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Abstract 
Building sector could play an important role in tackling 
the issue of supply and demand mismatch. To this end, 
flexibility of the buildings should be harnessed. However, 
activating and quantifying flexibility of buildings requires 
advanced control strategies. Here, Model Predictive 
Control (MPC) is deployed to harness the flexibility. In 
addition, thermal properties of a building impact its 
provided flexibility. This paper aim at assessing the 
impact of the insulation level on the energy flexibility of 
a building using MPC. To do so, first a black-box 
predictive model of each building is developed. 
Thereafter, flexibility is activated by implementing MPC. 
Results reveal that by doubling the insulation level of the 
given use case, the flexibility index could be improved by 
50%. 
Highlights 
• Effectiveness of insulation level in terms of increasing 

flexibility potential 
• Building models should be developed based on 

relevant KPIs to properly harness flexibility 
• Effectiveness of model predictive control in 

improving the flexibility index of buildings 

Introduction 
Increasing the penetration of Renewable Energy Sources 
(RES) into the overall energy system is essential for 
reducing the GreenHouse Gas (GHG) emissions on a 
global level. The building sector has a substantial share 
(>50%) of total electricity use amongst different major 
energy consumers. In spite of the increment in deploying 
RES in the past decade, GHG emissions of this sector has 
had an upward trend. The latter emphasizes on the 
urgency to accelerate integration of RES into the 
buildings’ energy flow. However, the intermittent nature 
of many of the RESs pose challenges to the energy 
system, especially the electrical grid. The uncertainty of 
the availability of RESs makes the existing challenge of 
balancing the demand and supply of electricity even more 
complicated (IEA, 2022). Demand Side Management 
(DSM) includes a set of technologies and strategies that 
attempts to solve this issue looking at the stakes of the 
energy supplier as well as the end-user. DSM could be 
divided into different categories. Here we focus on 
Demand Response (DR), the most common category of 
DSM where penalty or price signals is introduced to the 
end user by the grid operator. This price signal is 

determined in a way that benefits the supplier e.g. a high 
energy price at the period of peak of electricity use and a 
lower energy price during the base load (Jensen, 2019). 
However, a question that remains to be answered is how 
much the building is responsive and compliant to such a 
signal and to what extent the load profile of the demand 
side matches with the desired profile of the supplier. The 
latter gives rise to the concept of energy flexibility. 
Energy flexibility of a building could be defined by its 
ability to alter its load profile based on the requirements 
of the energy provider, given the boundary conditions that 
it is subjected to (Jensen, 2019). In this study, a Time-of-
Use (ToU) electricity price has been considered as the 
price signal from the grid operator. 
Thermal properties of a building play an important role in 
its harnessed flexibility by affecting thermal mass and 
time constant of the building. One of the main 
contributors to the thermal resistance of a building and in 
turn its time constant is insulation level (Johra et al., 
2019). In this study, the impact of the insulation level on 
the flexibility of a building is investigated. The building 
under study has been equipped with PhotoVoltaic (PV) 
panels and electrical battery as on-site generation and 
active storage units respectively. A few research studies 
have addressed the impact of building envelope on the 
resulting flexibility. 
Johra et al. (2019) conducted a numerical study on Danish 
single-family households. They analyzed different 
building parameters and their effect on the energy 
flexibility potential. The flexibility index is used to show 
the ability of the building to shift its electricity from high 
electricity prices to low prices by accumulating thermal 
energy in the indoor environment during low price 
periods. It was found that the envelope insulation is the 
building parameter with the biggest influence on the 
flexibility index (Johra et al., 2019). A simulation-based 
study (Pedersen et al., 2017) was conducted to see how 
Economic Model Predictive Control (E-MPC) schemes 
can deploy thermal mass of an existing multi-story 
apartment block and eight retrofit scenarios to introduce 
DR objectives. E-MPC schemes led to a reduction of CO2 
emissions (up to 3%), an increase of cost savings (up to 
6%) and reduced CO2 emissions (up to 3%) as a function 
of increasing energy efficiency of the retrofit  scenarios. 
The absolute amount of shifted energy from on-peak 
hours compared to a conventional controller was 2 
kWh/m2 heated net area across all retrofit scenarios 
compared to the existing buildings. 



In another study (Reynders, 2015) showed that multiple 
building characteristics impact the achieved flexibility in 
a demand response scheme. In addition, the impact of 
building’s thermal mass on the flexibility has been 
scrutinized using a rule-based controller. Findings show 
that even moderately insulated houses can provide 
flexibility to the grid. In addition, it was shown that floor 
heating provides more structural energy storage capacity 
and out-performs radiator heating systems in demand 
response context. 
Another study (Masy et al., 2015) considered smart grid 
energy flexible buildings using heat pump and building 
thermal mass within the context of the Belgian residential 
building stock. The considered residential buildings are 
equipped with a heat pump that supplies hot water to 
either radiators or a floor heating system. Flexibility is 
quantified in terms of amount of load shifted and in terms 
of consumers costs avoided. Two smart grid-oriented 
predictive control strategies that respond to a time-
varying electricity price profile are used. The results show 
that the smart grid-oriented strategies allow a reduction of 
consumer’s cost by 13%. The flexibility is increased by 
3% to 14% with the same range of indoor thermal 
comfort. The percentage of shifted loads increases with 
the insulation level of the building envelope. The 
percentage of load shifted is more than doubled with 
intermittent heating compared to continuous heating. As 
for the emission system it was shown that the flexibility 
is slightly higher with floor heating than radiators. 
Another study (Clauß et al., 2019) investigates three types 
of Predictive Rule-Based Controllers (PRBC) in the 
context of demand response for heating a Norwegian 
residential building. The predictive nature of the RBC in 
their study stems from taking predictions of electricity 
price into account. The first PRBC strategy aims to reduce 
the energy costs of heating using the hourly spot prices as 
input, the second strategy aims to reduce annual CO2 
emissions for heating and the third one’s goal is to reduce 
the energy use during peak-load hours using a pre-defined 
schedule. The results show that the price-based PRBC 
leads to increased heating costs. This is due to the fact that 
potential cost savings for the tested PRBC are outweighed 
by the increase in electricity use for heating. As for the 
CO2 based control, limited daily fluctuations of the CO2 
emission intensities limit the reduction of the annual 
equivalent emissions. However, the schedule-based 
control proved to be very efficient to reduce the energy 
use for heating during peak hours. 
To properly exploit and quantify the flexibility of a 
building, the Building Energy Management (BEM) 
system needs to be equipped with a controller that is 
capable of appropriately responding to price signals from 
the grid operator. Suitability of demand-driven control 
strategies in optimization of building performance has 
been shown before (Jafarinejad et al., 2019). In this 
context, MPC has been employed for minimizing cost of 
energy in a building while maintaining the indoor 
comfort. MPC uses a simple model of the building to 
predict its energy profile over a given time span. 
Deploying this model enables MPC to optimize               thermal 

behavior of a building over a horizon (Maciejowski, 
2002). Therefore, MPC can harness the flexibility of a 
building in response to price or penalty signals from the 
operator while considering the constraints of the building 
climatization and even optimizing usage of different 
storage units in a building. Although the literature 
emphasizes on the significant impact of insulation on load 
shifting and harnessing flexibility of a building, there 
exists no study to the best of author’s knowledge that 
assesses this impact (insulation on flexibility) using MPC 
for a prosumer building. This study aims at addressing 
this gap by assessing different levels of insulation for a 
given dwelling on its flexibility exploited by MPC. The 
findings of this simulation study is helpful both in design 
and renovation stages of a building in terms of the 
expected improvements of flexibility by improvements in 
insulation level. To this end, first a high-fidelity model of 
a building has been developed and validated. Thereafter, 
new simulation models were made with decreased 
insulation levels. The insulation level of the building 
envelope were reduced by 33% and 50% respectively. 
Next step is making simple yet accurate predictive models 
from each of the three cases. These models are then 
integrated within an MPC framework with the goal of 
harnessing the flexibility of the designated dwelling. 
In the next section, first different parts of the study 
including building, PV panels, battery are briefly 
described. Second, framework and the Key Performance 
Indicators (KPI) using which flexibility is assessed, are 
explained and formulated. Then, results of harnessing 
flexibility of the three use cases are presented and 
discussed. 
Methodology 
In this section, first the building under study is introduced. 
Afterwards, different installed devices are presented 
along with their configuration in the flexibility scheme. 
Figure 1 shows an overview of the energy system defined 
here. Pbatt denotes the delivered energy to the heating 
system from the battery, while pv1 and pv2 show the 
energy from PV panels to the heating system and the 
battery respectively. Gridofftake represents the energy 
bought from the electrical grid. 
 

 
Figure 1: energy system of the building 

Building 
The subject of this study is a highly insulated, airtight 
detached dwelling located in Holzkirchen Germany 
(Figure 2), representing a single-family residence. The 
dwelling has served as a case in many research studies 
such as the IEA-EBC Annex 71 project (Fitton, 2021). 



Heating is provided by means of electric heaters. Sensible 
heat gains have been additionally injected to the building 
to represent occupancy profiles of a residential dwelling 
(Flett & Kelly,2017). A realistic ventilation system 
operates to introduce sufficient fresh air to the building at 
a total of 200 m3/h. Interested readers are referred to 
(Strachan et al., 2014) for further details on the 
description of the building under study. 

 
Figure 2- floor plans of view of the experimental 

dwelling (                            Strachan et al., 2014)  
Numerous measurement instruments were installed inside 
each room. This allowed us to make a highly granular 
simulation model of the building and validate it. The 
model was developed using OpenIDEAS library with 
Modelica language (Baetens et al., 2015). This white box 
model replaces the real building in our simulation 
environment. In order to evaluate the impact of insulation 
on the resulting flexibility, the original simulation model 
of the building (case of high insulation) was modified in 
the following way: 

Table 1- insulation level of the cases 
 Insulation 

type 
high 
(cm) 

medium 
(cm) 

low 
(cm) 

west Mineral 
wool 12 8 6 

east PUR foam 7 4.67 3.5 
south Woodfiber 12 8 6 
north Woodfiber 12 8 6 

ceiling 
(groun 
d floor) 

expanded 
polystyrene 

 
5 

 
3.3 

 
2.5 

roof Mineral 
wool 18 12 9 

 
 

floor 

PUR 
Insulating 

Board 

 
3 

 
2 

 
1.5 

Bonded 
Panel PUR 3.3 2.2 1.65 

In addition to the insulation thickness of the external 
walls, roof and floor, the heating system of the houses has 
been re-sized for the cases on medium insulation and low 
insulation to be 8 and 10 kW respectively.  

For thermal comfort consideration, for each building, all 
the zones are lumped and the building is seen as one 
thermal zone. The goal of the electric heaters are to 
maintain the volume-averaged temperature of the zones 

which is the target output of this study within the thermal 
comfort bands given in Table 2. 

Table 2- thermal comfort requirements 
 Lower comfort 

band (oC) 
Upper 
comfort band 
(oC) 

7 a.m – 11 p.m 21 24 
11 p.m – 7 a.m 19 22 

Photovoltaic 
The simulated PV system represents a set of 32 “4x6 cells 
MW 1010x725 mm2 (with edge j-box) ClearVision-Black 
(2x4 mm)” (Ciulla et al,. 2014) modules which each 
consists of 24 cells with maximum power point (Pmpp) of 
120.8 W, short-circuit current (Isc) of 8.551 A and open- 
circuit voltage Voc of 17.552 V. The power temperature 
coefficient is equivalent to -0.28% /oC. The I-V 
characteristics in the one-diode model of a PV device are 
described by the following equation: 

I=Iph-Isat [exp( V+IRs
mNsVth

)-1]- V+IRs
Rth

                                  (1) 

In equation (1), Iph represents the photo (or light) current, 
Isat is the saturation current, Rs indicates the series 
resistance, 𝑉𝑉𝑡𝑡ℎ is the thermal voltage, m is the diode 
ideality factor, N𝑠𝑠 is the number of cells connected in 
series and Rsh is the shunt resistance. Further details about 
the electrical model can be found in (Ciulla et al., 2014). 
The model has been validated with the measurements 
obtained from the real-life installation of the module in 
EnergyVille 2 building in Genk, Belgium. DC power 
generation profile of the PV panels has been simulated 
offline for the period of the simulations and is included in 
the MPC simulation later. It should be mentioned that the 
efficiency of the inverter is assumed to be 100%. 
Battery 
Batteries considered for this study are Lithium Iron 
Phosphate (LiFePo4) which have a very high charge and 
discharge efficiency. Charge and discharge efficiency 
have been considered to be 0.98. The round-trip efficiency 
of the batteries are not considered in this study. For the 
case of the highly insulated building, a battery of 5.12 kWh 
with a maximum charge and discharge rate of 2.56 kW has 
been used. As for the other two cases, the battery has been 
resized based on the RBC results and is explained later on 
under the flexibility results. State-of-Charge (SoC) of the 
batteries have been kept between 10% and 90% which is 
typically done to ensure a longer lifetime. The battery 
performance has been considered to be linear in the SoC 
range of 10-90%. This assumption would help in keeping 
the eventual optimization problem convex. 
Flexibility framework 
MPC was chosen as the control strategy to activate 
flexibility of the building in this study. The general 
workflow of the MPC used in this study has been 
explained in a previous study (Erfani et al., 2021). MPC 
has been designed in Matlab while the building simulation 
model is developed in Dymola. Interested readers can 
refer to (Erfani et al., 2021) for further details on the 
designed MPC. The control horizon of the MPC used in 
this study has been set to 24 hours (N=24) as shown to be 



a long enough horizon to guarantee acceptable 
performance of the MPC in a previous study (Laguna et 
al., 2022). The time step of the controller and the thermal 
model of the building are both set to 1 hour as it was 
shown to be a suitable choice in a previous study (Erfani 
et al., 2023). Perfect weather forecast is considered here. 
Flexibility formulation 
In order to exploit the flexibility of each of the houses an 
MPC has been applied. It should be noted that dynamic 
ToU electricity price has been considered as the signal for 
activation of building’s flexibility in this study which was 
taken from a supplier data in Belgium (Reynders et al., 
2021). The formulation of the optimization of the 
buildings’ energy flow is given in the following equations. 

t2 

∫ (pt*gridofftake,t + L* vt - pv1,t - pv2,t ) dt 
t1 

(2) 

    • 
    T in,t = f(x⃗ t, u⃗ t, d⃗ t) (3) 

Tin,t+ vt ≥ Tlow,t (4) 
Tin,t- vt ≤ Tup,t (5) 
0 ≤ pv2,t + pbatt,t + gridofftake,t ≤ Phs,max (6) 
0 ≤ pv2,t+ pv1,t ≤ pvgen,t (7) 

0 ≤ pv1,t ≤ 
ratebatt
ηbatt

 (8) 

0 ≤ pbatt,t ≤ ratebatt * ηbatt (9) 

SOCk+1 =   SOCk + ηbatt * pv1,t - 
Pbatt 
ηbatt

 (10) 

    0.1*energybatt,max ≤ SOCk ≤ 0.9*energybatt,max (11) 
0 ≤  vt (12) 

In equation (2) the objective of the optimizer is to 
minimize thermal discomfort levels in terms of Kelvin 
hours (Kh) that the building’s representative temperature 
is outside the comfort bands while simultaneously 
minimizing sum of the electricity price over the course of 
next day. In this equation gridofftake represents the energy 
bought from the electricity grid while pt denotes the ToU 
pricing. The second term of the objective penalizes 
thermal discomfort. Inspired by Picard et al. (2016), a set 
of slack variables (v) are added in thermal comfort 
constraints. These variables allow the optimization to 
violate thermal comfort constraint which helps the solver 
to come up with a feasible solution. In turn, the value of 
these thermal discomforts is penalized in the objective 
function. (Picard et al., 2016). The value of these slack 
variables are penalized in the objective function in order 
to minimize thermal discomfort level. The scalar (L) is 
used to balance the penalty of energy cost and thermal 
discomfort to reach an acceptable range of thermal 
discomfort. Equation (3) represents the predictive model 
used in the MPC workflow to estimate the thermal 
behaviour of the building which is briefly explained in the 
next section. Equations (4) and (5) denote the soft 
constraints of the comfort requirements from Table 2. 
Equation (6) expresses the size and capacity of the heating 
system. Equation (7) limits the input from the panels to 
the maximum possible electricity generation from the PV 

panels (PVgen) at each time step which is calculated prior 
to running the MPC. Equations (8)-(9) denote the 
maximum possible power of charging and discharging the 
battery (ratebatt). Equation (10) determines the SoC of the 
battery based on the amount of charged or discharged 
energy from it over an hour while Equation (11) limits the 
SoC of the battery to the range of [10-90]% in order to 
prolong its lifetime. 

The objective function of the MPC (Equation (2)) is linear 
in the decision variables, the constraints imposed on the 
system are linear and the predictive model used in the 
study is linear as well. Hence, the optimization problem 
is linear and convex. For such a problem, many fast and 
efficient solvers exist which guarantee obtaining global 
extremum. Here, Linprog function of Matlab was used as 
the solver (Global Optimization Toolbox, 2021). 
Flexibility indicators 
The KPIs used to assess the quality of the optimizer are 
divided into two categories. The first category denotes the 
KPIs regarding thermal comfort, energy and cost savings. 
The second category quantifies the flexibility of the 
building. These KPIs include Load Cover Factor (LCF) of 
the energy system and the Self-Consumption (SC) of the 
PV system where the equations for defining these KPIs are 
given below (Gergely et al., 2022): 

t2 

∫ min[Phs (t), PVgen (t) + Pbatt (t) - PV2 (t)]dt 
LCF =     t1 

 
t2 

∫ Phs (t)dt 
t1 

 

(13) 

t2 

∫ min[Phs (t), PVgen (t) + Pbatt (t) - PV2 (t)]dt 
SC =  t1 

 
t2 

∫ PVgen (t)dt 
t1 

 

(14) 

The LCF or self-sufficiency (equation (13)) represents the 
ratio of direct use of RES-generated energy by the HVAC 
system while SC (equation (14))quantifies share of total 
production from renewable sources, which is directly used 
by the building and its applications. Here, Phs denotes the 
power demand of the heating system, PVgen shows the 
generated power by PV, Pbatt shows battery’s discharge 
and PV2 represents the charge of battery by the PV panels. 
Additionally, the flexibility of the building is described in 
terms of the Flexibility Index (FI) (Jensen et al., 2019). 
which shows how flexible the building is to the 
requirements of the grid operator. In this study, the grid 
operator signal is described by a ToU pricing structure. 
The FI is given based on the equation ((15)) in which 
CostRBC denotes the cost of electricity resulting from 
implementing a Rule-Based Controller (RBC) which is 
unaware of the price signal from the grid and CostMPC 

denotes the operational cost of the building achieved by an 
MPC which takes the price signal from the grid operator 
into account.  

 FI= 1- CostMPC
CostRBC

 (15) 

This index indicates how responsive a given building is to 
the price or penalty signal from the grid. 



Results 
In this section, the findings of applying the MPC for 
flexibility activation are presented. The simulation in 
which the MPC is applied is done for the months of 
January, February and March. The simulation for all three 
case studies has the same initial conditions. However, the 
first day of the simulation has not been considered for 
calculation of the KPIs to make sure the initialization does 
not have an impact on the KPIs. Before the MPC can run 
for the aforementioned time period the predictive model 
needs to be constructed. This is done in 2 steps: First, a 
proxy dataset from the building simulation model is 
generated. Consecutively, this dataset is used for training 
the parameters of the predictive model (Equation (3)). 
These two steps are briefly explained here. 
Dataset  
The dataset is required for training and validation of data- 
driven models. The information in such datasets should be 
rich enough so that the resulting model would capture the 
dynamics of the system. To this end, a Pseudo-Random 
Binary Sequence (PRBS) has been generated to excite the 
heating system of each of the use cases. This PRBS signal 
determines the on/off status of the heating system while a 
uniform noise is deployed to determine the amount of 
injected heat to the building. As an example, the resulting 
temperature profile of the medium insulated building is 
illustrated in Figure 3. It should be noted that obtaining 
such a large range of indoor temperature in practice has 
many implications and is mostly deemed infeasible. 
Therefore, obtaining such a dataset is only possible in a 
simulation study. In future work it will be investigated 
how more realistic temperature profiles affect the accuracy 
of the predictive model. 

 
Figure 3- Temperature profile resulting from PRBS 

implementation 
Model development 
In this study, State Space (SS) modelling has been chosen 
to capture the thermal dynamics of the buildings. SS is a 
powerful modelling technique. Many of the linear 
modelling methods such as grey-box, ARX and transfer 
function could be expressed in terms of state space models. 
Even white-box simulation models of the buildings could 
be expressed as SS models (Picard et al., 2015). SS models 
have been successfully integrated in model-based 
optimization schemes for buildings (Bourdeau et al., 
2019). The same set on inputs have been chose to carry 
out the prediction task. These inputs are heat injected to 

the building via heating system (Hin), ambient temperature 
(Tamb), Global Horizontal Irradiance (GHI) and Internal 
Heat Gains (IHG) representing artificial occupants. The 
first two months of data were used to identify the 
parameters of the state space model while data from the 
third month serves as the test dataset for validation. Error 
of the developed models for each of the cases is given in 
Table 3. The parameters of these models are identified 
using the Matlab system identification toolbox. The 
identification algorithm focuses on simulation error rather 
than on the prediction error. The latter is due to the 
findings of previous studies where it was shown that 
prediction error of the model (one-step ahead error) is not 
sufficient for reporting the quality of predictive models 
used in MPC and modelers should take into account 
model’s performance throughout the whole control 
horizon rather than only one-step ahead (Erfani et al., 
2021). Therefore, modelling error both for one-step and 
multi-steps ahead in time are reported in terms of 
Coefficient of Variation of Root Mean Square Error 
(CVRMSE) (ASHRAE 14, 2014). It could be seen that the 
accuracy of the state space models are very similar for the 
three pre-defined test cases. 

Table 3-Summary of predictive models 
 

Use case One-step ahead 
error (%) 

Multi-step ahead error 
(Maximum over 

horizon) (%) 
High 
insulation 

 
0.47 

 
2.5 

Medium 
insulation 

 
0.67 

 
2.45 

low 
insulation 

 
0.43 

 
2.47 

Cost-ignorant controller 
As mentioned earlier, the FI quantifies the flexibility of a 
building based on a controller which does not consider the 
cost or penalty signal from the grid operator. To this end, 
first a traditional RBC has been developed and well-tuned. 
This well-tuned RBC primarily aims at minimizing indoor 
thermal discomfort. It is composed of a hysteresis 
controller which determines the on/off mode of the heating 
system. In case the heating system is on, a proportional 
controller determines the amount of heat injected to the 
building. Here, the hysteresis band and its set-point have 
been tuned in order to minimize thermal discomfort of the 
indoor air temperature. This process has been repeated for 
the three case studies separately. Energy use, energy cost 
and thermal comfort levels of the tuned RBCs are reported 
in Table 4. 

Table 4- RBC results 
Insulation 
level 

Discomfort 
(Kh) 

     Cost 
      (€) 

Grid offtake 
(kWh) 

High 28 197.5 3436 
Medium 36 243.8 4265 
Low 33 265.1 4643 



Flexibility results 
Here, the results of applying the MPC -as a candidate of 
cost-aware smart controllers- for flexibility activation of 
the buildings are presented. These results are obtained by 
applying MPC to each of the use cases over a time span of 
three months. In addition, controller time step and horizon 
are 1 and 24 hours respectively. Weather data used from 
this study is from Uccle Belgium. An hourly ToU 
electricity price is included in this study which is repeated 
every day. The ToU pricing has an average of 54 €/MWh 
with a standard deviation of 9.5 €. The average time 
required to run the co-simulation between the MPC and 
Dymola model for a duration of 3 months is 260 seconds. 
KPIs of the MPC simulations are reported in Table 6. For 
each of the cases, scalar L has been tuned in a way to make 
a reasonable balance between penalty of discomfort and 
energy cost. Consequently, thermal discomfort is within an 
acceptable range of 0-50 Kh for a period longer than half 
of the heating season (Freund & Schmitz, 2021). 

Table 5- normalized battery and PV system 
Insulation 
level 

Number 
of panels 

Battery 
size 
(kWh) 

Battery 
charge/discharg
e rate (kW) 

High 32 5.12 2.56 
Medium 40 6.35 3.17 
Low 44 6.9 3.45 

In addition, in order to be able to better assess the impact 
of insulation on building’s flexibility, number of PV 
panels and the size of the battery have been normalized 
based on the offtake from the grid in the case of RBC 
(Table 5). 

Table 6- Flexibility results 
Insul 
ation 
level 

discomfo 
rt 
(Kh) 

cost 
(€) 

grid 
offtake 
(kWh) 

SC 
(%) 

LCF 
(%) 

FI 
(%) 

High 24 
(12.3%) 

159 2906 
(+15.4) 

99.4 12.3 19.4 

Medi 
um 

41 
(-14.9%) 

200 3671 
(+13.9) 

99.3 12.4 17.6 

Low 
28 
(18.9%) 

232 4111 
(+11.4) 

99.0 12.1 12.4 

Table 6 shows that the increase in the insulation level of 
the building has a positive impact on the flexibility of the 
building in regard to price signal from the grid operator. 
Percentage of improvements in thermal comfort and grid- 
offtake compared to RBC are included as well. In this case, 
by doubling the insulation thickness of the walls, the 
flexibility index of the buildings increases from 12.4% to 
19.4%. In other words flexibility of the building increases 
by 56% by doubling the insulation thickness in the external 
walls, roof and floor. The difference could be explained by 
the fact that higher insulation results in a higher time 
constant (defined as the effective thermal mass multiplied 
by the thermal resistance of the envelope) by increasing 
the thermal resistance of the envelope (Johra et al., 2019). 

Therefore, building envelope is able to store thermal 
energy and release it in a longer time span compared to a 
case with lower insulation level. Hence, MPC has more 
autonomy in shifting the heating demand of the building. 
Consequently, insulation level has a notable impact on the 
achieved flexibility. In addition to the flexibility index, the 
load cover factor of the three cases are very similar which 
is due to the re-sizing the PV panels and the battery. Self- 
consumption of all three cases is above 99%. It shows that 
almost all of the energy generated from the PV panels is 
directly used and the PV surplus is negligible (less than 
1%). For all three cases, the discomfort level is quite small 
ranging from 0.27-0.46 Kh/day. However, the level of 
discomfort could be changed by altering the weighting 
scalar (L) in Equation (2) to obtain optimal profiles with 
different levels of discomfort and cost. By doing so, it has 
been observed that the impact of thermal discomfort 
within the range of the MPC and RBC results (20-50 Kh) 
on the achieved cost savings and flexibility index is 
miniscule. Table 6 reports the optimal profile which 
yielded thermal discomfort closest to the case of RBC. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 

Figure 4- Temperature and power profiles resulting 
from    MPC  

Figure 4 shows the results of applying MPC for flexibility 
activation of the high and low insulation case. This figure 
represents the results of a period of 10 days from 28th of 
January to 7th of February where the electricity generation 
of PV panels is at its highest. First of all, the temperature 
profile shows that the MPC is able to successfully keep the 
indoor air temperature of the building (lumped zones) 
within the thermal comfort bands. Secondly, combining 
three sub-figures of the battery discharge, the PV to battery 
and electricity price, one can see that before the price peak 
takes place, PV charges the battery so that during the peak 
hours the battery is discharged (positive values represent 
discharge of battery and negative values indicate 
charging). This behaviour is visible in the offtake from the 
grid as well where during the hour of peak price, offtake 
from the grid is at a local minimum (if not zero). The price- 
aware controller takes advantage of the valley of the price 
and takes the maximum allowed power from the grid 
where part of it is used to charge the battery and the rest 
goes to the heating system. Comparing the results of the 
low insulation case and high insulation case in the case of 
grid offtake, one can deduce that the grid offtake peaks 
happen almost at the same time for the two cases. 
However, in some days (e.g. 3rd and 4th of February) there 
is a shift in time in terms of grid offtake for the high 
insulation case. Comparing this shift to the electricity 
price, it is seen that this shift is in sync with the minimum 
electricity price. In other words, grid offtake increases in 
the high insulation case sooner than the low insulation 
case. This could be an indication of the higher thermal 
inertia of the high insulation case which allows the heat to 
be dissipated in a longer time span into the space. 
Comparing battery discharge, same behaviour is visible 
where the battery is in some days discharged sooner in 
case of high insulation compared to the low insulation. 
Therefore, one can conclude that by increasing the 
insulation level in a building, MPC has more autonomy in 

shifting grid offtake. Hence, it can harness more flexibility 
for a building with high insulation. Considering the grid 
offtake as an indicator of CO2 emissions, using MPC for 
flexibility activation decreases CO2 emissions by 15.4%, 
13.9% and 11.4% for high insulation, medium insulation 
and low insulation case respectively. In this study, 
maximum allowed power taken from the grid is set to the 
maximum power of the heating system as well. 
Normalizing the size of battery and number of panels, 
narrows down the contributing factors to insulation. 
However, the impact of battery and PV system size should 
be investigated together with the insulation from a techno- 
economical point of view. Consequently, MPC is capable 
of successfully responding to the price signal of the grid 
operator while maintaining main service of a dwelling i.e. 
providing indoor thermal comfort. 
Conclusion 
This study conducts a simulation study to evaluates the 
impact of building’s insulation on the achieved flexibility. 
To properly use the flexibility options that a building 
offers, first a high-fidelity simulation model of the use case 
has been developed and validated. To harness building’s 
flexibility, MPC has been used as a prominent delegate of 
cost-aware controllers. In this work Time-of-use pricing 
has been used as a representative of the signal from the 
grid operator. The structure of the three use cases only 
differs in terms of insulation levels, where the insulation 
thickness of the best insulated use case has been reduced 
by 33% and 50% to form the two other use cases. In order 
to filter out impact of other variables on the flexibility, 
heating system, number of PV panels and the capacity of 
the battery have been resized to match the energy demand 
of the use cases. Considering the grid offtake as an 
indicator of fossil-fuel based electricity generation, using 
MPC for flexibility activation decreases CO2 emissions by 
15.4%, 13.9% and 11.4% for high insulation, medium 
insulation and low insulation case respectively. The results 
further show that MPC is capable of activating the 
flexibility potential of the buildings. In addition, findings 
of this paper reveal that by doubling the insulation level of 
the given use case, the flexibility index could be improved 
by 50%. This shows the considerable impact of insulation 
on the flexibility of a building and could guide 
practitioners and policymakers to put more emphasis on 
insulation improvement for renovation plans and CO2 

emission reduction scenarios respectively.  

Future studies could analyze impact of deploying heat 
pumps in the building’s energy system along with 
electrical vehicles. Impact of battery and PV system 
sizing should be assessed together with insulation level 
from a techno-economical outlook. In addition, integration 
of comfort elasticity on the harnessed flexibility of a 
household is an interesting extension of the current work. 
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