering, as we explain in Section 6.4.

6.3.2 Check the rank structure
Of course, we need to know whether the solution subspace contains a gap zone
that can accommodate the shift used in Section 6.3.4, i.e., whether the degree
of the (block) Macaulay subspace is equal to the solution degree (Sections 2.4.3
and 3.4.3). We do this via rank checks with an absolute tolerance, but this
can be adapted by the user. There exist many ways to do this: We can look
at the individual rows/columns, we can look at entire degree blocks, etc. By
default, we work per degree block, since this is numerically more robust and
computationally more efficient than row-wise rank checks (Remark 2.5).

Both the basis matrix of the right null space and the flipped transpose of
the (block) Macaulay matrix can be interpreted as block row matrices, when
we consider the rows/columns degree block-wise. To improve computational
efficiency, we use, therefore, the recursive technique developed in Chapter 5
and implemented in nullrecrrow . This gives the double recursive nature to
the solution algorithm.

Note that we typically do not immediately check the rank structure for all
iterations of the enlargement. For zero-dimensional solution sets, we wait un-
til the nullity is stabilized, and we only start checking the rank structure of
the solution space after stabilization. This way, we avoid many superfluous
rank checks and create a more efficient solution algorithm. When the problem
has a positive-dimensional solution space, it is useless to wait for stabilization,
since this will never happen (Section 2.6.1). By setting an optional flag (i.e.,
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posdim = true), the solution algorithm does not wait for the nullity to stabi-
lize, but checks the rank structure of the solution subspace for every iteration,
a necessity for problems with a positive-dimensional solution space.

6.3.3 Perform the column compression
For the null space based approach, we need to deflate the solutions at infinity
from the right null space via a column compression of its basis matrix (Theo-
rem 2.3), which is implemented via a single singular value decomposition. In
the column space based approach, however, this is not necessary, since the back-
ward QR decompositions to set-up the shift problems (Section 6.3.4) remove
those infinite solutions implicitly.

6.3.4 Shift in the chosen solution subspace
Given a large-enough solution subspace, the shift problems are set-up as de-
scribed in Chapters 2 and 3. We consider n+1 shift problems: we shift with a
random linear shift polynomial and with the n different solutions components
(i.e., the variable coordinates xi or eigenvalue parameters λi, for i = 1, . . . , n).
Other shift polynomials are possible (Section 2.6.2), but using a random shift
polynomial avoids false multiplicities (Section 2.4.2). We use a Schur decom-
position to solve the first shift problem and re-use the obtained unitary matrix
to obtain the upper triangular matrices of the other n shift problems by pre-
multiplication and post-multiplication (Section 2.4.2). This makes sure that
the different components of the same solution are at the same position on the
diagonal of the upper triangular matrices, which removes the need for matching
the different solution components. Note that the n + 1 default shift problems
only consist of linear shifts. This has a clear advantage: We do only need a gap
zone of one degree block. A shift polynomial with a large degree requires a large
gap zone, hence more iterations are needed to construct a solution subspace
that can accommodate this shift.

When choosing the column space based approach, every shift problem re-
quires one backward QR decomposition to construct the necessary matrices.
The backward QR decompositions can be implemented easily (when not con-
sidering the structure and sparsity of the (block) Macaulay matrix) as

>> [~,R] = qr(fliplr(N)); R = fliplr(R);

This backward QR decomposition implicitly removes the solutions at infinity.
Furthermore, the shifts with the different solution components are monomials,
for which we do not need to build and invert the row permutation matrix, but
we can simply re-order the columns of the (block) Macaulay matrix directly
(Remark 2.8).

To avoid the sparse multiplication of the row-selection and row-combination
matrices with the subspace matrix, we perform these multiplications indirectly
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and do not build the row-selection/combination matrices explicitly. It is impor-
tant to take into account the correct polynomial basis and monomial ordering
when shifting, otherwise the results are incorrect, as we explain in Section 6.4.

6.3.5 Cluster the affine solutions
An additional, but optional, step in the solution approach is to cluster the
obtained affine solutions (Section 2.4.2). We cluster the different solutions
based on the evaluations of the random shift polynomial, which are obtained
as the eigenvalues of the first shift problem. Clustering means here that similar
evaluations of the shift polynomial are considered to be equal solutions of the
problems; hence, we construct clusters of multiple solutions. When the shift
polynomial is chosen to be random (for other polynomials, we do not perform
this clustering step by default), similar evaluations correspond to the same so-
lutions with a probability equal to one. Every solution for which the evaluation
of the random shift polynomial is grouped in the same cluster, is considered
to be the same solution. Therefore, we take the geometric mean of the clus-
ter for every component of the solution (i.e., the cluster center). The idea for
this additional clustering step comes from Corless et al. [62] in the context of
polynomial system solving, but is also very useful when solving MEPs.

6.3.6 Compute the residual errors
Finally, we compute the residual error for every obtained affine solution:

• For a system of multivariate polynomial equations, we evaluate all the
polynomials in the solution and sum the 2-norm of these residuals.

• For an MEP, we evaluate the matrix polynomial in the solution and
compute the 2-norm of the residual vector. The eigenvector associated
with the obtained eigenvalue is computed as the right-most right singular
vector of the evaluated matrix pencil.

Depending on the chosen polynomial basis, and monomial ordering, a particular
evaluation function problemvalue is used to achieve this goal. MacaulayLab
returns both a list with all the residual errors and the maximum residual error
of all obtained affine solutions.

6.4 Polynomial basis and monomial ordering
MacaulayLab is implemented independently from the specific polynomial basis
and monomial ordering. This means that the user can choose the polynomial
basis and monomial ordering that suits the problem best, while all the functions
keep working out-of-the-box. In Section 2.6.3, it was already explained why
the solution approaches still work. But, using a different polynomial basis or
monomial ordering greatly influences the structure of the involved matrices.
How is this implemented in MacaulayLab?
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• Every time it is necessary to shift (i.e., a multiplication of two monomials)
in the code, the functions call the chosen function <basis> , which imple-
ments the basic shift operation in a particular polynomial basis. By using
the correct shift function, the other functions do not need to care about
the specific polynomial basis. For example, in the standard monomial
basis, when shifting φ11(x) = x1x2 with φ10(x) = x1, basismon results
in φ21(x) = x21x2, while basischeb in the Chebyshev polynomial basis
yields 1

2 (φ
′
21(x) + φ′01(x)), where the basis polynomials now correspond

to φ′21(x) =
(
2x21 − 1

)
x2 and φ′01(x) = x2.

• Similarly, the monomial ordering is important when we need to know the
position of a monomial in the polynomial basis (for example, to build
the Macaulay matrix or set-up the shift problems). By leaving this com-
putation to a dedicated function that implements the correct monomial
ordering <position> , the correct position in the chosen monomial order-
ing is always obtained. For example, using posgrinvlex positions x21x2
for n = 2 variables at position 8, while posgrevlex yields 9.

By default, MacaulayLab uses the standard monomial basis and graded in-
verse lexicographic (GRINVLEX) ordering. The code also contains the pre-
implemented Chebyshev polynomial basis, graded lexicographic (GRLEX) or-
dering, and graded reverse lexicographic (GREVLEX) ordering. Users can
easily implement and use other polynomial bases or monomial orderings.

6.5 Database with test problems
Next to the implementation of the various (block) Macaulay matrix algorithms,
MacaulayLab also includes a large set of test problems, which can be used to
test the toolbox’s features and act as benchmarks for other software. At the
time of writing this chapter, the database contains 230 systems of multivariate
equations and 30 MEPs, some of which are parameter dependent. In Tables 6.1
and 6.2, we highlight some systems and MEPs from that database. Additional
information about the problems is also stored and available in the database,
accessible by calling the overloaded function disp (Figure 6.4).

Because MacaulayLab is polynomial basis independent (Section 6.4), the
database also contains problems that are given in another polynomial basis.
When using such a problem, the MacaulayLab solver recognizes the correct
polynomial basis automatically and applies the correct shift and evaluation op-
erations (if the corresponding functions are implemented). These problems can
be recognized easily in the database, because an identifier for the polynomial
basis is appended to the name. For example, system_cheb.m and mep_cheb.m
for the Chebyshev polynomial basis.

6.6 Comparison of approaches and solvers
In this section, the objective is to compare the various solution approaches
available in MacaulayLab and to evaluate the performance of its default solution
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Table 6.1. Small selection of systems in the database, with some of their
key properties: a system has s equations in n variables with maximum total
degree equal to dmax, resulting in a total of mb solutions, of which ma are
affine solutions. The database contains a wide variety of problems, sometimes
parameter dependent. For example, arma11eq(y) depends on a data sequence
y with N data points. For such system, the number of solutions depends
on the particular parameter values (indicated by /). An underscore is used
to indicate whether a problem is given in another polynomial basis than the
standard monomial basis.

name s dmax n mb ma

noon3 3 3 3 27 21
batselier5 3 12 3 1728 1728
conform 3 4 3 64 16

dreesen10 4 4 4 ∞ 2
cyclic5 5 7 5 120 70
walsh 6 7 6 ∞ 7

katsura7 8 2 8 128 128
overdet1 8 4 4 10 10

arma11eq(y) N + 1 3 N + 1 / /

walsh_cheb 6 3 6 ∞ 7

Table 6.2. Small selection of MEPs in the database, with some of their key
properties: an n-parameter eigenvalue problem has maximum total degree dmax
and k×l coefficient matrices, resulting in a total ofmb solutions, of whichma are
affine solutions. The database contains a wide variety of problems, sometimes
parameter dependent. For example, realization(y,n) depends on a data
sequence y of length N and a parameter n (we use m = nN − n2 to simplify
notation). For such system, the number of solutions depends on the particular
parameter values (indicated by /). An underscore is used to indicate whether
a problem is given in another polynomial basis than the standard monomial
basis.

name dmax n k l mb ma

volkmer 1 2 12 6 6 6
muhic4 1 2 18 9 ∞ 4

alsubaie3 1 3 5 3 ∞ 4
h2fom2r3 2 3 10 8 ∞ 209
hkp2 2 2 3 2 12 12
h2f5 2 2 6 5 ∞ 17

h2fourdisk 2 4 10 7 ∞ 129
realization(y,n) 2 n m+ n m+ 1 / /

cube 3 2 21 20 1890 1890

wing_cheb 2 1 3 3 6 6
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Figure 6.4. Information displayed for the noon3 system in the database.

approach with respect to other solvers6. We start by exploring the different
solution approaches of the toolbox (Section 6.6.1). Subsequently, we juxta-
pose the default solution approach of MacaulayLab next to some other Matlab
solvers, both for systems of multivariate polynomial equations (Section 6.6.2)
and MEPs (Section 6.6.3).

6.6.1 Different solution approaches in MacaulayLab
There are different solution approaches available to solve a system of multivari-
ate polynomial equations with this toolbox. In order to compare the computa-
tional time of the different solutions approaches, we solve two systems via five
different sets of options (summarized in Table 6.3):

• option 1: a column space based approach that iteratively builds the
(block) Macaulay matrix and uses column-wise rank checks on the columns
of that (block) Macaulay matrix,

• option 2: a null space based approach that iteratively builds the (block)
Macaulay matrix and uses row-wise rank checks on the rows of the basis
matrix of the right null space of that (block) Macaulay matrix,

• option 3: a null space based approach similar to option 2, but now using
degree block-wise rank checks on the basis matrix of the right null space,

• option 4: instead of an iterative construction of the (block) Macaulay
matrix and a basis matrix of its null space, option 4 uses a recursive
approach to enlarge the solution subspace, also with degree block-wise
rank checks, and

6All computations in this chapter are performed on a MacBook Pro that has an M1 CPU
(2020) working at 3.2GHz (8 cores) and 16GB random-access memory (RAM). This choice
has been made to evaluate the performance and capabilities of the toolboxes under typical
working conditions, rather than on a server with extensive memory resources (Section 1.4).
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Table 6.3. Summary of the different sets of options. The five sets differ in
three options: the solution subspace used, how this subspace is enlarged, and
how the rank structure is checked.

set subspace enlarge check
option 1 column space iterative columns
option 2 null space iterative rows
option 3 null space iterative degree blocks
option 4 null space recursive degree blocks
option 5 null space sparse degree blocks

• option 5: a sparse null space based approach with degree block-wise rank
checks, which means that the (block) Macaulay matrix is no longer con-
structed, but the basis matrix is updated directly.

For the first problem, the noon3 system, Figure 6.5 clearly shows that
column-wise and row-wise rank checks put a lot of stress on the computa-
tional complexity of the algorithm. Degree block-wise rank checks are clearly
much faster, because less rank checks are necessary (it also provides a better
numerical robustness). Furthermore, the column space based approach suffers
from two additional difficulties: (i) checking the rank structure column-wise in
the column space takes more time than checking the rank structure row-wise in
the right null space, due to the larger size of the involved matrices, even though
the number of checks is the same, and (ii) shifting in the column space takes
more time than in the right null space because of the computation of a back-
ward QR decomposition for every shift. Moreover, from Figure 6.5, it is also
clearly visible that using recursive and sparse techniques further reduces the
computation time. Similar conclusions can be drawn from the second problem,
the slightly more difficult conform system, where the computation time of the
column space based approach explodes, due to the column-wise rank checks on
the large Macaulay matrix (Figure 6.6).

We can also compare the different sets of options when using MacaulayLab
to solve MEPs. Starting with the h2f5 problem, we observe a similar behavior
as for the polynomial systems. We notice in Figure 6.7 that most of the com-
putation time of the column space based approach is due to the rank checks.
Also for the row-wise null space based approach, the rank checks determine a
major part of the computation time. Note that for this example, we have to set
an additional option, namely posdim = true , since this MEP has a positive-
dimensional solution set at infinity. This amplifies the dominant factor of the
rank checks even more, since for problems with a positive-dimensional solution
set, the algorithm needs to perform the rank checks for every iteration. When
we consider the realization problem from the database with a random data
vector of N = 4 data points and n = 2 parameters, this behavior is even more
outspoken (Figure 6.8).
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Figure 6.5. Computation time to solve the noon3 system via the different
sets of options (Table 6.3). All computation times are averaged over 30 ex-
periments. The different sub-timings of the implementation are: enlarge the
solution subspace ( ), check the rank structure ( ), perform the column com-
pression ( ), shift in the subspace ( ), cluster the affine solutions ( ), and
evaluate the affine solutions ( ).

6.6.2 Other polynomial system solvers
Now, we compare the default MacaulayLab solution approach to solve systems
of multivariate polynomial equations (i.e., option 5 from Table 6.3) with some
other solvers:

• RootFinding is a naive implementation of the null space based Macaulay
matrix approach. It uses, for example, row-wise rank checks.

• PNLA-QR is the default implementation of the PNLA toolbox. It uses
a sparse QR decomposition to compute a basis matrix of the right null
space.

• PNLA-SVD is an adaptation of PNLA-QR, in which we have replaced all
the sparse QR decompositions by the numerically more reliable singular
value decomposition.

These solvers are included in the comparison because they are also implemented
in Matlab, allowing for a fair comparison with MacaulayLab. We tested all
algorithms on five different polynomial systems from the database, and the
results are presented in Table 6.4 and Figure 6.9

Across all systems, except for cyclic5 and katsura7, MacaulayLab is the
fastest solver, consistently providing the solutions with the smallest residual
errors (at least two orders of magnitude smaller than the other solvers). For
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Figure 6.6. Computation time to solve the conform system via the different
sets of options (Table 6.3). All computation times are averaged over 30 ex-
periments. The different sub-timings of the implementation are: enlarge the
solution subspace ( ), check the rank structure ( ), perform the column com-
pression ( ), shift in the subspace ( ), cluster the affine solutions ( ), and
evaluate the affine solutions ( ).

two systems, cyclic5 and katsura7, PNLA-QR seems to be a faster alternative
than MacaulayLab. However, PNLA-QR does not provide the correct solutions
for these problems. Furthermore, both PNLA-SVD and PNLA-QR have diffi-
culties with the positive-dimensional solution space at infinity of walsh, while
MacaulayLab solves it quite easily (RootFinding only finds the solutions of this
system when we supply the number of affine solutions in advance). The compu-
tation speed of PNLA-QR suggests an interesting direction for future research:
“Why not incorporate sparse QR decompositions in the implementation of
MacaulayLab?”

For completeness, we also compare MacaulayLab with PHClab, a Matlab
interface to PHCpack, and Maple. PHCpack is a pre-compiled Ada general-
purpose solver that uses homotopy continuation. In Maple, we use a naive
Gröbner basis implementation to solve the polynomial system in exact arith-
metic. The results of this comparison are summarized in Table 6.5. It is
important to acknowledge that this comparison is not entirely fair, because the
nature of the three toolboxes is quite different.

6.6.3 Other multiparameter eigenvalue solvers
We also compare the block Macaulay matrix approach to solve MEPs in Macaulay-
Lab with the two approaches offered by the MultiParEig toolbox (cf., they are
based on the transformations described in Section 3.2.2):
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Figure 6.7. Computation time to solve the h2f5 MEP via the different sets of
options (Table 6.3). All computation times are averaged over 30 experiments.
The different sub-timings of the implementation are: enlarge the solution sub-
space ( ), check the rank structure ( ), perform the column compression ( ),
shift in the subspace ( ), cluster the affine solutions ( ), and evaluate the
affine solutions ( ).

Table 6.4. Comparison of the computation time to solve five different systems
of multivariate polynomial equations via MacaulayLab, RootFinding, PNLA-
SVD, and PNLA-QR. The most important properties of the systems are sum-
marized in Table 6.1. All computation times are averaged over 30 experiments.

problem MacaulayLab RootFinding PNLA-SVD PNLA-QR
conform 0.05 s 1.31 s 1.56 s 1.37 s

batselier5 51.42 s > 10 000.00 s∗ 7726.71 s 7155.19 s
cyclic5 15.04 s 74.82 s 23.62 s 10.13 s†

walsh 0.50 s 3078.27 s 1.37 s† 0.99 s†

katsura7 192.91 s 1447.34 s 235.08 s 17.57 s†

† The solver fails to correctly obtain the (affine) solutions of the system.
∗ Execution was aborted after 10 000.00 s.



Section 6.6. Comparison of approaches and solvers 235

0.00 8.00 16.00 24.00 32.00

option 1

option 2

option 3

option 4

option5

25.11

3.07

0.24

0.09

0.09

Computation time [s]

Figure 6.8. Computation time to solve the realization MEP via the differ-
ent set of options (Table 6.3). We consider a data vector y ∈ R4×1 and n = 2
parameters. All computation times are averaged over 30 experiments. The
different sub-timings of the implementation are: enlarge the solution subspace
( ), check the rank structure ( ), perform the column compression ( ), shift
in the subspace ( ), cluster the affine solutions ( ), and evaluate the affine
solutions ( ).

• MultiParEig-CMP transforms the rectangular MEP into a related system
of coupled rectangular GEPs via Kronecker products of the rectangular
coefficient matrices. The large, rectangular Kronecker matrices are com-
pressed into small, square matrices via the pre-multiplication and post-
multiplication with compression matrices to create a system of square,
coupled GEPs that contain the same solutions as the rectangular MEP.

• MultiParEig-MEP uses randomized sketching (i.e., it multiplies the rect-
angular coefficient matrices with n random projection matrices to create
n square matrix pencils) to create a square MEP from the supplied prob-
lem and solves the resulting square problem via its associated system
of coupled GEPs, after which the spurious solutions generated by the
transformation are pruned (based on the residual error of the solution).

While for moderate-sized problems both approaches are comparable, the
MultiParEig approaches are clearly faster when the matrix sizes grow (Table 6.6
and Figure 6.10). Figure 6.11 seems to suggest that the trend in the compu-
tational complexity for a fixed number of eigenvalue parameters is similar.
However, when the number of eigenvalue parameters grows, MultiParEig-CMP
and MultiParEig-MEP have more difficulties to solve the problem. For exam-
ple, MultiParEig-CMP and MultiParEig-MEP both fail to solve the 4-parameter
eigenvalue problem h2fourdisk, due to memory constraints:
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Figure 6.9. Comparison of the relative computation time to solve five different
systems of multivariate polynomial equations via MacaulayLab( ), RootFinding
( ), PNLA-SVD ( ), and PNLA-QR ( ). The most important properties of
the systems are summarized in Table 6.1. All computation times are averaged
over 30 experiments. While Table 6.4 contains the exact computation times
per system and solver, this comparison visualizes the relative computation time
with respect to the slowest solver (which is always set at 100%). The PNLA
solver fails to correctly obtain the (affine) solutions of some systems ( ).
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Table 6.5♣. Comparison of the computation time to solve ten different
systems of multivariate polynomial equations via MacaulayLab, PHClab, and
Maple. The most important properties of the first five systems are summa-
rized in Table 6.1, while the other five systems are random polynomial systems
randomsystem(s,d,n) with s polynomials of total degree d in n variables. All
computation times are averaged over 30 experiments.

problem MacaulayLab PHClab Maple
batselier5 17.22 s 3.50 s 1.58 s
dreesen10 0.09 s 0.23 s 0.55 s
cyclic5 4.85 s 0.43 s 4.92 s
walsh 0.50 s 0.24 s 0.57 s

katsura7 32.02 s 2.77 s 125.94 s

randomsystem(2,10,2) 0.16 s 0.78 s 0.24 s
randomsystem(2,20,2) 0.09 s 0.23 s 4.79 s
randomsystem(3,10,3) 15.90 s 48.21 s 1901.23 s
randomsystem(4,5,4) 13.90 s 21.26 s 2801.98 s
randomsystem(5,3,5) 6.85 s 5.22 s 330.11 s

• For MultiParEig-CMP, setting up the Kronecker products of the rectan-
gular coefficient matrices results in very large matrices (because the di-
mension of a Kronecker product of n matrices is the product of all n
dimensions).

• For MultiParEig-MEP, the bottleneck is solving the associated set of cou-
pled GEPs of a square MEP with a high number of eigenvalues.

Another motivation for this claim is the example of solving a small linear 5-
parameter eigenvalue problem with 11 × 7 coefficient matrices, which is not
possible with MultiParEig-CMP, due to the fact that the Kronecker opera-
tor determinants generate matrices that require more than 20GB of mem-
ory. Figure 6.12 shows how, for small n-parameter eigenvalue problems with
(5 + n− 1) × 5 coefficient matrices, the memory constraints trouble both ap-
proaches from the MultiParEig toolbox.

6.7 Conclusion
This chapter emphasized the versatility and potential of MacaulayLab as a tool-
box for solving systems of multivariate polynomial equations and rectangular
MEPs. MacaulayLab stands out as a general-purpose polynomial system solver,
capable of dealing with systems in different polynomial bases, overdetermined
systems, and systems with positive-dimensional solution sets at infinity. While
homotopy continuation may offer faster solution algorithms, these methods
may suffer from ill-conditioning and (only) deal with square systems, leav-
ing a niche that can be filled by the Macaulay matrix algorithms from this
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Figure 6.10. Comparison of the relative computation time to solve five dif-
ferent MEPs via MacaulayLab( ), MultiParEig-CMP ( ), and MultiParEig-MEP
( ). The most important properties of the MEPs are summarized in Table 6.2.
All computation times are averaged over 30 experiments. While Table 6.6
contains the exact computation times per problem and solver, this compari-
son visualizes the relative computation time with respect to the slowest solver
(which is always set at 100%). MultiParEig fails to solve the h2fourdisk prob-
lem, due to memory constraints ( ).



Section 6.7. Conclusion 239

Table 6.6. Comparison of the computation time to solve five different rect-
angular MEPs via MacaulayLab, MultiParEig-CMP, and MultiParEig-MEP. The
most important properties of the MEPs are summarized in Table 6.2. All
computation times are averaged over 30 experiments. For the realization
problem, we consider a data vector y ∈ R6×1 and n = 2 parameters.

problem MacaulayLab MultiParEig-CMP MultiParEig-MEP
alsubaie3 < 0.01 s < 0.01 s < 0.01 s

h2f5 0.01 s 0.01 s 0.02 s
h2fom2r3 2.54 s 247.81 s n.a.‡
h2fourdisk 3.79 s n.a.‡ n.a.‡
realization 5.56 s 0.75 s§ 3.55 s
‡ This solver fails to solve the h2fourdisk problem, due to memory constraints.
§ MultiParEig also contains a more efficient approach that exploits the structure
of this particular MEP.

(and other) toolbox(es), particularly for overdetermined systems of multivari-
ate polynomial equations. In comparison to other Matlab toolboxes that use
the Macaulay matrix, MacaulayLab is a clear improvement: while being built
modular and offering many different solution approaches and options, it is
computationally more efficient and numerically more robust than its historical
predecessors RootFinding and PNLA.

By introducing the block Macaulay matrix as natural extension of the
(scalar) Macaulay matrix, MacaulayLab becomes the first dedicated toolbox
to tackle rectangular MEPs, while maintaining the same flexibility as when
solving systems of multivariate polynomial equations. Furthermore, the solu-
tion approaches in the toolbox can deal with positive-dimensional solution sets
at infinity and work with different shift polynomials. It is important to stress
that MacaulayLab is designed to be independent of the polynomial basis and
monomial ordering, which provides an easy way of solving problems that are
given in a different representation (without needing to change the representa-
tion first). This can be very useful in applications where the results depend on
the chosen polynomial basis or monomial ordering. Additionally, the Macaulay-
Lab toolbox also contains a database with many test problems. We believe that
the inclusion of this comprehensive set of test problems could prove to be highly
valuable for its users.

Motivational example. With MacaulayLab, it has become very easy to
tackle the first-order ARMA identification problem. The globally opti-
mal parameters can be obtained from the polynomial system by running
macaulaylab with options.posdim = true , because the polynomial sys-
tem has a positive-dimensional solution set at infinity (dend = 50 gives an
upper bound to the degree of the Macaulay matrix and y is the sequence of
data points):
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Figure 6.11. Computation time to solve a linear 2-parameter eigenvalue
problem via MacaulayLab ( ), MultiParEig-CMP ( ), and MultiParEig-MEP
( ). All computation times are averaged over 30 experiments (dashed lines
indicate one standard deviation). We notice that the toolboxes have a similar
complexity, but the two approaches from MultiParEig are faster.

>> dend = 50; options = struct; options.posdim = true;
>> commonroots = macaulaylab(arma11eq(y),dend,options);

A similar approach can be used to solve the related quadratic rectangular
two-parameter eigenvalue problem:

>> eigenvalues = macaulaylab(arma11(y),50,options);

Both arma11eq and arma11 are part of the database with test problems that
accompanies MacaulayLab.

Taking inspiration from other toolboxes and recent advances in the lit-
erature, it is evident that future releases of MacaulayLab will contain many
additional features:

• We want to consider the sparsity in the involved matrices and investigate
the advantages and disadvantages of working with the QR decomposition
instead of the singular value decomposition.

• Also looking into the support of the polynomials and polynomial eigen-
value problems to reduce the number of columns in the (block) Macaulay
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Figure 6.12. Computation time to solve a linear MEP via MacaulayLab ( ),
MultiParEig-CMP ( ), and MultiParEig-MEP ( ). All computation times
are averaged over 30 experiments. We increase the number of eigenvalue pa-
rameters n, and we notice that the algorithms of MultiParEig struggle to de-
termine the solutions of a small linear n-parameter eigenvalue problems with
(5 + n− 1)×5 coefficient matrices. Notice that both approaches of MultiParEig
fail to compute the solutions of an 6-parameter eigenvalue problem with 10×5
coefficient matrices, due to memory constraints.

matrix sounds promising [30, 32].

• Performing the rank checks is an important step in the (block) Macaulay
matrix approach. A lot of care is necessary with these rank decisions. In
one of the next releases, more support to take the correct rank decisions
(i.e., different types of rank decisions, visual aids, etc.) will be added.

• Subspace methods are also anticipated to be included as an extension to
the block Macaulay matrix algorithms in one of the upcoming releases.
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Applications in Systems
Theory

The different algorithms described in this dissertation share a common char-
acteristic: their development is driven by a practical need. In this chapter,
we address the origin for this need and provide motivational examples from
diverse fields that can be addressed using the algorithms proposed in this text.
We focus on three key examples from systems theory: multivariate polynomial
optimization in complex variables, H2-norm model order reduction, and least-
squares identification of autoregressive moving-average models. The goal is to
find globally optimal solutions for each of these three key examples.

Although each of the discussed globally optimal methodologies is a valuable
contribution to its respective research area, we present them more as a detailed
illustration of what we could do with the algorithms of this dissertation. We use
the MacaulayLab toolbox from Chapter 6 and highlight, for example, how the
recursive algorithms in Chapter 5 speed up the computations. It is important
to note that the potential application area extends well beyond the examples
presented here.
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Contributions. We show how the algorithms presented in the previous chap-
ters can be useful in a practical setting. Next to their illustrative nature, the
proposed globally optimal methodologies to tackle the three key examples in
this chapter are also valuable contributions to their respective research areas.

Related articles. Three sections of this chapter (with applications from sys-
tems theory) consist of adapted versions of [3, 259, 263]. For [259, 263], the
candidate was the main author of the original articles, developed the theoret-
ical contributions, and implemented the accompanying code and experiments.
The candidate developed a numerical solution algorithm and implemented the
numerical experiments for [3]. He also assisted with writing the text of that
article. In order to make the text more consistent, several parts of the origi-
nal articles are re-written and some sections are removed from this chapter to
avoid redundancy (as these sections are present in a more thorough form in the
previous chapters). Especially, the notation and terminology has been made
uniform with the rest of the dissertation.

Outline. This chapter revolves around three key examples. However, we first
take into account the broader context by providing an introduction in Sec-
tion 7.1 and highlighting possible application areas in Section 7.2. Subse-
quently, Section 7.3 contains the first key example, namely the multivariate
polynomial optimization problem in complex variables. In Section 7.4, we show
how the algorithms presented in this dissertation can also be used to tackle
the H2-norm model order reduction problem. Afterwards, in Section 7.5, we
demonstrate how the globally optimal least-squares identification of autoregres-
sive moving-average models can be rephrased as a rectangular multiparameter
eigenvalue problem. Finally, we conclude this chapter in Section 7.6, where we
discuss some potential future research avenues.
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7.1 Introduction
In the previous chapters, we have developed an extensive set of algorithms,
collected in the Matlab toolbox MacaulayLab, to solve systems of multivari-
ate polynomial equations and to tackle rectangular multiparameter eigenvalue
problems (MEPs). While the development of those algorithms are very inter-
esting in their own rights, the reason for their development originates from
a practical necessity: the desire to solve practical applications that can be
phrased as systems of multivariate polynomial equations or rectangular MEPs.
In this chapter, we focus on these practical applications and provide motiva-
tional examples from various fields that can be addressed using the algorithms
proposed in this text.

At the hearth of many engineering applications is the goal to optimize a
certain metric. Frequently, it is possible to express the optimization of this
metric as a (multivariate) polynomial optimization problem, which is an op-
timization problem in which both the cost function and the constraints are
(multivariate) polynomials. Many of the applications that we encounter in this
chapter are multivariate polynomial optimization problems applied to a specific
problem context. The first-order necessary conditions for optimality (i.e., the
Karush–Kuhn–Tucker conditions) of such multivariate polynomial optimization
problems correspond to a system of multivariate polynomial equations when
we only consider equality constraints. The solutions of this multivariate poly-
nomial system are the stationary points of the original cost function under the
equality constraints [190].

Recently, our research group has shown that for some multivariate polyno-
mial optimization problems, the resulting system of multivariate polynomial
equations is essentially an MEP. The eigenvalues of these MEPs correspond to
the stationary points of the related cost function. Hence, the globally optimal
solution(s) of the original optimization problem can be found via the eigenval-
ues of the MEP. During this research, we have focussed on three key examples
from systems theory that could be phrased as an MEP:

• the multivariate polynomial optimization problem in complex variables
via Wirtinger derivatives;

• theH2-norm model order reduction problem for single-input/single-output
(SISO) linear time-invariant (LTI) models; and

• the least-squares parameter identification of autoregressive moving-average
(ARMA) models.

The (block) Macaulay matrix algorithms are exactly developed in the context
of these particular problems. Although each of the key examples is a valuable
contribution to its respective research area, we present them more as a detailed
illustration of what we could do with the algorithms of this dissertation.

Motivational example. In tackling the first-order ARMA model identi-
fication problem as a rectangular MEP, one important question has not
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been answered yet: “What are the coefficient matrices of the quadratic two-
parameter eigenvalue problem?” This chapter contains the answer to that
question. In Section 7.5, we show how to derive the (coefficient matrices of
the) rectangular MEP that solves the optimization problem (1.2).

7.2 Examples of possible application areas
Before delving into the three problems from systems theory, we provide some
additional examples that can be formulated as a system of multivariate poly-
nomial equations or (multiparameter) eigenvalue problem.

7.2.1 Common roots of systems of polynomials
Polynomials, both univariate and multivariate, are powerful tools to model
problems from various origins mathematically. Because of their modeling ca-
pabilities, polynomials, and in particular systems of (multivariate) polynomial
equations, have extensive applications in diverse areas of science and engineer-
ing, for example, in robotics [222, 269], game theory [67, 222], computational
chemistry and biology [60, 76, 86], computer vision [145, 146], system iden-
tification [25, 158, 259], and model order reduction [3, 148]. We give some
examples below, but more applications can be found in books like [63, 180,
222].

Robotics and kinematics. An important field that contains many systems
of multivariate polynomial equations is robotics (and kinematics). The poly-
nomials that appear are often very sparse and structured [85, 222]. Figure 7.1
shows, for example, how a planar robot arm with a fixed shoulder at the origin
and two arm segments leads to a system of two bivariate polynomial equations
via Pythagoras’ theorem,{

p1(x) = x21 + x22 − l21 = 0,

p2(x) = (a− x1)2 + (b− x2)2 − l22 = 0,
(7.1)

describing the possible positions of the robot’s elbow. It is easy to image that
more complicated robots and kinematic problems lead quickly to more involved
polynomial systems. Sommese and Wampler [222] discuss many examples of
robots in a polynomial system solving context.

Nash equilibria. In game theory, the Nash equilibrium1 is the most common
way to define the solution of a non-cooperative game involving two or more
players. In a Nash equilibrium, each of the players is assumed to know the
equilibrium strategies of the other players, and no player has anything to gain

1The principle of Nash equilibrium dates back to the time of Antoine Cournot, who ap-
plied it in 1838 to competing firms choosing outputs, but it is named after the American
mathematician John Nash, who received a Nobel Prize in Economics in 1994 [140, 144].
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Figure 7.1. Possible configurations of the elbow (x1, x2) of a planar robot
arm with a fixed shoulder in the origin and two arm segments. Finding the
possible configurations of the robot’s elbow corresponds to solving a system of
bivariate polynomial equations (7.1) that originates from applying Pythagoras’
theorem twice.

by changing only one’s own strategy. The game is played multiple times. If
one player observes that in the last round a change in strategy would have
earned him/her a higher payoff, then he/she is likely to change his/her play
in the next round. An equilibrium occurs when every player finds that there
is no unilateral change of strategy that would have increased his/her payoff.
Nash equilibria of finite games (i.e., with finite numbers of players, each with
a finite number of pure strategies) can be characterized as solutions to systems
of polynomial equalities subject to some inequalities [67].

Chemical reactor networks. A simple, but meaningful example of a chem-
ical reaction network is the T-cell signal transduction model proposed by the
immunologist McKeithan [168] and tackled in the context of algebraic geome-
try by Dickenstein [76]. The main task of the immune system is to recognize
that a strange body has entered the organism. T-cell receptors bind to both
self-antigens and foreign antigens and the dynamical features of this model give
a possible explanation of how T-cells can be sensitive and specific in recogniz-
ing self versus foreign antigens. In its simplest case, the network of reactions
is given by

D κ23
C,

κ31

A+B

κ12

κ21
(7.2)
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where A denotes the T-cell receptor protein, B denotes the major histocompati-
bility protein complex of the antigen-presenting cell, C denotes the biochemical
species A bound to species B, and D denotes an activated (phosphorylated)
form of C. The binding of A and B forms C, which undergoes a modifica-
tion into its activated form D before transmitting a signal. This example is
a (bio)chemical reaction network with 3 complexes (A + B, C, and D) and 4
reactions (the four arrows, each with a reaction rate constants κij ∈ R>0). If
we denote the time dependent concentrations of the species by

x = (xA(t), xB(t), xC(t), xD(t)), (7.3)

then the law of mass action gives us a system of four multivariate polynomial
equations:

p1(x) =
dxA(t)

dt
= −κ12xA(t)xB(t) + κ21xC(t) + κ31xD(t) = 0,

p2(x) =
dxB(t)

dt
= −κ12xA(t)xB(t) + κ21xC(t) + κ31xD(t) = 0,

p3(x) =
dxC(t)

dt
= κ12xA(t)xB(t)− κ21xC(t)− κ23xC(t) = 0,

p4(x) =
dxD(t)

dt
= κ23xC(t)− κ31xD(t) = 0.

(7.4)

The set
{
x ∈ R4

>0 : p1(x) = p2(x) = p3(x) = p4(x) = 0
}

is called the steady
state variety of the (bio)chemical reaction network. By the structure of the
equations, for given initial concentrations, the solution x can not leave the sto-
ichiometric compatibility class, which is an affine subspace R4

>0. Adding the
affine equations of the stoichiometric compatibility class to the polynomial sys-
tem in (7.4), we get the set of all candidate solutions. In this example, we are
only interested in the positive solutions, rather than the real solutions. Solving
these algebraic relations, i.e., the system of multivariate polynomial equations,
gives us the possible stationary concentrations of the different chemical species.
Taking advantage of the algebraic structure of these networks has led to ad-
vances in understanding their dynamical behavior. We refer the interested
reader to [60, 76] and references therein.

Computer vision. Computer vision problems are another type of problems
that often result in systems of multivariate polynomial equations [145, 146]. An
important example is estimating internal calibration parameters of a camera
from point correspondences in a sequence of (noisy) images [79, 204]. Every
such point correspondence imposes an algebraic relation on the parameters that
are to be estimated; hence, the solution can be found in polynomial system
solving. For example, a camera is positioned at the unknown position P and
images taken of four calibration points A, B, C, and D put constraints upon
the unknown camera distances xi, for i = 1, . . . 4 (Figure 7.2). We now have
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Figure 7.2. Simple instance of a camera pose estimation problem. A camera
is centered at an unknown position P . Then, a set of images is taken of four
calibration points A, B, C, and D, each of which leading to a constraint on
the unknown camera distances xi, for i = 1, . . . , 4.

an over-constrained system of s = 6 equations in n = 4 variables:

x21 + x22 − 2 cos(APB)x1x2 − ‖AB‖2 ≈ 0,

x21 + x23 − 2 cos(APC)x1x3 − ‖AC‖2 ≈ 0,

x22 + x23 − 2 cos(BPC)x2x3 − ‖BC‖2 ≈ 0,

x21 + x24 − 2 cos(CPD)x1x4 − ‖AD‖2 ≈ 0,

x24 + x23 − 2 cos(APD)x1x2 − ‖CD‖2 ≈ 0,

x22 + x24 − 2 cos(BPD)x2x4 − ‖BD‖2 ≈ 0.

(7.5)

Solving this over-determined system of multivariate polynomial equations yields
the unknown camera distances xi.

7.2.2 Eigenvalues and eigenvectors
Eigenvalue problems, whether involving a single spectral parameter or multiple
spectral parameters, are equally pervasive in applications. The significance of
eigenvalues and eigenvectors lies in their ability to capture the inherent dynam-
ics of many natural and scientific phenomena, which elucidates their prevalence
in numerous domains. Consequently, eigenvalue problems are indispensable for
comprehending and modeling the underlying behavior of systems, for example,
when considering problems in systems and control [128–130], vibration analy-
sis [149, 245], partial differential equations [96, 200], system identification [70,
71, 259], and model order reduction [3, 208].

Systems and control. Eigenvalues are the cornerstone of systems and con-
trol. When we consider LTI dynamical systems, eigenvalues characterize key
properties of a system, like stability, controllability, and observability [128].
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x2
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Figure 7.3. Visualization of a mass-spring system with two masses m1 and
m2. The positions of the two masses, x1 and x2, can be found by solving the
corresponding quadratic eigenvalue problem in (7.6). The parameters c and k
are the damping and stiffness coefficient, respectively.

Standard eigenvalue problems (SEPs) and generalized eigenvalue problems (GEPs)
also arise in the steady-state solutions to linear-quadratic regulators and Kalman2

filtering problems [129].

Vibration analysis. When considering vibration problems, eigenvalues im-
mediately enter the picture. These vibration problems can be interpreted in
the broad definition of the word: vibrations in mechanical structures, acoustic
systems, electrical circuits, and fluid mechanics [245]. For example, the vi-
bration analysis of the simple mass-spring system in Figure 7.3 can be solved
by computing the eigenvalues of the corresponding quadratic eigenvalue prob-
lem [149]: ([

2k −k
−k 2k

]
+

[
2c −c
−c c

]
λ+

[
m1 0
0 m2

]
λ2
)
z = 0, (7.6)

where m1 and m2 are the two masses, c is the damping coefficient, and k is
the stiffness coefficient. More advanced vibration problems, like the aeroelastic
flutter problem [203], can be described via the introduction of multiple spectral
parameters.

Partial differential equations. A key motivation for multiparameter spec-
tral theory is solving boundary-value problems for partial differential equations
via the method of separation of variables. A discretization via, e.g., spectral
collocation methods, finite differences, or finite elements, leads to a solvable
(algebraic) square MEP. Even more, problems like Mathieu’s system are in the
literature often used as a motivation for the introduction of MEPs, for exam-
ple, in [267]. The spectral parameters arise as separation constants when the
separation of variables technique is used. Although Mathieu’s system is often

2Kalman [130] showed that the control and filtering problem are related to each other;
hence, the steady-state solutions to both problems follow from a Riccati equation, which can
be tackled by solving a GEP, as described by Van Dooren [250].
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used as motivating example, it was not until [96] that it was shown that solv-
ing the corresponding two-parameter eigenvalue problem approach has certain
numerical advantages when tackling this type of problems. More examples can
be found in [200, 276].

Identifying Hopf bifurcations. A Hopf bifurcation is a critical point where
a dynamical system’s stability changes and periodicity arises. Hopf bifurcations
occur in some very famous dynamical systems, e.g., the Lotka–Volterra system,
the Lorenz attractor, and the Brusselator. The identification of instability in
large-scale dynamical systems caused by a Hopf bifurcation is difficult in prac-
tice, because it requires the identification of the right-most pair of complex
eigenvalues of a large, sparse GEP [84]. When looking for these Hopf bifur-
cations, the problem can also be reduced to solving a square two-parameter
eigenvalue problem [169, 170].

Heine–Stieltjes problems. The Heine–Stieltjes spectral problem is a gen-
eralization of the SEP [41, 215], where the goal is to obtain the polynomial
solutions (z, f) such that

T (f) = zf, (7.7)

where T is a certain second-order differential operator with polynomial coeffi-
cients. The multiparameter generalization of this problem can be phrased as a
rectangular MEP [216].

7.3 Complex multivariate optimization
Complex-valued signals arise in many areas of science and engineering, like
communications, systems theory, oceanography, geophysics, optics, and elec-
tromagnetics [1, 225]. Especially in signal processing, one often encounters
(nonlinear) functions in complex variables [53], for example, transfer functions
of LTI models. An important issue when working with complex-valued sig-
nals and complex variables is related to (nonlinear) optimization. Most of
the optimization literature deals with real variables only, seemingly suggesting
that complex variables are not encountered in practice. However, optimiza-
tion problems in complex variables appear in various applications, e.g., filter
design [1, 42, 53, 141], system identification [70], blind source separation [1],
tensor decomposition [223–225], parameter estimation [1], and nonlinear elec-
trical circuit simulation [225].

Cost functions of optimization problems in complex variables are real-
valued: it makes no sense to optimize a complex-valued cost function, because
the field of complex numbers is not (totally) ordered. So, from an application
point of view, these real-valued functions are exactly the kind of cost functions
that we expect to encounter. However, real-valued cost functions in complex
variables are necessarily non-holomorphic (i.e., the complex generalization of
non-analytic) [225]. They have no complex derivatives. An optimization prob-
lem in complex variables is typically tackled by reformulating the cost function
as a function of the real and imaginary parts of the complex variables, so that
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standard real optimization techniques can be used. Wirtinger calculus provides
a more elegant solution by relaxing the definition of differentiability and defin-
ing a general framework that includes holomorphic functions as a special case [1,
53, 141]. The development of Wirtinger calculus3 by the Austrian mathemati-
cian Wirtinger [280] dates back to 1927. It was rediscovered in 1983, without
any reference to Wirtinger, by Brandwood [42]. The advantage of Wirtinger
calculus is that the expressions do not become unnecessarily complicated and
the derivations are rather similar to the real situation.

Sorber et al. [223, 224] have highlighted an interesting relation between uni-
variate polynomial optimization in one complex variable and the polynomial
eigenvalue problem (PEP). The first-order necessary conditions for optimality
of the real-valued univariate polynomial cost function obtained via Wirtinger
calculus yield a system of two polyanalytic polynomials in the complex variable
and its complex conjugate. An elimination of this complex conjugate variable,
via the Sylvester matrix, results in a PEP that can be solved with standard tech-
niques from numerical linear algebra. In this section, we extend this relation
to the multivariate case: we show that multivariate polynomial optimization
problems in multiple complex variables lead to (rectangular4) MEPs. At least
one of the eigenvalues of this MEP corresponds to the global solution of the
optimization problem. This section has not the ambition to provide a compet-
itive alternative with respect to the current state-of-the-art. Rather it serves a
tutorial purpose, presenting a novel optimization approach in a didactic way. It
highlights several interesting research avenues initiated by this reformulation
(Section 7.6), while omitting technical derivations. Note that reformulating
a multivariate polynomial optimization problem in real variables as an (one-
parameter) eigenvalue problem is a well-established methodology, as discussed
in the “historical and bibliographical notes” of this chapter.

In the remainder of this section, we first formulate the first key example
mathematically (Section 7.3.1), before giving a short introduction to Wirtinger
calculus (Section 7.3.2). Afterwards, we show how the first-order necessary
conditions for optimality result in an MEP, via a special Macaulay matrix
construction (Section 7.3.3). Finally, we discuss the concept of ghost solu-
tions, which emerge in this globally optimal complex optimization approach
(Section 7.3.4), and give a numerical example (Section 7.3.5).

7.3.1 Problem formulation
In this section, we deal with real-valued (multivariate) polynomial cost func-
tions f(z, z̄) in n complex (decision) variables z ∈ Cn and their complex con-
jugates z̄ ∈ Cn,

f : Cn → R : z 7→ f(z, z̄), (7.8)

3The idea of using Wirtinger derivatives can be traced back to at least 1899, with
Poincaré [202, 225]. The name Wirtinger calculus is especially present in the German lit-
erature, while in other sources one often reads CR-calculus, referring to the fields C and
R [141].

4In the remainder of this chapter, we no longer mention the qualification rectangular
explicitly. We always consider rectangular MEPs, except when denoted otherwise.



256 Chapter 7. Applications in Systems Theory

where we express the dependency of the cost function on the complex variables
z and their complex conjugates z̄ explicitly to highlight that the polynomial is
real-valued (Section 7.3.2). The problems tackled in Sections 7.4 and 7.5 are,
for example, multivariate polynomial optimization problems with a real-valued
cost function in complex variables (despite the fact that we are only interested
in the real-valued stationary points). We consider, primarily, the unconstrained
minimization problem, i.e.,

min
z
f(z, z̄), (7.9)

but adaptations to maximization or constrained optimization are straightfor-
ward via the Lagrangian (Example 7.1). A prototypical problem with a real-
valued polynomial cost function is the minimization of the squared Frobenius-
norm of a matrix5 polynomial F(z, z̄),

F : Cn → Cm1×m2 : z 7→ F(z, z̄), (7.10)

that maps n complex variables z and their complex conjugates z̄ onto m1m2

function values, i.e.,
min
z
‖F(z, z̄)‖2F, (7.11)

which is also known as the complex nonlinear least-squares optimization prob-
lem. Because of the imposed Frobenius-norm, the cost function in (7.11) is a
real-valued polynomial in z.

7.3.2 Wirtinger derivatives
Before we tackle (7.9), we need to take a closer look at the implications of
differentiation in the complex domain. Consider a multivariate complex-valued
function f(z) in n complex variables z ∈ Cn,

f : Cn → C : z = x+ iy 7→ f(z) = u(x,y) + iv(x,y), (7.12)

where u(x,y) and v(x,y) are ordinary real-valued functions in 2n real variables
x ∈ Rn and y ∈ Rn. The transformation from (z, z̄) to (x,y) is a simple change
of variables for two independent vector variables,

x =
z + z̄

2
, y =

z − z̄

2i
, (7.13)

and, vice versa,
z = x+ iy, z̄ = x− iy. (7.14)

The complex-valued function is said to be differentiable at a point z0 ∈ Cn

if the complex-valued limit operation

lim
∆z→0

f(z0 +∆z)− f(z0)

∆z
(7.15)

exists, i.e., when the limit value is independent of the direction in which ∆z
approaches zero. For example, the result of the limit should be the same

5The Frobenius-norm of a multidimensional tensor polynomial in complex variables is a
straightforward extension of (7.10), see [223–225].
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when ∆z approaches zero on the real axis (∆x → 0) or on the imaginary
axis (∆y → 0). This requirement is formalized in the Cauchy–Riemann
conditions [1, 53] for the differentiability at z0 = x0 + iy0:

∂u(x0,y0)

∂x
=
∂v(x0,y0)

∂y
,

∂v(x0,y0)

∂x
= −∂u(x0,y0)

∂y
.

(7.16)

The Cauchy–Riemann conditions (7.16) are necessary and sufficient conditions6

for the existence of the limit defining the complex differentiation operation
in (7.15). A multivariate function in complex variables is said to be holo-
morphic in a domain (i.e., the complex generalization of analytic), if the
function is differentiable for all points in that domain. Real-valued functions
are, however, non-holomorphic. It is easy to see that the Cauchy–Riemann
conditions (7.16) do not hold, except for the constant real-valued polynomial,
because v(x,y) ≡ 0. In other words, there exists no Taylor series in z of f(z, z̄)
at z0 so that the series converges to f(z, z̄) in a neighborhood of z0 [225].

Wirtinger calculus provides a general framework for differentiating non-
holomorphic functions; it is general in the sense that it includes holomorphic
functions as a special case. It only requires that f(z, z̄) or f(z) is real dif-
ferentiable: if u(x,y) and v(x,y) have continuous partial derivatives with
respect to x and y, then the function is real differentiable [1]. The idea in
Wirtinger calculus is to differentiate functions of the form f(z, z̄) by consid-
ering the partial derivatives with respect to z and z̄, which can be formally
written as

∂f(z, z̄)

∂z
=
∂f(z)

∂x

∂x

∂z
+
∂f(z)

∂y

∂y

∂z
(7.17)

=
1

2

(
∂f(z)

∂x
− i

∂f(z)

∂y

)
, (7.18)

∂f(z, z̄)

∂z̄
=
∂f(z)

∂x

∂x

∂z̄
+
∂f(z)

∂y

∂y

∂z̄
(7.19)

=
1

2

(
∂f(z)

∂x
+ i

∂f(z)

∂y

)
. (7.20)

We call ∂(·)
∂z and ∂(·)

∂z̄ the cogradient operator and conjugate cogradient
operator, respectively. They act as a partial derivative with respect to z (or
z̄), while treating z̄ (or z) as a constant vector. Note that, for a complex-valued
cost function that satisfies the Cauchy–Riemann conditions (7.16), ∂f(z,z̄)

∂z̄ is
equal to zero [53]. Hence, differentiability in a complex domain requires the
function f(z, z̄) to be solely a function of z and not exhibit any dependency
on z̄. This is also the reason why we explicitly write real-valued functions in
terms of z and z̄. For a real-valued function f(z, z̄), we have that(

∂f(z, z̄)

∂z

)
=
∂f(z, z̄)

∂z̄
. (7.21)

6The Cauchy–Riemann conditions are necessary and sufficient only for continuous func-
tions u(x,y) and v(x,y), see [1] for more information.
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Although their definitions allow the cogradient and conjugate cogradient to be
expressed elegantly in terms of z and z̄, neither contains enough information by
itself to express the change in a function with respect to a change in z or z̄ as
independent variables. Therefore, we define the complex gradient operator
∇(·) as

∇(·) =
(
∂(·)
∂z

,
∂(·)
∂z̄

)
. (7.22)

Relation (7.21) between both cogradients, however, allows us to only compute
one cogradient and obtain the other one by simply taking the complex conjugate
of that expression.

Proposition 7.1. For the real-valued multivariate polynomial cost func-
tions in complex variables in (7.8), a complex derivative does not exist, but
Wirtinger calculus provides an elegant alternative framework to compute the
first-order necessary conditions for optimality:

pi(z, z̄) =
∂f(z, z̄)

∂zi
= 0, for i = 1, . . . , n,

pn+i(z, z̄) =
∂f(z, z̄)

∂z̄i
= 0, for i = 1, . . . , n.

(7.23)

The common roots (z0, z̄0) of this square system of 2n multivariate polyno-
mial equations in z and z̄ correspond to the stationary points of (7.8):

VC = {z0 ∈ Cn : pi(z0, z̄0) = 0,∀i = 1, . . . , 2n}. (7.24)

Notice that the polynomials in (7.23) are not necessarily real-valued, only the
original cost function is. We can illustrate all the above with a didactic example.

Example 7.1. Let us consider the univariate optimization problem:

min
z,z̄
−i
(
z3 + z2z̄ − zz̄2 − z̄3

)
subject to ‖z‖22 − 3 = 0,

(7.25)

which amounts to minimizing the real-valued polynomial cost function
f(z, z̄) = −i

(
z3 + z2z̄ − zz̄2 − z̄3

)
= 8x2y, where x = Re(z) and y = Im(z),

on a circle with radius
√
3. We could approach this constrained optimization

problem from the traditional point of view, via (7.13), and consider x and y
as two independent real variables:

min
x,y

8x2y

subject to x2 + y2 − 3 = 0.
(7.26)

However, since the cost function is real-valued, we can use Wirtinger deriva-
tives. The Lagrangian that corresponds to this optimization problem is

L(z, z̄, λ) = −i
(
z3 + z2z̄ − zz̄2 − z̄3

)
+ λ(zz̄ − 3) (7.27)
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Figure 7.4. Contour lines of the real-valued polynomial cost function f(z, z̄)
in Example 7.1: the optimization problem has two global minimizers ( ), two
global maximizers ( ), and two local optima ( ), subject to ( ).

and its first-order necessary conditions for optimality (7.23) are

∂L(z, z̄, λ)
∂z

= −i
(
3z2 + 2zz̄ − z̄2

)
+ λz̄ = 0,

∂L(z, z̄, λ)
∂z̄

= −i
(
z2 − 2zz̄ − 3z̄2

)
+ λz = 0,

∂L(z, z̄, λ)
∂λ

= zz̄ − 3 = 0.

(7.28)

When we solve this system of multivariate polynomial equations (for example,
via the Macaulay matrix approaches proposed in Chapter 2), we obtain six
stationary points: two global maximizers ±

√
2 + 1i, two global minimizers

±
√
2− 1i, one local minimizer

√
3i, and one local maximizer −

√
3i (subject

to the constraints). This agrees with the visually identified stationary points
in Figure 7.4. Notice that the first and second equation in (7.28) are complex
conjugates of each other and that they are clearly not real-valued.

Remark 7.1. In the real case (z = x), the polynomial system (7.23) corre-
sponds to the well-known real gradient set equal to zero. Suppose that we
are only interested in the real stationary points x0 of the real-valued cost
function f(z, z̄) in z and z̄, we only consider the real gradient [224]:

∂f(x)

∂x
= 2

∂f(z, z̄)

∂z

∣∣∣∣
z=x

= 2
∂f(z, z̄)

∂z̄

∣∣∣∣
z=x

. (7.29)
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7.3.3 Globally optimal multivariate optimization
The fact that both the complex (decision) variables z and their complex con-
jugates z̄ are present in (7.23) clearly creates redundancy. After all, solving a
system of multivariate polynomial equations is not an easy task at hand (Chap-
ter 2). In this section, we show that the stationary points of (7.8) correspond
to (some of) the eigenvalues of an MEP, by eliminating z̄ via the Macaulay
matrix (Chapter 2).

Firstly, we rewrite every polynomial in (7.23) in terms of the different com-
plex conjugate monomials z̄α:

pi(z, z̄) =
∑
{α}

p
(α)
i (z)z̄α, (7.30)

for i = 1, . . . , 2n, where the summation runs over all multi-indices α. The
multi-index α = (α1, . . . , αn) ∈ Nn labels the powers of the conjugate variables
z̄ in the monomials z̄α and indexes the coefficients p(α)

i (z) of pi(z, z̄), which
are themselves also polynomials. The total degree of a monomial with respect
to z̄ is equal to |α| and the highest total degree with respect to z̄ among all
the monomials of pi(z, z̄) defines the degree di in z̄ of that polynomial.

Example 7.2. To clarify, we consider

p(z, z̄) = 2 + z2 + 3z1z2z̄1 + z21 z̄2

= p(00)(z) + p(10)(z)z̄1 + p(01)(z)z̄2,
(7.31)

where the corresponding polynomial coefficients p(α)(z) are

p(00)(z) = 2 + z2, (7.32)
p(10)(z) = 3z1z2, (7.33)
p(01)(z) = z21 . (7.34)

The degree of p(z, z̄) with respect to z̄ is 1.

When we multiply a polynomial pi(z, z̄) by a monomial z̄δi , we obtain a “new”
polynomial,

z̄δipi(z, z̄) =
∑
{α}

p
(α)
i (z)z̄α+δi , (7.35)

which is similar to assigning every polynomial coefficient p(α)
i (z) to a monomial

of higher degree in z̄. Note that these “new” polynomials, after equating them
to zero, do not alter the solution set VC in (7.24) when we add them to (7.23).

Secondly, we define the Macaulay matrix Md with respect to the conju-
gate variables z̄. This matrix corresponds to the traditional Macaulay matrix
from Definition 2.11 when treating z as a constant vector.
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Definition 7.1. Consider the polynomials pi(z, z̄) with total degree di in z̄,
for i = 1, . . . , 2n, of the system of multivariate polynomial equations, which
serve as the seed equations. The corresponding Macaulay matrix with
respect to the conjugate variables of degree d in z̄, Md(z) ∈ Ckd×ld ,
contains the polynomial coefficients p(α)

i (z) of the seed equations and the
equations z̄δipi(z, z̄) = 0 generated by a forward shift recursion (FSR) with
monomials z̄δi of increasing total degrees in z̄ so that |δi| = 0, . . . , d − di,
for i = 1, . . . , 2n.

Every row of Md(z) contains one polynomial z̄δipi(z, z̄), while every column is
associated with one monomial z̄α+δi , the highest total degree of which is equal
to d. The Macaulay matrix with respect to the conjugate variables Md(z) is
clearly a polynomial matrix in z, hence the bold calligraphic notation, that
gathers the polynomial coefficients p(α)

i (z) according to a certain pre-defined
monomial ordering (for example, monomial ordering in Definition 2.6). The
number of rows and columns of Md(z) depend on the degree d in z̄:

kd =

2n∑
i=1

(
d− di + 2n

d− di

)
(7.36)

and
ld =

(
d+ 2n

d

)
. (7.37)

We can use Definition 7.1 to rewrite (7.23) and additional equations (7.35) as
a matrix-vector product,

Md(z)q = 0, (7.38)

where the matrix Md(z) is the Macaulay matrix with respect to z̄ and the
vector q contains the different complex conjugate monomials z̄α+δi ordered
the same as the columns of Md(z).

Example 7.2 (continuing from p. 260). We can multiply p(z, z̄) in (7.31)
with all monomials z̄δ for which |δ| = 1, i.e., z̄1p(z, z̄) and z̄2p(z, z̄), or,
construct the Macaulay matrix with respect to z̄ of degree d = 3 in z̄, to
obtain a matrix-vector product as in (7.38):

2 + z2 3z1z2 z21 0 0 0
0 2 + z2 0 3z1z2 z21 0
0 0 2 + z2 0 3z1z2 z21


︸ ︷︷ ︸

M3(z)


1
z̄1
z̄2
z̄21
z̄1z̄2
z̄22


︸ ︷︷ ︸

q

= 0. (7.39)
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Finally, notice that (7.38) is an MEP when expanding the multivariate
matrix polynomial M(z) in terms of the different complex monomials zβ,

Md(z)q =

∑
{β}

Mβz
β

q = 0, (7.40)

where the summation runs over all the multi-indices β. The minimal required
degree d of Md(z) is such that kd ≥ ld+n−1, which is a necessary condition for
the MEP to have a zero-dimensional solution set (Chapter 3). The coefficient
matrices Mβ ∈ Ckd×ld of the MEP impose the structure of q and contain the
coefficients of the polynomial coefficients p(α)

i (z) associated with zβ.

Example 7.2 (continuing from p. 261). For the polynomial p(z, z̄)
in (7.31), the polynomial coefficient p(00)(z) = 2 + z2 creates coefficients
2 and 1 in the coefficient matrices M00 and M01, respectively. This results
in

M00 =

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0

 and M01 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

. (7.41)

One approach to solve the resulting MEP is via the block Macaulay matrix
approach developed in Chapter 3. The following example illustrates the above-
described reformulation.

Remark 7.2. In the univariate case, polynomial system (7.23) only consists
of two bivariate equations in z and z̄. An elimination of the complex conju-
gate variable z̄, via the well-known Sylvester matrix (i.e., the simplification
of the Macaulay matrix for two univariate polynomials), results in a PEP
instead of the MEP in (7.40). The Macaulay matrix from Definition 7.1 re-
duces to the well-known Sylvester matrix for n = 1. Note that the univariate
case of our proposed optimization approach yields a similar PEP as in [223,
224]. The main difference is that the coefficient matrices in [223, 224] are the
transpose of the coefficient matrices in (7.40).

Example 7.3. Consider the univariate optimization problem

min
z

∥∥∥z(z − 0.5j)
2 − z

∥∥∥2
2
, (7.42)

which clearly has a real-valued polynomial cost function. The corresponding
system of Wirtinger derivatives is

p1(z, z̄) =
∂f(z, z̄)

∂z
= 0,

p2(z, z̄) =
∂f(z, z̄)

∂z̄
= 0,

(7.43)
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Figure 7.5. Contour lines of the real-valued polynomial cost function f(z, z̄)
in Example 7.3: the optimization problem has three minimizers ( ) and two
saddle points ( ).

or 
p1(z, z̄) = 1.5625z̄ + 2.5izz̄ − 1.25iz̄2 − 3.75z2z̄ + 2zz̄2

− 1.25z̄3 + 3iz2z̄2 − 2izz̄3 + 3z2z̄3 = 0,

p2(z, z̄) = 1.5625z + 1.25iz2 − 2.5izz̄ − 1.25z3 + 2z2z̄

− 3.75zz̄2 + 2iz3z̄ − 3iz2z̄2 + 3z3z̄2 = 0.

(7.44)

We can construct the corresponding Sylvester matrix (of degree d = 4 in z̄),

S4(z) =


p
(0)
1 (z) p

(1)
1 (z) p

(2)
1 (z) p

(3)
1 (z) 0

0 p
(0)
1 (z) p

(1)
1 (z) p

(2)
1 (z) p

(3)
1 (z)

p
(0)
2 (z) p

(1)
2 (z) p

(2)
2 (z) 0 0

0 p
(0)
2 (z) p

(1)
2 (z) p

(2)
2 (z) 0

0 0 p
(0)
2 (z) p

(1)
2 (z) p

(2)
2 (z)

, (7.45)

where p(α)i (z) is the polynomial that is associated with z̄α of pi(z, z̄) in (7.44).
For example, p(2)1 (z) = −1.25i+ 2z+3iz2 because that are the monomials of
p1(z, z̄) that are associated with z̄2. Subsequently, we create the coefficient
matrices of the PEP from the Sylvester matrix by extracting the coefficients
that belong to a power of zβ :(

S0 + S1z + S2z
2 + S3z

3
)
q = 0. (7.46)

Taking again p(2)1 (z) = −1.25i+2z+3iz2, this leads to the coefficients −1.25i
in S0, 2 in S1, and 3i in S2 at the positions of p(2)1 (z) in S4(z). For clarity,
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we show S2:

S2 =


0 −3.75 3i 3 0
0 0 −3.75 3i 3

1.25i 2 −3i 0 0
0 1.25i 2 −3i 0
0 0 1.25i 2 −3i

. (7.47)

Solving the resulting PEP, or the system (7.44) directly, yields 13 affine
solutions: 3 minimizers, 2 saddle points, and 8 ghost solutions (Table 7.1).
In Figure 7.5, we visualize the minimizers and saddle points on the contour
lines of the real-valued polynomial cost function. We discuss these ghost
solutions in more detail in Section 7.3.4.

7.3.4 About ghost solutions
In the context of complex optimization, ghost solutions (sometimes called
spurious solutions) arise due to the fact that numerical optimization algo-
rithms can not properly deal with complex conjugate variables. Ghost solutions
can also arise in our proposed optimization approach, see Example 7.3. They
emerge when solving the MEP (7.40), or the system of multivariate polynomial
equations (7.23) directly, via numerical linear algebra algorithms that can not
impose that z̄ is the complex conjugate of z. In that case, we essentially tackle
the problem as if z and z̄ (let us call them u and v here) are independent
variables, which results in the candidate solution set (instead of the desired
solution set of (7.24))

VC̃ =
{
(u0,v0) ∈ C2n : pi(u0,v0) = 0,∀i = 1, . . . , 2n

}
. (7.48)

Of course, we only want the subset for which (u0,v0) = (z0, z̄0), i.e., the
true stationary points of (7.8), and we need to remove these ghost solutions
from (7.48). Luckily, this is not a difficult task, even if we only compute
the eigenvalues u (v is then part of the eigenvector): we can (i) substitute
the obtained eigenvalues and their complex conjugates in (7.23) and check if
(u0,v0) is indeed a stationary point of (7.8) or (ii) construct an eigenvector q0

from the complex conjugate of u0 and check if q0 is indeed an eigenvector of
M(u0). An alternative heuristic technique to filter out ghost solutions (and
to prune wrong solutions due to rounding errors) based on the well-known
Newton–Raphson method was proposed in [224]. However, this technique is
known to fail in some cases [224].

Remark 7.3. Note that using the standard approach for complex optimiza-
tion, using derivatives with respect to x and y and solving the resulting
polynomial system of first-order necessary conditions for optimality, also can
result in ghost solutions. In this situation, ghost solutions are candidate
solutions that are complex-valued, while x0 and y0 have to be real-valued.
These ghost solutions emerge because systems of multivariate polynomial
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Table 7.1. Numerical values of the candidate solutions (u0, v0) of (7.44). Next
to “true” stationary points of the cost function in (7.42), we also obtain ghost
solutions.

u0 v0 classification
1.0000 + 0.5000i 1.0000− 0.5000i minimizer
−1.0000 + 0.5000i −1.0000− 0.5000i minimizer
0.0000 + 0.0000i 0.0000 + 0.0000i minimizer
0.5528 + 0.3333i 0.5528− 0.3333i saddle point
−0.5528 + 0.3333i −0.5528− 0.3333i saddle point
1.0000 + 0.5000i −1.0000− 0.5000i ghost solution
1.0000 + 0.5000i 0.0000 + 0.0000i ghost solution
−1.0000 + 0.5000i 1.0000− 0.5000i ghost solution
−1.0000 + 0.5000i 0.0000 + 0.0000i ghost solution
0.0000 + 0.0000i 1.0000− 0.5000i ghost solution
0.0000 + 0.0000i −1.0000− 0.5000i ghost solution
−0.5528 + 0.3333i 0.5528− 0.3333i ghost solution
0.5528 + 0.3333i −0.5528− 0.3333i ghost solution

equations and MEPs, without additional constraints, can also have complex
solutions. When considering a specific problem with both approaches, it is
possible to show that every ghost solution (x0,y0) corresponds to a ghost
solution (u0,v0), via (7.13), and vice versa, via (7.14).

Example 7.4. When solving the PEP in (7.46) or the system of multivariate
polynomial equations in (7.44) with numerical linear algebra algorithms, we
obtain 13 affine solutions (Table 7.1): 3 minimizers, 2 saddle points, and
8 ghost solutions. The ghost solutions can be deflated from the candidate
solution set by checking for every candidate solution u0 if the candidate
solution u0 and its complex conjugate ū0 are indeed a solution of (7.44) or
by checking if the eigenvector q0 constructed from the complex conjugate ū0
of the candidate solution is indeed an eigenvector of the PEP for u0.

7.3.5 Numerical example
Finally, we try to fit as good as possible a rank-1 matrix to a given complex
matrix.

Example 7.5. Consider the problem where we try to fit a rank-1 matrix to
a given complex 2× 2 matrix A ∈ C2×2:

min
z

∥∥∥∥[a11 a12
a21 a22

]
−
[
z21 z1z2
z1z2 z22

]∥∥∥∥2
F
, (7.49)

which is an example of a nonlinear least-squares optimization problem (7.11).
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The system of first-order necessary conditions for optimality for this exam-
ple is 

p1(z, z̄) =
∂f(z, z̄)

∂z1
= 0,

p2(z, z̄) =
∂f(z, z̄)

∂z2
= 0,

p3(z, z̄) =
∂f(z, z̄)

∂z̄1
= 0,

p4(z, z̄) =
∂f(z, z̄)

∂z̄2
= 0,

(7.50)

or 
p1(z, z̄) = −2ā11z1 + 2z1z̄

2
1 − (ā12 + ā21)z2 + 2z2z̄1z̄2 = 0,

p2(z, z̄) = −2ā22z2 + 2z2z̄
2
2 − (ā12 + ā21)z1 + 2z1z̄1z̄2 = 0,

p3(z, z̄) = −2a11z̄1 + 2z21 z̄1 − (a12 + a21)z̄2 + 2z1z2z̄2 = 0,

p4(z, z̄) = −2a22z̄2 + 2z22 z̄2 − (a12 + a21)z̄1 + 2z1z2z̄1 = 0,

(7.51)

with z =
[
z1 z2

]T and z̄ =
[
z̄1 z̄2

]T. We visualizes the Macaulay matrix
M3(z) of degree d = 3 in z̄ for these polynomials in Figure 7.6. Each coefficient
of M3(z) is a polynomial coefficient p(α)

i (z) associated with a monomial z̄α.
For example, the green dot ( ) corresponds to p(20)1 (z) = 2z1 and is associated
with z̄21 . This Macaulay matrix leads to a quadratic two-parameter eigenvalue
problem,(

M00 +M10z1 +M01z2 +M20z
2
1 +M11z1z2 +M02z

2
2

)
q = 0, (7.52)

which we can solve, for example, via a block Macaulay matrix approach. If we
consider the given matrix

A =

[
a11 a12
a21 a22

]
=

[
1 1i
1i −2

]
, (7.53)

then we obtain nine stationary points after solving (7.52). The global minimizer
is (0.8507, 1.3764i), which also corresponds to the first triplet obtained via the
complex singular value decomposition of A.

7.4 Model order reduction
In model order reduction, our second key example, we start from a higher-
order model of a dynamical system, but we want to reduce the complexity and
approximate this higher-order model by a reduced-order model [8]. This is a
different setting than in system identification (see next section), where we try
to find a model from the available measured data. Model order reduction aims
to approximate a large high-order model by a model of lower order (less states).
Large models may be too complicated for simulation or for control system de-
sign; hence, model order reduction in these scenarios is of crucial importance
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1 z̄2

1 z̄2 z̄1z̄
2
2 z̄3

2

Figure 7.6. Visualization of the Macaulay matrix that generates the coeffi-
cient matrices of the MEP in Example 7.5, with (on the right side) a detailed
illustration of the polynomial coefficients of p1(z, z̄). The row-labels denote
the shifted polynomials z̄δipi(z, z̄), while the column-labels denote the asso-
ciated monomials z̄α. Every colored dot corresponds to one of the (non-zero)
polynomial coefficients p(α)

i (z) of the polynomials. For example, the green dot
( ) corresponds to p(20)1 (z), which is shifted throughout the Macaulay matrix
after multiplying p1(z, z̄) by 1 (i.e., the original polynomial), z̄1, and z̄2.

(see [8] for some motivating examples). For polynomial models, the approxima-
tion problem can in certain norms be rephrased as a multivariate polynomial
optimization problem [3, 148], where the stationary points are candidates for
model parameters of the reduced-order models.

In this section, we address the model order reduction problem for SISO
LTI systems. The approximation problem is considered in a H2-norm way.
The underlying optimization problem is non-convex, implying that there exist
many local minima and that obtaining the global minimizers is known to be
a very challenging task. State-of-the-art solvers provide a heuristic approach
to the optimization problem (see the “historical and bibliographical notes” of
this chapter for an overview). These algorithms are not guaranteed to con-
verge to the globally optimal solution, despite the use of several heuristic rules
during their initialization. Nonetheless, we can not stress enough their impor-
tance in large practical applications. For the particular cases of first-order and
second-order SISO approximants, the global optimum can be found by solving
a polynomial system in one and two variables, respectively [4, 5]. In [107, 108],
it has been shown that the special case of order-one reductions can be solved by
computing the common roots of a system of quadratic polynomial equations.
This section, on the other hand, provides a unique approach to obtain the
globally optimal solution of the H2-norm model order reduction problem for
an approximant of arbitrary order. It reformulates the problem as an MEP, an
approach that has also been used in the (very) recent work by Alsubaie [6] and
Lagauw et al. [148]. Where Alsubaie [6] has followed an approach inspired by
iterative rational Krylov methods and Lagauw et al. [148] have applied Walsh’s
theorem in the frequency domain to obtain an MEP, this approach exploits the
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Lyapunov equation to rewrite the cost function of the underlying optimization
problem. The result is an MEP in terms of the unknown parameters of the
reduced-order transfer function7. It is clear that the block Macaulay matrix
approach from Chapter 3 can play an important role in finding these globally
optimal reduced-order models.

The remainder of this section is organized as follows: We formulate the sec-
ond key example mathematically (Section 7.4.1), before deriving the first-order
optimality conditions of an appropriately redefined cost function and explain-
ing how this system of first-order optimality conditions can be transformed into
an MEP8 (Section 7.4.2). We also present a numerical example to illustrate
our methodology and to show how the block Macaulay matrix can be useful
for model order reduction (Section 7.4.3).

7.4.1 Problem formulation
The model order reduction problem for SISO LTI systems can be cast in the
following way: For a given nth-order LTI continuous-time stable system with
transfer function

G(s) = C(sIn −A)
−1

B, (7.54)
where A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n are the system matrices, we look
for an rth-order stable reduced model

Gr(s) = Cr(sIr −Ar)
−1

Br, (7.55)

with r < n, Ar ∈ Rr×r, Br ∈ Rr×1, and Cr ∈ R1×r, so that Gr(s) is a “good
approximation” of G(s). In the particular setting of H2-norm model order
reduction, we seek to minimize the squared H2-norm of Ge(s) = G(s)−Gr(s),
i.e.,

min‖G(s)−Gr(s)‖2H2
, (7.56)

where the H2-norm of Ge(s) is defined as

‖Ge(s)‖H2
=

√
1

2π

∫ ∞

−∞
|Ge(jω)|2dω (7.57)

=

√∫ ∞

0

ge(t)2dt. (7.58)

Here, ge(t) is the impulse response ofGe(s), so theH2-error could be interpreted
as the area under the impulse response of the error system. Note that the H2-
norm is only defined (bounded) for stable and strictly proper transfer functions.

7Although all three approaches provide a H2-norm approach to compute the globally
optimal approximant of arbitrary order, the computational properties of the resulting MEPs
may vary a lot, depending on the specific orders of the original high-order and required
reduced-order model. A first attempt to compare the computational properties of all three
approaches can be found in [148].

8While we rephrase the globally optimal H2-norm model reduction problem as a homoge-
neous MEP in this chapter, the original paper [3] resulted in an inhomogeneous MEP, which
could be solved via an extension of the block Macaulay matrix, the so-called augmented block
Macaulay matrix.
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7.4.2 Globally optimal model order reduction
This optimization problem (7.56) is non-convex and obtaining the global min-
imizer is known to be a very challenging task. In this section, we show that
finding the optimal and suboptimal solutions of the H2-norm model order re-
duction problem (7.56) is equivalent to finding the common roots of a system
of multivariate polynomial equations, and, eventually, to solving an MEP.

7.4.2.1 Redefined cost function

TheH2-norm of the error transfer functionGe(s) can be computed algebraically
via its state space realization, instead of evaluating the integral in (7.57).
Hence, as shown by Antoulas [8] and Van Dooren et al. [252], we can con-
veniently express the cost function of the optimization problem (7.56) as

σ2(a, b) = ‖Ge(s)‖2H2
= CeWCT

e , (7.59)

where W = WT ∈ R(n+r)×(n+r) is the controllability Gramian of Ge(s) satis-
fying the Lyapunov equation

AeW +WAT
e +BeB

T
e = 0, (7.60)

with
Ae =

[
A 0
0 Ar

]
,Be =

[
B
Br

]
, and Ce =

[
C −Cr

]
(7.61)

the system matrices of

Ge(s) = Ce(sIn+r −Ae)
−1

Be. (7.62)

Now, we rewrite the cost function (7.59) only in terms of the unknown param-
eters (ai and bi, ∀i = 1, . . . , r) of the transfer function of the reduced-order
model (keep in mind that W is also unknown)

Gr(s) =
b1s

r−1 + b2s
r−2 + · · ·+ br−1s+ br

sr + a1sr−1 + · · ·+ ar−1s+ ar
. (7.63)

As state space representation of Gr(s), we use its control canonical form:

Ar =


−a1 −a2 · · · −ar−1 −ar
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

,Br =


1
0
0
...
0

, (7.64)

and Cr =
[
b1 b2 b3 · · · br

]
. (7.65)

By partitioning W , we can rewrite the cost function (7.59) as

σ2(a, b) = CeWCT
e (7.66)

=
[
C −Cr

][W 11 W 12

W 21 W 22

][
CT

−CT
r

]
(7.67)

= CrW 22C
T
r − 2CrW 21C

T +CW 11C
T (7.68)
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and the Lyapunov equation (7.60) as[
AW 11 +W 11A

T +BBT AW 12 +W 12A
T
r +BBT

r

ArW 21 +W 21A
T +BrB

T ArW 22 +W 22A
T
r +BrB

T
r

]
= 0, (7.69)

where W 11 and W 22 are the controllability Gramians of G(s) and Gr(s),
respectively, and W 12 = WT

21 because W = WT. Notice that the term
CW 11C

T in (7.68) can be dropped, since it does not depend on the parame-
ters of Gr(s). Thus, we can use

σ̃2(a, b) = CrW 22C
T
r − 2CrW 21C

T (7.70)

as the new cost function.
In what follows, we eliminate W 22 and W 21 from σ̃2(a, b) by using (7.69).

It is not difficult to see that (vec(·) denotes the vectorization operator)

CrW 22C
T
r = vec

(
CT

r Cr

)T
vec(W 22) (7.71)

and
CrW 21C

T = vec
(
CT

r C
)T

vec(W 21). (7.72)

If we introduce the auxiliary vectors gr = vec
(
CT

r Cr

)
∈ Rr2×1 and gm =

vec
(
CT

r C
)
∈ R(nr)×1, then we can compactly write σ̃2(a, b) as

σ̃2(a, b) = gT
r vec(W 22)− 2gT

m vec(W 21). (7.73)

Notice that the Lyapunov equation ArW 22 + W 22A
T + BrB

T
r = 0 can be

expressed as (see [124])

(Ar ⊗ Ir + Ir ⊗Ar) vec(W 22) = − vec
(
BrB

T
r

)
(7.74)

⇓

(Ar ⊕Ar)︸ ︷︷ ︸
T r

vec(W 22) = − vec
(
BrB

T
r

)
︸ ︷︷ ︸

fr

, (7.75)

and the Sylvester equation ArW 21 +W 21A
T
r +BrB

T = 0 as

(A⊗ Ir + In ⊗Ar) vec(W 21) = − vec
(
BrB

T
)

(7.76)

⇓

(A⊕Ar)︸ ︷︷ ︸
Tm

vec(W 21) = − vec
(
BrB

T
)

︸ ︷︷ ︸
fm

, (7.77)

with T r ∈ Rr2×r2 , fr ∈ Rr2×1, Tm ∈ R(nr)×(nr), and fm ∈ R(nr)×1. The
operator ⊗ is again the Kronecker product and the operator ⊕ denotes the
Kronecker sum.
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Finally, from (7.75) and (7.77), we have that vec(W 22) = −T−1
r fr and

vec(W 21) = −T−1
m fm, and, by substituting them into (7.73), we get σ̃2(a, b)

only in terms of the parameters ai and bi (∀i = 1, . . . , r) of Gr(s):

σ̃2(a, b) = −gT
r T

−1
r fr + 2gT

mT−1
m fm. (7.78)

This cost function has to be minimized over the unknown parameters ai and
bi, ∀i = 1, . . . , r.

Remark 7.4. From [124, Theorem 4.4.5], we know that the eigenvalues of
the Kronecker sum of two matrices X ∈ Rnx×nx and Y ∈ Rny×ny corre-
spond to all possible pairwise sums of the eigenvalues of X and Y , that
is, if Λ(X) = {λ1, . . . , λnx} and Λ(Y ) =

{
µ1, . . . , µny

}
, then Λ(X ⊕ Y ) =

{λi + µj : i = 1, . . . , nx, j = 1, . . . , ny}. A sufficient condition for T r and Tm

to be invertible can be drawn from this result: If all the eigenvalues of A
and Ar have a negative real part (which is the case for the optimal and sub-
optimal solutions of (7.56)), then all the eigenvalues of T r = Ar ⊕Ar and
Tm = A ⊕Ar also have a negative real part, implying the non-singularity
of the matrices T r and Tm.

7.4.2.2 First-order necessary conditions for optimality

Keeping in mind that the vectors gr and gm are only a function of bi, and
the matrices T r and Tm are only a function of ai, the first-order necessary
conditions for optimality of σ̃2(a, b), ∀i = 1, . . . , r, are given by

∂σ̃2(a, b)

∂ai
= −gT

r

∂T−1
r

∂ai
fr + 2gT

m

∂T−1
m

∂ai
fm = 0 (7.79)

∂σ̃2(a, b)

∂bi
= −∂g

T
r

∂bi
T−1

r fr + 2
∂gT

m

∂bi
T−1

m fm = 0. (7.80)

Since ∂T−1
r

∂ai
= −T−1

r
∂T r

∂ai
T−1

r and ∂T−1
m

∂ai
= −T−1

m
∂Tm

∂ai
T−1

m , the previous equa-
tions become

∂σ̃2(a, b)

∂ai
= gT

r T
−1
r T ai

r T−1
r fr − 2gT

mT−1
m T ai

mT−1
m fm = 0, (7.81)

∂σ̃2(a, b)

∂bi
= −gbiT

r T−1
r fr + 2gbiT

m T−1
m fm = 0, (7.82)

with T ai
r = ∂T r

∂ai
, T ai

m = ∂Tm

∂ai
, gbi

r = ∂gr

∂bi
, and gbi

m = ∂gm

∂bi
. T−1

r = adj(T r)
det(T r)

and T−1
m = adj(Tm)

det(Tm) , where adj(·) denotes the adjugate matrix. Given that
det(T r) 6= 0 and det(Tm) 6= 0, the partial derivatives in (7.81) and (7.82) define
a system of 2r multivariate polynomial equations in 2r unknowns (ai, bi,∀i =
1, . . . , r), after “multiplying out” det(T r) and det(Tm). Next, we introduce
two auxiliary vectors,

h = T−1
r fr ∈ Rr2×1, (7.83)

p = T−1
m fm ∈ R(nr)×1, (7.84)



272 Chapter 7. Applications in Systems Theory

to partially linearize these equations. The vectors

hai = −T−1
r T ai

r h ∈ Rr2×1, (7.85)
pai = −T−1

m T ai
mp ∈ R(nr)×1 (7.86)

are the partial derivatives of h and p with respect to the unknown parameters
ai (∀i = 1, . . . , r), respectively. With these definitions, we can rewrite (7.81)
and (7.82) as

∂σ̃2(a, b)

∂ai
= −gT

r h
ai + 2gT

mpai = 0, (7.87)

∂σ̃2(a, b)

∂bi
= −gbiT

r h+ 2gbiT
m p = 0. (7.88)

These partial derivatives, together with the definitions in (7.83) to (7.86), con-
form a new system of multivariate polynomial equations from which the optimal
solution(s) can be retrieved. The common roots of this system of multivariate
polynomial equations comprise all the global and local minima as well as all
the maxima and saddle points of σ̃2(a, b) and σ2(a, b). In Section 7.4.2.3, we
reformulate this system of multivariate polynomial equations as an MEP.

Example 7.6. To illustrate, let us consider the case when r = 1, that is,
when we look for an H2-norm optimal first-order approximant of G(s). In
this case, Gr(s) only has two parameters,

Gr(s) =
b

s+ a
, (7.89)

and the polynomial system defined by (7.83) to (7.88) consists of 2n + 4
multivariate polynomial equations in 2n+ 4 unknowns:

2gT
mpa − gT

r h
a = 0, (7.90)

2gbT
m p− gbT

r h = 0, (7.91)
T rh

a + T a
rh = 0, (7.92)

Tmpa + T a
mp = 0, (7.93)

T rh− fr = 0, (7.94)
Tmp− fm = 0. (7.95)

Only two of the unknowns appear not linearly in the polynomial system9,
namely the parameters a and b.

9Notice that some of the variables in this system are no longer matrices or vectors in the
first-order case. However, to avoid distraction and keep our notation consistent with the
higher-order case, we do not remove their boldface appearance.
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7.4.2.3 Multiparameter eigenvalue problem

This first-order necessary conditions for optimality (7.83) to (7.88) constitute
a system of r3 + r2(n+ 1) + r(n+ 2) cubic polynomial equations in the same
number of unknowns, of which r3 + r2(n+ 1) + rn variables appear linearly
in the problem. Given that h, p, hai , and pai , for i = 1, . . . , r, “only appear
linearly”, we can compactly rewrite this system as a matrix-vector product:

−
(
gT
r

)r
⊗ 2

(
gT
m

)r
⊗ 0 0 0

0 0
{
−gbiT

r

}
i

2
{
gbiT
m

}
i

0(
T r

)r
⊗ 0

{
T ai

r

}
i

0 0

0
(
Tm

)r
⊗ 0

{
T ai

m

}
i

0

0 0 T r 0 fr

0 0 0 Tm fm


︸ ︷︷ ︸

M(a,b)


{
hai
}
i{

pai
}
i

h
p
−1


︸ ︷︷ ︸

z

= 0, (7.96)

where the operator
(
·
)s
⊗ represents the identity matrix Kronecker product Is⊗(

·
)

and the curly brackets {Ai}i indicate a vertical stack of matrices Ai over
the index i, e.g., for i = 1, 2, {Ai}i =

[
AT

1 AT
2

]T. The rectangular matrix
M(a, b) ∈ Rk×l has 2r − 1 more rows than columns,

k = r3 + r2(n+ 1) + r(n+ 2), (7.97)
l = r3 + r2(n+ 1) + rn+ 1, (7.98)

and is a function of the unknown parameters ai and bi, which appear quadrat-
ically in gr and linearly in gbi

r , gm, T r, and Tm. The matrix-vector product

M(a, b)z = 0 (7.99)

is an MEP, where the parameters ai and bi constitute the (2r)-tuples of eigen-
values λ and the vectors h, hai , p, and pai generate the eigenvectors z. By
expanding the matrix M(a, b) in terms of the different monomials λω, where

λ = (a1, . . . , ar, b1, . . . , br), (7.100)

we obtain the coefficient matrices Aω of the MEP. To solve this problem nu-
merically, we rely again on the algorithms developed in Chapter 3.

Example 7.7. For r = 1, the matrix-vector product (7.96) corresponds to
−gT

r 2gT
m 0 0 0

0 0 −gbT
r 2gbT

m 0
T r 0 T a

r 0 0
0 Tm 0 T a

m 0
0 0 T r 0 fr

0 0 0 Tm fm




ha

pa

h
p
−1

 = 0, (7.101)
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or, in terms of the model parameters, to
−b2 2bC 0 0 0
0 0 −2b 2C 0
−2a 0 −2 0 0
0 −aIn +A 0 −In 0
0 0 −2a 0 1
0 0 0 −aIn +A B




ha

pa

h
p
−1

 = 0, (7.102)

where a and b constitute the 2-tuples of eigenvalues λ, while h, p, ha, and
pa generate the eigenvectors z.

7.4.3 Numerical example
Now, we present a small numerical proof-of-concept to illustrate the above-
described novel model order reduction approach.

Example 7.8. We consider the transfer function

G(s) =
s2 + 9s− 10

s3 + 12s2 + 49s+ 78
, (7.103)

for which we want to compute the H2-norm globally optimal first-order ap-
proximant

Gr(s) =
b

s+ a
. (7.104)

For this example, the system of multivariate polynomial equations consists
of 10 multivariate polynomial equations in 10 unknowns, of which 8 appear only
linearly. This can be reformulated as a quadratic two-parameter eigenvalue
problem with coefficient matrices Aω ∈ R10×9, where the unknown parameters
a and b constitute the eigenvalues λ = (a, b) of the problem.

Via the implemented functions in MacaulayLab, we observe that a block
Macaulay matrix M ∈ R450×594 of degree d = 10 suffices to find the gap in
its null space. In this particular example, the nullity does not stabilize, but
the nullity change does, which indicates that the solutions at infinity form a
one-dimensional variety (Table 7.2). Since we detect 14 linearly independent
rows in the regular zone of the null space of M , the MEP has ma = 14 affine
solutions. Table 7.3 contains these eigenvalues. Only 2 of these solutions lead to
stable transfer functions with real coefficients and non-zero numerators, namely

G1(s) =
1.2799

s+ 9.6796
(7.105)

and
G2(s) =

−0.0437
s+ 0.2671

. (7.106)

The contour plot of the H2-error for this numerical example is given in Fig-
ure 7.7 and the Bode plots of the original model and two first-order models are



Section 7.5. System identification 275

Table 7.2. Stabilization diagram for the numerical example, showing the
properties of the block Macaulay matrix as a function of its degree d.

degree size rank nullity nullity change
2 10× 54 10 44 /
3 30× 90 30 60 16
4 60× 135 60 75 15
5 100× 189 100 89 14
6 150× 252 150 102 13
7 210× 324 210 114 12
8 280× 405 280 125 11
9 360× 495 360 135 10
10 450× 594 450 144 9
11 550× 702 549 153 9

Table 7.3. Real eigenvalues obtained after solving the model order reduction
problem in Example 7.8 for r = 1. Only two of the eigenvalues result in a stable
reduced-order model Gr(s) with real coefficients and nonzero numerators.

a b σ2(a, b)

9.6796 1.2799 0.2784
0.2671 −0.0437 0.4082

−16.6189 1.9265 unstable model
−10.0000 0.0000 zero numerator
−6.0000 0.0000 zero numerator
1.0000 0.0000 zero numerator
0.0000 0.0000 zero numerator

given in Figure 7.8. Clearly, the globally optimal first-order approximant of
G(s) is G1(s) (Table 7.3). In order to corroborate the previous results, we used
the iterative rational Krylov algorithm (IRKA) [101], available in the sssMOR
(sparse state-space and model order reduction) toolbox [57] for Matlab. We
observe that, depending on the initialization, the algorithm can converge to
one of the two solutions, i.e., (7.105) and (7.106), or to a solution that does
not lead to a stable reduced-order model (e.g., a = −16.6189 and b = 1.9265).
Note that we could also directly tackle the polynomial system derived in Exam-
ple 7.6 via the Macaulay matrix approaches from Chapter 2, but this requires
solving a polynomial system with 7 equations in 7 variables.

7.5 System identification
The last key example that we consider in this chapter is the motivational prob-
lem used throughout this dissertation. The problem of finding the globally
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Figure 7.7. Contour plot of the H2-error ‖Ge(s)‖H2
for Example 7.8. Here,

G1(s) ( ) corresponds to the globally optimal solution and G2(s) ( ) is a
local minimizer.

optimal parameters of an ARMA model is a problem from system identifica-
tion, which aims at constructing models for dynamical systems from measured
data [40, 158, 254]. The constructed model tries to capture the relations be-
tween input, output, and noise. It depends on a set of model parameters, which
are selected to best fit the measured data.

We explore in this section the intimate connection between system identifi-
cation problems and eigenvalue problems, and we proof that the identification
of an ARMA model is an MEP. ARMA models regress an observed output
sequence on its own lagged values and on a linear combination of unobserved,
latent input samples [40]. In the statistical literature, this sequence of latent
inputs is often assumed to be a white Gaussian process [59]. Although our
results could be interpreted in an appropriate maximum likelihood framework,
we refrain ourselves from those a priori assumptions. ARMA models emerge
in a wide variety of domains [40], e.g., in modeling industrial processes, fi-
nancial time series, or smart utility grid applications (electricity, water, etc.).
Moreover, their model structure is an important building block for more sophis-
ticated models [158], e.g., autoregressive moving-average with exogeneous in-
put (ARMAX) models and autoregressive integrated moving-average (ARIMA)
models.

Although numerous nonlinear identification techniques for ARMA models
already exist, e.g., autocorrelation, penalty function, and innovation regression
methods (see the books by Choi [59], Ljung [158], Brockwell and Davis [47]),
most of them rely on non-convex numerical optimization and do not guarantee
to find the globally optimal model parameters. Stochastic subspace methods,
on the other hand, provide a geometric approach by means of projections, which
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Figure 7.8. Magnitude plot of the Bode diagrams of the original transfer
function G(s) ( ), the globally optimal first-order approximant G1(s) ( ),
and the other stable first-order approximant G2(s) ( ). G1(s) is also visually
a better approximant of G(s) than G2(s).

work very good in practice, but are not known to be optimal in any sense (see,
for example, [253, 254]). Batselier et al. [25] have already approached globally
optimal prediction error method identification (and thus also the identification
of ARMA models) as an eigenvalue problem. However, they have used the
(scalar) Macaulay matrix, which does not exploit the available structure in the
problem and scales terribly with the number of output samples.

In this section, we tackle and resolve this hiatus and find the globally opti-
mal least-squares ARMA model parameters using the block Macaulay matrix
from Chapter 3. The first-order necessary conditions for optimality of this iden-
tification problem constitute a system of multivariate polynomial equations, in
which most variables appear linearly. This system is essentially an MEP, which
we solve by the block Macaulay matrix. At least one of the eigenvalues corre-
sponds to the global minimum of the original least-squares cost function and
thus yields the globally optimal parameters of the ARMA model. Although we
focus in this section solely on ARMA models, we want the reader to be aware
of the possibility to use this approach for other model classes10.

10In our research group, we do actually not restrict ourselves to ARMA models, but consider
the more general misfit-versus-latency model class, which encompasses this ARMA model.
The misfit-versus-latency model class was introduced for the first time by Lemmerling and
De Moor [155]. It has close links with both Willems’ behavioral approach [166, 277–279] and
the (structured) total least-squares approach [72, 73]. The framework deals with a broad
class of models by allowing not only an unobserved, latent input (cf., latency models, like the
ARMA model), but also a misfit on the input and output (cf., misfit models, like the output-
error model): an altered input-output sequence must satisfy the imposed model equation,
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The remainder of this section proceeds as follows: Firstly, we mathemat-
ically formulate the ARMA model structure and set up the ARMA identi-
fication problem (Section 7.5.1). We subsequently propose a globally optimal
least-squares approach to find the parameters of ARMA models (Section 7.5.2).
Finally, we provide a numerical example to support our theoretical derivations
(Section 7.5.3).

7.5.1 Problem formulation
A single-input/single-output ARMA model combines a regression of the ob-
served output variable yk ∈ R on its own lagged values yk−i with a linear
combination of unobserved, latent inputs ek−r ∈ R [40]:

na∑
i=0

αiyk−i =

nc∑
j=0

γjek−j , (7.107)

where na and nc are the orders of the autoregressive and moving-average part,
respectively. The weighting factors αi ∈ R, i = 1, . . . , na, and γj ∈ R, j =
1, . . . , nc, in the summations are the parameters of the ARMA model. To avoid
indeterminacy and without loss of generality, we fix the leading parameters
α0 = γ0 = 1.

Given a data sequence of N observed output samples y ∈ RN×1 (not nec-
essarily generated by an ARMA model), we want to find the parameters that
satisfy the model structure of (7.107) and minimize the squared 2-norm of the
unobserved, latent input vector e ∈ R(N−na+nc)×1, on which we put no a priori
unverifiable constraints (like, for example, whiteness or Gaussianity). For this
problem, the model structure of (7.107) results in

T αy = T γe, (7.108)
where the two model matrices T α ∈ R(N−na)×N and T γ ∈ R(N−na)×(N−na+nc)

are banded Toeplitz matrices of appropriate dimensions:

T α =


αna

· · · α1 1 0 · · · 0

0 αna · · · α1 1
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 αna

· · · α1 1

 (7.109)

and

T γ =


γnc · · · γ1 1 0 · · · 0

0 γnc
· · · γ1 1

...
...

...
. . . . . . . . . . . . 0

0 · · · 0 γnc · · · γ1 1

. (7.110)

but this adaptation can be achieved via a combination of a latent input and a misfit on the
input-output data. Playing around with the hyper-parameters results in very different model
classes, see the overview in [155, Table 1]. For certain sets of hyper-parameters, our research
group has already published some interesting results, e.g., for the least-squares realization
problem [70, 71] and the ARMA model [259]. Also for ARMAX models, we have obtained
some (unpublished) results.
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The identification problem corresponds to a multivariate polynomial optimiza-
tion problem in which we minimize the sum of squares of the latent inputs
σ2(a, c) = ‖e‖22, subject to the ARMA model structure of (7.108):

min
a,c
‖e‖22

subject to T αy = T γe,
(7.111)

where the unknown vectors a ∈ Rna×1 and c ∈ Rnc×1 contain the unknown
model parameters αi and γj , respectively.

7.5.2 Globally optimal system identification
This section proves our claim that globally optimal least-squares identification
of ARMA models is an MEP. The first-order necessary conditions for optimality
constitute a system of multivariate polynomial equations that defines the set
of stationary points of the original least-squares cost function (Section 7.5.2.1).
Next, we show that this system is basically an MEP (Section 7.5.2.2). At least
one of the eigenvalues corresponds to the globally optimal parameters of the
ARMA model. It is possible to solve this problem with the block Macaulay
matrix algorithms from Chapter 3.

7.5.2.1 First-order necessary conditions for optimality

If the vectors a and c were known, the model structure (7.108) would be a set
of under-determined linear equations, the minimum norm solution of which is

e = T †
γT αy, (7.112)

where T †
γ is the pseudo-inverse of the matrix T γ . This relationship between

the unobserved, latent input vector e and the observed output vector y helps
to remove the latent inputs from the least-squares cost function

σ2(a, c) = ‖e‖22 (7.113)
= eTe (7.114)
= yTTT

αT
†T
γ T †

γT αy. (7.115)

Since the model matrix T γ is of full row rank, its pseudo-inverse equals

T †
γ = TT

γ

(
T γT

T
γ

)−1

, (7.116)

where the matrix Dγ = T γT
T
γ ∈ R(N−na)×(N−na) is a symmetric, positive

definite, banded Toeplitz matrix. The cost function in (7.115) then reduces to

σ2(a, c) = yTTT
αD

−1
γ T αy, (7.117)

which has to be minimized over the parameters αi and γj in a and c, re-
spectively. The cost function σ2(a, c) is clearly nonlinear in the parameters
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and its first-order necessary conditions for optimality are (∀i = 1, . . . , na and
∀j = 1, . . . , nc):

∂σ2(a, c)

∂αi
= yTTT

αD
−1
γ T αi

α y + yTT αiT
α D−1

γ T αy = 0,

∂σ2(a, c)

∂γj
= −yTTT

αD
−1
γ Dγj

γ D−1
γ T αy = 0,

(7.118)

where the matrices T αi
α = ∂Tα

∂αi
and Dγj

γ =
∂Dγ

∂γj
contain the element-wise

partial derivatives. By introducing an auxiliary vector f ∈ R(N−na)×1,

f = D−1
γ T αy, (7.119)

we partially linearize this optimization problem. Via its partial derivatives

fαi = D−1
γ T αi

α y, (7.120)
fγj = −D−1

γ Dγj
γ f , (7.121)

we rewrite (7.118) and obtain (∀i = 1, . . . , na and ∀j = 1, . . . , nc)
∂σ2(a, c)

∂αi
= yTTT

αf
αi + yTT αiT

α f = 0,

∂σ2(a, c)

∂γj
= yTTT

αf
γj = 0.

(7.122)

Finally, the first-order optimality conditions in (7.122), together with the defi-
nitions in (7.119) to (7.121), constitute the system of multivariate polynomial
equations that defines the set of stationary points of the original least-squares
cost function σ2(a, c). At least one of the common roots of this system corre-
sponds to the global minimizer of the original multivariate optimization prob-
lem, i.e., to the globally optimal least-squares parameters of the ARMA model.

Example 7.9. The first-order necessary conditions for optimality for a first-
order ARMA(1,1) model are given by (only model parameters α and γ)

yTTT
αf

α + yTT αT
α f = 0, (7.123)

yTTT
αf

γ = 0, (7.124)
Dγf − T αy = 0, (7.125)

Dγf
α − T α

αy = 0, (7.126)
Dγf

γ +Dγ
γf = 0. (7.127)

Only 2 of the unknowns appear not linearly in the polynomial system, namely
the two parameters α and β.
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7.5.2.2 Multiparameter eigenvalue problem

The system in (7.119) to (7.122) consists of (N − na)(na + nb + 1) + na + nc
cubic multivariate polynomial equations in (N − na)(na + nc + 1) + na + nc
variables, of which (N − na)(na + nc + 1) variables “appear only linearly” in
the problem, a structure that becomes more apparent when we isolate these
linear variables in a vector z ∈ Rl×1 and rewrite the system as a matrix-vector
product

(
gT
)na

⊗ 0
{
gαiT

}
i

0

0
(
gT
)na

⊗ 0 0

0 0 Dγ g(
Dγ

)na

⊗ 0 0
{
gαi
}
i

0
(
Dγ

)na

⊗

{
Dγj

γ

}
r

0


︸ ︷︷ ︸

M(a,c)


{
fαi

}
i{

fγj

}
r

f
−1


︸ ︷︷ ︸

z

,= 0 (7.128)

with vectors g = T αy ∈ R(N−na)×1 and gαi = T αi
α y ∈ R(N−na)×1. The sizes

of M(a, c) ∈ Rk×l and z ∈ Rl×1 are given by

k = (N − na)(na + nb + 1) + na + nc, (7.129)
l = (N − na)(na + nc + 1). (7.130)

The matrix M(a, c) is only a function of the known input-output samples
and the unknown model parameters αi and γj . This system of multivariate
polynomial equations is basically an MEP, where the nonlinear variables (the
parameters αi and γj) constitute the (na + nc)-tuples of eigenvalues λ and the
linear variables generate the eigenvectors z. By expanding the matrix M(a, c)
in terms of the different monomials λω, where

λ = (α1, . . . , αna
, γ1, . . . , γnc

), (7.131)

we obtain the coefficient matrices Aω of the MEP.

Example 7.9 (continuing from p. 280). We take again the first-order
ARMA model and construct the corresponding MEP that defines the sta-
tionary points of the underlying cost function. Simplifying (7.128) results
in 

g 0 gα 0
0 g 0 0
0 0 Dγ gT

Dγ 0 0 gαT

0 Dγ Dγ
γ 0



fα

fγ

f
−1

 = 0. (7.132)

This problem is a quadratic two-parameter eigenvalue problem,(
A00 +A10α+A01γ +A02γ

2
)
z = 0, (7.133)

since γ appears quadratically in Dγ .
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7.5.3 Numerical example
In order to illustrate this novel system identification approach, this section pro-
vides a numerical example. We show that the block Macaulay matrix approach
is able to identify the globally optimal least-squares parameters of a first-order
ARMA model.

Example 7.10. We consider a first-order ARMA(1, 1) model,

yk + αyk−1 = ek + γek−1, (7.134)

for a sequence of N = 8 output samples (without any a priori assumptions):

y =



0.6601
−0.0679
−0.1952
−0.2176
−0.3031
0.0230
0.0513
0.8261


. (7.135)

We can use both block Macaulay matrix algorithms to solve the quadratic
two-parameter eigenvalue problem in (7.133) with 23× 22 coefficient matrices
Aω) that yields the optimal model parameters. The solution set of this problem
is positive-dimensional at infinity, which means that the nullity of the block
Macaulay matrix does not stabilize (there are an infinite number of solutions).
Instead of checking the nullity of the block Macaulay matrix for a growing
degree d, we monitor the linearly independent rows in a basis matrix of the
right null space or linearly dependent columns in the block Macaulay matrix.
We observe a gap zone for a degree d = 43 block Macaulay matrix. Afterwards,
a column compression (null space based approach) or a backward (Q-less) QR
decomposition (column space based approach) deflates the positive-dimensional
solution set at infinity and we find ma = 92 affine solutions for the MEP.
Only three solutions are real and, thus, interesting in this practical setting:
we find one minimum and two saddle points (Table 7.4). When we compare
this identified minimum with a contour plot (Figure 7.9) of the cost function
σ2(α, γ), we observe that we indeed have a global minimum within the unit
domain [−1, 1]× [−1, 1]. The affine solution with the smallest sum of squares of
the latent inputs ‖e‖22 corresponds to the globally optimal least-squares ARMA
model parameters for this given vector of output samples y. These parameters
result in a smaller ‖e‖22 than the original parameters and the solution found
by the armax function of Matlab’s system identification toolbox11.

Next to the system identification aspect, this numerical example highlights
another contribution of this dissertation. The full construction of the degree

11The armax function minimizes the prediction errors in order to find the model parameters.
It uses a nonlinear optimization algorithm as described in the book of Ljung [158, Chapter 7].
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Table 7.4. Identified real parameters α and γ of the ARMA(1, 1) model given
by the data in (7.135). The value of the cost function σ2(α, γ) in the identified
minimum is smaller than in the saddle points and the solution obtained via the
armax function of Matlab’s system identification toolbox.

stationary point α γ σ2(α, γ)

saddle point −0.2176 −0.6341 1.0429
saddle point −0.0267 0.8504 0.9247

minimum −0.1063 0.1611 0.8016

armax function −0.0939 0.0952 0.8272

Table 7.5. Results of the different combinations of techniques to solve the
ARMA(1, 1) model identification problem in Example 7.10. The total com-
putation time, the total memory usage, and the maximum absolute residual
errors12of the real solutions are averaged over 30 experiments.

combination time memory max‖e‖2

standard-standard 31 223.95 s 3.62GB 5.16× 10−14

standard-recursive 27 951.57 s 3.62GB 5.16× 10−14

recursive-standard 323.00 s 3.62GB 1.24× 10−12

recursive-recursive 69.41 s 3.62GB 1.24× 10−12

sparse-recursive 41.74 s 24.28 kB 1.48× 10−13

d = 43 block Macaulay matrix needed to solve the ARMA model identifi-
cation problem corresponds to a 20769 × 21780 matrix, and hence, requires
3.62GB memory. Computing a basis matrix of the right null space of this block
Macaulay matrix is a computationally intensive step in the solution approach.
The recursive algorithms developed in Chapter 5 are very useful to tackle these
MEPs. Table 7.5 shows how the different combinations of recursive techniques
influence the computation time, memory usage, and maximum residual error:
the sparse-recursive approach is much faster than the standard-standard ap-
proach. Furthermore, the sparse adaptation only stores the coefficient matrices
of the MEP (24.28 kB) instead of the associated block Macaulay matrix. All
computations are done via the functions implemented in MacaulayLab.

7.6 Conclusion
In this chapter, we highlighted several problems that can be tackled via the
novel (block) Macaulay matrix algorithms. We focussed on three key examples
from systems theory, in which the algorithms of this dissertation are useful to

12We calculate the absolute residual error by substituting the computed eigenvalues(
λ∗
1, . . . , λ

∗
n

)
and eigenvectors z∗ in the MEP and determining the 2-norm of the residual

vector ‖e‖2 = ‖M(λ∗)z∗‖2. More information about the error measures used in this text
can be found in Appendix B.2.3.
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Figure 7.9. Contour plot of the cost function of the ARMA(1, 1) model given
by the data in (7.135) for the model parameters α and γ in the unit domain
[−1, 1] × [−1, 1]. The value of the cost function σ2 in the minimum ( ) is
smaller than in the saddle points ( ) or in the model obtained via the armax
function of Matlab’s system identification toolbox ( ).

obtain the globally optimal solutions:

• the multivariate polynomial optimization problem in complex variables
via Wirtinger derivatives,

• the H2-norm model order reduction problem for SISO LTI high-order
models, and

• the least-squares parameter identification of ARMA models.

We showed that these problems can be rephrased as a system of multivariate
polynomial equations or an MEP. Via these systems of multivariate polyno-
mial equations and MEPs, we were able to show that the algorithms that we
have developed in this dissertation have a practical use. Although not the
goal of this chapter, the reformulation of each of these key examples was a
proper contribution to their respective research areas, since the proposed solu-
tion methodologies lead to globally optimal solutions to difficult problems that
are typically tackled via heuristic techniques.

Motivational example. The reformulation of the ARMA model identifica-
tion problem in Section 7.5 provides an expression for the coefficient matrices
of the quadratic two-parameter eigenvalue problem that we need to solve to
obtain the globally optimal model parameters of our motivational example.
For a sequence of N output points y, the four non-zero coefficient matrices
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of the MEP are given by

A00 =


yT 0 yT 0

0 yT 0 0
0 0 IM y
IM 0 0 y
0 IM SM 0

,A10 =


yT 0 0 0
0 yT 0 0
0 0 0 y
0 0 0 0
0 0 0 0

,

A01 =


0 0 0 0
0 0 0 0
0 0 SM 0

SM 0 0 0
0 SM 2IM 0

, and A02 =


0 0 0 0
0 0 0 0
0 0 IM 0
IM 0 0 0
0 IM 0 0

,
where M = N − 1 and SM is a M ×M matrix with only ones on its su-
perdiagonal and subdiagonal. The vector of output points y returns in the
coefficient matrices via y ∈ RM×1, which is y without the first value y1, and
y ∈ RM×1, which is y without the last value yN .

This global optimality, of course, came at a high cost: the resulting problems
are computationally hard to solve. For practical problems, the size of the prob-
lems quickly grows too large for the standard algorithms. The double recursive
algorithms developed in Chapter 5 proved to be very useful, since the recursive
and sparse techniques help to (partially) overcome this burden and retrieve the
globally optimal solutions. However, it is clear that there is “no such thing
as a free lunch”. It remains hard to obtain the globally optimal solutions to
large-scale problems, even with the double recursive algorithms. In Figure 7.10,
we show how the sparse-recursive combination scales for more (random) data
points when identifying the parameters of a first-order ARMA(1, 1) model. The
required computation time quickly becomes untractable on standard comput-
ers. Also for the two approaches of MultiParEig, which scale better with respect
to the size of the coefficient matrices, the problem quickly becomes too difficult
when increasing the number of data points.

This huge computational complexity of computing the solutions for large-
scale applications is a motivation to strive to more efficient solution approaches.
The presented reformulations have also invoked a couple of new research chal-
lenges:

• A first question when tackling the multivariate optimization problem in
complex variables is about the efficiency of this new approach. “What
is the computational complexity of this optimization approach and how
does it compare to current state-of-the-art solvers for the different ap-
plications?” Upper bounds on the computational complexity would be
useful for this comparison.

• Closely related with the previous question is the fact that it is not know
a priori whether the Macaulay matrix is of a sufficient degree to provide
the global minimizers. “Do there exist necessary and sufficient conditions
on the degree of the Macaulay matrix in (7.38)?”
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Figure 7.10. Scaling properties of the sparse-recursive approach applied to
the first-order ARMA(1, 1) model identification problem for a growing num-
ber of (random) data points. The computation time via MacaulayLab ( ),
MultiParEig-CMP ( ), and MultiParEig-MEP ( ) to determine the solutions
of the corresponding MEP is displayed. The results are averaged on 30 exper-
iments (the dashed lines indicate one standard deviation).

• The coefficient matrices of the MEPs presented in this chapter exhibit a
lot of structure and sparsity (for example, for the first key example, they
are constructed via the Macaulay matrix): “Is it possible to exploit the
structure and sparsity of the coefficient matrices in the MEP?”

• Furthermore, the solution set of the MEP is also linked to the specific co-
efficient matrices: “Can we enforce that the MEP has a zero-dimensional
solution set?”

• An interesting property of the block Macaulay matrix algorithms to solve
MEPs is that a user-defined shift polynomial can be used, as explained
in [262]. “Could this property be exploited when the cost function is
chosen as shift polynomial?”

• Finally, it is well known that a polynomial’s roots can be very sensitive
to small changes in the polynomial’s coefficients [275]. “Does the MEP
approach have better numerical properties than directly solving the sys-
tem of multivariate polynomial equations that describes the first-order
necessary conditions for optimality?”

Furthermore, in the future, we also want to apply our algorithms to more
applications. Considering other model classes in the model order reduction or
system identification problem are the first steps to take.
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Historical and bibliographical notes
We end this chapter with some additional historical and bibliographical notes
related to the three key examples of this chapter.

Polynomial optimization problems as eigenvalue problems
Note that reformulating a multivariate polynomial optimization problem in
real variables as an (one-parameter) eigenvalue problem is a well-established
methodology and there exist several techniques in the optimization literature
to obtain such an eigenvalue problem. For example, in the scope of the moment
hierarchy approach, the extraction of global minimizers reduces to eigenvalue
computations [111, 112, 150, 151]. Furthermore, the use of the first-order
necessary conditions for optimality (i.e., the gradient ideal) for polynomial op-
timization has thoroughly been investigated by, among others, Dreesen and
De Moor [81], Nie et al. [189], and Nocedal and Wright [190], and can be com-
bined with a multivariate polynomial system solving approach that resorts on
eigenvalue computations (like presented in this dissertation). A reformulation
of the cost function as a function of the real and imaginary parts of the complex
variables makes it possible to also use these (efficient) numerical optimization
techniques in a complex setting.

Different model order reduction methods
In general, the available methods that address H2-norm model order reduction
can be divided into two main groups: Lyapunov-based methods [227, 282, 285]
and interpolation-based methods [7, 10, 101, 102, 171]. Unlike Lyapunov-based
methods, which rapidly become infeasible when the dimension increases, inter-
polation approaches (in which the reduced-order transfer function interpolates
the original high-order transfer function at some points in the frequency do-
main) have proved to be numerically very effective [10]. Although the literature
typically makes a distinction between both approaches, the two frameworks are
actually equivalent, as shown by Gugercin et al. [101]. Interpolation-based H2-
norm optimality conditions were originally derived by Meier and Luenberger
[171] for SISO systems and extended later to the multiple-input/multiple-
output (MIMO) case by both Gugercin et al. [101] and Van Dooren et al.
[252]. Based on these conditions and results from rational interpolation [28],
several iterative numerical algorithms have been proposed (e.g., [7, 51, 102]).
However, none of these algorithms are guaranteed to converge to the globally
optimal solution, despite the use of several heuristic rules during their initializa-
tion. Nonetheless, we can not stress enough their importance in large practical
applications.

Inception of autoregressive moving-average models
Already in 1927, Yule [283] proposed a pure autoregressive (AR) process, which
only considers a regression of the output sequence on itself. The pure moving-
average (MA) model was introduced simultaneously by Yule [283] and Slutzky
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[219]. There exists some dissonance about who was the first to combine these
two models, but Whittle [272] and Walker [268] have often been cited as the
founding fathers of ARMA modeling. Its popularization, however, was clearly
thanks to the famous book by Box and Jenkins [40], who have really propagated
these models as a useful tool in time series analysis.
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Conclusion and Future
Work

In this dissertation, we have tackled both systems of multivariate polynomial
equations and rectangular multiparameter eigenvalue problems. The (block)
Macaulay matrix has been a central object in that effort. While the traditional
(scalar) Macaulay matrix already has a proven track record in polynomial sys-
tem solving, we have introduced the block Macaulay matrix in this research
to address rectangular multiparameter eigenvalue problems. The novel (block)
Macaulay matrix approaches can be used to solve both types of problems, prov-
ing especially useful when considering the encountered motivational examples
from systems theory. We give, in this chapter, an overview of the research
contributions of every chapter and highlight several remaining challenges for
future research.
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Outline. This chapter contains an overview of the dissertation’s research
contributions (Section 8.1) and highlight some challenges for future research
(Section 8.2).
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8.1 Research contributions
We give a chapter-by-chapter overview of our research contributions (RCs)1.

Part I: Fundamentals
In Part I, we introduced the unifying (block) Macaulay matrix approach and
developed algorithms to solve systems of multivariate polynomial equations
and rectangular multiparameter eigenvalue problems (MEPs). We addressed
the different questions of RO1 step-by-step in Part I.

Chapter 2. In Chapter 2, we considered the Macaulay matrix and looked
at different approaches to solve systems of multivariate polynomial equations.
We revisited the null space based Macaulay matrix approach to solve systems
of multivariate polynomial equations and translated the multidimensional re-
alization problem from the right null space to the column space, yielding a
complementary column space based Macaulay matrix algorithm to solve sys-
tems of multivariate polynomial equations. We also discussed three interest-
ing extensions to both multivariate root-finding approaches: dealing with a
positive-dimensional solution set at infinity, using special shift polynomials,
and using another monomial ordering or polynomial basis.

Create new Macaulay matrix algorithms to solve systems of mul-
tivariate polynomials more efficiently.

R
O

1.
1

We revisited the null space based Macaulay matrix approach and
developed the complementary column space based Macaulay ma-
trix approach to solve systems of multivariate polynomial equa-
tions.R

C
1.

1

Chapter 3. While polynomials were the seed problems of Chapter 2, this
chapter considered (multiparameter) matrix pencils. Chapter 3 investigated
the rectangular MEP, which was, before the exploration within this disserta-
tion, a quite uncharted area. We investigated the rectangular multiparameter
eigenvalue problem and its properties. Links between the square and rectan-
gular manifestation were provided in the text. Furthermore, the emergence of
rectangular MEP in applications created a need for algorithms to solve them
numerically. By considering coefficient matrices instead of coefficients, we in-
troduced in Chapter 3 the so-called block Macaulay matrix. This sparse and
structured matrix is the multiple-output extension of the Macaulay matrix and

1Recall, from Chapter 1, that all research objectives (ROs) can be mapped onto one of
the obtained RCs: every ROx.y leads to an RCx.y.
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allowed the development of two complementary approaches to solve polynomial
rectangular MEPs in its right null space or column space. The three extensions
to the Macaulay matrix approach (cf., RO1.1) were also incorporated in both
block Macaulay matrix algorithms: (i) the block Macaulay matrix approaches
can deal with a positive-dimensional solution set at infinity, (ii) a special shift
function can be used, and (iii) the monomial ordering and polynomial basis for
the monomials in the MEP are adjustable. In that sense, Chapter 3 provided
an answer to the big challenge of RO1.2.

Extend the Macaulay matrix to the block Macaulay matrix in
order to solve polynomial rectangular MEPs.

R
O

1.
2

We developed two block Macaulay matrix approaches to solve
rectangular MEPs.

• We explored the properties of the rectangular MEP and
compared it with the square problem formulation.

• We extended the Macaulay matrix to its multiple-output
generalization, i.e., the block Macaulay matrix.

• Both the right null space and columns space of the block
Macaulay matrix were used to retrieve the solutions of the
generating MEP.

• The three extensions to the Macaulay matrix approach (cf.,
RO1.1) were also incorporated in both block Macaulay
matrix approaches.

R
C

1.
2

Chapter 4. An important line of research is understanding the Macaulay
matrix in an algebraic geometric language. Although a full treatement of the
column space is not yet available, we reviewed each of the four fundamental
subspaces of the Macaulay matrix in Chapter 4.

Explore the different fundamental subspaces of the Macaulay ma-
trix and relate them to the generating polynomials.

R
O

1.
3

We have summarized the connections between the four different
fundamental subspaces of the Macaulay matrix with the (alge-
braic geometry) properties of the generating polynomials.R

C
1.

3
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Part II: Algorithms
In order to be able to tackle more interesting problems, we developed several
recursive techniques that exploit the sparsity and structure of the involved ma-
trices. By combining these different recursive algorithms, together with other
important implementation decisions, we obtained a comprehensive toolbox that
is user-friendly and fast.

Chapter 5. We developed in Chapter 5 several recursive algorithms to tackle
the computational bottlenecks that the naive implementations of the algorithms
in Chapters 2 and 3 suffer from. We derived a recursive algorithm to compute
a basis matrix of the null space of a block Macaulay matrix. By replacing
the coefficient matrices in the block Macaulay matrix by the coefficients of
polynomials, this algorithm reduces to an algorithm for the Macaulay matrix,
similar to, but more efficient than, the algorithm presented in [22]. We adapted
both recursive algorithms such that they are sparse and no longer require an
explicit construction of the (block) Macaulay matrix. The recursive nature of
these algorithms fits perfectly in the iterative null space based (block) Macaulay
approach to solve systems of multivariate polynomial equations or MEPs, where
we need to check the structure of the right null space for every iteration in order
to know whether we can construct a standard eigenvalue problem that contains
the solutions. Furthermore, we also came up with a recursive algorithm to
compute a numerical basis matrix of the null space of a block row matrix. This
recursive algorithm is, for example, useful to check the rank structure of the
obtained numerical basis matrix of the right null space of the (block) Macaulay
matrix. A combination of these recursive and sparse algorithms allowed us
to solve systems of multivariate polynomial equations and rectangular MEPs
more efficiently.

Exploit sparsity and structure in the (block) Macaulay matrix to
improve computation time and memory usage.

R
O

2.
1

We developed recursive algorithms that exploit the sparsity and
structure of the involved matrices:

• We developed recursive and sparse algorithms to compute a
numerical basis matrix of the right null space of a (block)
Macaulay matrix.

• Furthermore, we also came up with a recursive algorithm to
determine the rank structure of that numerical basis
matrix.

• The combination of these two algorithms resulted in double
recursive approaches to solve systems of multivariate
polynomial equations and rectangular MEPs.

R
C

2.
1
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Chapter 6. We have implemented all algorithms from this dissertation in a
comprehensive Matlab toolbox, with an eye on the efficiency of the algorithms.
Because of the key object in this toolbox, viz., the (block) Macaulay matrix,
the toolbox is named MacaulayLab:

• The functions in MacaulayLab exploit the sparsity and structure of the
involved matrices, to end up with far more efficient (block) Macaulay
matrix solvers than before, while remaining numerically reliable.

• The solution approaches in the toolbox can deal with positive-dimensional
solution sets at infinity and work with different shift polynomials.

• MacaulayLab also allows the user to use a different monomial ordering,
e.g., graded reverse lexicographic (GREVLEX), and to represent the poly-
nomials in a different polynomial basis, e.g., the multivariate Chebyshev
basis.

• The functions of the toolbox are supplemented with many test problems.
This database of test problems, both systems of multivariate polynomial
equations and multiparameter eigenvalue problems, is useful to test the
methods of this and other toolboxes.

We compared the different solution approaches in MacaulayLab and positioned
the toolbox with respect to other software packages.

Combine all advancements in one coherent software toolbox that
is user-friendly and fast.

R
O

2.
2

We created the MacaulayLab toolbox in Matlab containing effi-
cient implementations of the (block) Macaulay algorithms devel-
oped in this dissertation.

• During the implementation, special attention was paid to
double recursive algorithms that exploit the sparsity and
structure of the involved matrices.

• The option to deal with positive-dimensional solutions sets
at infinity and work with different shift polynomials was
added to the toolbox. The code was also designed to be
independent of the monomial ordering and polynomial
basis.

• Many important implementation decisions have been taken,
striving for a good trade-off between computation speed an
numerical reliability.

• We also included a database with many test problem.

R
C

2.
2
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Part III: Applications
The entire dissertation was pushed by a related question: “Can we retrieve
the globally optimal solutions to some specific problem from systems theory?”
The answer to this question is “Yes, but…” and was tackled in Part III. We
focussed in Part III on three applications from systems theory: optimization,
model order reduction, and system identification, each looking at one of the
suggested problems in RO3. Although each of the discussed globally optimal
methodologies is a valuable contribution to its respective research area, we
presented them more as a detailed illustration of what we could do with the
algorithms of this dissertation.

Chapter 7. We proposed several problems that can be tackled via the novel
(block) Macaulay matrix algorithms in Chapter 7. While these algorithms
can be applied to a wide range of problem, we focussed on three specific key
examples.

• Firstly, we dealt with multivariate polynomial optimization in complex
variables. We extended the paper of Sorber et al. [223] to the multivariate
case and showed that it is possible to solve these multivariate problems
exactly via a reformulation into a rectangular multiparameter eigenvalue
problem. Given that the rectangular multiparameter eigenvalue problem
can be solved via the block Macaulay matrix, this optimization problem
was transformed into a two-layer Macaulay approach.

• Secondly, we rephrased the globally optimal H2-norm model order reduc-
tion problem of a single-input/single-output (SISO) linear time-invariant
(LTI) high-order model as a rectangular multiparameter eigenvalue prob-
lem. While the original article [3] has posed the problem as an inhomo-
geneous eigenvalue problem, we reformulated the model order reduction
problem as a homogeneous rectangular multiparameter eigenvalue prob-
lem (i.e., the problem type considered in this dissertation).

• Thirdly, we showed that the globally optimal least-squares parameter(s)
of an autoregressive moving-average (ARMA) model can be found as one
of the eigentuples of a rectangular multiparameter eigenvalue problem.
While we restricted ourselves to the ARMA problem, the methodology
was also extended to other models within the misfit-versus-latency model
class.

The reformulation of these three key examples into a system of multivariate
polynomial equations or a rectangular multiparameter eigenvalue problem en-
abled the use of the novel (block) Macaulay matrix algorithms developed in
the preceding chapters.

Use the novel (block) Macaulay matrix algorithms to tackle prob-
lems from systems theory with global optimality in mind.R

O
3
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We showed that it is indeed possible to use the (block) Macaulay
matrix to retrieve the globally optimal solutions to three key ex-
amples in systems theory.

• We used the Macaulay matrix to write multivariate
polynomial optimization problems in complex variables as a
rectangular MEP.

• We rephrased the globally optimal H2-norm model order
reduction problem of a SISO LTI high-order model as a
rectangular MEP.

• We showed that the globally optimal least-squares
identification of ARMA models is a rectangular MEP.

R
C

3

8.2 Future work

The development of the (block) Macaulay matrix algorithms in this dissertation
has provided us with a unifying, novel approach for solving systems of multi-
variate polynomial equations and multiparameter eigenvalue problems. The
central matrices of this text are very nice tools to solve problems that emerge,
for example, in systems theory. However, we do not consider the work to be
done. Einstein [172] once said that

“The important thing is to never stop questioning. Curiosity has
its own reason for existence. […] Never lose a holy curiosity.”

Indeed, the remarkable, but yet inspiring, thing about research is that answer-
ing one question immediately opens up new problems to pursue. Also with
creating this unifying block Macaulay matrix approach, many new research
questions have popped up: a multitude of “new” research challenges have not
been answered in this text. We suggest the following (non-exhaustive) list of
future research directions:

Reducing the Macaulay matrices. The Macaulay matrix algorithms to
solve systems of multivariate polynomial equations are general-purpose solvers.
This means that the algorithms do not consider the structure of the involved
polynomials, while polynomials in applications often exhibit structure. One
type of structure is the sparsity of the support: not all monomials are present
in the support of the polynomials. It could be very beneficial to look at the
specific support of the involved polynomials and build smaller Macaulay ma-
trices which only deal with the monomials that are necessary. Reducing the
Macaulay matrices is one way to tackle the combinatorial explosion from which
our Macaulay matrix algorithms suffer.
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Interpreting the subspaces of (block) Macaulay matrices. It is clear
from Chapter 4 that the interpretation of the column space is not yet fully
understood. Furthermore, the extension of the Macaulay matrix into the block
Macaulay matrix leads to the question whether we can do the same for the
block Macaulay matrix; Hence, we want to answer the question whether every
fundamental subspace has an interpretation in terms of the properties of its
generating rectangular MEP.

Exploring other polynomial bases. In, for example, approximation the-
ory, it is a well-known fact that working in another polynomial basis can result
in superior numerical properties. A good idea for future work could be a more
in-depth analysis of these properties, both with respect to the numerical con-
ditioning and with respect to the computational complexity (since a different
polynomial basis induces a different structure of the involved matrices). Using
a different polynomial basis is not only a question for systems of multivari-
ate polynomial equations, but could also have implications for multiparameter
eigenvalue problems.

Considering the over-determined case. One disadvantage of the very
efficient homotopy continuation methods is that they only deal with square
systems (i.e., number of equations is equal to the number of variables). The
Macaulay matrix algorithms do not have this restriction, so they could be very
useful to tackle over-determined systems of multivariate polynomial equations.
Furthermore, the linear algebra approach with floating-point work horses suits
itself ideally to deal with the possible noise of the experimentally obtained
coefficients.

Developing subspace algorithms. Current state-of-the-art algorithms to
solve one-parameter eigenvalue problems and square multiparameter eigenvalue
problems use projections of large coefficient matrices onto smaller coefficient
matrices in order to find some of the eigenvalues/eigentuples faster. Introducing
subspace techniques to the block Macaulay matrix algorithms could be a very
interesting improvement to our approach to solving rectangular multiparameter
eigenvalue problems. First attempts2 have already delivered very promising
results!

Creating more efficient implementations. In any case, the success of the
(block) Macaulay matrix algorithms relies on the efficiency of their implemen-
tations. Creating more efficient implementations (maybe in a more efficient
programming language) could help to tackle much larger applications. The
computational efficiency has been a topic that returned in several chapters, so
there is clearly a big need for it. Some possible research ideas in this regards are
creating recursive algorithms for the column space based approaches, reducing

2The development of subspace algorithms for solving rectangular MEPs was a topic of one
of the candidate’s thesis students. He has shown that we can indeed speed up the computation
time of the block Macaulay matrix algorithms by using these subspace techniques, but we
still need to tackle some convergence questions.
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the size of the (block) Macaulay matrices, considering URV algorithms for rank
checks, and using QR decompositions instead of singular value decompositions.
Taking inspiration from other toolboxes and looking at the above-mentioned
research ideas, it is only natural that future releases of MacaulayLab will con-
tain more efficient implementation and new features. Already in one of the
next releases, more support to take the correct rank decisions (i.e., different
types of rank decisions, visual aids, etc.) and subspace methods will be added.

Tackling more applications. We have provided a very interesting approach
to solve systems of multivariate polynomial equations and rectangular MEPs.
This dissertation has also put forward several applications from systems theory
that could be rephrased as one of these fundamental problems. This is only
a first attempt to solve problems in globally optimal way. In future work, we
want to tackle other model classes, use larger data sequences, exploit structure
in the problems, consider different norms in the optimization problems, etc.
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Algebraic Geometry and
Commutative Algebra

This chapter supplements the concepts introduced throughout Chapters 2 and 4
and contains some additional topic from algebraic geometry and commutative
algebra. Some related textbooks are [65, 66, 205].
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Outline. We start by reviewing the definitions of some basic algebraic struc-
tures in Appendix A.1. Afterwards, we consider useful elementary definitions
from commutative algebra and algebraic geometry in Appendix A.2. In Ap-
pendix A.3, we consider bounds on the number of affine solutions for both
univariate polynomials and systems of multivariate polynomials, while we intro-
duce Gröbner bases and Buchberger’s algorithm in Appendix A.4. Finally, Ap-
pendix A.5 sketches Stetter’s eigenvalue-eigenvector approach, which is closely
related to the approach that we present in this dissertation.
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A.1 Group, ring, field, and vector space
Groups, rings, and fields are mathematical objects that share a lot of properties.
Every field is also a ring, but not vice versa, while a group can always be found
in a ring. A vector space is a set whose elements, often called vectors, can be
added and multiplied by scalars, which are elements of a field.

Group. A group consists of a non-empty set A and a binary operation1 “·”
defined on A that satisfies the following constraints:

• The operation is associative: (a · b) · c = a · (b · c),∀a, b, c ∈ A.

• It has an identity element: ∃1 ∈ A : 1 · a = a · 1 = a,∀a ∈ A.

• Every element of the set has an inverse element: ∀a ∈ A,∃b ∈ A : a · b =
b · a = 1.

In an abelian group, also called a commutative group, the binary operation
is also commutative. To qualify as an abelian group, the set and the binary
operation, (A, ·), must satisfy the abelian group axioms:

• (A, ·) is a group.

• The operation is commutative: ∀a, b ∈ A : a · b = b · a.

A group in which the group operation is not commutative is called non-abelian
group or non-commutative group. A simple example of a group is given by the
set of the integers Z under addition, i.e., (Z,+). Note that the set of integers
Z under multiplication, i.e., (Z,×), is not a group.

Ring. A ring is an abelian group, whose binary operation is called “addition”,
with a second binary operation, called the “multiplication”, that is associative,
is distributive over the addition operation, and has a multiplicative identity
element. Thus, formally, a ring is a non-empty set R equipped with two bi-
nary operations, the addition “+” and multiplication “×”, and satisfies three
requirements, known as the ring axioms:

• (R,+) is an abelian group under addition (the set and addition satisfy
the above-mentioned abelian group axioms).

• R is monoid under multiplication, meaning that the multiplication is
associative (∀a, b, c ∈ R : (a × b) × c = a × (b × c)) and there exists a
multiplicative identity element (∃1 ∈ R : 1× a = a× 1 = a,∀a ∈ R).

• The multiplication operation is distributive with respect to the addition
operation: ∀a, b, c ∈ R : a× (b+ c) = (a× b) + (a× c) and ∀a, b, c ∈ R :
(b+ c)× a = (b× a) + (c× a).

1A binary operation is an operation whose input is two elements of the same set A and
whose output is also an element of that set A, i.e., · : A×A→ A.
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Whether a ring is commutative (that is, whether the order in which two ele-
ments are multiplied might change the result) has profound implications on its
behavior. These rings are called commutative rings and are very important in
algebraic geometry. Examples of commutative rings are the integer numbers
Z and the polynomial ring K[x1, . . . , xn] (this is a ring formed from the set of
polynomials in one or more variables with coefficients in another ring K, which
is often a field). Note that the set of natural numbers N with the usual addition
and multiplication is not a ring (even not a group), since not all elements are
invertible with respect to the addition.

Field. The simplest commutative rings are those that admit division by non-
zero elements, such ring are called fields. A field consists of a set K together
with two binary operations on that K, called the field operations addition “+”
and multiplication “×”. For K to be a field, these operations are required to
satisfy the following properties, referred to the field axioms:

• The addition and multiplication are associative: (a+ b) + c = a+ (b+ c)
and (a× b)× c = a× (b× c),∀a, b, c ∈ K.

• The addition and multiplication are commutative: a + b = b + a and
a× b = b× a,∀a, b ∈ K.

• The operations are distributive: a× (b+ c) = a× b+ a× c,∀a, b, c ∈ K.

• There exists an additive and multiplicative identity: ∃0, 1 ∈ K : a+ 0 =
a× 1 = a,∀a ∈ K.

• The addition has an additive inverse: ∀a ∈ K, ∃b ∈ K : a+ b = 0.

• The multiplication has a multiplicative inverse: ∀a 6= 0 ∈ K,∃b ∈ K :
a× b = 1.

More compact; a field is a commutative ring where 0 6= 1 and all non-zero
elements are invertible under multiplication. Examples of fields are the rational
numbers Q, the real numbers R and the complex numbers C. The ring of
integers Z is not a field, since the multiplicative inverse (or reciprocal) of an
integer is not always itself an integer.

Vector space. A vector space, or linear space, is a set whose elements (i.e.,
vectors) may be added together and multiplied by numbers (i.e., scalars), which
are elements of a field. Formally, a vector space over a field K is a non-empty
set V together with two binary operation. The first operation, the (vector)
addition “+” assigns to any two vectors in V a third vector in V that is the
sum of these two vectors. The second operation, the (scalar) multiplication
“×”, assigns to any scalar in K and any vector in V another vector in V . In
order to have a vector space, the set and two binary operations (V,+,×) must
satisfy eight requirements, the vector field axioms:

• Associativity of the vector addition: u+(v +w) = (u+ v)+w,∀u,v,w ∈
V .
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• Commutativity of the vector addition: u+ v = v + u,∀u,v ∈ V .

• Identity element of the vector addition: ∃0 ∈ V : v + 0 = v,∀v ∈ V .

• Inverse element of vector addition: ∀v ∈ V, ∃u ∈ V : v + u = 0.

• Compatibility of scalar multiplication with field multiplication: ∀a, b ∈
K, ∀v ∈ K : a× (b× v) = (a× b)× v.

• Identity element of scalar multiplication: ∃1 ∈ K,∀v ∈ V : 1v = v.

• Distributivity of scalar multiplication with respect to vector addition:
∀a ∈ K,∀u,v ∈ V : a× (u+ v) = a× u+ a× v.

• Distributivity of scalar multiplication with respect to field addition: ∀a, b ∈
K, ∀v ∈ V : (a+ b)× v = a× v + b× v.

When the scalar field is the complex numbers, the vector space is called a
complex vector space. It is clear that the first four requirements (related to
vector addition) say that a vector space is an abelian group under addition. The
other four requirements (related to the scalar multiplication) are closely related
to the field axioms: they say that this operation defines a ring homomorphism
from the field into the endomorphism ring of this group.

A.2 Elementary definitions

Definition A.1. Let R and R′ be commutative rings with identity element.
A ring homomorphism is a map ϕ : R→ R′ such that for any f, g ∈ R

• ϕ(f + g) = ϕ(f) + ϕ(g),

• ϕ(fg) = ϕ(f)ϕ(g), and

• ϕ(1) = 1.

Definition A.2. Let R and A be commutative rings with identity. R is an
A-algebra if there is a ring homomorphism ϕ : A → R. If R and R′ are
A-algebras with ring homomorphisms ϕ : A → R and ϕ′ : A → R′, then a
ring homomorphism ψ : R → R′ is called an A-algebra homomorphism if it
satisfies ψ ◦ ϕ = ϕ′.

Example A.1. The most important A-algebra in this text is the C-algebra,
where A = C and ϕ : C→ R is the inclusion. An example is the polynomial
ring.
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For an A-algebra R with homomorphism ϕ : A → R and f1, . . . , fs ∈ R, we
define

A[f1, . . . , fs] =

{∑
α∈Ns

ϕ(cα)f
α : cα ∈ A

}
, (A.1)

where the summation is finite and fα = fα1
1 · · · fαs

s . An A-algebra R with ho-
momorphism ϕ is finitely generated over A if there is an finite set {f1, . . . , fs} ⊂
R such that R = A[f1, . . . , fs]. In this case, the set {f1, . . . , fs} is called a set
of A-generators of R.

Example A.2. The polynomial ring Pn = C[x1, . . . , xn] is finitely generated
as a C-algebra: it is generated by the coordinate functions {x1, . . . , xs}.

Definition A.3. A ring R is called a Noetherian ring if all its ideals I ⊂ R
are finitely generated.

Example A.3. The polynomial ring Pn = C[x1, . . . , xn] is Noetherian.

Now, we focus our attention on the polynomial ring Pn and consider a
special set:

[p]I = {q ∈ Pn : p(x)− q(x) ∈ I} (A.2)
is the set of all remainders of p(x) ∈ Pn modulo the ideal I. It is called
the residue class of p(x) modulo I. Every polynomial p(x) defines such a
residue class and we call p(x) a representative of [p]I . The set R[I] is the set
of all residue classes modulo I and is a vector space over C, since the scalar
multiplication and addition operations are well-defined [230]:

α[p]I = [αp]I (A.3)
[p]I + [p]I = [p+ q]I (A.4)

Moreover, since the multiplication [p]I [q]I is commutative, R[I] is a commu-
tative ring and is often called the quotient ring:

Definition A.4. Let I ⊂ Pn be an ideal. The quotient ring of Pn by I is
the set

R[I] = Pn/I (A.5)

modulo the equivalence relation [p]I ∼ [q]I ⇔ p(x) − q(x) ∈ I, with opera-
tions

α[p]I = [αp]I (A.6)
[p]I + [p]I = [p+ q]I (A.7)

[p]I [q]I = [pq]I . (A.8)

If I = Pn, then Pn/I = {0} and if I = 〈0〉 then Pn/I = Pn.
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A.3 Solution bounds
For a univariate polynomial, the fundamental theorem of algebra gives the
number of solutions. When the number of variables n > 1, more advanced
results come into the picture. We consider in this section solution bounds
for both univariate polynomials (Appendix A.3.1) and systems of multivariate
polynomials (Appendix A.3.2).

A.3.1 Univariate polynomials
When n = 1 in Definition 2.3, we have a univariate polynomial

p(x) = c0 + c1x+ c2x
2 + · · ·+ cd−1x

d−1 + cdx
d ∈ P1

d . (A.9)

Solving a univariate polynomial amounts to finding the solutions of the univari-
ate polynomial equation p(x) = 0, i.e., the roots of the univariate polynomial
p(x). A standard linear algebra approach to solve a univariate polynomial (in
the standard monomial basis) is via the eigenvalues of its companion matrix2.
For a univariate polynomial p(x) in the standard monomial basis with total
degree d, the roots are equal to the eigenvalues of the d× d companion matrix

Cp =


0 · · · 0 − c0

cd
1 · · · 0 − c1

cd
...

. . .
...

...
0 · · · 1 − cd−1

cd

, (A.10)

whose characteristic polynomial is

det(xI −Cp) = c−1
d p(x). (A.11)

Example A.4. If we want to find the solutions of the polynomial equation

p(x) = −6 + 5x+ 5x2 − 5x3 + x4 = 0, (A.12)

then we can compute the eigenvalues of the 4× 4 companion matrix

Cp =


0 0 0 −6
1 0 0 −5
0 1 0 −5
0 0 1 5

, (A.13)

which are −1, 1, 2, and 3.

2When the univariate polynomial is given in another polynomial basis than the standard
monomial basis, then other companion-like matrices can be used to find the roots of the
polynomial. This family of matrices is called comrade matrices, and, in particular, when
using the Chebyshev basis, we talk about the colleague matrix [18, 98, 228].
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The number of solutions/roots in the univariate case follows from a well-
known theorem3.

Theorem A.1 (Fundamental theorem of algebra). Every univariate
polynomial p(x) ∈ P1

d of degree d has exactly d roots, counted with multi-
plicities, in the complex field C.

Example A.5. A quadratic polynomial equation (d = 2),

c0 + c1x+ c2x
2 = 0, (A.14)

has two (complex) solutions, given by

x|(1) =
−c1 +

√
c21 − 4c0c2
2c2

and x|(2) =
−c1 −

√
c21 − 4c0c2
2c2

. (A.15)

Example A.6. The polynomial equation

xd − 1 = 0 (A.16)

has d solutions, which are called the roots of unity or the de Moivre numbers,

x|(k) = e
2kπi

d , (A.17)

for k = 0, . . . , d− 1.

Unfortunately, there are no such expressions in radicals for the roots of a general
polynomial4. We can rephrase Theorem A.1 for all univariate polynomials
p(x) ∈ P1

d as the following corollary:

Corollary. Every univariate polynomial p(x) ∈ P1
d has at most d distinct

roots in the complex field C.

3This theorem was proven by Carl Friedrich Gauss in 1799, although the proof contained
a topological gap [220]. Sometimes the fundamental theorem of algebra is phrased a little
bit differently: “Every non-constant polynomial p(x) ∈ P1 has a root in C.”

4The Abel–Ruffini theorem (also known as Abel’s impossibility theorem) states that there
is no solution in radicals to general univariate polynomial equations of degree five or higher
with arbitrary coefficients [15, 209]. This theorem is named after Paolo Ruffini, who made an
incomplete proof in 1799 (refined and accepted by Cauchy in 1813), and Niels Henrik Abel,
who provided a proof in 1824. The Abel–Ruffini theorem refers also to the slightly stronger
result that there are equations of degree five and higher that cannot be solved by radicals.
This does not follow from Abel’s statement of the theorem, but is a corollary of his proof, as
his proof is based on the fact that some polynomials in the coefficients of the equation are
not the zero polynomial. This improved statement follows directly from Galois theory, which
says that x5 − x− 1 = 0 is the simplest equation that cannot be solved in radicals, and that
almost all polynomials of degree five or higher can not be solved in radicals.
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This corollary gives an upper bound for the number of affine solutions of a
univariate polynomial. This upper bound is met for generic polynomials, but
there exists a subset of non-generic polynomials, for which the upper bound is
not met: polynomials p(x) for which the coefficients are in the affine variety
∇d = V(∆d) are non-generic. ∆d is a polynomial in the coefficients ci of p(x).
Some examples of this polynomial ∆d are [65, 241]

∆1 = c1, (A.18)
∆2 = c2

(
c21 − 4c0c2

)
, (A.19)

∆3 = c3
(
c21c

2
2 − 4c0c

3
2 − 4c31c3 + 18c0c1c2c3 − 27c20c

2
3

)
, (A.20)

∆4 = c4
(
c21c

2
2c

2
3 − 4c0c

3
2c

2
3 − 4c31c

3
3 + 18c0c1c2c

3
3 + . . .+ 256c30c

3
4

)
. (A.21)

One notices that ∆d = cd∆̃d, with ∆̃d the discriminant for degree d polynomi-
als. A well-known case is of course the discriminant of a quadratic polynomial
∆̃2. Furthermore, it is immediately clear that a polynomial in P1

d is non-generic
when the polynomial is not of degree d (or when cd = 0).

Example A.7. To illustrate the previous equations, we consider three
quadratic polynomials:

• p1(x) = 2 + 4x + x2 is clearly a generic polynomial, because ∆2 6= 0,
and has two distinct affine solutions.

• p2(x) = 1 + 2x+ x2 is a non-generic polynomial. Since c21 − 4c0c2 = 0,
the coefficients of the polynomial are in the affine variety V(∆2). This
polynomial has an affine solution with multiplicity equal to 2.

• p3(x) = 1+2x is also a non-generic quadratic polynomial. Since c2 = 0,
the coefficients of the polynomial are in the affine variety V(∆2). This
polynomial has one affine solution and one solution at infinity.

A.3.2 Multivariate polynomial systems
The multivariate extension of the fundamental theorem of algebra is Bézout’s
theorem.

Theorem A.2 (Bézout’s theorem). For any square system (i.e., s = n)
of multivariate polynomial equations p1(x), . . . , pn(x) ∈ Pn, the number of
isolated solutions in the projective space Pn when the solution set is zero-
dimensional, i.e., the number of isolated points in the zero-dimensional vari-
ety V(p1(x), . . . , pn(x)) ⊂ Pn, is exactly equal to

mb = d1 · · · dn =

n∏
i=1

di, (A.22)

where di is the total degree of the polynomial pi(x).
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Proof. A proof of this theorem can be found in [82, Theorem III-71].

Theorem A.2 is an important result and counts the total number of isolated so-
lutions of a square system of n multivariate polynomial equations in n variables.
Theorem 2.2 can be phrased as a corollary of the previously stated version of
Bézout’s theorem.

Corollary. For any square system (i.e., s = n) of multivariate polynomial
equations p1(x), . . . , pn(x), the number of affine, isolated solutions when the
solution set is zero-dimensional, i.e., the number of isolated points in the
zero-dimensional affine variety V(p1(x), . . . , pn(x)) ⊂ Cn, is at most equal to

ma = d1 · · · dn =

n∏
i=1

di, (A.23)

where di is the total degree of the polynomial pi(x).

The Bézout bound is almost always tight, in the sense that most systems
have mb = ma affine solutions. Unfortunately, many applications lead to poly-
nomial systems with less affine solutions. This has led to more tight, advanced
bounds on the number of isolated affine solutions, like Kushnirenko’s bound
and the Bernstein–Khovanskii–Kushnirenko (BKK) bound. An important ob-
servation is that there is a deep connection between lattice/Newton polytopes
and polynomials.

Definition A.5. The Newton polytope of a polynomial p(x) with support
supp(p(x)) = A, denoted by NP(p(x)), is the lattice polytope

NP(p(x)) = Conv(A), (A.24)

where Conv(A) is the convex hull of the support.

In words: the Newton polytope of a polynomial records the “shape” or “sparsity
structure” of a polynomial, it tells us which monomials appear in its support.
The actual values of the coefficients cα do not matter, since different polynomi-
als can have the same support. Note that, not only different polynomials with
the same support, but also polynomials with a slightly different support can
have the same Newton polytope, when the the convex hulls of their support
are identical.

Example A.8. Consider the multivariate polynomial

p(x) = 1 + 2x21x2 + 3x1x
2
2, (A.25)

which has the support

A = {(0, 0), (2, 1), (1, 2)}. (A.26)
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(0, 0)

(2, 1)

(1, 2)

Figure A.1. Visualization of the Newton polytope of the polynomial p(x) in
Example A.8. The dots represent the monomials in its support.

The Newton polytope of p(x) is

NP(p(x)) = Conv({(0, 0), (2, 1), (1, 2)}). (A.27)

Figure A.1 visualizes the Newton polytope NP(p(x)) and support A on a
two-dimensional grid. Every monomial in the support corresponds to one
dot indicated on the grid. The polynomial

q(x) = 1 + 2x1x2 + 3x21x2 + 4x1x
2
2 (A.28)

has the same Newton polytope as p(x), since the monomial x1x2 lies within
the convex hull of A.

In applications, the polynomials often miss some variables, which means that
their support is not full. Kushnirenko’s theorem counts the number of affine
solutions for a system of multivariate polynomial equations in the family

Fn(A) = {p1(x) = · · · = pn(x) = 0 : supp(pi(x)) ⊆ A}, (A.29)

which are the polynomials with a support that is a subset of A. The theo-
rem expresses this in terms of the volume Vol(A) =

∫
Conv(A)

dα1
· · · dαn

of the
convex polytope

Conv(A) =

{∑
α∈A

λαα : λα ≥ 0,
∑
α∈A

λαα = 1

}
⊂ Rn. (A.30)

The normalized volume vol(A) is defined as n!Vol(A). The link with the New-
ton polytopes of the polynomials in Fn(A) is easy to see in the previous equa-
tion.

Theorem A.3 (Kushnirenko’s theorem). For any square system S ∈
Fn(A), the number of isolated, affine solutions, i.e., the number of isolated
points in the affine variety, is at most vol(A). Moreover, there exists a proper
variety ∇A such that, when S ∈ Fn(A)\∇A, the variety consists of precisely
vol(A) isolated, affine points.
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Proof. A proof of this theorem can be found in [147].

Example A.9. To illustrate the implications of the previous theorem, we
consider a system of two bivariate polynomial equations{

p1(x) = 23x161 x
14
2 − x221 x182 + 27 = 0,

p2(x) = 35x161 x
14
2 − x221 x182 + 9 = 0,

(A.31)

which both have support A = {(16, 14), (22, 18), (0, 0)} and maximum total
degree di = 40. Bézout’s theorem indicates that this polynomial system has
mb = 402 = 1600 solutions, but via Kushnirenko’s theorem we know that the
system only has ma = 20 affine solutions (the bound is tight in this example).

Code A.1. It is possible to compute Kushnirenko’s bound via MacaulayLab:

>> p1 = [23 16 14; -1 22 18; 27 0 0];
>> p2 = [35 16 14; -1 22 18; 9 0 0];
>> mb = bezout(systemstruct({p1, p2}))

mb =
1600

>> ma = kushnirenko(systemstruct({p1, p2}))

ma =
20

Remark A.1. Theorem A.3 necessarily counts solutions in Cn \ {0}, as
multiplying all equations with a monomial xα may change the number of
solutions in the coordinate hyperplanes (i.e., there may be new solutions with
zero-coordinates), but it does not change the normalized volume vol(A). The
statement can be adapted to count solutions in Cn, but then becomes more
involved [125].

Remark A.2. If A = {α ∈ Nn : |α| ≤ d}, we have that Fn(A) = Pn
d and

vol(A) = dn. In that situation, Theorem A.3 coincides with Theorem A.2
for d1 = · · · = dn = d.

There exists a generalization of Kushnirenko’s theorem to unequal supports
(i.e., the polynomials can have different supports), which is called Bernstein’s
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(0, 0)

P

+

(0, 0)

Q
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(0, 0)

P +Q

(a) Minkowski sum

(0, 0)

P

(0, 0)

2P

(0, 0)

3P

(b) δ-dilation

Figure A.2. Visualization of the Minkowski sum of two Newton polytopes
and the δ-dilations for δ = 2 and δ = 3 of a Newton polytope.

theorem. Let us fix n subsets of exponents A1, . . . ,An with cardinalities |Ai|
and define the family of systems of polynomial equations

Fn(A1, . . . ,An) = {p1(x) = · · · = pn(x) = 0 : supp(pi(x)) = Ai}. (A.32)

The number of solutions is characterized by the mixed volume of these subsets
A1, . . . ,An. In order to compute the mixed volume, we need to define first the
Minkowski sum and the δ-dilation (see Figure A.2): the Minkowski sum of two
sets S, T ⊂ Rn as {s+ t : s ∈ S, t ∈ T}, where s + t is the usual addition of
vectors in Rn, while the δ-dilation δS of a set S ⊂ Rn is {δs : s ∈ S}, where δs
is the usual scalar multiplication in Rn. Each of the supports Ai corresponds
to a convex polytope Conv(Ai) as in (A.30). If we consider the homogeneous
polynomial of degree n

f(λ1, . . . , λn) : Rn
≥0 → R≥0 :

(λ1, . . . , λn)→ Vol(λ1Conv(A1) + · · ·+ λnConv(An)),
(A.33)

then the mixed volume mvol(λ1, . . . , λn) is the coefficient of that polynomial
associated with the monomial λ1 · · ·λn.
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Theorem A.4 (Bernstein’s theorem). For any square S ∈
Fn(A1, . . . ,An), the number of isolated, affine solutions, i.e., the num-
ber of isolated points in the affine variety, is at most mvol(λ1, . . . , λn).
Moreover, there exists a proper variety ∇A1,...,An

such that, when
S ∈ P(A1, . . . ,An) \ ∇A1,...,An

, the variety consists of precisely
mvol(A1, . . . ,An) isolated affine points.

This theorem was originally proved by Bernstein [33] for the field of complex
numbers. The proof by Kushnirenko [147] works for all algebraically closed
fields and several alternative proofs were found by Khovanskii. Therefore,
Theorem A.4 is sometimes called the BKK theorem and the bound on the
number of solutions the BKK bound.

Example A.10. Let us consider the system of two bivariate polynomial
equations {

p1(x) = ax31x
2
2 + bx1 + cx22 + d = 0,

p2(x) = ex1x
4
2 + fx31 + gx2 = 0,

(A.34)

where a, b, c, d, e, f , and g are coefficients in C. The Bézout bound of this
system is equal to mb = 5 · 5 = 25, which is not tight. However, the mixed
volume is equal to 18, which corresponds exactly to the number of affine
solutions of the system (when the coefficients are random scalars).

Code A.2. Also the BKK bound can be determined via MacaulayLab. The
code below computes the Bézout bound and BKK bound for a system with
a special support and random coefficients.

>> c = randn(7,1);
>> p1 = [c(1) 3 2; c(2) 1 0; c(3) 0 2; c(4) 0 0];
>> p2 = [c(5) 1 4; c(6) 3 0; c(7) 0 1];
>> mb = bezout(systemstruct({p1, p2}))

mb =
25

>> ma = bkk(systemstruct({p1, p2}))

ma =
18

Remark A.3. Like Theorem A.3, Theorem A.4 counts solutions in Cn \{0}.
The statement can also be adapted to count solutions in Cn [125].
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Theorem A.4 provides an upper bound on the number of isolated, affine
solutions to any system of polynomial equations with n = s. Although it
significantly improves the upper bound of Theorem A.2, it still often happens
in applications that the bound is not tight. There exist even more refined
solution counts, but these are far out of the scope of this text.

A.4 Gröbner bases and Buchberger’s algorithm
The Gröbner basis algorithm, more commonly referred to as Buchberger’s al-
gorithm, computes a Gröbner basis for a set of polynomial equations. Loosely
speaking, the algorithm can be understood as the polynomial generalization
of the Gaussian elimination algorithm or as the multivariate generalization of
the greatest common divisor algorithm [78]. In essence, Buchberger’s algorithm
proceeds by manipulating the given set of polynomial equations with the objec-
tive of elimination certain terms, while at all times the “new” set of equations
is algebraically equivalent to the original set, i.e., the define the same ideal.

A typical way to do this is to aim at finding a triangular structure: one or
more equations would be univariate, then some equations would involve two
or a few variables, until the most complicated equation involves (almost) all
variables. This requires that one defines an ordering on the monomials to decide
in what order the terms should be eliminated. This triangular structure greatly
simplifies the task of solving the system of multivariate polynomial equations.
For example, if we use a lexicographic (LEX) ordering, one often end up with
polynomials that are univariate. After the univariate equation is solved (via
an efficient univariate root-finding algorithm, like the companion matrix), the
solutions can be substituted in the next equations which has two unknowns,
after which only one unknown remains and it can be solved again, etc. By
iterating this way, all unknowns are ultimately determined. The properties of
a Gröbner basis with different monomial ordering can be very different.

A.4.1 Multivariate division
As mentioned in Section 2.2, there exist different ways to order multivariate
monomials. The literature contains a number of different orderings (see, for
example, [66]), two of them are relevant in this section:

Definition A.6. Let xα and xβ be monomials in Cn. We say that xα > xβ

in the lexicographic (LEX) ordering when in the difference α− β ∈ Zn,
the leftmost nonzero entry is positive.

Definition A.7. Let xα and xβ be monomials in Cn. We say that xα > xβ

in the graded lexicographic (GRLEX) ordering when in the difference
|α| > |β| ∈ Zn, or when α− β ∈ Zn for |α| = |β| ∈ Zn.

Let us assume that a monomial ordering is chosen, expressed by >, and let
us now consider the terms appearing in a given polynomial p(x) =

∑
α cαx

α.
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Algorithm A.1 Multivariate division algorithm
Require: q(x), p1(x), . . . , ps(x)

1: a1(x) = · · · = as(x) = r(x) = 0
2: while q(x) 6= 0 do
3: i = 1
4: flag ← false
5: while i ≤ s and flag = false do
6: if flag = false then
7: ai(x) = ai(x) + LT (q)/LT (pi)
8: q(x) = q(x)− (LT (q)/LT (pi))pi(x)
9: flag ← true

10: else
11: i = i+ 1
12: end if
13: end while
14: if flag = true then
15: r(x) = r(x) + LT (q)
16: q(x) = q(x)− LT (q)
17: end if
18: end while
19: return a1(x), . . . , as(x), r(x)

Definition A.8. The leading term of p(x) (w.r.t. >) is the product cαxα

where xα is the largest monomial appearing in p(x) in the ordering >. The
notation LT (p) will be used for the leading term. Furthermore, if LT (p) =
cαx

α, then cα is the leading coefficient of p(x), denoted by LC(p), and
xα is the leading monomial of p(x), denoted by LM(p)

A multivariate division algorithm can now be devised, for which an algo-
rithm is presented in Algorithm A.1.

Definition A.9. Fix any monomial ordering >, and let p1(x), . . . , ps(x) be
an ordered set of polynomials. Then any polynomial q(x) ∈ Pn can be
written as

q(x) = a1(x)p1(x) + · · ·+ as(x)ps(x) + r(x), (A.35)

where ai(x), r(x) ∈ Pn, for each i, ai(x)pi(x) = 0 or LT (q) ≥ LT (ai · pi),
and either r(x) = 0 or r(x) is a linear combination of monomials, none of
which is divisible by any of LT (p1), . . . , LT (ps). We call r(x) the remainder
of p(x) on division by p1(x), . . . , ps(x).
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A.4.2 Buchberger’s algorithm
Another important ingredient in Buchberger’s algorithm are the S-polynomials5.
S-polynomials are used to eliminate leading terms from a system of polynomial
equations, by considering two polynomials from the system and consequently
computing a least common multiple, leading to the vanishing of the leading
terms. The multivariate division algorithm is used to reduce the result from
this operation to a normal form (Appendix A.5.2) with respect to a set of
polynomial equations. This normal form is the remainder in the multivariate
division algorithm.

Definition A.10. Let p(x), q(x) ∈ Pn be nonzero polynomials. Fix a mono-
mial order > and let

LT (p) = cxα and LT (q) = dxβ, (A.36)

where c, d ∈ K. Let xγ be the least common multiple of xα and xβ. The
S-polynomial of p(x) and q(x), denoted by S(p, q)(x), is the polynomial

S(p, q) =
xγ

LT (p)
p(x)− xγ

LT (q)
q(x). (A.37)

By definition, S(p, q)(x) ∈ 〈p(x), q(x)〉.

Example A.11. Consider p(x) = x31x2 − 2x21x
2
2 + x1 and q(x) = 3x41 − x2.

We use the LEX ordering. We have xγ = x41x2 and

S(p, q)(x) = x1p(x)−
1

3
x2q(x) = −2x31x22 + x21 +

1

3
x22. (A.38)

If we continue with the equations from the previous example, and now take
the remainder on division by I = {p(x), q(x)}, denoted S(p, q)

I
(x), we can

uncover new leading terms of elements in I = 〈p(x), q(x)〉. Note that this step
requires Algorithm A.1.

Example A.12. In this case, we find that the remainder is

S(p, q)
I
(x) = −4x21x32 + x21 + 2x1x2 +

x22
3
, (A.39)

and LT
(
S(p, q)

I
)
= −4x21x32 is divisible by neither LT (p) nor LT (q).

Buchberger’s algorithm consists in identifying such interfering polynomials in
the polynomial system, computing the remainder in the division algorithm,
adding the result to the set of polynomial equations, and repeating this proce-
dure until all reductions yield zero. The following theorem expresses a criterion

5The name comes from subtraction polynomials or syzygy polynomials.
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Algorithm A.2 Buchberger’s rudimentary algorithm
Require: I = {p1(x), . . . , ps(x)}

1: G = IF
2: while G = H do
3: H = G
4: for each pair f(x) 6= g(x) in H do
5: h(x) = S(f, g)

H
(x)

6: If h(x) 6= 0, add G = G ∪ {h(x)}
7: end for
8: end while
9: return G = {g1(x), . . . , gt(x)}

by Buchberger that is essential for this procedure and leads directly to a rudi-
mentary version of Buchberger’s algorithms (Algorithm A.2).

Theorem A.5. A finite set G = {g1(x), . . . , gt(x)} is a Gröbner basis of
I = 〈g1(x), . . . , gt(x)〉 if and only if S(gi, gj)

G
(x) = 0 for all pairs i 6= j.

Although Buchberger’s rudimentary algorithm is constructive and finishes
in a finite number of steps, it requires exact arithmetic, and turns out to be
impractical even medium-sized problems. During the last decades, a series of
optimizations has been introduced, of which the work by Faugère [88, 89] (and
extensions) are currently among the most competitive approaches to compute
a Gröbner basis of a polynomial system.

A.5 Stetter’s eigenvalue-eigenvector approach
In the current section, we will illustrate the Stetter’s eigenvalue-eigenvector ap-
proach for solving a system of polynomial equations as an eigenvalue problem.
The approach works by computing an eigenvalue decomposition of a matrix rep-
resenting multiplication in the quotient space (Appendix A.5.1) and requires
the concept of normal forms (Appendix A.5.2). Stetter’s eigenvalue-eigenvector
approach is closely related to the approaches developed in this dissertation.

A.5.1 Multiplication maps in the quotient space
Let us consider an ideal I = 〈p1(x), . . . , ps(x)〉 that describes an affine zero-
dimensional variety V(I). In Appendix A.2, it is explained that the quotient
ring R[I] = Pn/〈p1(x), . . . , ps(x)〉 is a commutative ring. Given a polynomial
g(x), we can use multiplication to define a linear map Ag from R[I] to itself:

Ag : R[I]→R[I] : [f ]I 7→ [f ]I [g]I = [fg]I . (A.40)

SinceR[I] is a finite-dimensional vector space over C, we can represent the mul-
tiplication map by its matrix with respect to a basis B =

{
[b1]I , . . . , [bmb

]I
}

.
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This mb ×mb matrix is called the multiplication matrix and denoted by Ag.
Its eigenvalues and eigenvectors have important properties:

Theorem A.6. Let I ⊂ Pn be an ideal with zero-dimensional variety V(I) =
(z1, . . . , zmb

) and Ag the multiplication matrix for a multiplication map Ag

with respect to a given basis B =
{
[b1]I , . . . , [bmb

]I
}

. The eigenvalues of Ag

are the evaluations of g(x) in the mb points of the zero-dimensional variety
and the row vector [

b1(zi) · · · bmb
(zi)

]
(A.41)

lies in the left eigenspace for the eigenvalue g(zi), i = 1, . . . ,mb.

Proof. A proof of this theorem can be found in [66, Chapter 4].

This theorem implies that the solutions of a system of multivariate polynomial
equations can be retrieved from the multiplication structure of the quotient
space by computing the multiplication matrices Ax1 , . . . ,Axn in the variables
x1, . . . , xn and computing their eigenvalues. Note that the matrix Axi and
Axj

, for any i and j, commute since xixj = xjxi. As a result, the matrices
Axi

and Axj
have common eigenspaces. Thus, the traditional procedure to

find all affine common roots can be summarized as:

1. Compute the multiplication matrices Ax1 , . . . ,Axn for a particular basis
B of the quotient space R[I].

2. Perform a simultaneous triangularization of Ax1 , . . . ,Axn to retrieve the
common roots of the system.

We elaborate more on the first step in the next paragraph, while the second
step can be tackled via standard numerical linear algebra algorithms.

A.5.2 Normal forms
An essential element of the first step are normal forms; hence, the name “normal
form algorithms” for this type of algorithms. If the basisB =

{
[b1]I , . . . , [bmb

]I
}

of the quotient space R[I] is fixed, then, for any f(x), there are unique con-
stants cj such that

f(x)−
mb∑
j=1

cjbj(x) ∈ I. (A.42)

These are the coefficients in the unique expansion of [f ]I =
∑mb

j=1 cjbj(x) in
the basis B. This map

M : Pn → B : f(x) 7→
mb∑
j=1

cjbj(x), (A.43)

which sends f(x) to
∑mb

j=1 cjbj(x), is called a normal form. Its key property is
thatM projects Pn onto B along I. The multiplication matrix Ag : B → B is
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Table A.1. Numerical solutions of system (A.44) obtained via Stetter’s
eigenvalue-eigenvector approach.

x1 x2 x3

1.8570∓ 0.1760i 1.6000± 0.1510i 0.5000± 0.8666i
−2.0000 + 0.0000i −1.5000 + 0.0000i −1.0000 + 0.0000i
−2.3570± 0.6890i 1.1720∓ 0.3430i 0.5000∓ 0.8666i
3.0000 + 0.0000i 1.0000 + 0.0000i −1.0000 + 0.0000i

simply given by Ag(bj) =M(g ·bj). This means that the ith column of the mul-
tiplication matrix contains the coefficients cj(g · bi) of M(g · bi). Computing
normal forms can be done via symbolic computations or linear algebra (us-
ing the Macaulay matrix) [243]. The following example illustrate the symbolic
normal form approach.

Example A.13 (taken from [78]). Let us consider a small example,
namely the system of multivariate polynomial equations

p1(x) = x1x2 − 3 = 0,

p2(x) = x21 − x23 + x1x3 − 5 = 0,

p3(x) = x33 − 2x1x2 + 7 = 0.

(A.44)

A Gröbner basis G for this polynomial system can be computed (using the
graded inverse lexicographic (GRINVLEX) ordering):

g1(x) = x1x2 − 3 = 0,

g2(x) = 14x22 − 25− 5x1x3 + 2x3 − 5x2 + x1 = 0,

g3(x) = 5x3x2 + 15− 6x1x3 − 3x21 − x2 = 0,

g4(x) = x23 + 5− x1x3 − x21 = 0,

g5(x) = 5x31 − 25 + 4x1x3 + 2x21 − 25x3 + 84x2 − 75x1 = 0,

g6(x) = 5x3x
2
1 + 15− 2x1x3 − x21 − 42x2 + 251 = 0.

(A.45)

The leading terms of G are{
x1x2, x

2
2, x2x3, x

2
3, x

3
1, x

3
1x3
}
, (A.46)

so the normal set B is
B =

{
1, x1, x2, x3, x

2
1, x1x3

}
. (A.47)

If we choose g(x) = x1 + 2x2 + 3x3 as the shift polynomial, then the multi-
plication matrix Ag is equal to

Ag =


0 1 2 3 0 0
6 0 0 0 1 3

−17/7 −1/7 46/35 −2/7 9/5 151/35
−21 0 2/5 0 21/5 32/5
−4 6 42/5 5 1/5 2/5
3 10 −84/5 21 −2/5 −4/5

, (A.48)
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which is obtained by computing for each element B its multiplication with
g and reducing the result with respect to G; the remainder is linear in the
elements of B and composes a row of Ag. We have then

Ag


1
x1
x2
x3
x21
x1x3

 = g(x)


1
x1
x2
x3
x21
x1x3

. (A.49)

The eigenvectors of Ag are re-scaled such that the first entry equals one,
from which we can then read off the solutions (Table A.1).
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Numerical Linear Algebra

In this appendix, we review some concepts and methods of (numerical) linear
algebra. The focus is mainly on the computation of the different matrix decom-
positions that we use in the dissertation. The numerical algorithms to compute
these matrix decompositions are at the heart of the solutions approaches that
we have developed. Note that the decades of advancements in numerical linear
algebra algorithms have given us state-of-the-art implementations that are able
to solve problems in an computational efficient and a backward stable way.

Some good reference works on (numerical) linear algebra are [29, 74, 97,
207, 235, 249]. A historical overview of the field can be found in [46]. For more
information about eigenvalue problems, [123, 270] are useful.
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Outline. First, we review some essential properties about vectors and ma-
trices in Appendix B.1. The conditioning of a problem and the stability of an
algorithm are discussed in Appendix B.2. Next, in Appendix B.3, we consider
the rank, determinant, and inverse of a matrix. Appendix B.4 contains more
information about eigenvalues and eigenvectors. Finally, in Appendix B.5, we
summarize the necessary background information about the four different ma-
trix decompositions that appear in this text.
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B.1 Vectors and matrices
In linear algebra, vectors and matrices in finite-dimensional vector spaces are
omnipresent. A vector is one-dimensional array of (scalar) numbers, while a
matrix is a two-dimensional array of scalar numbers. These numbers belong
to a certain field K. We denote scalars by italic lowercase letters, e.g., a ∈ K,
and vectors by boldface lowercase letters, e.g., a ∈ Kk×1. By default, vectors
are assumed to be column vectors. Matrices are denoted by bold-face upper
case letters, e.g., A ∈ Kk×l is a matrix with k rows and l columns consisting of
numbers from K. In this text, we mainly considered complex numbers; hence,
we restrict ourselves in the remainder of this section to the field of complex
numbers (K = C). The operations A−1, AT, and AH denote the inverse,
transpose, and Hermitian transpose of a matrix A, respectively.

A (complex) vector a ∈ Ck×1 in this dissertation is thus a one-dimensional
array, whose entries are denoted by

a =

a1...
ak

 = (ai)1≤i≤k. (B.1)

Similarly, a (complex) matrix A ∈ Ck×l is a two-dimensional array, whose
entries are denoted by

A =

a11 · · · a1l
...

. . .
...

ak1 · · · akl

 = (Aij)1≤i≤k,1≤j≤l. (B.2)

The transpose AT of a matrix A is an operator that flips a matrix over its
diagonal. Formally, the ijth element of A becomes the jith element of AT:[

AT
]
ij
=
[
A
]
ji
. (B.3)

The Hermitian transpose AH, also known as conjugate transpose, of a matrix
A is obtained by taking the transpose of that matrix and applying complex
conjugation on each entry: [

AH
]
ij
=
[
Ā
]
ji
. (B.4)

A vector norm is a function of a vector that assigns a (positive) length to
that vector. Two vector norms are used in this dissertation:

• The Euclidean norm or 2-norm of a vector is defined as

‖a‖2 =
√
a1a1 + · · · anan, (B.5)

where · denotes the complex conjugation. Notice that ‖a‖2 = aHa.

• The Manhattan norm or 1-norm of a vector is defined as

‖a‖1 =

n∑
i=1

|ai|. (B.6)
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The notion of a norm can be naturally extended to matrices. For an n-
dimensional vector space V and an m-dimensional vectors space W with norms
‖·‖V and ‖·‖W on V and W , respectively, the induced matrix norm is

‖A‖V,W = sup
x∈V \{0}

‖Ax‖W
‖x‖V

. (B.7)

We encounter the following specific matrix norms in this text:

• The 2-norm of a matrix is defined as

‖A‖2 = max{‖Az‖2 : ‖z‖2 = 1} = σ1(A), (B.8)

where σ1(A) denotes the largest singular value of A.

• The Frobenius norm of a matrix is defined as

‖a‖F =

√√√√ n∑
i=1

m∑
j=1

|aij |2 =

√√√√min(m,n)∑
i=1

σ2
i (A), (B.9)

where σi(A) denotes the ith largest singular value of A.

B.2 Conditioning and stability
Two important concepts in numerical linear algebra, when solving problems
with numerical algorithms, are the condition and stability. Consider the fol-
lowing example.

Example B.1. If we have a nonsingular, square matrix A and a column
vector b, then solving the linear system Ax = b yields exactly one solu-
tion, which is given by x = A−1b. In exact arithmetic, this is the end of
the story. However, on computers, if we want to compute the solution of
Ax = b in floating-point arithmetic, the intermediate results are replaced by
nearby machine numbers, causing rounding errors in the computed solution
x̃. Moreover, the values of A and b can also not be represented exactly on
the computer, so their entries are already replace by machine numbers before
the computations start. So, we hope that our numerical algorithm computes
a good approximation x̃ of the true solution, in a sense that Ax̃ ≈ b, or even
better x̃ ≈ x.

We want to known whether our numerical algorithm did a good job, we want
to measure how good that job was, and want a way of deciding whether the
obtained errors are satisfactory. A good criterion for deciding this takes into
account that the computer treats our problem as a slightly perturbed version
of the problem, and the solution may be very sensitive to such perturbations.
These questions are captured in the fundamental concepts condition and sta-
bility from numerical analysis. While the condition has to do with the problem,
the stability is a property of the numerical algorithm used to solve that prob-
lem, or in the words of [249],



332 Chapter B. Numerical Linear Algebra

Conditioning pertains to the perturbation behavior of a mathemat-
ical problem. Stability pertains to the perturbation behavior of an
algorithm used to solve that problem on a computer.

These two concepts are often confused. Hence, we summarize their meanings
in the following two sections (Appendices B.2.1 and B.2.2). Afterwards, we
explain how we quantify the obtained errors in this text (Appendix B.2.3).

B.2.1 Conditioning and condition numbers
In general, we can view a problem as a function f : X → Y from a normed
vector space X of data to a normed vector space Y of solutions. This func-
tion is usually nonlinear, even in linear algebra, but most of the time at least
continuous. Typically, we shall be concerned with the behavior of a problem f
at a particular point x ∈ X, because the behavior can greatly vary from one
point to another.

A well-conditioned problem is one with the property that all small perturba-
tions of x lead to only small changes in f(x). An ill-conditioned problem is one
with the property that some small perturbation of x leads to a large change
in f(x). Of course, the meaning of “small” and “large” in these statements
depends on the application.

One way of quantifying the perturbation behavior is via condition numbers.
Let δx denote a small perturbation of x and write δf = f(x+ δx)− f(x). The
absolute condition number κ = κ(x) of the problem f at x is defined as

κ = lim
δ→0

sup
‖δx‖≤δ

‖δf‖
‖δx‖

. (B.10)

If f is differentiable, we can evaluate the condition number by means of the
derivative of f . Let J(x) be the matrix whose i, j-entry is the partial derivative
∂fi/∂xj evaluated at x, known as the Jacobian of f at x. The definition of the
derivative gives us, to the first order, in the limit

κ = ‖J(x)‖, (B.11)

where ‖J(x)‖ represents the norm of J(x) induced by the norms on X and Y .
When we are concerned with relative changes, we need the notion of relative

condition. The relative condition number κ(r) = κ(r)(x) is defined by

κ(r) = lim
δ→0

sup
‖δx‖≤δ

(
‖δf‖
‖f(x)‖

/
‖δx‖
‖x‖

)
. (B.12)

If f is again differentiable, then we can express this quantity in terms of the
Jacobian:

κ(r) =
‖J(x)‖

‖f(x)‖/‖x‖
. (B.13)

Both absolute and relative condition numbers have their uses, but the latter
are more important in numerical analysis because the floating-point arithmetic
used by computers introduces relative errors rather than absolute ones. The
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condition number may depend strongly on x, meaning that some instances
of the problem are more sensitive to perturbations than others. A problem
is now well-conditioned if κ(r) is small (e.g., κ(r) = 100 or κ(r) = 102) and
ill-conditioned when κ(r) is large (e.g., κ(r) = 106 or κ(r) = 1010).

Example B.2. To illustrate, we consider an example from polynomial root-
finding. The determination of the roots of a univariate polynomial is a classic
example of an ill-conditioned problem. Consider x2−2x+1 = (x−1)2, which
has clearly a double root at x = 1. A small perturbation in the coefficients
may lead to a larger change in the roots. For example, x2 − 2x + 0.9999 =
(x−0.99)(x−1.01). In fact the roots can change in proportion to the square
root of the change in the coefficients, so in this case the Jacobian is infinite
(the problem is not differentiable), and κ(r) =∞.

Polynomial root-finding is typically ill-conditioned even in cases that do
not involve multiple roots. If the ith coefficient ci of a polynomial p(x) is
perturbed by an infinitesimal quantity δci, the perturbation of the jth root xj
is δxj = −(δci)xij/p′(xj), where p′(x) is the derivative of p(x). The condition
number of xj with respect to perturbations of the single coefficient ci is

κ(r) =
|δxj |
|xj |

/
|δci|
|ci|

=

∣∣cixi−1
j

∣∣
|p′(xj)|

. (B.14)

This number is often very large, for example, in the famous Wilkinson poly-
nomial

p(x) =

20∏
i=1

(x− i) = c0 + c1x+ · · ·+ c19x
19 + x20, (B.15)

where the condition number of the most sensitive coefficient, c15, is ≈ 5.1×
1013.

Example B.3. Fix an invertible matrix A ∈ Ck×k and let the operation be
the matrix-vector product

f : Ck → Ck : x 7→ Ax. (B.16)

For any norm on Ck, we find that

κ(r) ≤ ‖A‖
∥∥A−1

∥∥. (B.17)

This relative condition number is an very important constant for an invertible
matrix, called the condition number of A. It is also used to quantify, for
example, the relative condition number of solving a linear system.

B.2.2 Numerical stability
Previously, we defined a problem as a function f : X → Y from a vector spaceX
of data to a vector space Y of solutions. An algorithm can be viewed as another
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map f̃ : X → Y between the same two spaces. Given data x ∈ X rounded
to floating-point machine data, let us supply this data to the algorithm. The
result is again a collection of floating-point numbers that belong to the vector
space Y , namely f̃(x). The result f̃(x) will be affected by rounding errors
and, depending on the circumstances, other complications like convergence
tolerances or other jobs of the computer. The function f̃(x) may even take
different values from run to run; it may be multivalued. Yet, despite these
complications, we can make some statements about f̃(x).

First, however, we need a way of measuring the error of f̃(x) as an approxi-
mation for f(x). We can consider the absolute forward error of a computation,∥∥∥f̃(x)− f(x)∥∥∥, (B.18)

or the relative forward error of a computation,∥∥∥f̃(x)− f(x)∥∥∥
‖f(x)‖

. (B.19)

If f̃ is a good algorithm, one might expect the relative forward error to be
small, of order εmach (machine precision). One may say that an algorithm f̃
for a problem f is accurate if for each x ∈ X∥∥∥f̃(x)− f(x)∥∥∥

‖f(x)‖
= O(εmach). (B.20)

The relative forward error is small if the approximate solution is
If the problem f is ill-conditioned, however, the goal of accuracy is unrea-

sonably ambitious. Rounding the input data is unavoidable on a computer,
and even if all the subsequent computations could be carried out perfectly, this
perturbation alone might lead to a significant change in the result. Instead
of aiming for accuracy in all cases, the most that is appropriate is to aim for
forward stability. We say that an algorithm f̃ for a problem f is forward stable
if for each x ∈ X ∥∥∥f̃(x)− f(x̃)∥∥∥

‖f(x̃)‖
= O(εmach), (B.21)

for some x̃ with
‖x̃− x‖
‖x‖

= O(εmach). (B.22)

In words, this means that a forward stable algorithm gives nearly the right
answer to nearly the right question.

Many algorithms of numerical linear algebra satisfy a condition that is both
stronger and simpler than forward stability. We say that an algorithm f̃ for a
problem f is backward stable if for each x ∈ X

f̃(x) = f(x̃) (B.23)
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for some x̃ with
‖x̃− x‖
‖x‖

= O(εmach). (B.24)

This tightening of the definition of stability means that a backward stable al-
gorithm gives exactly the right answer to nearly the right question. Unlike
conditioning, stability is a property of the algorithm, not of the problem. Usu-
ally, the conditioning of a problem is out of our hands, but (backward) stability
is what we aim for when designing algorithms.

B.2.3 Error measures
In this dissertation, two types of error measures are used to describe the nu-
merical correctness of the results: the reconstruction error and residual error.

Reconstruction error. Given a matrix A and a computed basis matrix of
its right null space Z, the absolute reconstruction error is defined as

ẽ = ‖AZ‖2. (B.25)

In the context of floating-point arithmetic, the relative reconstruction error is
often more meaningful:

ẽ (r) =
‖AZ‖2
‖A‖2

. (B.26)

For both the absolute and relative reconstruction error, an index i is sometimes
added as a subscript, i.e., ẽi and ẽ (r)

i , to denote, for example, the corresponding
iteration.

Residual error. To describe the numerical correctness of the computed so-
lutions of a system of multivariate polynomial equations or rectangular multi-
parameter eigenvalue problem (MEP), we use the residual error. The absolute
residual error of a solution x∗ for a polynomial system with polynomials pi(x),
i = 1, . . . s is given by

‖e‖2 =

s∑
i=1

‖pi(x∗)‖2, (B.27)

while the same error for an eigenvalue λ∗ and associated eigenvector z∗ of a
rectangular MEP with matrix pencil M(λ) is given by

‖e‖2 = ‖M(λ∗)z∗‖2. (B.28)

It is also possible to define a relative residual error for both problems, namely

‖e‖(r)2 =

∑s
i=1‖pi(x∗)‖2∑s

i=1

∑
A
∥∥ci,α(x∗)

α∥∥
2

(B.29)

and
‖e‖(r)2 =

‖M(λ∗)z∗‖2∑k
i=1

∑l
j=1

∑
W

∥∥∥[Aω]ij(λ
∗)

ω
∥∥∥
2

. (B.30)

In experiments, often the maximum (absolute/relative) residual error for all
obtained solutions is reported.
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B.3 Rank, determinant, and inverse of a matrix
Essential when working with matrices are the concepts of the rank, determi-
nant, and inverse of a matrix.

Definition B.1. A set of vectors a1, . . . ,an is said to be linearly indepen-
dent if

n∑
i=1

ciai = 0 (B.31)

implies that c1 = · · · = cn = 0. If, on the other hand, a non-trivial linear
combination of the vectors ai exists that is equal to zero, then we say that
the set of vectors is linearly dependent.

Definition B.2. A subspace S of Ck is a subset that is also a vector space.
The set of all linear combinations of a given collection of vectors a1, . . . ,an ∈
Ck×1 is a subspace, also referred to as the span of a1, . . . ,an, i.e.,

〈a1, . . . ,an〉 =

{
n∑

i=1

ciai : ci ∈ C

}
. (B.32)

Definition B.3. A basis {b1, . . . , bm} for a subspace S has two properties:

• It is linearly independent.

• It spans the subspace, i.e., ∀s ∈ S we have that s =
∑k

i=1 cibi.

All bases for a subspace S have the same number of elements, which is called
the dimension of the subspace and is denoted dim(S).

Suppose that we consider a matrix A ∈ Cp×q, which is a linear transformation
from Cp to Cq. Then we can associate four fundamental subspaces with that
matrix, two in Cp and two in Cq: the row space R(A), right null space N (A),
column space R(A), and left null space L(A). These four fundamental sub-
spaces, applied to the Macaulay matrix, are the topic of Chapter 4. The rank
of a matrix A is defined as the dimension of its column space, or formally

Definition B.4. Let A ∈ Ck×l be a matrix. The rank of A is defined as

rank(A) = dim(C(A)). (B.33)

A well-known property of matrices is that the rank of A is equal to the rank
of AT, i.e., the row rank and the column rank of a matrix are equal. The
dimension of the null space (which is the rank of a basis matrix of the null
space) is called the nullity, i.e.,

nullity(A) = dim(N (A)). (B.34)
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The relation between the rank and nullity is captured in the rank-nullity the-
orem (Theorem 4.2):

rank(A) + nullity(A) = l, (B.35)
for any k × l matrix A.

A determinant of a square matrix is a number that is a function of the
entries of the matrix. Determinants play a central role in understanding the
concepts of linear algebra, e.g., when studying the inverse of a matrix or its
eigenvalues. Although they are often cumbersome in a numerical setting, we
can not avoid to define them for the sake of completeness, while we try to avoid
them in numerical computations1. The determinant can be defined in several
equivalent ways. Laplace’s formula allows to compute the determinant using
the so-called minors.

Definition B.5. Let A be an m ×m square matrix, of which the elements
are denoted by aij . The minor Mij is defined as the determinant of the
(m− 1)× (m− 1) matrix that results from A by removing the ithe row and
jth column. The expression Cij = (−1)i+j

Mij is called the cofactor. The
determinant of A is then given by the formula

det(A) =

m∑
i=1

(−1)i+j
Mij , (B.36)

with the determinant of a scalar equal to that scalar, i.e., det(a) = a.

Another important operation for a square matrix A is its inverse A−1. Note
that the inverse of a matrix exists if and only if its determinant is nonzero.

Definition B.6. Let A be a square matrix. If we can find a matrix X for
which AX = XA = In, where In is the n × n identity matrix, we call X
the inverse of A, denoted as A−1.

If A−1 exists, A is said to be nonsingular (sometimes called regular), otherwise
we say that A is singular.

When looking at invertible matrices, unitary matrices are very interest-
ing. An invertible complex square matrix is called unitary when its Hermitian
transpose QH is also its inverse, i.e.,

QHQ = QQH = QQ−1 = Ik, (B.37)

where Ik is the identity matrix. Unitary matrices have some interesting prop-
erties: the columns/rows form an orthonormal basis of Ck with respect to the
usual inner product, it is a normal matrix (i.e., the matrix commutes with

1Although determinants (via characteristic polynomials) played an important role in com-
puting the eigenvalues of a matrix back in the history (and even in elementary linear algebra
courses students use them to solve the standard eigenvalue problems), they are a poor method
in general, and are almost never used in scientific computing. Not only determinants are inef-
ficient (“How do we compute a determinant efficiently?”), they can be notoriously inaccurate
in floating-point arithmetics.
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its Hermitian transpose), and multiplication by Q preserves the inner prod-
uct, that is 〈Qx,Qy〉 = 〈x,y〉. For real numbers, the analogue of the unitary
matrix is an orthogonal matrix:

QTQ = QQT = QQ−1 = Ik. (B.38)

B.4 Eigenvalues and eigenvectors

When we consider a square l × l matrix with complex entries, A ∈ Cl×l, then
the vector z ∈ Cl×1 is called an eigenvector of A if z is a non-zero vector and
Az is a multiple of z. That is, there exists a scalar λ ∈ C, so that

Az = λz. (B.39)

The problem of finding all pairs2 (λ, z) that satisfy this condition is the stan-
dard eigenvalue problem.

Definition B.7. Given a coefficient matrix A ∈ Cl×l, the standard eigen-
value problem (SEP) consists in finding all scalars λ ∈ C and correspond-
ing vectors z ∈ Cl×1 \ {0}, so that

M(λ)z = (A− Iλ) = 0. (B.40)

The scalars λ and (non-zero) vectors z are the eigenvalues and eigenvectors
of the SEP, respectively.

The eigenvalue associated with a given eigenvector is unique, while each eigen-
value has many eigenvectors associated with it (if λ is an eigenvalue associated
with an eigenvector z, then any non-zero multiple of z is also an eigenvector
with associated eigenvalue λ). Indeed, the set of all vectors (including the zero
vector) satisfying (B.40) for a fixed eigenvalue λ is a subspace of Cl, which we
call the eigenspace of the matrix A associated with λ. The set of all eigenvalues
of a matrix A is called the spectrum of that matrix and is denoted by Λ(A).

Clearly, (B.39) and (B.40) are equivalent. Thus, λ is an eigenvalue of A if
and only if the matrix equation (A− I lλ)z = 0 has a non-zero solution:

Proposition B.1. For a coefficient matrix A ∈ Cl×l, the following state-
ments are equivalent:

• λ is an eigenvalue of A.

• A− I lλ is a singular matrix.

• N (A− I lλ) 6= {0}.

Note that N (A− I lλ) is exactly the eigenspace associated with λ.

2The pair (λ,z) is often called an eigenpair of the matrix A.
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Proof. The proof is left as an exercise to the reader.

Corollary. The matrix A is non-singular if and only if 0 is not an eigenvalue
of A.

An important question immediately arises: “Does every square matrix have
eigenvalues?” The answer on this crucial question is given by the following
theorem:

Theorem B.1. Every square matrix A ∈ Cl×l has l (affine) eigenvalues
λ ∈ C.

Proof. This theorem follows directly from the fundamental theorem of alge-
bra (Theorem A.1).

This theorem is a consequence of Proposition B.1: a scalar λ is an eigenvalue
of a matrix A if and only if A − I lλ is singular. A classical way to asses if
A−I lλ is singular is to check whether its determinant is equal to zero. Hence,
λ is an eigenvalue of the matrix A if and only if the characteristic polynomial3
χ(λ) is equal to zero:

χ(λ) = det(A− I lλ) = 0. (B.41)

One can easily check that the characteristic polynomial is a univariate polyno-
mial in λ of degree l. By the fundamental theorem of algebra (Theorem A.1),
every complex polynomial of degree l has exactly l roots, and subsequently
the characteristic polynomial equation of a matrix A yields always l eigenval-
ues. These eigenvalues need not to be distinct, they can appear with a certain
multiplicity. The multiplicity of an eigenvalue λ as a root of the characteristic
polynomial is called the algebraic multiplicity of an eigenvalue.

Proposition B.2. Let A ∈ Cl×l havem distinct eigenvalues λ|(1), . . . , λ|(m),
and let z|(1), . . . , z|(m) be eigenvectors associated with λ|(1), . . . , λ|(m), re-
spectively. Then the eigenvectors z|(1), . . . , z|(m) are linearly independent.

Proof. The proof is left as an exercise to the reader.

3In the literature, one mostly finds a characteristic polynomial defined χ(λ) =
det(Ilλ−A) = 0, which of course results in the same eigenvalues but is monic. We do
not consider the monic definition in order to keep our notation consistent.
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Corollary. If A ∈ Cl×l has l distinct eigenvalues, then A has a set of l
linearly independent eigenvectors. In other words, there is a basis of Cl

consisting of the eigenvectors of A.

A matrix A ∈ Cl×l that has l linearly independent eigenvectors is called
diagonalizable (other word: semisimple). The previous corollary states that
every matrix that has only distinct eigenvalues is diagonalizable. The converse
is not true: a matrix can have repeated eigenvalues and still be diagonalizable.
An eigenvalue can have multiple linearly independent associated eigenvectors.
The number of linearly independent eigenvectors associated with an eigenvalue
is called the geometric multiplicity of an eigenvalue. Stated in other word: the
geometric multiplicity of an eigenvalue λ is the dimension of N (A− I lλ). A
matrix that is not diagonalizable is called defective, not to be confused with a
derogatory matrix.

Definition B.8 ([123, p. 77]). Let A ∈ Cl×l. We say that A is defective
if the geometric multiplicity of some eigenvalue of A is strictly less than its
algebraic multiplicity. If the geometric multiplicity of each eigenvalue of A
is the same as its algebraic multiplicity, we say that A is non-defective. If
each eigenvalue of A has geometric multiplicity equal to 1, we say that A is
non-derogatory, otherwise it is derogatory.

Finally, we summarize the difference between algebraic and geometric multi-
plicity and between defective, derogatory, and diagonalizable matrices:

• The algebraic multiplicity of an eigenvalue is the number of times the
eigenvalue appears as a root of the characteristic polynomial, while the
geometric multiplicity is the dimension of the eigenspace spanned by that
eigenvalue. In general, the algebraic multiplicity and geometric multiplic-
ity of an eigenvalue can differ, but the geometric multiplicity can never
exceed the algebraic multiplicity [123].

• Both defective and derogatory imply the algebraic multiplicity of at least
one eigenvalue, but they are in fact independent concepts [100]. A ma-
trix is diagonalizable if and only if it is non-defective; it has l distinct
eigenvalues if and only if it is non-derogatory and non-defective [123].

Example B.4. A good example of a non-defective, derogatory matrix is the
identity matrix

I =

[
1 0
0 1

]
. (B.42)

It has only one eigenvalue, namely 1. The algebraic multiplicity of this
eigenvalue is obviously 2, since the characteristic equation is χ(λ) = (1− λ)2.
Since every non-zero eigenvector is an eigenvector of I, any basis of C2 is a
set of 2 linearly independent eigenvectors of I. The geometric multiplicity is
thus also equal to 2.
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Example B.5. On the other hand, the matrix

A =

[
0 1
0 0

]
(B.43)

has an eigenvalue 0 with algebraic multiplicity equal to 2 (the character-
istic equation is χ(λ) = (−λ)2), while the geometric multiplicity of that
eigenvalue is equal to 1 (the eigenspace associated with the eigenvalue 0 is
one-dimensional). The matrix A is thus defective, and hence not diagonal-
izable.

An important observation related to algorithms for computing the eigen-
values of a general matrix is that any such algorithm must be of an iterative
nature. By this, we mean that the algorithm may iteratively compute better
and better approximations, but can never, even in exact arithmetic, compute
the eigenvalues in finite time. This is prohibited by the Abel–Ruffini theorem,
which states that there is no general expression in radicals for the roots of a
univariate polynomial of degree 5 or higher. By the fact that the univariate
root-finding problem can be translated directly in an eigenvalue problem, the
existence of a direct algorithm for computing eigenvalues would contradict this
theorem. The key idea of many of the successful eigenvalue solvers is to apply
a sequence of similarity transformations to the matrix, such that it converges
to a structured matrix from which we can read off the eigenvalues (for example,
a diagonal matrix).

Many eigenvalue problems that arise in applications can be formulated as
a generalized eigenvalue problem (GEP),

Az = λBz, (B.44)

where A and B are both l × l complex matrices. Clearly, the GEP is a direct
extension of the SEP, where the diagonal matrix in (B.39) is replaced by the
matrix B.

Definition B.9. Given two coefficient matrices A,B ∈ Cl×l, the general-
ized eigenvalue problem (GEP) consists in finding all scalars λ ∈ C and
corresponding vectors z ∈ Cl×1 \ {0}, so that

M(λ)z = (A−Bλ)z = 0. (B.45)

The scalar λ and (non-zero) vectors z are the eigenvalues and eigenvectors
of the GEP, respectively.

The expression A − Bλ with indeterminate λ is commonly called a matrix
pencil (other word: matrix pair). A backward stable algorithm to compute
the generalized eigenvalue is given by the QZ algorithm, which computes a
generalization of the Schur decomposition.
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An eigenvalue λ can be split into two scalars µ and ν to improve the inter-
pretation. If µ 6= 0, then (B.44) is equivalent to

µAz = νBz. (B.46)

Note that scalars µ and ν are not uniquely determined by an eigenvector z, but
the ratio λ = ν

µ is (except when Az = Bz = 0, which we briefly discuss below).
When µ = 0 and ν 6= 0, then the GEP has an infinite eigenvalue λ = ∞. The
next proposition considers some well-known facts about GEPs:

Proposition B.3. Let us consider two complex matrices A,B ∈ Cl×l and a
non-zero scalar λ ∈ C \ {0}:

• λ is an eigenvalue of (A,B) if and only if 1
λ is an eigenvalue of (B,A).

• ∞ is an eigenvalue of (A,B) if and only if 0 is an eigenvalue of (B,A).

• ∞ is an eigenvalue of (A,B) if and only if B is a singular matrix.

• If B is a non-singular matrix, then the eigenvalues of (A,B) are exactly
the eigenvalues of B−1A and AB−1. If z is an eigenvector of (A,B)
with associated eigenvalue λ, then z is an eigenvector of B−1A with
eigenvalue λ and Bz is an eigenvector of AB−1 with eigenvalue λ.

Also for GEPs, a scalar λ is an eigenvalue of the problem if and only if it is
a solution of the characteristic equation χ(λ). The characteristic equation for
a GEP is defined as

χ(λ) = det(A− λB) = 0. (B.47)

The characteristic polynomial is a polynomial in λ of degree l or less:

• If B is a non-singular matrix, then the GEP is formally equivalent with
a SEP and the degree of the characteristic polynomial is equal to l.

• If B is a singular matrix, then the degree of the characteristic polynomial
is less than l.

In fact, when the characteristic polynomial is of degree less than l, there is not
a complete set of eigenvalues for the problem [174]. In some cases the missing
eigenvalues may be regarded as “infinite”. The term infinite eigenvalue is justi-
fied by the fact that if B is perturbed slightly so that it is no longer singular,
there may appear a number of large eigenvalues that grow unboundedly as the
perturbation is reduced to zero. It can happen that the characteristic polyno-
mial is identically zero: χ(λ) ≡ 0. If there is a non-zero vector z such that
Az = Bz = 0, then (A− λB)z = 0 for all λ and det(A− λB) is identically
zero, i.e., A and B have a common null space and any λ may be regarded as
an eigenvalue. We call the matrix pencil (A,B) in that case a singular pencil,
while we focus in this text on regular pencils. Such problems have usually
pathological features, and they are often referred to as ill-posed problems.
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Theorem B.2. Every pair of matrices A,B ∈ Cl×l that forms a regular
pencil (i.e., χ(λ) 6≡ 0) has l (affine and infinite) eigenvalues λ ∈ C ∪∞.

Proof. This theorem follows directly from the fundamental theorem of alge-
bra (Theorem A.1).

B.5 Four important matrix decompositions
We can now review the four matrix decompositions used in this dissertation:
the eigenvalue decomposition (Appendix B.5.1), Schur decomposition (Ap-
pendix B.5.2), QR decomposition (Appendix B.5.3), and singular value de-
composition (Appendix B.5.4).

B.5.1 Eigenvalue decomposition
When a matrix is diagonalizable, it can be transformed into a diagonal matrix
via a similarity transformation:

Theorem B.3. Let A ∈ Cl×l. Then A is diagonalizable if and only if there
exists a non-singular matrix X ∈ Cl×l and a diagonal matrix Λ ∈ Cl×l, so
that

A = XΛX−1. (B.48)

The columns of X constitute a basis of Cl consisting of the eigenvectors of
A. This factorization is also called the eigendecomposition of the matrix
A.

Proof. A proof of this theorem can be found in [270].

Corollary. A matrix A is called similar to a matrix B if there is an in-
vertible matrix X such that A = XBX−1. If A is similar to B, then they
have the same eigenvalues. Moreover, these eigenvalues occur with the same
algebraic and geometric multiplicities.

Not every matrix can be diagonalized by a similarity transformation, only
diagonalizable ones can. The theory of the Jordan canonical form exists because
matrices that are defective exist. How close to diagonal form can a defective
matrix be brought by a similarity transformation? We know from Schur’s
theorem [270] that every matrix is similar to an upper-triangular matrix. How
much additional progress toward a diagonal form can we make?
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Theorem B.4. Let A ∈ Cl×l. Then A is similar to a matrix J that is a
direct sum of Jordan blocks. J is uniquely determined up to the order of the
blocks (i.e., the number and size of the blocks associated with each eigenvalue
are uniquely determined, but the blocks can appear in any order on the main
diagonal). J is called the Jordan canonical form of A and we can write

A = PJP−1, (B.49)

where P ∈ Cl×l is a non-singular matrix.

Proof. A proof of this theorem can be found in [270].

A Jordan block associated with the eigenvalue λ is a matrix with λ’s on the
main diagonal, ones on the super-diagonal and zeros elsewhere. For example,
a 4× 4 Jordan block has the form

Jλ =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

. (B.50)

If the eigenvalue λ = 0, then we obtain a nilpotent Jordan block, which looks
like

J0 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

. (B.51)

A diagonal matrix itself is a Jordan canonical form with n Jordan blocks
Jλ of size 1 × 1. A matrix is similar to a diagonal matrix if and only if its
Jordan canonical form is diagonal. If a matrix has a non-diagonal Jordan form,
then it must necessarily have at least one repeated eigenvalue. Consequently,
a matrix is not diagonalizable unless its Jordan form is diagonal.

We do not elaborate further on the Jordan canonical form, since they (al-
most) never occur in numerical computation in floating-point arithmetics. If a
matrix has a non-diagonal Jordan form (i.e., if a matrix is defective), then any
small perturbation of the matrix (for example, by the first round-off error of
the similarity transformation) is likely to split the repeated eigenvalue into a
cluster of nearby eigenvalues. The perturbed matrix is now non-defective; its
Jordan form is diagonal.

B.5.2 Schur decomposition
Another decomposition that reveals the eigenvalues of a matrix is the Schur
decomposition. Its advantage is that it can be computed (approximately) by
only applying unitary similarity transformations.
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Definition B.10. For a matrix A, a decomposition A = UTUH is called a
Schur decomposition if T is upper triangular and U is unitary.

It is clear that, if A = UTUH = UTU−1 is a Schur decomposition, then A is
similar to T and T has the eigenvalues of A on its diagonal. Every matrix has
a Schur decomposition and it can be computed in a backward stable way [249].

B.5.3 QR decomposition
In general, any m×n matrix can be decomposed into the product of an unitary
matrix Q and an upper-triangular matrix R. This is called the (forward) QR
decomposition.

Theorem B.5. Any rectangular complex matrix A ∈ Cm×n with m ≥ n
can be decomposed as

A =
[
Q1 Q2

]︸ ︷︷ ︸
Q

[
R1

0

]
︸ ︷︷ ︸

R

, (B.52)

where Q ∈ Cm×n is a unitary matrix and R1 ∈ Cn×n is an upper-triangular
matrix.

Every matrix has a QR factorization. The QR decomposition is usually com-
puted using well-conditioned backward stable algorithms, like Householder re-
flections or Givens rotations to systematically create zeros under the diagonal
of the matrix A [97, 249].

If we assume that k ≥ l and A has rank r, then a QR decomposition of A
can be written as

A = QR =
[
Q1 Q2

][R1

0

]
= Q1R1. (B.53)

The diagonal entries of R can be chosen real and positive, which makes the
factorization A = Q1R1, which is called the reduced QR factorization, unique.

The QR decomposition can be used to do several matrix operations, e.g.,
computing the rank of a matrix or constructing an orthonormal basis for the
column space or right null space of a matrix. For example, for a matrix A
of rank l, the columns of the matrix Q1 form an orthonormal basis for the
column space of A. Unfortunately, the full column rank assumption can not
be dropped. A solution for this is given by a generalization of the QR decom-
position, in which it is allowed to permute columns of A.

Definition B.11. For a matrix A ∈ Ck×l, a decomposition AP = QR of
AP is called a column pivoted QR factorization of A if

• P is a column permutation matrix.

• Q is unitary.

• R is upper triangular.
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B.5.4 Singular value decomposition

The singular value decomposition (SVD) of a matrix is sometimes called the
“swiss army knife of numerical analysis” or “work horse of numerical linear
algebra”. It shows up in a multitude of applied mathematics techniques and is
the corner stone of many mathematical modeling and analysis approaches.

Theorem B.6. The singular value decomposition (SVD) of a matrix
A ∈ Cm×n with m ≥ n is

A = UΣV H, (B.54)

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices. The matrix Σ is an
m× n real matrix, having the following form:

Σ =

[
Σr 0
0 0

]
, (B.55)

where Σr is an r × r diagonal matrix when rank(A) = r. The elements on
the diagonal of Σr are called the singular values of A and are denoted by
σ1 ≥ · · · ≥ σr > 0. The are ordered in descending order on the diagonal.

The SVD exists for any m×n matrix. Moreover, the singular values σi are
uniquely determined. This is not true for the eigenvalue decompositions (which
only exists for square matrices), although there exists a strong connection be-
tween both decompositions: the columns of U are the eigenvectors of AAH

and the columns of V are the eigenvectors of AHA. The r singular values on
the diagonal of Σr are the square roots of the non-zero eigenvalues of both
AAH and AHA.

Some problems for which we use the SVD in this dissertation are calculating
the rank of a matrix (rank checks), computing numerical basis matrix of a sub-
space of a matrix, determining the pseudo-inverse of a matrix, and performing
row and column compressions.

Rank of a matrix. The rank of a matrix can be read off as the number of
nonzero singular values of that matrix. The SVD is the most reliable method
for determining the (numerical) rank of a matrix, which is in practice done by
counting the number of singular values that are greater than a certain user-
defined threshold value ε. This also highlight the difficulty of numerical rank
checks. Suppose that the gap between σr and σr+1 is small, then it is clear
that the matrix is nearly as close to being rank r − 1 as to being rank r, and
the partitioning can be very sensitive to the threshold value ε. In Matlab, the
default threshold is

max(m,n)eps(σ1), (B.56)

where eps(σ1) is the distance from σ1 to the next larger in magnitude floating
point number of the same precision as σ1. We sometimes also use an absolute
threshold in MacaulayLab, for example ε = 1× 10−10.
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Numerical basis matrix for subspaces. The SVD also has an interesting
geometric interpretation. Let us consider the SVD of a real matrix A ∈ Cm×n.
If we partition U and V in accordance to Σ, then we obtain

A =
[
U1 U2

][Σr 0
0 0

][
V H

1

V H
2

]
. (B.57)

The two different factorizations of the matrix A,

A = UΣV H and A = U1ΣrV
H
1 , (B.58)

are sometimes also called the full SVD and reduced (or thin/economy) SVD
of the matrix. The SVD provides numerical basis matrices for the four funda-
mental subspaces of a matrix. We have that

• range
(
U1

)
= range

(
A
)
,

• range
(
U2

)
= null

(
AT
)
,

• range
(
V 1

)
= range

(
AT
)
,

• range
(
V 2

)
= null

(
A
)
.

Hence, the SVD creates the following numerical basis matrices:

• the last q − r columns of V are a basis matrix for the right null space,

• the first r columns of U are a basis matrix for the column space,

• the first r columns of V are a basis matrix for the row space,

• and the last p− r columns of U are a basis matrix for the left null space.

Pseudo-inverse of a matrix. The inverse of a rectangular matrix or square
singular matrix is not defined. However, there exists a generalization of the
inversion operation, called the pseudo-inverse of a matrix. For A ∈ Cm×n

with m ≥ n and its SVD A = UΣV H, the Moore–Penrose pseudo-inverse of a
matrix, denoted by A†, is defined as

A† = V Σ†UH, (B.59)

where Σ† = diag(1/σ1, . . . , 1/σr, 0, . . . , 0).

Row and column compression. Because it uses orthogonal transforma-
tions, the SVD can be used to compress a matrix in a numerically reliable way,
which means that it can transform a matrix into a smaller matrix with vectors
that span that matrix.
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Theorem B.7. Let the SVD of A ∈ Cm×n be given by A = UΣV H. Then,
we have that

UHA = ΣV H (B.60)

=

[
Σr 0
0 0

][
V H

1

V H
2

]
(B.61)

=

[
ΣrV

H
1

0

]
, (B.62)

with null
(
A
)

= null
(
UHA

)
= null

(
ΣrV

H
1

)
, which means that the pre-

multiplication of A by UH is the row compression of A. The matrix
ΣrV

H
1 ∈ Cr×n has full row rank.

Theorem B.8. Let the SVD of A ∈ Cm×n be given by A = UΣV H. Then,
we have that

AV = UΣ (B.63)

=
[
U1 U2

][Σr 0
0 0

]
(B.64)

=
[
U1Σr 0

]
, (B.65)

with range(A) = range(AV ) = range(U1Σr), which means that the post-
multiplication of A by V is the row compression of A. The matrix U1Σr ∈
Cm×r has full column rank.



C
ha

pt
er

C
.

Sy
st

em
s

T
he

or
y

an
d

Sh
ift

-I
nv

ar
ia

nt
Su

bs
pa

ce
s

C



Systems Theory and
Shift-Invariant Subspaces

The algorithms in Chapters 2 and 3 strongly rely on the concept of (backward)
shift-invariance. Shift-invariance of a subspace is usually defined for infinite
matrices, i.e., operators [93]. De Cock and De Moor [69] have adapted in their
paper the definition of backward scalar/block single/multi-shift-invariance to
finite dimensional subspaces. It is this adaptation that we use in our algorithms
and present in this appendix.
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Outline. Firstly, Appendix C.1 contains a summary of the system theoretical
concepts used in this dissertation. Next, in Appendix C.2, we consider the
four different cases of shift-invariance that are encountered throughout this
dissertation. Finally, we interpret the solution approaches of this dissertation
as applications of multidimensional realization theory in Appendix C.3.
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C.1 Systems theory
We give a summary of some important concepts from systems theory, which we
need in Appendix C.3 to interpret the solution algorithms of this dissertation
in terms of multidimensional realization theory. A more elaborate introduction
to the subject of systems theory can be found in textbooks like [91, 128, 192].

C.1.1 Description of a dynamical system
A dynamic linear time-invariant (LTI) discrete time system can be described
by its state space representation (A,B,C,D):

xk+1 = Ax+Buk, (C.1)
yk = Cx+Duk, (C.2)

where xk ∈ Rn×1 is called the state vector (with initial value x0) at time instant
k, uk ∈ Rp×1 denotes the input at time instant k, and yk ∈ Rq×1 denotes the
output at time instant k. Starting from a given initial state, we can compute
the output sequence for a given input sequence,

x1 = Ax0 +Bu0, (C.3)
y0 = Cx0 +Du0, (C.4)
⇓

x2 = A2x0 +ABu0 +Bu1, (C.5)
y1 = CAx0 +CBu0 +Du1, (C.6)
⇓

x3 = A3x0 +A2Bu0 +ABu1 +Bu2, (C.7)
y2 = CA2x0 +CABu0 +CBu1 +Du2, (C.8)

...

which shows us how the dynamical system evolves over time. In general, we
obtain the following expression:

xk+1 = Ak+1x0 +

k∑
i=0

Ak−iBui, (C.9)

yk = CAkx0 +

k−1∑
i=0

CAk−i−1Bui +Duk. (C.10)

A fundamental result in systems theory is that the behavior of a dynamical
LTI system can completely by characterized by its impulse response. Let us
explain this by starting with a single-input/single-output (SISO) system. When
dealing with a SISO system, the input and output are scalar signals, i.e., p =
q = 1. The impulse response of a SISO system is the sequence of outputs yk
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obtained by applying the impulse input signal uk = δk, defined as

δk =

{
1 for k = 0,

0 for k 6= 0.
(C.11)

It can be seen from (C.10) that the output of the dynamical system, which is
called the impulse response hk, is then given by

hk =

{
d for k = 0,

cTAk−1b for k 6= 0.
(C.12)

The output of a SISO system to any given input is simply the convolution of the
input with the system’s impulse response. For multiple-input/multiple-output
(MIMO) systems the same ideas remain valid, but now with a impulse response
matrix Hk,

Hk =

{
D for k = 0,

CAk−1B for k 6= 0,
(C.13)

where every ij-th element corresponds to the impulse response of the ith output
on an impulse on the jth input. These matrices are sometimes also called the
Markov parameters of the dynamical system.

C.1.2 Ho–Kalman’s realization algorithm
An important problem in systems theory (and system identification) is the
so-called realization problem.

Definition C.1. Given a set of impulse response matrices Hk, for k =
0, . . . , N − 1, the realization problem is the problem of finding the state
dimension n and a system realization (A,B,C,D).

By embedding the observed impulse response information in an appropriately
sized Hankel matrix, the essential information about the underlying dynamical
system is revealed: the rank of the constructed Hankel matrix corresponds to
the McMillan degree of the underlying dynamical LTI system and a state-space
model (the so-called realization) can be estimated from a decomposition of this
Hankel matrix. Note that the state space realization of a dynamical system is
not unique.

Let us first introduce three more matrices, before considering the realization
algorithm of Ho and Kalman [116] in Algorithm C.1:

• The extended observability matrix Oi with i > n is defined as

Oi =


C
CA

...
CAi−1

. (C.14)
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Algorithm C.1 Ho–Kalman’s realization algorithm
Require: Hk for k = 0, . . . ,K

1: The matrix D can be found easily as D = H0

2: Construct the block Hankel matrix Hij as in (C.16)
3: Take the SVD of Hij : Hij = UΣV T

4: Oi = UΣ
1
2 and Cj = Σ

1
2V T

5: n is the rank of Hij

6: C is formed from the first p rows of Oi, while B is formed from the first q
columns of Cj

7: A = Oi
†Oi

8: return n and (A,B,C,D)

• The extended controllability matrix Cj with j > n is defined as

Cj =
[
B AB · · · Aj−1B

]
. (C.15)

The (pi) × (qj) block Hankel matrix Hij with block dimensions i and j
(i+ j − 1 ≤ N) is defined as

Hij =


H1 H2 H3 · · · Hj

H2 H3 · · · Hj Hj+1

H3 · · · Hj Hj+1 Hj+2

... . . . . . . . . .
...

Hi Hi+1 Hi+2 · · · Hi+j−1

. (C.16)

A consequence from the definition of Hk is that the block Hankel matrix Hij

can be factorized into the product of the extended observability matrix and the
extended controllability matrix, i.e.,

Hij = OiCj . (C.17)

If i and j are sufficiently large, this block Hankel matrix is rank deficient and
its rank is equal to the McMillan degree n of the dynamical system. This
insight leads to the realization algorithm of Ho and Kalman [116], outlined
in Algorithm C.1. By using the so-called shift trick (cf., Appendix C.3), it is
possible to obtain the system matrix A, while the other matrices of the state
space representation can be retrieved from the definitions of the Hankel matrix,
extended observability matrix, and extended controllability matrix.

C.2 Shift-invariant subspaces
We define the (backward1) scalar single-shift-invariance of a subspace via the
column space (i.e., range) of a matrix that represents that subspace.

1Note that sometimes ambiguity arises when considering the shift operator. In this text,
we adopt the convention of Garcia et al. [93], and we define the backward shift operator as
S{f(z)} = f(z)−f(0)

z
, or, in terms of Taylor coefficients {ai}i≥0 of f(z), as S{(a0, a1, . . .)} =

(a1, a2, . . .).
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Definition C.2. Let C(G) be the column space of a matrix G ∈ Cm×n with
full column rank. C(G) is (backward) scalar single-shift-invariant if
and only if

C
(
G
)
⊆ C(G), (C.18)

where G and G (with full column rank) are the matrix G without its first
and last row, respectively.

The backward scalar single-shift-invariance of C(G) can also be expressed as

∃Γ ∈ Cn×n : GΓ = G, (C.19)

where C
(
G
)
= C(G) if Γ is non-singular (and otherwise C

(
G
)
( C(G)). These

row selection operations can be written via row selection matrices S1 and S2,
similar to the mathematical formulation in other parts of this dissertation. The
scalar single-shift-invariance property in Definition C.2 can then be expressed
as

∃Γ ∈ Cn×n : (S1G)Γ = (S2G), (C.20)
where S1 and S2 select all the rows of the matrix G except the last one and
the first one, respectively. Note that shift-invariance is a property of the vector
space, and not of the specific basis matrix of this vector space. Consider a
second basis matrix H ∈ Cm×n, then there exists a basis transformation via
a non-singular matrix T ∈ Cn×n, such that G = HT . Consequently, we can
rewrite (C.20) as

(S1H)Λ = (S2H), with Λ = TΓT−1. (C.21)

Clearly, the matrices Γ and Λ are similar, and hence have the same spectrum.
The spectrum is an invariant property of a (backward) shift-invariance sub-
space. This observation is one of the key observations of the (block) Macaulay
matrix approach in this dissertation.

Example C.1. Consider a univariate Vandermonde matrix V U ∈ C(d+1)×n

(with n distinct columns and degree d). The column space of this matrix
clearly exhibits scalar single-shift invariance:

1 · · · 1
α1 · · · αn

...
...

αd−1
1 · · · αd−1

n


︸ ︷︷ ︸

S1V U

α1 · · · 0
...

. . .
...

0 · · · αn


︸ ︷︷ ︸

Γ

=


α1 · · · αn

...
...

αd−1
1 · · · αd−1

n

αd
1 · · · αd

n


︸ ︷︷ ︸

S2V U

. (C.22)

Definition C.2 covers scalar single-shift-invariance: scalar meaning that we
shift row-wise and single-shift meaning that only one shift direction is possible
in the subspace. We can extend this definition and introduce an additional
shift direction (or variable in that Vandermonde example), which leads to the
concept of scalar multi-shift-invariance.
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Example C.2. An example of scalar multi-shift-invariance is given by the
column space of the bivariate Vandermonde matrix V M ∈ C(d2+3d+2)/2×n

(with n distinct columns and degree d),

V M =



1 · · · 1
α1 · · · αn

β1 · · · βn
α2
1 · · · α2

n
...

...
βd
1 · · · βd

n


, (C.23)

which can be shifted by both variables α and β. As an example, we shift the
first three rows of V M : 1 · · · 1

α1 · · · αn

β1 · · · βn


︸ ︷︷ ︸

S1V M

α1 · · · 0
...

. . .
...

0 · · · αn


︸ ︷︷ ︸

Γα

=

 α1 · · · αn

α2
1 · · · α2

n

α1β1 · · · αnβn


︸ ︷︷ ︸

S2V M 1 · · · 1
α1 · · · αn

β1 · · · βn


︸ ︷︷ ︸

S1V M

β1 · · · 0
...

. . .
...

0 · · · βn


︸ ︷︷ ︸

Γβ

=

 β1 · · · βn
α1β1 · · · αnβn
β2
1 · · · β2

n


︸ ︷︷ ︸

S3V M

,

(C.24)

where the row selection matrices S2 and S3 select the rows of the bivariate
Vandermonde matrix after a shift of the first three rows (the matrix S1) by
α (the matrix Γα) and by β (the matrix Γβ), respectively.

While the column space of the matrix V U is scalar single-shift-invariant,
some subspaces are block single-shift-invariant, which means that we can shift
entire block rows of the basis matrix, i.e., C(S1G) ⊆ C(S2G), where the row
selection matrices S1 and S2 select the entire matrix G without the first and
last block row, respectively.

Example C.3. A block univariate Vandermonde matrix V B ∈ C(d+1)s×n

(with a vector zi ∈ Cs×1, i = 1, . . . , n) exhibits this property:
z1 · · · zn

α1z1 · · · αnzn

...
...

αd−1
1 z1 · · · αd−1

n zn


︸ ︷︷ ︸

S1V B

α1 · · · 0
...

. . .
...

0 · · · αn


︸ ︷︷ ︸

Γ


α1z1 · · · αnzn

...
...

αd−1
1 z1 · · · αd−1

n zn

αd
1z1 · · · αd

nzn


︸ ︷︷ ︸

S2V B

. (C.25)

The block multi-shift-invariant subspace is a natural extension of the pre-
vious types of shift-invariant subspaces. This property appears multiple times
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in this dissertation, since the (affine) right null space of the block Macaulay
matrix is block multi-shift-invariant.

Example C.4. As an example, we shift the first three block rows of the block
multivariate Vandermonde matrix (compare to (3.54) with λ = (α, β)): z1 · · · zn

α1z1 · · · αnzn

β1z1 · · · βnzn


︸ ︷︷ ︸

S1V

α1 · · · 0
...

. . .
...

0 · · · αn


︸ ︷︷ ︸

Γα

=

 α1z1 · · · αnz1

α2
1z1 · · · α2

nzn

α1β1z1 · · · αnβnzn


︸ ︷︷ ︸

S2V z1 · · · zn

α1z1 · · · αnzn

β1z1 · · · βnzn


︸ ︷︷ ︸

S1V

β1 · · · 0
...

. . .
...

0 · · · βn


︸ ︷︷ ︸

Γβ

=

 β1z1 · · · βnzn

α1β1z1 · · · αnβnzn

β2
1z1 · · · β2

nzn


︸ ︷︷ ︸

S3V

.

(C.26)

C.3 Multidimensional realization theory
For multidimensional dynamical systems, the realization problem of Defini-
tion C.1 corresponds to the following question: “How can we obtain a state-
space realization from a given set of multivariate difference equations?” The
equivalence between (C.20),

(S1G)Γ = (S2G), (C.27)

and (C.21),
(S1H)Λ = (S2H), with Λ = TΓT−1. (C.28)

show that the matrices Γ and Λ are similar, and hence, have the same spectrum.
The spectrum is thus an invariant property of a (backward) shift-invariant sub-
space. This property allows us to interpret the basis matrices of (backward)
shift-invariant column spaces as observability matrices of multidimensional dy-
namical systems. In that regard, we can see the null space based solution
approach, where we search for the spectrum of Γ (or Λ), as a multidimen-
sional realization problem: a basis matrix of the right null space of the (block)
Macaulay matrix can, after stabilization of the degree, be interpreted as a mul-
tidimensional observability matrix. This multidimensional observability matrix
is generated by a multidimensional descriptor system [80, 259]. In this basis
matrix, we find a multidimensional realization problem when we select two
blocks and use the multiplicative relationship of the shift-invariant subspace.
The eigenvalues that we obtain are the eigenvalues of the system matrices of
the generating multidimensional descriptor system. Then, the full rank condi-
tion of G is equivalent with the dynamical system being observable and the full
rank condition of G is the partial realization condition, required for a unique
solution [69, 80]. This observation has been made in [80] for the scalar case
and in [259] for the block case.
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Example C.5. Consider the (block) column echelon basis matrix H of the
right null space of a (block) Macaulay matrix with two parameters α and β
(i.e., two variables or two eigenvalue parameters):

H =

CR

CRAα

CRAβ

CRA
2
α

CRAαAβ

CRA
2
β

CRA
3
α

...
CRA

n
α

...
×
...

0

0

0

0

0

0

0
...
0
...

CSE
m−1
α

...

(C.29)

The regular columns of this block column echelon basis matrix H, i.e., the
ma left-most columns corresponding to the affine solutions, and the singular
columns, i.e., the remaining (mb −ma) right-most columns corresponding to
solutions at infinity, determine two observability matrices ΓR and ΓS, which
are generated by a multidimensional descriptor system. In this multidimen-
sional observability matrix, we find the multidimensional realization problem
that yield us the GEP(s) to solve the seed equation(s). Indeed, if one selects
two blocks of H, for example SαH = CRAα and Sα,βH = CRAαAβ

(Sα and Sα,β operate as row selection matrices), we recognize the solution
approach in the right null space:

SαHAβ = Sα,βH, (C.30)

or
Aβ = (SαH)

†
(Sα,βH). (C.31)

The eigenvalues of all the system matrices Aα and Aβ constitute the solutions
of the seed equation(s).
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User-Manual of the
MacaulayLab Toolbox

This appendix contains the user-manual of the MacaulayLab toolbox (version
1.0) developed alongside this dissertation. Via several examples, the user is
guided through the available functions of the software. The user-manual ex-
plains how to solve systems of multivariate polynomial equations and rectan-
gular multiparameter eigenvalue problems.



1

Part I

2

3

4

Part II

5

6

Part III

7
Application 1

Application 2

Application 3

8

A B C D

Outline. The user-manual helps the user getting started with the toolbox
in Appendix D.1. Next, in Appendix D.2, we explain how to represent a
problem, being a system of multivariate polynomial equations or a rectangular
multiparameter eigenvalue problems. Solving these problems via the (block)
Macaulay matrix is the topic of Appendix D.3, while the user-manual shows
how to change the monomial ordering or polynomial basis in Appendix D.4.
Finally, some other useful functions of the toolbox are highlighted in Ap-
pendix D.5

Quick start. For those users that are not interested in the full user-manual
of MacaulayLab, but just want to solve problems as soon as possible, we recom-
mend jumping to Appendix D.1.3 for a minimal introduction to the software.
This part of the text should provide you with all the necessary information
(and nothing more) to solve your problem.
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D.1 Getting started
MacaulayLab is a Matlab toolbox that features algorithms to solve systems of
multivariate polynomial equations and rectangular multiparameter eigenvalue
problems (MEPs). It also contains a database with many test problems. Before
using MacaulayLab, you need to download the zip archive of the toolbox from
the website www.macaulaylab.net and unzip MacaulayLab to any directory.
You could also clone the latest version of the stable repository. This user-
manual is based on version 1.0 of the software. You can check the current
version of MacaulayLab that you use via ver MacaulayLab .

D.1.1 Installation
Afterward unzipping MacaulayLab to a directory, you can browse to that loca-
tion in Matlab and add the path.

Code D.1. It is easy to add MacaulayLab to your path:

>> addpath(genpath(pwd));
>> savepath;

D.1.2 Help and documentation
The different functions of MacaulayLab are well-documented. Using the func-
tion help function in the command line displays more information about the
functionality and interface of that function.

Code D.2. The documentation of the nbmonomials function:

>> help nbmonomials

nbmonomials calculates the number of monomials.

[s] = nbmonomials(d,n) calculates the number of
monomials s in the monomial basis for n variables and
maximum total degree d.

Input/output variables:

s: [int] number of monomials in the monomial basis.
d: [int] maximum total degree of the monomials.
n: [int] number of variables of the monomials.

See also monomialsmatrix.

www.macaulaylab.net
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D.1.3 Quick start
The easiest way to represent a system of multivariate polynomials is by con-
sidering a matrix for every polynomial of the system, where the first column
corresponds to the coefficients of the polynomials and the remaining columns
represent the powers of the variables in the corresponding monomials. These
matrices are combined in a cell array and given to the systemstruct construc-
tor.

Code D.3. We start by constructing a system of two bivariate polynomial
equations.

>> p1 = [2 2 0; -3 0 1; 1 0 0];
>> p2 = [1 2 0; 1 0 2; 16 0 0];
>> eqs = {p1, p2};
>> problem = systemstruct(eqs);

Similarly, a rectangular MEP can be represented by a cell array that contains
all the coefficient matrices in the correct monomial ordering (including zero ma-
trices). This cell array, together with the total degree and number of variables
of the problem, is given to the mepstruct constructor.

Code D.4. Similarly, we can construct a linear two-parameter eigenvalue
problem. Contrary to systemstruct , mepstruct requires information about
the maximum total degree dmax and number of eigenvalue n .

>> dmax = 1; n = 2;
>> A00 = randn(4,3); A10 = randn(4,3); A01 = randn(4,3);
>> mat = {A00, A10, A01};
>> problem = mepstruct(mat,dmax,n);

Solving the problem requires only one additional line of code.

Code D.5. Given the problem, it is possible to obtain its solutions without
any additional information.

>> solutions = macaulaylab(problem);

D.1.4 Tests to check all functionality
MacaulayLab contains a set of tests to check the different functions. This allows
the user to change the code and experiment with the different functions, but at
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all times the user can check whether everything still works. You can find the
test suite in the folder Tests. In order to run all the tests, simply use Matlab’s
function runtests .

Code D.6. After moving to the correct folder, you can run all the tests:

>> cd Tests/
>> results = runtests(`outputdetail',0);

D.2 Representation of a problem
In order to keep the toolbox user-friendly, describing a problem is kept very sim-
ple. MacaulayLab revolves around two different types of problems: systems of
multivariate polynomial equations and rectangular MEPs. Both problem types
are internally represented by the same class problemstruct : all necessary in-
formation is stored in the cell arrays coef and supp , where each cell of coef
and supp contains the coefficients/coefficient matrices and support of one poly-
nomial (matrix) equation, respectively. Although it is possible to submit the
problem directly in its internal representation, the sub-classes systemstruct
and mepstruct provide constructors to set-up the specific problems more easily
(Figure D.1).

D.2.1 Systems of multivariate polynomial equations
The natural way of representing a single polynomial is via a row vector with
its coefficients. The coefficients in that row vector are ordered according to a
particular monomial ordering. For example, the polynomial p(x, y, z) = 1x2 +
2yz + 3 as a row vector corresponds to[

3 0 0 0 1 0 0 0 2 0
]
, (D.1)

in the graded inverse lexicographic (GRINVLEX) ordering. Of course, this
representation contains many zeros when the polynomial is sparse, especially
for high degrees and many variables. A more efficient approach to represent
a polynomial is by considering a matrix, where the first column corresponds
to the coefficients of the polynomial and the remaining columns represent the
powers of the variables in the corresponding monomials, i.e.,

pi(x)↔


c1 α11 · · · α1n

c2 α21 · · · α2n

...
...

...
cN αN1 · · · αNn

, (D.2)

with ci the coefficients of the polynomial and αij the power of the variable xj for
that ith coefficient. The polynomial p(x, y, z) = 1x2+2yz+3 is represented by a
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system of multivariate
polynomial equations eqs

n-parameter eigenvalue prob-
lem with coefficient matrices
mat and total degree dmax

systemstruct(eqs)
inherits from problemstruct inherits from problemstruct

mepstruct(mat,dmax,n)

problemstruct(coef,supp)

system mep

internal representationproblem

Figure D.1. Representation of a system of multivariate polynomial equations
or rectangular MEP in MacaulayLab. Both problem types are internally repre-
sented by the same problemstruct : all necessary information is stored in the
cells coef and supp . The sub-classes systemstruct and mepstruct provide
constructors to set-up the problems more easily, but it is also possible to sub-
mit the problem directly in the internal representation.

matrix with three rows and four columns (three variables and the coefficients):

1 2 0 0
2 0 1 1
3 0 0 0

. (D.3)

When the monomial ordering is set, it is possible to switch between these two
representations

Code D.7. A polynomial in its matrix representation can be expanded into
a row vector via expandedpoly(poly)

>> p = [1 2 0 0; 2 0 1 1; 3 0 0 0];
>> pexpanded = expandedpoly(p)

pexpanded =
3 0 0 0 1 0 0 0 2 0

The function contractedpoly(poly,d,n) goes in the other direction:
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>> contractedpoly(pexpanded,3,2)

ans =
1 2 0 0
2 0 1 1
3 0 0 0

A system of (multivariate) polynomials is represented internally by two cell
arrays coef and supp . However, you do not need to worry about this internal
representation. Via a cell array and the systemstruct constructor, multiple
polynomials can be combined into that problem representation.

Code D.8. By combining different polynomials in systemstruct , a system
can be constructed in MacaulayLab.

>> p1 = [2 2 0 0; -3 0 1 3; 1 0 0 0];
>> p2 = [1 2 0 0; 1 0 2 0; 1 0 0 2; 16 0 0 0];
>> p3 = [1 1 1 1; 2 0 0 0];
>> eqs = {p1, p2, p3};
>> system = systemstruct(eqs);

Suppose that you want to keep the coefficients and support in two separate cell
arrays, then you could use a column vector with the coefficients and a matrix
with the support per polynomial. You could avoid using the systemstruct
constructor and submit the system directly using the internal representation
of the toolbox. The cell array coef contains per equation a cell with a col-
umn vector of the coefficients, while each cell of supp has a matrix with the
corresponding support for these coefficients.

Code D.9. A system can also be constructed directly by giving the internal
representation to problemstruct .

>> coef1 = [2; -3; 1];
>> supp1 = [2 0 0; 0 1 3; 0 0 0];
>> coef2 = [1; 1; 1; 16];
>> supp2 = [2 0 0; 0 2 0; 0 0 2; 0 0 0];
>> coef3 = [1; 2];
>> supp3 = [1 1 1; 0 0 0];
>> coef = {coef1, coef2, coef3};
>> supp = {supp1, supp2, supp3};
>> system = problemstruct(coef,supp);
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After defining a system, it is possible to retrieve information about the sys-
tem via the overloaded disp and probleminfo , or directly via dot indexing.

Code D.10. You can get more information about a problem via disp :

>> disp(system)

system of multivariate polynomial equations in the
standard monomial basis:

- number of equations = 3
- number of variables = 3
- maximum total degree = 4

The information can be accessed via probleminfo dot indexing:

>> [n,s,di,dmax,nnze] = probleminfo(system);
>> eqs = system.coef;

In order to create a random dense system, randomsystem(s,dmax,n) can
be used, which generates a system of s multivariate polynomials in n variables
that has random coefficients for every monomial up to total degree dmax .

D.2.2 Rectangular multiparameter eigenvalue problems
Similarly, a rectangular MEP can be represented by a cell array that contains
all the coefficient matrices in the correct monomial ordering (including zero
matrices). Now, every entry corresponds to one coefficient matrix, ordered in
a particular monomial ordering. For example, the linear two-parameter eigen-
value problem M(λ)z = (A00 +A10λ1 +A01λ2)z = 0 has three coefficient
matrices. This cell array, together with the total degree and number of vari-
ables of the problem, is then given to the mepstruct constructor.

Code D.11. Contrary to systemstruct , mepstruct requires information
about the maximum total degree dmax and number of eigenvalue n .

>> dmax = 1; n = 2;
>> A00 = randn(4,3); A10 = randn(4,3); A01 = randn(4,3);
>> mat = {A00, A10, A01};
>> mep = mepstruct(mat,dmax,n);

Again, you could decide to enter the problem directly in its internal represen-
tation. A single rectangular MEP consists of one cell in coef and one cell
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in supp . The cell in coef is a three-dimensional array where the coefficient
matrices are stacked along the first dimension, while the cell in supp con-
tains a two-dimensional array with the support (each row corresponds to the
monomials that belong to that coefficient matrix).

Code D.12. A MEP can also be constructed directly by giving the internal
representation to problemstruct .

>> coef = {mepshape(mat)};
>> supp = {[0 0; 1 0; 0 1]};
>> mep = problemstruct(coef,supp);

It is again possible to retrieve information about the MEP via the overloaded
disp and probleminfo , or directly via dot indexing. Quickly constructing
a rectangular MEP with random coefficient matrices is also very easy with
randommep(dmax,n,k,l) , where dmax is the maximum total degree, n is the
number of eigenvalues, k is the number of rows, and l is the number of columns
of the MEP.

D.2.3 Database with test problems

The accompanying database contains many test problems that can be used
directly with the functions in MacaulayLab. More information about a sys-
tem of multivariate polynomials or rectangular MEP can be obtained via
help problem or disp(problem) . Most problems in the database already
contain information about the number of affine solutions, total number of so-
lutions, required time to solve the system, etc.

Code D.13. help(problem) and disp(problem) give more information
about the problem.

>> help noon3

noon3 contains a system of multivariate polynomial
equations.

[system] = noon3() returns the system of multivariate
polynomial equations.

Some problems have one or multiple additional parameters.

Code D.14. The MEP arma11 requires a vector as parameter.
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>> y = randn(10,1);
>> example = arma11(y);

D.3 Solutions via the (block) Macaulay matrix
MacaulayLab uses a similar approach to solve both problem types. Many of the
functions are, therefore, re-used when solving the different problems. We give
a step-by-step solution approach (Appendix D.3.1), but the user is more likely
to use the direct solution approach (Appendix D.3.2).

D.3.1 Step-by-step solution approach
Building the (block) Macaulay matrix generated by the problem is probably
the first step you take after defining the problem. Since both problems are
represented internally by the same data structure, the same function can be
used to build the Macaulay matrix for a system of multivariate polynomial
equations or block Macaulay matrix for a rectangular MEP. The function
macaulay(problem,d) builds the (block) Macaulay matrix of degree d that
incorporates the problem.

Code D.15. A Macaulay matrix of degree d can easily be constructed via
macaulay(system,d) .

>> M = macaulay(redeco6,10);

With the same function, a block Macaulay matrix of degree d can be con-
structed: macaulay(mep,d) .

>> N = macaulay(hkp2,5);

The default (block) Macaulay matrix solution approach in this toolbox uses
a basis matrix of the right null space the (block) Macaulay matrix. This matrix
can be computed directly via the standard approach null , via the recursive
approach macaulayupdate and nullrecrmacualay , or via the sparse approach
nullsparsemacaulay .

Code D.16. The standard approach to compute a basis matrix of the right
null space is via null(Z) :

>> M = macaulay(system,5);
>> Z = null(M);
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Alternatively, the basis matrix can also be built recursively via
macaulayupdate(M,problem,d) and nullrecrmacaulay(Z,Y) , where Y is
the difference between the two (block) Macaulay matrices:

>> M = macaulay(system,2);
>> Z = null(M);
>> for d = 3:5

rows = size(M,1);
M = macaulayupdate(M,system,d);
Z = nullrecrmacaulay(Z,M(rows+1:end,:));

end

It is also possible to use nullsparsemacaulay(Z,problem,d) , which avoids
the construction of the (block) Macaulay matrix:

>> M = macaulay(system,2);
>> Z = null(M);
>> for d = 3:5

Z = nullsparsemacaulay(Z,system,d);
end

Once you have a basis matrix of the right null space, you want to look for
the standard monomials and determine the gap zone. Of course, you can also
determine the gap directly via gap .

Code D.17. To determine the standard monomials and the degree of the
gap zone:

>> c = stdmonomials(Z);
>> [dgap, ma] = gapstdmonomials(c,d,n);

Or, directly, via gap (which also gives the number of affine solutions):

>> [dgap, ma] = gap(Z,d,n);

With this information, the column compression to remove the solutions at
infinity is quite straightforward:

Code D.18. You can perform a column compression via:

>> W11 = columncompression(Z,dgap,n);
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Solving the problem can be done via performing shifts in the right null
space. shiftnullspace constructs multiple shift problems in the right null
space that yield the solutions of the problem.

Code D.19. The function shiftnullspace(W,shift,rows,l) considers
n + 1 shift problems in the basis matrix W . rows indicates the rows that
are shifted and l is the length of the eigenvector.

>> D = shiftnullspace(W,shift,rows,l);

When rows = NaN , all degree blocks up to the gap zone are shifted.

D.3.2 Direct solution approach
Of course, there is a solver implemented that takes care of all these interme-
diate steps and checks whether the right null space of the (block) Macaulay
matrix can accommodate the shift polynomial. Furthermore, it is also possi-
ble to consider the column space instead of the right null space of the (block)
Macaulay matrix. You can use macaulaylab(problem) to solve a problem via
the default approach (which is currently a block-wise sparse null space based
approach).

Code D.20. Two examples of using macaulaylabproblem :

>> commonroots = macaulaylab(redeco6);
>> eigenvalues = macaulaylab(hkp2);

To avoid unpleasant surprises, it is recommended to set a maximum degree for
the (block) Macaulay matrix.

Code D.21. By using macaulaylab(problem,dend) , the maximum degree
of the (block) Macaulay matrix is set to dend = 20 .

>> roots = macaulaylab(redeco6,20);

The solver has many options and outputs a lot of information. Table D.1
contains an overview of the different options, but the default options should
result in an acceptable trade-off between computation speed and numerical
stability. The options can be set via supplementing a struct to the solver.
For example, asking the solver for a verbose output of its execution can be
achieved by setting options.verbose = true .
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Code D.22. A structure can be used to set the options of the algorithms.

>> options = struct;
>> options.verbose = true;

These options are added to macaulaylab(problem,dend,options) :

>> [X, output] = macaulaylab(noon5,15,options);

MacaulayLab
-------------------------------------------------------------
The system has 5 equations in 5 variables (maximum total
degree is 3). The selected polynomial basis is the standard
monomial basis.

The solvers tackles the system via the null space of the
Macaulay matrix:

* Building a basis matrix of the null space (sparse -
block row-wise)

...
The solver results in 233 affine solution candidates in
3.5888 seconds.

max. abs. res. error before clustering = 8.8622e-11
max. abs. res. error after clustering = 8.8622e-11
cluster tolerance = 1.0000e-03
rank tolerance = 1.0000e-10

-------------------------------------------------------------

The output struct contains a lot of additional information:

>> output

output =
struct with fields:

maxresidual: 8.8622e-11
...

shiftvalues: [233x1 double]
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D.4 Monomial ordering and polynomial basis
MacaulayLab is implemented independently from the monomial ordering and
polynomial basis, which means that you can supply a certain monomial ordering
or polynomial basis and use all the functions without any adaptations. Choos-
ing a certain monomial ordering is done by giving a function that determines
the position of a monomial to the solver, e.g., posgrinvlex and posgrevlex .
The definition of a basis requires the user to supply (or use) two functions:

• Definition of the shift property, e.g., basismon and basischeb .

• Evaluation of a problem, e.g., evalmon and evalcheb .

These functions are given to MacaulayLab as function handles.

Code D.23. It is possible to construct the Macaulay matrix in any polyno-
mial basis or monomial ordering. basis and order should be two functions
that implement the basis multiplication and the position of a monomial in
the monomial ordering.

>> basis = @basischeb; % Chebyshev polynomial basis
>> order = @ordergrevlex; % grevlex monomial ordering
>> M = macaulay(problem,d,basis,order);

The toolbox has some pre-implemented functions for the monomial ordering
and polynomial basis. For the former, posgrinvlex and posgrevlex allow the
user to work in the GRINVLEX or graded reverse lexicographic (GREVLEX)
ordering. The standard monomial basis (basismon and evalmon) and Cheby-
shev basis (basischeb and evalcheb) are implemented for the latter. The
user can also use its own functions and give them to macaulaylab :

Code D.24. You can give a different polynomial basis to the solver:

>> options.basis = @basisdefinition;
>> options.eval = @evaldefinition;
>> solutions = macaulaylab(problem,d,options);

D.5 Other useful functions
When working with systems of multivariate polynomial equations and rectan-
gular MEPs, some other functions might come in handy:

• nbmonomials(d,n) gives the number of multivariate monomials in n
variables up to degree d .
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• monomialsmatrix(d,n) creates a matrix with as its rows all the different
monomial vectors in n variables up to degree d .

• bezout(system) determines the Bézout number of a system of multi-
variate polynomial equations system.

• kushnirenko(system) determines the Kushnirenko bound on the num-
ber of affine solutions a system of multivariate polynomial equations.

• bkk(system) determines, for a system of multivariate polynomial equa-
tions, the Bernstein–Khovanskii–Kushnirenko (BKK) bound on the num-
ber of affine solutions.

• hkp(mep) gives the Hochstenbach–Košir–Plestenjak (HKP) bound on the
number of solutions for a rectangular mep.
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