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Abstract

Tracking of objects in 3D is a fundamental task in com-
puter vision that finds use in a wide range of applications
such as autonomous driving, robotics or augmented real-
ity. Most recent approaches for 3D multi object tracking
(MOT) from LIDAR use object dynamics together with a
set of handcrafted features to match detections of objects.
However, manually designing such features and heuristics
is cumbersome and often leads to suboptimal performance.
In this work, we instead strive towards a unified and learn-
ing based approach to the 3D MOT problem. We design a
graph structure to jointly process detection and track states
in an online manner. To this end, we employ a Neural Mes-
sage Passing network for data association that is fully train-
able. Our approach provides a natural way for track ini-
tialization and handling of false positive detections, while
significantly improving track stability. We show the merit of
the proposed approach on the publicly available nuScenes
dataset by achieving state-of-the-art performance of 65.6%
AMOTA and 58% fewer ID-switches.

1. Introduction

Autonomous systems require a comprehensive under-
standing of their environment for a safe and efficient oper-
ation. A task at the core of this problem is the capability to
robustly track objects in 3D in an online-setting, which en-
ables further downstream tasks like path-planning and tra-
jectory prediction [1, 10, 30]. Nevertheless, tracking multi-
ple objects in 3D in order to operate an autonomous system,
poses major challenges. First, in the online setting, data
association, track initialization, and termination need to be
solved under additional uncertainty, as only past and current
observations can be utilized. Furthermore, covering occlu-
sions requires extrapolation with a predictive model rather
than interpolation as in the offline case. Finally, when using
LIDAR for data acquisition, no comprehensive appearance
data is available and data association needs to primarily rely
on object dynamics. This is further complicated by the pres-
ence of fast moving objects such as cars.
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Figure 1. The proposed method uses a graph representation for de-
tections and tracks. A neural message passing based architecture
performs matching of detections and tracks and provides a learn-
ing based framework for track initialization, effectively replacing
heuristics that are required in current approaches.

With the release of large scale datasets for 3D track-
ing [4, 5, 13, 24], a considerable amount of work on 3D
MOT has been initiated [0, 14, 28, 27, 29]. Most of these
works address the aforementioned challenges by either link-
ing detections directly in a learning based manner or use
comprehensive motion models together with handcrafted
matching metrics. All of these methods require a large
set of heuristics and, to the best of our knowledge, none
of the methods approaches the aforementioned challenges
jointly. In contrast to this, recent work in 2D MOT [3, 2]
aims at reducing the amount of heuristics by modeling all
tasks in a single learnable pipeline using graph neural net-
works. However, most of these approaches are limited to
the offline setting and driven by appearance-based associa-
tion that cannot be readily employed in the 3D counterpart.

To establish the missing link between learning based
methods and powerful predictive models in 3D MOT, we
propose a unified graph representation that merges tracks
and their predictive models with object detections into a sin-
gle graph. This learnable formulation effectively replaces



heuristics that are required in current methods. A visualiza-
tion of the graph is depicted in Figure 1.

Contrary to previous works, our learnable matching be-
tween tracks and detections is integrated into a closed-loop
tracking pipeline, alleviating the need for handcrafted fea-
tures. However, this raises the question of how to effectively
train such a learnable system, as the generated tracks influ-
ence the data distribution seen during subsequent iterations.
In this work, we propose a two-stage training procedure for
semi-online training of the algorithm, where the data seen
during training is generated by the model itself. In sum-
mary, the contributions of our work are threefold:

* A unified graph representation for learnable online 3D
MOT that jointly utilizes predictive models and object
detection features.

* A track-detection association method that explicitly
utilizes relational information between detections to
further improve track stability.

* A training strategy that allows us to faithfully model
online inference during learning itself.

We perform extensive experiments on the challenging
nuScenes dataset. Our approach sets a new state-of-the-
art, achieving an AMOTA score of 0.656 while reducing
the number of ID-switches by 58%.

2. Related Work

2D MOT is a well investigated task, with the MOT chal-
lenge [7, 16, 21] and its corresponding dataset as the current
performance reference. The general goal in 2D MOT is to
detect and track known objects of a single type or multi-
ple types. A widely adopted approach to MOT is tracking
by detection, where detections are available from an inde-
pendently trained detection module and data association is
performed by the tracker. Due to the nature of the task,
a wide range of approaches cast tracking as a graph prob-
lem [3, 17, 23, 26].

Following the paradigm of combining detection and
tracking into a single module, Tracktor [2] uses the box
regression module of faster RCNN [22] to propagate and
refine object bounding boxes between frames. A range of
tracker extensions are commonly used in all approaches, in-
cluding modules such as camera motion compensation [2]
or object re-identification (ReID) [12, 19]. In general, most
of the 2D MOT methods profit from the high framerate
available in videos [2]. Furthermore, state-of-the-art 2D ob-
ject detectors achieve a high accuracy [9, 22, 25], such that
the focus of tracking has shifted from the rejection of false
positives towards a pure data assignment task [3].

Closest to ours approach, NMPtrack [3] introduces Neu-
ral Message Passing (NMP) as a graph neural solver for of-
fline 2D pedestrian tracking. Starting from a network flow
formulation, the problem is transformed into a classification

problem and data assignment is solved with NMP. Also us-
ing NMP as the network solver, we propose a graph rep-
resentation that is capable of online 3D tracking and inte-
grate a state filter for track representation. In contrast to [3],
we do not require the complete sequence of frames to be
available and do not assume that false positive detections
are absent. Therefore, we are able to perform online track-
ing, while considering predictions in frame-gaps and taking
imperfect object detectors into account.

3D MOT extends the challenge of MOT to tracking mul-
tiple objects in 3D [4, 8]. With 3D MOT as a problem at
the core of autonomous driving, a wide range of datasets
that focus on tracking of objects in driving scenes is avail-
able [5, 13, 4, 24]. Due to the nature of the task, 3D
MOT is usually performed online, which adds additional
challenges and requires additional heuristics. For detecting
objects, any 3D modality would be suitable, nevertheless,
most datasets provide LIDAR scans which are used in most
methods, including ours. As 3D object detection from LI-
DAR is still an open research question and less robust than
2D detection, 3DMOT mostly follows the tracking by de-
tection framework [0, 14, 28, 27, 29].

One line of work in 3D MOT establishes tracks directly
from the output of an object detector and forms tracks by
connecting detected objects between frames. These ap-
proaches can directly use the output of an object detec-
tor [29] or more advanced features including 2D informa-
tion for every detection [28, 31]. In this framework, Weng
et al. [28] are the first to use a graph neural network to es-
timate the affinity matrix, which is then solved using the
Hungarian algorithm. Since this group of trackers does not
establish a predictive model for each track, they cannot di-
rectly account for missed detections or occlusions and re-
quire heuristics for these cases.

Another group of trackers [6, 14, 27] resolves this issue
by generating a separate representation of tracks and per-
forms tracking by matching active tracks and detections at
each timestep. AB3DMOT [27] uses a Kalman filter [1 1] to
represent the track state and matches tracks and detections
based on intersection over union (IoU). Chiu et al. [6] ex-
tend this approach by matching based on the Mahalanobis
distance [20] to resolve the issue that object size, orienta-
tion and position are on different scales. EagerMOT [14]
uses tracks parameterize in 2D and 3D simultaneously to
gain performance from multiple modalities. All of these ap-
proaches rely on heuristics to generate new tracks, as track
initialization can hardly be learned in a purely offline train-
ing approach.

3. Method

We model the online 3D MOT problem on a graph,
where detections are nodes and the optimal sequences of
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Figure 2. The proposed tracking graph combines tracks, repre-
sented by a sequence of track nodes and detections in a single rep-
resentation. During the NMP iterations, information is exchanged
between nodes and edges, and thus, distributed globally through-
out the graph.

edges that connect the same objects throughout time need
to be found. The resulting core tasks are data association by
matching of nodes, track initialization while rejecting false
positive detections, interpolation of missed/occluded detec-
tions, and termination of old tracks.

Without access to future frames due to the time causal
nature in the online setting, all of the aforementioned tasks
become challenging. In the case of track initialization, for
instance, a new detection in the current frame with no link
to a track could be a false positive or the first detection of
a new track. And similarly for track termination, where an
existing track that is not matched to any detections in the
current frame may need to be terminated or may only en-
counter a missed or occluded object. While these dilemmas
could often be resolved when future frames become avail-
able over time, online tracking performance is crucial for
real-time decision systems since it directly influences the
behavior of the system.

To jointly resolve these challenges in a learnable frame-
work, we formulate a graph that merges tracks with their
underlying dynamic model and detections into a single rep-
resentation for online MOT. Based on the detections of the
last T" frames and the active tracks, a graph is built that rep-
resents the possible connections between tracks and detec-
tions. Starting with local features at every node and edge,
NMP is used to distribute information through the graph
and to merge it with the local information at each edge and
node during multiple iterations. Finally, edges and nodes
are classified as active or inactive. Based on the active edges
that connect track and detection nodes, we formulate an op-
timization problem for data association. This jointly consid-
ers matches between tracks and detections and matches be-
tween detections at different timesteps to improve the track
stability. Based on the connectivity of the remaining active
detection nodes, tracks are initialized.

3.1. Graph Representation of Online MOT

Approaching 3D MOT as tracking by detection can be
formulated as finding the set of tracks 7 = {T1,...,Tn}
that underlie the observed set of noisy detections O =
{04y, ...04, }. We parameterize a track as the state of the
underlying Kalman filter and a detection by its estimated
parameters such as bounding box, class and velocity. To
find a robust and time-consistent solution, three tasks need
to be solved:

1. Assignment of detections to existing track.
2. Linking of detections across timesteps.
3. Classification of false positive detections.

While either 1. and 2. would be sufficient on their own to
perform tracking, finding a joint solution promotes stabil-
ity of the tracks. Furthermore, utilizing a track model is
beneficial, since it aggregates information of the complete
sequence of matched observations which is required to in-
terpolate missing detections.

The three tracking tasks can be naturally formulated as
one joint classification problem on a tracking graph G =
(Vp, Vr, Epp, Erp) that is built from detection nodes Vp
and track nodes V. Detection edges E'pp connect pairs of
detection nodes at different timesteps and track edges Erp
connect track and detection nodes at the same timestep. The
complete tracking graph is visualized in Figure 2. Note
that track nodes have sparser connections than detection
nodes. They are only connected to the detections at the
same timestep and to the neighboring timesteps of the same
track. We chose this pattern since connected tracks and de-
tections need to be temporally consistent and the relation
between track nodes is determined by the Kalman predic-
tion step. One additional characteristic of track nodes is
that nodes that correspond to the same track form a track-
subgraph called G, which is highlighted with a blue
shaded area in Figure 2. These subgraphs are important
since they share the same state that is linked with a dynamic
model. Next, we discuss the types of nodes and edges used
in our graph in more detail.

Notation: Symbols with subscript D belong to detection
nodes and symbols with subscript 7' to track nodes. Sym-
bols with subscript DD belong to detection edges and sym-
bols with subscript T'D to track edges.

Nodes are indexed with integer numbers from the set
7 for detection nodes and from K for track nodes. Edges
are referred to by the indices of the connected nodes, i.e.,
E71p.k:i describes a track edge from Vp to Vp ;. As the
graph is undirected, the notation also holds when the order
of the indices is switched. To make our notation easy to
read we always use the same index variables. More pre-
cisely, the index variables ¢, 7, m € Z are used to refer to



detection node indices and index variables k,p,q € K re-
fer to track node indices. The newest timeframe available
to the algorithm during online tracking is denoted as ¢ and
the timeframe of a specific node is referred to as ¢;. Finally,
tracks are indexed with their track ID n.

Detection nodes are generated from the detected objects
O and are initialized from the feature xp ; containing the
position, size, velocity, orientation, one-hot encoded class,
detection score, and the distance of the detected object rel-
ative to the acquisition vehicle. The position is given in a
unified coordinate system which is centered at the mean of
all the detections in the graph. The orientation, relative to
the same unified coordinate system, is expressed by the an-
gle’s sin and cos.

Track nodes represent the state of an active track, i.e.,
each track generates one track node at every timestep. This
groups the track nodes into track-subgraphs. The feature
x7,) at every track node is defined by the position, size,
orientation, and the one-hot encoded class of the tracked
object. The tracks are modeled by a Kalman filter with 11
states corresponding to the position, orientation, size, ve-
locity and angular velocity. Parameters are learned from the
training set as proposed by [0].

Detection edges refer to edges between a pair of detec-
tion nodes Vp ;, Vp ; at two different frames ¢; # t;. They
are parameterized by Xpp ;; containing the frame time dif-
ference, position difference, size difference, and the differ-
ences in the predicted position assuming constant velocity.
To reduce the connectivity of the tracking graph, detection
edges are only established between detections of the same
class and truncated with a threshold on the maximal dis-
tance between two nodes. This implicitly corresponds to a
constraint on the maximum velocity an object can achieve.
Graph truncation makes inference more efficient, track sam-
pling more robust and helps to reduce the strong data imbal-
ance between active and inactive edges.

Track edges are connections between a track node Vr
and a detection node Vp ; at the same timestep ¢, = t;.
These edges are modeled with the feature x7p 1;, where
the three entries are the differences in position, size and ro-
tation, respectively.

Classification Given the unified tracking graph G, the
tracking problem is transformed to the following classifi-
cation tasks:

1. Classification of active track edges Erp.
2. Classification of active detection edges Epp.
3. Classification of active detection nodes Vp.

An approach to solving these tasks jointly is presented in
the following.

3.2. Neural Message Passing for Online Tracking

Given only the raw information described in the previ-
ous section, classifying edges as active is hard and error-
prone. To generate a good assignment, the network should
have access to the global and local information present in
the tracking graph. To archive this exchange of information
within the graph, we rely on a graph-NMP network [3]. Our
message passing network for data assigning in the unified
tracking graph consists of four stages:

1) Feature embedding: The input to the NMP network
are embeddings of the raw edge and node features. To
generate the 128 dimensional embeddings, the raw fea-
tures are normalized and subsequently processed with one
of four different Multi-Layer Perceptrons (MLP), one for

each type of node/edge. This results in the initial features
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2) Neural message passing: Initially, all information
contained in the embeddings is local and thus, not sufficient
for directly solving the data assignment problem. There-
fore, the initial embeddings are updated using multiple it-
erations of NMP that distribute information throughout the
graph. An NMP iteration consists of two steps. First, the
edges of the graph are updated based on the features of the
connected nodes. In the second step, the features of the
nodes are updated based on the features of the connected
edges. The networks used to process messages in NMP are
shared between all iterations [ = 1, ..., L of the algorithm.
Next, we will describe the NMP iteration for each node and
edge type in detail.

Detection Edges Epp ;; at iteration [ are updated with a
single MLP Npp that takes as an input the features of the

-1 h(l—l)

two connected detection nodes h% i the current

feature of the edge h ) and the initial feature hg D.ij

Mo, = NpD ([

Adding the current and initial edge feature to the input vec-
tor corresponds to introducing a skip connection into the
unrolled algorithm.

l—l 1-1)
h’( )7h(DD L]’hDD z]]) (1)

Track edges Erp j; are updated according to the same
principle as detection edges, using information from con-
nected nodes, but with a separately trained MLP AN/7p. The
update rule is given as

TD ki — Nrp ([ h%ﬁ” hTD ki h(TOD m]) 2



Detection nodes are updated with a time-aware node
model proposed by Braso et al. [3] that we extend with an
additional input from connected track edges. Given a fixed
detection node Vp ;, the following messages are generated
for every detection edge Fpp;; and tracking edge Erp i
connected to it,

mipy; = Np* ([, wh” V) L e N
ul 1)
mD 17 Nf ' ([h’(DD i3

m(Dl)kz Ntrack ([ TD ki> h(l 1) h(o) ]) ) = Nitrack.

D) L jent @)

The first two message types are time-aware detection mes-
sages that consider detection edges to past and future nodes
and the third type processes the track edges. The three mes-
sages are computed with separate MLPs; AN is applied
to edges Fpp,;; that are connected to detection nodes in
a frame prior to the considered node. A is the network
used to process information on edges Epp ;; that are con-
nected to detection nodes of future frames. Finally, A5 is
the network used for track edges. All networks get the cur-
rent and initial feature of node Vp ; as an input to establish
skip connections. Note that in the first and last time frame,
where no past respectively future edges are available, zero
padding is used.

The messages formed at the incident nodes are aggre-
gated separately for the three types of connections by a sym-
metric aggregation function ®

Q) _ Q)
Mpipast = P <{mD,ij}jeNm>
1 1
mgmt—©<%ﬂﬁﬁmmo @
() _ Q)
mp Jitrack — ¢ ({mD’ki}keNFmd‘) '

Aggregation functions commonly used in NMP are summa-
tion, the mean or the maximum of all the inputs. In our im-
plementation, we choose the summation aggregation func-
tion.

The node feature is updated with the output of a linear
layer, processing the aggregated messages as

l l l l
h’(D),z = ND ( |:m(D)D i,past? mED)D ,4,fut? m’g")D ) tracki| ) (5)

At track nodes only track edges are incident and there-
fore no separate handling of edges is required. The mes-
sages sent from track edges are formed by

l l -1 0
mi = Nr (I e b5 REN) . ©

and accumulated using the aggregation function ¢ as before

l l
m), = <{m(T)’“}i€Nk> , )

Finally, the message is processed by a single linear layer
l / l
h(T)k = Nr (m(T)k) : ®)

These NMP steps are performed for L iterations, which
generates a combination of local and global information at
every node and edge of the graph.

3) Classification: The node and edge features available
after performing NMP can be used to classify detection
nodes, detection edges, and track edges as active or inac-
tive. Detection nodes need to be classified as active if they
are part of a track or initialize a new track and as inactive
if they represent a false positive detection. Detection edges
and track edges are classified as active if the adjacent nodes
represent the same object. For each of the tasks, a separate
MLP that takes the final features, h%;, hgﬁ ;5> and h(TLA i
is used to estimate the labels yp ;, ypp,ij, and yrp ;. The
result of the classification stage are three sets. First, the set
of active detection node indices

Ap={i €T |yp, >0.5}. )
Secondly, the set of active detection edge indices
App ={i,j €T xZ|ypp,; > 0.5}. (10)
Finally, the set of active track edge indices
Arp ={k,i e CxT |ty =t; Nyrpr > 0.5}. (11)

Note that during training, classification is not only per-
formed on the final features A(X) but also during earlier
NMP iterations. This distributes the gradient information
more evenly throughout the network and helps to reduce
the risk of vanishing gradients.

4) Track update: In the last stage of our algorithm, we
use the sets of active nodes and edges, to update and ter-
minate existing tracks as well as to initialize new tracks.
We achieve this with a greedy approach that maximizes the
connectivity of the graph.

Updates of tracks are performed by finding the matching
detection nodes in the graph for each track and time step.
An assignment is a set of detection node indices

(12)
from different timesteps. We define the best assignment as
the set of indices corresponding to detection nodes that are
1) all connected to the track-subgraph G, and 2) have
the most active detection edges connecting them. To find
the best assignment for a track n, we start with the set of

FuCI: |Fo|<TandVi,je Fy



detection node indices that are connected to a track node
Vi through an active track edge.

Cie={ieT|kic Arp}. (13)

By considering all track nodes of the track-subgraph G ,,
the set of detection edge indices connected to a track is de-
fined as
Con= |J CH (14)
kEGTn

Finally, the set of active detection edge indices between
these nodes is derived as

Copn={tj €CpnxCpnlij € App}. (15)

The quality of the assignment I" representing the optimiza-
tion problem is the number of detection edges between the
assignment nodes that is also present in Cpp

I'=|{F. xFo}NCpp.nl- (16)

A solution for all tracks is searched with a greedy al-
gorithm, while never assigning a detection node multiple
times. As older tracks are more likely true positive tracks,
updating is done by descending age of tracks. If there are
multiple solutions with the same cost, we employ the fol-
lowing tie breaking rules. First, solutions with the low-
est number of nodes are selected. If this does not make
the problem unambiguous, the solution that maximizes the
sum of 3D detection scores of the selected detection nodes
is chosen. The complete algorithm is provided in the sup-
plementary material and a visualization of this approach is
shown in Figure 3.

Termination of tracks is based on the time since the last
update. If a track has not been updated for three timesteps
or 1.5s, it is terminated.

Initialization of tracks takes into account detection nodes
and the corresponding detection edges. Our approach con-
sists of two steps, split over two consecutive frames. First,
all active detection nodes in the most recent frame that have
not been used for a track update are labeled as preliminary
tracks. In the next iteration of the complete algorithm, these
nodes are in the second to last frame. A full track is gener-
ated for each of these nodes that are connected to an unused
active detection node in the newest frame by an active de-
tection edge. If multiple active detection edges exist, the
edge that connects to the node with the highest detection
score is chosen.

3.3. Training Approach

When training an online tracker, we face one fundamen-
tal challenge, which is the distribution mismatch of track

Figure 3. Visualization of different update scenarios, with only ac-
tive edges in the graph. The graph represents a single track and
two detections at each time step. a) Shows the ideal case where
a track is matched to one node at every timestep and each detec-
tion node is connected with each other. b) Represents the case
where a match at one timestep is dropped and the track is only
matched to two detection nodes. ¢) Shows a situation, where the
proposed approach is able to decide for the globally best solution,
even though two detection nodes have been matched to the track
in the last frame.

nodes during training and inference. While the track nodes
available during training are derived from the ground truth
annotations in the dataset, the track nodes encountered dur-
ing inference are generated by the algorithm itself in a
closed loop.

Data augmentation: We use data augmentation to make
the model more robust against changes in the distribution
of tracks and detections as well as to simulate rare sce-
narios. Although the data naturally contain imperfections
such as missed detections and noise on the physical proper-
ties of objects, we perform four additional data augmen-
tation steps. Detections are dropped randomly from the
graph to simulate missed or occluded detections. Noise is
added to the position of the detected objects. This allows
us to counteract the well-known issue of detector overfit-
ting [4], where the detections used for training the track-
ing algorithm are considerably better than the detections
available during inference, as the detector was trained on
the same data as the tracker. To model track termination,
all detections assigned to randomly drawn tracks are re-
moved. Finally, track initialization is simulated by dropping
a complete track while keeping the corresponding detection
nodes. This ensures that the case of track initialization is
encountered often during training.

Two-stage training: Data augmentation helps to train a
better data association model, however, even with data aug-
mentation, the model does not learn to perform association



decisions in a closed loop. To overcome this challenge one
could train with fixed length episodes where only the begin-
ning is determined by the ground truth, and for the remain-
ing part, the model data associations and tracks are used to
train the model. However, such an approach comes with
two issues. First, it is inherently hard to train due to poten-
tially large errors and exploding gradients. Secondly, this
approach is computationally costly on large datasets as no
precomputed data can be used. Thus, we propose a two-
stage training scheme as an alternative that approaches the
same challenge. In this setting, a model is trained first on
offline data with strong data augmentation. To do so, the re-
sults obtained from a LIDAR detection model [32, 29] are
matched with the annotation data available for the training
and validation dataset. The detections matched to tracks
are then processed with the Kalman filter model to generate
track data for training.

After training the full model on the offline data with data
augmentation, the model can be used for inference in an
online setting. We run the tracker on the complete training
dataset and generate tracks that show a distribution closer
to the online-case. This results in a new dataset, which
contains the same set of detections as before, but updated
tracks. By retraining the model on this second stage dataset,
together with all data augmentation steps used before, con-
siderable performance gains can be accomplished.

Training parameters: We train all models with the
Adam [15] optimizer for four epochs with a batch size of
16 and a learning rate of 0.0005. Focal loss [18] with 5 =1
is used for classification of edges and nodes, weight decay
is set to 0.01 and weights are initialized randomly. In all
experiments, graphs with 7' = 3 timesteps are considered.

4. Experiments and Results

All experiments are performed on the publicly available
nuScenes dataset [4] with LIDAR detections only. Scores
on the test set are centrally evaluated and results on the
validation set are computed with the official developer’s
kit. NuScenes is known to be more challenging than pre-
vious datasets [28], thus, providing a suitable platform
to test state-of-the-art detection and tracking approaches.
To demonstrate that our method generalizes across signif-
icantly different object detectors and provides the same ad-
vantages in all scenarios, we perform all experiments with
two different object detectors.

4.1. Detection Data

To verify the performance of our method with multi-
ple detectors, we choose the two state-of-the-art detectors
CenterPoint [29] and MEGVII [32] that are based on very
different techniques. While CenterPoint currently provides

the best performance of all publicly available methods,
MEGVII is used by many previous methods. We perform
all experiments with both detectors and thus, allow for a fair
comparison between approaches.

4.2. MPN Baseline

To show the merit of an explicit graph representation,
we implement our method without track nodes and track
edges as a baseline. This corresponds to an adaptation of
the tracker introduced in [3] to the online and 3D MOT set-
ting. In this case, tracks are modeled as a sequence of de-
tections and matching is performed with the classified de-
tection edges and nodes. This method is denoted as MPN-
baseline in the following.

4.3. Tracking Results

The results on the nuScenes test set are shown in Ta-
ble 1. It depicts all competitive LIDAR based methods,
which were benchmarked on nuScenes and have at least
a preprint available. Our approach achieves an AMOTA
score of 0.656, outperforming the state-of-the-art tracker
CenterPoint [29] by 1.8% using the same set of detections.
Compared to CenterPoint-Ensemble, which uses multiple
models and an improved set of object detections that are
not publicly available, we improve by 0.6%. Finally, ID
switches and track fragmentation are reduced by 58% and
30% respectively. This improved track stability can be ex-
plained by the integration of the predictive track model into
the learning framework.

Our algorithm runs with 12.3 fps or 81.3 ms latency on
average on an Nvidia TitanXp GPU. As 57.8 ms of this time
is used for graph generation and post-processing and only
23.4 ms is required for NMP and classification, major gains
may be achieved with a more efficient implementation. Fur-
ther details about the runtime are given in the supplemen-
tary material.

Table 2 shows the results of the current state-of-the-art
3D trackers with two different sets of detections, making
them comparable. In this scenario, our approach gains 2.8%
AMOTA score compared to CenterPoint [29] on their own
detection data and 3.3% on the reference MEGVII [32] de-
tections. Again the advantages of using a dedicated model
for tracks becomes apparent in the number of ID-switches,
which are reduces by 47% and 43% using our model on
Centerpoint [29] and MEGVII [32], respectively.

4.4. Ablation Study

We evaluate the modules of our tracker in an ablation
study shown in Table 3. We perform the full study on both
sets of detections and for the two training scenarios. The re-
sults labeled online in Table 3 refer to our two-stage train-
ing pipeline and results labeled offline correspond to only
training in the first stage of this approach, where no data



Method Detections Data AMOTAT AMOTP| MOTAT MOTP] IDS] FRAG|
AB3DMOT[27] MEGVII[32] 3D 0.151 1.501 0.154 0.402 9027 2557
StanfordIPRL[6] MEGVII[32] 3D 0.550 0.798 0.459 0.353 950 776
GNN3DMOT*[27] - 2D + 3D 0.298 - 0.235 - - -
CenterPoint[29] CenterPoint[29] 3D 0.638 0.555 0.537 0.284 760 529
CenterPoint-Ensemble* | CenterPoint Ensemble* 3D 0.650 0.535 0.536 0.294 684 553
Ours CenterPoint[29] 3D 0.656 0.620 0.554 0.303 288 371

Table 1. Results on the nuScenes test set. Methods marked with asterisk use private detections and thus, no direct comparison is possible.

Method | AMOTA AMOTP MOTA IDS FRAG
Detections: MEGVII[32]

AB3DMOT[27] | 0.509 0.994 0.453 1138 742
StanfordIPRL[6] | 0.561 0.800 0.483 679 606
CenterPoint[29] | 0.598 0.682 0.504 462 462
MPN-baseline 0.514 0.979 0.451 1389 520
Ours 0.631 0.762 0.541 263 305
Detections: CenterPoint[29]

AB3DMOT[27] | 0.578 0.807 0.514 1275 682
StanfordIPRL[6] | 0.617 0.984 0.533 680 515
CenterPoint[29] | 0.665 0.567 0.562 562 424
MPN-baseline 0.593 0.832 0.514 1079 474
Ours 0.693 0.627 0.602 262 332

Table 2. Results on the nuScenes validation set. MPNTrack! cor-
responds to the method in [3] adapted to the online setting as de-
scribed in Section 4.2.

is generated by the tracker itself. In all cases, inference is
performed online.

The results indicate that all implemented modules bene-
fit our method. The highest impact is achieved by propagat-
ing information globally using NMP. Next to this, remov-
ing information from edges impacts performance for both
training approaches. Without node information, the perfor-
mance drop depends on the dataset. While for Centerpoint
the performance drop is severe, it is smaller in the case of
MEGVII detections, especially in the offline training case.
This may be explained by the quality of detections. While
the position information is encoded on nodes and edges, in-
formation like object size is only contained on the nodes.
Such information has only small variations between differ-
ent objects and thus, it can only be used effectively if the
detection quality is high, as given for CenterPoint.

To remove track nodes, we use the baseline implemen-
tation as introduced in Section 4.2. As only detections are
used, this approach does not suffer from a distribution mis-
match and two-stage training is neither necessary nor pos-
sible. Therefore, while the impact for offline training seems
reasonable, the overall impact in the full method is signifi-
cant. To show the benefit of using detection and track edges
jointly for the track update, a naive matching only using
track edges in the latest frame is used. This approach per-

CenterPoint[29] MEGVII[32]
Method online  offline  online  offline
w/o NMP 0.427 0.427 0.557 0.499
w/o edge features 0.502 0.521 0.460 0.359
w/o node features 0.652 0.587 0.610 0.582
w/o track nodes (0.593) 0.593 (0.582) 0.582
naive matching 0.576 0.427 0.529 0.406
wi/o focal loss 0.684 0.647 0.618 0.581
w/o data augmentation | 0.688 0.601 0.630 0.538
full pipeline 0.693 0.654 0.631 0.587

Table 3. Comparative ablation study performed with detections
from CenterPoint [29] and MEGVII [32]. Online refers to the
two-stage training introduced in Section 3.3 and offline to the basic
training approach not using self generated data.

forms worse than not using a separate track representation
at all and supports our approach of using global information
for matching. Finally, focal loss gives a small advantage
in all settings and data augmentation helps, especially for
offline training. This can be explained, as in the two-stage
training, the data distribution is closer to the distribution en-
countered during inference and thus, less data augmentation
is required.

5. Conclusion

We proposed a unified tracking graph representation that
combines detections and tracks in one graph, which im-
proves tracking performance and replaces heuristics. We
formulated the online tracking tasks as classification prob-
lems on the graph and solve them using NMP. To efficiently
update tracks, we introduce a method that jointly utilizes
matches between all types of nodes. For training, we pro-
pose a semi-online training approach that allows us to effi-
ciently train the network for the closed-loop tracking task.
Finally, we performed exhaustive numerical studies show-
ing state-of-the-art performance with a drastically reduced
number of ID switches. As our proposed method provides
a flexible learning based framework, it allows for a wide
range of possible extensions and enables the way towards
integrating fully learning based track state representations.
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A. Supplementary Material

The additional information provided in the supplemen-
tary material aims at giving a more thorough insight into
some of the technical parts of our paper and to highlight
qualitative results. The material contains a description of
the chosen network architecture, the algorithm used for up-
dating tracks and additional details on the training approach
in Sections A.1, A.2 and A.3 respectively. Besides this, we
provide a runtime analysis in Section A.4. Finally, qualita-
tive results are presented in Section A.5, including images
and a failure cases analysis.

A.1. Network Architecture

This section provides more details on the separate sub-
networks used in the Neural Message Passing (NMP) al-
gorithm. All embedded feature representations are 128 di-
mensional, which is also the output dimensionality of all
networks if not indicated differently. All networks are
fully connected with ReLU [34] activation functions as non-
linearities.

The four encoder networks that process the input fea-
tures and create the node and edge feature embeddings
hg,)w h(T()’ )k, hgbi i hg? )D’ i» contain two hidden layers with
64 and 128 neurons respectively.

The edge models Npp and N1 p, used during the NMP
iterations, both have three hidden layers of size 256, 256
and 128. These operate on the features of the two connected
nodes and the previous and first edge feature, enabling skip
connections (see Eq. (1) and (2) in the main paper). Dur-
ing the detection node update, the messages from detection
edges and track edges are computed with three separate net-
works N2 N T Ntrack Each network has three hid-
den layers of sizes 256, 256 and 128. After the aggregation,
the 128 dimensional messages from each type of connec-
tion m%)’ i m%)’ i mg «;» are concatenated and then jointly
processed with a single linear layer and ReLU activation,
resulting in the updated feature of dimension 128. Track
nodes are only updated from the connected track edges and
the previous and first node feature. Thus, only a single net-
work N with three hidden layers of size 256, 256 and 128
is used.

Classification of detection edges, track edges and detec-
tion nodes is done by three networks of the same dimen-
sions. Each has three hidden layers with 128, 32 and 8§ neu-
rons respectively and an output dimension of 1. Using a
sigmoid function as the output layer ensures outputs to be
within the range [0, 1].

A.2. Greedy Track Update

After classifying all relevant nodes and edges in the
graph, tracks are updated by assigning detection nodes to
them. As described in Section 3.2 of the paper, an assign-
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ment F,, for track T, is a set of detection node indices
at different timesteps. Each of said detection nodes needs
to be connected to a track node of the track by an active
track edge. The quality I' of the assignment is evaluated
as the number of active detection edges between the detec-
tion nodes in the assignment. The formalized track update
is described with Algorithm 1. In the following, we denote
a set of assignments as F', a single assignment as ./ and ab
assignment selected for a track 7;, as F,,. Furthermore, the
total detection score of an assignment

dtotal = Z dz

ieF

A7)

is defined as the sum over detection scores of all detection
nodes referred to by an assignment.

Algorithm 1 Track Update.

1: Get App and Arp

2: Sort tracks T" by descending age

3: for T, in T do

4: Compute all assignments F}, for T},

5 Compute quality I for each assignment F from F,,
6: Get highest quality I'y,ax from F,

7: Store all F from F,, with ' = T',,,40 in F'p,

8

9

if |F'| > 1 then

: Compute cardinality # for each F from F,,
10: Get lowest cardinality # from F,, as #min
11: Remove all F from F,, with # > #mnin
12: end if
13:  if |F| > 1 then
14: Compute dyo for each F from F,, (Eq. 17)
15: Get highest dyo from F',, as diogal, max
16: Remove all F from F,, with dioa1 < diotal, max
17: end if
18:  if [F| > 1 then
19: Select ﬁn from F,, randomly
20: else R
21: Select F,, as remaining element from F},
22: end if
23: Remove edges from App and Arp that contain

any index from F,,
24: end for

A.3. Two-Stage Training

As analyzed in the ablation study, a major performance
gain is achieved by using a semi-online two-stage training
approach. This refers to training the network with a dis-
tribution of tracks that is generated by the network itself.
This concept should not be confused with online tracking,
i.e. forming tracks without information about future frames,
which is a basic assumption for our complete method and all
training steps.



Figure 4. Qualitative results generated with our approach and projected into the 360° images.

Figure 5. Qualitative results generated with our approach projected
into the top-down view containing LIDAR points.

For the proposed online-training, in the first stage, a net-
work is trained with data generated from the object detec-
tions together with ground truth labels, the step we call
offline-training. This way the first set of tracks can be
formed, which all have corresponding ground truth tracks.
In the second stage, the trained network is used to generate
track candidates, where some are close to the ground truth
data, but some tracks also come from false positives and
should not be matched by the algorithm. This set of tracks
cannot easily be represented with the data generated from
detections and ground truth data alone, and thus, helps our
method to perform better in the closed-loop-setting.

12

A.4. Runtime Analysis

We test the runtime of our algorithm on an Nvidia Ti-
tanXp GPU. The runtime of the different components per
frame is given in Table 4. Complete refers to a complete
iteration from generating the tracking graph to returning a
list of active tracks. A complete iteration consists of three
parts: First the graph datastructure is generated from the
detections and active tracks. Secondly, NMP is performed
and the nodes and edges are classified. Finally, tracks are
continued, terminated or initialized based on the classifica-
tion results during post-processing.

All numbers should be interpreted in the context of the
usual sampling rate of 10Hz for LIDAR scanners and the ef-
fective sampling rate of 2Hz that is used in the nuScenes [4]
dataset. With 12 fps for the complete pipeline, the method
can run at the sampling rate of a LIDAR and far above the
sampling rate of 2Hz used for tracking in this work.

Optimizing NMP and classification for a production
level implementation could yield some reduction in run-
time. More importantly, graph generation and post-
processing is know to be slow in Python and an implementa-
tion in a more efficient programming language may improve
the runtime by multiple magnitudes. With around 70% of
the runtime in these components, the real-time capability of
the pipeline is further emphasized.

Module Latency  fps
Complete 81.3ms 123
NMP + classification | 23.4ms 42.7
Graph generation 249ms 417
Post-processing 329ms 304

Table 4. Inference time of our algorithm on a Nvidia Titan Xp in
the full online setting. All results are measured on the nuScenes[4]
validation set.



A.5. Qualitative Results

Qualitative results achieved with our proposed tracker
are shown in Figures 4 and 5. The images show the 360°
view as well as the rendered LIDAR detections of a typical
crowded scenario where our tracker outperforms previous
methods.

A.6. Failure Cases

During analyzing the qualitative results generated with
our tracker, following failure cases have been identified: (i)
Long frame gaps cause scenarios where the time a track
is kept active without observations is shorter than the ob-
served occlusion time. While extending this timeframe may
further reduce the number of ID-switches, it also increases
the number of false positives, harming the overall tracking
performance. (ii) Consistent false positive detections are a
general problem for any tracker following the tracking-by-
detection paradigm. While our tracker can easily handle
isolated false positives due to noise in the detector, cases
where e.g. physical structures or reflections are detected
cannot be recognized. (iii) Double objects are generated if
the same object is detected multiple times as different types.
This behavior can mostly be observed for trucks in our re-
sults and should be approached at the detector level e.g. with
non-maximum suppression[33].

It is important to note that all of these scenarios are
also failure cases for existing trackers, including the cur-
rent state-of-the-art CenterPoint[29], and are not introduced
by our pipeline. Furthermore, while the presented method
already reduces the number of such scenarios, further im-
proving the robustness is an interesting line of future work
in 3d detection and tracking.
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