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Photoredox catalysis is a well-established area with great potential for industrial applications. The need for

an optimum process with less waste generation and economic and environmental appeal has led to several

advances in this field. Nowadays, continuous flow microreactors are used to improve mass and photon

transfer issues with good results compared to batch reactors. The small dimensions minimize the effects of

the Beer–Lambert law, and the flow fields can be precisely known. However, when high throughput

production is required, the advantages of this technology derived from its small size may be lost due to the

increase in its dimensions. As a result, a more careful design is necessary to fully integrate this technology

into the industry. On a design-case basis, improvements can be made to minimize some limitations, such

as an efficiently illuminated surface-to-volume ratio in numbering up systems. Ray-tracing simulations can

be a solution to this issue. It allows the tracking of photon fate and opens the possibility of improving the

configuration of the microdevice to increase the reaction rate. A good mixing in the microchannels is also

essential for a more homogeneous light distribution in the medium, despite some other flow-dependent

issues, such as the formation of dead zones. CFD can clarify the phenomena occurring in a fluid in

movement, and it has been applied for this purpose in several studies. Moreover, the CFD model can be

linked to the ray-tracing model by using the photon flux simulations in microchannels as the light input for

the chemical kinetics. Therefore, all the coupled phenomena taking place in these devices can be

successfully simulated. However, the computational cost is one obstacle that cannot be overlooked in

simulation-based design, optimization, and scale-out tasks. It is well understood that the more complex

the model, the greater the computational effort required. As a result, we propose a framework in this paper

that combines CFD, ray-tracing simulation, and machine learning to reduce the computational cost of

complex tasks, allowing smart decisions fast and accurately. Data-driven models are used in machine

learning, and results from CFD and optics simulations can be fed into the model to generate the

predictions.

1. Introduction

The exceptional capacity of photochemical reactions to induce
chemical transformations from light has made this field one
of the main areas of chemical research nowadays. This can
also be credited to the development of photoredox catalysis, a
branch of photochemistry in which activation happens under
mild conditions with non-hazardous reagents and visible

light. The light-induced concept of such reactions appears
appealing, leading to their use in various sectors, such as
medicines, fragrances, vitamins, and added-value compounds
in general, all in the pursuit of a sustainable technique.1 In
this sense, it is common to see in literature several fine
chemicals and high-value compounds synthesized via
photoredox catalysis2,3 typically in high demand by the
market.

However, to ensure positive results in a photochemical
synthesis, a study on the system configuration, the light
source, and an understanding of all the phenomena involved
in the process is essential. According to the Grotthuss–Draper
law, photochemical reactions on a molecule are only activated
when light absorption on that molecule is successful. The
absorption of light by a molecule greatly depends on the
experimental conditions, which include the reaction system
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design, the light source and intensity, and the distance
between the light and the reaction medium.4 Beer–Lambert
law also governs the irradiation distribution. This law states
that photochemical reactions on a larger scale experience an
attenuation in the light intensity along the path.

To minimize those effects, continuous flow microreactors
are increasingly being applied to perform photochemical
reactions since the narrow microchannels can provide
uniform irradiation in the reaction medium.5 However, the
fine chemical and pharmaceutical sectors continue
extensively using batch processing for product synthesis. This
can be justified by the amount of investment necessary to
modify the system since continuous operations may
necessitate an investment comparable to, if not more than,
that of a batch plant. On the other hand, automating
continuous-flow processes can reduce labor and increase
yield while reducing costs.6

In this sense, computational methods can be applied to
design the system and speed the adoption of a continuous
process for synthesizing added-value chemicals while
lowering costs. A study on the Research & Development
(R&D) fluctuation of leading pharmaceutical industries from
Europe and the US showed an increase in the approaches of
the industries related to computational efforts.7 This fact can
be motivated by the constant evolution of technology toward
R&D. The advantages of using computational tools for
chemical synthesis optimization are numerous, as it allows
the researcher to selectively tune the characteristics of the
microreactor, lowering costs and increasing reaction
efficiency.8 Since numbering-up and scale-up techniques can
be adopted to increase the throughput of a microreactor,
computational tools can be applied to evaluate the best
design for the numbering-up microreactor system even
before production. A quick screening of the conditions for
new operations can be made since the changes in the reactor
feed (flow rates/concentrations) or its temperature
immediately impact the advancing reaction.9

Computational fluid dynamics (CFD) simulations can be
performed to examine the behavior of the fluid in motion
and aid the scaling up and system optimization.9 CFD
simulations consider all the balance equations (and initial/
boundary conditions) of the process in a specific domain,
including mass, momentum, and energy conservation.10 This
tool is applied in many engineering domains to model
complex phenomena, most of them without a known
analytical solution. Therefore, algorithms are applied to
approximate the system of equations.11 One of the numerous
advantages of this method is that it enables the optimization
and analysis of a system prior to the construction of a
prototype or the optimization of an existing system without
creating more experimental models. However, in light-
mediated reactions the optimization of the light distribution
in the reaction medium is of pivotal importance as well since
it interferes directly with the reaction rate. In this sense, ray-
tracing simulations are encouraged by this work to increase
the system's energetic efficiency. Although not widely applied

to this end, this technology presents a new chance to address
all the unanswered problems concerning optimizing
irradiation in the reaction medium.

For instance, photons might follow various courses after
light impinges on the microdevice, and unfortunately, a
significant proportion of the photons result in energy losses.
Corcoran et al.12 stated that many design features can disrupt
this distribution of photons in the system, including the
thickness of the walls in the reactor, the curvature, and the
position of the source of light (such as distance to the
reaction medium), among others. Those barriers can reduce
the energetic efficiency of the system and consequently
decrease the reaction rate.

In ray-tracing simulations, the domain of the
microreactor, optical properties, and the source of light can
be considered in the simulation. It is possible to analyze the
optical behavior and the path of the rays by combing the
principles of traditional geometric optics and the Monte
Carlo method.13 The dissipation of light can be determined
by the optical properties of surfaces, materials, and emission
sources14 light sources can be modeled, e.g., LED, sunlight,
lightbulb, etc. However, those simulations can be intensive,
and the model's complexity typically results in a high
computing cost.

Machine learning (ML) can be applied as a powerful
predictive tool to overcome those questions. In this sense,
studies devoted to turning microfluidics smarter and
automatized have become frequent in literature. A proof of
this is intelligent microfluidics, an emergent field of research
combining microfluidics and machine learning techniques.15

However, for photocatalytic systems, the application of these
tools combined is still not present literature.

The goal of machine learning (ML), a branch of artificial
intelligence (AI), is to automate complex decisions by
identifying patterns in data sets. In this instance, simulations
can provide this data (CFD and ray tracing). Furthermore, a
design of experiments (DOE) can be created to identify the
variables that may interfere with the reaction's success. On
this basis, the parameters that affect the reaction yield can
be utilized to train the model. Thus, ML can be applied to
make predictions in difficult tasks that demand extended
timescales to be performed.

In this context, this work aims to present current state-of-
the-art of computational tools for continuous-flow
photoredox catalysis optimization, as well as to propose a
new framework that combines CFD, ray-tracing simulations,
and machine learning to create a smart and optimized
continuous-flow synthesis.

2. Photoredox catalysis for the
synthesis of fine chemicals and
added-value compounds

Photochemical reactions occur through a light-induced
electronic excitation of molecules. These reactions are
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commonly triggered by high-energy ultraviolet (UV) or
visible photons,16,17 and the quantity of photons absorbed
determines the success of the process. The higher the
number of photons absorbed, the more excited states are
produced, which then engage in a chemical reaction.18

The possibility of producing fine chemicals and advanced
materials with chemical reactions mediated by light is of
great interest to industries19 had brought some light to
photochemistry again, now with the advent of photoredox
catalysis. The fact that the activation mode occurs under
mild conditions with non-hazardous chemicals and visible
light has made photoredox catalysis a potential
application in organic synthesis to produce added-value
molecules.

The photoredox catalysis principle is based on a solution
for the non-absorption of light in the visible range (390–700
nm) by organic molecules. Organic or transition metal-based
photocatalysts gather visible light in photoredox catalysis
and, once activated, can conduct single electron transfer
(SET) oxidation and/or reduction reactions.20 When the
photoredox catalyst (PC) is excited (PC*), one electron is
transferred from the highest occupied molecular orbital
(HOMO) to the lowest unoccupied molecular orbital (LUMO).
As a result of this action, the HOMO loses one electron, and
the LUMO obtains an accessible electron. Therefore, the
excited photoredox catalyst is a more powerful oxidant and
reductant than the ground state.21

This process can have two outcomes: the “oxidative
quenching cycle” and the “reductive quenching cycle”. As
the name implies, in the first one, the excited photocatalyst
donates an electron to an acceptor before returning to its
oxidized ground state. In the reductive quenching cycle, on
the other hand, the excited photocatalyst accepts an
electron from a donor and then returns to its reduced
ground state (Fig. 1). Both quenching cycles can be
advantageous concerning the target chemical
transformation.22,23

In a photoredox process, photocatalyst selection is crucial.
According to Arias-Rotondo and McCusker18 a photocatalyst
must meet specific criteria to be used successfully. The

excited state must have a long enough lifetime to perform
the reaction and a high yield of formation. The photocatalyst
must have a large absorption in wavelengths not absorbed by
the other species in the reaction mixture. Moreover, the
reversibility in photocatalyst photophysics and synthetic
modifications of the excited-state properties of the
photocatalyst must be possible.

In photoredox catalysis, a variety of photocatalysts are
used, including Ru(II) and Ir (III) complexes, as well as organic
dyes like rose bengal, eosin Y, and methylene blue, among
others.24 Fig. 2 showcases some applications.

Those successful photoredox reactions can generate highly
reactive molecules that can originate profitable synthetically
bond structures,25 which has drawn the attention of
industries to produce drugs, fine chemicals, and advanced
materials with chemical reactions mediated by light.19 This
review will not focus on the chemical reaction, but excellent
papers have been published in this sense and can be
accessed.24,26,27 Nowadays, it is common to observe an
increasing number of studies based on the production of
added-value compounds by photoredox catalysis,28–32 with
several new methodologies being proposed regularly to
improve the reaction rate.

Well-established companies have invested significant
efforts in producing novel added-value compounds via
photoredox catalysis. This is the case for big companies in
the field of agrochemicals and pharmaceuticals, which have
been investing in academic-industry training in synthetic
chemistry applying photoredox catalysis.

In synthetic pharmaceutical transformations, for example,
photoredox catalysis can be applied to a variety of methods.
Some typical uses of this technique in the literature include
selective functionalization of molecules of interest, such as
alkylation, amination, perfluoroalkylation, and
halogenation.33 In this regard, publications in the literature
can be found using photoredox catalysis to synthesize
derivatives that may be used for various purposes in the
industry. Some applications are imidazole derivatives that
can be applied as antifungal drugs,34 coumarin derivatives as
anticoagulants,35 fused β-carboline derivatives, disulfides36

Fig. 1 Quenching cycles of a photocatalyst. Reference: adapted from Ghosh.22
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and carbazoles,37 that can be applied in cancer treatment,
among others.

Despite the growing number of works being performed in
the laboratory, there are still relatively few large-scale
applications of photoredox catalysis in the pharmaceutical
industry.38 This can be attributed to the poor light
penetration in high throughput reactors. In this regard,
continuous flow reactors can play a significant role in
bringing photocatalysis into the present era of process-scale
synthesis, as improved light penetration in the reaction
media is a crucial advantage of microreactor technology over
batch reactors.39 Higher conversions, lower temperatures,
better light distribution, less use of solvents, and faster
processes are just a few reasons microreactors are becoming
more popular daily.

According to Roberge, 50% of the reactions in those
industries could benefit from a continuous flow technology-
based process6 keeping in mind that batch procedures can
result in drug shortages due to long lead times or quality
difficulties.40 The process of research and development
(R&D) of a new medicine is complex and expensive.
Lombardino and Lowe41 stated that a new drug could take
12 to 14 years to be developed, and there is a risk of
process failure in the production. The manufacturing stage
is a resource-intensive process. Testa et al.42 state that the
pharmaceutical sector loses approximately $50 billion
annually owing to batch processing inefficiency. As a result,
large corporations and institutions have recently
emphasized continuous flow as a potential technical
alternative for facilitating scale-up.39

2.1 Continuous-flow photoredox catalysis

The growing interest in microfluidics technology has
solidified it as a great research topic in the literature, with
several designs being proposed nowadays. The generic design
of a photomicroreactor's system nowadays is usually based
on a light source and a fluorinated polymer-based capillary
or a microchannel in a plate, with an inlet and outlet
manifolds.43 The process occurs through the transport of the
mixture in a capillary or in a microchannel, where the
photons are absorbed to generate the photochemical
transformations.

The microreactor's small volume allows for more precise
control of reaction parameters such as pressure, temperature,
flow rate, and residence time. As a result, when compared to
large dimensions reactors, known as batch reactors, this
configuration has the potential to improve conversion and
energy efficiency.45–46 This statement is supported by a study
conducted by Periyasamy et al.47 where the authors compared
the production of SnO2 nanoparticles in a batch reactor and
a continuous flow microreactor under identical operating
conditions. The nanoparticles produced in the microreactor
outperform the batch-produced ones in terms of methylene
blue dye degradation, irradiation stability, and
agglomeration.

Another factor that drags attention to microflow systems
is the possibility of tailoring the configuration of the
microreactor to the end application. This factor has resulted
in several devices built in-house that can also be found in the
literature.48 As a result, nowadays, a study in the design of

Fig. 2 Direct C–H difluoromethylation of heterocycles via organic photoredox catalysis (a) different photocatalyst tested by the author; (b)
reaction with sunlight as the light source; (c) reaction with green LEDs as the light source. Reference: reproduced from Zhang et al.113 with
permission from Nature Communications, copyright 2022.
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the microreactor can be considered pivotal for successful
synthesis. A great review of Buglioni et al.49 approaches
several innovations of microflow technology in application to
photochemistry.

Su et al.50 affirm that several factors must be considered
while designing microreactors. Some can be described as
follows:

• Selecting the appropriate light source and reactor
material.

• Comprehending all the system's phenomena, such as
mass transfer and photon transport.

• The distance and location of the light from the reaction
medium (since the system's heat dissipation and the light
incidence in the reaction medium can significantly reduce
the reaction rate).

• The material of the photomicroreactor is also important
for high energetic efficiency, as it must have a high light
transmission and low scattering in the intended
wavelength.51

• If the device aims to carry out photochemical reactions,
the microreactor must be radiation transparent.52 Glass,
quartz, silicon, and polymers are the most often utilized
materials for this end.

• The microreactor's geometry can also significantly
impact reaction efficiency since it can influence the light
intensity in the reaction medium and the flow distribution.

Despite all the benefits of continuous-flow systems, most
reactions in the pharmaceutical industry are still performed
in batch systems. This is because the throughput of a single
microreactor is often insufficient to cover an industrial
company's output rate,53 making microreactors more useful
for analytics than high-throughput manufacturing. A scale-up
could be the key to resolving this issue; however, various
factors must be considered, as sizing up the system may
result in inefficiencies and increased expenses. Several
approaches can be considered to apply in this end,
numbering-up, sizing up, and a combination of both.54

Over the years, numerous experiments have been
undertaken in an effort to enhance the throughput of
chemical synthesis in microreactors. In line with this, one of
the most notable strategies employed is the process of
numbering up. This widely utilized approach enables the
retention of crucial hydrodynamic and transfer properties
associated with the micro-environment.55 Numbering-up
strategies, also known as scale-out strategies, can be
implemented either externally or internally. External
numbering-up occurs when several devices are arranged in
parallel, whereas internal numbering-up occurs only when
functional elements are parallelized, not the entire device.
This second method can be considered more interesting in
engineering terms since the design is more compact and
economical than external numbering-up.56 According to
Mason et al.,57 numbering-up in microreactors can avoid
large-size reactors while securely increasing system
productivity. The authors said that microreactors typically
outperform batch spacetime yields in industrial chemical

synthesis by producing more products per unit volume and
per unit time.

Scaled-out microreactors can deliver high throughput and
inherent safety while simultaneously being suitable platforms
for the continuous synthesis of materials in small quantities
and could greatly supplement traditional batch synthesis
procedures in the chemistry laboratory.58 However, scaling
up the size of a reactor for chemical synthesis is already
challenging due to mass and heat transfer issues. In
photochemical systems, this problem is accentuated due to
the distribution of the photons, which is affected by the
Beer–Lambert law.59 Addressing this concern, Zondag,
Mazzarella, and Noël provide an effective approach to scaling
up photochemical systems in their recent paper.60 According
to Donnelly and Baumann,61 as the size of a reactor
increases, the path length also increases, resulting in a non-
homogeneous irradiance. Nevertheless, the implementation
of miniaturization techniques can help mitigate this problem
by reducing the path length.

Baumann and Baxendale62 suggest that substantial
research on continuous flow applied to commercial synthesis
is critical for changing the mindset in the chemical industry.
Higher production and, as a result, optimization of
continuous-flow systems can lead to greater use of this
technology for the synthesis of added-value compounds at
the industrial level, as it can provide researchers more
confidence in the process while also lowering the cost of
implementation.

For a study in the design and optimization of
microchannels and microreactors in general, computational
fluid dynamics (CFD) simulations are frequently performed
in the literature. This tool can be used to investigate
phenomena such as mass and heat transport in the system,
as well as examine hydrodynamic behavior and mixing in the
system. Ray-tracing simulations can optimize the system's
optical efficiency to choose the best and most economically
viable material and design for the reactor while aiming for
optimum energetic efficiency.

However, these simulations can be time demanding and
computationally expensive in complex systems. But this
issue might be on the verge of being solved. New methods
are proposed daily due to the fast-growing technology. In
this regard, machine learning can be highlighted as a
growing technology these days. This artificial intelligence-
based technology has the potential to learn patterns in data
and make predictions in much less time than traditional
simulations and experimental procedures. This way, it has
been used in a wide range of industries such as medical,
engineering, games, and biotechnology. According to a study
on the impact of A.I. technology on the world, by 2030,
almost 70% of industries may have embraced at least one
A.I. technology, indicating a significant potential of this
method to contribute to global economic activity.63

Microfluidics is not an exception to this. To optimize
photoredox systems, CFD and ray-tracing simulations can
be performed and provide a large amount of data, which
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can be used to feed those learning models. Machine
learning can be used to anticipate the ideal configuration in
a continuous flow device while taking into consideration all
of the phenomena involved and at a significantly lower
computing cost.

Malet-Sanz and Susanne64 stated that the first major
investment in new technology (continuous-flow) to replace
batch equipment is the more significant barrier to this
implementation. In this sense, these tools can assist the
process to be less expensive while lowering labor time, as
well aiding the elucidation of all the phenomena present in
the system, resulting in a more profitable and optimized
design of microreactor.

3. Computational tools towards a
continuous-flow photoreactor design

To achieve high rates in photochemical reactions, the
modeling of a continuous-flow system must take several
factors into account. The microreactor's configuration and
geometry can affect heat and mass transfer, light
distribution, light dissipation, and overall reaction rate. As a
result, to fully optimize the reaction, all the factors that
influence its efficiency must be considered and elucidated.

3.1 Simulation of photoredox catalysis in flow

Computational fluid dynamics (CFD) is a numerical tool
that models fluid flow and allows the prediction of mass
and heat transfer rates, chemical reactions, and so on. CFD
simulations consider all the governing equations (and
initial/boundary conditions) of the process in a specific
domain, including mass, momentum, and energy
conservation.10 This tool is used in a wide range of
engineering domains to model complex phenomena, most
of them without a known analytical solution. Therefore,
algorithms are applied to approximate the system of
equations.11 In the simulation, the domain of interest is
defined as a large number of elements that are much
smaller than the domain of interest's macroscopic volume.
After creating a discrete representation of the relevant
conservation equations for each control volume, an iterative
procedure is used to obtain the solution of the nonlinear
equations.65 One of the many advantages of this approach
is that it allows for optimization and analysis of a system
before building a prototype, or the optimization of an
existing system without the need to build testing physical
models. This method can both speed up and save
resources. Currently, several CFD software are available,
with the most popular being COMSOL Multiphysics®,
ANSYS Fluent®, and OpenFOAM®, being the last an open-
source alternative.

CFD can provide critical insights into the behavior of
microreactors, allowing researchers to explore the effect of
different geometrical configurations and operating
conditions on the device performance, for example,

emphasizing flow non-idealities.66 This tool is essential for
fully comprehending how chemical processes work to
improve photochemical reactions. Questions about the mass
transfer rates, the presence of dead zones, velocity fields, and
radiation transport in microreactors can be answered. CFD
integration with microfluidic devices has achieved promising
results in liquid-phase systems. The behavior of an
incompressible liquid, as well as the laminar flow regime
(which is a consequence of the microreactor's small
dimensions and usually results in good simulation
predictions based on first principles), can be attributed to
these results.67

CFD simulations are not a new trend in chemistry.
However, only a few studies have used it for photoredox
catalysis, which is why this paper proposes using this
technology to speed up the development process. However, at
the same time, numerous studies have applied CFD tools to
enhance the performance of continuous flow microreactors
in general. In this sense, Sen et al.68 demonstrated the
synthesis of tributyl phosphate (TBP) in a microreactor for
the first time. Two types of micromixers were used in the
study: the T-junction micromixer and the split-and-
recombine micromixer. To quantify the mixing in the
micromixers, CFD simulations were performed. The
simulations predicted better mixing in the split-and-
recombine process. TBP synthesis, according to the authors,
is feasible in microreactor systems.

Santana, Silva Jr., and Taranto69 also utilized CFD to
evaluate the mixing of Jatropha curcas oil and ethanol in
micromixers for biodiesel synthesis. The simulations were
run on ANSYS CFX-14.0 software. Micromixers in three
different configurations were studied: T-micromixer, cross-
micromixer, and double-T-micromixer. Fluid mixing was
evaluated using various Reynolds numbers, and oil
conversion was evaluated using various Reynolds numbers as
well as residence times. The authors discovered that the
conversion in all the micromixers was roughly the same in all
configurations tested and that the Reynolds number had no
effect on these results. Regarding the mixture efficiency, a
low Reynolds number resulted in an excellent mixture in all
configurations. In contrast, a high Reynolds number resulted
in a better mixture in the T-micromixer and a lower mixture
in the Double-T-micromixer. Finally, it was demonstrated that
CFD simulations could aid experimental observations and
flow-related evaluations.

CFD is also widely used for geometry evaluation, as several
authors have demonstrated in the literature that a careful
design of microreactors can provide excellent chemical
throughput. Yusuf and Palmisano70 utilized COMSOL
Multiphysics® software to investigate the effect of
microreactor geometry on 4-nitrophenol photodegradation.
The photodegradation simulation was carried out in a
recirculating and single-pass photocatalytic microreactor with
simulated solar radiation. A dynamic transport model was
used in recirculation mode to predict the effect of changing
the initial concentration of 4-nitrophenol. According to the
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authors, changing the geometry's height and length,
combined with lowering the flow rate, can improve
conversion.

Oliveira et al.71 investigate the effect of the geometry of a
microreactor on reaction rate. The authors developed a CFD
model for the [4 + 2] cycloaddition of 9,10-
diphenylanthracene, a reaction selected as a benchmark
reaction. The reaction's kinetic law takes light intensity into
account, and a feedforward control algorithm was
implemented in the system to keep the conversion stable
regardless of light changes. The effect of two new
microreactor geometries on the reaction rate was also
investigated. As a result, the CFD model agreed well with
the experimental data in different residence times and
light power. The responses of the new geometries were
very similar, considering conversion and velocity profiles.
Finally, the authors concluded that the CFD simulations
are a viable option for fluid dynamics analysis and
microreactor design.

Therefore, fluid dynamics analysis can elucidate several
phenomena present in photocatalytic systems, facilitating
process optimization. Optimal results can be reached,
particularly when analyzing complex single-phase laminar
flow problems, which, according to Kuipers and Van Swaaij,65

have simulation accuracy so high that validation experiments
are frequently considered unnecessary. This is not the case
for single-phase or multiphase flow problems, eventually
associated with turbulence, in complex geometries, which
require significant computational effort. In particular, this is
the scenario where machine learning stands out as a current
option. Machine learning is now being used to accelerate
fluid dynamics simulations while lowering computational
costs.

Mohammadpour et al.72 applied four ML regression
models (k-NN, RF, GPR, and MLP) to save computational
costs, where k-NN was the model with high accuracy. Ribeiro
et al.73 proposed a convolutional neural network (CNN) based
model that efficiently approximates solutions for the problem
of non-uniform steady laminar flows. The authors achieved a
speedup to three orders of magnitude over the typical CFD
approach while maintaining low error rates. Kochkov et al.74

achieved computation speedups of 40 to 80 times. Using a
data-driven numerical technique with the same accuracy as
traditional finite difference/finite volume methods but
significantly coarser resolution. The approach learns exact
local operators for convective fluxes and residual
components, matching the precision of a high-resolution
numerical solver while executing the computation 40 to 80
times faster.

Despite these benefits, such computational technologies
are still primarily utilized to solve fluid flow. Being unable to
explain factors such as light distribution in the reaction
medium, photon fate, and energetic losses, among others,
which are critical in photoredox catalysis reactions.
Fortunately, ray-tracing simulations can be applied to
enhance the optical efficiency in those systems.

3.2 Photon transport simulation

Loubière et al.75 states that notwithstanding the photoreactor
being in optimum process conditions hydrodynamically, the
reaction rate is entirely dependent on light irradiation to be
successful. Nonetheless, the authors argue that the “ideal
reactor” concept in photochemical engineering should be
reconsidered. All these losses present in photochemical
systems are undesirable since they cause energetic
inefficiency and low reaction rates. For these reasons, it is of
paramount importance to understand the photon fate in the
system for further optimization. To determine which optical
losses are present, ray-tracing software such as
LightTools®,76 Matlab®,77 Ansys Speos®,78 and ZEMAX
Optics Studio®79 are available today to determine which
optical losses are present in the reaction system. Pvtrace, a
Python-based statistical photon path tracer, is also an open-
source solution for ray-tracing simulations. One advantage of
Pytrace is that it may be customized since it is written in
Python.

By combining the principles of traditional geometric
optics and the Monte Carlo method, optical ray-tracing
simulation can analyze the optical behavior and path of the
rays.13 The dissipation of light is determined by the optical
properties of surfaces, materials, and emission sources.14

Different light sources, such as LED, sunlight, lightbulb, and
so on, can be modeled. Since these simulations work through
the stochastic Monte Carlo probability method, random
numbers are considered to determine the direction, position,
and energy of the photons, among other parameters.80 The
fate of the rays can be elucidated since these algorithms can
evaluate the rays that are absorbed, reflected, refracted,
diffracted, and scattered in the domain. However, despite the
great importance of this subject to a successful reaction, few
studies evaluating photon transport in continuous flow
photoredox catalysis can be found in the literature today,
making this subject a gap in the literature.

To optimize a photoredox reaction, Cambié et al.81 applied
a ray-tracing simulation to determine the optimum aspect
ratio, channel height, and the number of channels of a
microreactor based on the luminescent solar concentrator
technology. The author was able to successfully optimize all
the parameters using the ray tracing simulation,
demonstrating that ray-tracing algorithms can be a powerful
tool for photochemical system optimization.

Similarly, to determine the most appropriate light source
for a photochemical reactor, Meir et al.82 also applied ray-
tracing simulations. LEDs were used as the light source in
the investigation. The authors were able to observe the
reactor's energetic efficiency using the simulations and
concluded that the optimal optical performance could be
achieved using the most collimated LED possible.
Furthermore, the authors could conclude about the most
suitable material for the reactor, the thickness of the glass
wall, the reactants concentration, and the length of the
reactor for optimal optical performance.
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Ahmed et al.83 used commercial ray-tracing software to
examine fluence rate fields in an ultraviolet (UV)
photoreactor. Three UV reactors were simulated, with a
low-pressure Hg lamp as the light source. According to
the author, the fluence rate was calculated in ray-tracing
software using the formal definition of fluence rate,
which is calculated as the incident power from all
directions on a small spherical receiver divided by the
sphere's cross-sectional area. Fig. 3(a) depicts a fate of a
single ray after being emitted by the UV Hg lamp
surrounded by a quartz jacket. Fig. 3(b) presents the
fluence rate predictions obtained for the ray-tracing
simulations and comparison among other numerical
models, as well as an experimental measurement from an
actinometer. The ray-tracing simulation produced a result
more closely related to the experimental value than the
other numerical tools, demonstrating its usefulness in
predicting fluence rate fields in ultraviolet (UV)
photoreactors. The authors concluded that ray-tracing
simulations might be used to correctly estimate the
fluence rate in UV photoreactors, resulting in values near
experimental measurements.

Using Monte-Carlo ray-tracing software, Matiazzo et al.78

evaluate the optical efficiency of the mesoscale NETmix
photoreactor with LEDs as a light source. The authors
discovered that light absorption is directly proportional to
the distance between the LEDs, as well as the distance
between the LEDs and the reactor window. Fig. 3(c) depicts
the geometry of the microreactor and the distance from the
light source. From Fig. 3(d), it is possible to notice that the
irradiation is higher right above where the LEDs are placed,
indicating that there is room for optimization in the LEDs
position to increase the homogeneity of irradiation in the
microreactor. As a result, the authors concluded that ray-
tracing simulations can be used to determine the optimal
point of illumination in the reaction medium.

Ray-tracing simulations in continuous flow photoredox
catalysis can assist in the fabrication of energetically efficient
designs considering the light source, the location of the
source, the power of the source, the overall geometry of the
domain, and the optical characteristics of the raw material of
the microreactor. Furthermore, the software can consider the
reactive species mean free path, the absorption spectra, the
emission spectra, and the quantum yield. The importance of

Fig. 3 (a and b) Ray-tracing simulations in ultraviolet photoreactors. (a) Fate of a single ray after coming out from the Hg lamp; (b) performance
of the ray-tracing simulation from fluence rate prediction over other methods. (c and d) Ray-tracing simulation on the NETmix milli-photocatalytic
reactor. (c) Position of the LEDs in the reactor; (d) irradiance map of the reactor. Source: (a and b) reproduced from Ahmed, Jongewaard and
Blatchley83 with permission from American Chemical Society, copyright 2022. (c and d) Reproduced from Matiazzo et al.78 with permission from
Chemical Engineering Journal, copyright 2022.
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this analysis is pivotal. Cambié et al.84 reported that photon
losses occur in light-driven systems, which are directly
dependent on the fate of the photons. In the case of the LSC-
PM, photons can travel by the following paths: top reflection,
transmission, emission in the escape cone, edge emission,
adsorption by the reaction media (ideal), and, finally,
photons can be lost by matrix absorption or non-unity
fluorescence quantum yield.

As a result, ray-trace modeling can now be regarded as a
promising tool for the design, performance evaluation, and
optimization of optical systems, which, when combined with
CFD simulations, can produce excellent results in terms of
both fluid dynamics and optical efficiency. One crucial aspect
especially relevant for simulations based on LED light
sources is that its emission is usually modeled using the far-
field intensity distribution (mostly provided by the
manufacturer). However, many LED light sources are placed
close to the illuminated reactor surface and potentially in the
near-field region. Consequently, to properly represent the
light source in ray-tracing simulations, their spatial emission
of irradiation subject to the LED-reactor distance can be
quantified using a goniophotometer.85 This is exemplified in
Roibu et al.,86 where it is shown that irradiance profiles
calculated based on the manufacturer datasheet
underestimate the width of the LED emission at short
distances between the LED and the illuminated reactor
surface, which could be corrected using near-field
goniophotometer measurements.

In general, ray-tracing necessitates significant
computational effort, which can be costly in more complex
cases. In today's computational era, several options for
overcoming this issue are available and highly recommended
by this work. One of these options is machine learning.
Machine learning methods can be trained using CFD and
ray-tracing simulation results to predict behaviors. The
advantage is that this method can be used for high-level
decision-making, indicating optimal scenarios faster and at a
lower cost.

3.3 Machine learning strategies applied to continuous-flow
design optimization

Machine learning (ML) is a subgroup of artificial intelligence
that aims to emulate human intelligence by learning from
sample data. The goal is to provide predictions or decisions
without explicitly programming the machine to perform
these actions.87,88 Tom Mitchell89 in 1997 provided an
accurate definition for ML: “A computer program is said to
learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T,
as measured by P, improves experience E”.

There are three important subsets of machine learning
algorithms: supervised, unsupervised, and reinforcement
learning. Fig. 4 depicts the three learning methods and their
associated techniques and algorithms most utilized.
Supervised learning can be applied when the user already has

Fig. 4 Learning methods of ML and their associated techniques and algorithms most utilized.
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a set of data or labeled data. The algorithm, in this case,
receives a set of input variables that are used to predict a
response, and a comparison of the model output with the
correct one is responsible for correcting the parameter.90

Unsupervised learning by itself does not receive labeled
data. This procedure is convenient to discover a way to group,
or cluster, a set of elements by its similarity.91 Finally,
reinforcement learning is accomplished through trial and
error, as well as reward and penalty feedback from the
environment. The goal of reinforcement is to learn how and
what to do in a specific situation to maximize the reward.92

The success of a learning model is strictly dependent on
some assumptions. First, an evaluation of the data is
necessary to initiate the data analysis. Structured data or
unstructured data require different approaches. At this point,
it needs to be elucidated. Afterward, a problem definition
must be created, and the description of the problem must be
very clear, with the targets well defined. The following step is
reserved for data analysis in the data set. This process is
necessary to determine which features of the data set are
crucial to the insights of the model. After that, data cleaning
can begin.

By this time, it is already possible to see what learning
method fits better to the task. Therefore, this step is reserved
for this decision. Lastly, the experimentation process is
performed. This step can be considered pivotal to achieving
great performance in the model. Evaluations of the response
will be performed during the experimentation to determine
the best model for the target. At this point, the machine
learning engineer must be aware of the techniques that have
already been used as well as the new possibilities for
improving the model response.

There are many techniques available for each learning
algorithm. In supervised learning, classification and
regression are two possibilities of algorithms. The regression
models are based on a quantitative response, where a
numerical value can be predicted continuously.93 In this
method, the independent and dependent variable relation is
represented by a linear function, that must have a reasonable
accuracy.94 On the other hand, classification is a binary
process, where only two options of response are available
(except in multi-class classification). In unsupervised
learning, clustering and association rule learning algorithms
are commonly applied. Data clustering is used to group
unlabeled data based on pattern similarity, whereas
association rule learning is responsible for discovering
relationships between items in the data set. Finally,
reinforcement learning can occur through the skill
acquisition method, in which the model acquires skills
through a reward and penalty approach.

Learning methods are not usually applied in continuous
flow photoredox catalysis. However, studies involving
microreactor optimization are easily found. Dressler et al.95

suggested the combination of microfluidics and ML
techniques to solve the problem of lack of performance in
microfluidic systems after a long timescale. Reinforcement

algorithms were proposed by the authors. Model-free
episodic controllers and Deep Q-networks. The authors stated
that the algorithms outperformed human-level performance,
being able to control factors such as droplet size and laminar
flow, as well as process all the experiments. On the other
hand, Lavín, Kanizawa, and Ribatski96 utilized the k-means
clustering method to detect patterns in a microchannel's
flow. From that, they discovered different types of patterns
with different characteristics in the flow.

In terms of reaction efficiency in microreactors, ML can
support by predicting an optimal reaction condition,
clarifying the importance of operational parameters in the
processes, and identifying retrosynthetic routes.97 In this
regard, Watanabe et al.98 investigated the effects of reaction
parameters on the synthesis of nanoparticles in a
microreactor. Artificial neural networks (ANNs) were one of
the techniques used to achieve this goal. The ANNs' predicted
values had a good linear relationship with the measured
ones. The method proved to be effective for visualizing a
manifold parameter.

Motivated by the challenge of controlling nanomaterial
synthesis, Orimoto et al.99 proposed the use of ANNs to
predict the properties of the nanomaterial and the
conditions. The algorithm produced good results, accurately
predicting the properties of the nanomaterials in new
experimental conditions. Furthermore, patterns in properties
conditions were discovered through this method. The data
set was derived from the experimentation in a microreactor.

Moon et al.100 also utilized learning techniques to identify
the parameters that have a direct influence on the reaction. A
random forest (RF) model was developed in this case to
predict the stereoselectivity outcome of glycosylations. The
model was successfully applied, and it was able to provide
predictions and define a method for controlling
stereoselectivity in this scenario. The experimental procedure
to validate the predicted results was performed in a
microreactor platform.

Xing et al.101 constructed a model with RF, ANNs, and
empirical correlations (EC) to predict the kinetic parameters
of biomass devolatilization for application in CFD
simulations. The validation results presented an R2 of 0.92
for the RF model, and the ANNs presented the second-best
result. The two ML algorithms were superior to EC
predictions, proving that ANNs and RF can provide accurate
estimates.

ML presents an important role in the field of reaction
control and optimization. Furthermore, data post-processing
and the ability to solve complex fluid dynamics problems
such as design optimization, modeling, and analysis are
some of the contributions that ML can make to improve
chemical processes. In this context, Granados-Ortiz and
Ortega-Casanova102 exploited a framework composed of an
RF classifier algorithm and a kriging method to predict the
optimal geometry configuration for the formation of a vortex
shedding in a microdevice. The framework presented an
efficient response for the microreactor's design with good
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results from the RF algorithm, with no need to be substituted
by a more complex algorithm. The author also concluded
that by utilizing the framework proposed, it is possible to
reduce the computational resources necessary to locate vortex
shedding.

From this perspective, it is possible to assert that studies
using microreactors and ML are becoming more common.
However, the combination of ML and continuous-flow
photoredox catalysis remains a gap in the literature.

4. CFD, ray-tracing and ML: a
framework

The prospect of combining predictive approaches and flow
reactors is exciting in the synthetic chemistry community
and has been seen as a great opportunity of improvement in
the field.103 The ability to automate the process while
minimizing waste and increasing safety is necessary for all
sectors.104 In this sense, intelligent microfluidics is gaining
space in the scientific community. This approach refers to
the use of machine learning and computational fluid
dynamics (CFD) to improve microfluidics systems and is
already applied in a variety of industries, including
biotechnology and chemistry. In the chemical field, for
example, ML and CFD can provide insights into difficult
challenges involving optimum conditions in chemical
reactions and even reverse design of microfluidics devices.
ML and CFD can be used to assess, develop, and control
continuous or discrete fluids in microchannels. Even if the
yield is only enhanced by 1%, for example, the ability to
optimize reaction conditions can create profit and save
resources in industrial chemical processes.15

When CFD simulations are computationally demanding, a
surrogate model can be built. Surrogate models are statistical
models capable approximate the simulation outcome
accurately. Following that, this trained statistical model can
be used to replace the original computer simulation in
sensitivity analysis, optimization, or risk analysis. It is critical
for the evolution of microfluidic technology to have an
economically effective and rapid solution for optimizing
microfluidics technology on an industrial scale. By applying a
framework comprised of CFD, ray-tracing, and ML, this total
system optimization might be achieved. CFD and ray-tracing
simulation can shed light on all aspects of optics and fluid
flow. Simultaneously, ML can help as a smarter and faster
optimization tool that is completely effective. Despite ray-
tracing being a new technology when it comes to its
application in photomicroreactors, a growing number of
studies implementing CFD and ML in fluid dynamics
systems can already be found in the literature. In this sense,
Hanna et al.105 coupled ANNs and RF to CFD simulations to
decrease the simulation computational cost. Afterward, the
author proposed a coarse grid in the simulation coupled with
ML techniques to predict the local errors in the grid in the
function of flow features. The method generated good results
by correcting the coarse grid locally. Furthermore, the model

could predict results for new cases, such as those with
different geometrical dimensions and distinct Reynolds
numbers. Bao et al.106 employed ML techniques to estimate
the error in a coarse-mesh CFD. The author used deep
feedforward neural networks in this case (NFNN). AI's grid
optimization can result in a significant reduction in
computational time. As a result, this type of application is
becoming increasingly common in the literature.

Regarding design, Liang and Yuan107 studied mixing
optimization in a microreactor. The authors proposed a
supervised learning method, a support vector machine
(SVM), which was trained using CFD data simulations to
achieve this goal. The authors' proposed framework managed
to yield the main product approximately 4.3 times more than
the original microreactor.

To perform data post-processing, Yu et al.108 combined
CFD simulation with a non-supervised learning algorithm
called K-means. The goal was to find the most advantageous
partition in various zones of an engine combustion chamber.
The combustion chamber was successfully partitioned into
different zones based on the K-means results. Marcato
et al.,109 using CFD to produce a data set, predicted the
permeability and the deposition rate in porous media with
ANNs. This model's execution produced highly accurate
predictions.

Ren et al.110 demonstrated how machine learning, CFD,
and ray-tracing simulation can be used to optimize a
photocatalytic hydrogen production system. The author
obtained the flux of sunlight on the reactor's surface using a
ray-tracing simulation. To investigate fluid dynamics,
radiation transfer, and chemical reaction kinetics, a CFD
model was developed. A Gaussian process regression was
used to reduce the computational effort. According to the
author, the results demonstrate the applicability of those
tools in the optimization of hydrogen production systems, as
they successfully found the optimum operational conditions
that lead to a high yield of hydrogen productivity.

Therefore, it is possible to conclude that ML and CFD can
be great allies for an accelerated synthesis. However, as
previously stated, the optics events in the system must also
be considered for optimization. Thus, we propose combining
ray-tracing simulations with CFD simulations and ML
techniques to develop a new optimization method. With this
combination, ML can enter the framework with the task of
predicting the best configuration possible, considering
physical and optical phenomena, reactions, and microreactor
design. Fig. 5 illustrates the framework principles.

The ray-tracing simulation is capable to evaluate the
irradiation in the microdevice while accounting for all-optical
properties. This enables a tuning up in the microreactors
configuration considering the optical efficiency. Furthermore,
the photon path in the domain can be observed, and the
optical losses can be determined. From the ray-tracing
simulation, the photon flux in the microchannels (or another
domain) can be set as the light input for the chemical
kinetics in the CFD software. As a result, the entire
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computational procedure will consider the precise irradiation
that reaches the reaction medium, and the simulation result
can be performed while taking into account all of the
phenomena involved in the reaction.

However, as previously stated, complex models necessitate
a high computational cost, which may result in simulations
that are no longer worthwhile. In this case, machine learning
models can be fed with the simulation results, being able to
perform the predictions faster and at a lower computational
cost. There are only a few studies applying those techniques
together that can be found in literature nowadays. Thus, this

work aims to propose the use of this method to accelerate
optimization in photoredox catalysis systems, thereby
speeding up the evolution of synthetic chemistry.

The adoption of this technique can aid not only single-
phase flow reactions, as also the complexes multiphasic
reactions conditions. Heggo and Ookawara111 in a
comprehensive review about multiphasic reactions in
microdevices, stated that the design and the size of
multiphase photocatalytic micro- or mini-reactors still need
to be optimized in order to attain greater efficiency in terms
of quality and quantity in different area of applications, as

Fig. 5 The framework's basic flowchart for continuous-flow photoredox optimization.
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well as from a perspective of capital and operating costs.
Laudadio et al.112 showed how a multiphasic reaction can be
improved if performed in a microflow reactor which enable
the safe use of oxygen and enhance the irradiation in the
mixture. Therefore, we believe that this framework can aid
the innovations in the microfluidic field while also directly
assisting scale-out strategies for microreactors.

5. Discussions on future directions
and concluding remarks

The growing industrial interest in photoredox catalysis to
produce added-value compounds has firmly established this
field in the literature. Most of the research is devoted to
determining methods to improve the reaction rate and
reduce costs. In this review, we summarized powerful
computational tools that can meet this need in synthetic
chemistry. Despite the current robustness of photoredox
catalysis, there is still plenty of room for improvement, and
computational simulations may be a valuable tool in this
regard. The ability to optimize a photochemical system
without using reagents, raw materials, or overall resources is
the main attraction of these technologies. The applicability of
those tools for optimized photoredox catalysis is important
for a new perspective in the field of photochemistry
improvements. There is still much to be discovered in this
field, but the ability to investigate a reaction while taking
optics and fluid properties into account and in a faster way
can be game-changing.
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