
Optimizing Workforce Allocation
under Uncertain Activity Duration

Vincent Derkinderena,∗, Jessa Bekkerb, Pieter Smetc

aKU Leuven, Dept. of Computer Science, DTAI, B-3000 Leuven, Belgium
bKU Leuven, Dept. of Computer Science, DTAI, B-3000 Leuven, Belgium

cKU Leuven, Dept. of Computer Science, CoDeS, 9000 Gent, Belgium

Abstract

Even though warehouses are becoming increasingly automated, humans remain their
central and most important resource. Every day, various activities must be carried out
by workers. The assignment of individual workers to specific tasks has a major impact
on the overall efficiency of a warehouse. The problem of finding an efficient assignment is
not trivial and is complicated by task durations being unknown in advance, operational
constraints, and the fact that employee well-being must be taken into consideration to
maintain employee satisfaction. The method proposed in this paper uses work profiles:
ordered lists of task properties such as type and work zone. Each worker is assigned
exactly one profile and tasks are dynamically allocated to workers based on their profile.
Finding a good profile assignment is crucial, yet the profiles are usually assigned manually
by shift supervisors. This paper proposes a framework for automating the assignment of
profiles to employees under uncertain task durations. The proposed approach applies a
metaheuristic algorithm together with discrete-event simulation to evaluate the quality
of a solution. The simulation component is used to address uncertainty of the task dura-
tions either by considering multiple scenarios or by using mean task durations. Possible
values for task durations originate from distributions which are assumed to be given or
learned from historical data. The contributions of this paper are threefold: 1) we pro-
pose a profile-assignment framework that deals with uncertainty of the task durations,
2) we study the trade-offs between run time and accuracy within this framework, and
3) we analyze our main design decisions and demonstrate how our method outperforms
reconstructed solutions produced by a human expert.

Keywords: warehouse scheduling, uncertainty, heuristics, simulation, decision tree

1. Introduction

Warehouses serve as intermediate storage facilities for goods on their way from pro-
ducers to consumers, and constitute an essential part of the supply chain. Typical activ-
ities in warehouses include receiving and unloading incoming goods, storing those goods

∗Corresponding author
Email addresses: vincent.derkinderen@kuleuven.be (Vincent Derkinderen),

jessa.bekker@kuleuven.be (Jessa Bekker), pieter.smet@kuleuven.be (Pieter Smet)

Preprint submitted to Elsevier November 8, 2023

at appropriate locations, order picking and preparing outbound goods for shipping. In
non-automated warehouses, these activities are primarily carried out by employees, who
must therefore be managed effectively in order to ensure high-quality service levels. Many
academic studies have focused on optimizing specific warehouse processes such as order
picking (De Koster et al., 2007). However, few studies have proposed decision support
models for optimizing the deployment of available warehouse staff where the duration of
their activities is uncertain. Tasks are usually assigned to employees from a centralized
warehouse management system (WMS). When automated, this process is referred to as
system-direct task dispatching. Whenever an employee becomes available, the WMS’s
dispatching algorithm assigns them a new task based on a number of parameters.

This paper considers a setting where tasks with unknown durations are dynamically
assigned based on worker profiles: a description of the activities a particular worker
may perform on that day as well as the priorities between each activity. For example, a
profile may restrict an employee to only carry out activities which require a forklift in the
inbound and storage areas of the warehouse. Assigning profiles to employees provides a
more coarse, high-level form of control compared to directly assigning tasks. This makes
it easier to steer priorities, while control over specific task assignments remains possible
by defining more fine-grained profiles. Dealing with unforeseen events is also relatively
simple. By way of example, consider a truck arriving earlier than planned. The tasks
related to this truck can be prioritised, which would lead to a temporary re-assignment
of profiles to employees. Another important benefit of using profiles is that they enable
employees to know in advance the nature of the activities they will have to carry out.
This certainty typically has a positive impact on employee job satisfaction.

Central to the profile-based dispatching approach is the assignment of profiles to
employees. This assignment problem is essential to achieve a timely execution of all
tasks, but it is nontrivial to solve. Furthermore, while we assume that the set of tasks
is known in advance, it is very difficult to determine a priori precisely how long each
task will take. This further complicates the assignment problem. While we investigate
this problem in the context of warehouse operations, our contribution might also be
applicable in other settings where profile-based dispatching is used.

To address the profile assignment problem, we propose a framework that combines a
metaheuristic algorithm to explore the search space and discrete-event simulation to eval-
uate solution quality. The metaheuristic is responsible for searching the solution space
of possible profile assignments, while the evaluation function simulates how well tasks
can be scheduled given an assignment of profiles to employees. An additional feedback
loop within the algorithm ensures that the metaheuristic is guided towards promising
candidate solutions based on the simulation’s outcome. To account for uncertain task
durations, we investigate both a simulation using mean task durations as well as a sim-
ulation of several scenarios each with their own sampled task durations. A decision tree
trained on historical data is used to select attribute-conditional distributions which accu-
rately represent the task durations. The resulting methodology is empirically evaluated
on data we obtained from our industry partner, Objective International: a leading Eu-
ropean supply chain fulfillment provider to the manufacturing and process industry that
offers manufacturing execution solutions and warehouse management solutions. The data
used in our computational study has been made publicly available (Derkinderen et al.,
2023). Our results demonstrate how our approach is capable of generating high-quality
solutions. Moreover, the speed with which it produces these solutions indicates that it

2

can be used in a real-world context.
This paper’s contributions are threefold: 1) proposing a framework to automatically

assign profiles while considering the task duration uncertainty, 2) a study of the trade-offs
between run time and accuracy within this framework, and 3) an empirical evaluation
that supports the algorithm’s primary design decisions and demonstrates how the pro-
posed algorithm finds solutions which outperform those manually constructed by human
experts.

The remainder of this paper is organized as follows. Section 2 reviews related work
in the academic literature. Section 3 outlines the context of the studied problem and
introduces the required terminology. Section 4 more formally introduces the optimization
problem addressed, while Section 5 details the proposed solution approach. Section
6 presents the results of a computational study which analyzes the impact of various
algorithm parameters on the performance of our approach. Furthermore, a comparison
is made to solutions constructed by human experts. Finally, Section 7 concludes the
paper and identifies directions for future research.

2. Related work

Personnel scheduling has been extensively studied in the academic literature during
the last decades (Ernst et al., 2004). Common applications of personnel scheduling
include scheduling nurses in hospitals, scheduling agents in call centers and scheduling
airline crews (Van den Bergh et al., 2013). In the context of warehouses, however, the
topic has received limited attention, despite the fact that workers are considered one of the
primary resources in warehouses (Davarzani and Norrman, 2015). Most academic studies
related to warehouses have instead focused on the optimization of specific warehouse
management aspects such as storage assignment, layout design or order batching. van
Gils et al. (2018) provide an overview of common problems in warehousing, at both
the tactical and operational levels of decision making. While most of these problems
indirectly affect the activities of workers, there are a few which directly allocate workers
to activities. We consider these to be the most relevant personnel-related problems and
will further discuss them in this section. More specifically, the surveyed problems are:

• Workforce level : determine the required number of workers in either the warehouse
as a whole or in different zones, in order to guarantee a desired service level.

• Workforce allocation: allocate the available workforce across warehouse zones in
order to maximize throughput.

• Job assignment and scheduling : determine the sequence of order retrievals before
assigning and scheduling the orders to workers so that due times and delivery
schedules are respected as much as possible.

2.1. Workforce level

The number of available workers in a warehouse should match the expected workload.
If too few workers are available, service levels will deteriorate as a result of increased order
lead times or delivery schedule delays. However, these workers are often the most costly
resource in a warehouse and scheduling too many leads to unnecessarily high labor costs.

3

A well-designed methodology to determine the appropriate workforce size for a given day
or shift is thus essential.

van Gils et al. (2017) propose the use of forecasting methods to predict next-day
workload. Using time series models, they accurately and reliably predict the expected
workload in different zones of a large warehouse. Supervisors can then use this informa-
tion to derive the number of workers required per zone.

An adverse effect of scheduling too many workers is aisle congestion (Ruben and
Jacobs, 1999). This congestion may lengthen the amount of time required to complete
tasks due to workers blocking each other in the warehouse’s aisles. Pan and Wu (2012)
demonstrate how this may lead to routing policies that result in longer task waiting times.
Chen et al. (2016) introduce an approach for routing multiple workers in a warehouse
while considering congestion due to blocking effects. Another approach to mitigate the
effects of blocking was proposed by Hong et al. (2012), who take into account possible
congestion issues during the construction of order batches.

2.2. Workforce allocation

In order to avoid bottlenecks in the warehouse and maximize order throughput,
the available workforce must be carefully allocated to different zones in the warehouse.
Van Nieuwenhuyse and de Koster (2009) use queuing models to evaluate the impact of
different workforce allocations on picking and sorting operations. A series of simulations
revealed that workforce allocation has a much larger impact on the system’s perfor-
mance than optimal batch sizing, a result which once again underscores the importance
of optimized personnel scheduling.

De Koster et al. (2012) use mathematical programming to determine picking zone size
and the allocation of workers to these zones. Small zones reduce the time required to
pick an order since travel time is reduced. However, they also increase the time necessary
to consolidate the partial orders from different picking zones. Larger zones reduce the
likelihood of orders being split across many zones, but the travel time within a zone
may increase. By comparing the outcome of different scenarios, the best performing
setting is determined. A similar problem was addressed by Yu and De Koster (2008)
with analytical methods. They used a queuing model to show how larger zones, and
thus more workers per zone, increase picking time due to lengthier travel times. They
determined the best configuration for a case study by comparing the outcome of different
scenarios.

2.3. Job assignment and scheduling

In systems with a single worker, job assignment simply involves sequencing the tasks
which must be performed (Chen et al., 2015). When considering multiple workers, an
assignment decision must also be made together with sequencing the tasks for each worker
(Henn, 2015; Zhang et al., 2017). Common objectives in job assignment and scheduling
are related to task completion time, for example minimizing the tardiness of customer
orders (Scholz et al., 2016).

Traditionally, the process of job assignment and scheduling is the last of the three
sequential steps in the operational planning of warehouses. These three steps are 1)
order batching, 2) routing, and 3) assignment. Different approaches have been proposed
which solve the assignment problem in combination with routing (Matthews and Visagie,

4

2013), order batching (Henn and Schmid, 2013), and both order batching and routing
(van Gils et al., 2019). Due to the increase in size and complexity of these integrated
problems, metaheuristics or exact methods which decompose the problem often represent
the preferred solution methodologies.

Ladier et al. (2014) highlight the strong variability of workloads in warehouses and em-
phasize the complexity of weekly timetabling and daily rostering in this setting. Weekly
timetabling determines the workforce size and assigns workers to shifts, while daily ros-
tering assigns workers to individual tasks. Ladier et al. (2014) solve these problems
sequentially using mathematical programming.

Rijal et al. (2021) simultaneously consider job assignment and scheduling in addition
to shift scheduling. The resulting integrated problem involves decisions regarding the
number of workers, shift start and end times, break times as well as the assignment and
scheduling of worker activities. The authors present two solution approaches: a branch
and price algorithm and a metaheuristic. By increasing flexibility in the break schedules,
labor costs are reduced by up to 5%.

Ganbold et al. (2020) optimize the assignment of workers to activities using a heuris-
tic search algorithm. Their problem is modeled as a generalized assignment problem
such that each worker can be assigned to at most one activity. Several operational
constraints are taken into account such as worker availability, qualifications/skills, and
precedence constraints. Activity duration is modeled as a stochastic variable, while
discrete-event simulation is used to compute the cost of assignments. A computational
study demonstrates how the solutions generated by their algorithm outperform those
manually produced by the organization.

2.4. Positioning of the paper

The problem we study in this paper integrates workforce allocation and job assign-
ment. Workers are allocated to zones situated throughout the warehouse and to specific
activities taking place therein. A job assignment problem is solved to evaluate the qual-
ity of the allocation, with task durations modeled as stochastic variables. The previous
study most closely related to our work is that of Ganbold et al. (2020), who evaluate
the assignment of workers to activities with stochastic durations using simulation. How-
ever, there are two important differences compared to our problem. First, we consider
activities to be defined as combinations of work zones and task types, such as picking
and loading. We therefore generalize Ganbold et al. (2020)’s concept of activities, which
only considers zones. Second, due to the restricted nature of the generalized assignment
problem model used by Ganbold et al. (2020), workers can only be assigned to at most
one activity. In our setting, workers can be allocated to multiple work zones and task
types. As a consequence, evaluating the allocation becomes difficult as it not only in-
volves simulating the flow of orders through the warehouse, but also the assignment of
specific job types to workers.

3. Warehousing context

Before describing the optimization problem which is the focus of this paper, an
overview of relevant terminology and concepts within warehousing is provided in Sec-
tion 3.1. An explanation of the task assignment procedure employed in this paper is
then provided in Section 3.2.

5

3.1. Warehouse activities

Activities carried out within a warehouse are typically associated with one of three
general zones: inbound, storage and outbound. The inbound zone serves as the entry
point for new goods delivered by trucks. After receiving the goods and conducting quality
control procedures, these goods are then transferred to their designated locations as
determined by the storage plan. The storage zone comprises of racks in which the goods
are kept until they are required to fulfill an order. Activities here include replenishing
goods when picking locations become empty, periodic stock-taking and the relocation
of goods if, for example, there is a change in the storage plan. Finally, a warehouse’s
outbound zone is where all necessary operations are conducted to prepare goods for
shipping. After picking an order, additional value-adding operations may be performed
such as kitting or labeling, before loading the goods into trucks and shipping them out.
Figure 1 provides an overview of different warehouse activities and how they are grouped
into these three zones.

In some facilities, the production of new goods is closely related to the warehousing
activities. A designated area within the facility produces new goods, which can then
be stored immediately in the warehouse without requiring any intermediary shipping.
Similarly, goods used during the production process can be taken directly from the ware-
house. This extension of regular warehousing operations is also illustrated in Figure 1
using gray boxes.

In addition to the three main zones depicted in Figure 1, the warehouse may be
further subdivided into physical work areas. This decomposition is typically performed
in accordance with the type of handling equipment required in an area. For example,
some areas may require a forklift while others may be serviced using only a pallet truck.

Put away

Quality controlReceive stock

Inbound Storage

Load
Value added

services
Order picking

Consume

stock

Outbound

Ship

Produce stock

Production

Inventory

Relocate

Replenish

Figure 1: Overview of warehousing activities.

3.2. Task assignment to employees

Activities are assigned to employees in the form of discrete tasks. Table 1 provides
an overview of different task types. For the warehouses considered in this paper, tasks
are assigned to employees using system-directed dispatching. In such environments, the
WMS maintains a task pool containing tasks that are ready to be carried out. Tasks are
released into the task pool according to the schedule which was constructed beforehand
based on known incoming and outgoing shipments. Employees query the WMS through,
for example, a handheld device in order to receive a new task from the pool whenever

6

they are idle. Essentially, this is a dynamic scheduling problem which the WMS solves
using simple dispatching rules based on task attributes such as priority and release time.

Table 1: Task types and the zone in which they typically occur.

Warehouse zone Task type Description

Inbound Put away Transfer goods to picking locations in the storage area
Storage Inventory Periodic stock-taking

Relocate Move goods within the storage area
Replenish Refill picking locations with goods

Outbound Pick Retrieve goods from picking locations
Marshal Prepare goods for incoming trucks
Load Load goods into a truck for outbound transport

For each shift, employees are restricted to certain task types and work areas. This
means that at the beginning of each shift, workers have foreknowledge concerning the
nature of the activities they will have to carry out. This ensures that employees are only
assigned to tasks for which they are qualified. For example, some tasks may require a
forklift license, a qualification not every employee will necessarily have. To enforce these
restrictions, each employee is assigned a profile before their shift starts. This profile
determines the tasks they may perform from the task pool, as well as the priorities
between those tasks. Table 2 provides an example of a profile with four profile rules,
each of which is defined as the combination of a task type and a work zone. In this
example, once the employee becomes available the WMS’s dispatching algorithm first
checks if the current task pool contains any put away tasks in zone 010 - inbound

area. When no such tasks are available, the algorithm checks for pick tasks in zone
600 - pick locations. If there are once again no such tasks available in the pool, the
algorithm continues through the other profile rules until a matching task is found and
assigned to the employee. The final profile rule typically serves as a catch-all rule for
which there is, by design, always a (non-urgent) matching task present in the task pool.

Table 2: Example of a profile with four profile rules.

Order Task type Work zone

1 Put away 010 - inbound area
2 Pick 600 - pick locations
3 Replenish 600 - pick locations
4 Inventory 600 - pick locations

4. Problem definition

The goal of the profile assignment problem is to find an assignment of employees to
profiles on a single day, such that the task execution follows the existing schedule for
that day as closely as possible. In other words: a task’s execution should begin as soon

7

as possible once it is released into the task pool. The precise duration of each task is
unknown in this setting. More formally:

Given (1) a set of tasks to be executed with their properties and their scheduled earliest
start time, (2) the set of available employees and (3) a set of possible profiles. We
also assume a probability distribution for each task’s duration is given. In practice,
this means sufficient data is available from which such a distribution can be learned.
This assumption is reasonable for modern warehouses, where employing dynamic
task dispatching already requires some form of automated tracking and registration
of activities.

Find a solution S, which assigns each employee to a profile.

Such that all tasks can be executed and the expected total time spent by tasks waiting
in the task pool is minimized.

A profile describes the types of task which can be carried out by an employee. It is
an ordered set of profile rules, with each rule consisting of a task type and a work zone.
Optionally, the task types or work zones can be wildcards, in which case they match
with any task type or work zone, respectively. Wildcards are useful when only the task
type or the work zone matter and can also be used to construct catch-all rules to prevent
employees from spending extended periods idle. The order of the profile rules dictates
the priority of the different combinations of task types and work zones.

Each task is characterized by its properties: type, work zone, priority, whether it is
bulk or pallet, and whether it involves one or multiple items. The earliest possible start
time of a task is the time at which it is released into the task pool. This time is given
in a task schedule that is determined in advance, either computationally or manually by
human planners.

The cost of a profile assignment solution S is the total time spent by tasks in the task
pool. This is the sum over all tasks, taking the difference between the time at which an
employee actually started each task and its earliest possible start time:

cost(S,d) =
∑

t∈tasks

(actual start timet(S,d)− earliest start timet) (1)

Minimizing this cost ensures that tasks are started close to their release times. The time
at which a task actually starts is deterministically decided by the WMS’s dispatching
algorithm based on the profile assignments S and the duration of each task denoted as
d. When an employee becomes available — either at the beginning of their shift or after
completing a task — a task is selected from the task pool based on their profile. If
multiple tasks have the same highest priority according to the profile, task priority is
used as a tie breaker. When the task priority is also equivalent then one of the tasks is
arbitrarily chosen. Additionally, there may exist precedence constraints between tasks.
In this case, a task cannot be selected from the task pool until its preceding tasks have
been completed.

The individual task durations d are not known in advance given that they depend
not only on known task properties such as task type, but also on unknown factors such as
physical obstructions, unforeseen defects and variable employee performance. Therefore,

8

task duration is modeled as a stochastic variable d. As a result, the cost of a solution S,
which partially depends on d, is also stochastic. Since d is unknown, we will minimize
the expected cost of a solution S:

E
d∼Pr(d)

[cost(S,d)]

=
∑

t∈tasks

(
E

d∼Pr(d)
[actual start timet(S,d)]− earliest start timet

)
(2)

For brevity purposes, we will abbreviate Ed∼Pr(d)[cost(S,d)] to E[cost(S)] and cost(S,d)
to cost(S).

Although the exact duration of each task is unpredictable, historical data concerning
its duration is typically available. Given this data, it is possible to estimate a distribution
of possible task durations as described in Section 5.3.

All tasks in the task pool must be executed. A profile assignment S that does not
cover one or more tasks should therefore be penalized by a very large cost. This is
achieved by overwriting the actual start time for a task t that does not get executed so
that actual start timet(S,d)− earliest start timet = 24 hours in Equation (2).

The computation time needed to find a good solution is also important. Task sched-
ules are typically constructed during the preceding workday, which imposes a hard time
limit for finding a solution. Having an algorithm that can quickly produce a high-quality
solution, say within five minutes, also has the additional benefit that it can accommodate
last-minute changes. Therefore, an algorithm that finds good solutions fast is often more
useful in practice than one that takes far longer to produce a slightly better solution.

5. Solution approach

To solve the profile assignment problem, we propose a sample-based approach that
combines an Iterated Local Search (ILS) metaheuristic with discrete-event simulation.
ILS is responsible for searching the solution space of all possible profile assignments
S. The expected cost of a solution is computed by simulating the WMS system for
one or more scenarios. In a scenario, tasks are scheduled and assigned to employees
while respecting constraints imposed by the solution’s profile assignments. A scenario is
defined by the time it takes to complete each of its tasks, which is determined by the
estimated task duration distributions. The interaction between these various components
is outlined in Figure 2 and each will be discussed in the following subsections.

Iterated Local Search

Optimization Evaluation

Profile assignments

Objective value Determining task

durations from

distributions

Task durations

Discrete-

event

simulation

Figure 2: Overview of the components in the proposed framework.

9

5.1. Iterated local search

ILS is a well-known metaheuristic which has been successfully applied to various
optimization problems (Lourenço et al., 2003). Algorithm 1 outlines the proposed ILS
approach. The algorithm begins by constructing an initial solution using the procedure
initialize solution(), which randomly selects one profile for each employee (line 1).
Note that the set of possible profiles from which we randomly select is assumed to be
given. These are either profiles that have been used before or newly constructed profiles
that are deemed useful for the tasks that must be performed. The core of the algorithm
is a local search loop which optimizes solution S (lines 4-9). Every time an improved
solution is found, it is compared against the best known solution S∗ that is then updated
(line 9).

A straightforward representation of a solution S is a mapping from employees to
profiles. An alternative representation is a mapping from profiles to the number of
employees that should be assigned to that profile, S : P 7→ N. The advantage of this
second representation is that it exploits the interchangeability of employees, thereby
breaking symmetry and thus reducing the size of the search space. For this reason, we
employ the second representation.

Neighboring solutions are generated by the procedure neighbor(S), which we define
as swapping one profile in the current solution S for another profile. In our representation
S : P 7→ N, this corresponds to decrementing the count of profile p− and incrementing the
count of another profile p+. To decide what profiles p− and p+ should be, we propose two
approaches: a uniform and a weighted approach. The uniform approach is performance
agnostic, deciding p− by randomly selecting an active profile (a profile assigned to at
least one employee) and deciding p+ by randomly selecting any profile other than p−

(active or inactive). This approach considers a uniform distribution such that all profiles
have an equal probability of being swapped in or out. By contrast, the weighted approach
selects profiles using probabilities based on their effect on the expected cost of S. More
specifically, a profile x is weighted by the contribution to E[cost(S)] of each task t covered
by x:

weightx =
∑

t∈tasks
x covers t

(E[actual start timet(S)]− earliest start timet) (3)

An estimate for E[actual start timet(S)] is a byproduct of the simulation-based evalua-
tion1, which will be discussed in Section 5.2. The probability Prob+

x for selecting profile
x is its normalized weight:

Prob+
x =

weightx∑
y∈profiles

weighty
(4)

This ensures a higher probability for including profiles that are capable of reducing the
expected cost the most. Similarly, the probability Prob−x of swapping out a profile x also

1The simulation-based evaluation of S simulates one or more scenarios in which the tasks get executed
at a specific time. The expected actual start time is the average actual start time of the task over all
scenarios.

10

considers the contribution of each profile (weightx):

Prob−x =
(maxW − weightx) JactivexK∑

y∈profiles

(maxW − weighty) JactiveyK
(5)

where maxW = maxi∈profiles(weighti) and JactiveiK is an Iverson bracket evaluating to
1 iff i is an active profile, and 0 otherwise. Note that the weighted approach essentially be-
haves as a feedback loop, steering the neighborhood search in a more informed direction.
We compare the performance of the uniform and weighted approaches in Section 6.3.3.

The ILS algorithm restarts from a new initial solution (line 10) when the restart
criterion is met (line 4). This repeats until a termination criterion is reached (line 3),
at which point the best-known solution S∗ is returned. As a restart criterion, we use
a threshold on the number of non-improving consecutive iterations. As a termination
criterion, we limit the number of restarts. Suitable values for these two parameters, which
typically represent a trade-off between solution quality and run time, are determined in
Section 6.3.3.

Algorithm 1: Iterated local search

1 S ← initialize solution();
2 S∗ ← S;
3 while termination criterion is not met do
4 while restart criterion is not met do
5 S′ ← neighbor(S);
6 if expected cost(S′) < expected cost(S) then
7 S ← S′;
8 if expected cost(S) < expected cost(S∗) then
9 S∗ ← S;

10 S ← initialize solution();

11 return S∗;

5.2. Simulation-based evaluation

A candidate solution S is evaluated based on the expected total time tasks spend in
the task pool E[cost(S)]. Algorithm 2 outlines how E[cost(S)] is computed for a solution
S. Given a scenario where individual task durations are known, the total task pool
time of that scenario can be calculated by simulating the WMS’s system-directed task
dispatching (line 5). This is implemented as a discrete-event simulation (Fishman, 2013)
where the system state is only updated when an employee becomes available or when a
task is released into the task pool. When an employee becomes available, a dispatching
rule matches and assigns them to a task by comparing their profile against the newly
available task or those currently in the task pool. If no match is found, the employee
remains idle. Once all tasks have been assigned, the total time spent by tasks waiting in
the task pool can be computed.

In our case, the individual task durations are unknown in advance and we instead
assume an estimated distribution over the possible durations is available. We will describe
two ways in which these duration distributions can be used for estimating the expected

11

solution cost. An empirical comparison of both methods will be performed later in
Section 6.

The first method for estimating the expected solution cost samples different scenarios
and considers the average task pool time over those scenarios as the expected cost.
Each scenario is sampled by sampling individual task durations (line 2). N scenarios
are sampled by executing Algorithm 2 N times and the cost estimate is the average of
the sampled scenarios: 1

N

∑N
i=1 costi. While this converges to the expected cost, many

samples may be required to do so.
Alternatively, the second method estimates the expected cost by considering only a

single scenario in which each task has an expected (mean) duration (line 4) and then
calculating this single scenario’s cost. If the task pool time for a certain solution can be
written as a weighted sum over the task durations, then this converges to the expected
cost. However, it is unclear whether or not this condition holds, due to the complex
interactions between employees and tasks encoded by the WMS’s dispatching algorithm.
Even if the condition does not hold exactly, a good approximation for the expected cost
might still be calculated through such a sum. This approximation may be preferable
over the sampling approach given how much quicker it is.

Algorithm 2: cost(S): Cost calculation for a solution, for one scenario

Input: S: candidate solution
Output: cost(S) of a scenario

1 if Option 1: sample task durations then
2 d← Sample task duration for each task in T ;

3 if Option 2: mean task durations then
4 d← Mean task duration for each task in T ;

5 s← Simulate a scenario with S and d (Discrete-event simulation) ;
6 cost ← Calculate cost of scenario s (Equation (1));
7 return cost

The run time complexity of our discrete-event simulation comprises of two parts:
initialising the data structure that stores which profiles cover what tasks, and the simu-
lation of a scenario itself. The first part can be reused across scenarios and simulations
and therefore only needs to be executed once. Denoting the number of tasks and pro-
files with T and P , respectively, this first part requires verifying for each task and profile
whether the profile rules cover the task: O(T×P×max profile length) comparison oper-
ations. Assuming that most tasks have fewer precedence constraints (|C|) than there are
tasks (|C| << T), the complexity of simulating a single scenario is primarily dictated by
O(T ×P × log2(T)). This originates from updating a data structure that tracks for each
profile the released but still unassigned tasks that are covered by it. For a more detailed
explanation of the run time complexity analysis we refer interested readers to Appendix
A.

5.3. Task duration distributions

The duration of each task, modeled as a stochastic variable, is estimated based on
historical data. Rather than using a single distribution to approximate the duration of all
tasks, we propose to exploit task attributes such as their type and work zone to obtain

12

more informed distributions. For example, Figure 3 illustrates how tasks of different
types exhibit different distributions.

0 25 50 75 100 125 150 175 200
duration (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

de
ns

ity

inventory
marshal
put away
load

0 50 100 150 200 250 300 350 400
duration (s)

0.00

0.01

0.02

0.03

0.04 pick
relocate
replenish

Figure 3: The number of tasks (y-axis) that had a certain duration (x-axis).

Partitioning tasks based on their attribute values decreases the number of tasks that
can be used to approximate each individual distribution and can lead to overfitting. Con-
sequently, it is important to carefully decide which attributes to consider and which to
ignore. To do so, we use CaDET, a tool that performs conditional density estimation
using decision trees (Cousins and Riondato, 2019). CaDET constructs a decision tree
by iteratively splitting tasks based on their attribute values, forming conditional proba-
bility densities in the leaf nodes. To incentivize splits that improve predictive accuracy,
CaDET employs empirical cross entropy as the impurity criterion for tree growth. This
approach yields interpretable results and allows us to determine the conditional task
duration distributions by traversing the learned decision tree once per task. Once the
distributions are known, we can sample from them to perform simulations. For more
details concerning the learning process and usage of CaDET, we refer to Cousins and
Riondato (2019). If there is sufficient data available in each leaf node of the learned
decision tree, then it also possible to sample directly from the leaf’s histogram rather
than from a fitted distribution. Alternatively, the sampling method can be replaced by
using the mean task durations (Algorithm 2, line 4). In this case, a distribution is no
longer required and simpler learning methods such as decision tree regression may be
sufficient.

6. Computational study

Before assessing the quality of the proposed framework, the choices specific to its three
main components will be analyzed. The outcome of this analysis will determine the final
design decisions and hyperparameter values. For learning the task duration distribu-
tions, we study the importance of (Q1) distribution types and (Q2) conditioning on the
attributes. For the simulation-based evaluation, which aims to estimate solution costs,
we study the effect on the cost estimate quality of (Q3) the conditional duration distri-
butions and (Q4) the number of samples drawn from the distributions. Furthermore,

13

we analyze (Q5) whether employing mean durations yields sufficiently good estimates.
For iterated local search, which aims to find the best solution, we evaluate the effect
on the solution quality/computation time trade-off of (Q6) our proposed neighborhood
operator, and (Q7) the restart and termination criteria. The complete method is evalu-
ated by (Q8) an ablation study and (Q9) a comparison against the manually constructed
solutions used in practice.

6.1. Data

We learn the duration distributions and evaluate our approach using historical data
obtained from our industry partner, Objective International. This data includes infor-
mation of historical task executions: actual release time, start time, finish time, date of
planned execution, task type, work zone, whether it was bulk or pallet, and whether it
involved more than one item. We also obtained data concerning the different profiles
used during the task execution period.

Learning Task Duration Distributions. When learning the duration distribution for each
task, we used a representative time span with a reasonable number of tasks each day,
filtering out tasks that were most likely registered incorrectly (performed unreasonably
fast or slow2). This yielded a total of 559311 tasks spanning 16 months, involving 37
work zones and 7 task types. 5-fold cross validation of the data is used to properly
evaluate the learning approach.

Optimization. When using this data set to evaluate our optimization approach, we ig-
nored tasks that did not start on the same day as they were released or scheduled to
be released. This ensures that possible registration errors in the data do not affect our
experiments. The evaluation of our optimization approach focuses on ten problem in-
stances, each corresponding to a single working day. Five of these instances are used as
a validation set to tune the parameters, while the other five are used as a test set for
the final method. For the final experiment, where we compare against solutions recon-
structed from practice, we extended the test set to 100 problem instances to obtain a
more representative view of the overall performance. Figure 4 illustrates the distribution
of work zone and task type across the ten instances. Appendix B includes Figure B.12,
which provides the distributions for each of the ten instances separately. Table 3 provides
additional details.

The data set does not include the precedence constraints, with these instead being
extracted from the task data set using the following logic. When a task t is released into
the task pool at the same time task t′ finishes, rather than being released at the time t
was actually scheduled to be released, we consider there to be a precedence constraint
between t and t′.

In addition to the tasks, the data set also describes the available profiles. There are 76
possible profiles from which a subset must be chosen. The number of profile rules within
a single profile ranges from 1 to 48, with an average of six rules per profile. Figure 5
shows the frequency with which each task type and work zone features in a profile.

2After data analysis and a discussion with our industry partner, we decided to use data concerning
tasks whose duration ranged from twenty seconds to one hour.

14

pick
put away

relocate

replenish

inventory

marshal

load

task type

0

10

20

30

40

50

60

70

ta
sk

s
(%

)

0 5 10 15 20 25 30 35

work zone

0

5

10

15

20

25

30

35

40

Figure 4: Distribution of task type and work zone across the ten instances.

pick
put away

relocate

replenish

inventory

marshal

load

task type

0

10

20

30

40

50

60

70

co
v
er

ed
b
y

p
ro

fi
le

s
(%

)

0 5 10 15 20 25 30 35

any

work zone

0

5

10

15

20

25

30

35

40

Figure 5: Task type and work zone coverage by the available profiles.

15

Table 3: Details of the validation set (instances 1 to 5) and test set (instances 6 to 10).

Instance Number of Number of Number of Number of Number of
tasks employees task types work zones precedences

1 1885 17 6 18 10
2 1969 20 7 18 49
3 2242 18 7 20 49
4 1601 22 7 21 18
5 1060 18 7 18 29
6 1306 16 7 17 37
7 1700 19 7 21 30
8 1032 20 7 21 37
9 1223 15 7 16 39

10 2141 19 7 18 49

Even when the tasks are covered well by the profiles, Figures 4 and 5 do not necessarily
match since a profile covers multiple tasks through its profile rules and therefore may
be assigned to multiple employees. Regardless, we can clearly see that picking tasks are
the most common activity and are covered well, appearing in almost 70% of the profiles.
Coverage of the various zones is less high, with the best-covered zones appearing in only
30% of the profiles. Note that the any zone appears in ∼20% of the profiles. This zone is
typically used as part of a final catch-all profile rule to ensure employees do not become
idle. Similarly, inventory tasks are also often deployed as a final catch-all in profiles.
This explain why it represents less than 10% of the tasks while featuring in more than
20% of profiles.

6.2. Experimental Setup

Unless explicitly mentioned otherwise, the following settings are used for all exper-
iments. The ILS restart parameter is set to 200 non-improving consecutive iterations
and a maximum of 17 restarts is used as the termination criterion. The simulation-based
evaluation uses the task duration distributions that were learned using CaDET version
1.1, with the minimum number of tasks in each leaf node set to 1000 and inverse gamma
as the distribution class.

The quality of profile assignments is quantified by their average relative regret. The
regret of a solution S is defined as the difference between the E[cost(S)] of that solution
and the E[cost(S∗)] of the optimal solution S∗. To average over multiple problem in-

stances, we consider the relative regret : |E[cost(S)]−E[cost(S∗)]|
E[cost(S∗)] , the regret divided by the

cost of the optimal solution. Given that we do not know the optimal solution for an
instance, we instead use the best solution found for it using any of the parameter values.
Due to the stochastic nature of our approach, caused by for example the neighbor(S)
operator, we evaluate each combination of parameter values five times and average the
results to obtain the average relative regret for a problem instance. To calculate the
expected cost of a solution, we use our proposed evaluation module and sample 10000
scenarios so that the cost likely converges to its true value. In addition to solution quality,
the time it took to find the solution is also measured.

16

Different metrics are used to evaluate the individual components of our approach.
The goal of task duration distribution learning is to find distributions that fit the data as
well as possible. This is quantified by the likelihood of those distributions generating the
data L(model|data) = Prmodel(data). The goal of the evaluation module is to estimate the

expected cost E[cost(S)]. The quality of the estimate ̂E[cost(S)] is measured as its relative

error with respect to the true expected cost:
̂E[cost(S)]−E[cost(S)]

E[cost(S)] . The true expected cost

is again calculated using our evaluation module by sampling 10000 scenarios. The goal of
the ILS component is also evaluated using average relative regret and total computation
time.

Each experiment involving the ILS algorithm was repeated five times with different
seed values for the random number generator. The reported values are the averages of
these five runs. The only exception is the final experiment, which evaluates the perfor-
mance of our approach by comparing the optimized solutions against those reconstructed
from practice. This experiment was repeated 100 times to provide more accurate final
conclusions concerning the algorithm’s performance.

All experiments were conducted on Ubuntu 20.04.1 LTS using an Intel Xeon E5-2670
processor with 128GB RAM. The algorithms were implemented in Java 11.

6.3. Study of Design Decisions and Parameter Tuning

In this section, we study design decisions and parameter tuning for each of the com-
ponents of our approach illustrated in Figure 2.

6.3.1. Task Duration Distribution Learning

CaDET version 1.1 is used to learn task duration distributions and considers the
following four task attributes: type, work zone, whether the task is bulk or pallet, and
whether the task concerns a single item or multiple. In a CaDET decision tree, each leaf
node is associated with tasks that share one or more attributes, for example the same
work zone. The distribution associated with each leaf node is fitted over the durations
of all its tasks.

Q1: What distribution class best fits the historical data?. The class of this distribution
is a parameter that must be chosen before learning the tree. We compared several
distribution families available in CaDET: inverse gamma, gamma, exponential, inverse
Gaussian, log Gaussian, and Gaussian. The resulting scores are shown in Figure 6. The
decision tree with inverse gamma distributions yielded the best results and is therefore
used in later experiments to determine the duration distribution for each task.

Q2: Does conditioning on the task attribute values result in better duration estimates?.
Rather than using a decision tree to select attribute-conditional distributions, a single
distribution could have been fitted to the data and used for all tasks. However, this
would yield a less informed distribution, as confirmed by the results shown in Figure 6
where each conditional approach always scores better than its unconditional single dis-
tribution counterpart. Figure 7 depicts two leaf nodes of the learned CaDET decision
tree, showing their inverse gamma distribution (conditional), the inverse gamma dis-
tribution learned over all data (unconditional), and a histogram of the actual data in
that leaf node. This figure demonstrates that using a conditional distribution learned

17

0.000 0.001 0.002 0.003 0.004 0.005

average estimated likelihood

Gaussian

Exponential

Gamma

Log Gaussian

Inverse Gaussian

Inverse Gamma

d
is

tr
ib

u
ti

o
n

ty
p

e

0.0020

0.0031

0.0035

0.0040

0.0040

0.0042

0.0018

0.0030

0.0031

0.0034

0.0035

0.0035

unconditional

conditional

Figure 6: The score of each distribution class, fitted over all tasks (unconditional) or using CaDET
(conditional). The reported score is the likelihood of the learned distribution generating the data,
averaged over all instances and estimated using all five folds. Higher is better.

with CaDET provides better estimates than an unconditional distribution. This is ex-
pected as each conditional distribution is fitted to the actual data, whereas the single
distribution fits over all data and is consequently less informed.

Conclusion. Conditional distributions using inverse gamma distributions best capture
the task durations.

6.3.2. Simulation-Based Evaluation

We generated 5000 random solutions and estimated their expected cost on the vali-
dation set in two ways: 1) with a single scenario using the mean task durations of their
distribution and 2) with N sampled scenarios using task durations sampled from their
distributions, where the number of scenarios is varied: N ∈ {1, 50, 100, 150, 200, 250}.

0 100 200 300 400 500 600 700
duration (s)

0.000

0.002

0.004

0.006

0.008

0.010

de
ns

ity

conditional
unconditional
actual data (5661 tasks)

(a) Picking tasks in work zone 33702

0 100 200 300 400 500 600 700
duration (s)

0.000

0.002

0.004

0.006

0.008

0.010

de
ns

ity

conditional
unconditional
actual data (13003 tasks)

(b) Replenish tasks in work zones other than work
zones 118616 and 118669

Figure 7: The density of task durations for two attribute-conditional task groups according to the actual
data, the attribute-conditional approach (CaDET) and the unconditional approach. The more similar
the learned distribution is to the histogram of actual data, the better.

18

Each of these settings is executed twice: once using the unconditional task duration
distributions and once using the conditional task duration distributions.

Q3: Does using the conditional distribution result in better cost estimates?. Figure 8a
shows that expected cost estimates produced using conditional distributions generally
have a smaller relative error. They are therefore more accurate than estimates produced
using unconditional distributions, both when the mean or samples are used.

Q4: How does the estimate improve in function of the number of samples?. When
sampling from the unconditional distributions, using more samples does not yield more
accurate results. Indeed, Figure 8a shows it has little effect. This is because the un-
conditional distributions from which we sample do not sufficiently match the conditional
distributions used to approximate the true distributions. By contrast, and as one would
expect, using more samples from the conditional distributions does reduce the variance
in relative error, thereby yielding estimates closer to the true expected cost. However,
as Figure 8b shows, this also significantly lengthens the simulation run time.

mean 1 50 100150200250

N

−5

−4

−3

−2

−1

0

1

re
la

ti
v
e

er
ro

r
(%

)

conditional

mean 1 50 100150200250

N

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

unconditional

(a) Relative error while varying N

mean 1 50 100 150 200 250

N

0

1

2

3

4

5

ti
m

e
(s

)
conditional

(b) Simulation time while varying N

Figure 8: Results of evaluating 5000 random solutions, using either the mean duration or various values
of N . The whiskers denote 5% to 95% of the data. The simulation time using unconditional distributions
is similar to using conditional distributions and therefore we only show results of the conditional.

Q5: Does mean task duration yield a sufficient estimate of the solution cost?. Increasing
the number of samples N does not improve cost estimates when those samples originate
from the unconditional distributions. We will therefore only consider samples from the
conditional distributions in order to address this research question. Figure 8a shows that
using 250 samples often yields better estimates than using mean values. However, the es-
timates produced using the mean values do have an acceptable relative error. For all but
one of the 5000 data points the relative error was within the range [−1%, 1%], while for
97.4% of the data points the error was within the range [−0.5%, 0.5%]. As the ablation
study in Section 6.4.1 will later show, estimating the solution cost using mean task dura-
tions provides a sufficient signal to steer ILS in the right direction. Furthermore, there is
also a time trade-off when using more samples because 250 samples means executing 250

19

scenarios. This is reflected in the algorithm’s run time, which is 4.3ms on average when
using the mean values and 3628.7ms when using 250 samples, an increase of almost three
orders of magnitude. This increase is not ×250 due the cost of sampling from an inverse
gamma distribution. However, we did observe the expected increase of approximately
×250 when comparing to the use of a single sample rather than the mean values. Given
that the available computation time is typically limited and that the relative error is
small, we propose to use the mean values to evaluate a solution rather than simulating
N scenarios.

Conclusion. The simulation-based evaluation should use conditional task duration distri-
butions and a single scenario where the task durations are the mean of their distributions.
Sampling scenarios can provide more accurate estimates of E[cost(S)], however this gain
in accuracy is limited compared to the substantial increase in computational run time.

6.3.3. Iterated Local Search

The goal of ILS is to quickly find a high-quality solution. Several design decisions
influence its performance: 1) the used neighborhood operator, 2) the restart criterion,
and 3) the termination criterion. These three choices influence both the final solution
quality as well as the time taken to find it. For the restart and termination criterion
there is a natural trade-off in effect, as solution quality typically improves if one spends
more time searching.

Q6: Which neighborhood operator performs best?. To compare the performance of the
neighborhood operators, ILS was ran twice for each instance in the validation set: once
using the uniform operator and once using the weighted operator, without restarts and
beginning from the same initial solution. This experiment was repeated five times, track-
ing the relative regret over time for each run. The relative regret at any point in time
is based on the expected cost of the best solution found up until that point in the run
and the optimal expected cost for the problem instance. This optimal expected cost is
based on the best solution eventually found across all five attempts while using either
operator. Both the expected cost and the optimal expected cost were estimated using
a simulation with mean-conditional based task durations. The results from the first
validation instance are shown in Figure 9, while the results for the other instances are
included in Appendix C (Figure C.17). The results indicate that while both operators
yield similar results given enough time, the weighted operator converges to better solu-
tions much quicker than the uniform operator does. The uniform operator also exhibits
more variance between the five runs than the weighted operator. This is explained by
the stochastic nature of the uniform distribution used by the uniform operator, whereas
with the weighted operator the distribution is more focused on changes that improve the
solution.

Q7: Which restart and termination criteria gives the best quality-time trade-off?. We
tested several combinations of restart and termination criterion values, each time record-
ing the total ILS run time and the estimated expected cost of the final solution. We
performed this five times for each of the five validation instances. This resulted in 25
data points for each combination of parameter values, which we evaluated using the rel-
ative regret metric. The optimal cost used to compute this metric was based on the

20

0 1 2 3 4 5

time (s)

0

2000

4000

6000

8000

10000

12000

re
la

ti
v
e

re
g
re

t
(%

)

uniform-0

weighted-0

uniform-1

weighted-1

uniform-2

weighted-2

uniform-3

weighted-3

uniform-4

weighted-4

Figure 9: The relative regret over time during ILS for the first five seconds for both the uniform and
weighted neighbor operator, for five different starting solutions.

best solution found for each instance across all attempts. The heat map in Figure 10
shows the relative regret averaged out over all instances and all five attempts for each
parameter value combination. A heat map of each individual instance is included in
Appendix C (Figure C.13 - C.15). When tuning the parameter values, it is important
to also consider the run time. On average, ILS run time scales linearly with the num-
ber of restarts because the restart execution times are independent of each another. It
is therefore sufficient to only vary the restart criterion value when analyzing run time.
Figure 11 shows the results for the first validation instance, using 5× 25 data points for
each restart criterion value. The run time behavior of the other instances is similar and
is documented in Appendix C (Figure C.16). Increasing the maximum number of con-
secutive non-improving iterations beyond 300 did not significantly improve the results.
Furthermore, when multiple restarts were used, 100 iterations was sufficient to produce
results with an average relative regret under 1%. If we consider all instances separately
(Appendix C), this became 200 iterations. When using 200 iterations, at least 15 restarts
are required to obtain a relative regret under 1%. To prevent overfitting, we opted for
17 restarts. This yielded an average relative error of at most 0.5%.

Conclusion. ILS should use the weighted neighborhood operator to find good solutions
faster. The optimal restart and termination criteria depend on available time for running
the simulation. If there is no real time limit, we propose a restart criterion value of 200
consecutive non-improving iterations and 17 restarts, as searching for a longer time and
with more restarts is unlikely to produce significantly better solutions.

6.4. Evaluation of the Proposed Framework

To evaluate our proposed framework as a whole, an ablation study is performed to
study the contribution of each design decision. Thereafter, a comparison against the
manually constructed solutions that were used in practice is conducted.

6.4.1. Ablation study

Q8: How much do each of the proposed design decisions contribute to the quality of the
final solution and the total run time?. To study the contribution of each design decision,

21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

number of restarts

50

100

200

300

500

750

1000

1500

2000

n
o
n
-i

m
p
ro

v
in

g
c
o
n
se

c
u
ti

v
e

it
e
ra

ti
o
n
s

6.804.714.013.883.373.052.922.852.562.562.482.412.192.021.861.701.541.541.541.541.541.541.461.461.46

4.062.261.591.371.121.12 .85 .81 .71 .68 .68 .68 .63 .60 .56 .49 .46 .41 .41 .41 .41 .41 .38 .38 .37

2.081.12 .78 .63 .57 .57 .47 .46 .46 .45 .45 .45 .36 .32 .27 .17 .17 .11 .11 .11 .11 .11 .10 .10 .10

1.12 .74 .52 .40 .38 .38 .34 .34 .34 .33 .33 .33 .33 .27 .24 .15 .15 .08 .08 .08 .08 .08 .03 .03 .03

1.02 .66 .50 .34 .33 .33 .33 .33 .33 .33 .33 .33 .33 .24 .24 .15 .15 .05 .05 .05 .05 .05 .00 .00 .00

.80 .61 .45 .29 .28 .28 .28 .28 .28 .28 .28 .28 .28 .19 .19 .09 .09 .00 .00 .00 .00 .00 .00 .00 .00

.78 .61 .45 .29 .28 .28 .28 .28 .28 .28 .28 .28 .28 .19 .19 .09 .09 .00 .00 .00 .00 .00 .00 .00 .00

.78 .60 .45 .29 .28 .28 .28 .28 .28 .28 .28 .28 .28 .19 .19 .09 .09 .00 .00 .00 .00 .00 .00 .00 .00

.78 .60 .45 .29 .28 .28 .28 .28 .28 .28 .28 .28 .28 .19 .19 .09 .09 .00 .00 .00 .00 .00 .00 .00 .00

instances 1 to 5

0 1 2 3 4 5 6
average relative regret (%)

Figure 10: The relative regret of solutions found using ILS for different restart and termination criterion
values. The relative regret was averaged out over all five validation instances, over all five attempts.
This answers the question: “if we had used a certain restart and stop criterion, how much worse (%) on
average would the found solution be compared to the best solution?”. Higher values are worse.

50 100 200 300 500 750 1000 1500 2000

number of consecutive non-improving iterations before restart

0

20

40

60

80

100

ti
m

e
(s

)

Figure 11: The execution time of a single ILS restart on the first validation instance for various restart
criteria values. The whiskers denote 5% to 95% of the data.

22

we ran the proposed framework with an alternative decision in order to observe the
deterioration in solution quality. We ran each configuration five times for all test set
instances and report the resulting average relative regret and the average run time in
Table 4. These results show that the proposed method’s approach of using a conditional
distribution as a source for the task durations is preferable to using a non-conditional
distribution. The difference with respect to average relative regret is especially significant
for problem instances 9 and 10. The results also clearly show that sampling does not
guarantee much better results, but does require significantly more run time. The uniform
neighbor operator yields solutions of similar quality compared to the proposed weighted
operator, but requires slightly more time to find those solutions.

Table 4: Ablation study: average relative regret and run time of the proposed method, compared against
the following alternative versions of the proposed method: 1) Using non-conditional distributions instead
of conditional ones for the task durations, 2) sampling 150 scenarios, 3) sampling 250 scenarios, and 4)
using the uniform neighborhood operator instead of the weighted one.

Instance Proposed Method Non-conditional Sampling-150 Sampling-250 Uniform operator

Average Relative Regret (%)

6 2.31 7.28 2.25 2.46 1.81
7 0.24 0.63 0.33 0.32 0.24
8 0.26 1.09 0.36 0.22 0.56
9 0.09 15.45 0.26 0.37 0.10
10 2.89 27.22 3.54 3.73 2.86

Average Run time (s)

6 145 97 25174 42759 184
7 213 167 46608 75225 244
8 68 61 20276 32760 82
9 71 60 18180 30903 90
10 255 213 42168 79609 330

6.4.2. Comparison with practice

Q9: Does the approach proposed in this paper find better profile assignments than those
used in practice?. The historical data provided to us by our industry partner does not
include the profile used by each employee at every point in time. The data only contains
the set of used profiles, not when they were used. Therefore, in order to compare the
profile assignments produced by our approach against those used in practice, we recon-
structed the profile assignments for all test set instances. This reconstruction process
extracts the profile assignment possibly used on a specific day by considering all task
assignments of each employee on that day. In practice, profile assignments are often
updated throughout the day and, as a result, no single matching profile could be found
by our reconstructive procedure in some cases. When this happened, an existing profile
in the set was extended with a single profile rule which covered the unmatched task.
Table 5 contains the percentage of profiles that needed to be updated in this manner for
each of the days we evaluated. For 59 of the 100 days, all profiles needed to be updated.
This mismatch can be the result of unknown precedence constraints, profile assignment
changes during operations or data inconsistencies. Note that while the reconstructed
profile assignments may contain adapted profiles, our approach only used the initially

23

provided profiles and excluded the adapted ones.
The profile assignments, both those derived from historical data and the framework’s

solutions, were evaluated using the simulation procedure described in Section 5.2. During
this simulation the actual duration of each task as recorded in the historical data was
used, allowing us to determine whether our solution would have outperformed the profile
assignment that was used in practice. In this way, only a single scenario needed to be
solved to obtain the cost. Naturally, our approach did not use the actual task duration
to find a solution, as these durations are unknown in advance. Instead we used the mean
of the conditional distributions previously learned in Section 6.3.1.

Since our approach uses mean values rather than sampling, and is therefore relatively
fast, we extended the test set with 95 randomly selected instances in which at least 1000
tasks were executed (excluding instances from the validation set). This brought the test
set size to 100 unique instances, thereby providing a better indication of our approach’s
performance. We ran our approach 100 times on each of the instances to account for
randomness in the ILS algorithm.

Table 5 reports the results and compares the solutions obtained by our framework
against those reconstructed from historical data. For 92 of the 100 instances, the average
relative regret of the profile assignment found our approach was better than that of the
assignment reconstructed from practice. In most cases this difference was very substan-
tial. Furthermore, the computation time required was relatively minimal and in line
with previous experiments. The longest average run time was only 404.4 seconds. This
means that our approach is not only suitable for producing profile assignments a day in
advance, but it can also be applied dynamically in response to changing circumstances
during the day.

Conclusion. The approach proposed in this paper is able to quickly find profile assign-
ments that are generally significantly better than those reconstructed from practice.

Table 5: Comparison against solutions used in practice for ten randomly selected instances. A comparison
of all 100 instances (instances 6 − 105) can be found in Appendix C (Table C.6). RR is the relative
regret evaluation metric, with the optimal cost being the best cost found across all runs of the algorithm
or the solution used in practice. The lower the RR, the better. The average RR and run time of all 100
algorithm runs are reported, as well as the standard deviation. The column “new profiles” indicates the
percentage of employees whose profile required adaptation in order to correctly simulate practice.

Instance Proposed approach Manual solutions

avg. RR (%) avg. Time (s) RR (%) New profiles (%)

14 0.4 (± 0.3) 64.1 (± 5.9) 18.1 100
21 0.0 (± 0.0) 76.6 (± 6.6) 39.5 100
23 0.3 (± 0.3) 239.6 (± 27.9) 100.8 86
38 1.5 (± 1.4) 314.9 (± 36.6) 41.1 100
63 2.1 (± 1.7) 114.1 (± 11.4) 27.7 100
66 0.0 (± 0.0) 24.0 (± 2.5) 143.2 83
69 2.4 (± 1.2) 50.9 (± 6.2) 67.4 100
78 0.7 (± 0.3) 30.8 (± 3.1) 39.1 68
89 0.8 (± 0.6) 58.1 (± 6.0) 37.8 100

103 0.5 (± 0.7) 184.5 (± 21.3) 18.2 74

24

7. Conclusions

This paper considered the problem of assigning profiles to warehouse workers, which
represents a task faced by shift supervisors on a daily basis. This is a nontrivial yet
impactful decision, as profile assignment greatly influences the efficiency of tasks being
executed in the warehouse. The decision is further complicated by unknown task dura-
tions. Our proposed framework involves a metaheuristic algorithm which uses discrete-
event simulation to evaluate the quality of solutions. To accommodate for unknown task
durations, historical data was used to estimate task duration distributions, conditional
on task attributes. Two approaches were considered: a more precise one that takes
the entire distribution into account and a faster one that only considers the expected
duration.

A detailed computational study was conducted to evaluate the various components
of our proposed method. Predicting task durations based on the task attributes is shown
to have a large impact on the quality of the generated profile assignments. Studying the
trade-off between more precise and faster duration distribution incorporation led to the
conclusion that the fast method, which uses the expected task duration, does not suffer
from significantly lower quality and is therefore the preferred method. A comparison
with the profile assignments reconstructed from practice revealed that the assignments
produced by our method were superior.

In principle, our proposed method is not just restricted to warehouse operations but
is also applicable to other domains where profile-based dispatching can be used. We
plan to investigate this direction in future work. Another valuable direction for future
research concerns the problem’s stochastic elements. The problem addressed in this
paper considered task duration as the single source of uncertainty. A natural extension
would be to also include uncertainty concerning the earliest possible start times of the
tasks, as this also represents a source of uncertainty in practice. Finally, as our proposed
approach is heuristic in nature, we have no guarantee concerning solution quality. An
exact algorithm that manages to find optimal solutions would allows us to better evaluate
the performance of our method.

Author Contributions

V. Derkinderen: Conceptualization, Methodology, Software, Data curation, Visu-
alization, Writing. P. Smet: Conceptualization, Methodology, Software, Visualization,
Writing. J. Bekker: Methodology, Supervision, Writing.

Acknowledgments

This research was supported by the Flemish Government under the “Onderzoekspro-
gramma Artificiële Intelligentie (AI) Vlaanderen” programme, and by the Research Foun-
dation Flanders (FWO) under grant S007318N and 1SA5520N. We are grateful for the
insightful discussions with Tias Guns, Luc De Raedt and Greet Vanden Berghe. Editorial
consultation provided by Luke Connolly (KU Leuven).

25

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

26

Appendix A. Simulation run time complexity

The run time complexity of the implemented discrete-event simulation comprises of
two parts: initialising the data structure that stores which profiles cover what tasks,
and the simulation of a scenario itself. The first part is re-usable across simulations
and therefore only needs to be performed once. Denoting the number of tasks as T
and profiles as P , the initialisation requires verifying for each task and profile whether
the profile’s rules cover the task: O(T×P×max profile length) comparison operations.
The complexity of the simulation itself is less straightforward. A scenario simulation
has one release event and one finished event per task. The insertion of these two events
into an ordered timeline data structure happens once per task (×T), with each insertion
requiring O(log2(T)) comparisons. In order to efficiently perform a simulation we also
track each profile’s list of idle employees as well as the released yet still unassigned tasks
covered by that profile. The former data structure is a queue with insertion complexity
O(1) while the latter also requires efficient removal of specific elements and guarantees
an insertion and removal complexity of O(log2(T)) comparisons.

Because each release and finish event occurs once per task, the following complexities
must be multiplied by T . The release of task i first requires checking its precedence
constraints. This involves verifying for each of its precedence tasks whether they are
finished: O(|Ci|) Boolean checks with |Ci| the number of precedence constraints of task
i. If these constraints are all satisfied, the task is assigned to a suitable idle employee
if one is available. Since we track for each profile all idle employees with that profile,
this simply means iterating over (relevant) profiles and verifying whether there is any
idle employee: O(P) Boolean checks. If no suitable employee is available, we add the
task to the aforementioned data structure that tracks for each profile the released yet
still unassigned tasks. This insertion has complexity O(P × log2(T)). If a precedence
constraint is violated, the task is not released but is instead put on hold. Given that a
finished task i can cause the release of another task on hold, we re-verify the precedence
constraints of all tasks waiting for i. This requires O(

∑
j waits on i |Cj |) Boolean checks.

A finished task also causes an employee to become available who might match with a
released but unassigned task. Removing the newly assigned task from the relevant data
structures requires O(P × log2(T)) comparisons.

Assuming that tasks have few precedence constraints, |Ci| << T , the simulation’s
complexity is primarily dictated by O(T × P × log2(T)).

Appendix B. Additional instance analysis

27

P A M R I S L
0

20

40

60

ta
sk

s
(%

)

instance 1

0 5 10 15 20 25 30 35
0

10

20

30

40

P A M R I S L
0

20

40

60

instance 2

0 5 10 15 20 25 30 35
0

10

20

30

40

P A M R I S L
0

20

40

60

ta
sk

s
(%

)

instance 3

0 5 10 15 20 25 30 35
0

10

20

30

40

P A M R I S L
0

20

40

60

instance 4

0 5 10 15 20 25 30 35
0

10

20

30

40

P A M R I S L
0

20

40

60

ta
sk

s
(%

)

instance 5

0 5 10 15 20 25 30 35
0

10

20

30

40

P A M R I S L
0

20

40

60

instance 6

0 5 10 15 20 25 30 35
0

10

20

30

40

P A M R I S L
0

20

40

60

ta
sk

s
(%

)

instance 7

0 5 10 15 20 25 30 35
0

10

20

30

40

P A M R I S L
0

20

40

60

instance 8

0 5 10 15 20 25 30 35
0

10

20

30

40

P A M R I S L

task type

0

20

40

60

ta
sk

s
(%

)

instance 9

0 5 10 15 20 25 30 35

work zone

0

10

20

30

40

P A M R I S L

task type

0

20

40

60

instance 10

0 5 10 15 20 25 30 35

work zone

0

10

20

30

40

Figure B.12: Distribution of task type and work zone for the tasks in each of the ten problem instances
(days). Task types: pick, put away, move, replenish, inventory, marshal, load.

28

Appendix C. Additional experimental analysis

Table C.6: A comparison of the profile assignments used in practice and those of the proposed approach.
RR is the relative regret evaluation metric (Section 6.2). The average RR and run time of all hundred
algorithm runs are reported, as well as the standard deviation. The column “new profiles” indicates the
percentage of employees whose profile required adaptation in order to correctly simulate practice.

Instance Proposed approach Manual solutions

avg. RR (%) avg. Time (s) RR (%) New profiles (%)

6 2.2 (± 1.1) 145.0 (± 15.6) 117.0 100
7 1.8 (± 0.4) 196.2 (± 19.6) 0.0 74
8 0.0 (± 0.0) 60.7 (± 5.6) 20.8 60
9 0.5 (± 0.2) 67.3 (± 6.5) 13.6 100

10 0.1 (± 0.2) 257.1 (± 28.9) 21.2 100
11 1.6 (± 1.9) 128.2 (± 16.4) 37.3 90
12 1.1 (± 2.4) 34.7 (± 2.9) 45.2 95
13 0.4 (± 0.2) 148.0 (± 15.4) 45.2 100
14 0.4 (± 0.3) 64.1 (± 5.9) 18.1 100
15 0.8 (± 0.8) 139.7 (± 11.5) 29.7 90
16 6.7 (± 4.2) 119.3 (± 13.1) 25.8 100
17 0.6 (± 0.3) 65.8 (± 6.4) 39.1 100
18 1.3 (± 0.2) 53.3 (± 5.5) 75.0 52
19 3.6 (± 0.9) 109.3 (± 13.7) 0.0 70
20 3.0 (± 1.1) 154.6 (± 14.2) 72.3 100
21 0.0 (± 0.0) 76.6 (± 6.6) 39.5 100
22 0.1 (± 0.1) 266.4 (± 24.1) 53.3 100
23 0.3 (± 0.3) 239.6 (± 27.9) 100.8 86
24 0.0 (± 0.0) 321.5 (± 31.4) 109.7 90
25 0.3 (± 0.1) 87.1 (± 9.5) 5.9 75
26 0.1 (± 0.1) 63.7 (± 6.5) 4.8 100
27 1.2 (± 0.6) 139.0 (± 13.0) 5.4 100
28 0.2 (± 0.1) 203.3 (± 22.8) 39.0 100
29 6.3 (± 1.9) 311.7 (± 29.9) 92.1 100
30 0.2 (± 0.1) 190.7 (± 23.1) 154.4 100
31 5.7 (± 2.3) 49.2 (± 4.6) 21.1 100
32 1.6 (± 0.9) 121.4 (± 11.1) 1.1 100
33 0.0 (± 0.0) 388.4 (± 37.1) 78.6 100
34 0.1 (± 0.0) 147.5 (± 12.6) 42.9 94
35 3.1 (± 2.5) 207.1 (± 20.9) 98.7 100
36 1.4 (± 0.4) 120.2 (± 12.8) 57.5 82
37 0.1 (± 0.0) 138.7 (± 16.8) 13.6 100
38 1.5 (± 1.4) 314.9 (± 36.6) 41.1 100
39 0.0 (± 0.0) 307.2 (± 26.2) 81.6 100
40 0.1 (± 0.0) 404.4 (± 37.2) 9.8 100
41 0.7 (± 0.3) 251.0 (± 22.3) 80.4 100

Continued on next page
29

Table C.6 – Continued from previous page

Instance Proposed approach Manual solutions

avg. RR (%) avg. Time (s) RR (%) New profiles (%)

42 1.3 (± 1.2) 195.3 (± 19.9) 44.9 100
43 0.8 (± 0.8) 258.2 (± 26.2) 40.5 100
44 0.2 (± 0.1) 42.5 (± 4.2) 4.0 100
45 0.2 (± 0.2) 153.3 (± 13.0) 39.2 100
46 12.7 (± 0.8) 95.4 (± 9.0) 0.0 100
47 6.0 (± 1.1) 148.7 (± 15.5) 81.9 100
48 1.7 (± 1.0) 248.7 (± 28.0) 26.0 100
49 0.3 (± 0.5) 190.6 (± 18.9) 52.2 76
50 0.9 (± 0.4) 264.5 (± 26.2) 24.7 100
51 0.5 (± 0.2) 96.3 (± 10.1) 24.3 100
52 23.0 (± 1.4) 91.4 (± 6.9) 0.0 100
53 2.9 (± 1.8) 76.7 (± 6.8) 31.6 100
54 3.7 (± 2.3) 127.2 (± 12.6) 1.1 82
55 4.0 (± 1.4) 51.3 (± 5.9) 15.5 100
56 3.2 (± 5.0) 155.6 (± 19.4) 41.7 100
57 0.8 (± 0.5) 85.3 (± 9.4) 24.5 100
58 0.1 (± 0.1) 106.4 (± 10.7) 220.1 100
59 0.0 (± 0.0) 127.1 (± 13.9) 42.4 100
60 4.5 (± 3.1) 74.9 (± 7.6) 26.9 88
61 1.2 (± 0.4) 76.5 (± 8.2) 86.4 47
62 0.7 (± 0.3) 106.9 (± 9.8) 74.9 91
63 2.1 (± 1.7) 114.1 (± 11.4) 27.7 100
64 5.6 (± 3.7) 42.5 (± 4.3) 90.0 73
65 0.6 (± 0.3) 31.6 (± 3.0) 277.4 100
66 0.0 (± 0.0) 24.0 (± 2.5) 143.2 83
67 1.4 (± 1.3) 74.2 (± 5.7) 27.0 68
68 8.5 (± 1.3) 44.4 (± 4.6) 56.0 67
69 2.4 (± 1.2) 50.9 (± 6.2) 67.4 100
70 5.6 (± 1.0) 41.8 (± 3.3) 124.3 100
71 2.0 (± 0.6) 63.6 (± 7.6) 44.4 100
72 2.3 (± 1.5) 39.7 (± 3.3) 81.3 100
73 0.3 (± 0.3) 16.8 (± 1.6) 193.6 68
74 0.8 (± 0.1) 35.7 (± 3.7) 166.8 86
75 0.3 (± 0.3) 24.0 (± 2.1) 135.1 100
76 0.1 (± 0.0) 31.6 (± 3.0) 19.8 78
77 0.6 (± 0.3) 47.8 (± 4.8) 45.5 100
78 0.7 (± 0.3) 30.8 (± 3.1) 39.1 68
79 2.3 (± 1.4) 44.6 (± 3.9) 29.2 100
80 5.2 (± 1.7) 82.4 (± 10.7) 34.1 74
81 2.7 (± 1.2) 114.7 (± 13.7) 30.3 100
82 0.7 (± 1.3) 111.6 (± 10.7) 53.7 90

Continued on next page

30

Table C.6 – Continued from previous page

Instance Proposed approach Manual solutions

avg. RR (%) avg. Time (s) RR (%) New profiles (%)

83 5.8 (± 2.2) 49.4 (± 4.7) 0.0 82
84 0.1 (± 0.0) 72.5 (± 6.6) 143.1 71
85 0.4 (± 0.3) 84.7 (± 8.4) 80.0 65
86 0.9 (± 0.3) 67.4 (± 7.5) 13.6 86
87 2.2 (± 1.1) 257.7 (± 31.8) 23.6 100
88 0.5 (± 0.3) 238.9 (± 25.6) 23.6 100
89 0.8 (± 0.6) 58.1 (± 6.0) 37.8 100
90 3.4 (± 1.3) 23.4 (± 2.6) 19.4 85
91 0.1 (± 0.1) 22.1 (± 1.9) 28.8 100
92 0.7 (± 0.3) 68.7 (± 7.2) 29.2 68
93 1.7 (± 0.9) 67.6 (± 6.7) 6.7 100
94 4.2 (± 1.6) 116.4 (± 11.4) 34.9 100
95 3.8 (± 1.4) 55.9 (± 5.5) 17.2 100
96 0.2 (± 0.1) 109.6 (± 12.7) 19.4 100
97 0.4 (± 0.1) 241.5 (± 17.1) 126.5 94
98 5.7 (± 1.0) 109.4 (± 10.8) 22.9 100
99 0.0 (± 0.0) 310.3 (± 32.2) 96.7 52

100 4.1 (± 2.3) 50.1 (± 6.2) 59.2 75
101 35.0 (± 0.2) 62.0 (± 6.0) 0.0 58
102 9.4 (± 2.5) 230.5 (± 31.5) 80.8 84
103 0.5 (± 0.7) 184.5 (± 21.3) 18.2 74
104 0.9 (± 0.4) 52.1 (± 5.6) 13.4 81
105 1.9 (± 0.6) 66.9 (± 5.9) 26.0 95

31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

number of restarts

50

100

200

300

500

750

1000

1500

2000

n
o
n
-i

m
p
ro

v
in

g
c
o
n
se

c
u
ti

v
e

it
e
ra

ti
o
n
s

3.883.202.572.572.412.402.402.402.402.402.402.382.382.382.281.941.941.941.941.941.931.931.931.931.93

3.212.562.392.392.372.372.372.362.352.352.352.352.282.282.181.841.731.491.491.491.491.491.351.351.35

2.512.152.132.122.122.122.122.122.122.122.122.121.651.451.20 .75 .75 .50 .50 .50 .50 .50 .47 .47 .47

1.681.651.651.651.651.651.651.651.651.651.651.651.651.351.18 .71 .71 .38 .38 .38 .38 .38 .15 .15 .15

1.671.651.651.651.651.651.651.651.651.651.651.651.651.181.18 .71 .71 .25 .25 .25 .25 .25 .00 .00 .00

1.421.401.401.401.401.401.401.401.401.401.401.401.40 .94 .94 .47 .47 .00 .00 .00 .00 .00 .00 .00 .00

1.421.401.401.401.401.401.401.401.401.401.401.401.40 .94 .94 .47 .47 .00 .00 .00 .00 .00 .00 .00 .00

1.421.401.401.401.401.401.401.401.401.401.401.401.40 .94 .94 .47 .47 .00 .00 .00 .00 .00 .00 .00 .00

1.421.401.401.401.401.401.401.401.401.401.401.401.40 .94 .94 .47 .47 .00 .00 .00 .00 .00 .00 .00 .00

instance 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
average relative regret (%)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

number of restarts

50

100

200

300

500

750

1000

1500

2000

n
o
n
-i

m
p
ro

v
in

g
c
o
n
se

c
u
ti

v
e

it
e
ra

ti
o
n
s

10.46.245.115.104.403.833.353.343.343.343.343.343.233.232.742.742.102.102.102.102.102.102.102.102.10

8.393.17 .48 .48 .25 .25 .25 .25 .25 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12

2.52 .81 .05 .00

.17 .05 .05 .00

.05 .05 .05 .00

.05 .05 .05 .00

.05 .05 .05 .00

.05 .05 .05 .00

.05 .05 .05 .00

instance 2

0 2 4 6 8 10
average relative regret (%)

Figure C.13: The relative regret of solutions found using ILS for different restart and termination
criterion values. The relative regret was averaged out over all five attempts. Higher values are worse.
Note the different relative regret scale used for each instance.

32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

number of restarts

50

100

200

300

500

750

1000

1500

2000

n
o
n
-i

m
p
ro

v
in

g
c
o
n
se

c
u
ti

v
e

it
e
ra

ti
o
n
s

7.434.434.354.094.073.393.333.322.642.642.412.072.062.062.062.062.062.062.062.062.052.052.052.052.05

4.562.942.932.181.181.18 .75 .59 .10 .09 .09 .09 .09 .09 .09 .09 .09 .07 .07 .07 .07 .07 .07 .07 .05

3.172.141.19 .64 .42 .42 .07 .07 .07 .06 .06 .06 .06 .06 .06 .04 .04 .04 .04 .04 .03 .03 .03 .03 .03

3.171.76 .75 .23 .22 .22 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02

2.871.47 .75 .02 .02 .02 .02 .02 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01

2.201.47 .74 .02 .02 .02 .01 .01 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

2.191.47 .74 .02 .02 .02 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

2.191.46 .74 .02 .02 .02 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

2.191.46 .74 .02 .02 .02 .01 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

instance 3

0 1 2 3 4 5 6 7
average relative regret (%)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

number of restarts

50

100

200

300

500

750

1000

1500

2000

n
o
n
-i

m
p
ro

v
in

g
c
o
n
se

c
u
ti

v
e

it
e
ra

ti
o
n
s

5.454.973.813.572.182.182.092.012.012.011.931.931.931.06 .88 .43 .29 .29 .29 .29 .29 .29 .29 .29 .29

1.631.27 .80 .72 .72 .72 .57 .57 .57 .57 .57 .57 .40 .31 .18 .18 .17 .17 .17 .17 .17 .17 .17 .17 .17

.97 .30 .30 .16 .16 .16 .07 .05 .04 .04 .04 .04 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02

.35 .12 .12 .06 .04 .04 .03 .03 .02 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.33 .02 .02 .00

.17 .02 .02 .00

.09 .02 .00

.09 .00

.09 .00

instance 4

0 1 2 3 4 5
average relative regret (%)

Figure C.14: The relative regret of solutions found using ILS for different restart and termination
criterion values. The relative regret was averaged out over all five attempts. Higher values are worse.
Note the different relative regret scale used for each instance.

33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

number of restarts

50

100

200

300

500

750

1000

1500

2000

n
o
n
-i

m
p
ro

v
in

g
c
o
n
se

c
u
ti

v
e

it
e
ra

ti
o
n
s

6.874.704.204.063.813.433.433.212.402.402.312.311.361.361.361.321.321.321.321.321.321.32 .91 .91 .91

2.531.361.361.091.081.08 .28 .28 .28 .28 .28 .28 .23 .21 .21 .20 .20 .18 .18 .18 .18 .18 .18 .18 .18

1.23 .21 .21 .21 .16 .16 .10 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .00 .00 .00 .00 .00 .00 .00 .00

.25 .10 .05 .05 .00

.18 .10 .05 .05 .00

.18 .10 .05 .05 .00

.15 .10 .05 .05 .00

.15 .10 .05 .05 .00

.15 .10 .05 .05 .00

instance 5

0 1 2 3 4 5 6
average relative regret (%)

Figure C.15: The relative regret of solutions found using ILS for different restart and termination
criterion values. The relative regret was averaged out over all five attempts. Higher values are worse.

50 100 200 300 500 750 1000 1500 2000

0

20

40

60

ti
m

e
(s

)

instance 2

50 100 200 300 500 750 1000 1500 2000

0

25

50

75

100

instance 3

50 100 200 300 500 750 1000 1500 2000

number of consecutive non-improving
iterations before restart

0

10

20

30

40

ti
m

e
(s

)

instance 4

50 100 200 300 500 750 1000 1500 2000

number of consecutive non-improving
iterations before restart

0

10

20

30

instance 5

Figure C.16: The execution time of one ILS restart on validation instances 2 to 5, for various restart
criteria thresholds. The whiskers denote 5% to 95% of the data.

34

0

2000

4000

6000

8000

re
la

ti
v
e

re
g
re

t
(%

)

uniform-0

weighted-0

uniform-1

weighted-1

uniform-2

weighted-2

uniform-3

weighted-3

uniform-4

weighted-4

0

1000

2000

3000

4000

5000

re
la

ti
v
e

re
g
re

t
(%

)

uniform-0

weighted-0

uniform-1

weighted-1

uniform-2

weighted-2

uniform-3

weighted-3

uniform-4

weighted-4

0

2500

5000

7500

10000

12500

15000

re
la

ti
v
e

re
g
re

t
(%

)

uniform-0

weighted-0

uniform-1

weighted-1

uniform-2

weighted-2

uniform-3

weighted-3

uniform-4

weighted-4

0 1 2 3 4 5

time (s)

0

2000

4000

6000

8000

10000

re
la

ti
v
e

re
g
re

t
(%

)

uniform-0

weighted-0

uniform-1

weighted-1

uniform-2

weighted-2

uniform-3

weighted-3

uniform-4

weighted-4

Figure C.17: Relative regret during the first five seconds of ILS using either the uniform or weighted
neighbor operator, for instances 2 to 5 (top to bottom).

35

References

F. Chen, H. Wang, Y. Xie, and C. Qi. An aco-based online routing method for multiple order pickers
with congestion consideration in warehouse. Journal of Intelligent Manufacturing, 27(2):389–408,
2016.

T.-L. Chen, C.-Y. Cheng, Y.-Y. Chen, and L.-K. Chan. An efficient hybrid algorithm for integrated
order batching, sequencing and routing problem. International Journal of Production Economics,
159:158–167, 2015.

C. Cousins and M. Riondato. Cadet: interpretable parametric conditional density estimation with
decision trees and forests. Mach. Learn., 108(8-9):1613–1634, 2019.

H. Davarzani and A. Norrman. Toward a relevant agenda for warehousing research: literature review
and practitioners’ input. Logistics Research, 8(1):1–18, 2015.

R. De Koster, T. Le-Duc, and K. J. Roodbergen. Design and control of warehouse order picking: A
literature review. European journal of operational research, 182(2):481–501, 2007.

R. B. De Koster, T. Le-Duc, and N. Zaerpour. Determining the number of zones in a pick-and-sort order
picking system. International Journal of Production Research, 50(3):757–771, 2012.

V. Derkinderen, J. Bekker, and P. Smet. Replication Data for: Optimizing Workforce Allocation under
Uncertain Activity Duration, 2023. URL https://doi.org/10.48804/YHMU7R.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A review of
applications, methods and models. European journal of operational research, 153(1):3–27, 2004.

G. S. Fishman. Discrete-event simulation: modeling, programming, and analysis. Springer Science &
Business Media, 2013.

O. Ganbold, K. Kundu, H. Li, and W. Zhang. A simulation-based optimization method for warehouse
worker assignment. Algorithms, 13(12):326, 2020.

S. Henn. Order batching and sequencing for the minimization of the total tardiness in picker-to-part
warehouses. Flexible Services and Manufacturing Journal, 27(1):86–114, 2015.

S. Henn and V. Schmid. Metaheuristics for order batching and sequencing in manual order picking
systems. Computers & Industrial Engineering, 66(2):338–351, 2013.

S. Hong, A. L. Johnson, and B. A. Peters. Batch picking in narrow-aisle order picking systems with
consideration for picker blocking. European Journal of Operational Research, 221(3):557–570, 2012.

A.-L. Ladier, G. Alpan, and B. Penz. Joint employee weekly timetabling and daily rostering: A decision-
support tool for a logistics platform. European Journal of Operational Research, 234(1):278–291, 2014.

H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In Handbook of metaheuristics,
pages 320–353. Springer, 2003.

J. Matthews and S. Visagie. Order sequencing on a unidirectional cyclical picking line. European Journal
of Operational Research, 231(1):79–87, 2013.

J. C.-H. Pan and M.-H. Wu. Throughput analysis for order picking system with multiple pickers and
aisle congestion considerations. Computers & Operations Research, 39(7):1661–1672, 2012.

A. Rijal, M. Bijvank, A. Goel, and R. de Koster. Workforce scheduling with order-picking assignments
in distribution facilities. Transportation Science, 2021.

R. A. Ruben and F. R. Jacobs. Batch construction heuristics and storage assignment strategies for
walk/ride and pick systems. Management Science, 45(4):575–596, 1999.

A. Scholz, S. Henn, M. Stuhlmann, and G. Wäscher. A new mathematical programming formulation for
the single-picker routing problem. European Journal of Operational Research, 253(1):68–84, 2016.

J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester, and L. De Boeck. Personnel scheduling:
A literature review. European journal of operational research, 226(3):367–385, 2013.

T. van Gils, K. Ramaekers, A. Caris, and M. Cools. The use of time series forecasting in zone order
picking systems to predict order pickers’ workload. International Journal of Production Research, 55
(21):6380–6393, 2017.

T. van Gils, K. Ramaekers, A. Caris, and R. B. de Koster. Designing efficient order picking systems
by combining planning problems: State-of-the-art classification and review. European Journal of
Operational Research, 267(1):1–15, 2018.

T. van Gils, A. Caris, K. Ramaekers, and K. Braekers. Formulating and solving the integrated batching,
routing, and picker scheduling problem in a real-life spare parts warehouse. European Journal of
Operational Research, 277(3):814–830, 2019.

I. Van Nieuwenhuyse and R. B. de Koster. Evaluating order throughput time in 2-block warehouses with
time window batching. International Journal of Production Economics, 121(2):654–664, 2009.

M. Yu and R. De Koster. Performance approximation and design of pick-and-pass order picking systems.
IIE Transactions, 40(11):1054–1069, 2008.

36

https://doi.org/10.48804/YHMU7R

J. Zhang, X. Wang, F. T. Chan, and J. Ruan. On-line order batching and sequencing problem with
multiple pickers: A hybrid rule-based algorithm. Applied Mathematical Modelling, 45:271–284, 2017.

37

	Introduction
	Related work
	Workforce level
	Workforce allocation
	Job assignment and scheduling
	Positioning of the paper

	Warehousing context
	Warehouse activities
	Task assignment to employees

	Problem definition
	Solution approach
	Iterated local search
	Simulation-based evaluation
	Task duration distributions

	Computational study
	Data
	Experimental Setup
	Study of Design Decisions and Parameter Tuning
	Task Duration Distribution Learning
	Simulation-Based Evaluation
	Iterated Local Search

	Evaluation of the Proposed Framework
	Ablation study
	Comparison with practice

	Conclusions
	Simulation run time complexity
	Additional instance analysis
	Additional experimental analysis

