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Abstract— Ultrasound (US) imaging has been widely applied
in different clinical scenarios thanks to its low-cost and non-
radiative nature. Recently, robotic US has increasingly become
a technology to produce 3D US reconstructions for navigation
during surgical interventions. It is considered a promising
technology to address variable skills among human sonographers.
Dedicated control strategies are needed to ensure high-quality
US reconstructions that are comparable or superior to those
generated by human experts. The robot controller ought to
establish human-like scanning maneuvers while maintaining
tight skin contact and ensuring essential safety. In essence,
this means that at all times, the robot should avoid applying
excessive force on the patient. Therefore, a comparative study
on the admittance-based controllers was conducted while a
semi-automatic path planning approach was used to realize
automatic US scanning. The developed system was validated
by scanning a synthetic phantom, compared with position and
admittance control. The robotic US system with the proposed
control applied a force lower than 3.83±0.31 N while ensuring
continuous US imaging. By defining the successful rate as the
US image has more than 90% of soft tissue (i.e., ligament) length,
the velocity-based admittance controller has more than 80%
successful US imaging. Such an approach could contribute to
the further development and uptake of robotic US systems in
spine surgery and possibly beyond.

Keywords: admittance control, ultrasound reconstruction,
robot-assisted system

I. INTRODUCTION

Robotic-assisted Ultrasound (US) technology has been
increasingly utilized in orthopedic surgery to improve surgical
efficiency [1]. When used for 3D US reconstruction, it can
provide the clinician with a radiation-free tool to visualise
some anatomic structures in real-time and guide the movement
of surgical instruments [2, 3, 4]. Robotic US can be used
for pre-operative diagnosis, intraoperative navigation, or post-
operative treatment assessment. However, it is well known
that the quality of the reconstruction is highly dependent
on the adopted scanning strategy [5]. Aside from the right
scanning strategy, the system should also be able to execute
the scan path reliably.

Prior research that searches for the optimal scanning
approach indicated that it is essential to maintain good contact
between the US probe and the patient by extracting the
projection of normal force from the measured contact force
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Fig. 1: The experimental setup with the lumbar phantom.

and trying to keep constant normal force [6, 7, 8, 9, 10, 11].
In [6], a mechanical model with a spring-compliant controller
was developed to find the rotation of the US probe around a
normal axis to keep a constant normal force. The measured
force was fed into a model that then estimated the direction
normal to the surface. After that, a position controller was
used to rotate the probe to align it to the estimated normal
vector. To improve the scanning performance, Jiang et al.
continued and implemented a US confidence map to adjust
the in-plane orientation of the probe [7]. The work suggested
a quality improvement of the US-generated images with
3.2 ± 1.7◦ less normal vector rotation error compared to
six human operators’ manual US scanning. Similarly, an
admittance model based robotic-assisted US system was
proposed to maintain the US probe at an optimal angle, which
is normal to the tissue surface, and ensure stable contact with
minimal tissue deformation in breast volume scanners [8,
9]. Victorova et al. introduced a framework using a 3D
US reconstruction for qualitatively scoliosis assessment [10]
using decoupled position control and normal force control.
Jia et al. also developed a dynamic program for US image
segmentation. It has already achieved good results with an



average accuracy of less than 0.3 mm [11].
The aforementioned research focused on optimizing the

contact force while ensuring better US image quality. Nev-
ertheless, the impact of US image feedback is also crucial
for robot-assisted US scanning. In [12], a visual servoing
for needle tracking was done on the flat phantom to keep
a constant 2 N force in the normal direction. However,
that control approach was not applicable to general clinical
scenarios with curved surfaces. Huang et al. developed a
robotic US system based on a depth camera to find the
normal vector of the scanning surface[13]. However, their
control strategy cannot regulate the force around a desired
value. The US probe was moved along the normal vector
direction when the applied force was outside the range the 1
to 8 N.

Thus, to address this issue, we investigated control
strategies in which admittance-based control is integrated
and feedback with real-time force measurement. With this
approach, we maintain constant contact with both deformable
and moving surfaces during US scanning. The present work
aims to comprehensively compare several control strategies
with a semi-automatic robotic US system. In particular, our
contributions are as follows:

• By using a hybrid admittance control, the US probe
follows the desired trajectory and remains in contact
with the patient’s skin with a compliant behavior.

• Comparing several admittance-based control strategies
to achieve the highest performance in the US scanning.
The comparison is designed to cope with a US scanning
quality assessment and performance evaluation.

This paper is organized as follows. Section II describes
the employed methods including a system overview and
explanations on: path planning, control strategies, experiment
design, and evaluation criteria. Section III reports the results
of the semi-automatic scanning experiments conducted on an
artificial phantom. Section IV discusses the proposed system
and concludes at the end.

II. METHODS
An envisioned semi-automatic workflow for reconstructing

a 3D spine surface model from US imaging is depicted
in Fig. 2. In this approach, the robot follows a trajectory
taught by the clinician. Hereto, the clinician places an optical
pointer at several points on the patient’s skin. These points
then span the area to be scanned by the US robot. The
points are stored and used to compute an S-shape trajectory
subsequently. After that, the robot follows the generated path
while regulating a constant interaction force along a direction
normal to the tissue. During the scanning, the poses of the
robot end effector and US images are recorded simultaneously
for 3D US reconstruction. The contours of the bone are
segmented from 2D images. Subsequently, the segmented
2D points can thus be converted into 3D points by taking
US image calibration [14], 6 DoF pose information of the
end-effector. Once this procedure is finished, the pixels in
2D US images are transformed into 3D space in the robot
frame. Finally, the computed pointclouds are rendered as a

3D model to show the anatomical features of the lumbar
model. Each block of Fig.2 is explained in the following.

Fig. 2: Workflow of semi-automatic US scanning for 3D US
reconstruction.

A. Trajectory Planning

Generating a scanning path that is normal to the skin
surface is regarded as a reasonable way to increase the US
reflection of the bony structures and decrease the attenuation
of the US beam. Generating the scanning path highly depends
on the clinician’s skill and the region of interest shape. To
have a precise scanning path, an optical camera system is used
to obtain the scanning reference trajectory. The predefined
scanning path was generated following an S-shape with a
constant distance of 20 mm between subsequent on-surface
selected points(shown in Fig.3B). The purple dashed lines
were the reference path Rre f = [pref,θref]∈R6 generated from
the recorded points. Each point was connected to the next
one by a straight line while the robots followed a trapezoidal
velocity profile of 4mm/s to reach the new point. Because of
using an external optical camera, a camera-to-robot calibration
was performed to estimate the camera-to-robot transformation
(R
CT ) according to the previous study [15]. By obtaining the

camera-to-robot calibration, the poses of the recorded point
were converted from the camera frame {C} to the robot frame
{R}; The scanning trajectory was obtained with an optical
pointer from the skin surface.

B. Robot Control Schemes

Different semi-automatic robotic scanning controllers are
implemented. The transformation is presented in the world
frame (i.e., the robot-based frame). The force/torque (F/T)
sensor measuring data, which is recorded in the sensor frame,
is transformed to the probe’s end effector frame using T S

EE .
Hereinafter, the control equations are described in the robot
base frame {R} unless otherwise mentioned.

To precisely guide the US probe across the surface and
maintain a constant normal contact force, an admittance-
based controller is depicted Fig.3; where the desired pose
Rd = [pd,θd]∈R6 represents the position and Euler angles of
the US probe frame {US}. To have smooth and continuous
imaging, the US probe should be aligned to the surface’s
normal vector and apply a constant force on the skin surface.
Therefore, the desired wrench vector wd = [0,0, fz,0,0,0] ∈
R6 in the probe frame {US} is a constant force in the z-
direction. The admittance control law converts the wrench
error we = wd − wm = [fe,τe] ∈ R6 to a deviation of the
desired pose Re = [pe,θe] ∈ R6, expressed in the robot
frame {R}. Here wm ∈ R6 and pe ∈ R3 and θe ∈ R3 are
the measured wrench, position deviation, and orientation



deviation, respectively. The proposed control approach has
distinctive compliant behaviour defined by a dynamic model
for each DoF, which is selected by the Selection matrix
S = diag([0,0,1,0,0,0]). Reaching a constant force and
following the surface fluctuation on the skin urges to use of a
velocity-based compliant behaviour for the force error along
the probe Z-axis( Fc in Fig.3A):

Fch : ṗez = cz fez (1)

Where ṗez and cz are the velocity of position deviation along
the Z-axis and the compliance coefficient, respectively; from
now on, we call it the velocity-based admittance controller.
A second-order dynamic model is used for the other axes.
This leads to the behaviour similar to a physical mass-spring-
damper element (Gc in Fig.3A).

Gc2 :

{
Mp̈ex,y +Bṗex,y +Kpex,y = fex,y

Iθ̈e +Vθ̇e +Cθe = τe
(2)

Where ṗex,y ∈ R2, θ̇e ∈ R3 and p̈ex,y ∈ R2, θ̈e ∈ R3 are the
first and the second derivatives of the position and orienta-
tion deviations. M2×2(kg), B2×2( N

m/s ), K2×2(N
m ), I3×3(kgm2),

V3×3( N.m
rad/s ), C3×3(N.m

rad ) correspond to the mass, damper,
linear stiffness, moment of inertia, viscosity, and angular
stiffness matrices, respectively. The output of the compliance
control is fed to the activation functions Ag,A f , which
enables/disables the compliant behaviour in the selected
degree of freedom of the US probe, and its value could be 1
or 0. The desired pose of the US probe Rd is the summation
of reference trajectory Rre f and pose deviation Re as follows:

Rd = Rre f +Re (3)

The computed desired pose is fed to the Inverse Kinematic
block to find the corresponding desired joint angles qd . Based
on the qd that is sent to the robot’s controller, the required
torques for each joint are calculated internally by the robot
driver.

Instead of having a velocity-based relation for the force
along the Z-axis Eq. 1, a first or second-order dynamic
model could also produce a desired compliant behavior while
interacting with the environment and following the surface
fluctuations. Therefore two different types of compliant
models are considered:

Fc2 : mp̈ez +bṗez + kpez = fez (4)
Fc1 : bṗez + kpez = fez (5)

where m, b, k are mass, damper, and linear stiffness coef-
ficients, respectively. Changing the dynamic model of the
admittance controller leads to different interaction responses
to the environment [16]; therefore, we have considered a
first-order dynamic model by setting M,I as zero in equation
Eq.2:

Gc1 :

{
Bṗex,y +Kpex,y = fex,y

Vθ̇e +Cθe = τe
(6)

Selecting the activation function as zero (A f = 0 or Ag = 0
) turns off the complaint behavior of the control for the
selected axis, which means the US probe follows the reference
trajectory Rre f without considering the force interaction; thus,
the control mode becomes the position control only.

C. Experimental Design

The experimental setup is shown in Fig. 1. The robotic
US system consists of a lightweight KUKA LWR (KUKA
Roboter GmbH, Augsburg, Germany) and an US imaging
system. A linear B-mode US probe was attached to the
robot end-effector using a 3D-printed housing. The US
images were acquired with the US machine (Sonosite,
FUJIFILM, USA) and recorded at 30 HZ using the frame
grabber (Epiphan Systems Inc. Palo Alto, Canada). A 6
DoF F/T sensor (Nano25, ATI Industrial Automation Inc.)
was assembled on the robotic end effector to measure
the interaction forces/torque between the US probe and
the tissue surface. A lumbar phantom (Model 034, CIRS,
USA) was employed for experimental reconstruction and
validation. Besides, an optical tracking system (FusionTrack
500, Atracsys, Switzerland) was integrated and operated at
50 Hz. The optical camera played the role of localization and
mapping system. The robotic arm is controlled via KUKA’s
Fast Robot Interface (FRI), and the synthesized control system
is equipped with a real-time task execution environment.
OROCOS RTT allows direct control of robot functionalities
through the Robot Operating System (ROS) framework. In
addition, a PC workstation with an Nvidia P2000 GPU was
used for US image segmentation and visualization with a
deep learning network.

After generating the scanning path, the optical marker was
removed from the phantom. The US gel was applied to the
phantom over the scanning area. Subsequently, the robot
explored the area employing various control strategies. The
study involved a comparison of 9 distinct sets of dynamical
models referring to Tab. I. Here, Fci represented the dynamical
model controlling the motion along the Z-axis of the US probe,
while Gc j pertained to the dynamical model governing the
other 5 degrees of freedom.

TABLE I: Dynamical model sets for US scanning;

Gc2 = mẍ+bẋ+ kx Gc1 = bẋ+ kx Gc0 = 0
Fc2 = mẍ+bẋ+ kx ✓ ✓ ✓

Fc1 = bẋ+ kx ✓ ✓ ✓
Fch = cẋ ✓ ✓ ✓

To ensure high-quality images in the US scans, it is crucial
that the recorded trajectory points were aligned perpendicular
to and in contact with the surface being scanned. Otherwise,
the increasing deviation from the normal vector would cause
the US waves to be scattered away rather than reflected back
to the probe in the receiving image [17]. The study also
investigated the effects of incorrect trajectory point selection.
Apart from the initially selected trajectory (on the surface),
two additional trajectories were generated by adding d mm



Fig. 3: A) Admittance-Based Control Block Diagram. B) the S-shaped trajectory defined on the region of interest.

along the normal vector programmatically: one moving 2 mm
up along the normal vector (“Above” the surface) and the
other moving 2 mm down along the normal vector (“Below”
the surface). Each control strategy was executed with these
three trajectories, and the corresponding US images and robot
data were recorded, stored, and analyzed.

Regarding the control parameter selection, higher stiffness
values are preferred to limit the steady-state error. However,
a higher stiffness also decreases the actuation speed, such
that the probe cannot quickly follow fluctuations of the skin
surface. Thus, a stiffness value similar to the experimental
phantom is chosen; during US scanning, k and C are set
to 1 N/mm and 5 Nm/rad, respectively. The other second-
order dynamic model parameters are selected to have a 20
rad/s bandwidth, resulting in a fast response time for the
following surface fluctuations and also canceling measurement
noise in the F/T sensor. The dynamical model parameters are
summarized in Tab. II.

TABLE II: Dynamical model parameters; which In is the
identity matrix of size n.

model parameters
Fc2 k = 1( N

mm ),b = 0.7( N
mm/s ),m = 2.5(kg)

Fc1 k = 1 N
m ,b = 0.5 N

mm/s

Fch cz = 0.5(mm/s
N )

Gc2 K = 1I2(
N

mm ), B = 0.7I2(
N

mm/s ), M = 2.5I2(kg)
C = 5I3(

N.m
rad ), V = 0.35I3(

N.m
rad/s ), I = 0.0125I3(kgm2)

Gc1 K = 1I2(
N

mm ) B = 0.5I2(
N

mm/s )

C = 5I3(
N.m
rad ), V = 0.25I3(

N.m
rad/s ),

D. Evaluation

Several experiments with the proposed control methods
were carried out for quantitative and qualitative measurement
of the lumbar phantom.

1) Scanning Performence: The performance of the
admittance-based controllers was assessed by comparing
the normal contact force for different control methods. In
this work, we have done semi-automatic scanning while
the desired normal force was set to 4 N. The US scanning
protocol for all three reference trajectories involved scanning
the surface of interest of the phantom and generating the

corresponding pointclouds. The robotic arms moved the US
probe along the path while simultaneously capturing the US
images, robot end-effector poses, and measured forces.

Fig. 4: Examples of the US image with A) good probe-skin
contact with a continuous ligament surface and B) bad probe-
skin contact with missing ligament reflection (red).

2) 2D Image Quality: To quantitatively assess the stability
and validity of the control methods, image segmentation was
conducted on the acquired US images to detect soft tissues
(i.e., ligament), as illustrated in Fig. 4A. If the US probe
is in contact with the phantom surface, the ligament can
be detected (green zone in the Fig. 4A); otherwise, lousy
probe-skin contact would lead to missing ligament reflection
(red zone in the Fig.4B). A deep-learning network, U-Net
[18], was employed to process the recorded US images
to assess the image quality. The network was trained with
1000 images collected from the same phantom. The training
dataset was manually collected and labeled by the operator
before validation. The model was trained for 10 epochs
with a learning rate of 1e− 4. The batch size was set to
2. Subsequently, the model was used for validation. The
ligament was segmented as the target objective; its contour
was extracted by Canny detection. The visibility of the
ligament in the US image sequence was defined as the
evaluation indexes. Meanwhile, an index L90 was employed
to present the percentage of good images with a ligament
longer than 90% of the full length, which is 240 pixels.



3) 3D US Reconstruction: The US reconstruction aimed to
reconstruct the 3D surface meshes from the anatomic features
in the 2D US images for hard tissue (i.e., bone). A U-Net-
based program segmented the US images and extracted the
edges of different anatomy at the pixel level, as described
in [19]. After segmentation, the images were processed with
thresholding and a morphological operator. The Canny edge
detection extracts the bone contours from the processed
images. Subsequently, the segmented 2D US images were
reconstructed with the proposed approaches. Each pixel was
represented in the robot base frame. Since the US probe
moves with a constant forward velocity of 4 mm/s along the
path, the number of reconstructed pointclouds is used as a
verification index for the 3D US reconstruction.

III. EXPERIMENTAL RESULTS

Following the completion of the experimental protocol on
the spine phantom, the obtained experimental results from the
US scanning performed “On” the surface of the phantom are
presented in Tab. III for different control approaches. The scan
of two additional experimental conditions, namely “Above”
and “Below” the surface, is displayed in Fig. 6, showing
the correlation and outcomes of the evaluation metrics with
respect to depth along the probe Z axis.

A. Results of Scanning Performance

To evaluate the stability of the controllers, we analyzed
the mean, standard deviation (Std. Dev.), maximum, and
minimum values of the normal force. Fig.6A demonstrates
the mean contact force variations with respect to depth. When
using velocity-based control Fch for the Z-axis, a constant
force was achieved, while employing first or second dynamic
models Fc1,Fc2 resulted in a descending force. Table Tab. III
presents a comparison of the mean contact force obtained from
different control methods. Position control (Exp. 10) yielded a
mean contact force of 2.13±1.55 N, while admittance control
(Exp. 1) achieved 2.39±1.13 N. The proposed admittance
control (Exp. 3) provides a stable contact force of 3.82±
0.31 N, with minor deviation in comparison to position and
admittance control. In particular, the proposed admittance
control approach demonstrated a reduced range of contact
force variation of 2.62 N. Fig. 5 illustrates an example of
the contact forces generated by the three control methods,
including position control (Exp. 10), admittance control (Exp.
1), and velocity admittance control (Exp. 3). clearly showing
the stability of the contact force with the proposed control
method.

B. Results of 2D Image Quality

The image quality assessment relies on the coverage rate
defined by ligament length, which was evaluated in pixels
as a measurement. Several metrics are computed for each
experiment, including the mean, standard deviation, and
coverage ratio L90 (number of images with 90% of the
ligament length). The graph in Fig. 6B displays the mean
coverage as a function of depth. When utilizing velocity-
based control along the Z-axis, a consistent ligament length

Fig. 5: An example of the contact force measurement along
the probe’s Z axis with the three proposed control strategies:
position control (Exp. 10), admittance control (Exp. 1), and
velocity admittance control (Exp. 3).

is achieved. However, employing the first or second dynamic
models shows a declining trend, as moving from “Below” to
“Above” reduces the contact area of the US probe with the
phantom surface.

The summarized results of scanning “On” the surface are
presented in Tab. III. Using the position control method (Exp.
10), the segmented ligament’s length is 136.64±81.66 units.
With the velocity-admittance control method (Exp. 3), the
average segmented ligament length is 182.1± 70.68 units,
while 196.53±57.97 units for the admittance control method
(Exp. 2). The best-segmented ligament length, with a higher
L90, is achieved using the control method (Exp. 6: Gc2 and
Fch), with an increase of +73% with respect to position
control.

C. Results of 3D US Reconstruction

The evaluation of 3D reconstruction results from US
scanning relies on the number of pointclouds. Implementing
velocity-based control for the Z-axis leads to a higher
pointclouds count compared to using a first or second-
order dynamical model. This is due to applying uniform
compression across the scanning area, as shown in Fig.6C.
The summarized results of 3D reconstruction “On” the surface
are presented in Tab. III. Regarding the 3D reconstruction
process, the position control method (Exp. 10) produces a
model containing 1.65×106 points. In contrast, the velocity
admittance control (Exp. 3) achieves a higher count of
1.93×106 points. Examples of the 3D reconstructed model
using these different control methods are demonstrated in
Fig.7, where the green line shows the top view of the scan
area. When the position control is used, the lower amount
of top surface is reconstructed compared to the admittance
controller and velocity admittance control. The gap between
the US probe and phantom skin is filled in with enough US
gel. Although the contact force goes to zero, the bone contour
can still be monitored in the 2D images and reconstructed
into 3D space.



TABLE III: Experimental results of contact force, the length of segmented ligament, and 3D reconstructed pointclouds for
“On” the surface experiment.

Exp. Control Method Force [N] Segmented ligament length [pixel] 3D US reconstruction
Mean Std. Dev. Min Max Range Mean Std. Dev. L90 Num of point [×106]

1 Gc2 = mẍ+bẋ+ kx Fc2 = mẍ+bẋ+ kx 2.39 1.13 -0.71 5.76 6.47 172.64 71.77 0.66 (+37%) 1.44 (-13%)
2 Gc2 = mẍ+bẋ+ kx Fc1 = bẋ+ kx 2.76 0.98 -0.02 5.94 5.97 196.53 57.97 0.82 (+71%) 1.87 (+12%)
3 Gc2 = mẍ+bẋ+ kx Fch = cẋ 3.82 0.31 2.35 4.97 2.62 182.10 70.68 0.75 (+56%) 1.93 (+15%)

4 Gc1 = bẋ+ kx Fc2 = mẍ+bẋ+ kx 2.77 1.02 -0.08 6.22 6.31 192.31 58.25 0.80 (+66%) 1.78 (+6%)
5 Gc1 = bẋ+ kx Fc1 = bẋ+ kx 2.64 1.02 -0.05 6.04 6.09 181.79 65.15 0.70 (+46%) 1.47 (-12%)
6 Gc1 = bẋ+ kx Fch = cẋ 3.80 0.31 2.31 4.89 2.58 198.31 54.83 0.83 (+73%) 2.04 (+22%)

7 Gc0 = 0 Fc2 = mẍ+bẋ+ kx 2.89 1.09 -0.05 6.76 6.81 160.48 75.55 0.58 (+21%) 1.78 (+6%)
8 Gc0 = 0 Fc1 = bẋ+ kx 2.83 1.05 -0.11 6.67 6.78 164.49 72.68 0.59 (+23%) 1.85 (+11%)
9 Gc0 = 0 Fch = cẋ 3.84 0.29 2.41 5.06 2.65 170.66 72.84 0.62 (+29%) 2.08 (+24%)

10 Gc = 0 Fc = 0 2.13 1.55 -0.54 8.94 9.48 136.64 81.66 0.48 (0.0%) 1.68 (0.0%)

(A) (B) (C)

Fig. 6: Experimental results of robotic US scanning by using “Below”, “On”, and “Above” the surface trajectories: A) contact
force, B) the length of segmented ligament, and C) the number of reconstructed pointclouds.

IV. DISCUSSION AND CONCLUSIONS
This paper aims to present a comprehensive comparison

study on a semi-automatic robotic US scanning system that
incorporates 3D US reconstruction. To accomplish this, the
system implements multiple admittance-based controllers,
which facilitate the robot’s tracking of the reference trajectory
while ensuring a consistent force in the direction perpendicular
to the contact point.

The proposed automatic scanning system has two advan-
tages in terms of applied force. First, the applied scanning
force yields at 3.83± 0.31 N and is rather low than other
similar works with 6.11±1.18 N in previous research [20,
21]. Therefore it causes less tissue deformation in the patient,
which may affect the diagnosis or interventions. For some
tracking scenarios, the deformation is uniform over the skin,
which causes fewer issues with surface tracking by depth
camera [22]. Second, the admittance or impedance-based
control scheme is used to interact with the environment; It
needs to know the environment stiffness to have fast and
stable behaviour, while the velocity admittance-based control
scheme is able to reach constant contact force in the steady
state without knowing the stiffness. It can scan and reconstruct
other anatomies of the human body, such as soft or hard
tissues, preserving large tissue deformation and allowing
physicians to monitor the scanning process.

The US image quality with the proposed control strategies
is also evaluated. It is assessed by evaluating the length of the

segmented ligament from the phantom. Around 83% of the
images contain a clear ligament with a layer length over 90%.
The performance is stable when scanning over a complex
shape surface with various depths. Consequently, the proposed
velocity admittance-based control outperforms the position
control and the admittance control. Intuitively, the quality of
the US image and the probe performance were stable in the
scanning process. The proposed evaluation approach cloud
also be extended to the validation of US scanning on humans,
since the contrast of soft tissue is better than on phantom.
The length of the ligament layer and the area of the fat layer
could be used to provide a quantitative assessment. Whereas,
the evaluation criteria are also influenced by the segmentation
approach. By training with more US images, the network
could segment the ligament layer with a more accurate and
precise boundary.

However, the proposed system has some limitations. Firstly,
due to the collaboration path planning method, a user
or sonographer is required to define the path. Therefore,
an automatic path planning method can be added to this
system to make it convenient, e.g. utilizing an RGBD
camera to automatically detect scanning regions. The user-
adjusted points may sometimes fall below the skin surface
or extend into the air, resulting in invalid US image data.
To mitigate these issues, it is imperative to implement a
control mechanism for the US probe, enabling it to adapt its
movement along the Z-axis with respect to the surface. This



Fig. 7: A) CT model and the scanned area (in green block)
on the CIRS phantom. Examples of 3D reconstruction for the
proposed control strategies: B) velocity admittance control
(Exp. 3), C) admittance control (Exp. 1), and D) position
control (Exp. 10).

entails enabling the US probe to ascend or descend smoothly
when encountering convex or concave surfaces. Secondly, this
experiment has been conducted on the static phantom only
without breathing motion. In contrast, real-world scenarios
involving patients introduce physiological motions such as
breathing and heartbeats. Addressing these motion-related
challenges will be crucial for ensuring accurate and reliable
imaging outcomes in clinical settings. By using an optical
marker on the patient’s back, the breathing motion could be
monitored and predicted during the scanning.

Importantly, it is helpful to investigate and model the
manual scanning from expert sonographers in the future.
The recovery of the “language of sonography” [23] could be
considered as valuable and essential as the progress made in
the robotic US examination.

The proposed semi-automatic robotic US reconstruction has
promising potential to be applied in clinical applications as a
non-radiation imaging solution. This approach establishes a
systematic approach for generating three-dimensional anatom-
ical structures through a robot-assisted US system. The robotic
US system guarantees precise hybrid admittance control by
maintaining a constant force at a comparably low magnitude.
The qualitative reconstruction outcomes demonstrate that

the lumbar training phantom’s geometric attributes can be
accurately reconstructed while ensuring a consistent scanning
force.

This study comprehensively assesses various control strate-
gies implemented on a semi-automatic robotic US system.
The control strategies under scrutiny encompass traditional
position control, admittance control, and the velocity-based
admittance control proposed in this research. The preliminary
results pave the way for future clinical practice.
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