
ON EMBEDDINGS OF EXTENSIONS OF ALMOST
FINITE ACTIONS INTO CUBICAL SHIFTS

EMIEL LANCKRIET AND GÁBOR SZABÓ

Abstract. For a countable amenable group G and a fixed dimen-
sion m ≥ 1, we investigate when it is possible to embed a G-space
X into the m-dimensional cubical shift ([0, 1]m)G. We focus our
attention on systems that arise as an extension of an almost finite
G-action on a totally disconnected space Y , in the sense of Matui
and Kerr. We show that if such a G-space X has mean dimension
less than m/2, then X embeds into the (m+1)-dimensional cubical
shift. If the distinguished factor G-space Y is assumed to be a sub-
shift of finite type, then this can be improved to an embedding into
the m-dimensional cubical shift. This result ought to be viewed as
the generalization of a theorem by Gutman–Tsukamoto for G = Z
to actions of all amenable groups, and represents the first result
supporting the Lindenstrauss–Tsukamoto conjecture for actions of
groups other than G = Zk.

1. Introduction

It is a ubiquitous phenomenon in mathematics that if one deals
with a category of objects with any kind of rich structure, there are
often some natural distinguished examples that are large enough to
study conditions under which a general object embeds into the distin-
guished examples. Depending on the precise context, the solution to
such a problem can reveal an a priori surprising hierarchy present in
the objects under consideration, or in the best case scenario give rise
to new invariants that may have applications far beyond the original
embedding problem.

In order to illustrate the historical importance of embedding prob-
lems, one need not look further than geometry and/or topology. The
Whitney embedding theorem, asserting that every m-dimensional Rie-
mannian manifold embeds smoothly as a submanifold of R2m, was not
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only impactful for its statement, but introduced various concepts in its
proof that remain fundamental in the area of differential geometry to
this day. The Menger–Nöbeling theorem, asserting that every compact
metrizable space with covering dimension m embeds continuously into
the cube [0, 1]2m+1, not only generalizes this kind of phenomenon from
the geometric context, but shows that covering dimension introduces
a level of hierarchy among spaces having consequences beyond simply
acting as a simple-minded obstruction to embeddings.

This short article aims to make progress on a similar embedding
problem for topological dynamical systems, i.e., countably infinite dis-
crete groups G acting via homeomorphisms on compact metrizable
spaces. In this case the distinguished examples are given by so-called
cubical shifts. That is, given a natural number m ≥ 1, we may consider
G acting on the space ([0, 1]m)G by sending g ∈ G to the homeomor-
phism [(xh)h∈G 7→ (xg−1h)h∈G]; we refer to this as the m-dimensional
cubical shift. A priori, it is not at all clear how to determine when a
given action α : G ↷ X embeds into such an example, not even how
to determine that it does not. Given that X embeds into the Hilbert
cube as a consequence of Urysohn–Tietze, say via ι : X ↪→ [0, 1]N, it
is a triviality to obtain the equivariant embedding into the analogous
Hilbert cube shift ([0, 1]N)G via x 7→ (ι(αg(x)))g∈G. Since ([0, 1]N)G is
actually homeomorphic to ([0, 1]m)G, this begs the question how much
of a hierarchy there really is between cubical shifts of different dimen-
sions regarding the class of dynamical systems that embed into them.

The first really substantial embedding result was in the PhD the-
sis of Jaworski, who showed that every aperiodic homeomorphism on
a finite-dimensional space (which we view as a free Z-system) embeds
equivariantly into [0, 1]Z. Later on this led to the question by Aus-
lander, asking whether this holds for arbitrary aperiodic homeomor-
phisms on any space. This problem remained open for over a decade
before it was settled in the negative by the introduction of mean topo-
logical dimension, the ideas of which initially appeared in Gromov’s
work [Gro99] and were subsequently fleshed out by Lindenstrauss–
Weiss [LW00]. Under the assumption that G is amenable, every topo-
logical dynamical system α : G ↷ X can be assigned its mean dimen-
sion mdim(X,α) ∈ [0,∞], which respects embeddings. (Although one
should perhaps mention that mean dimension has since been extended
to sofic groups [Li13], the methods in this paper reveal nothing new
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beyond the amenable case, hence we shall ignore sofic mean dimension
here.) In a nutshell, mean dimension is a dimensional analog of entropy
and is designed to be useful for distinguishing systems of infinite topo-
logical entropy. The conceptual difference between these notions can be
summarized by the slogan that entropy measures the number of bits per
second needed to describe points in a system, whereas mean dimension
measures the number of real parameters per second. From this intu-
itive perspective, it is not surprising that the mean dimension of every
m-dimensional cubical shift is equal to m. By the mere existence of free
minimal actions with arbitrarily large mean dimension — see [LW00,
§3] and [Kri09] — one gets plenty of examples that cannot embed
into the m-dimensional cubical shift. In a suprising twist at the time,
Lindenstrauss in [LW99] proved that (extensions of) minimal homeo-
morphisms with mean dimension less than m/36 do embed, however.
This has triggered the search for the optimal embedding result that
can be seen as the dynamical generalization of the Menger–Nöbeling
theorem.

Although the situation for completely general systems is rather sub-
tle and unsolved even for G = Z, there has been amazing progress for
aperiodic or even minimal homeomorphisms. Building on various sub-
stantial precursor results [LT14, GT14, Gut15, Gut17], the optimal
embedding result was recently proved by Gutman–Tsukamoto [GT20]
for minimal homeomorphisms: Every minimal homeomorphism with
mean dimension less than m/2 embeds into the m-dimensional cubical
shift. A generalization of this result for Zk-actions was successfully pur-
sued in [Gut11, GQS18, GLT16, GQT19], the final approach of which
involves extremely sophisticated tools from signal analysis to take ad-
vantage of the surrounding geometry for these groups. As was noted
in the introduction of [GT20], “the generalization to non-commutative
groups seems to require substantially new ideas”. Indeed there has been
no progress on the embedding problem for dynamical systems over non-
abelian groups to the best of the authors’ knowledge, and this article
aims to change that. Our main result (Theorem 3.5+Corollary 3.6)
asserts:

Theorem. Suppose G is a countable amenable group. Let β : G ↷ Y

be an almost finite action on a compact totally disconnected metrizable
space. Let α : G ↷ X be an action on a compact metrizable space
that arises as an extension of β. Let m ≥ 1 be a natural number and
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suppose that mdim(X,α) < m
2 . Then there exists an embedding of G-

spaces X ↪→ ([0, 1]m+1)G. If (Y, β) is assumed to be a subshift of finite
type, then there exists an embedding of G-spaces X ↪→ ([0, 1]m)G.

In the context of the above theorem, we remark that the concept of
almost finiteness for actions, introduced in [Mat12, Ker20] with a moti-
vation towards C∗-algebraic applications, is a kind of freeness property
that is designed as a topological version of the Ornstein–Weiss lemma
[OW87] for free probability measure preserving actions. Since it is by
now known for a large class of groups that almost finiteness for β fol-
lows if β is assumed to be free (see Remark 2.3), our main result should
be viewed as a generalization of Gutman–Tsukamoto’s approach from
[GT14] to the setting of amenable groups. This is indeed reflected not
just in the similarity of the main result, but at the level of our proof.
More specifically, there are clear parallels between Lemma 3.4, Theo-
rem 3.5 and Corollary 3.6 on the one hand, and [GT14, Proposition
3.1, Theorem 1.5, Corollary 1.8] on the other hand. In a nutshell, al-
most finiteness of β in our proof acts as the correct substitute of the
well-known clopen Rokhlin lemma for aperiodic homeomorphisms on
the Cantor set. We further point out that, to the best of our knowledge,
this provides the first application of almost finiteness to prove a new
result in topological dynamics that is entirely unrelated to questions
about crossed product C∗-algebras.

The problem whether the above result is true for all free actions α :
G ↷ X, regardless of whether it admits well-behaved factor systems,
remains open. In light of the technical difficulties already present in
the state-of-the-art for Zk, however, we expect this challenge to be
rather difficult to tackle without ideas that go substantially beyond
our present work.

2. Preliminaries

We start with some basic remarks on notation and terminology.
Throughout the article we fix a countable amenable group G. We

write F ⋐ G to mean that F is a finite subset of G. Given K ⋐ G and a
constant δ > 0, we say that a non-empty set F ⋐ G is (K, δ)-invariant,
if |KF \ F | ≤ δ|F |. We will freely use the well-known characterization
of amenability via the Følner criterion, i.e., G is amenable precisely
when every pair (K, δ) admits some (K, δ)-invariant finite subset in G.
If G is countable, we call a sequence (Fn)n∈N with Fn ⋐ G a Følner
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sequence, if for every pair (K, δ), there is some n0 ∈ N such that Fn is
(K, δ)-invariant for all n ≥ n0.

The letters X and Y will always be reserved to denote compact
metrizable spaces. Under a topological dynamical system (over G) or
G-space we understand a pair (X,α), where X is a compact metrizable
space and α : G↷ X is an action by homeomorphisms. In some cases
when there is no ambiguity on what action is considered on X, we
sometimes just talk of the G-space X to lighten notation. An action
α is called free if for every point x ∈ X, its orbit map [g 7→ αg(x)] is
injective.

Given another action β : G ↷ Y , we say that a continuous map
ϕ : X → Y is equivariant (w.r.t. α and β), if ϕ ◦ αg = βg ◦ ϕ for all
g ∈ G, in which case we indicate this by writing ϕ : (X,α) → (Y, β).
Using the alternate arrow ↠ means that the map is surjective, whereas
using ↪→ means that the map is injective, in which case we also speak
of an embedding. If we are given an equivariant surjective map π :
(X,α) ↠ (Y, β), then one calls (Y, β) a factor of (X,α) and refers to π
as the factor map. On the flip side, one says that (X,α) is an extension
of (Y, β).

Of particular importance for this work is the example given by cu-
bical shifts over a group G. That is, given a natural number m ≥ 1,
the m-dimensional cubical shift is the action σ : G ↷ ([0, 1]m)G given
by σg

(
(xh)h∈G

)
= (xg−1h)h∈G.

Let us now introduce the concepts underpinning this article, as well
as some known results from the literature.

2.1. Almost finiteness.

Definition 2.1. Let α : G↷ X be an action.
• A tower is a pair (V, S) consisting of a subset V of X and a finite

subset S of G such that the sets αs(V ) for s ∈ S are pairwise disjoint.
• Given such a tower, the set V is the base of the tower, the set S is

the shape of the tower, and the sets αs(V ) for s ∈ S are the levels of
the tower.

• The tower (V, S) is open if V is open. It is called clopen if V is clopen.
• A castle is a finite collection of towers {(Vi, Si)}i∈I such that for all
i, j ∈ I and s ∈ Si, t ∈ Sj, we have that αs(Vi) ∩ αt(Vj) = ∅ if i ̸= j

or s ̸= t.
• The castle is open if each of the towers is open, and clopen if each of

the towers is clopen.
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The following definition originates in [Mat12, Definition 6.2] for
principal ample groupoids, which was then adapted in [Ker20, Defini-
tion 8.2] for actions of amenable groups on arbitrary spaces. Although
not trivially identical to the general version, the definition below is
known to be an equivalent one in our setting due to [Ker20, Theorem
10.2].

Definition 2.2. Let β : G↷ Y be an action on a totally disconnected
space. We say that β is almost finite, if for everyK ⋐ G and δ > 0, there
exists a clopen castle {(Wi, Si)}i∈I such that Y = ⊔

i∈I
⊔
s∈Si

βs(Wi) and
for every i ∈ I, the shape Si is (K, δ)-invariant.

Remark 2.3. One of the possible ways to view almost finiteness is
as a strong topological variant of the Ornstein–Weiss tower lemma
[OW87, Theorem 5] that characterizes freeness of probability measure
preserving actions in ergodic theory, which was recently strengthened
in [CJ+18]. Conjecturally, every free action β : G ↷ Y on a totally
disconnected space is almost finite.1 This is not so hard to see for
G = Z, as almost finiteness just boils down to the well-known clopen
Rokhlin tower lemma for aperiodic homeomorphisms; see for example
[BDM05, Proposition 3]. Although the general case is still open, the
following partial results are by now known:
• For any amenable group G, almost finite actions on the Cantor set

are generic among all free minimal G-actions; see [CJ+18, Theorem
4.2].

• The conjecture holds when G has local subexponential growth, i.e.,
given any F ⋐ G, one has limn→∞

|Fn+1|
|Fn| = 1. This was shown in

[KS18] as a consequence of [DZ23].
• Let H ≤ G be a normal subgroup so that the above conjecture holds

for H-actions. If G/H is finite or cyclic, then the conjecture holds
for all G-actions; see [KN21]. In particular, the conjecture is verified
for all elementary amenable groups.

2.2. Mean dimension.

Definition 2.4. Given a finite open cover U of a topological space X,
we define its order as the minimal number n ≥ 0 such that every point
1We note that the converse is not true for all groups G. In general one can only
conclude from almost finiteness that the action is essentially free, i.e., sets of the
form {y ∈ Y | βg(y) = y} vanish under all β-invariant Borel probability mea-
sures. Examples of almost finite but non-free actions are found among generalized
Odometers; see [OS23].
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x ∈ X is an element of at most n+ 1 members of U . If X is equipped
with a metric d, then meshd(U) is defined as the maximal diameter of
a member of U . Given a constant ε > 0, one defines

widimε(X, d) = min{ord(U) | U is an open cover with meshd(U) ≤ ε}.

Before we can define mean dimension, we recall the following tech-
nical result, which is a non-trivial consequence of the Ornstein–Weiss
quasitiling machinery.

Theorem 2.5 (see [LW00, Theorem 6.1]). Let G be a countable amenable
group. Denote by Pfin(G) the set of all non-empty finite subsets of G.
Suppose we are given a function ϕ : Pfin(G) → [0,∞) satisfying the
following conditions:

• ϕ(F1) ≤ ϕ(F2) whenever F1 ⊆ F2;
• ϕ(Fg) = ϕ(F ) for all F ⋐ G and g ∈ G;
• ϕ(F1 ∪ F2) ≤ ϕ(F1) + ϕ(F2) for all F1, F2 ⋐ G.

Then there exists b ≥ 0 such that for every ε > 0 there exists K ⋐ G

and δ > 0 such that
∣∣∣b− ϕ(F )

|F |

∣∣∣ ≤ ε for every (K, δ)-invariant set F ⋐ G.

Proposition 2.6 (see [Coo15, Proposition 10.4.1]). Let G be a count-
able amenable group and α : G ↷ X a topological dynamical system.
For a compatible metric d on X and F ⋐ G, define the metric dαF via

dαF (x, y) = max
g∈F

d(αg(x), αg(y)).

Let ε > 0 be a constant. Then the map

Pfin(G) ∋ F 7→ widimε(X, dαF )

has the properties as required by Theorem 2.5. Consequently, if Fn ⋐ G

is a Følner sequence, then the limit

mdimε(X,α, d) = lim
n→∞

|Fn|−1widimε(X, dαFn
) ∈ [0,∞]

exists and is independent of the choice of (Fn)n.

Definition 2.7. Let G be a countable amenable group and α : G ↷
X a topological dynamical system. The mean dimension of (X,α) is
defined as

mdim(X,α) = sup
ε>0

mdimε(X,α, d) ∈ [0,∞],
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where d is some compatible metric on X.2 In the cases where the choice
of the action α is implicitly clear from context, we just write mdim(X).

Example 2.8 (see [LW00, Proposition 3.3]). For every natural number
m ≥ 1, we can consider the m-dimensional cubical shift σ : G ↷
([0, 1]m)G as defined before. Then mdim(([0, 1]m)G) = m.

Remark 2.9. It is an easy consequence of its definition that mean
dimension respects inclusions. That is, given an equivariant inclusion
X1 ↪→ X2 of G-spaces, one has the inequality mdim(X1) ≤ mdim(X2).
In light of the above, it follows immediately that mean dimension pro-
vides an obstruction to the embeddibility of a G-space X into the
m-dimensional cubical shift.

3. The embedding result

Definition 3.1. Let (X, d) be a compact metric space and ε > 0 a
constant. A continuous map f : X → Z into another topological space
is called an ε-embedding, if diam(f−1(z)) < ε for all z ∈ Z.

The following lemma by Gutman-Tsukamoto plays the same role in
our proof of the main result as it did in the proof of theirs.

Lemma 3.2 ([GT14, Lemma 2.1]). Let (X, d) be a compact metric
space, m ≥ 1 a natural number and f0 : X → [0, 1]m a continuous
map. Suppose that the numbers δ, ε > 0 satisfy the implication

d(x, y) < ε =⇒ ∥f0(x) − f0(y)∥∞ < δ.

If widimε(X, d) < m/2, then there exists an ε-embedding f : X →
[0, 1]m satisfying

∥f − f0∥∞ := max
x∈X

∥f(x) − f0(x)∥∞ < δ.

Definition 3.3. Let (X,α) be a topological dynamical system, m ≥ 1
a natural number and f : X → [0, 1]m a continuous map. We then
define a continuous equivariant map If : X → ([0, 1]m)G via If (x) =
(f(αg(x)))g∈G.

Lemma 3.4. Let β : G ↷ Y be an almost finite action on a compact
totally disconnected space. Let α : G ↷ X be an action on a compact
metrizable space that arises as an extension of β via the factor map
2This definition contains the implicit claim that this supremum does not depend on
the chosen metric. This is not completely trivial, but it is well-known; see [Coo15,
Theorem 10.4.2].
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π : (X,α) ↠ (Y, β). Let m ≥ 1 be a natural number and suppose that
mdim(X,α) < m

2 . Choose a compatible metric d on X. Then for any
η > 0 the set of functions

Aη = {f ∈ C(X, [0, 1]m) | If × π is an η-embedding}

is dense in C(X, [0, 1]m) with respect to ∥ · ∥∞.

Proof. Let f0 : X → [0, 1]m be a continuous map and let η, δ > 0. We
shall argue that there exists f ∈ Aη with ∥f − f0∥∞ < δ. Since f0 is
uniformly continuous, we can find some 0 < ε ≤ η that fits into the
implication

d(x, y) < ε =⇒ ∥f0(x) − f0(y)∥∞ < δ.

By assumption, we have mdimε(X,α, d) ≤ mdim(X,α) < m/2. Since
mdimε(X,α, d) arises as a limit in the sense of Theorem 2.5, we can
find a constant γ > 0 and K ⋐ G such that for every (K, γ)-invariant
set S ⋐ G, we have widimε(X, dαS) < |S|m/2. Since we assumed β to
be almost finite, we may find a clopen castle {(Wi, Si)}i∈I with (K, γ)-
invariant shapes and Y = ⊔

i∈I
⊔
s∈Si

βs(Wi). By defining the pullbacks
Zi = π−1(Wi) for i ∈ I, we obtain the clopen castle {(Zi, Si)}i∈I parti-
tioning X.

Given i ∈ I, we have in particular that widimε(X, dαSi
) ≤ |Si|m/2.

Consider the continuous map F 0
i : X → [0, 1]|Si|m ∼= ([0, 1]m)Si given by

F 0
i (x) = (f0(αs(x)))s∈Si

. Note that by design, we have the implication

dαSi
(x, y) < ε =⇒ ∥F 0

i (x) − F 0
i (y)∥∞ < δ.

Using Lemma 3.2, we may choose a continuous ε-embedding Fi : X →
([0, 1]m)Si with respect to the metric dαSi

such that ∥Fi − F 0
i ∥∞ < δ.

We now define the continuous function f : X → [0, 1]m as follows.
If x ∈ X is a point, choose the unique index i ∈ I and s ∈ Si with
x ∈ αs(Zi), and set f(x) = Fi(α−1

s (x))(s). Since this assignment is
clearly continuous on each clopen set belonging to a partition of X, f
is indeed a well-defined continuous map. We claim that ∥f − f0∥∞ < δ

and f ∈ Aη. The first of these properties holds because given x ∈ X as
above, we see that

f(x) = Fi(α−1
s (x))(s) ≈δ F

0
i (α−1

s (x))(s) = f0(αs(α−1
s (x))) = f0(x).

So let us argue f ∈ Aη. Suppose x, y ∈ X are two points such that
(If ×π)(x) = (If ×π)(y). Then certainly π(x) = π(y). Since the clopen
partition X = ⊔

i∈I
⊔
s∈Si

αs(Zi) is the pullback from a clopen partition
of Y , we see that there is a unique index i ∈ I and s ∈ Si with x, y ∈
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αs(Zi). Since we have If (x) = If (y), or in other words f(αg(x)) =
f(αg(y)) for all g ∈ G, it follows for all t ∈ Si that αts−1(x), αts−1(y) ∈
αt(Zi), so

Fi(α−1
s (x))(t) = f(αts−1(x)) = f(αts−1(y)) = Fi(α−1

s (x))(t).

Since t ∈ Si is arbitrary, it follows that Fi(α−1
s (x)) = Fi(α−1

s (y)). Since
Fi was an ε-embedding with respect to the metric dαSi

and s ∈ Si, we
may finally conclude d(x, y) < ε ≤ η. This finishes the proof. □

Theorem 3.5. Let β : G↷ Y be an almost finite action on a compact
totally disconnected metrizable space. Let α : G↷ X be an action on a
compact metrizable space that arises as an extension of β via the factor
map π : (X,α) ↠ (Y, β). Let m ≥ 1 be a natural number and suppose
that mdim(X,α) < m

2 . Then the set of functions f ∈ C(X, [0, 1]m) for
which

If × π : (X,α) →
(
([0, 1]m)G × Y, σ × β

)
is an embedding, is dense with respect to ∥ · ∥∞. Consequently, there
exists an embedding of G-spaces X ↪→ ([0, 1]m+1)G.

Proof. Let us first explain the last sentence of the claim. Since Y is
totally disconnected, it can be embedded into [0, 1], say via a continuous
map ψ. This implies that ψ̄ : Y → [0, 1]G given by y 7→ (ψ(βg(y)))g∈G

is an equivariant embedding. So assuming the rest of the claim holds,
we obtain a chain of embeddings of G-spaces

X
If ×π−→ ([0, 1]m)G × Y

id ×ψ̄−→ ([0, 1]m)G × ([0, 1])G ∼= ([0, 1]m+1)G.

If we adopt the notation from Lemma 3.4, it is clear that the set of
functions in question is equal to the intersection ⋂

n≥1 A1/n. In light of
the fact that C(X, [0, 1]m) a closed subset of the Banach space C(X,Rm)
with respect to ∥ · ∥∞, the claim follows immediately from the Baire
category theorem if we show that the sets Aη are open for all η > 0.

So let us briefly argue that this is the case. Recall that we have
chosen a compatible metric d on X. Let f ∈ Aη. Given an infinite
tuple (cg)g∈G of strictly positive numbers with ∑

g∈G cg = 1, we define
the constant δ as equal to half of the value

inf
{ ∑
g∈G

cg∥f(αg(x))−f(αg(y))∥∞

∣∣∣∣x, y ∈ X, π(x) = π(y), d(x, y) ≥ η
}
.

Keep in mind that the assignment(
(z(1)
g )g∈G, (z(2)

g )g∈G
)

7→
∑
g∈G

cg∥z(1)
g − z(2)

g ∥∞
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defines a compatible metric on ([0, 1]m)G. Since If is continuous, If ×
π is an η-embedding and X is compact, it follows that δ > 0. We
claim that the open δ-ball around f is contained in Aη. Indeed, let
f0 ∈ C(X, [0, 1]m) with ∥f − f0∥ < δ. Suppose that x, y ∈ X satisfy
(If0 × π)(x) = (If0 × π)(y). Then π(x) = π(y) and it follows from the
triangle inequality that∑

g∈G
cg∥f(αg(x)) − f(αg(y))∥∞

<
∑
g∈G

cg(2δ + ∥f0(αg(x)) − f0(αg(y))∥∞) = 2δ.

By the definition of δ, it follows that d(x, y) < η. Since x and y were
arbitrary, we conclude f0 ∈ Aη and the proof is finished. □

We also record an improved version of the embedding result, which
is an immediate consequence of the above if we assume more about the
system (Y, β).

Corollary 3.6. Let β : G ↷ Y be an almost finite action on a com-
pact totally disconnected metrizable space. Suppose that β is a subshift
of finite type, i.e., there exists some natural number ℓ ≥ 2 and an em-
bedding Y ↪→ {1, . . . , ℓ}G of G-spaces. Let α : G ↷ X be an action on
a compact metrizable space that arises as an extension of β. Let m ≥ 1
be a natural number and suppose that mdim(X,α) < m

2 . Then there
exists an embedding of G-spaces X ↪→ ([0, 1]m)G.

Proof. Find some embedding φ : [0, 1]×{1, . . . , ℓ} ↪→ [0, 1], which gives
rise to an equivariant embedding

φ̄ : [0, 1]G × {1, . . . , ℓ}G ∼=
(
[0, 1] × {1, . . . , ℓ}

)G
↪→ [0, 1]G

by applying φ componentwise. This allows us to proceed exactly as
in the last part of Theorem 3.5, except that we may appeal to the
embedding

([0, 1]m)G × Y ↪→ ([0, 1]m)G × {1, . . . , ℓ}G
∼= ([0, 1]m−1)G ×

(
[0, 1] × {1, . . . , ℓ}

)G
id ×φ̄−→ ([0, 1]m−1)G × ([0, 1])G ∼= ([0, 1]m)G.

□

Remark 3.7. In light of the fact that almost finiteness is a concept that
can be defined for actions on arbitrary spaces, one might wonder how
far the main result of this note can be generalized. Suppose γ : G↷ Z

is an almost finite action on a not necessarily disconnected space. It is
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then well-known that γ has the small boundary property and therefore
also mdim(Z, γ) = 0; see [KS18, Theorem 5.6] and [LW00, Theorem
5.4].3 Can one prove directly that (Z, γ) embeds into the 1-dimensional
cubical shift? If so, is the statement of Theorem 3.5 true if we replace
β : G↷ Y by γ : G↷ Z?

Although this would seem plausible, the proof does by no means gen-
eralize in any obvious way to this more general case. The first named
author has proved a partial result in this direction in his master thesis
[Lan21], namely under the assumption that Z has finite covering di-
mension d. In that case, a version of Theorem 3.5 is true, where the
conclusion is weakened to obtain an embedding into the (m(d+2)+1)-
dimensional cubical shift. Since this dimensional upper bound is far
from what we expect to be optimal, and since it does not actually re-
cover Theorem 3.5 as a special case, we decided not to include this
generalized approach in this note.
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