
111

Program Logics for Mechanizing Typechecking

DENIS CARNIER, Vrije Universiteit Brussel (Student author, ACM: 7577148, Category: MSc. student)
STEVEN KEUCHEL, Vrije Universiteit Brussel (Research advisor)

1 INTRODUCTION
Many modern programming languages are statically typed. Every piece of data is classified by its
type, and at compile time, programs are checked for consistent usage through a process known
as typechecking (TC). Like most complicated systems, good software engineering practices (e.g.
separation of concerns via phase separation, computational abstraction through monads and
applicatives, etc.) can help language implementors write maintainable TC code.
Designing sound and decidable type systems is hard. Therefore, researchers formally study

type systems and TC algorithms and strive to mechanize them in proof assistants. Unfortunately,
mechanized implementations usually do not follow the same software engineering principles.
Exceptions to that rule exist, e.g. Silva et al. [11] implement monadic TC in Coq, but we are unaware
of any mechanization that combines a monadic implementation with phase separation. Moreover,
practical concerns like elaboration or type reconstruction are usually not covered.

Our goal is to develop a general approach to mechanizing TC, that uses abstraction via monads,
employs phase separation and can also produce multiple outputs, e.g. for type reconstruction.

2 BACKGROUND AND STATE OF THE ART
We revisit modern methods to implement TC in Sect. 2.1 and briefly discuss background on the
verification of monadic code in Sect. 2.2.

2.1 Implementation
Traditional TC algorithms, like algorithms J andW [7] or Morris’ algorithm [8], solve equality
constraints as they come up. An important realization, first described by Wand [16], is that TC can
be split into two distinct phases. During the first phase (a), the algorithm generates constraints
for the entire input program without solving them. Afterwards, in the second phase (b), these
constraints are submitted to a solver to produce an output. This phase-separated approach facilitates
the re-use of a constraint language and its solver for different object languages and type systems.
Central to type inference for many languages is the notion of unification variables (uvars):

placeholders for yet unknown types, which a unifier will replace with concrete types during
constraint solving. These become necessary when not all type inputs are available for a recursive
call, e.g. the type of a let-bound program variable. During the generation of constraints, these uvars
correspond to an existential quantification of a type. Another ubiquitous constraint is equality, e.g.
in a function application the type of the domain of the function must be equal (during solving this
means unifiable) with the type of the passed argument. More complex type systems may require
more forms of constraints, e.g. subtyping, which we do not cover here.

Practical implementations also perform elaboration, a distinct third phase (c) that performs a com-
pilation or desugaring step during TC that is usually type-directed. Examples include transforming
HM terms into System 𝐹 terms [9], dictionary translation of type classes [15], and elaborating
modules to records [10]. For all intents and purposes, elaboration is an additional output that is
generated during TC. In the remainder of this paper, we only cover the simple case where that
additional output is a type reconstructed term in the same object language.

111:2 Denis Carnier and Steven Keuchel

M : Type→ Type

fail : ∀a.M a
assert : Ty → Ty → M ()
exists :M Ty

Fig. 1. Typecheck monad interface

𝜎, 𝜏 ∈ Ty ::= int | bool
e ∈ Exp ::= x | n | b | if e then e else e

| e + e | e < e | let x = e in e
x ∈ Var n ∈ Int b ∈ Bool

Fig. 3. Grammar of AE+Let

WP,WLP :M A→ (A→ Prop) → Prop

WP (return x) P ↔ P x
WP (m >>= f) P ↔ WP m (_x .WP (f x) P)
WP fail P ↔ False
WP (assert 𝜎 𝜏) P ↔ 𝜎 = 𝜏 ∧ P ()
WP exists P ↔ ∃𝜏 .P 𝜏

WLP fail P ↔ True
WLP (assert 𝜎 𝜏) P ↔ 𝜎 = 𝜏 → P ()
WLP exists P ↔ ∀𝜏 .P 𝜏

(∀x .P x → Q x) → WP m P → WP m Q
Fig. 2. Typecheck monad program logic

2.2 Verification
Verification means that we want to reason about the correctness of an implementation against
a specification. We are primarily interested in showing the equivalence between a TC algorithm
and a declarative type system. The equivalence can be split into two directions: soundness and
completeness. We first discuss our approach to verification and come back to these properties after.

Program logics define a set of reasoning rules to establish the correctness of (imperative) programs.
For instance, Hoare logic [2] uses judgements of the form {{ 𝑃 }} 𝑠 {{𝑄 }} that specify a precondition
𝑃 and postcondition 𝑄 for a statement 𝑠 . Using a weakest-precondition transformerWP [1], this
triple can be stated equivalently as 𝑃 → WP 𝑠 𝑄 . Traditionally, program logics work with the
syntax of a language, but they can also be defined for monads [5, 12–14]. This is already exploited
in [11], which use a Hoare-State-Exception monad to implement and verifyW. We use weakest
preconditions for monads instead, which have been extensively studied in the context of Dijkstra
monads [5, 12, 13].
Using program logics, we can state the completeness of a (hypothetical) monadic typechecker

check as the equivalent total correctness judgements

{{ Γ ⊢ 𝑒 : 𝜏 }} check Γ 𝑒 𝜏 {{ True }} Γ ⊢ 𝑒 : 𝜏 → WP (check Γ 𝑒 𝜏) (True) (1)

i.e. under the precondition Γ ⊢ 𝑒 : 𝜏 the TC succeeds. Soundness is expressed by the judgments

[[True]] check Γ 𝑒 𝜏 [[Γ ⊢ 𝑒 : 𝜏]] True→ WLP (check Γ 𝑒 𝜏) (Γ ⊢ 𝑒 : 𝜏) (2)

for which we use partial correctness Hoare triples or weakest liberal preconditions. They express
that under the precondition True, if the TC succeeds then Γ ⊢ 𝑒 : 𝜏 holds.

3 APPROACH
In this section, we present our approach of implementing and mechanizing monadic, phase-
separated TC with elaboration. We discuss TC without and with unification separately.

3.1 Without unification
For implementing TCs, we use an abstract interface of a typechecking monad that, besides return
and bind, supports multiple operations which can be found in Fig. 1. First, the fail allows us to
model explicit failure, for example when a referenced program variable is unbound. Next, the assert
operation ensures that two types are equal. We discuss the exists operation in the next section.
With this interface, we can implement TC for languages that do not rely on unification. For

instance, for the language of arithmetic and boolean expression in Fig. 3 we can implement a

Program Logics for Mechanizing Typechecking 111:3

synthesizing function infer : list (Var ∗ Ty) → Exp → M (Ty ∗ Exp′) that returns a type and a
type-reconstructed expression in an expression type Exp′ that only allows type-annotated lets.
Consider for example the following code snippet that implements the let case:

infer Γ (let x = e1 in e2) =
(𝜏1, e′1) ← infer Γ e1; (𝜏2, e′2) ← infer ((x, 𝜏1) :: Γ) e2; return (𝜏2, let x : 𝜏1 = e′1 in e′2)

After typechecking the first expression, we typecheck the second expression in an extended context,
and finally produce the overall type and a type reconstructed let expression.

In our implementation, we defined the abstractmonad interface using Coq’s type classmechanism,
and derived three instances: (1) for the option monad that eagerly solves constraints, (2) for a
writer-transformed option monad that accumulates constraints, and (3) for a free monad. The last
two implement phase separation.
Besides an interface for implementing TC, we also define a program logic interface (Fig. 2) for

reasoning about such monadic computations in any of the three instances. We state reasoning rules
for bothWP andWLP . The return and bind rules are identical forWP andWLP . The interpretation
of assert follows the traditional interpretation of guarded commands (see e.g. [4]). The last line of 2
states that weakest preconditions are monotonic for every computation. With the program logic in
hand, we can establish correctness using statements similar to (1) and (2) from Sect. 2.2.

3.2 With unification
For existentially quantified types, we can introduce a non-deterministic operation exists that chooses
an appropriate type. We extend the free monad and its program logics to support this operation:

Inductive Free a := ... | Exists : (Ty → Free a) → Free a

The result is that we modeled uvars using a shallow embedding by using variables of the meta
language. Nevertheless, we can implement TC using this monad and prove it equivalent to a
declarative specification. Unfortunately, it is not a monad that we can run.
To overcome this, we develop an alternative deep embedding of uvars. Similar to Keuchel et al.

[3], we use possible world semantics to model the allocation of uvars, and implement TC in a
Kripke-indexed monad, with worlds defined as sets of uvars and accessibility as set-inclusion. Using
this alternative embedding we can implement a constraint generator that does not use higher-order
features of the meta language in the representation.

Keuchel et al. [3] use a logical relation (LR) to reduce the soundness of a deep-embedding-based
verification condition generator to a shallow one. We postulate, that the LR can be used in the TC
setting to reduce the correctness of deeply-embedded to shallowly-embedded constraint generation.

4 RESULTS
My research is still ongoing and I have a partial mechanization in Coq of the results presented in
this abstract. In particular, I have a finished proof of soundness and completeness of monadic TC
for the arithmetic and boolean expression language described in Fig. 3. For TC with unification,
I implemented TC for the simply-typed lambda calculus without type annotations in both the
shallowly- and deeply-embedded constraint generation monads. For the shallow embedding, I also
finished the soundness and completeness proofs, but the LR proof to connect deeply-embedded TC
with shallowly-embedded TC is still missing. The solver for deeply embedded constraints, based
on first-order unification by structural recursion [6], and its correctness proof was generously
provided by the supervisor of my master thesis. The remainder is original work by the author.

111:4 Denis Carnier and Steven Keuchel

REFERENCES
[1] Edsger W Dijkstra. 1975. Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18,

8 (1975), 453–457.
[2] C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (1969), 576–580.

https://doi.org/10.1145/363235.363259
[3] Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique Devriese. 2022. Verified Symbolic Execution

with Kripke-Specification Monads (and no Meta-Programming). (2022). Under submission..
[4] K. Rustan M. Leino. 2005. Efficient Weakest Preconditions. Inf. Process. Lett. 93, 6 (mar 2005), 281–288. https:

//doi.org/10.1016/j.ipl.2004.10.015
[5] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Mart’ınez, Cătălin Hriţcu, Exequiel Rivas, and ’Eric Tanter. 2019.

Dijkstra Monads for All. Proc. ACM Program. Lang. 3, ICFP, Article 104 (jul 2019), 29 pages. https://doi.org/10.1145/
3341708

[6] Conor McBride. 2003. First-order unification by structural recursion. Journal of functional programming 13, 6 (2003),
1061–1075.

[7] Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. 17, 3 (1978), 348–375.
https://doi.org/10.1016/0022-0000(78)90014-4

[8] James Hiram Morris. 1969. Lambda-calculus models of programming languages. Thesis. Massachusetts Institute of
Technology. https://dspace.mit.edu/handle/1721.1/64850

[9] François Pottier. 2014. Hindley-Milner Elaboration in Applicative Style: Functional Pearl. In Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming (Gothenburg, Sweden) (ICFP ’14). Association for
Computing Machinery, New York, NY, USA, 203–212. https://doi.org/10.1145/2628136.2628145

[10] Andreas Rossberg, Claudio Russo, and Derek Dreyer. 2014. F-ing modules. Journal of functional programming 24, 5
(2014), 529–607.

[11] Rafael Castro G. Silva, Cristiano Vasconcellos, and Karina Girardi Roggia. 2020. Monadic W in Coq. In Proceedings of
the 24th Brazilian Symposium on Context-Oriented Programming and Advanced Modularity (Natal, Brazil) (SBLP ’20).
Association for Computing Machinery, New York, NY, USA, 25–32. https://doi.org/10.1145/3427081.3427085

[12] Lucas Silver and Steve Zdancewic. 2021. Dijkstra monads forever: termination-sensitive specifications for interaction
trees. Proc. ACM Program. Lang. 5, POPL (2021), 1–28.

[13] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. 2013. Verifying higher-order
programs with the Dijkstra monad. ACM SIGPLAN Notices 48, 6 (2013), 387–398.

[14] Wouter Swierstra. 2009. A Hoare Logic for the State Monad. In Theorem Proving in Higher Order Logics, Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 440–451.

[15] P. Wadler and S. Blott. 1989. How to Make Ad-Hoc Polymorphism Less Ad Hoc. In Proceedings of the 16th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’89). Association
for Computing Machinery, New York, NY, USA, 60–76. https://doi.org/10.1145/75277.75283

[16] Mitchell Wand. 1987. A Simple Algorithm and Proof for Type Inference. Fundamenta Informaticae 10, 2 (1987), 115–121.
https://doi.org/10.3233/FI-1987-10202

https://doi.org/10.1145/363235.363259
https://doi.org/10.1016/j.ipl.2004.10.015
https://doi.org/10.1016/j.ipl.2004.10.015
https://doi.org/10.1145/3341708
https://doi.org/10.1145/3341708
https://doi.org/10.1016/0022-0000(78)90014-4
https://dspace.mit.edu/handle/1721.1/64850
https://doi.org/10.1145/2628136.2628145
https://doi.org/10.1145/3427081.3427085
https://doi.org/10.1145/75277.75283
https://doi.org/10.3233/FI-1987-10202

	1 Introduction
	2 Background and state of the art
	2.1 Implementation
	2.2 Verification

	3 Approach
	3.1 Without unification
	3.2 With unification

	4 Results
	References

