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a b s t r a c t

This paper introduces a novel framework for generative models based on Restricted Kernel Machines
(RKMs) with joint multi-view generation and uncorrelated feature learning, called Gen-RKM. To enable
joint multi-view generation, this mechanism uses a shared representation of data from various views.
Furthermore, the model has a primal and dual formulation to incorporate both kernel-based and (deep
convolutional) neural network based models within the same setting. When using neural networks
as explicit feature-maps, a novel training procedure is proposed, which jointly learns the features
and shared subspace representation. The latent variables are given by the eigen-decomposition of
the kernel matrix, where the mutual orthogonality of eigenvectors represents the learned uncorrelated
features. Experiments demonstrate the potential of the framework through qualitative and quantitative
evaluation of generated samples on various standard datasets.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the past decade, interest in generative models has
rown tremendously, finding applications in multiple fields
uch as, generated art, on-demand video, image denoising
Vincent, Larochelle, Lajoie, Bengio, & Manzagol, 2010), explo-
ation in reinforcement learning (Florensa, Held, Geng, & Abbeel,
018), collaborative filtering (Salakhutdinov, Mnih, & Hinton,
007), in-painting (Yeh, Chen, Yian Lim, Schwing, Hasegawa-
ohnson, & Do, 2017) and many more. Some examples of gen-
rative models based on a probabilistic framework with latent
ariables are Variational Auto-Encoders (Kingma &Welling, 2014)
nd Restricted Boltzmann Machines (RBMs) (Salakhutdinov &
inton, 2009; Smolensky, 1986). More recently proposed models
re based on adversarial training such as Generative Adver-
arial Networks (GANs) (Goodfellow, Pouget-Abadie, Mirza, Xu,
arde-Farley, Ozair, Courville, & Bengio, 2014) and its many

ariants. Furthermore, auto-regressive models such as Pixel Re-
urrent Neural Networks (PixelRNNs) (Van Den Oord, Kalch-
renner, & Kavukcuoglu, 2016) model the conditional distribu-
ion of every individual pixel given previous pixels. All these
pproaches have their own advantages and disadvantages. For
xample, RBMs perform both learning and Bayesian inference
n graphical models with latent variables. However, such prob-
bilistic models must be properly normalized, which requires

∗ Correspondence to: B01.62, Department of Electrical Engineering (ESAT-
TADIUS), KU Leuven, 3000 Leuven, Belgium.

E-mail address: arun.pandey@esat.kuleuven.be (A. Pandey).
ttps://doi.org/10.1016/j.neunet.2020.12.010
893-6080/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access a
evaluating intractable integrals over the space of all possible
variable configurations (Salakhutdinov & Hinton, 2009). Currently
GANs are considered as the state-of-the-art for generative mod-
eling tasks, producing high-quality images but are more diffi-
cult to train due to unstable training dynamics, unless more
sophisticated variants are applied.

Many datasets are composed of different representations of
the data, also called views. Views can correspond to different
modalities such as sounds, images, videos, sequences of previous
frames, etc. Although each view could individually be used for
learning tasks, exploiting information from all views together
could improve the learning quality (Chen & Denoyer, 2017; Liu
& Tuzel, 2016; Pu, Gan, Henao, Yuan, Li, Stevens, & Carin, 2016).
Furthermore, it is among the goals of the latent variable mod-
eling to model the description of data in terms of uncorrelated
or independent components. Some classical examples are In-
dependent Component Analysis; Hidden Markov models (Ra-
biner & Juang, 1986); Probabilistic Principal Component Analysis
(PCA) (Tipping & Bishop, 1999); Gaussian-Process latent variable
model (Lawrence, 2005) and factor analysis. Hence, when learn-
ing a latent space in generative models, it becomes interesting
to find a disentangled representation. Disentangled variables are
generally considered to contain interpretable information and
reflect distinct factors of variation in the data for e.g. lighting con-
ditions, style, colors, etc. This makes disentangled representations
especially interesting for the generation of plausible pseudo-data
with certain desirable properties, e.g. generating new chair de-
signs with a certain armrest or new cars with a predefined color.

The definition of disentanglement in the literature is not precise,
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owever many believe that a representation with statistically
ndependent variables is a good starting point (Ridgeway, 2016;
chmidhuber, 1992). Such representations extract information
nto a compact form which makes it possible to generate samples
ith specific characteristics (Bouchacourt, Tomioka, & Nowozin,
018; Chen, Duan, Houthooft, Schulman, Sutskever, & Abbeel,
016; Chen, Li, Grosse, & Duvenaud, 2018; Tran, Yin, & Liu, 2017).
dditionally, these representations have been found to generalize
etter and be more robust against adversarial attacks (Alemi,
ischer, Dillon, & Murphy, 2017).
In this work, we propose a novel generative mechanism based

n the framework of Restricted Kernel Machines (RKMs) (Suykens,
017), called Generative-RKM (Gen-RKM). RKMs yield a rep-
esentation of kernel methods with visible and hidden units
stablishing links between Kernel PCA, Least-Squares Support
ector Machines (LS-SVM) (Suykens, Van Gestel, De Brabanter,
e Moor, & Vandewalle, 2002) and RBMs. This framework has a
imilar energy form as RBMs, though there is a non-probabilistic
raining procedure where the eigenvalue decomposition plays the
ole of normalization. Recently, Houthuys and Suykens (2018)
sed this framework to develop tensor-based multi-view classi-
ication models and Schreurs and Suykens (2018) showed how
ernel PCA fits into this framework.

ontributions: (1) A novel joint multi-view generative model
ased on the RKM framework where multiple views of the data
an be generated simultaneously. (2) Two methods are discussed
for computing the pre-image of the feature vectors: with the
feature map explicitly known or unknown. We show that the
mechanism is flexible to incorporate both kernel-based and (deep
convolutional) neural network based models within the same set-
ting. (3) When using explicit feature maps, we propose a training
algorithm that jointly performs the feature-selection and learns
the common-subspace representation in the same procedure.
(4) Qualitative and quantitative experiments demonstrate that
the model is capable of generating good quality images of natural
objects. Further illustrations on multi-view datasets exhibit the
potential of the model. Thanks to the orthogonality of eigenvec-
tors of the kernel matrix, the learned latent variables are uncorre-
lated. This resembles a disentangled representation, which makes
it possible to generate data with specific characteristics.

2. Related work

Latent space models were studied in several other works,
where multiple links with disentanglement are made. VAEs
(Kingma & Welling, 2014) have become a popular framework
among different generative models as they provide more theo-
retically well-founded and stable training than GANs (Goodfellow
et al., 2014). Learning a VAE amounts to the optimization of an
objective balancing the quality of samples that are autoencoded
through a stochastic encoder–decoder pair, measured by the
reconstruction error, while encouraging the latent space to follow
a fixed prior distribution, often the Gaussian distribution. In β-
VAEs (Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed,
& Lerchner, 2017), an adjustable hyperparameter β is introduced
that balances quality of samples and latent space constraints
with reconstruction accuracy. The choice of parameter β = 1
corresponds to the original VAE formulation. Further, they show
that with β > 1 (more emphasis on the latent variables to be
Gaussian distributed) the model is capable of learning a more dis-
entangled latent representation of the data. In Burgess, Higgins,
Pal, Matthey, Watters, Desjardins, and Lerchner (2018), the effect
of the β term is analyzed more in depth. It was suggested that
the stronger pressure for the posterior to match the factorized
unit Gaussian prior puts extra constraints on the implicit capacity
of the latent bottleneck (Higgins et al., 2017). Chen et al. (2018)
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show a decomposition of the variational lower bound that can be
used to explain the success of the β-VAE (Higgins et al., 2017) in
learning disentangled representations. The authors claim that the
total correlation, which forces the model to find statistically in-
dependent factors in the data distribution, is the most important
term in this decomposition. The role of disentanglement was also
studied in GANs, where the InfoGAN (Chen et al., 2016) is one of
the most known works.

The most common approach of joint multimodal/multiview
learning with deep neural networks is to share the top of hidden
layers in modality specific networks. Srivastava and Salakhut-
dinov (2012) proposed a Deep Boltzmann Machine for learning
multimodal data. The multimodal DBM learns a joint density
model over the space of multimodal inputs by sharing the hidden
units of the last layer. Examples of joint multimodal training for
VAEs are Suzuki, Nakayama, and Matsuo (2016), Wu and Good-
man (2018). The work of Suzuki et al. (2016) introduced the joint
multi-modal VAE, which learns the common distribution using
a joint inference network. The authors use an ELBO objective
with two additional divergence terms to minimize the distance
between the uni-modal and the multi-modal importance distri-
butions. The MVAE of Wu and Goodman (2018) uses a product of
experts formulation and sub-sampled training paradigm to solve
the multi-modal inference problem.

In contrast to classical VAE architectures, the proposed model
introduces an orthogonal interconnection matrix U motivated by
the RKM formulation. The model thus finds an ‘optimal’ linear
subspace of the latent space given by the eigendecomposition.
In this paper, we argue that this orthogonality leads to better
disentanglement and generation quality.

The paper is organized as follows. In Section 3, we discuss
the Gen-RKM training and generation mechanism when multiple
data sources are available. In Section 4, we explain how the
model incorporates both kernel methods and neural networks
through the use of implicit and explicit feature maps respectively.
In Section 5, we show experimental results of our model applied
on various public datasets. Section 6 concludes the paper along
with directions towards the future work. Further discussions
and derivations are given in the Appendix and the Python code
is available at https://www.esat.kuleuven.be/stadius/E/software.
php.

3. Generative restricted kernel machines framework

The proposed Gen-RKM framework consists of two phases: a
training phase and a generation phase which occurs one after the
other.

3.1. Training phase of the RKM

Similar to Energy-Based Models (EBMs, see LeCun, Huang, and
Bottou (2004) for details), the RKM objective function captures
dependencies between variables by associating a scalar energy to
each configuration of the variables. Learning consists of finding
an energy function in which the observed configurations of the
variables are given lower energies than unobserved ones. Note
that the schematic representation of Gen-RKM model, as shown
in Fig. 1 is similar to Discriminative RBMs (Larochelle & Bengio,
2008) and the objective function Jt (defined below) has an energy
form similar to RBMs with additional regularization terms. The
latent space dimension in the RKM setting has a similar interpre-
tation as the number of hidden units in a Restricted Boltzmann
Machine, where in the specific case of the RKM these hidden units
are uncorrelated.

We assume a dataset D = {xi, y i}
N
i=1 with xi ∈ Rd, y i ∈ Rp

onsisting of N data points. Here y may represent an additional
i

https://www.esat.kuleuven.be/stadius/E/software.php
https://www.esat.kuleuven.be/stadius/E/software.php
https://www.esat.kuleuven.be/stadius/E/software.php
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iew of xi, e.g., an additional image from a different angle, the
aption of an image or a class label. We start with the RKM
nterpretation of Kernel PCA, which gives an upper bound on
he equality constrained Least-Squares Kernel PCA objective func-
ion (Suykens, 2017). Applying the feature-maps φ1 : Ωx ↦→ Hx
and φ2 : Ωy ↦→ Hy to the input data points, where Hx,Hy are the
corresponding Reproducing Kernel Hilbert Spaces (RKHS) of the
feature-maps respectively; the training objective function Jt for
generative RKM is given by1:

Jt =

N∑
i=1

{
−φ1(xi)

⊤Uhi − φ2(y i)
⊤Vhi +

1
2
h⊤i Λhi

}
+

η1

2
(U⊤U )+

η2

2
(V⊤V ),

(1)

where U ∈ Rdf×s, V ∈ Rpf×s are the unknown interconnection
atrices, Λ ≻ 0 the unknown diagonal matrix and hi ∈ Rs are

he latent variables modeling a common subspace H ⊆ Hx
⨁

Hy
etween the two feature spaces (see Fig. 1). To obtain this objec-
ive from LS-SVM formulation see Appendix A. Given η1 > 0 and
η2 > 0 as regularization parameters, the stationary points of Jt
are given by:⎧⎪⎨⎪⎩

∂Jt
∂hi
= 0 H⇒ Λhi = U⊤φ1(xi)+ V⊤φ2(y i), ∀i

∂Jt
∂U = 0 H⇒ U = 1

η1

∑N
i=1 φ1(xi)h

⊤

i ,
∂Jt
∂V = 0 H⇒ V = 1

η2

∑N
i=1 φ2(y i)h

⊤

i .

(2)

Substituting U and V in the first equation above, denoting the
diagonal matrix Λ = {λ1, . . . , λs} ∈ Rs×s with s ≤ N , yields the
ollowing eigenvalue problem:

1
η1

K 1 +
1
η2

K 2

]
H⊤ = H⊤Λ, (3)

where H =
[
h1, . . . , hN

]
∈ Rs×N with s ≤ N is the number of

selected principal components and K 1,K 2 ∈ RN×N are the kernel
matrices corresponding to data sources.2 Based on Mercer’s the-
orem (Mercer, 1909), positive-definite kernel functions k1 : Ωx×

Ωx ↦→ R, k2 : Ωy ×Ωy ↦→ R can be defined such that k1(xi, xj) =
⟨φ1(xi),φ1(xj)⟩Hx , and k2(y i, y j) = ⟨φ2(y i),φ2(y j)⟩Hy , ∀i, j =
1, . . . ,N forms the elements of corresponding kernel matrices.
The feature maps φ1 and φ2, mapping the input data to the
high-dimensional feature space (possibly infinite) are implicitly
defined by kernel functions. Typical examples of such kernels
are given by the Gaussian RBF kernel k(xi, xj) = e−∥xi−xj∥

2
2/(2σ2)

or the Laplace kernel k(xi, xj) = e−∥xi−xj∥2/σ just to name a
few (Scholkopf & Smola, 2001). However, one can also define
explicit feature maps, still preserving the positive-definiteness of
the kernel function by construction (Suykens et al., 2002). Eq. (3)
corresponds to a kernel PCA operation. In this spirit, we thus find
an orthogonal interconnection matrix U that is the optimal linear
subspace of the latent space given by the eigendecomposition.

3.2. Generation

In this section, we derive the equations for the generative
mechanism. RKMs resembling energy-based models, the infer-
ence consists in clamping the value of observed variables and
finding configurations of the remaining variables that minimizes

1 For convenience, it is assumed that the feature vectors are centered in the
eature space Ωx, Ωy using φ̃(x) := φ(x) − 1

N

∑N
i=1 φ(xi). Otherwise, a centered

kernel matrix could be obtained using (C.1) in Appendix C.
2 While in the above section we have assumed that only two data sources

(namely Ωx and Ωy) are available for learning, the above procedure could be
extended to multiple data-sources. For the M views or data-sources, this yields
the training problem:

[∑M 1 K
]
H⊤ = H⊤Λ.
ℓ=1 ηℓ

ℓ w
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Fig. 1. Gen-RKM schematic representation modeling a common subspace H ⊆
Hx
⨁

Hy between two data sources Ωx and Ωy . The φ1 , φ2 are the feature
maps (Hx and Hy represent the RKHS) corresponding to the two data sources.
While ψ1 , ψ2 represent the pre-image maps. The interconnection matrices U ,V
capture the dependencies between latent variables and the mapped data sources.

the energy (LeCun et al., 2004). Given the learned interconnection
matrices U and V , and a given latent variable h⋆, consider the
following generation objective function Jg :

Jg = −φ̂1(x
⋆)⊤Uh⋆

− φ̂2(y
⋆)⊤Vh∗ +

1
2
φ̂1(x

⋆)⊤φ̂1(x
⋆)

+
1
2
φ̂2(y

⋆)⊤φ̂2(y
⋆),

ith an additional regularization term on data sources. With
light abuse of notation, we denote the generated feature vectors
y φ̂1(x⋆) and φ̂2(y⋆) given the corresponding latent variable h⋆,
o distinguish from the feature vectors corresponding to training
ata points (see (1)). The given latent variable h⋆ can be the
orresponding latent code of a training point, a newly sampled
idden unit or a specifically determined one. Above cases corre-
pond to generating the reconstructed visible unit, generating a
andom new visible unit or exploring the latent space by carefully
electing hidden units respectively. The stationary points of Jg
re characterized by:{ ∂Jg

∂φ̂1(x⋆)
= 0 H⇒ φ̂1(x⋆) = Uh⋆,

∂Jg

∂φ̂2(y⋆)
= 0 H⇒ φ̂2(y⋆) = Vh⋆.

(4)

Using U and V from (2), we obtain the generated feature
vectors:

φ̂1(x
⋆) =

(
1
η1

N∑
i=1

φ1(xi)h
⊤

i

)
h⋆,

φ̂2(y
⋆) =

(
1
η2

N∑
i=1

φ2(y i)h
⊤

i

)
h⋆.

(5)

To obtain the generated data, now one should compute the in-
verse images of the feature maps φ̂1(·) and φ̂2(·) in the respective
nput spaces, i.e., solve the pre-image problem. We seek to find
he functions ψ1:H ↦→ Ωx and ψ2:H ↦→ Ωy corresponding to the
wo data-sources, such that (ψ1◦φ̂1)(x⋆) ≈ x⋆ and (ψ2◦φ̂2)(y⋆) ≈
⋆, where φ̂1(x⋆) and φ̂2(y⋆) are given using (5).
When using kernel methods, explicit feature maps are not nec-

ssarily known. Commonly used kernels such as the radial-basis
unction and polynomial kernels map the input data to a very
igh dimensional feature space. Hence finding the pre-image,
n general, is known to be an ill-conditioned problem (Mika,
chölkopf, Smola, Müller, Scholz, & Rätsch, 1999). However, var-
ous approximation techniques have been proposed (Bui, Im,
pley, & Runger, 2019; Honeine & Richard, 2011; Kwok & Tsang,
003; Weston, Schölkopf, & Bakir, 2004) which could be used
o obtain the approximate pre-image x̂ of φ̂1(x⋆). In Section 4.1,
e employ one such technique to demonstrate the applicability
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n our model, and consequently generate the multi-view data.
ne could also define explicit pre-image maps. In Section 4.2,
e define parametric pre-image maps and learn the parameters
y minimizing the appropriately defined objective function. The
ext section describes the above two pre-image methods for both
ases, i.e., when the feature map is explicitly known or unknown,
n greater detail.

. The proposed algorithm with implicit & explicit feature
aps

.1. Implicit feature map

As noted in the previous section, since x⋆ may not exist,
we find an approximation x̂. A possible technique is shown
by Schreurs and Suykens (2018). Left multiplying (5) by φ̂1(xi)⊤
nd φ̂2(y i)⊤, ∀i = 1, . . . ,N , we obtain:

x⋆ =
1
η1

K 1H⊤h⋆, ky⋆ =
1
η2

K 2H⊤h⋆, (6)

here, kx⋆ = [k(x1, x⋆), . . . , k(xN , x⋆)]⊤ represents the similarities
etween φ̂1(x⋆) and training data points in the feature space, and
1 ∈ RN×N represents the centered kernel matrix of Ωx. Similar
onventions follow for Ωy respectively. Using the kernel-smoother
ethod (Hastie, Tibshirani, & Friedman, 2001), the pre-images are
iven by:

x̂ = (ψ1 ◦ φ̂1)(x
⋆) =

∑nr
j=1 k̃1(xj, x

⋆)xj∑nr
j=1 k̃1(xj, x⋆)

,

ŷ = (ψ2 ◦ φ̂2)(y
⋆) =

∑nr
j=1 k̃2(y j, y⋆)y j∑nr
j=1 k̃2(y j, y⋆)

,

(7)

here k̃1(xi, x⋆) and k̃2(y i, y⋆) are the scaled similarities (see (7))
etween 0 and 1 and nr the number of closest points based on
he similarity defined by kernels k̃1 and k̃2.

.2. Explicit feature map

While using an explicit feature map, Mercer’s theorem is still
pplicable due to the positive semi-definiteness of the kernel
unction by construction, thereby allowing the derivation of (3).
n the experiments, we use a set of (convolutional) neural net-
orks as the parametric feature maps φθ(·). Another (transposed
onvolutional) neural network is used for the pre-image map
ζ(·) (Dumoulin & Visin, 2016). The network parameters {θ, ζ}

are learned by minimizing the reconstruction errors L1(x,ψ1ζ1
φ̂1θ1

(x))) = 1
N

∑N
i=1 ∥xi − ψ1ζ1

(φ̂1θ1
(xi))∥22 for the first view

nd L2(y,ψ2ζ2
(φ̂2θ2

(y))) = 1
N

∑N
i=1 ∥y i − ψ2ζ2

(φ̂2θ2
(y i))∥22 for

the second view, however, in principle, one can use any other
loss appropriate to the dataset. Here φ̂1θ1

(xi) and φ̂2θ2
(y i) are

iven by (5), i.e., the generated points in feature space from the
ubspace H. Adding the loss function directly into the objective
function Jt is not suitable for minimization. Instead, we use the
stabilized objective function defined as Jstab = Jt+

cstab
2 J 2

t , where
stab ∈ R+ is the regularization constant (Suykens, 2017). This
tends to push the objective function Jt towards zero, which is
lso the case when substituting the solutions λi, hi back into Jt
see Appendix B for details). The combined training objective is
iven by:

min
θ1,θ2,ζ1,ζ2

Jc = Jstab +
γ

2N

(
N∑
i=1

[
L1(xi,ψ1ζ1

(φ̂1θ1
(xi)))

+ L (y ,ψ (φ̂ (y )))
])

,
2 i 2ζ2 2θ2 i

180
Algorithm 1 Gen-RKM
Input: {xi, y i}

N
i=1, η1, η2, feature map φj(·) - explicit or implicit

via kernels kj(·, ·), for j ∈ {1, 2}
Output: Generated data x⋆, y⋆

1: procedure Train
2: if φj(·) = Implicit then
3: Solve the eigendecomposition in (3)
4: Select the s first principal components
5: else if φj(·) = Explicit then
6: while not converged do
7: {x, y} ← {Get mini-batch}
8: φ1(x)← x; φ2(y)← y ▷ Get embeddings
9: do steps 3-4

10: {φ̂1(x), φ̂2(y)} ← h ((5))
11: {x, y} ← {ψ1(φ̂1(x)),ψ2(φ̂2(y))} ▷ Pre-image map
12: ∆{θ, ζ} ∝ −∇{θ,ζ}Jc ▷ Update parameters
3: end while
4: end if
5: end procedure
1: procedure Generation
2: Select h⋆

3: if φj(·) = Implicit then
4: Set hyperparameter: nr
5: Compute kx∗ , ky∗ ((6))
6: Get x̂, ŷ ((7))
7: else if φj(·) = Explicit then
8: do steps 10-11
9: end if
0: end procedure

where γ ∈ R+ is a regularization constant to control the sta-
bility with reconstruction accuracy. In this way, we combine
feature-selection and subspace learning within the same training
procedure.

In the objective of the VAE (Kingma & Welling, 2014), an extra
term in the form of the Kullback–Leibler divergence between the
encoder’s distribution and a unit Gaussian is added as a prior on
the latent variables. This ensures the latent space is smooth and
without discontinuities, which is essential for good generation.
By interpreting kernel PCA within the LS-SVM setting (Suykens
et al., 2002), the PCA analysis can take the interpretation of a
one-class modeling problem with zero target value around which
one maximizes the variance (Suykens, Van Gestel, Vandewalle, &
De Moor, 2003). When choosing a good feature map, one expects
the latent variables to be normally distributed around zero. As a
result, the latent space of the Gen-RKM is continuous, allowing
easy random sampling and interpolation (see Fig. 2). Kernel PCA
gives uncorrelated components in feature space (Bishop, 2006).
While the standard PCA does not give a good disentangled repre-
sentation for images (Eastwood & Williams, 2018; Higgins et al.,
2017). By designing a good kernel (through appropriate feature-
maps) and doing kernel PCA, it is possible to get a disentangled
representation for images as we demonstrate in Fig. 7.

4.3. The Gen-RKM algorithm

Based on the previous discussion, we propose a novel proce-
dure, called the Gen-RKM algorithm, combining kernel learning
and generative models. We show that this procedure is efficient
to train and evaluate. The training procedure simultaneously
involves feature selection, common-subspace learning and pre-
image map learning. This is achieved via an optimization pro-
cedure where one iteration involves an eigen-decomposition of
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Fig. 2. MNIST: Scatter plot of latent variable distribution when trained on
10000 images (s = 2). Training was unsupervised (i.e. one-view) and labels are
only used to color the plot. The latent space resembles a Gaussian distribution
centered around 0, where the various digits are clustered together. Generated
samples from a uniform grid over this space are shown in Fig. G.13.

the kernel matrix which is composed of the features from various
views (see (3)). The latent variables are given by the eigenvectors,
from which a pre-image map reconstructs the generated sample.
Fig. 1 shows a schematic representation of the algorithm when
two data sources are available.

Thanks to training in m mini-batches, this procedure is scal-
able to large datasets (sample size N) with training time scaling
super-linearly with Tm = c Nγ

mγ−1 , instead of Tk = cNγ , where γ ≈
for algorithms based on decomposition methods, with some
roportionality constant c. The training time could be further
educed by computing the covariance matrix (size (df+pf )×(df+
f )) instead of a kernel matrix (size N

m ×
N
m ), when the sum of the

imensions of the feature-spaces is less than the samples in mini-
atch i.e. df + pf ≤ N

m . When using neural networks as feature
maps, df and pf correspond to the number of neurons in the
output layer, which are chosen as hyperparameters by the prac-
titioner. Eigendecomposition of this smaller covariance matrix
would yield U and V as eigenvectors (see (8) and Appendix A.1
for detailed derivation), where computing the hi involves only
atrix-multiplication which is readily parallelizable on modern
PUs:[
1
η1

ΦxΦ
⊤
x

1
η1

ΦxΦ
⊤
y

1
η2

ΦyΦ
⊤
x

1
η2

ΦyΦ
⊤
y

][
U
V

]
=

[
U
V

]
Λ, (8)

here:
Φx :=

[
φ1(x1), . . . ,φ1(xN )

]
,

Φy :=
[
φ2(y1), . . . ,φ2(yN )

]
.

. Experiments

To demonstrate the applicability of the proposed framework
nd algorithm, we trained the Gen-RKM model on a variety of
atasets commonly used to evaluate generative models: MNIST
LeCun & Cortes, 2010), Fashion-MNIST (Xiao, Rasul, & Vollgraf,
017), CIFAR-10 (Krizhevsky, 2009), CelebA (Liu, Luo, Wang, &
ang, 2015), Sketchy (Sangkloy, Burnell, Ham, & Hays, 2016a),
sprites (Matthey, Higgins, Hassabis, & Lerchner, 2017) and
eapot (Eastwood & Williams, 2018). The proposed method ad-
eres to both a primal and dual formulation to incorporate both
ernel based methods as well as neural networks based models
n the same setting. The convolutional neural networks are used
s explicit feature maps which are known to outperform kernel
ased feature maps on the image datasets. Moreover, by using
xplicit feature maps we demonstrate the capability of the al-
orithm to jointly learn the feature map and shared subspace
epresentation. For completeness, we also give an illustration
hen using implicit feature maps through the Gaussian kernel

n Fig. 6.
181
able 1
ID Scores (Heusel, Ramsauer, Unterthiner, Nessler, & Hochreiter, 2017) for
andomly generated samples (smaller is better).
Dataset Algorithm FID score (↓)

s = 10 s = 30 s = 50

MNIST

Gen-RKM 89.825 130.497 131.696
VAE 250 234.749 205.282
β-TCVAE 221.45 182.93 158.31
InfoGAN 238.75 204.63 179.43

CelebA

Gen-RKM 103.299 84.403 85.121
VAE 286.039 245.738 225.783
β-TCVAE 248.47 226.75 173.21
InfoGAN 264.79 228.31 185.93

fMNIST

Gen-RKM 93.437 127.893 146.643
VAE 239.492 211.482 196.794
β-TCVAE 206.784 187.221 136.466
InfoGAN 247.853 215.683 199.337

CIFAR10

Gen-RKM 122.475 138.467 158.871
VAE 295.382 259.557 231.475
β-TCVAE 283.58 214.681 168.483
InfoGAN 295.321 258.471 220.482

In our experiments, we fit a Gaussian mixture model (GMM)
with l components to the latent variables of the training set, and
randomly sample a new point h⋆ for generating views. In case
of explicit feature maps, we define φ1θ1

and ψ1ζ1
as convolution

nd transposed-convolution neural networks, respectively (Du-
oulin & Visin, 2016); and φ2θ2

and ψ1ζ2
as fully-connected

etworks. The particular architecture details are outlined in Ta-
le D.4 in Appendix A. The training procedure in case of explicitly
efined maps consists of minimizing Jc using the Adam opti-
izer (Kingma & Ba, 2014) to update the weights and biases.
o speed-up learning, we subdivided the datasets into m mini-
atches, and within each iteration of the optimizer, (3) is solved
o model the subspace H. Information on the datasets and hy-
erparameters used for the experiments is given in Table D.3 in
ppendix A. A comparison of the average training time is given
n Table G.5 in Appendix A.

andom generation. (1) Qualitative examples: Fig. 3 shows the
enerated images using a convolutional neural network and
ransposed-convolutional neural network as the feature map and
re-image map respectively. The first column in yellow-boxes
hows the training samples and the second column on the right
hows the reconstructed samples. The other images shown are
enerated by random sampling from a GMM over the learned
atent variables. Notice that the reconstructed samples are of
etter quality visually than the other images generated by ran-
om sampling. To demonstrate that the model has not merely
emorized the training examples, we show the generated images
ia bilinear-interpolations in the latent space in Fig. 3(e) and
ig. 3(f).
(2) Quantitative comparison: We compare the proposed model

ith the standard VAE (Kingma & Welling, 2014), β-VAE (Kingma
Welling, 2014), β-TCVAE (Chen et al., 2018) and Info-GAN (Chen
t al., 2016). For the Info-GAN, batch normalization is added for
raining stability. As suggested by the authors, we keep α = γ =
and only modify the hyperparameter β for the β-TCVAE model.
etermination of the β hyperparameter is done by starting from
alues in the range of the parameters suggested in the authors’
eference implementation. After trying various values we noticed
hat β = 3 seemed to work good across all datasets that we
onsidered. For a fair comparison, the models have the same
ncoder/decoder architecture, optimization parameters and are
rained until convergence, where the details are given in Ta-
le D.4. We evaluate the performance qualitatively by comparing
econstruction and random sampling, the results are shown in
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t

Fig. 3. Generated samples from the model using CNN as explicit feature map in the kernel function. In (a), (b), (c), (d) the yellow boxes in the first column show
training examples and the adjacent boxes show the reconstructed samples. The other images (columns 3–6) are generated by random sampling from the fitted
distribution over the learned latent variables. (e) and (f) show the generated images through bilinear interpolations in the latent space.
Fig. 4. Learned latent space visualization of the Sketchy dataset in 1, 2 and 3-view Gen-RKM setting by using an UMAP embedding (McInnes, Healy, Saul, &
Großberger, 2018).
Fig. G.12 in Appendix A. In order to quantitatively assess the
quality of the randomly generated samples, we use the Fréchet
Inception Distance (FID) introduced by Heusel et al. (2017). The
results are reported in Table 1. Experiments were repeated for
different latent-space dimensions (s), and we observe empirically
hat FID scores are better for the Gen-RKM. This is confirmed
182
by the qualitative evaluation in Fig. G.12. An interesting trend
could be noted that as the dimension of latent-space is increased,
VAE gets better at generating images whereas the performance
of Gen-RKM decreases slightly. This is attributed to the eigen-
decomposition of the kernel matrix whose eigenvalue spectrum

decreases rapidly depicting that most information is captured in
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Fig. 5. Multi-view generation on Sketchy dataset showing labels, images and sketches generated together from the common subspace.
ew principal components, while the rest is noise. The presence
f noise hinders the convergence of the model. It is therefore
mportant to select the number of latent variables proportionally
o the size of the mini-batch and the corresponding spectrum of
he kernel matrix (the diversity within a mini-batch affects the
igenvalue spectrum of the kernel matrix).

ulti-view generation. Figs. 5 & 6 demonstrate the multi-view
generative capabilities of the model. In these datasets, labels or
attributes are seen as another view of the image that provides
extra information. One-hot encoding of the labels was used to
train the model. Fig. 5(a) shows the generated images and labels
when feature maps are only implicitly known i.e. through a
Gaussian kernel. Figs. 5(b) and 5(c) show the same when using
fully-connected networks as parametric functions to encode and
decode labels. Next we show an illustration of multi-view gener-
ation on the Sketchy database (Sangkloy, Burnell, Ham, & Hays,
2016b). The dataset is a collection of sketch-photo pairs resulting
in 3 views: images, sketches and labels. The dataset includes 125
object categories with 12,500 natural object images and 75,471
hand-drawn sketches for each class. The following pre-processing
is done before training the GEN-RKM model: for the sketchy
dataset, we selected 10 classes for training: airplane, apple, bi-
cycle, candle, door, flower, hot-air-balloon, motorcycle, songbird
and teapot. After that, the images are resized to 64 × 64 × 3.
Further details on the used model architectures and hyperpa-
rameters are given in the Appendix. The learned latent space is
visualized in Fig. 4. One can clearly observe that the joint learning
of the different views results in a better separation of the classes.
Joint random generations are given in Fig. 5.

Disentanglement. (1) Qualitative examples: The latent variables
are uncorrelated, which gives an indication that the model could
resemble a disentangled representation. This is confirmed by
the empirical evidence in Fig. 7, where we explore the uncorre-
lated features learned by the models on the Dsprites and celebA
datasets. In our experiments, the Dsprites training dataset com-
prised of 32 × 32 positions of oval and heart-shaped objects.
The number of principal components chosen were 2 and the goal
was to find out whether traversing in the direction of principal
components, corresponds to traversing the generated images in
one particular direction while preserving the shape of the ob-
ject. Rows 1 and 2 of Fig. 7 show the reconstructed images of
an oval while moving along first and second principal compo-
nent respectively. Notice that the first and second components
correspond to the y and x positions respectively. Rows 3 and

show the same for hearts. On the celebA dataset, we train
he Gen-RKM with 15 components on a subset. Rows 5 and
show the reconstructed images while traversing along the

rincipal components. When moving along the first component
rom left-to-right, the hair-color of the women changes, while
reserving the face structure. Whereas traversal along the second
omponent, transforms a man to woman while preserving the
rientation. When the number of principal components were
while training, the brightness and background light-source

orresponds to the two largest variances in the dataset. Also
183
notice that, the reconstructed images are more blurry due to the
selection of less number of components to model H.

(2) Quantitative comparisons: To quantitatively assess disen-
tanglement performance, we compare Gen-RKM with VAE
(Kingma & Welling, 2014) and β-VAE (Higgins et al., 2017) on
the Dsprites and Teapot datasets (Eastwood & Williams, 2018).
The models have the same encoder/decoder architecture, opti-
mization parameters and are trained until convergence, where
the details are given in Table D.4. The performance is mea-
sured using the proposed framework3 of Eastwood and Williams
(2018), which gives 3 measures: disentanglement, completeness
and informativeness. The results are shown in Table 2. Gen-RKM
has good performance on the Dsprites dataset when the latent
space dimension is equal to 2. This is expected as the number
of disentangled generating factors in the dataset is also equal
to 2, hence there are no noisy components in the kernel PCA
hindering the convergence. The opposite happens in the case
hdim = 10, where noisy components are present. The above is
confirmed by the Relative Importance Matrix in Fig. F.8 in the
Appendix, where the 2 generating factors are well separated in
the latent space of the Gen-RKM. For the Teapot dataset, Gen-
RKM has good performance when s = 10. More components
are needed to capture all variations in the dataset, where the
number of generating factors is now equal to 5. In the other
cases, Gen-RKM has a performance comparable to the others.
Note that the model selection was done a-priori, that is, the
hyperparameters of classifiers were selected before evaluating
the disentanglement metric. This may explain the poor scores for
Gen-RKM with Random Forest classifier in Teapot dataset (s = 5).

6. Conclusion and future work

The paper proposes a novel framework, called Gen-RKM, for
generative models based on RKMs with extensions to multi-view
generation and learning uncorrelated representations. This allows
for a mechanism where the feature map can be implicitly defined
using kernel functions or explicitly by (deep) neural network
based methods. When using kernel functions, the training con-
sists of only solving an eigenvalue problem. In the case of a
(convolutional) neural network based explicit feature map, we
used (transposed) networks as the pre-image functions. Conse-
quently, a training procedure was proposed which involves joint
feature-selection and subspace learning. Thanks to training in
mini-batches and capability of working with covariance matrices,
the training is scalable to large datasets. Experiments on bench-
mark datasets illustrate the merit of the proposed framework for
generation quality as well as disentanglement. Extensions of this
work consists of adapting the model to more advanced multi-
view datasets involving speech, images and texts; further analysis
on other feature maps, pre-image methods, loss-functions and

3 Code and dataset available at https://github.com/cianeastwood/qedr.

https://github.com/cianeastwood/qedr
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Fig. 6. Multi-view Generation (images and labels) on various datasets using implicit and explicit feature maps. (a) MNIST: Implicit feature maps with Gaussian kernel
are used during training. For generation, the pre-images are computed using the kernel-smoother method. (b, c) MNIST and CIFAR-10: Explicit feature maps and the
corresponding pre-image maps are defined by the Convolutional Neural Networks and Transposed CNNs respectively.
Fig. 7. Exploring the learned uncorrelated-features by traversing along the eigenvectors. The first column shows the scatter plot of latent variables using the top
two principal components. The green lines within, show the traversal in the latent space and the related rows show the corresponding reconstructed images.
uncorrelated feature learning. Finally, this paper has demon-
strated the applicability of the Gen-RKM framework, suggesting
new research directions to be worth exploring.
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Appendix A. Derivation of Gen-RKM objective function

Given D = {xi, y i}
N
i=1, where xi ∈ Rd, y i ∈ Rp and feature-map

φ1 : Ωx ↦→ Hx and φ2 : Ωy ↦→ Hy, the Least-Squares Support
Vector Machine (LS-SVM) formulation of Kernel PCA (Suykens
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able 2
isentanglement Metric on DSprites and Teapot dataset with Lasso and Random Forest regressor (Eastwood & Williams, 2018). For disentanglement and completeness
igher score is better, for informativeness, lower is better.

s Algorithm Lasso Random Forest

Dis. (↑) Com. (↑) Inf. (↓) Dis. (↑) Com. (↑) Inf. (↓)

DSprites

10

Gen-RKM 0.30 0.10 0.87 0.12 0.10 0.28
VAE 0.11 0.09 0.17 0.73 0.54 0.06
β-VAE (β = 3) 0.53 0.18 0.18 0.58 0.36 0.06
β-TCVAE (β = 3) 0.55 0.17 0.18 0.72 0.54 0.11
Info-GAN 0.37 0.13 0.22 0.61 0.35 0.15

2

Gen-RKM 0.72 0.71 0.64 0.05 0.19 0.03
VAE 0.04 0.01 0.87 0.01 0.13 0.11
β-VAE (β = 3) 0.13 0.40 0.71 0.00 0.26 0.09
β-TCVAE (β = 3) 0.51 0.15 0.67 0.03 0.17 0.14
Info-GAN 0.46 0.14 0.66 0.04 0.17 0.21

Teapot

10

Gen-RKM 0.28 0.23 0.39 0.48 0.39 0.19
VAE 0.28 0.21 0.36 0.30 0.27 0.21
β-VAE (β = 3) 0.33 0.25 0.36 0.31 0.24 0.20
β-TCVAE (β = 3) 0.35 0.24 0.39 0.35 0.25 0.31
Info-GAN 0.23 0.2 0.41 0.32 0.21 0.22

5

Gen-RKM 0.22 0.23 0.74 0.08 0.09 0.27
VAE 0.16 0.14 0.66 0.11 0.14 0.28
β-VAE (β = 3) 0.31 0.25 0.68 0.13 0.15 0.29
β-TCVAE (β = 3) 0.33 0.26 0.69 0.12 0.16 0.29
Info-GAN 0.21 0.19 0.71 0.11 0.14 0.28
Table D.3
Datasets and hyperparameters used for the experiments. The bandwidth of the Gaussian kernel for generation corresponds to the bandwidth that gave the best
performance determined by cross-validation on the MNIST classification problem.
Dataset N d Nsubset s m σ nr l

MNIST 60000 28 × 28 10000 500 50 1.3 4 10
Fashion-MNIST 60000 28 × 28 500 100 5 / / 10
CIFAR-10 60000 32× 32× 3 500 500 5 / / 10
CelebA 202599 128× 128× 3 3000 15 5 / / 20
Dsprites 737280 64 × 64 1024 2/10 5 / / /
Teapot 200000 64× 64× 3 1000 5/10 100 / / /
Sketchy 75471 64× 64× 3 1000 30 100 / / /
s
g

et al., 2002) for the two data sources can be written as:

min
U,V ,ei

η1

2
(U⊤U )+

η2

2
(V⊤V )−

1
2

N∑
i=1

e⊤i Λ
−1ei

s.t. ei = U⊤φ1(xi)+ V⊤φ2(y i) ∀i = 1, . . . ,N,

(A.1)

here U ∈ Rd×s and V ∈ Rp×s are the interconnection matrices.

Using the notion of conjugate feature duality introduced in

uykens (2017), the error variables ei are conjugated to latent

ariables hi using:

1
2
e⊤Λ−1e+

1
2
h⊤Λh ≥ e⊤h, ∀e, h ∈ Rs (A.2)

hich is also known as the Fenchel–Young inequality for the

ase of quadratic functions (Rockafellar, 1974). By eliminating the

ariables ei from (A.1) and using (A.2), we obtain the Gen-RKM

raining objective function:

Jt =

N∑
i=1

(
−φ1(xi)

⊤Uhi − φ2(y i)
⊤Vhi +

1
2
h⊤i Λhi

)
+

η1

2
(U⊤U )+

η2

2
(V⊤V ).
185
A.1. Computing latent variables using covariance matrix

From (2), eliminating the variables hi yields the following:

1
η1

[
N∑
i=1

φ1(xi)φ1(xi)
⊤U +

N∑
i=1

φ1(xi)φ2(y i)
⊤V

]
= ΛU ,

1
η2

[
N∑
i=1

φ2(y i)φ1(xi)
⊤U +

N∑
i=1

φ2(y i)φ2(y i)
⊤V

]
= ΛV .

Denote Φx :=
[
φ1(x1), . . . ,φ1(xN )

]
, Φy :=

[
φ2(y1), . . . ,

φ2(yN )
]
and the diagonal matrix Λ = {λ1, . . . , λs} ∈ Rs×s with

≤ N . Now, composing the above equations in matrix form, we
et the following eigen-decomposition problem:[

1
η1

ΦxΦ
⊤
x

1
η1

ΦxΦ
⊤
y

1
η2

ΦyΦ
⊤
x

1
η2

ΦyΦ
⊤
y

][
U
V

]
=

[
U
V

]
Λ.

Here the size of the covariance matrix is (df + pf )× (df + pf ).
The latent variables hi can be computed using (2), which simply
involves matrix multiplications.

Appendix B. Stabilizing the objective function

Proposition 1. All stationary solutions for H , Λ in (3) of Jt lead
to Jt = 0.
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Table D.4
Details of model architectures used in the paper. All convolutions and transposed-convolutions are with stride 2 and padding
1. Unless stated otherwise, the layers have Parametric-RELU (α = 0.2) activation function, except the output layers of the
pre-image maps which has sigmoid activation function.
Dataset Optimizer Architecture

(Adam) X Y

MNIST/fMNIST 1e−3

Input 28 × 28 × 1 10 (One-hot encoding)
Feature-map (fm) Conv 32 × 4 × 4;

Conv 64 × 4 × 4;
FC 128 (Linear)

FC 15, 20 (Linear)

Pre-image map reverse of fm reverse of fm
Latent space dim. 500/100

CIFAR-10 1e−3

Input 32 × 32 × 3 10 (One-hot encoding)
Feature-map (fm) Conv 64 × 4 × 4;

Conv 128 × 4 × 4;
FC 128 (Linear)

FC 15, 20

Pre-image map reverse of fm reverse of fm
Latent space dim. 500

CelebA 1e−4

Input 64 × 64 × 3 –
Feature-map (fm) Conv 32 × 4 × 4;

Conv 64 × 4 × 4;
Conv 128 × 4 × 4;
Conv 256 × 4 × 4 ;
FC 128 (Linear)

–

Pre-image map reverse of fm –
Latent space dim. 15

Dsprites 1e−4

Input 64 × 64 × 1 –
Feature-map (fm) Conv 20 × 4 × 4;

Conv 40 × 4 × 4;
Conv 80 × 4 × 4;
FC 128 (Linear)

–

Pre-image map reverse of fm –
Latent space dim. 2/10

Teapot 1e−4

Input 64 × 64 × 3 –
Feature-map (fm) Conv 30 × 4 × 4;

Conv 60 × 4 × 4;
Conv 90 × 4 × 4;
FC 128 (Linear)

–

Pre-image map reverse of fm –
Latent space dim. 5/10

Sketchy 1e−4

Input 64 × 64 × 3 –
Feature-map (fm) Conv 40 × 4 × 4;

Conv 80 × 4 × 4;
Conv 160 × 4 × 4;
FC 128 (Linear)

–

Pre-image map reverse of fm –
Latent space dim. 30
(
s

P
0

I

t

Proof. Let λi, hi are given by (3). Using (2) to substitute V and U
in (1) yields:

Jt (V ,U ,Λ,H) =
N∑
i=1

−
1
2
h⊤i Λhi +

η1

2

⎛⎝ 1
η2
1

N∑
i=1

hiφ1(xi)
⊤

N∑
j=1

φ1(xj)h
⊤

j

⎞⎠
+

η2

2

⎛⎝ 1
η2
2

N∑
i=1

hiφ2(y i)
⊤

N∑
j=1

φ2(y j)h
⊤

j

⎞⎠
=

N∑
i=1

−
1
2
h⊤i Λhi +

η1

2

(
1
η2
1
HK 1H⊤

)
+

η2

2

(
1
η2
2
HK 2H⊤

)

=

N∑
i=1

−
1
2
h⊤i Λhi +

1
2

(
H
[

1
η1

K 1 +
1
η2

K 2

]
H⊤
)

.

rom (3), we get:

Jt (V ,U ,Λ,H) =
N∑
i=1

−
1
2
h⊤i Λhi +

1
2

(
HH⊤Λ

)
=

N∑
i=1

−
1
2
h⊤i Λhi +

1
2

N∑
i=1

h⊤i Λhi = 0.
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Proposition 2. Let J(x) : RN
−→ R be a smooth function, for all

x ∈ RN and for c ∈ R>0, define J̄(x) := J(x) +
c
2
J(x)2. Assuming

1 + cJ(x)) ̸= 0, then x⋆ is the stationary point of J̄(x) iff x⋆ is the
tationary point for J(x).

roof. Let x⋆ be a stationary point of J(x), meaning that ∇J(x⋆) =
. The stationary points for J̄(x) can be obtained from:

dJ̄
dx
= (∇J(x)+ cJ(x)∇J(x)) = (1+ cJ(x))∇J(x). (B.1)

t is easy to see from 2 that if x = x∗, ∇J(x∗) = 0, we have

hat
dJ̄
dx

⏐⏐⏐
x∗
= 0, meaning that all the stationary points of J(x) are

stationary points of J̄(x).
To show the other way, let x⋆ be stationary point of J̄(x)

i.e. ∇ J̄(x⋆) = 0. Assuming (1 + cJ(x⋆)) ̸= 0, then from (B.1) for
all c ∈ R>0, we have(
1+ cJ(x⋆)

)
∇J(x⋆) = 0,

implying that ∇J(x⋆) = 0.

Based on the above propositions, we stabilize our original
objective function (1) to keep it bounded and hence is suitable
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Fig. F.8. Relative importance matrix as computed by Lasso and Random Forest regressors on DSprites dataset for hdim ∈ {10, 2} against the underlying data generating
actors zdim = 2 corresponding to x, y positions of object.
Fig. F.9. Relative importance matrix as computed by Lasso and Random Forest regressors on Teapot dataset for hdim ∈ {10, 5} against the underlying data generating
actors zdim = 5 corresponding to azimuth, elevation and colors red, green and blue of the teapot object.
Table G.5
Training time per epoch comparisons (in seconds with standard deviation over 10 epochs) on MNIST and CelebA
datasets. The architecture is the same as shown in Table D.4 with mini-batch size 100 and batch-size 2000. In
both the cases Info-GAN is the most computationally expensive due to the additional auxiliary network and two
backward passes per iteration. β-TCVAE has the second worst computation times due to relatively more complicated
ELBO objective. VAE is marginally better in case of MNIST whereas the Gen-RKM outperforms in case of CelebA. This
could be due to significantly large number of parameters for CelebA architecture which increases the computational
burden of VAE. However, due to the fixed computational cost of eigendecomposition (for fixed mini-batch size), the
latent variables in Gen-RKM are computed with this fixed cost.
Dataset Gen-RKM VAE Info-GAN β-TCVAE

MNIST 0.275 (±0.042) 0.223 (±0.013) 0.372 (±0.044) 0.318 (±0.031)
CelebA 4.274 (±0.147) 4.308 (±0.112) 5.815 (±0.131) 5.201 (±0.152)
187
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w⎧⎪⎨⎪⎩
Fig. G.10. Visualization of the toy dataset together with the first 5 Principal Components (PCs) of the latent space of the Gen-RKM model.
Fig. G.11. Visualization of the traversals along the Principal components. Here the color corresponds to the value of the datapoint in latent space.
for minimization with Gradient-descent methods. Without the

reconstruction errors, the stabilized objective function is

min
U ,V ,hi

Jt +
c
2
J 2
t .

Denote J̄ = Jt +
cstab
2 J 2

t . Since the derivatives of Jt are given by
(2), the stationary points of J̄ are:

⎧⎪⎪⎨⎪⎪⎩
∂ J̄
∂V = (1+ cstabJt)

(
−
∑N

i=1 φ1(xi)h
⊤

i + η1V
)
= 0,

∂ J̄
∂U = (1+ cstabJt)

(
−
∑N

i=1 φ2(y i)h
⊤

i + η2U
)
= 0,

∂ J̄
∂hi
= (1+ cstabJt)

(
−V⊤φ1(xi)− U⊤φ2(y i)+ λhi

)
= 0,

hich gives the following solution:

V = 1
η1

∑N
i=1 φ1(xi)h

⊤

i ,

U = 1
η2

∑N
i=1 φ2(y i)h

⊤

i ,

λhi = V⊤φ1(xi)+ U⊤φ2(y i),

assuming 1 + cstabJt ̸= 0. Elimination of V and U yields the
following eigenvalue problem

[
1
η1
K 1 +

1
η2
K 2

]
H⊤ = H⊤Λ, which

is indeed the same solution for c = 0 in (1) and (3).
stab
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Appendix C. Centering of kernel matrix

Centering of the kernel matrix is done by the following equa-
tion:

K c = K − N−111⊤K − N−1K11⊤ + N−211⊤K11⊤, (C.1)

where 1 denotes an N-dimensional vector of ones and K is either
K 1 or K 2.

Appendix D. Architecture details

See Tables D.3 and D.4 for details on model architectures,
datasets and hyperparameters used in this paper and double
precision is used for training the Gen-RKM model. The PyTorch
library in Python was used as the programming language with a
8GB NVIDIA QUADRO P4000 GPU.

Appendix E. Bilinear interpolation

Given four vectors h1, h2, h3 and h4 (reconstructed images
from these vectors are shown at the corners of Figs. 3(e), 3(f)),
the interpolated vector h⋆ is given by:

h⋆
= (1− α)(1− γ )h1 + α(1− γ )h2 + γ (1− α)h3 + γαh4,

with 0 ≤ α, γ ≤ 1. This h⋆ is then used in step 8 of the
generation procedure of Gen-RKM algorithm (see Algorithm 1) to
compute x⋆.
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Fig. G.12. Comparing Gen-RKM and standard VAE for reconstruction and generation quality. In reconstruction MNIST and reconstruction CelebA, uneven columns
correspond to the original image, even columns to the reconstructed image.
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Appendix F. Visualizing the disentanglement metric

In this section we show the Hinton plots to visualize the disen-
anglement scores as shown in Table 2. Following the conventions
f Eastwood and Williams (2018), z represents the ground-truth
ata generating factors. Figs. F.8 and F.9 show the Hinton plots
n DSprites and Teapot datasets using Lasso and Random Forest
egressors for various algorithms. Here the white square size
ndicates the magnitude of the relative importance of the latent
ode h in predicting z .
i i

189
ppendix G. Further empirical results

.1. Illustration on toy example using a Gaussian kernel

Here we demonstrate the application of Gen-RKM/Kernel PCA
sing a Gaussian kernel with σ = 0.5 on a 3 mode Gaussian
ataset. The dataset is shown in Fig. G.10 together with the first 5
rincipal Components (PCs) of the latent space. The method looks
or PCs that explain the most variance. One can see that moving
long first component in latent space correspond to changing
lasses 3→ 2→ 1, whereas moving along the second component
orresponds to changing classes 2→ 3→ 1. For PCs 3 to 5, the
odel shows disentanglement of the 3 classes, i.e. each Gaussian
luster is mapped to a specific component. Moving along one of
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B

Fig. G.13. MNIST: Latent space exploration.
C

D

E

F

G

these components only changes the within class variation. This
behavior is further confirmed by the experiment in Fig. G.11. Here
we visualize again the dataset where now the color corresponds
to the value of the datapoint in latent space.
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