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ABSTRACT
In this paper we consider fast time-domain convolution, ex-
ploiting low-rank properties of an impulse response (IR). This
reduces the computational complexity, speeding up the con-
volution, without introducing latency. Previous work has con-
sidered a truncated singular value decomposition (SVD) of a
two-dimensional matricization, or reshaping, of the IR. We
here build upon this idea, by providing an algorithm for con-
volution with a three-dimensional tensorization of the IR. We
provide simulations using real-life acoustic room impulse re-
sponses (RIRs) of various lengths, convolving them with mu-
sic, as well as speech signals. The proposed algorithm is
shown to outperform the comparable existing algorithm in
terms of signal quality degradation, for all considered scenar-
ios, without increasing the computational complexity, or the
memory usage.

Index Terms— Low-rank modeling, convolution, tensor
decomposition

1. INTRODUCTION

Ever since the seminal works by Cooley and Tukey, [1], and
Stokham, [2], a popular approach to efficiently compute the
convolution of two time-domain signals has been to per-
form it in the discrete frequency domain. The convolution
theorem states that convolution in the time-domain equals
point-wise multiplication in the frequency domain, allowing
for considerable reduction of the computational complexity in
most cases, owing to the computational efficiency of the fast
Fourier transform (FFT) algorithm. The frequency-domain
convolution has been further improved by methods such as
overlap-add (OLA) and overlap-save (OLS), and partitioned
convolution (see e.g. [3]). Frequency-domain convolution is,
however, block-based and inevitably introduces input-output
latency [4]. Perceptual convolution, introduced by Lee et
al. in [5], is another possible way to speed up the convolu-
tion. Here, a perceptual criterion is used in order to reduce
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the computational complexity, without considerable signal
quality degradation. Yet another approach to accelerate com-
putations is optimizing the implementation with respect to
the processor architecture, and the use of graphics processing
units (see e.g. [6] and the references therein).

In this paper we look to exploit the (approximate) low-
rank structure of an impulse response (IR) in order to carry
out fast time-domain convolution. Low-rank modeling is used
in a variety of applications, such as image analysis [7], ma-
trix completion [8], and recently also acoustic signal process-
ing [9, 10, 11], and has been shown to yield possibly more
compact models. Utilizing low rank in time-domain convo-
lution has been considered before by Atkins et al. in [4].
Therein, the authors consider a low-rank approximation of
a two-dimensional matricization of the IR. In this work, we
extend upon this idea and show how the concept of low-rank
convolution can be generalized, and we provide a detailed al-
gorithm for the three-dimensional case. This is motivated by
the findings in [10], where it was shown that higher-order ten-
sorization yields a lower IR approximation error, given a fixed
compression rate. By performing the convolution in the time
domain, low latency can be achieved. In [4], to further pro-
mote a compact representation of the IR, the resulting finite
impulse response (FIR) filter is approximated by an infinite
impulse response (IIR) filter. Herein, the proposed method is
concerned with exploiting low-rank structure of IRs on FIR
form, with possible extensions of the IIR methodology being
a topic of future research. Accordingly, as to allow for a fair
comparison between the algorithm in [4] and the herein pro-
posed method, the IIR approximation is not considered in the
numerical section.

This paper is organized as follows: first Section 1 is con-
cluded with an introduction of the notation used in this paper.
Then, in Section 2, we introduce the signal model. Low-rank
convolution is explained in Section 3, where we first give an
account of the algorithm from [4], then introduce the pro-
posed algorithm, and lastly expand on its complexity. Sim-
ulation results are presented in Section 4, and in Section 5 we
present our conclusions.



1.1. Notation

We denote scalars, vectors, matrices, and tensors by lower
case (e.g., h), bold lowercase (e.g., h), bold uppercase (e.g.,
H), and calligraphic letters (e.g., H), respectively. Linear
operators are also denoted by calligraphic letters, but it will
be clear from context what is considered. The selection of
one or several elements from a vector, matrix, or tensor will
be denoted by square brackets, e.g. H[m : n, j] is a vec-
tor containing the mth till the nth element of the jth col-
umn of H. The symbol ◦ denotes the outer product, i.e.,
(x1◦x2◦· · ·◦xD)[j1, j2, . . . , jD] = x1[j1]x2[j2] . . .xD[jD].

2. SIGNAL MODEL

In this work we consider a discrete-time impulse response
(IR) h(k), for k = 0, 1, . . . , nh − 1, arranged in the vector
h ∈ Rnh , as well as a discrete-time signal x(k), for k =
1, 2, . . . , nx, arranged in the vector x ∈ Rnx . The convolu-
tion of these vectors yields the discrete-time output

y(k) =

nh−1∑
n=0

h(n)x(k − n), (1)

for k = 1, 2, . . . , ny , with corresponding vector y ∈ Rny ,
where ny = nh + nx − 1. Generally, throughout this paper,
an element is considered to be 0, if the index is out of its
defined range, equivalent to appropriate zero-padding.

Many signals can be considered low-rank, in the sense
that if the signal vector is reshaped into a matrix, the ma-
trix will have low rank (see e.g., [12]). This persists for
higher-order tensorization, where the rank of a tensor H ∈
Rns1

×ns2
×···×nsD , with nsd denoting the size of the dth di-

mension, d = 1, 2, . . . , D, is defined as the smallest number
of rank-1 tensors needed to generate the tensor as their sum.
As IRs used in real-world applications are often estimated
from noisy measurements, a recorded (estimated) IR will
rarely be low-rank in a strict sense. Therefore, in this paper,
low-rank is used in a less strict sense, i.e., a low-rank approx-
imation will render a small approximation error. An example
of this are acoustic room impulse responses (RIRs), which
we have explored in previous work [10].

3. LOW-RANK CONVOLUTION ALGORITHM

3.1. Partitioned Truncated SVD Filter

As to give background to the herein proposed method for fast
convolution, we first give a brief description of the method
in [4]. Assuming nh = ns1ns2 , for ns1 , ns2 ∈ N, an output
sample y(k) of the convolution in (1) can instead be written
as

y(k) =

ns2∑
j=1

x
(j)T

k h(j), (2)

where h(j) ,
[
h((j − 1)ns1) . . . h(jns1 − 1)

]
and

x
(j)
k ,

[
x(k − (j − 1)ns1) . . . x(k − jns1 + 1)

]
, for

j = 1, 2, . . . , ns2 . This is merely a rearrangement, as in (1),
y(k) is written as an inner product computed from vectors of
length nh = ns1ns2 , whereas in (2), it is written as the sum
of ns2 inner products, where the corresponding vectors are of
length ns1 . Furthermore, the IR h can be reshaped into a ma-
trix H =

[
h(1) . . . h(ns2

)
]
∈ Rns1

×ns2 . Assuming that
this matrix is rank-1, i.e., it can be written as the outer product
H = s1 ◦ s2, for two vectors s1 ∈ Rns1 and s2 ∈ Rns2 , we
have that

H =
[
s1s2[1] s1s2[2] . . . s1s2[ns2 ]

]
, (3)

i.e., the jth column of H, corresponding to h(j), is the vector
s1 scaled by s2[j], j = 1, 2, . . . , ns2 . The following property
is readily verified,

x
(j)
k = x

(j+a)
k+ans1

, a ∈ Z. (4)

Because of (3) and (4), only the first inner product of the sum
in (2) has to be computed per output sample k, as

y(k) =
(
x
(1)T

k s1

)
s2[1] +

ns2∑
j=2

(
x
(j)T

k s1

)
s2[j]. (5)

The other inner products of the sum, i.e., x
(j)T

k s1, for
j = 2, . . . , ns2 , have already been computed for a previous
time sample, and can therefore be fetched from memory and
multiplied with the appropriate entry from s2. This reduces
the number of multiplications per sample to be carried out,
from nh =ns1ns2 to ns1+ ns2 . These ideas can be extended
to a matrix H of arbitrary rank R. Instead of H being just
the outer product of two vectors, it is now a sum of R outer
products,

H = S1S
T
2 =

R∑
r=1

S1[:, r] ◦ S2[:, r] =

R∑
r=1

S1[:, r]S2[:, r]T ,

(6)
for S1 ∈ Rns1×R, and S2 ∈ Rns2×R. We have a similar
pattern as in (3) in that

h(j) = H[:, j] =

R∑
r=1

S1[:, r]S2[j, r], (7)

which enables us to extend (5) to

y(k)=

R∑
r=1

x(1)T

k S1[:, r]S2[1, r]+

ns2∑
j=2

x
(j)T

k S1[:, r]S2[j, r]

,
(8)

where only R inner products have to be computed for each
time sample. Similar to (5), this reduces the number of mul-
tiplications to R(ns1 + ns2).



3.2. Fast Convolution by Tensor Approximation

Next, we show how the ideas from [4] can extended, and pro-
pose a detailed algorithm for the three-dimensional case.. Let
the IR h be reshaped into a tensor H ∈ Rns1

×ns2
×···×nsD ,

and assume thatH is of rank R. Then, analogously to (6),

H =

R∑
r=1

S1[:, r] ◦ S2[:, r] ◦ · · · ◦ SD[:, r], (9)

where Sd ∈ Rnsd
×R, d = 1, 2, . . . , D, and in analog to (7)

we have that

H[:, j2, j3, . . . , jD] =

R∑
r=1

S1[:, r]S2[j2, r] . . .SD[jD, r].

(10)
The equality of (4) can be generalized according to

x
(j2,j3,...,jD)
k = x

(j2+a2,j3+a3,...,jD+aD)

k+
∑D

m=2 am
∏m−1

d=1 nsd

, (11)

where x
(j2,j3,...,jD)
k ∈ Rns1 is a vector containing the ns1

latest samples of x, in reversed order, starting at x(k −∑D
m=2(jm − 1)

∏m−1
d=1 nsd)), and a2, a3, . . . , aD ∈ Z. The

pattern from (2) extends to

y(k) =

ns2∑
j2=1

· · ·
nsD∑
jD=1

x
(j2,j3,...,jD)T

k h(j2,j3,...,jD), (12)

where h(j2,j3,...,jD) = H[:, j2, j3, . . . , jD] is a vector contain-
ing ns1 consecutive elements of h, starting at h(

∑D
m=2(jm−

1)
∏m−1

d=1 nsd). Subsequently, the property of (8) is general-
ized to

y(k)=

R∑
r=1

ns2∑
j2=1

. . .

nsD∑
jD=1

x
(j2,...,jD)T

k S1[:, r]S2[j2, r]. . .SD[jD, r].

(13)
Here, it may be noted that only R inner products of length
ns1 have to be computed for each k, reducing the number
of multiplications to R

∑D
d=1 nsd . However, if naively im-

plemented, the sum in (13) will yield many superfluous op-
erations, computing inner products where one of the vectors
contains only zeroes. In order to fully exploit the IR structure
and to maximize efficiency, it is therefore important to keep
track of which operations actually need to be carried out. We
here propose an explicit algorithm for the case D = 3.

Let H =
∑R

r=1 S1[:, r] ◦ S2[:, r] ◦ S3[:, r], where H ∈
Rns1

×ns2
×ns3 and Sd ∈ Rnsd

×R, for d = 1, 2, 3. The opera-
tor I : Rn → Rn denotes the reversion of the order of the ele-
ments in a vector, i.e., I(x) =

[
x(nx) x(nx − 1) . . . x(1)

]T
,

and 0n ∈ Rn is a vector of zeros. We introduce the matrix
C ∈ Rnh×R to store the already computed inner products.
The rationale of the algorithm is to, for each k, first com-
pute the R necessary inner products, with appropriate zero-
padding, store to memory, and add to y(k) with appropri-
ate scaling with corresponding element from H. Next, the

Algorithm 1: Fast Low-latency Convolution by
Low-rank 3-D Tensor Approximation

Input: H =
∑R

r=1 S1[:, r] ◦ S2[:, r] ◦ S3[:, r], x
Output: y
for k = 1, 2, . . . , ny do

for r = 1, 2, . . . , R do
if k ≤ ns1 + nx − 1 then

zb = max(k − nx, 0);
za = max(ns1 − k, 0);
xb = max(k − ns1 + 1, 1);
xe = min(k, nx);

xk =
[
0T
zb
I(x[xb : xe])

T 0T
za

]T
;

C[mod(k − 1, nh) + 1, r] = xT
k S1[:, r];

y(k)=S2[1,r]S3[1,r]C[mod(k−1,nh)+1,r];

l = max (b(k − nx)/ns1c+ 1, 2) ;
u = min (b(k − 1)/ns1c+ 1, ns2ns3) ;
for c = l : 1 : u do

j2 = mod(c− 1, ns2) + 1;
j3 = b(c− 1)/ns2c+ 1;
c̃ = k−((j2−1)ns1 +(j3−1)ns1ns2)−1;
y(k) = y(k) +
S2[j2, r]S3[j3, r]C[mod(c̃, nh) + 1, r];

remaining non-zero inner products of the sum of (13) are
fetched from memory, scaled with the corresponding entry of
H and added to y(k). The proposed algorithm is summarized
in Algorithm 1.

3.3. Complexity

As noted by the authors of [4], an output sample y(k) re-
quires R(ns1 + ns2) multiply-add instructions in the two-
dimensional case, whereas a conventional time-domain FIR
filter requires nh operations, where we remind the reader that
nh =

∏D
d=1 nsd . The computational complexity for a gen-

eral, D-dimensional tensorization, is R
∑D

d=1 nsd , meaning
that the computational complexity of the proposed algorithm
generalizes the one of [4]. Furthermore, the contribution to
the end result from the different entries in the sums of (13)
are independent from each other. It is therefore possible to
parallelize the computations.

The two-dimensional algorithm from [4] requires a mem-
ory of size R(ns1 + ns2 + nh) + ns1 variables, compared to
2nh for a conventional FIR filter. For the proposed method, a
memory of size R(

∑D
d=1 nsd +nh)+ns1 is required, i.e., the

memory complexity of the proposed algorithm directly gen-
eralizes the one of [4].
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Fig. 1. Normalized output mean-squared error, as a function
of compression rate, for speech signals and short RIRs: mean
(top) and standard deviation (bottom).

4. RESULTS

We denote by Υ(H) = R
∑D

d=1 nsd , with D = 2, 3, for the
two algorithms compared here (D = 2 for [4], and D = 3 for
Algorithm 1), the number of multiply-add instructions needed
for a low-rank convolution of rank R. Furhter, by

C(H) = 1− Υ(H)

nh
, (14)

where C(H) ∈ [0, 1), we denote the complexity reduction,
relative to time-domain convolution. For C(H) = 0 there
is no complexity reduction, whereas for C(H) closer to 1,
the degree of complexity reduction is larger. The accuracy is
measured by the normalized output mean-squared error

MO
dB (H) = 20 log10

(
E
[
‖H ∗ x− h ∗ x‖2
‖h ∗ x‖2

])
, (15)

where h denotes the original IR, and H ∗ x is the low-rank
convolution, as defined in (13). The low-rank approximations
of 2D-matrices are performed using a truncated SVD. For the
numerical computation of the tensor decompositions we use
the high-level function cpd of the Matlab toolbox Tensorlab
[13]. To simplify the exposition, we will only consider the
square case, i.e., ns1 = ns2 = ns3 .

To demonstrate the performance of the proposed algo-
rithm, we first apply it to RIRs from the single- and mul-
tichannel audio recordings database (SMARD) [14], and
speech signals from the TSP speech database [15]. The RIRs
from SMARD are from a regular office-sized room, with a
reverberation time 1 of 0.15 seconds. The speech signals
from TSP are simple utterances by both male and female
speakers, in an anechoic environment. Both SMARD and
TSP are sampled at 48 kHz. From the databases we randomly
choose 100 RIRs and 100 speech signals. The RIRs are set
to start right before the arrival of the direct component and
set to be of length nh = 4096 samples. The speech signals

1The time required for the sound level to drop 60 dB after switching off a
stationary source.
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Fig. 2. Normalized output mean-squared error, as a function
of compression rate, for music signals and long RIRs: mean
(top) and standard deviation (bottom).

are truncated at one second, i.e., nx = 48000. The averaged
results are shown in Fig. 1. There it can be seen that the
proposed algorithm outperforms the algorithm from [4] for
all considered values of the compression rate. Further it can
be noted that the standard deviation for the proposed method
is lower throughout.

Next we showcase that the proposed algorithm works very
well also for longer RIRs, which we take from [16], a binaural
RIR database recorded at RWTH Aachen University. We use
24 different RIRs, recorded at 48 kHz in a lecture room, with
a reverberation time of 0.78 seconds, and we let nh = 46656.
As input signals we use music from the EBU-SQAM database
[17], which contains snippets of reverberant music from var-
ious genres, sampled at 44.1 kHz. We use 30 seconds of
pieces by ABBA, Verdi, and Händel respectively. To have
a sampling frequency matching that of the RIRs, we upsam-
ple the music to 48 kHz using Matlab’s resample, yielding
nx = 1.44 · 106. The averaged results are shown in Fig.
2. The proposed algorithm is superior to the algorithm from
[4] also under these circumstances. The standard deviation is
lower for the proposed algorithm in this case as well.

5. CONCLUSIONS

In this paper we have shown that the ideas of low-rank convo-
lution, previously presented for two dimensions, are extend-
able to higher dimensions, to obtain fast low-latency convolu-
tion algorithms. We have outlined the ideas and provided an
algorithm for a three-dimensional tensorization of the IR, and
shown that this outperforms the previously presented method
we extend upon, in terms of signal quality degradation, with-
out increasing the computational complexity, or the memory
usage. This is shown with simulations using real-life RIRs of
various lengths, convolved with both music and speech sig-
nals. Future work will focus on the development of an algo-
rithm for tensors of arbitrary dimensions, and how that algo-
rithms performs with respect to perceptual measures.
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