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Abstract

Sharing cyber threat intelligence is important because it allows organizations to stay ahead of new and emerging
threats, prevent downtime and improve their overall security posture. Information about known vulnerabilities and
post-mortem analyses of successful attacks are instrumental to make tactical decisions and implement adequate coun-
termeasures. However, organizations are hesitant or cautious to share their locally collected cyber threat intelligence
with third parties because of possible damage to the organization’s reputation, legal or liability concerns, or the risk
that the information is used against them.

In order to promote a collaborative cybersecurity environment that accommodates the varying confidentiality
requirements of both threat intelligence producers and consumers, we introduce and assess a viable solution for
preserving privacy while sharing and analyzing sensitive or confidential data. This solution is designed to work
seamlessly with modern cyber threat intelligence platforms. Furthermore, we examine the security implications and
computational impact associated with these techniques, enabling the analysis of correlations between threat events in
a manner that respects confidentiality and extends across multiple organizations involved in information sharing.
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1. Introduction

Threat intelligence platforms (TIPs) have gained widespread adoption among organizations, enterprises, and
CERT communities for analyzing security incidents and gaining valuable insights to mitigate cyber attacks. With
the increasing number and complexity of security threats and attack campaigns, organizations can no longer rely
solely on their own resources to effectively and proactively defend against attacks. To enhance collaborative situa-
tional awareness, various data exchange formats like STIX [1], TAXII [2], and CyBOX [3] have been proposed and
integrated into TIPs to facilitate the sharing of indicators of compromise (IoCs). This enables organizations to easily
incorporate diverse intelligence feeds, such as CIRCLE OSINT1, Botvrij.eu2, or the Feodo IP Blocklist3, to enrich the
threat intelligence gathered from their own systems and networks. While collecting and sharing security incident data
are crucial TIP functionalities, the key aspect lies in efficiently sifting through vast intelligence feeds [4] to filter and
extract actionable information that is relevant for safeguarding the organization, its systems, and networks.

Despite the availability of technical means to facilitate information sharing, organizations exhibit reluctance when
it comes to sharing their own threat intelligence. This hesitation stems from concerns about reputational damage
when customers become aware of a breach and the risk of publicly exposing sensitive or private information. The
General Data Protection Regulation (GDPR) imposes strict restrictions on the publication of personally identifiable
information (PII) and carries substantial penalties for non-compliance. An example of the GDPR’s impact is evident
in WHOIS [5], a service commonly used by security analysts to obtain information about domain names or websites.
Due to GDPR compliance, WHOIS now redacts or anonymizes certain registrant details [6] such as names, addresses,
email addresses, and phone numbers. Consequently, when a domain name is employed for malicious purposes,

1https://www.circl.lu/doc/misp/feed-osint/
2https://www.botvrij.eu/data/feed-osint/
3https://feodotracker.abuse.ch/downloads/ipblocklist.csv
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these attributes are no longer accessible to security analysts, hindering their ability to trace threats and identify the
perpetrators behind attack campaigns. Even an IP address, often utilized as an indicator of compromise (IoC), falls
under the scope of personal data as per the GDPR if it can be linked to an identified or identifiable ‘natural’ person4.

Enabling the sharing of threat intelligence is crucial for effective attack prevention. However, concerns surround-
ing confidentiality and privacy often hinder voluntary reporting efforts. To address this challenge, we propose a
practical solution for threat intelligence platforms (TIPs) that enables security analysts to strike a better balance be-
tween security and privacy when dealing with sensitive business information, private data, and personally identifiable
information. Our solution, which builds upon our prior research [7, 8, 9], implements a polyglot framework that in-
tegrates various privacy-enhancing techniques for storing, processing, and sharing threat intelligence. This approach
caters to the diverse security and privacy requirements of both threat intelligence producers and consumers. While
the term ‘polyglot persistence’ [10] typically refers to using different technologies for managing varied data storage
needs, our polyglot solution extends this concept to encompass multi-faceted processing and sharing of information.
Specifically, threat intelligence is made available in different forms through selective suppression, encoding, hash-
ing, and encryption—both individually and in combination—based on the information’s sensitivity and the security
analytics requirements of authorized recipients. Moreover, we explore the security implications and computational
overhead of these techniques within the MISP [11] cyber threat intelligence platform to analyze correlations between
threat events from different organizations while preserving privacy. These techniques leverage Private Set Intersec-
tion (PSI) [12], a privacy-preserving cryptographic technique that enables two parties to compare their data sets and
compute intersections without exposing raw data to the other party.

This study builds upon and extends our earlier award-winning research [13]. In this research, we distinguish
it from our prior work in several ways. First, we enhance and expand the discussion of related work, discussing
additional research as well as providing more comprehensive insights. Second, we present a more detailed explanation
of our framework and its underlying technical building blocks. Third, we conduct additional experiments using new
datasets that contain a significantly larger number of threat events and attributes, enriching the evaluation process.
Lastly, we present a novel baseline experiment for comparison, which incorporates a trusted third party responsible for
computing the set intersection. This third party facilitates threat intelligence producers and consumers in discovering
the information they have in common with reduced computational overhead. However, this approach operates under a
distinct threat model, as both parties must assume that the third party will not engage in malicious behavior or collude
with either of them.

1.1. Contributions

The key contributions of this work can be summarized as follows:

1. Our framework introduces a polyglot persistence and analysis approach for threat intelligence, accommodat-
ing the distinct requirements of both intelligence feed producers and consumers. By incorporating a polyglot
approach, it enables threat intelligence producers to employ more refined sharing mechanisms. This approach
allows them to contribute to the security community in a diversified manner without compromising the sensi-
tivity or confidentiality of the gathered threat intelligence.

2. We put forward a novel methodology that enables the analysis of correlations between threat events while
preserving privacy, extending across multiple organizations engaged in information sharing. This methodology
leverages private set intersections and Bloom filters to selectively share threat intelligence information with
consumers. It ensures that the shared data is beneficial to the consumers without requiring the provider to have
knowledge of the specific information the consumer can access.

3. We conduct an in-depth examination of the security implications and computational overhead associated with
diverse privacy-enhancing techniques when integrated into a modern threat intelligence platform. Additionally,
we evaluate our approach by contrasting it with an equivalent deployment relying on a trusted third party. This
third party computes the intersections using the data from both parties, while ensuring that the disparate data
remains undisclosed to each other.

4https://gdpr-info.eu/issues/personal-data/
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1.2. Overview

The paper is structured as follows: In Section 2, we delve into relevant related work. Section 3 presents the
design and implementation details of our polyglot persistence and sharing solution. Section 4 elaborates on the
privacy-preserving correlation of threat intelligence. The evaluation of security and privacy impact, as well as the
computational complexity, is covered in Section 5. Lastly, in Section 6, we conclude the work by summarizing the
key insights and proposing potential avenues for future research.

2. Related work

In this section, we will explore relevant literature on threat intelligence platforms, focusing on their added value,
key functionalities such as correlation analysis, and the secure sharing and processing of threat information while
prioritizing privacy.

2.1. Threat intelligence sharing and supporting platforms

A recent survey conducted by Zibak et al. [14] aimed to investigate the factors influencing the effectiveness of
threat intelligence platforms. The study involved analyzing responses from 152 security professionals in order to
gain a deeper understanding of the key factors for success. Their empirical evaluation highlighted that the quality
of the information and the perceived trust in the platform are crucial factors for achieving success. Similarly, Li
et al. [4] conducted comparative research on the significance of cyber threat intelligence. The authors also verify
that numerous public and commercial sources disseminate threat intelligence data. However, it remains uncertain
how much these sources truly enhance the defense of systems against future attacks. Consequently, the authors
establish a collection of metrics to describe the wide array of sources for threat intelligence and evaluate their extent
of coverage and accuracy. Their findings reveal substantial variations in the types of data captured, and there is no
proof that larger threat intelligence feeds offer more significant information. Furthermore, they observe a low level of
overlap between different data sources. In a more recent study conducted by Bouwman et al. [15], a large information
sharing community known as the COVID-19 Cyber Threat Coalition was investigated. With over 4000 members, the
study aimed to gain insights into whether collaboration at such a scale resulted in improved coverage and whether
the availability of threat data for free enhanced the capability of defenders to take appropriate actions. The findings
indicated that the community indeed bolstered the ability of network defenders to respond by disseminating their threat
data through a freely accessible blocklist. However, over time, the Cyber Threat Coalition encountered challenges in
maintaining focus and struggled to scale up its quality assurance processes, causing them to fall behind established
defense mechanisms.

Gascon et al. [16] introduced Mantis, a threat intelligence platform designed to retrieve information and correlate
threat data from various threat intelligence standards. The primary objective of Mantis is to assist security analysts
in identifying similar attack patterns across seemingly unrelated attack campaigns. To achieve this, Mantis employs
a type-agnostic similarity algorithm based on attribute graphs. Through an extensive evaluation involving more than
14000 CyBOX objects, the platform demonstrated its capability to retrieve pertinent threat reports with an impressive
mean average precision of 80%. This level of precision is achieved even when provided with just a single object from
an incident, such as a file or an HTTP request. In a similar vein, Thom et al. [17] conducted a study on the effectiveness
of correlating cyber threat intelligence data, but with a focus on global honeypots that simulate real Internet-facing
services. Their aim was to analyze attack and traffic patterns to gain insights into the tactics employed by adversaries.
In their study, a total of six multi-service honeypots were strategically deployed across various locations worldwide to
collect and categorize network traffic over an extended period spanning from March to December 2020. Their analysis
encompassed a wide range of characteristics, including source and destination IP addresses, port numbers, usernames
and passwords used, executed commands, and downloaded file types. The authors concluded that their approach
of gathering data from geographically distinct zones over an extended duration facilitated a better understanding
of attacker intent and methodologies. It also aided in the development of effective strategies to identify malicious
behavior and sources of attacks, ultimately serving as a valuable source of cyber threat intelligence.

Gonzalez Granadillo et al. [18] introduced Enriched Threat Intelligence Platform (ETIP), an advanced threat
intelligence platform that enhances existing TIPs (Threat Intelligence Platforms) through extended capabilities in
import, quality assessment processes, visualization, and information sharing. ETIP effectively combines OSINT
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(Open Source Intelligence) data, external data sources, and an organization’s internal IT infrastructure to provide
enriched threat intelligence. ETIP acquires structured cyber threat data from diverse sources and conducts correlation
analysis using both static and dynamic data from external sources and the monitored infrastructure. This enables the
generation of a threat score through heuristic-based analysis, enriching the information obtained from OSINT and
other sources. The resulting comprehensive output is then shared with external entities, including SIEM systems, for
further in-depth analysis and dissemination among trusted organizations. Martins et al. [19] confirm that TIPs offer
numerous advantages that allow organizations to efficiently initiate crucial processes such as collecting, analyzing,
and sharing threat-related information. Nevertheless, current TIPs face certain limitations that hinder their widespread
adoption. The authors designed and evaluated an Automated Event Classification and Correlation Platform (AECCP)
to address some of these limitations and enhance the functionality of TIPs. AECCP focuses on improving the quality
of threat intelligence by classifying it according to a unified taxonomy, filtering out low-value information, enriching it
with valuable data from open-source intelligence sources, and aggregating related information pertaining to the same
threat. The effectiveness of AECCP was validated and evaluated using three datasets of events, and it was compared
with two other platforms. The results demonstrate that AECCP is capable of automatically generating high-quality
threat intelligence, thereby assisting security analysts in analyzing security incidents more efficiently within a shorter
timeframe.

Sun et al. [20] conducted a targeted investigation on cyber threat intelligence (CTI) mining to promote a more
proactive cybersecurity defense strategy. In their survey, they observed that many organizations primarily concentrate
on integrating threat data feeds into their existing network and firewall systems, intrusion prevention systems, and
Security Information and Event Management systems (SIEMs). However, they often fail to leverage the valuable
insights that such new intelligence can offer. To address this, the authors propose CTI mining as a promising oppor-
tunity. This process involves uncovering, processing, and analyzing essential information about cyber threats from
multiple data sources. In their study, they provide a comprehensive overview of the most significant works on CTI
and present a taxonomy to classify various cybersecurity-related entities and events. This taxonomy encompasses
cyber attack tactics, techniques, and procedures, profiles of hackers, indicators of compromise, vulnerability exploits,
malware implementations, and threat hunting strategies.

2.2. Analysis of private or confidential threat intelligence
Weathersby [21] conducted a study on the prevalence of personal identifiable information (PII). Specifically, the

author examined public malware sandbox samples to investigate the implications of PII for privacy and the sharing
of threat intelligence. Through exploratory observation analysis of 1012 random samples of non-malicious PDF files
uploaded to online malware scanners, it was found that 72% of the samples contained multiple PII indicators. The
majority of the samples analyzed did not contain sensitive information beyond the author’s name. However, a small
percentage of the samples did contain potentially sensitive financial data, such as credit card numbers, as well as
identifying information like phone numbers and IP addresses.

Trocoso-Pastoriza et al. [22] propose a secure framework that facilitates distributed and privacy-preserving shar-
ing of threat intelligence. They highlight the challenge of securing an ever-increasing volume of data, leading to
bottlenecks in threat intelligence sharing. The authors’ solution is built upon the MISP platform and offers partici-
pant organizations the means to leverage their sensitive cyber threat intelligence effectively. The framework provides
scalable software and orchestrates collaborations that yield statistically significant and valuable insights. These in-
sights, in turn, support and enhance the efficacy and reliability of implemented cyber defense processes. The approach
leverages federated learning and cryptographic techniques based on multiparty homomorphic encryption [23]. The
objective is to enable efficient and scalable computation of aggregate statistics and machine learning models on en-
crypted distributed data. The framework allows for the secure release of either the model itself or only the predictions
generated by the model. The authors validate their solution through three representative scenarios for CTI sharing:
calculating statistics on the collective dataset (e.g., global number of intrusion events per type of malware), automatic
prediction of threat levels using MISP events, and training and detection of DDoS attacks.

In the realm of privacy-preserving threat intelligence, van de Kamp et al. [24] conducted research on cryptographic
schemes for the secure sharing of Indicators of Compromise (IoCs) and the reporting of sightings. They employ a
cryptographic approach to conceal the specific details of an indicator of compromise, allowing it to be shared with
other parties. These parties can still detect intrusions using these cryptographic indicators. Additionally, they apply
another cryptographic construction that allows parties to report the number of sightings they have observed to a central
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party. This central party can aggregate the messages from multiple parties to determine the total number of sightings
for each indicator, without gaining knowledge of the individual party’s specific number of sightings.

Dara et al. [25] bring attention to the fact that various cloud-based services, including Google Safe Browsing, offer
threat intelligence related to advanced persistent threats (APTs). However, accessing such services typically requires
users to disclose their browsing history and files to determine whether their machines have been compromised, which
raises concerns about privacy. The authors identify two key advancements necessary for designing privacy-preserving
threat intelligence services: (i) privately retrieving elements using keyword(s), and (ii) privately retrieving matching
documents. To address these challenges, they employ homomorphic encryption (HE) and private information retrieval
(PIR) techniques to safeguard the privacy of users querying public threat intelligence services and databases. Sim-
ilarly, van Rijswijk-Deij et al. [26] developed DNSBloom, a system that uses Bloom filters as a privacy-enhancing
technology to store DNS requests in the context of privacy-conscious threat intelligence. Bloom filters function as a
probabilistic set, where a membership test provides a high probability of membership (with a small chance of false
positives) or confirms non-membership. By not storing original information and aggregating queries from multiple
users within specific time intervals, DNSBloom ensures robust privacy protection. At the same time, security pro-
fessionals can confidently examine whether specific DNS queries associated with malicious activities have occurred
with a high level of certainty. Freudiger et al. [27] presented the Sharing is Caring (SIC) framework, designed to
facilitate two types of algorithms. The first algorithm allows for the estimation of the benefits of sharing data in a
privacy-preserving manner, ensuring that sensitive data is not disclosed. The second algorithm enables the sharing of
agreed-upon datasets with specific partners, such as sharing only common attack information. They investigated the
practical feasibility of Private Set Intersection (PSI) for predictive IP address blacklisting.

2.3. Bridging the gap

Prior studies have examined the advantages of sharing threat intelligence and the implementation of platforms to
facilitate this collaborative process. In addition to these works, other related research has focused on deploying specific
tactics and procedures to safeguard sensitive information and prevent its inadvertent disclosure to unauthorized parties.
Our primary objective is to bridge a crucial gap in the existing approaches for sharing threat intelligence. Some of the
currently proposed techniques are designed to cater to specific types of threat intelligence, while others lack an upfront
assessment of the potential usefulness of shared threat intelligence for subsequent correlation analysis. In response
to this gap, we endeavor to develop a more comprehensive solution that is not limited by specific threat intelligence
types and thoroughly evaluates the value of sharing threat intelligence to facilitate effective correlation analysis.

Our practical contribution aligns with previous findings emphasizing the benefits of sharing actionable threat
intelligence while ensuring the secure handling of confidential information. To achieve this, we employ state-of-the-
art privacy enhancing techniques that enhance trust in the threat intelligence platform. In line with our goals, our
solution offers advanced capabilities for correlation analysis, with a specific emphasis on secure sharing, analysis, and
correlation of sensitive information, all while maintaining confidentiality. While we leverage similar techniques as
in previous works, we believe we are the first to utilize Private Graph Intersection (PGI) in the context of privacy-
preserving sharing and correlation of threat intelligence across multiple organizations. By adopting a graph-based
approach, we can effectively represent and share threat intelligence events and also capture the complex relationships
and correlations between them.

3. Polyglot persistence and sharing

This study expands on our previous research conducted in the TATIS [7, 8] framework (see Figure 1), utilizing
the MISP5, The Hive, and Cortex6 threat intelligence platforms, as well as an earlier version of this research [13].
In the forthcoming sections, we will elucidate how we modified this framework to cater to the distinct confidential-
ity requirements of threat intelligence producers and consumers, enabling them to share and correlate threat events
effectively.

5https://www.misp-project.org
6https://thehive-project.org
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Figure 1: Privacy-preserving sharing and correlation analysis of threat events across the organizational trust boundary.

3.1. Stakeholder concerns and goals for sharing confidential threat intelligence

Threat intelligence producers and consumers often have distinct needs due to their differing roles, responsibilities,
and objectives within the cybersecurity ecosystem. Threat intelligence producers are typically organizations or teams
responsible for collecting, analyzing, and generating threat intelligence. Their primary focus is on gathering raw
data, conducting research, and identifying potential threats. On the other hand, threat intelligence consumers, such as
security operations teams or decision-makers, require actionable insights and contextual information to protect their
systems and make informed decisions.

Let’s examine the example of a simplified MISP threat event, illustrated in Listing 1, where an IP address is
depicted as one of the confidential attributes requiring protection. The IP address may uniquely identify a device
or network on the internet. If an IP address is associated with a specific victim, it can potentially reveal sensitive
information about the target organization or individual, such as their geographical location, network infrastructure, or
even specific systems and services in use. Knowledge of the victim’s IP address can be valuable to threat actors who
may focus their efforts on compromising the victim’s systems or exploiting vulnerabilities specific to their network
configuration. Last but not least, revealing the IP address of a target victim could tip off adversaries or hinder ongoing
security operations. By concealing the IP address, security teams can maintain a strategic advantage in investigating
and mitigating threats. Hence, in the context of sharing threat intelligence information, threat intelligence producers
and consumers encounter distinct requirements.

3.1.1. Threat intelligence producers
These organizations and teams have primary responsibilities such as collecting and analyzing raw data, identifying

potential threats, and generating comprehensive threat intelligence. They actively engage in sharing this intelligence
across diverse platforms and communities to enhance collective defense and foster collaboration. However, these
organizations may also face specific requirements regarding confidentiality and compliance. As a result, they need
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1 {

2 "Event": {

3 "uuid": "3fdf40c2 -7485 -11ec -90d6 -0242 ac120003",
4 "date": "2022 -01 -05",
5 "threat_level_id": "1",
6 "info": "This is a network threat event",
7 "published": true,
8 "distribution": "0",
9 "Attribute": [ {

10 "type": "ip -dst",
11 "category": "Network activity",
12 "to_ids": true,
13 "distribution": "5",
14 "comment": "This is a sensitive attribute",
15 "value": "1.2.3.4",
16 "uuid": "da1141b0 -712b-4bc8 -bf4a -51830 f2918c6"
17 } , {

18 "type": "port",
19 "category": "Network activity",
20 "to_ids": true,
21 "distribution": "5",
22 "value": "443",
23 "uuid": "61d2ee12 -fc7b -4129 -8c69 -ea856254d923"
24 }

25 ]
26 }

27 }

Listing 1: MISP threat event with 2 attributes in JSON format

mechanisms to ensure controlled access, protect sensitive data, and adhere to legal and regulatory obligations. Con-
sequently, these stakeholders have several options:

1. Withhold Information: They can choose not to share certain threat intelligence information at all, preserving
its confidentiality and restricting access exclusively to internal teams.

2. Restricted Sharing: Alternatively, they can share fully detailed threat intelligence, but limit its dissemination to
a restricted set of consumers. This approach allows for more targeted sharing while maintaining confidentiality.

3. De-identification: Another option is to share information in a manner that reduces its sensitivity or revealing
nature, while still providing value for security analysis. By de-identifying or anonymizing certain aspects, the
shared intelligence can protect sensitive details while offering insights and trends.

4. Combination Approach: Organizations can also adopt a combination of the above strategies by tailoring their
sharing methods based on the specific audience or recipient. They may share fully detailed intelligence with a
select group while employing de-identification techniques for broader dissemination.

In summary, these stakeholders have a range of options available to address their confidentiality requirements when
sharing threat intelligence. They can choose to withhold information, restrict sharing, de-identify data, or utilize a
combination of these approaches to cater to different audiences and maximize the utility of shared intelligence.

3.1.2. Threat intelligence consumers
These stakeholders primarily consist of security operations teams and decision-makers who rely on actionable

insights and contextual information to safeguard their systems and make well-informed choices. Their specific needs
revolve around obtaining a concise and filtered view of threat intelligence, focusing on the risks and vulnerabilities
that directly pertain to their systems or operations. Upon receiving threat intelligence, these stakeholders process it
for various purposes:

1. Incident Insights and Response: They analyze the received threat intelligence to gain deeper insights into a
specific incident. This helps them understand the nature of the threat and formulate effective response strategies
to mitigate its impact.

2. Confirmation of Incidents: They verify the occurrence or sightings of threats mentioned in the intelligence.
Confirming the validity of these threats allows them to prioritize and allocate resources accordingly.
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3. Enhanced Threat Analysis: The received threat intelligence can augment the analysis of existing threat events.
By incorporating additional information, they can refine their understanding of the threats and their potential
implications.

4. Correlation with Local Observations: They seek to correlate the incident mentioned in the intelligence with
other threat events observed locally. This correlation enables them to identify patterns, uncover potential con-
nections, and gain a comprehensive understanding of the overall threat landscape.

In summary, these stakeholders utilize the received threat intelligence to gain valuable insights into specific in-
cidents, confirm threats, enhance threat analysis, and establish correlations with locally observed events. This infor-
mation empowers them to effectively respond to incidents, allocate resources appropriately, and maintain a robust
security posture.

3.1.3. Limitations of state-of-practice sharing protocols
The Traffic Light Protocol (TLP)7 is a tagging scheme and framework used for sharing sensitive information,

primarily within the cybersecurity community. While TLP is widely utilized and generally effective, it does possess
certain limitations.

The TLP employs color-coded designations (e.g., Red, Amber, Green) to signify the sensitivity and sharing restric-
tions of information. However, different organizations or individuals may interpret these colors differently, resulting in
potential confusion or miscommunication. The absence of clear guidelines can lead to disparities in the understanding
and implementation of TLP markings. Additionally, the TLP offers a broad categorization of information sensitivity
but lacks finer levels of granularity. This limitation may make it inadequate for situations where information falls
between the defined TLP levels or necessitates more nuanced sharing restrictions. The absence of intermediate desig-
nations may hinder precise communication and appropriate handling of sensitive data. Furthermore, the TLP relies on
trust between parties involved in information sharing. While the protocol encourages responsible handling of sensitive
information, there is no guarantee that the receiving party will strictly adhere to the prescribed sharing restrictions or
adequately safeguard the information as intended. This reliance on trust introduces a level of uncertainty and potential
risk when sharing sensitive data.

It is essential for organizations to recognize these limitations of the TLP. These limitations highlight the necessity
for a more adaptable threat intelligence persistence and processing layer. Additionally, cryptographic methods are
required to effectively enforce access constraints.

3.2. Polyglot persistence of confidential attributes

In contrast to the example provided in Listing 1, a typical MISP threat event encompasses numerous attributes
and may even incorporate multiple MISP objects with multiple annotations. Many of these attributes contain confi-
dential or private information. Our framework offers the capability to selectively filter, transform, and encrypt these
attributes as needed. The underlying relational database within MISP (e.g. MySQL or MariaDB) is designed with
strong typing, allowing for on-the-fly modification of attribute types. This means that instead of storing the original
IPv4 address, our framework can store a larger base64 encoded payload, which can be either plaintext or ciphertext.
This enables the secure storage of sensitive information within the MISP persistence layer. One advantage of lever-
aging MISP’s persistence layer is that no additional functionality is required to share threat intelligence, whether it is
plaintext, encrypted or privatized, with other MISP instances across the organizational trust boundary. This sharing
can be achieved through MISP’s push or pull synchronization mechanisms, allowing for seamless and secure dis-
semination of threat intelligence between interconnected MISP instances. This integration simplifies the process of
sharing encrypted or privatized threat intelligence without the need for extra infrastructure or complex communication
channels.

Initially, TATIS [7, 8] provided fine-grained access control to threat intelligence using Ciphertext-Policy Attribute-
Based Encryption (CP-ABE). In the case of the event example presented in Listing 1, the original IP address attribute
was encrypted using AES, and the AES secret key was protected with CP-ABE. The decision to utilize CP-ABE to
protect the AES secret key was motivated by the fact that AES secret keys are typically shorter than most attribute

7https://www.us-cert.gov/tlp
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values. This characteristic allows for faster CP-ABE decryption of the AES secret key. Once decrypted, the AES
secret key can be used to decrypt the actual threat intelligence using AES. However, it is important to note that AES
encryption as a privacy-enhancing technique presents a drawback. It hinders the analysis of correlations between
events and attributes unless the consumer possesses the capability to decrypt the protected information. Specifically,
the consumer must possess a CP-ABE decryption key constructed with user profile attributes that satisfy the conditions
of the encryption policy used to encrypt the AES secret key.

To enhance our solution’s capabilities, we have incorporated polyglot functionality, allowing for the storage of
multiple variations of the same attribute. This enables the restriction of access to sensitive attributes at different
levels of granularity, while still supporting correlation analysis for threat intelligence consumers who do not possess
decryption keys. The different variations include:

• Plaintext: The threat event and its associated attributes are stored in clear, without any encryption or obfusca-
tion. This variation is suitable for insensitive or public information that does not require access restrictions. An
example of this is TLP:WHITE threat intelligence.

• Suppression: Attributes that are deemed too business sensitive, private, or involve personally identifiable in-
formation are entirely removed from the stored data. This ensures that such information remains confidential
and is not accessible to threat intelligence consumers.

• Transformed: Instead of exposing the original attribute, it undergoes one or more transformations to fulfill the
needs of threat intelligence consumers without revealing sensitive details. These transformations can include
techniques like hierarchical encoding, hashing, or other suitable methods that reduce the level of detail while
maintaining the attribute’s interpretability and correlation potential.

In terms of transforming sensitive threat attributes, there are various transformation techniques that can be employed
to restrict the amount of information revealed and control access to the information. These techniques include:

• Hierarchical Encoding: The value of an attribute is transformed and generalized using a predefined hierarchy.
This reduces the uniqueness of the value, making it less exact for correlation with other events and attributes.
However, the transformed attribute retains semantic interpretability.

• Hashing: The original attribute is replaced with its hashed counterpart. Different hashing schemes can be
utilized, such as secure hashes (e.g., SHA-256), password hashes with salt and iteration count (e.g., PBKDF2),
hash-based message authentication codes (e.g., HMAC-SHA-256), fuzzy hashing (e.g., ssdeep), Bloom filters,
and more. Attribute correlation remains possible, but the content interpretation is sacrificed.

• Encryption: Individual attributes can be encrypted using CP-ABE (Ciphertext-Policy Attribute-Based En-
cryption). Each attribute can be encrypted with a different encryption policy, ensuring that only individuals
possessing a matching decryption key can retrieve the AES secret key and use it to obtain the original plaintext.
This technique limits attribute correlation and interpretation to a restricted and authorized audience.

• Hybrid: Hidden values of a set of attributes are employed in a key derivation scheme (e.g., PBKDF2) to
generate a secret key. This key is then utilized to protect an attribute. As a result, only threat consumers who
possess knowledge of the hidden values can compute the derived key to decrypt the encrypted attribute.

Bloom filters, invented by Burton Howard Bloom in 1970 [28], are probabilistic space-efficient data structures for
efficiently testing the membership of an element in a set. A Bloom filter works by using a fixed size bit array of zeros
and a set of hash functions. When inserting an element into the filter, the element is hashed multiple times, and the
corresponding positions in the bit array are set to 1. To check if an element is in the set, it is also hashed using the
same hash functions, and the filter checks the corresponding positions in the bit array. If all of these positions are 1,
the element is likely in the set, but false positives are possible. However, if any of the positions are 0, it means that the
element is definitely not in the set. In our research, the Bloom filter allows a producer to share information regarding its
threat events, and consumer to verify whether they have any events in common. Importantly, this verification process
is designed to prevent the consumer from executing brute force queries on the filter to gather new information, as
doing so will lead to false positives.
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These transformation techniques can be applied at the attribute level and can also be combined. For instance,
the same attribute information can be provided in both encrypted form (supporting in-depth analysis for those with a
decryption key) and hashed form (enabling correlation analysis with other events for threat event consumers without a
decryption key). The appropriateness of these techniques in terms of security and privacy varies based on the attribute
type and their combination for polyglot persistence. When an attribute is limited to a small set of values, it becomes
practically possible to pre-compute all (unsalted) SHA-256 hashes, which makes the CP-ABE encryption of the same
attribute pointless. Likewise, storing an attribute in both plaintext and encrypted form is also futile. By employing
these polyglot capabilities, our solution enables the storage of different variations of attributes, allowing for controlled
access and analysis of threat intelligence. It caters to the requirements of diverse threat intelligence consumers and
producers, providing the appropriate level of granularity and protection for sensitive information, allowing for different
levels of analysis and correlation based on the authorized audience’s capabilities and permissions.

Encode

Hash

Encrypt

Attribute

Attribute Encode Hash Encrypt

Decrease sensitivity

Hide detail, but enable correlation

Maintain confidentiality, restrict access

(a)

(b)

Attribute 1

(c)

Attribute 2

Hash Merge attributes before transformation

Figure 2: A variety of attribute transformation pipelines

3.3. Composition of transformation techniques

The transformation techniques discussed earlier can be combined or arranged in various ways, offering flexibility
in protecting sensitive threat attributes. Figure 2 illustrates different scenarios showcasing the possible combinations:

• In scenario (a), the original attribute value is not shared in its clear form. Instead, it is protected using three
distinct methods, each serving different purposes for diverse audiences of threat intelligence consumers, as
described in the previous section.

• For scenario (b), a two-step transformation is depicted. In the first step, individual continuous valued attributes
are generalized into an interval-based hierarchy and then top- or bottom-coded. In the second step, the top-
or bottom-encoding is transformed using HMAC-SHA-256. This approach hides the structure of the encoding
hierarchy itself while enabling correlation of attributes within the same interval. Lastly, the hashed attributes are
encrypted with CP-ABE, restricting access solely to consumers authorized according to the encryption policy.

• Scenario (c) is particularly useful when it is feasible to pre-compute the (unsalted) hashes for all possible
values of a single attribute type. This allows for the original attribute value to be learned by matching the
hashes. However, for joint attribute values (e.g., combining IP address and network port), creating a lookup
table of hashes for all possible combinations may not be practically feasible. Nonetheless, the hash of the joint
attributes can still be utilized to analyze specific correlations.
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Figure 3: A MISP threat event with (a) a plaintext attribute ip-src and (b) an attribute ip-dst stored as a ZIP file containing the CP-ABE,
SHA-256 and PBKDF2 transformations

By considering these scenarios and utilizing appropriate combinations of transformation techniques, organizations
can effectively protect sensitive threat attributes while retaining the ability to perform correlation analysis and extract
valuable insights from the threat intelligence data.

In addition to attribute-level protection, our framework also extends its support to anonymizing threat intelligence
at the event level. This approach not only mitigates the disclosure of sensitive attributes but also addresses the risk
of membership inference attacks. We have incorporated well-known privacy-enhancing techniques to achieve this,
including k-anonymity, l-diversity, t-closeness [29], and differential privacy [30]. To implement these techniques
effectively, our framework requires a list of attribute types (known as quasi-identifiers) that should be considered for
potential identification and anonymization. The methods, such as k-anonymity, ensure that the released data cannot
be distinguished or linked to specific individuals or entities. For instance, in the case of achieving k-anonymity, the
IP address ”1.2.3.4” from Listing 1 may be hierarchically encoded to ”1.2..”, preserving privacy while still allowing
analysis at a broader level.

It is important to note that the anonymization techniques mentioned earlier are commonly employed when releas-
ing datasets to the broader community. However, in the context of threat intelligence sharing, the approach is different.
Here, threat events are processed and shared individually and incrementally, rather than being released as complete
datasets. This distinction is crucial because the nature of threat intelligence requires real-time analysis and sharing of
specific threat events as they occur.

3.4. Policy-driven polyglot persistence
The configuration of polyglot persistence for threat intelligence is driven by policies. An example of such a

policy is presented in Listing 3 in the Appendix. This policy, set by the security administrator, determines the sharing
of sensitive, private, or confidential threat intelligence with third parties. It allows for the flexible combination of
privacy-enhancing techniques, as depicted in Figure 2. Additionally, the polyglot solution treats the creation of a new
MISP threat event by a security analyst or the enrichment of an existing event with an attribute in the same manner.
Thus, it supports the entire lifecycle of threat intelligence.

With the specific policy in place, we process attributes of types ip-dst and email, which belong to the default
attributes and categories provided by MISP out-of-the-box8. The same process is applied to attributes of a MISP
object created based on a MISP object template9. In this case, the policy demonstrates (a) the transformation of in-
dividual attributes using one or more privacy-enhancing techniques (PETs), and (b) the application of k-anonymity

8https://www.misp-project.org/datamodels/
9https://www.misp-standard.org/rfc/misp-standard-object-template-format.html
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Figure 4: Intra- and cross-organizational correlation of threat events with confidential or sensitive attribute values

to each MISP object instantiated from the custom network security object template before attribute transfor-
mations occur. This anonymization step is performed prior to storing the threat event in MISP’s relational database
(i.e. MySQL or MariaDB) and potentially sharing it with MISP instances from other organizations.

Figure 3 illustrates the practical implementation of the framework within MISP’s dashboard. The figure showcases
a simulated threat event with two attributes: the ip-src attribute, which is stored and shared in plaintext, and the
ip-dst attribute, which is protected according to the policy outlined in Listing 3. For the latter attribute, the original
value is disclosed in three different ways, including CP-ABE encryption and hashing with SHA-256 and PBKDF2.
The three versions of the attribute are bundled in a ZIP file, and Figure 3 also displays the list of files within the ZIP
archive and the contents of the SHA-256 variant of the ip-dst attribute. Instead of consolidating all polyglot variants
of an attribute in a ZIP file, our solution can also store each variant individually in MISP, using the ‘Comment’ field
to preserve metadata of the polyglot variant. This approach allows for customized distribution levels per variant.

4. Privacy-preserving correlation via private graph intersections

The Threat Intelligence Platform (TIP) plays a crucial role in assisting security analysts by providing actionable
information on adversaries. It accomplishes this by characterizing attack campaigns and establishing detection pat-
terns to effectively defend against cyber attacks, potentially in an automated manner and with minimal delay. TIPs
typically achieve this by comparing internal and third-party threat events from intelligence feeds, identifying correla-
tions between these events, and analyzing the attributes they share. For instance, if two threat events targeting different
entities share a common attribute indicating the source IP address of the attacks, it suggests that the same adversary
may be responsible for both campaigns.

Our framework facilitates the creation of a correlation graph that spans multiple organizations while preserving
privacy and confidentiality. It focuses specifically on sensitive or confidential attributes owned by different orga-
nizations, which are not shared with other threat consumers in any form, be it original or derived (e.g., encoded,
hashed, encrypted). In this context, organizations are willing to collaborate in establishing connections between their
respective threat events and incidents without compromising the confidentiality of the sensitive threat intelligence that
underlies these connections.
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4.1. Correlation graphs of threat events

The correlation graphs in MISP provide valuable insights into the relationships between threat events and the
attributes they share. These graphs help security analysts identify clusters of activities, attack campaigns, and enable
them to navigate from one threat event to another. Correlations occur at the attribute level, where attributes are
embedded within different threat events. This is illustrated in Figure 4. These correlations can be established based
on the original attribute contents or the polyglot variants of the attributes, as explained in Section 3.2 and depicted in
Figure 2:

• Exact or fuzzy match of original attribute values

• Exact match of hierarchically encoded attribute values

• Subsumption of hierarchically encoded attribute values

• Exact match of hashed attribute values

• Exact match of hashed attribute value combinations

The illustration represents two entities: a threat intelligence producer, denoted as P, and a threat intelligence consumer,
denoted as C. The producer has knowledge of three threat events, namely A, B, and Y , while the consumer is aware
of events A, X, and Y . A polyglot variant of Event B is shared specifically with consumer C. Both parties are aware
of events A and Y , but the producer, P, possesses additional confidential attributes related to these events that are
not shared with or known to consumer C. In this context, non-shared attributes refer to those whose values have
not been exchanged in any manner between the two parties. However, it is possible for producer P and consumer C
to independently gather confidential attributes with matching types and values. These confidential attributes may be
embedded in different threat events, as depicted in Figure 5.

Figure 4 presents four scenarios, indicated by the red text and labeled as (n), where n ∈ [1..4]. Scenario (1)
represents the default mode of MISP, where attribute values within threat events A, B, and Y are locally correlated
in detail. This includes attributes that are pulled or pushed from other MISP instances. Scenario (2) utilizes the
correlation capabilities of MISP between events X and B. However, in this case, the correlation is performed against
the polyglot variant of the shared (and potentially privatized) attributes of event B. Scenario (3) aims to correlate
non-shared attributes between threat events A and X across the producer P and consumer C. To achieve this, a private
graph intersection (PGI) protocol and Bloom filters are employed. These techniques enable learning about correlated
events without disclosing sensitive or confidential attribute values that are unknown to the other party. Scenario (4)
focuses on a threat consumer C discovering a correlation between two threat events, A and Y . Both events are known
to both parties, but only the threat producer P is capable of establishing the correlation due to non-shared attributes
that remain undisclosed to the threat consumer C.

Scenarios (1) and (2) can leverage existing functionalities within MISP for matching transformed attributes and
constructing the correlation graph. On the other hand, scenarios (3) and (4) require the utilization of a private graph
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Algorithm 1 Hash attributes based on their type and value

1: procedure HashAttr(attributes)
2: l← List()
3: for a ∈ attributes do
4: h← hash(a.type : a.value) ▷ 128-bit hash
5: l.add(h)
6: end for
7: return l
8: end procedure

Algorithm 2 PSI of hashed confidential attributes

1: procedure PSIConfAttr(p, c) ▷ producer and consumer
2: s1← HashAttr(p.get con f idential attributes())
3: s2← HashAttr(c.get con f idential attributes())
4: s← s1 ∩ s2 ▷ private set intersection [12]
5: return s
6: end procedure

intersection (PGI) protocol and Bloom filters to enable correlation discovery without revealing sensitive or confidential
attribute values that are unknown to the respective party. Further details on these last two scenarios will be provided
in the next subsection.

4.2. Correlating non-shared confidential attributes with private graph intersection

To analyze scenarios (3) and (4), we will examine the correlation graphs of the threat intelligence producer,
denoted as P, and the threat intelligence consumer, denoted as C. Both parties possess private graphs that consist of
events containing non-shared confidential attributes, which they do not disclose to other entities. We will represent
these graphs as GP = (VP, EP) and GC = (VC , EC), where V and E represent the lists of vertices and edges in the
graphs, respectively. The vertices in the graphs represent threat events that include confidential attributes, and the
edges represent correlations between these events.

In scenario 3, the threat intelligence consumer C discovers unknown correlations between threat events in two
situations. First, if consumer C and producer P share a confidential attribute within their respective threat events,
denoted as vC,i ∼ vP,i′ , a correlation is established. Second, if producer P has two threat events, vP,i ∼ vP, j, within VP,
and these events share a confidential attribute. Consumer C is also aware of these two threat events, vC,i′ and vC, j′ , but
is unaware of the correlation induced by the shared confidential attribute.

4.2.1. Scenario 3: Cross-organizational correlation
(Step 1) The threat intelligence producer P and the threat intelligence consumer C perform the computation of

the private set intersection (PSI1)[31] on their respective sets of non-shared confidential attributes. Specifically, they
compute the 128-bit hash of the type and value fields of these attributes, as shown in Algorithms1 and 2. By using the
hash, we address the variation in attribute value sizes, which can range from a few bytes (e.g., an IP address) to several
megabytes (e.g., a malware sample). Algorithm 2 provides a simplified representation of the PSI algorithm. Within
our framework, we leverage the Low Multiplicative Complexity (LowMC) PSI implementation developed by Kales
et al. [12] for its performance advantages. The producer P and the consumer C can reconstruct the original contents
of the confidential attributes from the hashes obtained during the PSI computation.

(Step 2) Subsequently, the threat intelligence producer P and the threat intelligence consumer C individually
construct their correlation graphs, denoted as GP and GC respectively, based on the threat events that are influenced
by the confidential attributes identified in the PSI1 computed in step 1. They then proceed to compute the private
graph intersection (PGI) of the event correlation graphs GP and GC . The intersection of both graphs is defined as
GI = (VI , EI) = GP ∩ GC , where VI = VP ∩ VC represents the common vertices, and EI = EP ∩ EC represents the
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Algorithm 3 Bloom filter of attribute embeddings for correlations not in PGI (step 2) for attributes in PSI1 (step 1)

1: procedure AttrEmbeddings(attributes) ▷ attributes in PSI1
2: b← BloomFilter()
3: for a ∈ attributes do
4: events← a.get events()
5: for e ∈ events do
6: h← hash(a.type : a.value : e.uuid) ▷ 128-bit hash
7: b.add(h)
8: end for
9: end for

10: return b
11: end procedure

common edges. The correlations can be expressed using an edge matrix EP or EC , as depicted below:

E =


e1,1 · · · e1,m
e2,1 · · · e2,m
...

. . .
...

em,1 · · · em,m

 with ei, j = 1 iff Vi,V j correlated

The value of edge ei, j is 1 if there exists a common attribute between threat events Vi and V j that was identified during
the PSI1 computation in step 1. Otherwise, the value is 0. Upon calculating the PGI, both the threat intelligence
producer P and the threat intelligence consumer C are aware of the shared threat event correlations. It is important to
note that the size of the edge matrix Em,m may differ for each party, and they may have different sets of threat events.
Furthermore, the edge matrix E is typically sparse, with only a few 1’s and many 0’s. Consequently, both parties
encode each correlation (i.e., an edge with ei, j = 1) between threat events Vi and V j by computing the 128-bit hash
of their UUIDs (hash(Vi.uuid : V j.uuid)). To ensure symmetry, Vi and V j are sorted based on their UUIDs before the
hash computation. Producer P and consumer C then perform a similar PSI2 computation on both sets to identify the
common correlations or edges EI of the PGI.

In (Step 3), the threat intelligence producer P identifies the confidential attributes responsible for threat event
correlations that were not found in the PGI (i.e., PSI2) computed in step 2. These are the correlations that producer P
is willing to share. To accomplish this, P creates a Bloom filter using Algorithm 3, which stores the embeddings of
these attributes within their respective threat events.

Once the Bloom filter is constructed, the threat intelligence consumer C can proceed to iterate through all the
confidential attributes in the PSI1 obtained from step 1. For each attribute, C iterates through the UUIDs of its own
threat events to check if the hash value hash(a.type:a.value:e.uuid) is present in the Bloom filter. If a match is found,
C has learned a new correlation with a threat event that does not yet have this confidential attribute.

It is important to note that a Bloom filter may result in false positives, but not in false negatives. The false positive
rate ϵ depends on factors such as the number of bits m in the Bloom filter, the number of elements n to be stored, and
the number of hash functions k used.

ϵ ≈ (1 − e−
nk
m )k

with, for a given m and n, the value k that minimizes ϵ:

k =
m
n

ln2 = −log2ϵ

Producer P can decide which ϵ value it finds appropriate.

4.2.2. Scenario 4: Remote-organizational correlation
In the given scenario, the threat intelligence producer P has identified a correlation between two confidential

attributes with the same type and value. These attributes are embedded in two different threat events, vP,i and vP, j,
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Algorithm 4 Bloom filter of correlated events for non-shared confidential attributes not in PSI1 (step 1) for events in
PSI3 (step 5)

1: procedure EventCorr(attributes) ▷ attributes not in PSI1
2: b← BloomFilter()
3: for a ∈ attributes do
4: events← a.get events() ∩ PS I3 ▷ Only events in PSI3
5: for e1, e2 ∈ events do
6: h← hash(e1.uuid : e2.uuid) ▷ 128-bit hash
7: b.add(h)
8: end for
9: end for

10: return b
11: end procedure

within the set of threat events VP. On the other hand, the threat intelligence consumer C is aware of two threat events,
vC,i′ and vC, j′ , within its set of threat events VC , but it does not possess the confidential attribute embedded in these
events. Therefore, consumer C has no knowledge of the correlation between these two events.

Producer P is willing to share the correlation with consumer C at the level of the threat events, without revealing
the contents of the confidential attributes. However, this sharing will only occur if consumer C already has knowledge
of the threat events in the first place.

In (Step 4), when the confidential attribute is part of the PSI1 computed in step 1 of scenario 3, consumer C will
have another threat event, vC, k′, within its set of threat events VC . This additional event, as part of scenario 3, enables
consumer C to learn about the correlation between vC,k′ ∼ vC,i′ and vC,k′ ∼ vC, j′ . With this information, consumer C
can independently infer and learn about the correlation between vC,i′ ∼ vC, j′ .

In (Step 5), when the confidential attribute is not part of the PSI1 computed in step 1 of scenario 3, meaning it
is only known to producer P and not to consumer C, consumer C will not learn about the correlation through the
protocols of scenario 3. In this case, both parties proceed to compute the PSI3 of the UUIDs of all their non-shared
events. If sharing is symmetric, the UUIDs of shared events would already be known. Producer P then computes
a Bloom filter specifically for correlated threat events where the correlation is induced by non-shared confidential
attributes that are not present in the PSI1 computed in step 1 (see Algorithm 4). This is done for those common threat
events found in the PSI3.

In (Step 6), consumer C learns about unknown correlations by performing pairwise hashing between the event
UUIDs it has in common with producer P within the PSI3. Consumer C checks whether these pairwise hashes,
computed as hash(e1.uuid : e2.uuid), are present in the Bloom filter constructed by producer P. By doing so, consumer
C can identify and learn about unknown correlations between threat events, even when the confidential attributes are
not directly shared.

5. Evaluation

In this section, our focus will be on thoroughly assessing the effects on security and performance when connect-
ing non-shared confidential attributes with the private graph intersections and Bloom filters discussed earlier in the
previous section.

5.1. Security evaluation

For each of the 6 steps in scenarios 3 and 4, we will review the security impact:

• Step 1: By performing PSI calculations on the hashes of confidential attributes, the embedding of these attributes
within their corresponding threat events remains concealed. Put simply, one party does not gain knowledge of
the association between confidential attributes and the threat events they are embedded in at the other party.
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• Step 2: Once the protocol concludes, both parties can determine the shared threat event correlations and identify
the correlations that are exclusive to each party. However, the confidential attributes that led to these correlations
at the other party remain undisclosed. Neither party has knowledge of the other’s threat events, except for those
included in the PGI. It is worth noting that an attribute with the same type and value, but lacking the confidential
designation, is not included in the PGI. Therefore, it does not reveal any additional information to the other party.

• Step 3: The Bloom filter guarantees that consumer C remains unaware of the embeddings of confidential at-
tributes for threat events it is not aware of. To access such information, C would need to correctly guess the
UUID, which is a random 128-bit value. Even if C were lucky enough to make a correct guess, this identifier
does not reveal any additional information about the unknown threat event. Additionally, attempting a brute
force attack would result in mismatches, as a Bloom filter is susceptible to false positives.

• Step 4: Consumer C gains knowledge about additional correlations by utilizing the reflexive and transitive
properties of correlations. However, this step does not introduce any additional security implications.

• Step 5: Both parties acquire knowledge of the UUIDs corresponding to the threat events they share, without
gaining any additional information beyond that.

• Step 6: Consumer C becomes aware of new correlations among the threat events it was already aware of.
However, C does not gain any knowledge regarding the confidential attribute of producer P that caused these
correlations, nor does it acquire information about correlations involving other threat events unknown to C.

The analysis of correlations between threat events relies heavily on the security properties of PSI [12] and the prob-
abilistic characteristics of Bloom filters. By performing PSI1 on the confidential attributes, the connection to the
corresponding threat events remains undisclosed. Similarly, PSI2 for computing the private graph intersection avoids
revealing the relationship with the confidential attributes. Moreover, PSI3 on the UUIDs of the threat events does not
leak any additional information about the events themselves.

Consumer C discovers the correlations through querying a Bloom filter. However, brute forcing such queries is
computationally intensive and may lead to false positives, which is controlled by the design parameter ϵ determined
by the threat intelligence producer P.

A malicious consumer C may attempt to extract information from producer P by initiating a forged PSI using
carefully selected fake confidential attributes. The adversary computes hashes of counterfeit confidential attributes,
which may reveal the existence of these attributes at the producer but not their embeddings within threat events. The
adversary might also attempt to learn about correlations between threat events, but this would require hashing every
possible combination of UUIDs. Likewise, the probabilistic nature of a Bloom filter prevents the adversary from brute
forcing all attribute and threat event combinations.

Feed URL Events Attributes Unique Attributes

1. CIRCLE OSINT Feed https://www.circl.lu/doc/misp/feed-osint/ 1485 487751 345197
2. The Botvrij.eu Data https://www.botvrij.eu/data/feed-osint/ 332 19824 19439
3. ThreatFox https://threatfox.abuse.ch/downloads/misp/ 794 1017477 1012989
4. MalwareBazaar https://bazaar.abuse.ch/downloads/misp/ 725 3399921 2461849
5. URLhaus https://urlhaus.abuse.ch/downloads/misp/ 772 31736027 16634935

Table 1: Community driven threat intelligence feeds, the number of threat events and attributes (on May 20, 2023).

5.2. Performance impact for simulated scenarios

In the performance evaluation, we utilize the threat intelligence feeds listed in Table 1. These feeds were collected
on May 20, 2023. For example, the OSINT feed consists of 1485 threat events. Each event typically includes a set
of attributes (or type-value pairs), which may also include MISP objects characterized by their own attributes. Taking
all attribute types into account, the feed comprises 487751 attributes (i.e. type-value pairs), with 345197 unique type-
value pairs. The other threat intelligence feeds have different characteristics.
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5.2.1. Experimental setup
The performance benchmark experiments presented below simulate extreme scenarios in terms of the number of

confidential attributes, resulting in high computational complexity. These experiments were conducted on a system
equipped with an 11th Gen Intel Core i7-11800H CPU operating at 2.30GHz and 32GB of memory. After merging
the two feeds, we set up a MISP instance and our framework on separate virtual machines, allocated 10GB of memory
and 4 virtual CPU cores for each. Both instances are configured with a subset of threat events selected through random
subsampling.

Experiment 1. For this experiment, we will utilize the initial two threat intelligence feeds: the CIRCLE OSINT and
Botvrij.eu Data feeds. These feeds collectively contain approximately 1817 events and 361640 unique attributes.
Among these attributes, there are 2996 instances where the same type-value pair appears in both feeds, indicating
duplicate attributes. Moreover, there are 358644 type-value pairs that occur only once. To proceed with the exper-
iment, we will randomly select 1000 threat events from each feed for both the threat intelligence producer (P) and
the consumer (C). Since the total number of events available is 1817, it is expected that there will be some overlap.
Indeed, 544 threat events are in common between P and C.

In this experimental setup, both parties will independently choose 1000 type-value pairs from the available set.
These selected attributes will be designated as confidential. Among the chosen pairs, 10% will be derived from the
2996 duplicate attributes, while the remaining 90% will be selected from the 358644 attributes pairs that occur only
once. Two key observations can be made based on this experimental setting:

• There is no assurance that the randomly selected 1000 attributes (or type-value pairs) will be present in any
of the chosen 1000 threat events. The selection of type-value pairs and the occurrence of threat events are
independent of each other.

• Considering that the combined threat intelligence feeds contain over 350000 distinct type-value pairs, the like-
lihood of the producer P and the consumer C sharing common confidential type-value pairs is relatively low.

Confidential
attributes

Common confi-
dential attributes

Confidential attribute
embeddings

Unique associated
events

Producer Consumer Producer Consumer

Experiment 1.a 1000 7 803 678 214 220
Experiment 1.b 2000 17 1701 1399 302 339
Experiment 1.c 5000 126 4308 3284 498 508
Experiment 1.d 10000 574 10700 6492 638 633

Table 2: In experiment 1, producer P and consumer C have each randomly selected 1000 threat events (544 in common), and designated a growing
number of attributes as confidential.

The characteristics of the threat event subsets of producer P and consumer C are presented in Table 2. From the
1000 randomly selected threat events, the producer P and consumer C have 544 threat events in common (i.e. they
share the same UUID), meaning that both of them have 456 unique events.

In experiment 1.a, where each party independently selects 1000 confidential type-value pairs at random, both
parties have 7 confidential type-value pairs in common. Among these pairs, producer P observes 803 instances of
one of the confidential key-value pairs within its 1000 threat events. These 803 occurrences are associated with 214
distinct threat events. Consumer C exhibits similar observations, i.e. 678 occurrences within its 1000 threat events
associated with 220 distinct threat events. As the number of confidential type-value pairs increases (i.e. experiments
1.b, 1.c and 1.d), the number of common type-value pairs between the producer P and consumer C also tends to
increase. Furthermore, with a greater number of occurrences of these type-value pairs in their respective threat events,
the count of unique associated events also rises. Considering that the number of unique threat events is significantly
lower (4 to 15 times) than the number of confidential attribute embeddings, it indicates that multiple confidential
attributes are present within the same threat events.

Figure 4 showcases four scenarios that are crucial for sharing and analyzing threat intelligence. These scenarios
provide valuable insights and facilitate the examination of threat intelligence data. Scenarios (1) and (2) represent
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correlation analyses that are already being conducted by MISP. For the rest of our experiments, our attention will be
directed towards the cross-organizational correlation of threat events with confidential or sensitive attribute values.
To evaluate the privacy-preserving correlation analysis for scenarios (3) and (4), we introduce a random removal of
attributes within the 544 threat events that are shared between the producer P and consumer C. Specifically, we delete
50% of the occurrences of producer P’s confidential attributes in the common threat events of consumer C. This
deletion provides an opportunity for consumer C to learn the correlations that were previously unknown due to the
removed attributes.

Confidential
attributes

Common confi-
dential attributes

Confidential attribute
embeddings

Unique associated
events

Producer Consumer Producer Consumer

Experiment 2.a 1000 10 1078 1501 282 313
Experiment 2.b 2000 20 2472 2256 502 481
Experiment 2.c 5000 155 8720 5869 723 763
Experiment 2.d 10000 560 13669 11433 945 879

Table 3: In experiment 2, producer P and consumer C have each randomly selected 1500 threat events (1246 in common), and designated a growing
number of attributes as confidential.
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(c) Bloom filter test (step 3)

Figure 6: Amount of time spent (in seconds) for each of the different steps in the algorithms of scenario (3) for producer P and consumer C each
having 1000 random threat events.
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Figure 7: Amount of time spent (in seconds) for each of the different steps in the algorithms of scenario (3) for producer P and consumer C each
having 1500 random threat events.

Experiment 2. A second larger experiment will randomly select for producer P and consumer C each having 1500
random threat events. The details are depicted in Table 3. Here, it is important to note that in experiment 2.d, both the
producer P and consumer C have a significantly larger number of associated events for their respective confidential
attributes. Specifically, there are 945 associated events for producer P and 879 associated events for consumer C out
of a total of 1817 threat events when considering both the CIRCLE OSINT and Botvrij.eu Data feeds combined. This
increased association provides a greater opportunity for correlations between threat events that are shared between
both parties.

5.2.2. Benchmark scenario (3)
Figure 6 illustrates the performance benchmark results for scenario (3) across four configurations of experiment

1. These configurations involve 1000 threat events and varying numbers of confidential type-value pairs (1000, 2000,
5000, or 10000). As anticipated, as the number of confidential attributes increases from 1000 to 10000 for both
producer P and consumer C, the computation time for PSI (step 1) also increases. For instance, the time required
for 1000 confidential attributes is approximately 0.65 seconds, whereas it rises to about 6.77 seconds for 10000
confidential attributes. On the other hand, the time needed to compute PGI (step 2) remains below 0.30 seconds. The
duration for consumer C to verify all threat events against the Bloom filter created by producer P to identify missing
correlations is once again proportional to the number of confidential attributes. It takes less than 0.01 seconds for
1000 confidential attributes but can take up to 7.9 seconds when consumer C has 10000 confidential attributes.

In Figure 7, the results of experiment 2 are depicted when producer P and consumer C randomly select 1500
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threat events. The increase in time for the last Bloom filter test from about 7.9 seconds in experiment 1 to about 11.6
seconds for 10000 confidential attributes can be attributed to the additional threat events (i.e., 1000 events versus 1500
events). As expected, the required time increases linearly with the number of events being tested against the Bloom
filter. The number of events in experiment 2 has increased by a factor of 1.5, resulting in approximately 1.47 times
longer execution time compared to experiment 1. This behavior can be attributed to the characteristics of the Bloom
filter used in the experiments. Each element to be checked undergoes a fixed set of hash function calculations, and
the corresponding bits in the fixed size bit array are verified for a value of 1. The computational complexity of the
hash functions remains consistent, which means that the overall time required for the Bloom filter test is primarily
influenced by the number of membership checks performed. As a consequence, the increased number of events in
experiment 2 leads to the observed longer execution time. Producer P constructed the Bloom filter itself in less than
2 milliseconds. It was configured to store up to 10000 elements with an error rate of 0.001. Serialized to disk, the
Bloom filter occupies approximately 18 kilobytes in size.
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Figure 8: Amount of time spent (in seconds) to compute set intersection via Trusted Third Party (step 1).

From Figures 6 and 7, one can observe that computing the PSI in the first step is a computationally expensive
one. To understand the overhead imposed by computing the private set intersection, we compare the time required to
compute the common elements via a trusted third party instead. This party hence knows the entire list of producer
P and consumer C but only returns the elements both have in common. The performance impact of this approach is
shown in Figure 8. In relative terms, with no consideration for network communication overhead, the computation of
the set intersection through a trusted third party takes less than 20 ms, making it two orders of magnitude faster than
using PSI. However, it is essential to note that this setup operates under a distinct threat model, assuming the third
party behaves honestly and does not engage in malicious activities. Specifically, it is presumed that the third party
returns accurate results and does not collude with either producer P or consumer C.

5.2.3. Benchmark scenario (4)
Figure 9 and 10 depict the performance benchmarks for steps 5 and 6 in scenario (4) across all four experiment

configurations. We omit the results of step 4 since the analysis is performed locally by MISP’s internal correlation
engine, as previously explained.

Regarding the results for PSI3, they indicate that the computation time for the private set intersection of threat
event UUIDs between producer P and consumer C is relatively short. For 1000 threat events in experiment 1, it takes
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Figure 9: Amount of time spent (in seconds) for each of the different steps in the algorithms of scenario (4) for producer P and consumer C each
having 1000 random threat events.
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Figure 10: Amount of time spent (in seconds) for each of the different steps in the algorithms of scenario (4) for producer P and consumer C each
having 1500 random threat events.

approximately 0.66 seconds, while for 1500 threat events in experiment 2, it takes around 0.87 seconds. The time
required scales linearly with the number of events.

When consumer C performs the Bloom test to detect correlations between each pair of its threat events, it takes
about 6.8 seconds for experiment 1 and about 15.5 seconds for experiment 2. As the number of events increases from
1000 to 1500, the time for pairwise testing against the Bloom filter grows quadratically.

The Bloom filter used by producer P had the same parameterization as in scenario (3) and was constructed in less
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1 "63ccda3d -9824 -4007 -818b-bb07b9e66201": {

2 "info": "ThreatFox IOCs for 2023 -05 -19",
3 "date": "2023 -05 -19",
4 "analysis": 1,
5 "threat_level_id": 2,
6 "timestamp": 1684540986,
7 "Orgc": {

8 "name": "abuse.ch",
9 "uuid": "9b086132 -8588 -49ed -97fd -8578 a777822c"

10 }

11 }

12
13 "c44f4a44 -cb96 -4e93 -bbae -56 bf39a20085": {

14 "info": "URLhaus IOCs for 2023 -05 -19",
15 "date": "2023 -05 -19",
16 "analysis": 1,
17 "threat_level_id": 2,
18 "timestamp": 1684540991,
19 "Orgc": {

20 "name": "abuse.ch",
21 "uuid": "9b086132 -8588 -49ed -97fd -8578 a777822c"
22 }

23 }

24
25 "fd934199 -4988 -4291 -8da3 -3093 f0566c5e": {

26 "info": "MalwareBazaar malware samples for 2023 -05 -19",
27 "date": "2023 -05 -19",
28 "analysis": 1,
29 "threat_level_id": 2,
30 "timestamp": 1684540981,
31 "Orgc": {

32 "name": "abuse.ch",
33 "uuid": "9b086132 -8588 -49ed -97fd -8578 a777822c"
34 }

35 }

Listing 2: Abuse.ch threat events and IOCs of May 19, 2023

than 2 milliseconds. With the same configuration, the Bloom filter has the same disk size as before.

5.2.4. Discussion on simulated scenarios
The aforementioned experiments are conducted in a simulated environment rather than a real-world one. This

approach allows us to compare the impact of an increasing number of threat events and confidential attributes in a
systematic and straightforward manner. Additionally, it enables us to validate that our framework enables consumer
C to learn correlations between threat events that were explicitly excluded from its dataset.

The primary factor influencing the results is the number of confidential attributes, as each party can have up to
10000 unique type-value pairs, which exceeds what would typically be encountered in real-life scenarios. Moreover,
certain confidential attributes may only be temporarily restricted. For instance, specific attributes like source IP
addresses can be temporarily privileged to prevent adversaries from realizing that their attack campaigns have been
detected. These restrictions can be lifted once intelligence gathering is complete, and appropriate countermeasures
have been developed and implemented.

It is worth noting that the PSI, PGI, and Bloom filter benchmarks for scenarios (3) and (4) utilize a single CPU
core. Consequently, both experiments can be executed concurrently. Furthermore, by parallelizing each Bloom filter
test across all CPU cores, we can further reduce the required time by at least a factor of 3. As a result, the total time
required is less than 10 seconds, demonstrating the practical feasibility of the solution.

5.3. Performance impact with abuse.ch intelligence feeds

In our final experiment, we leverage three community-driven threat intelligence feeds from https://abuse.ch,
namely ThreatFox, MalwareBazaar, and URLhaus (refer to Table 1). These feeds play a crucial role in combat-
ing malware and botnets. Notably, a new MISP event is generated every day across all three feeds. To illustrate,
Listing 2 showcases the event UUIDs from these feeds specifically for May 19, 2023. The threat intelligence feeds
mentioned above contain various types of event- and object-level attributes, including:

23

https://abuse.ch


0 100 200 300 400 500 600 700
Days of delay

100

101

102

103

Co
un

t (
lo

g 
sc

al
e)

Figure 11: Histogram of maximum delays in days of first occurrence of sha256 entries in the three https://abuse.ch feeds

• ThreatFox: domain, ip-dst|port, md5, sha1, sha256, url

• MalwareBazaar: filename, imphash, md5, mime-type, sha1, sha256, sha3-384, size-in-bytes, ssdeep, tlsh

• URLhaus: domain, ip-dst, url, imphash, md5, mime-type, sha256, size-in-bytes, ssdeep, telfhash, tlsh

Among the mentioned threat intelligence feeds, ThreatFox does not include any object-level attributes, only event-
level ones. On the other hand, MalwareBazaar exclusively consists of object-level attributes. URLhaus, however,
presents a combination of event- and object-level attributes. All three feeds share a common set of attribute types,
such as md5 and sha256 hash values for malware samples. Additional attribute types like sha1 or sha3-384 are only
present in certain feeds. It is worth noting that if two samples possess the same sha256 hash value, it is highly likely
that the other hash values will exhibit similarities as well.

The unique aspect of these feeds lies in the fact that each day introduces a new threat event, devoid of any inherent
semantic meaning. The only potential correlation between different events is the occurrence of the same malware
hash on different days. Consequently, we conducted a comparison of sha256 entries across the three feeds. The
results indicate that Threatfox had 686624 unique entries (721 duplicates), MalwareBazaar had 353536 unique entries
(no duplicates), and URLhaus had 3673734 unique entries (182242 duplicates). The sha256 values in the feeds exhibit
a degree of overlap, indicating that there are shared entries among them:

• ThreatFox and MalwareBazaar: 42196 sha256 entries in common

• ThreatFox and URLhaus: 162753 sha256 entries in common

• MalwareBazaar and URLhaus: 104161 sha256 entries in common

• ThreatFox, MalwareBazaar and URLhaus: 15932 sha256 entries in common

Next, we conducted an analysis of the 15932 sha256 entries to investigate whether their initial occurrences were
reported on distinct days among the three feeds. Our findings revealed that out of the 15932 sha256 values, 5157 of
them were first reported on different days across the feeds. In the majority of cases, the discrepancy in reporting was
only a matter of one or two days. However, there were 798 entries that exhibited reporting delays exceeding 7 days,
with one particular sha256 entry having a staggering delay of 676 days. Figure 11 presents a comprehensive overview
of these findings.

Subsequently, we conducted an experiment where producer P possessed data up until May 19, 2023, while con-
sumer C had data only until April 30, 2023. We then assessed the computational implications of inferring correlations
for consumer C in order to determine the ongoing reporting of specific malware samples and the continued activity of
certain botnets in May 2023. Our analysis shows that 460010 unique type-value pairs were used in May 2023. For
the period before May 2023, there were 19038554 unique type-value pairs. Both sets had 48552 type-value pairs in
common.

The PSI computation for both parties’ events is completed in under 0.05 seconds. Following this process, producer
P can detect the missing days at consumer C. Subsequently, producer P can identify the type-value pairs that occur
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during these missing days, which also appeared previously (48552 type-value pairs). A Bloom filter, limited to 100000
entries with an error rate of 0.0001, is then constructed by producer P and shared with consumer C. The construction
of the Bloom filter takes less than 1 second. Serialized to disk, the Bloom filter occupies approximately 235 kilobytes
in size. When consumer C then evaluates the 19038554 type-value pairs for their presence in the Bloom filter, it takes
approximately 241 seconds, which is deemed acceptable given the large number of type-value pairs. It is worth noting
that the Bloom filter correctly matched all 48552 entries, indicating no false positives.

6. Conclusion

In this study, we have introduced and assessed a practical polyglot solution for the secure sharing and analysis of
confidential or private threat intelligence data. Our approach caters to the distinct requirements of both intelligence
feed producers and consumers and is implemented using state-of-the-art platforms.

We have developed a novel method called private graph intersection, which allows for the analysis of correlations
among threat events while preserving privacy and accommodating multiple sharing organizations. We have exten-
sively evaluated the security implications and computational overhead of this method, leveraging well-established
cryptographic techniques such as private set intersection and Bloom filters. Our analysis − both on simulated and
more realistic larger scale scenarios − provides compelling evidence for the practicality and effectiveness of our solu-
tion for pivacy-preserving correlation of cross-organizational cyber threat intelligence.

As part of our future research, we will explore methods to incorporate cross-organizational correlation of partial
value matches. Additionally, we aim to minimize computational overhead by addressing over-correlation issues that
may arise from event and attribute values generating excessively noisy correlations.
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1 {

2 "version": "1.0.0",
3 "creator": "davy.preuveneers@kuleuven.be",
4 "organization": "kuleuven",
5 "attributes": [ {
6 "name": "ip -dst",
7 "pets": [ {
8 "scheme": "cpabe",
9 "metadata": { "policy": "and foo bar" }

10 } , {

11 "scheme": "sha256"
12 } , {

13 "scheme": "pbkdf2",
14 "metadata": { "iterations": 1000 }

15 }

16 ]
17 } , {

18 "name": "email",
19 "pets": [ {
20 "scheme": "sha256"
21 } ]
22 }

23 ],
24 "templates": [ {
25 "attributes": [ {
26 "name": "pcap_file",
27 "type": "IDENTIFYING",
28 "pets": [ {
29 "scheme": "cpabe",
30 "metadata": { "policy": "and foo or bar baz" }

31 } ]
32 } , {

33 "name": "ip_src",
34 "type": "INSENSITIVE"
35 } , {

36 "name": "ip_dst",
37 "type": "QUASI_IDENTIFYING",
38 "pets": [ {
39 "scheme": "pbkdf2",
40 "metadata": { "iterations": 1000 }

41 } ]
42 }

43 ],
44 "name": "custom_network_security_object",
45 "pets": [ {
46 "scheme": "k-anonymity",
47 "metadata": { "k": 2 }

48 } ],
49 "uuid": "d2f7910b -f757 -4370 -9db1 -cfa3e89c20b8"
50 } ]
51 }

Listing 3: Privacy policy for polyglot persistence
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