
Model Predictive and Decoupled Thrust Allocation for Overactuated
Inland Surface Vessels

Jef Billet1, Paolo Pilozzi1, Peter Slaets1, Robrecht Louw1 and Thibaut Schamp1

Abstract— This work presents and implements a decoupled
Thrust Allocation (TA) algorithm for overactuated inland
surface vessels. The utilised control strategy is Nonlinear
Model Predictive Control (NMPC), which solves an Optimal
Control Problem (OCP) over a control horizon. The controller
optimises for minimum energy consumption, subject to the
desired responsiveness. We describe the established NMPC
formulation as a Nonlinear Programming Problem (NLP)
employing the multiple shooting method. Here we use a variety
of expressions for nonlinear constraints and saturation models
of the propulsion system. Finally, we detail the implementation
of the NLP. The resulting implementation has been evaluated
on computational load and convergence rate, embedded on a
scale model, during on land stationary tests.

I. INTRODUCTION

Towards more sustainable freight transport, one possibility
is to offload road transport to the more sustainable inland
waterway transport. To that end, the development of new
autonomous platforms is an active field of research. KU
Leuven IMP research group currently operates a scale model
of a Conférence Européenne des Ministres de Transport
(CEMT)-I vessel, named the Cogge [1], to contribute to
the automation of inland surface vessels. The Cogge has a
bow and stern thruster that can rotate a full circle, akin to
azimuth thrust, without a rudder [2]. As such, the Cogge
is overactuated [3]. This scale model serves as the test
platform in this paper. Automation of these vessels can, by
making crew unnecessary, render inland surface vessels an
excellent alternative to classic freight transport [4]. In the
motion control of such (inland) surface vessels, determining
the directions and thrust of the available actuators, given
mechanical and other constraints, is needed. This is known
as the Thrust Allocation (TA) problem [5].

TA is a critical element in motion control of autonomous
vessels, which is applied extensively in Dynamic Positioning
(DP) systems [6]. These are present in, for example, offshore
drilling units. TA systems have to take actuator constraints
into account. To this end, controllers can be tuned not
to exceed constraints, or a control method that implicitly
incorporates system constraints, such as NMPC, can be used.

A decoupled TA controller is developed using a Nonlinear
Model Predictive Control (NMPC) strategy. NMPC allows
for using a generic expression of the TA problem without
requiring an expansive tuning process compared to other

1Corresponding author. KU Leuven IMP, Department of
Mechanical Engineering, 3000 Leuven, Belgium. E-mail:
jef.billet@kuleuven.be

types of controllers [7]. The aim is to simplify the problem
of scaling and verification of autonomous systems and
move away from the, in this respect, more demanding
ad-hoc implementations. NMPC controllers have been
used scarcely in implementing TA systems. Examples
are the implementations of Veskler et al. [8], Skjong and
Pedersen [9], and Jayasiri et al. [10]. A difference between
this work and the cited works is the targeted use of the
controller. We intend the TA algorithm for use in inland
shipping, for vessels that are not mainly stationary. This
considerably impacts the types of models and constraints that
are necessary, and hence, included. This work also further
focuses on a decoupled TA strategy, in contrast to Veskler
et al. [8] and Jayasiri et al. [10]. The decoupled TA strategy
can further benefit from the ease of implementation and
verifiability of a high-level controller without knowledge of
the propulsion layout [11]. Therefore, decoupled controllers
cater more to physical implementations and prompter
advances in inland surface vessel autonomy, provided that
performance is adequate. Finally, we use a novel numerical
optimisation tool, specifically CASADI [12], combined with
IPOPT [13], to solve the nonlinear optimal thrust allocation
problem.

The content of this paper is structured as follows: Sec-
tion II introduces general thrust allocation, and associated
propulsion models, after which it outlines the role of TA
in such a vessel and its workings. Subsequently, Section III
discusses the NMPC controller for the TA problem in length,
followed by the controller implementation in Section IV.
Then, Section V presents test results for a thrust allocation
scenario on the scale model. Finally, Section VI concludes
the topics mentioned above and offers possibilities for the
continuation of the presented work on the automation of
inland surface vessels.

II. THRUST ALLOCATION

We only consider the three horizontal Degrees Of Freedom
(DOFs), surge, sway, and yaw, of an inland surface vessel,
assuming an earth-fixed inertial system and a body-fixed ref-
erence frame attached to the vessel in the Centre of Gravity
(CG). The following equation represents the kinematics of
such a surface vessel [5]:

η̇ = R(ψ)ν (1)

Where
η =

[
x y ψ

]⊤
(2)



and
ν =

[
u v r

]⊤
(3)

Their designations are summarised in Fig. I. R(ψ) is a
transformation matrix that projects the vessel velocities in
the local reference frame to the inertial reference frame. We
further refer the reader to Fossen [5] for a more comprehen-
sive elaboration on surface vessel dynamics.

TABLE I: 3-DOF notation for positioning and velocities of
a surface vessel.

Symbol Designation
x Cartesian x-position of the vessel
y Cartesian y-position of the vessel
ψ Cartesian heading of the vessel
η the 3-DOF positioning vector
u Surge velocity of the vessel
v Sway velocity of the vessel
r Yaw rotational velocity of the vessel
ν the 3-DOF velocity vector

A general representation of propulsion-created control
forces and moments, when neglecting inflow velocities, is
given by Fossen [14]:

τd = T(α)f(n) (4)

where
τd =

[
X Y Z

]⊤
(5)

Here, X , Y and Z are the desired surge and sway forces, and
the yaw moment, respectively. This vector is to be brought
about by the use of available actuators. A TA algorithm is
responsible for converting the desired force vector τd to
thruster-specific outputs or commands F and α. α denotes
the angle of a given thruster, whereas F is the force output.
Afterwards, thrust mapping has to convert F further RPM
commands n, so the complete control outputs u(F, α) are
found. Fig. 1 presents such a control scheme. The high-
level controller acquires feedback from the system or surface
vessel, with regard to the states η or ν, within the loop.
The TA does not receive any feedback, and is a standalone
open-loop controller. Finally, the outputs F of the thrust
allocation need to be mapped to corresponding RPMs first.
T(α) ∈ R3xM represents the thruster configuration for an
arbitrary amount of thrusters M in 3 DOF. T(α) is the
control effectivity matrix in a TA context. f(n) ∈ RM

contains the thrust magnitudes per thruster. Here holds that

T(α) =
[
t1, ..., tM

]
(6)

Fig. 1. Block diagram representing the location of TA in a decoupled
surface vessel motion controller.

In (6), the columns are defined by

ti(αi) =

 cos(αi)
sin(αi)

lxisin(αi)− lyicos(αi)

 for i = 1, ...,M (7)

where lxi
and lyi

are the moment arms for every thruster
i with respect to the CG. Equation (4) as an expression for
the created control forces is used a lot in DP systems [6].
Dynamically positioned marine vessels commonly use a
combination of azimuth and tunnel thrusters, which are used
to maintain a fixed position. The CEMT-type scale model
Cogge, on the other hand, has more atypical propulsion in
this context [1]. Neglecting the dependency on inflow veloc-
ities and thrust angles will result in poor thrust allocation.
Therefore, for usage in the NMPC-controller, the following
model dependencies can increase performance.

τd = T(α)F(n,α,ν) (8)

Here F remains dependent on the orientation angles, inflow
velocities, and propeller speeds. Note that, the TA algorithm
requires correct constraints and models in order to decide the
control outputs F (n)1 and α for a thruster i. Consequently,
it is required to consider a model for every maximum Fi that
depends on ν and αi. This is further elaborated in Section II-
A.

A. Thruster Saturation Model and Proposed TA Layout

Thrust saturation for applications considered in this paper
should not be represented as a linear constraint such as used
by Veskler et al. [8]. Thrust saturation varies for each thruster
across multiple variables, including αi, ni, and the states ν
of the ship, which other implementations neglect [8][15].
Increasing the fidelity of thrust models will also improve
MPC-based TA further [15]. We first define

Vi =
√
(u+ lyir)

2 + (v + lxir)
2 (9)

Vi, which is the velocity over ground of thruster i, according
to the body-fixed reference frame. Equation (10)

βi = arctan
v + lxi

r

u+ lyi
r

(10)

represents the course over ground of a thruster i. Then,
(11) can model the nonlinear behaviour of the thrusters, and
adheres to the mentioned dependencies [3] .

F = [Td(α)Tnn + cos(α− β)TnnV V ] · n2 (11)

Td(α) represents the static thrust reduction at a given
angle α. Tnn is the quadratic relation between thrust
output and the propeller speed n. Finally, TnnV models
the thrust reduction due to wake factors, which depends
quadratically on n and linearly on V . All variables in
(11) also depend on i, which was omitted for brevity. We
can use this model to achieve more correctly allocated thrust.

1Throughout this work, F is always dependent on n, but we will bypass
this notation for conciseness.



Fig. 2. Block diagram representing TA with the proposed feedback.

Note that, as presented in the motion controller structure in
Fig. 1, the TA algorithm has no knowledge of the states ν of
the vessel, nor does the high-level controller know the current
saturation limits on the desired thrust τd. A well known
disadvantage of decoupled TA is the persisting mismatch
between the developed thrust and the desired thrust τd [15].
This is an issue directly linked to the decoupled strategy. In
order to mitigate this, introducing additional feedback to and
from the TA is possible, as Fig. 2 illustrates. In this control
structure, the high-level controller receives feedback from the
TA, denoted as τa, the available or feedback thrust vector.
The TA can create this feedback, given its knowledge of the
current thruster saturation. The thrust saturation is, in turn,
dependent on the new feedback to the TA, which includes all
the system states ν. The effect of τa lies outside the scope of
this work, however, the influence of the feedback of ν to the
TA is part of the implementation and experimental results in
Sections IV and V. The motion controller structure discussed
here will serve as a guide throughout the next chapter.

III. NMPC FORMULATION

We define S ∈ R(3+2M) as the states of the controller with

S =
[
X, Y, Z, F1, ..., FM , α1, ..., αM

]⊤
(12)

where Fi and αi are the thrust and thrust angle respectively
of a thruster i. C ∈ R(2M) is the control input vector. Note
that the only directly controlled2 states are X , Y , and Z.

C =
[
ϕ1, ..., ϕM , ω1, ..., ωM

]⊤
(13)

Here ϕi is the thrust rate and ωi the angle rate for thruster
i. Because the thrusters can rotate this problem is non-
convex [14] and numerically hard. NMPC controllers are
typically implemented discretely due to the computational
complexity. As such, we define the horizon N , based on the
sampling time, as follows

N =
ttot
tstep

(14)

ttot signifies the total horizon time frame, tstep the time step
per MPC iteration. Now

k = 1, ..., N (15)

is the discrete time in the horizon. Before the MPC formula-
tion can be provided, some further definitions of the states,
constraints, and objective function are required.

2The only states that are regarded as relevant inputs in the TA algorithm.

A. States and Inputs

As seen in (12), both the thrust vector components and
the thrust inputs are states in the system. When considering
an M number of thrusters, the global thrust vector, is found
as follows at discrete step k cfr. Skjong and Pedersen [9]:

X(k) =

M∑
i=1

Fi(k)cos(αi(k))

Y (k) =

M∑
i=1

Fi(k)sin(αi(k))

Z(k) =

M∑
i=1

[Fi(k)cos(αi(k))lyi − Fisin(αi(k))lxi ]

(16)

As presented, the created thrust vector only depends on the
other states in the states vector S. The remaining states are
purely dependent on the controls C. Consequently, we define
the following discrete-time relationship:

F1(k + 1)
...

FM (k + 1)
α1(k + 1)

...
αM (k + 1)


=



F1(k) + ϕ1(k) · tstep
...

FM (k) + ϕM (k) · tstep
α1(k) + ω1(k) · tstep

...
αM (k) + ωM (k) · tstep

 (17)

Now, a numerical method is required to convert the above
Differential-Algebraic system of Equations (DAE) into con-
straints for an NLP.

B. Direct Multiple Shooting and Equality Constraints

Direct multiple shooting is a method for transcribing an
Optimal Control Problem (OCP) to an NLP where both the
states and the controls are considered decision parameters
in the NLP. This method is often considered superior to
other methods, such as direct single shooting, where only
the controls are decision parameters [16]. Because both
the states and the controls are decision parameters, the
boundary nonlinearity does not propagate throughout the
horizon. Instead, at every iteration in the horizon a new Initial
Value Problem (IVP) is solved. In order to build the NLP
with multiple shooting, we implement the following equality
constraints:

Fi(k + 1)− h(Fi(k), ϕi(k), tstep) = 0 (18)

and
αi(k + 1)− h(αi(k), ωi(k), tstep) = 0 (19)

These are necessary in order to constrain the freedom of
choice the solver has in choosing the states at each discrete
k. Equations (18) and (19) use a fourth-order Runge-Kutta
method as the DAE solver h. X , Y , and Z are also states
and have to be constrained as well. Referring to (16), we use



the following constraints:

Xc(k)−
M∑
i=1

Fi(k)cos(αi(k)) = 0

Yc(k)−
M∑
i=1

Fi(k)sin(αi(k)) = 0

Zc(k)−
M∑
i=1

[Fi(k)cos(αi(k))lyi

−Fi(k)sin(αi(k))lxi ] = 0

(20)

At every discrete time in the horizon, the NLP solver
will not be able to deviate from the above reliance. Also
adding initial state conditions, leads to a final combination
of equality constraints:

gi(k) = 0 (21)

where

gi(k) =



Xc(k)−
∑M

i=1 Fi(k)cos(αi(k))

Yc(k)− [
∑M

i=1 Fi(k)sin(αi(k))]

Zc(k)−
∑M

i=1[Fi(k)cos(αi(k))lyi−
Fi(k)sin(αi(k))lxi ]

Fi(k + 1)− h(Fi(k), ϕi(k), tstep)

αi(k + 1)− h(αi(k), ωi(k), tstep)

Fi(1)− Fi1

αi(1)− αi1



(22)

C. Thruster Saturation and Inequality Constraints

Section II-A presented a model for thrust saturation,
which, to implement into the NLP, should be restated as
an (in)equality constraint, similar to Veskler [17]. In this
case, however, the constraint is not linear and depends on
both the vessel and the propulsion states. We also know that
the current and estimated values for n are not a part of the
decision-making in the TA. In order to enable the allocation
of only thrust that is feasible, based only on the available
states, as defined in (12), the model has to be restated as an
inequality constraint such as

F (k) ≤ [Td(α(k))Tnn

+cos[α(k)− β(k)]TnnV V (k)] · n2max

(23)

where nmax is the maximum available RPM and thus
constant. Note that all the variables in (23) are thruster-
specific. This constraint will force the MPC controller to
never allocate a thrust higher than the model-based available
thrust at the maximum RPM, throughout the horizon. It is
softer than an equality constraint, yet has the same result. It

guarantees that the mapping step as presented in Fig. 2 will
find a corresponding RPM. For clarity we define

γi(k) ≤ 0 (24)

where
γi(k) = Fi(k)− [Tdi

αi(k)Tnni

+cos[αi(k)− βi(k)]TnnVi
Vi(k)] · nmaxi

(k)2
(25)

D. Rate Constraints

As we chose the control rates as inputs, rate constraints are
now arbitrary to implement, the offside being that problem
becomes numerically harder to solve [18]. There are other
methods available [19] which, while favourable in terms of
computational efficiency, are more cumbersome to imple-
ment. In a generalised form, the rate constraints for every
thruster i, are given by:

Cj,1 ≤ Cj,1(k) ≤ Cj,1 ∀j ∈ [1, ..., 2M ] (26)

E. Cost Function

Finally, the cost function is derived from the one proposed
by Johansen et al. [20]:

J(C,S,Sr, k) (27)

=

N∑
k=1

[

M∑
i=1

Wi(Fi(k))
2] (27a)

+

N∑
k=1

[S(k)− Sr(k)]
TQ[S(k)− Sr(k)] (27b)

+

N∑
k=1

ω(k)TΩω(k) (27c)

+

N∑
k=1

[

M∑
i=1

ρ

ϵ+ det[T(αi(k))Z−1TT (αi(k))]
] (27d)

Equation (27a) is a cost on thruster-specific power
consumption, with Wi ∈ R+ being weights, and Fi(k)
the thruster-specific force. Fi(k) is squared, unlike in the
original cost function [20], to reduce nonlinearity.

The second term, in (27b), is a quadratic cost function
representing the main objective. The objective is to minimise
the difference between the reference and current states.
Here, k is the sampling number as defined in (17), S is
the states vector and Q ∈ R(3+2M)×(3+2M) is a diagonal
weights matrix, which specifies the cost weight of each
respective state. The subscript r denotes the reference states.
Note that there is no reference for the states F and α.
Although these are considered states3 in the system, they are
not to be minimised compared to a reference state. Hence,
weights the matrix Q only has weights Q1, Q2 and Q3 on
the first three diagonal elements, for thrust components X ,
Y , and Z respectively. The other diagonals remain zero.

Equation (27c) presents a cost on the rotation of thrusters.
Here, ω contains the angular velocity control inputs and

3They are part of S.



Ω ∈ R(M)×(M) is another diagonal weight matrix in
which the values serve to tune the rotational behaviour of
individual thrusters.

A final term, (27d), serves to avoid solver singularity. Sin-
gularities occur when the layout matrix T(α) does not have
a full rank. In this case, because the system is over-actuated,
the matrix is full rank. However, for some combinations of
αi, singularities can still ensue [20]. In order to mitigate
singularities in the solution we built, the singularity avoiding
part of the cost function is kept. Section III-F outlines the
complete MPC formulation.

F. Complete NMPC Formulation

Combining the states, control parameters, constraints, and
cost function defined in all the previous Sections, we can
present one general NMPC problem.

min
C

J(C,S,Sr, k)

s.t. ∀i ∈ [1, ...,M ], ∀k ∈ [1, ..., N ]

and ∀j ∈ [1,..., 2M ]

gi(k) = 0

γi(k) ≤ 0

Cj,1 ≤ Cj,1(k) ≤ Cj,1

(28)

IV. NMPC IMPLEMENTATION AND EXPERIMENT
SETUP

This work employs CASADI [12] in PYTHON to
implement the NMPC controller, shown in (28), using the
IPOPT [13] solver. CASADI provides a symbolic abstraction
layer, and access to multiple third-party solvers. It utilises
complete symbolic NLP expressions and substitutes the
symbolics for proper values at each controller iteration of
the MPC, hence increasing readability and adaptibility of the
implementation. No direct interactions with the underlying
solvers are required, beyond specifying a number of options.

The Cogge [1] serves as the test platform. It has an
onboard MC-7200-MP-T Series maritime computer with
an Intel Core i7-3555LE CPU @ 2.50GHz on which
the NMPC controller was implemented in PYTHON. The
actuator models and constraints were implemented in the
controller as described in Sections II-A and III. Fig. II
presents the relevant parameters for the thruster models of
the Cogge. Note that, the thrust deductions as shown in
(11), are not constant nor linear over α [3], for both the

TABLE II: Thruster model parameters for the Cogge.
Parameter Bow thruster Stern thruster

nmax 2600 RPM 1700 RPM
Tnn 7.906 · 10−6 6.52 · 10−5

TnnV −3.40 · 10−6 −2.46 · 10−5

lx 2.61 m -0.63 m
ly 0 m 0 m

ϕmax 2.055 N/s 4.34 N/s
ωmax 0.698 rad/s 0.419 rad/s

bow and stern thruster of the Cogge. As such, we modelled
Td(α)1, and Td(α)2 using trigonometric Fourier series
approximations with a period of 2π radians. The tuning
of the weights was chosen for optimal reference tracking,
rather than energy consumption, see Fig. III.

To evaluate the controller, we performed a semi-virtual
pure sway propulsion manoeuvre during an on land station-
ary run. The sampling time tstep of the controller was set to
be one second, with a horizon N of 30. During the test we
requested the required force vector, (29), which, on the basis
of the models of the Cogge, would effect a 0.2 meters per
second of sway velocity without any accompanying surge or
yaw.

τd =
[
0N −20.96N −20.04Nm

]⊤
(29)

The initial states are

S0 =
[
0, 0, 0, 0, 0, 0, 0

]⊤
(30)

In this manner, we evaluate the effects of the implemented
models and constraints on the mechanical system as well as
embedded computational performance and stability of the de-
coupled system. The combined motion control performance
with an external high-level motion controller is beyond the
scope of this work. Section V details the results of the semi-
virtual pure sway manoeuvre.

V. EXPERIMENTAL RESULTS

Fig. 3. TA using NMPC control. (a) Rpm and time plot of mechanical
propeller speeds of bow and stern thrusters during the NMPC controlled
pure sway TA manoeuvre. (b) Angle and time plot of the angles of bow
and stern thrusters during the NMPC controlled pure sway TA manoeuvre.

The model-based values for the thrust components on the
surface vessel contain substantial fluctuation because of a
combination of the nonlinear propulsion models and sensor
noise. A rolling average is included to present a basic

TABLE III: Weight values for the NMPC controller
Reference Thrusters Singularity
Q1 10000 Ω1 1 ρ 0.001
Q2 1000 W1 50 ϵ 100
Q3 10000 Ω1 1

W2 50



Fig. 4. Model based thrust component feedback to the NMPC controller,
with a simple moving average estimation.

estimation for the real progress of the thrust components.
Despite the fluctuations, the NMPC controller converges to
a stable solution. One can observe that, in Fig. 3 the initial
propeller acceleration is high but slows down, as the angles
of the thrusters change more slowly. Fig. 4 shows that the
initial Y and Z thrust components decrease, yet as the surge
deviates from zero, is slowed down to compensate. Once
the thrusters are rotated to the optimal angle, steady state is
achieved.

The computational load averaged on 12% single core
usage, with an average iteration time of 0.015 seconds, which
is well below real-time.

VI. CONCLUSION

This paper presents and implements a decoupled NMPC
TA algorithm for overactuated inland surface vessels, which
considers thrust saturation and rate constraints, and min-
imises energy consumption, subject to responsiveness. The
NMPC implementation employs CasADi with the nonlinear
solver IPOPT. The nonlinear cost function and constraints
are transcribed to an NLP using a multiple-shooting method.
The result is an implementation suitable for real-time use
on hardware found in surface vessels. Tests were performed
on a scale model of a CEMT-I ship to evaluate convergence
and computational load in an embedded environment. The
experiments achieve real-time performance, allocating thrust
correctly, and considering propulsion system models and
constraints. Future work includes combining high and low
control levels and evaluating the effect of the proposed
feedback forms on the overall motion control performance.

REFERENCES

[1] G. Peeters, M. Kotzé, M. R. Afzal, T. Catoor, S. V. Baelen, P. Geenen,
M. Vanierschot, R. Boonen, and P. Slaets, “An unmanned inland cargo
vessel: Design, build, and experiments,” Ocean Engineering, vol. 201,
p. 107056, 4 2020.

[2] G. Peeters, T. Catoor, M. R. Afzal, M. Kotze, P. Geenen, S. V. Baelen,
M. Vanierschot, R. Boonen, and P. Slaets, “Design and build of a
scale model unmanned inland cargo vessel: Actuation and control
architecture,” vol. 1357. Institute of Physics Publishing, 11 2019.

[3] G. Peeters, M. R. Afzal, M. Vanierschot, R. Boonen, and P. Slaets,
“Model structures and identification for fully embedded thrusters: 360-
degrees-steerable steering-grid and four-channel thrusters,” Journal of
Marine Science and Engineering, vol. 8, 3 2020.

[4] O. A. Enezy, E. v. Hassel, C. Sys, and T. Vanelslander, “Developing
a cost calculation model for inland navigation,” Research in
Transportation Business & Management, vol. 23, pp. 64–74, 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2210539516300992

[5] T. I. Fossen, Marine control systems : guidance, navigation and control
of ships, rigs and underwater vehicles. Marine Cybernetics, 2002.

[6] A. J. Sørensen, “A survey of dynamic positioning control systems,”
Annual Reviews in Control, vol. 35, no. 1, pp. 123–136, 2011.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1367578811000095

[7] J. Dentler, “Real-time model predictive control of cooperative aerial
manipulation,” 10 2018.

[8] A. Veksler, T. Johansen, F. Borrelli, and B. Realfsen, “Dynamic
positioning with model predictive control,” IEEE Transactions on
Control Systems Technology, vol. 24, pp. 1–14, 01 2016.

[9] S. Skjong and E. Pedersen, “Nonangular mpc-based thrust allocation
algorithm for marine vessels - a study of optimal thruster commands,”
IEEE Transactions on Transportation Electrification, vol. 3, pp. 792–
807, 9 2017.

[10] A. Jayasiri, A. Nandan, S. Imtiaz, D. Spencer, S. Islam, and S. Ahmed,
“Dynamic positioning of vessels using a ukf-based observer and an
nmpc-based controller,” IEEE Transactions on Automation Science
and Engineering, vol. 14, pp. 1778–1785, 10 2017.

[11] T. A. Johansen and T. I. Fossen, “Control allocation—a survey,”
Automatica, vol. 49, pp. 1087–1103, 5 2013.

[12] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, pp. 1–36,
3 2019.

[13] A. Wächter and L. T. Biegler, “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming,” Mathematical Programming 2005 106:1, vol. 106, pp.
25–57, 4 2005. [Online]. Available: https://link.springer.com/article/
10.1007/s10107-004-0559-y

[14] T. I. Fossen, “A survey of control allocation methods for ships and
underwater vehicles,” in 2006 14th Mediterranean Conference on
Control and Automation. Institute of Electrical and Electronics
Engineers (IEEE), 12 2006, pp. 1–6.

[15] A. Bärlund, J. Linder, H. Feyzmahdavian, M. Lundh, and K. Tervo,
“Nonlinear mpc for combined motion control and thrust allocation of
ships,” IFAC-PapersOnLine, vol. 53, pp. 14 698–14 703, 1 2020.

[16] C. Kirches, “The direct multiple shooting method for optimal
control,” Fast Numerical Methods for Mixed-Integer Nonlinear
Model-Predictive Control, pp. 13–29, 2011. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-8348-8202-8 2

[17] A. Veksler, T. A. Johansen, F. Borrelli, and B. Realfsen, “Cartesian
thrust allocation algorithm with variable direction thrusters, turn rate
limits and singularity avoidance,” 2014 IEEE Conference on Control
Applications, CCA. Part of 2014 IEEE Multi-conference on Systems
and Control, MSC 2014, pp. 917–922, 12 2014.

[18] J. T. Betts, “Practical methods for optimal control and estimation using
nonlinear programming,” Practical Methods for Optimal Control and
Estimation Using Nonlinear Programming, 1 2010.

[19] Y. Nie and E. C. Kerrigan, “How should rate constraints be imple-
mented in nonlinear optimal control solvers?” IFAC-PapersOnLine,
vol. 51, pp. 362–367, 1 2018.

[20] T. A. Johansen, T. I. Fossen, and S. P. Berge, “Constrained nonlinear
control allocation with singularity avoidance using sequential quadratic
programming,” IEEE Transactions on Control Systems Technology,
vol. 12, 2004.

https://www.sciencedirect.com/science/article/pii/S2210539516300992
https://www.sciencedirect.com/science/article/pii/S2210539516300992
https://www.sciencedirect.com/science/article/pii/S1367578811000095
https://www.sciencedirect.com/science/article/pii/S1367578811000095
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://link.springer.com/chapter/10.1007/978-3-8348-8202-8_2

	INTRODUCTION
	THRUST ALLOCATION
	Thruster Saturation Model and Proposed TA Layout

	NMPC FORMULATION
	States and Inputs
	Direct Multiple Shooting and Equality Constraints
	Thruster Saturation and Inequality Constraints
	Rate Constraints
	Cost Function
	Complete NMPC Formulation

	NMPC IMPLEMENTATION AND EXPERIMENT SETUP
	EXPERIMENTAL RESULTS
	CONCLUSION
	References

