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Abstract		
Despite significant advancements in machine learning-based protein structure prediction, we are 

still far from fully understanding how proteins fold into their native conformation. The conventional 

notion that polypeptides fold spontaneously to their biologically active states has gradually been 

replaced by a more intricate reality in which cellular protein folding often requires context-

dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins 

can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding 

process, creating a self-reinforcing cascade. The recent surge in amyloid fibril structures has 

deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid 

conformations, known as polymorphism. The assembly of these polymorphs is not a random process 

but is influenced by the specific conditions and tissues in which they originate. This observation 

suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly 

is modulated by interactions specific to cells and tissues. Here, we review the current understanding 

of how intrinsic protein conformational propensities are modulated by physiological and 

pathological interactions in the cell to shape protein misfolding and aggregation pathology. 
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Introduction  
Proteins execute a dazzling diversity of functionalities in cells, including roles in catalysis, structure, 

interactions and signal transduction. To achieve this array of functions, proteins fold into specific 

enabling structures or ensembles, for example, to bring together a stereospecific catalytic site or to 

achieve structural compatibility with binding partners. In the cell, protein folding fidelity is 

safeguarded by the protein homeostasis network, which includes molecular chaperones and 

degradation pathways. During aging, the capacity to maintain protein homeostasis declines1,2; a 

diverse group of human diseases share an underlying failure of protein folding. The consequence of 

misfolding can be limited to the loss of function of the misfolded protein, as is the case in cystic 

fibrosis3,4. However, misfolded polypeptides can clump together to form larger assemblies, called 

aggregates. These aggregates can trigger cellular stress, leading to dysfunction and eventually death, 

that is, they mediate a toxic gain of function.  

Amyloid fibrils are ordered, insoluble protein aggregates that have a direct role in many pathologies, 

each characterized by the proteins deposited and the affected tissues4,5. They underlie many 

neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and frontotemporal 

dementia (FTD)4,5. Amyloids can also affect other tissues, for instance in the case of type II diabetes 

mellitus, or cause systemic forms of disease, such as in the case of immunoglobulin light chain 

amyloidosis or transthyretin (ATTR) amyloidosis6 (Supplementary Table 1). The transfer of amyloid 

fragments, typically referred to as ‘seeds’, from one organism to another is often sufficient to cause 

further aggregation of the normal protein in the recipient by recruitment to the growing amyloids7,8. 

The pathological relevance of this observation remains under debate for many proteins, but it has 

wide support in the case of the prions diseases (from proteinaceous infectious particles), which are 

a group of fatal, neurodegenerative diseases caused by the abnormal form of the Prion protein9. To 

add to the complexity, cells also exploit amyloid fibrils as functional entities to provide physical 

support, to regulate activity, and as compact states in which temporary storage of protein and 

peptide hormones is supported prior to release or under stress conditions4,10,11 (see Box 1). 

Methodological advances have expanded our view of the biological activity of amyloids. Time-

resolved and single-molecule approaches have helped in reaching a better understanding of the 

kinetics and thermodynamics of amyloid formation, such as the rates and pathways of aggregation 

and the energetics of different amyloid conformations12,13. Transcriptomics and proteomics have 
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enabled characterization of amyloid species in complex biological matrices, enabling the study of the 

diversity and specificity of amyloid formation14-16. Information derived from high-resolution 

methods17-19 is now reaching levels that support the deduction of structure–activity 

relationships20,21.  

In this Review, we provide an update regarding the thermodynamic and kinetic principles of amyloid 

formation and their relation to protein folding and misfolding. We highlight key molecular drivers 

and discuss their relevance to end-stage amyloid structures. We discuss mechanisms of toxicity, 

focusing on the effect of amyloid interactions with cellular components, and the association of 

aggregation with healthy aging and pathology. 

 

Theories of protein folding and misfolding  
Protein folding does not proceed by random conformational sampling22. Instead protein sequences 

have been shaped by natural selection so that protein folding converges on the functional 

conformation23. Protein folding reactions are often conceptually described in terms of the so-called 

free-energy landscape whereby the vertical axis corresponds to the free energy of a protein, while 

the horizontal axis reflects the diversity of protein conformations, with similar conformations being 

situated in proximity to each other along the horizontal axis (Figure 1a). In its simplest form, the 

folding landscape exhibits a smooth funnel shape (Figure 1a-1). The broad upper portion of the 

funnel encompasses numerous diverse unfolded conformations characterized by high free energy. 

In contrast, the lowest point represents the distinctive native conformation, which possesses the 

lowest free energy. The energy landscape smoothly converges from top to bottom due to the 

progressive formation of native-like interactions, thereby increasingly favoring the native state of 

the protein. This situation corresponds to the original thermodynamic postulate24 (also reffered to 

as Anfinsen’s dogma25) stating that protein folding occurs spontaneously because the native 

conformation of a protein represents its most stable but also kinetically accessible state. (Figure 1a-

1). 

In reality, proteins often undergo folding processes involving intermediate states and encounter 

rate-limiting steps influenced by local structural propensities and hydrophobic collapse26. 

Furthermore, not all folding intermediates contribute to productive protein folding, as some can 

misfold by forming non-native interactions27,28. As a result, the energy landscapes representing 
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protein folding exhibit a ‘rugged’ rather than smooth appearance (Figure 1a-2). Protein misfolding 

also causes proteins to stray away from their original native folding trajectory. When misfolded 

proteins interact this eventually leads to aggregation. On protein energy landscapes this is illustrated 

by the presence of a ‘dark side’ where proteins become trapped in energy minima associated to 

aggregated protein conformations (Figure 1a-3). Protein folding reactions are therefore much more 

complex than initially anticipated by the thermodynamic postulate. Protein energy landscape theory 

revealed that the fundamental reason underlying the kinetic complexity of protein folding stems 

from structural frustration. This concept suggests that the local structural propensities of protein 

chains may not always align with, and sometimes even oppose the native conformation resulting in 

a rugged energy landscape with multiple local minima affecting the efficiency of protein folding. 

Structural frustration is probably unavoidable due to non-aligning selective pressures for function, 

folding, and expression levels among others. As a result, molecular chaperones29 play a vital role in 

guiding proteins through the folding landscape, facilitating the avoidance or resolution of 

unproductive conformations, thereby achieving productive folding30 (Figure 1a-4). An additional 

challenge to the original thermodynamic postulate results from protein supersaturation. 

Supersaturation occurs when a solute (here a protein) stays in solution for an extended period at a 

concentration exceeding its solubility limit at equilibrium. It has been argued that the physiological 

expression levels of proteins are often close to, and sometimes supersede, their solubility limit31. In 

this view, under physiological conditions the aggregated state of many proteins is 

thermodynamically more favorable than the native state32 (Figure 1a-5). Supersaturation is 

proposed to give rise to a metastable sub-proteome, which becomes particulary susceptible to 

aggregation during ageing33 and disease34-36 (see Box 2). Finally, proteins starts to fold and assemble 

while still being translated on the ribosome. Co-translational folding affects the kinetics of the 

process, since conformational information is added as the polypeptide chain elongates, and 

therefore, requires chaperones for proper folding37-39. Thus, although protein folding is 

evolutionarily shaped by thermodynamic principles, the kinetic complexities arising from structural 

frustration and the reliance on cellular machinery often challenge the thermodynamic hypothesis38. 

This point has been illustrated in detail in a study of the folding pathway of tubulin, which interacts 

with the chaperones prefoldin and TRiC 40. In contrast to the GroEL/ES chaperone (whose inner 

chamber primarily provides a secluded environment for proteins to fold in41,42, called an Anfinsen 
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cage43), the folding trajectory of tubulin is shaped by guiding cross-interactions with the TriC 

chamber, to the extent that it cannot fold independently of TriC40.  

Overall, the presence of structural frustration, supersaturation, co-translational folding, and the 

reliance on chaperones44 highlight the crucial role of kinetic control in cellular protein folding. As will 

be discussed later in this Review, this interplay of kinetic effects by pathological interactions  and 

structural frustration in the amyloid conformation is also likely involved in amyloid polymorphism, 

again resulting in a rugged energy landscape (Figure 1a-6). 

 
Links between conformational stability and aggregation  
Protein architectures can be categorized in four main classes: globular soluble proteins, fibrous 

proteins, transmembrane proteins, and intrinsically disordered proteins (IDPs). Globular proteins are 

stabilized by amphipathic α-helices and β-sheets that assemble to form a hydrophobic core. Often 

these secondary structural elements are fully buried, which is why most primary sequences harbor 

short hydrophobic segments (6 to 10 residues). These segments are essential for the stability of the 

hydrophobic core (Figure 1b); however, they also constitute aggregation-prone regions (APRs) that 

favor intermolecular β-sheet self-assembly into amyloid-like aggregates4 (Figure 1c). APRs are found 

widely across proteins, regardless of their structural class 18,45-47 (Supplementary Table 1) and can be 

predicted computationally (Box 3): on average, ~20% of residues in globular domains reside within 

APRs.  

APRs are prevalent in transmembrane proteins (Figure 1b), due to the high hydrophobicity of their 

transmembrane-spanning domain. Conversely, given the absence of cooperative folding stems from 

their lack of sufficient hydrophobic amino acids, the number of APRs in IDPs is substantially lower48. 

However, many IDPs still require a degree of local structure propensity49, often at interaction sites 

requiring some degree of hydrophobicity, and hence harbor APRs50-52 (Figure 1b). Owing to their 

increased exposure, APRs in disordered regions of proteins are particularly susceptible to self-

assembly53, which probably explains why several proteins at the center of major amyloidosis 

diseases, such as the amyloid-beta peptide (Aβ) and tau (for Alzheimer’s disease) and alpha-

synuclein (αS; for Parkinson’s disease), are intrinsically disordered (Supplementary Table 1). 

Molecular dynamics simulations indicate that the conformational conversion of IDPs towards an 

organized structure through aggregation or upon binding to functional partners follows a rugged 
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energy landscape that is not dictated by a global minimum, such as in the case of folded proteins, 

and makes them prone to parallel oligomerization pathways and amyloid formation54. 

Interconversion from an inert intrinsically disordered monomer to an aggregate-compatible 

compact monomer state has been proposed to occur for multiple IDPs55-57, whereas others have 

proposed that lipid interactions with disordered monomers can progress to pathology58. Similar 

interactions have been suggested to lead to membrane disruption induced by amyloid-like 

aggregates formed by IDPs59. This rapid interconversion and compaction of IDPs that can lead to 

non-native protein interactions and aggregation might be countered by interactions with solvent 

molecules, counter-intuitively retaining IDPs largely in an expanded conformation in aqueous 

solutions60. Finally, transient misfolding events occur frequently between tandem repeats of 

neighboring domain copies incorporated in fibrous proteins61. In fact, neighboring domains sharing 

high sequence similarity are more prone to amorphous aggregation61,62. This is because they can 

expose identical APRs in proximity that increase their susceptibility to aggregate, exchange identical 

segments between domains, or form self-recognition contacts that introduce frustration in their 

energy landscape and entropically favour misfolding compared to native folding63. 

The determining role of APRs for protein aggregation has been recapitulated by many studies, 

starting with mutational analysis46,64,65 and grafting experiments, in which cloning of an APR derived 

from an aggregation-prone protein into another, typically non-amyloidogenic sequence, is enough 

to induce amyloid formation66,67. Several studies have demonstrated their ability to assemble in 

isolation45, as well as their ability to induce aggregation of the full-length protein when added as 

peptides in cis formation68-71. As such, APRs probably constitute the most common occurrence of 

structural frustration in proteins whereby local propensity for amyloid-like aggregation competes 

with and opposes global native structure.  

Despite being a result of protein architecture, the intrinsic tendency of proteins to aggregate, 

particularly through aggregation-prone regions, poses challenges to cellular proteostasis and 

contributes to disease. Why has aggregation then not been eliminated by natural selection? One 

reason is that mutations that destabilize the native state of proteins often lead to increased 

aggregation propensity72. Proteins from extremophiles provide an illustrative example of the 

seemingly paradoxical nature of APRs. While exhibiting higher resistance to thermal denaturation, 

they harbor more rather than fewer APRs due to their more hydrophobic cores73,74. Conversely, the 
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selective pressure of Hsp90 deletion on proteins of Hsp90-dependent viruses results in less 

aggregation-prone, yet also less stable proteins75. These findings demonstrate the intricate 

relationship between protein aggregation and stability. Moreover, native and amyloid structures are 

thermodynamically correlated, as mutations that destabilize the amyloid state often also destabilize 

the native structure74,76. Secondly, the universal genetic code is conservative of both protein 

structure and aggregation propensity, as many single base pair substitutions result in conservative 

substitutions that preserve protein stability77, but also tend to conserve protein aggregation74,78.  

An alternative thought-provoking perspective suggests that amyloid propensity in present-day 

proteins may have its roots in ancient protein structures. Indeed, the amyloid-first hypothesis 

proposes that prebiotic amyloid peptides gave rise to the universe of current protein topologies79,80. 

In this view, regions with amyloid propensity persist in contemporary proteins as remnants of this 

primordial influence. Interestingly, amyloid peptides have demonstrated the ability to 

spontaneously emerge81 and propagate82 in prebiotic conditions, bind RNA 83, interact with lipid 

membranes84 and harbor catalytic function85.  

 

Kinetic partitioning of the native state 
The native state of most proteins is a metastable state that is protected from misfolded and 

aggregated states through kinetic partitioning (Figure 1a and 1c). For proper function, the rate of 

folding to the native state must be higher than the rate of aggregation at physiological 

concentrations, and the rate of unfolding should be sufficiently slow so that the native state remains 

stable throughout the biological lifetime of the protein. From an energy landscape perspective, the 

barriers between the native state and aggregated states need to be sufficiently high (Figure 1c). In 

fact, proteins with a short lifespan are enriched in protein deposition diseases72 as their turnover 

becomes dysregulated with age due to a decline in protein degradation86. Kinetic partitioning is 

achieved by both protein intrinsic and extrinsic factors. 

 

Extrinsic factors 

The most well-known extrinsic factors are molecular chaperones87, which favor native protein 

folding, prevent misfolding, mediate degradation and reverse aggregation. A full overview is beyond 

the scope of this Review, but we mention a few highlights. For example, the different client-binding 
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mechanisms of the Hsp70 family allows for the adaptable functionality of this hub chaperone, which 

can ATP-dependently stabilize or unfold protein structures and prevent aggregation by safeguarding 

both partially folded and unfolded protein chains88. This plasticity is further regulated by co-

chaperone activity, such as with Hsp4089. Another example of this cooperativity is in αS, for which 

six divergent chaperones recognize a motif around Tyr39; notably, phosphorylation abrogates their 

activity, providing a potential link for this post-translational modification (PTM) in Parkinson’s 

disease90. Chaperone-mediated native folding can be catalysed even under non-equilibrium 

conditions through ATP consumption91.  

Chaperone-mediated autophagy (CMA) is another important pathway contributing to degradation 

of misfolded and aggregated species92. For example, DJ-1 and Hsc70 mediate autophagy of αS93 and 

other metastable neuronal proteins that are at risk of aggregation94. Tau acetylation reroutes 

degradation towards macroautophagy and endosomal microautophagy but also enhances tau prion-

like transmission, which is considered important for the spreading of the pathology through the 

brain95. Chaperones also differentially interact with protein aggregate species formed during the 

aggregation process96 to block or disassemble protein aggregates97. Single-particle analysis of ClpB-

mediated disaggregation revealed that it is a dynamic and fast process, with substrates refolding 

after exiting the pore at rates of 500 residues per second98. However, chaperone-mediated amyloid 

disassembly can also backfire if amyloid fragments (seeds) rather than monomers are produced; 

each fragment can start a new aggregation reaction (in a process called seeding, see below), as 

observed in the case of Hsp70 and tau amyloid fibrils99 or during the cooperative action of DNAJB1 

and Hsp70 in disassembling αS fibrils100. 

The other external factor affecting kinetic partitioning of the native state is translation dynamics101, 

in which variations in transfer RNA abundance and compatibility with the ribosome binding site lead 

to differential translation speeds for different codons102,103. Because the genetic code is redundant 

(that is, multiple codons code for the same amino acid), the same sequence can be translated at 

different rates depending on the codons103. Because translation is slower than protein folding by 

several orders of magnitude, the idea is gaining traction that the non-uniform usage of codons in 

organisms (bias) is an adaptation to optimize the translation rate in favor of native folding104,105. 

Evidence for this idea includes the following: one, hydrophobic cores (thus also APRs) tend to be 

enriched in optimal codons106; two, there seems to be a bias in secondary structural preference of 
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codon usage107; three, ribosomal pausing sites in interdomain regions are proposed to enable folding 

between domains104; and four, ribosomal pausing allows time for chaperone binding108. Codon bias 

is thought to be one of the reasons why non-synonymous mutations can affect protein structure and 

function107,109. Moreover, at least in yeast, ribosomal pausing becomes dysregulated with age110. 

Notably, translation dynamics probably synergizes with interactions between the nascent chain and 

the ribosome111, as well as ribosome-associated chaperones, such as NAC112. 

 

Intrinsic factors 

To promote kinetic partitioning, evolution has selectively enhanced the presence of aggregation 

gatekeepers 113,114, which are a distinct group of residues that counteract aggregation.  Gatekeepers 

achieve this by employing charge repulsion (Asp, Glu, Arg, Lys) or discouraging aggregate structure 

(Proline). They are typically found at the N and C-terminal flanks of APRs at the first position at which 

the polypeptide chain emerges sufficiently from the hydrophobic core to accommodate placement 

of a charged residue115. Aggregation gatekeepers also occur in the middle of APRs in polypeptide 

sequences, effectively suppressing the local aggregation propensity and leaving only cryptic APRs116, 

i.e. weakly aggregating APRs that have a higher content of polar and charged residues48,52. Cryptic 

APRs are more prevalent in IDPs than in globular proteins because of fewer structural constraints48. 

Gatekeeper conservation correlates with the aggregation propensity of the APR, and this 

conservation comes at a cost to protein stability, suggesting that aggregation gatekeepers form an 

additional class of functional residues117,118. The codon bias of aggregation gatekeepers differs from 

the average for the proteome; in addition, conservation of aggregation gatekeepers occurs at the 

codon level, not the amino acid level, suggesting a role in co-translational protein folding117. 

Negatively charged aggregation gatekeepers are the more potent suppressors of aggregation, 

however, their short side chains restrict their usage to the surface of globular proteins115. The longer 

positively charged gatekeepers are more easily accommodated in the hydrophobic core but they are 

less efficient aggregation inhibitors115. As a result, charged aggregation gatekeepers seem to 

constitute a code for chaperone interaction: several major chaperones, such as Hsp70, have a 

stronger affinity for APRs flanked by positively charged aggregation gatekeepers 115. Notably, DAXX, 

a polyD/E protein, has been identified as a chaperone with a high affinity for positive charges119. .  
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The wider flanking regions surrounding APRs have additional modulatory effects as well120. The 

mechanism of action of MOAG4/SERF, a known modifier of proteotoxicity121,122, falls into this 

category. MOAG binds to negatively charged residue clusters distal from APRs on aggregation-prone 

proteins and expedites aggregation into inclusions thereby limiting toxicity of the aggregation 

process to the cell123. An α-helical region preceding the aggregation-prone polyQ track of Ataxin-7 

stabilizes the latter in a helical conformation and suppresses aggregation64,124 (Supplementary Table 

1). The central tau 306VQIVYK311 aggregation motif (Supplementary Table 1) is locked in a β-hairpin-

like compact structure by its N-terminal flanking region that prevents aggregation; alternative 

splicing or disease-related mutations alter the modulating capacity of this upstream element125. 

Disordered flanking regions can have an inhibitory effect on APRs, as shown in the case of MPS2, an 

amyloidogenic protein expressed by P. falciparum126. Apart from inhibiting aggregation, such regions 

can also act as ‘entropic bristles’, which are intrinsically disordered or highly-charged short 

sequences that increase sequence entropy and sweep out a large area through water interactions 

or random movements127,128. As such, entropic bristles increase the fragility of fibrils and tune the 

seeding efficiency of aggregates by generating a larger number of short prion-competent 

fragments129; they can also simply modify the resulting morphology of aggregates formed by APRs130. 

 

 

The amyloid state and polymorphism  
With the establishment of structure determination methods for proteins in the amyloid state and 

the increasing number of available structures, we have gained insight into the remarkable 

polymorphism exhibited by these structures. Several protein sequences have been observed to 

adopt multiple distinct amyloid structures17,131,132. The origins and implications of this polymorphism 

are subject of debate but it likely arises from the fact that these structures are not products of 

evolutionary selection. Consequently, numerous similar energy minima coexist within the amyloid 

energy folding landscape (Figure 1a-6). A compelling argument supporting this notion is that 

functional amyloids which have evolved toward the amyloid state, are largely monomorphic even 

under non-physiological conditions 133. 
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The ultrastructure of protein aggregates 

The ultrastructure of protein aggregates varies considerably, ranging from cases involving the self-

assembly of native-like folds134 or 3D-domain swapped models135, to primarily α-helical136 or (most 

often) enriched in b-strands. The latter also form a spectrum of morphologies ranging between 

amorphous inclusions137, curly fibrils130,138, and highly ordered amyloid structures. What 

differentiates the highly ordered amyloid structure from less ordered forms of b-aggregation is 

unclear, given the latter still evades structural determination. Amyloid deposits in cells and tissues 

consist of long non-branched fibrous assemblies of thousands of peptides with a width of about 6-

12 nm and lengths of up to several µm. Amyloid fibrils have a rope-like architecture composed of 

one or several protofilaments intertwined laterally along the fibril axis. The ultrastructure of amyloid 

fibrils often adopts a regular helical twist, but many also display a more planar ribbon-like structure. 

Successive advances in X-ray diffraction139, crystallography45, solid-state nuclear-magnetic 

resonance (ssNMR)140,141 and cryo-electron microscopy (cryo-EM)142 have revolutionized structure 

acquisition and vastly improved resolution. Together these efforts have greatly advanced our 

understanding of the amyloid fold, resulting in an explosion in high-resolution structures19. These 

atomic resolution structures confirm that amyloids form their own class of protein assemblies 

sharing a distinct ‘cross-b’ architecture139,143 that is not observed in other protein architectures4,5.  

We now have unprecedented detail on the structure of protofibrils and how they assemble into 

amyloid fibrils, thereby unveiling the structural origin of polymorphism. Importantly, structures of 

patient-derived fibrils have revealed the association of specific polymorphs to particular 

pathologies142. Aβ42 peptide forms two distinct polymorphs associated with familial and sporadic 

Alzheimer’s disease144 (Figure 2), whereas tau forms ultrastructural polymorphs that are classified 

between different tauopathies and share several different protofilament folds145-147. αS forms 

distinct fibrils in multiple system atrophy and Parkinson’s disease148,149. Notably, these structures are 

not representative of αS fibrils formed in vitro, which differ even further when incorporating disease 

mutations and PTMs150,151. Polymorphism has also been confirmed for TDP-43152 and PrP153, as well 

as in localized154,155 and systemic forms of amyloidosis, including ATTR156, serum amyloid A 

amyloidosis157 and light chain amyloidosis158. Conformational variants of various amyloids have been 

shown to stably self-propagate in cellular systems via the recruitment of soluble protein to the 

aggregates, and are characterized by diverse progression rates and distribution patterns159-162. As a 
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result, they are often referred to as prion-like strains and are invariably associated with different 

diseases, thus enabling accurate hierarchical classification of pathologies based on fibril structure131.  

Although amyloid structure seems to be stable across patients sharing the same pathology, it is also 

clear that amyloids are extremely sensitive to environmental conditions. For example, distinct strains 

formed by Aβ form at later stages of Down syndrome, suggesting that the convergence of aging and 

disease-specific factors can dictate the formation of characteristic amyloid strains163. Cryo-EM 

studies of in vitro-prepared amyloid fibrils of tau and αS have shown that additives such as heparin 

or nucleic acids can substantially alter amyloid structure164-166, in a similar lateral mode of binding 

shown for amyloid-specific dyes167. Faithful in vitro propagation of ex vivo polymorphs is challenging: 

although serum amyloid A patient-derived polymorphs seem to seed accurately in vitro168 this is not 

the case for αS169,170. Finally, in vitro assembly of tau polymorphs resembling disease-specific 

polymorphs is possible but highly dependent on buffer conditions, tau construct lengths and 

conditions of incubation, such as shaking171,172. The contrast between seemingly conserved disease 

polymorphs in patients and the variability of in vitro amyloids suggests that the pathological 

conditions under which disease polymorphs emerge also reflect very specific pathophysiological 

contexts. Factors influencing polymorphic bias include disease-associated mutations161 and tissue- 

or cell-specific proteolysis173. Notably, PTMs also have a significant role in this process. For instance, 

charge neutralization by acetylation of lysine chains in tau and phosphorylation (Tyr39) of αS favour 

β-stacking interactions150,174. Additionally, ubiquitin incorporation has been proposed to alter 

protofilament packing in tau polymorphs in corticobasal degeneration and Alzheimer’s disease174. 

Patient-derived amyloid structures are often associated with undefined non-proteinaceous electron 

densities filling internal cavities or decorating surfaces of unknown origin, although they are 

suspected to be lipids or polyions of some sort142.  

 

Structural determinants of amyloid stability 

With hundreds of atomic resolution amyloid structures available, we can now identify general trends 

and properties determining amyloid structure stability18,20. One observation is that functional 

amyloids are generally associated with lower stability than disease-related fibrils (Box 1). Another 

immediate observation is that amyloid core structures do not always consist of full-length 

proteins171,175 but rather protein fragments. This observation suggests that large segments of protein 
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sequences are not compatible with the amyloid state. Non-core segments constitute the fuzzy 

coat53,145 or are removed altogether by proteolysis. Removal of non-core segments seems to 

enhance amyloid stability, probably by exposing amyloidogenic fragments and removing 

incompatible ones176. 

Amyloid core structures are not uniformly stable upon inspection. Roughly one-third of residues 

structurally support the cross-b conformation, while another third is frustrated due to unfavorable 

dihedral angles, main chain H-bond geometries, or suboptimal sidechain packing, with the final third 

minimally contributing to the amyloid fold. Structural frustration is mostly segmental and 

interspersed with segments forming regular β-strands. Thermodynamic analysis using empirical 

force fields such as Rosetta18,21 or FoldX20 confirm these structural observations, indicating that 

structurally satisfied segments also form stabilizing tertiary side chain interactions within the 

amyloid protofibril (Figure 3). Comparing different polymorphs of tau, αS or Aβ shows that the same 

segments are structurally stabilizing in different protofibrillar folds forming very similar b-sheets. 

Not surprisingly, many of these correspond to APRs that have long been known to be crucial for 

amyloid assembly, such as PHF6 in tau (306VQIVYK311) or 16KLVFFA21 in Aβ (Figure 3a-c and 

Supplementary Table 1).  

Protofibrillar polymorphs, therefore, share a common framework of cross-b-favouring segments 

that are stabilized by alternative tertiary side chain interactions. In the case of tau, stabilizing tertiary 

interactions are often provided by different framework segments that either pack against each other 

or at the same time also serve as anchor points providing stabilizing interactions to structurally 

variable segments enabling these to be integrated in the cross-b core structure (Figure 3d)20,21,177. 

The same modularity is also observed in other amyloids including Aβ or αS. Together these 

observations depict a highly frustrated and rugged polymorphic conformational landscape132. Unlike 

native protein folding, kinetic control of this energetic landscape has not been shaped by natural 

selection. Instead, the kinetics of amyloid assembly are directed by pathological interactions 

resulting in disease-specific polymorphic bias.  

 

Kinetic principles of amyloid formation  
Amyloid formation is a complex kinetic process that involves interconversions between aggregated 

species in an evolving reaction mixture that gradually enriches end-stage amyloids (Figure 4a-c). 
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Several studies have determined the microscopic rates characterizing the key steps in amyloid 

assembly, including primary and secondary nucleation, elongation, fragmentation, oligomer 

disassembly, and monomer dissociation (Figure 4d). Nucleation, fibril elongation and fragmentation 

all contribute to the growth of mature amyloid fibrils and are counteracted by oligomer disassembly 

and monomer dissociation178.  

 

Nucleation  

Primary nucleation, i.e. the generation of new amyloid species in a pure solution of monomers is 

entropically unfavourable resulting in slow and stochastic growth rates179. It involves the self-

assembly of monomers into productive nuclei (primary nucleation, Figure 4d). Macroscopically this 

kinetic step results in an initial lag phase representing the time required for the nuclei to form and 

grow to levels at which aggregation is detectable through conventional methods (Figure 4a). This 

process can be accelerated by heterogeneous interactions (e.g. with lipids180) that increase the local 

concentration of monomers and significantly speed up monomer conversion. Liquid-liquid phase 

separation (LLPS), has also been suggested to favour amyloid nucleation. LLPS involves the formation 

of liquid droplets again facilitating nucleation by increasing local protein concentrations.  

Secondary nucleation is differentiated from primary nucleation, by the fact that it occurs on the 

lateral surfaces of already formed fibrils and is catalysed by these surfaces (Figure 4d). As lateral 

surfaces increase with fibril growth secondary nucleation is thereby favoured, further accelerating 

aggregation. The difference in specificity between primary and secondary  nucleation is still a matter 

of debate181. However, taken together data from various studies suggest that secondary nucleation 

is a less specific process. For instance, proteome analysis of surface-induced co-aggregation in bodily 

fluids revealed that the composition of extracted deposits did not differ substantially. This was 

observed despite the bodily fluids being exposed to fibrils with diverse morphologies derived from 

different proteins182. Human prolactin and galanin, two proteins that colocalise in the same 

secretory granules yet are dissimilar in terms of the primary sequence, form functional co-assemblies 

through secondary nucleation, countering the notion that secondary nucleation is necessarily 

sequence-specific183. Similarly, S100A9 co-aggregates by coating and reducing the availability of the 

same secondary nucleation surfaces that catalyze Aβ42 self-nucleation184. Positive evidence  

supporting the specificity of secondary nucleation is mostly derived from research on Aβ assembly. 
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For instance, evidence shows that surface catalysis is both selective between Aβ40 and Aβ42
185 as well 

as enantio-specific186. However, another study indicated that Aβ auto-catalysis occurs independently 

of surface properties, suggesting that the specificity of secondary nucleation for this peptide is driven 

by the intrinsic propensity of the free monomer to adopt a similar amyloid fold under given 

conditions187. 

Conversely, primary nucleation appears to be highly sensitive to  sequence variation. 

Thermodynamic analysis of the elongation of aggregation cores through axial addition of monomers 

revealed that even a single residue variance accounts for over 50% of the resulting sequences being 

structurally incompatible with cross-interactions188. Primary Aβ nucleation is also sensitive to pH 

variation that alters net charges, whereas secondary nucleation is unaffected189. Furthermore, 

intramolecular interactions play a crucial role during primary nucleation in facilitating the formation 

of initial nuclei by arranging monomers into a compact and nucleation-compatible conformation55-

57.  

The morphological fidelity of secondary nucleation has also been debated. Structural evidence 

revealed that αS secondary nucleation is promoted by transient electrostatic interactions that 

involve the flexible ends of the protein excluded from the aggregation core and that these 

interactions promote the unfolding and local concentration of monomers, suggesting that the 

structure of the pre-formed core is not imprinted on the second generation aggregates190. In fact, 

amyloid strains formed through secondary nucleation have been suggested to be defined primarily 

by solution conditions rather than the structure of the templated fibrils187,191. Independent studies 

for Aβ192 and insulin fibrils193 have also demonstrated that only the fibril ends faithfully template the 

morphology of derived aggregates. Cryo-EM studies have identified that under conditions conducive 

to templated structure formation, surface nucleation can still catalyze different morphologies, 

indicating that secondary nucleation contributes to the increased variability in the formation of 

amyloid fibrils155. However, observations of single Aβ fibrils using total internal reflection 

fluorescence (TIRF) microscopy revealed have that under the same conditions, secondary nucleation 

typically results in the formation of fibrils that resemble the parent fibril population13. 

 

Elongation 
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Single-molecule observations have shown that fibril elongation for various amyloidogenic proteins 

(both functional and pathological) occurs through a stop-and-go mechanism194,195. This process is 

defined by growth bursts of constant rates with intermittent stationary periods196. Importantly, 

amyloid elongation might be polar, suggesting that fibril tips are not equally reactive in the 

recruitment of monomeric proteins to the growing amyloid fibril195,197. This unequal reactivity has 

also been attributed to imperfections occurring at fibril tips, reminiscent of a ‘lock–dock’ mechanism 

for elongation198 in which the addition of monomers at fibril tips requires significant structural 

rearrangement of the newly added monomer199 as well as of the molecules directly in contact at the 

fibril tip200. Monomer dissociation from fibril tips has also been observed to occur at rates that 

supersede incorporation of monomers; however, this balance is dependent on the relative monomer 

concentration201.  

 

Fragmentation and dissociation 

Fragmentation (Figure 4d) is strongly dependent on environmental conditions, such as temperature 

and mechanical pertubations202, but also relies on the intrinsic propensities of protein sequences 

and the morphological properties of the fibrils203. Fibril stability and length distributions are 

important determinants of fibrillar brittleness204. Fragmentation has also been linked to amyloid 

toxicity, as it influences cellular uptake of amyloid fragments generated through mechanical 

fragmentation205. This process is associated with the average size of aggregates, which exhibits an 

inverse correlation with the cellular uptake of amyloids206. Fragmentation is also associated with the 

generation of reverse oligomeric species and is suppressed when a critical fibril mass is reached207. 

These species are usually ‘on-pathway’ as they resemble the parent fibril structures and can deviate 

in terms of function compared to oligomers formed directly from monomer nucleation. Reverse-

generated fibrils derived from mechanical fragmentation of Aβ amyloid fibrils interact with a central 

APR of the monomeric form similar to end-state fibrils, whereas oligomers formed during the 

nucleation process preferentially interacted with the C-terminal end208. On the other hand, 

oligomers formed during the nucleation of monomers are largely nonfibrillar and predominantly 

dissociated to replenish the monomeric pool instead of converting to mature fibrils209,210. The 

formation of such off-pathway oligomeric species is proposed to compromise the fidelity of 

aggregation kinetics by increasing the variability of lag phases and the amplitude of end-state 
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phases211. Early metastable oligomers inhibit nucleation and growth of fibrils by competing for 

monomers, generating biphasic assembly kinetics that transition to standard sigmoidal growth over 

a critical monomer concentration that hinders their formation212. Furthermore, these metastable 

species block secondary nucleation by attaching to fibril surfaces213. Off-pathway oligomers have 

been linked to higher levels of disorder that create repulsions or introduce entropic costs for the 

formation of ordered fibrils214.  

 

Interactions and toxicity of amyloids 
The mechanisms through which amyloids exert toxicity have been a topic of ongoing debate in the 

field. Multiple lines of evidence suggest that small soluble species are responsible for the observed 

toxicity. These species have been associated with numerous detrimental effects, such as 

permeabilization of cellular membranes, impairment of degradation pathways, disruption of 

synaptic signalling and mitochondrial dysfunction215-217. The toxicity induced by fibrillar aggregation 

is attributed to mechanical perturbations, sequestration of cellular factors, and the subsequent 

activation of inflammatory responses218. Both lateral (Figure 5a) and axial (Figure 5b) surfaces of 

amyloids can engage in interactions with other biomolecules, including charged molecules such as 

polyphosphates and polysaccharides, as well as with lipids and other proteins (Figure 5b-c).  

While the precise identity of many toxic species and their interfaces remains to be fully elucidated, 

the importance of heterotypic interactions in shaping the properties and infectivity of amyloids or 

promoting their toxic phenotype (see next section) is now firmly established. A prominent example 

includes the cross-interaction between medin and Aβ, which initiates the vascular deposition of the 

latter219. Synergistic interactions between different disease-associated proteins (including tau, αS 

and Aβ) typically exacerbate neuropathology 220,221. For instance, co-aggregation of β2-microglobulin 

with Aβ promotes cognitive decline in Alzheimer’s disease222. Tau aggregates originating from PS19 

mice provide a compelling illustration of how heterotypic interactions can exert toxicity through 

various pathways. In reporter cells, PS19-derived tau seeds impair chaperone activity223, whereas, in 

mouse models of tauopathy they inactivate histone demethylase LSD1 through sequestration (thus 

linking tau aggregation to downstream neuro-dysfunction pathways)224. A study of αS pathological 

polymorphs derived from either glial cytoplasmic deposits or Lewy bodies revealed that they are 

shaped by intracellular milieus and in turn associate with different toxic effects225.  
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Finally, a little considered aspect is that amyloid fibril surfaces can have catalytic properties85,226,227 

(see Box 4), which might have biological consequences; for example, fibrils of Aβ catalyze the 

hydrolysis of neurotransmitters, such as dopamine and adrenaline228. 

 

Amyloids engage in diverse interactions 

The fibril tips of amyloids are formed by partially buried hydrophobic residues of the top rungs18. 

Perhaps unsurprisingly, the growing ends of amyloids have been identified as the primary cross-

interface with lipid vesicles229,230 (Figure 5c). An comprehensive analysis has revealed similar findings 

for heterotypic protein interactions188 (Figure 5c). In particular, the findings suggest that sequence 

similarity plays a crucial role for the cross-reactivity of amyloid fibil tips. Registered stacking of 

identical side chain residues on top of each other along the fibrillar axis enables sequence-dependent 

templated binding, resembling the self-interactions formed during fibril elongation188. Importantly, 

design strategies employing these properties have been used in several studies to develop novel 

therapeutics that target amyloids through structure-based inhibitor designs154,188,231-234. In these 

designs, the inhibitor peptides are constructed based on the APR sequence to enable binding to the 

fibril tip. However, these inhibitors also incorporate sequence variants in one or a few positions that 

block further fibril growth. Inhibitors initially developed to target an APRs of Aβ assembly were found 

to also inhibit islet amyloid peptide (IAPP) growth due to the sequence similarity of their respective 

APR sequences235. This observation underscores the sequence specificity of APR cross-interactions 

but also their ability to tolerate mismatches. Similar rules of specificity seem to support amyloid co-

assemblies. Solved structures of heterocomplexes such as Aβ40 with Aβ42 or the necrosome 

complex (which is a functional amyloid hetero-assembly composed of successive rungs of RIPK1 and 

RIPK3; see Box 1 and Supplementary Table 1), have validated the necessity of sequence and 

structural compatibility along the fibril axis236,237. It is worth noting that such interactions actively 

steer amyloid polymorphism by altering the morphology of fibrils formed by self-assembly188,208. 

Due to identical side chain stacking the lateral surface of amyloid fibrils form regular steric 

patterns along the axis that are either hydrophobic or polar/ionic in nature, thus enabling repeated 

binding of diverse molecules along the fibril axis (e.g. amyloid reporting dyes84,238) (Figure 5a). As a 

consequence of this lateral periodicity, unidentified electron densities are often found decorating 

the perimeter of amyloid structures (defined by cryo-EM), suggesting the presence of repetitively 
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bound co-factors239. These densities often neighbour stacks of same-charge side-chains suggesting 

charge compensating polyionic co-factors binding239,240. Lateral surface templating has been 

associated with co-aggregation events involving several different proteins that do not share 

sequence or structural architecture184,213,232,241. Co-factor binding therefore likely contributes to 

steering amyloid polymorphism in different pathological contexts (Figure 5d).  

The dynamic and structurally disordered regions surrounding the rigid cores of amyloids are referred 

to as "fuzzy coat regions". As a result of their increased surface accessibility and structural dynamics, 

these sequences are believed to modulate various amyloid activities, such as spreading, liquid–liquid 

phase transition and cross-interplay with other cellular components (Figure 5e)242,243; for example, 

the functional oligomerisation of Orb2 enhances translation244. Similarly, these regions can 

modulate amyloid assembly by mediating chaperone binding245, or can lead to loss-of-function 

events by dragging native interactors towards co-aggregation246. 

 

Sequestration of proteins 

Protein aggregates can sequester cellular components, causing loss-of-function or mis-localization 

(Figure 5f). For example, TDP-43 fragments form cytoplasmic inclusions that sequester RNA-binding 

proteins, leading to dysregulation of mRNA maturation247. FUS mis-localization in the cytosol alters 

its RNA regulatory functions and induces DNA damage248. Dipeptide repeat expansions (DPRs) 

resulting from C9orf72 hexanucleotide repeat expansions, which pathologically assemble in FTD and 

ALS (Supplementary Table 1), deplete levels of functional pATM and hnRNPA3, causing breaks in 

double-stranded DNA249. Mis-localisation of the nuclear histone demethylase LSD1 to cytoplasmic 

neurofibrillary tangle tau inclusions in P301S mouse models promotes neuronal cell death in the 

hippocampus and cortex leading to associated learning and memory defects224. Similarly, APRs can 

serve as heterotypic anchors, facilitating co-assembly of functional proteins and increasing cellular 

susceptibility to aggregation spreading (leading to loss-of-function toxicity or to a gain-of-function 

phenotype)188,208. Several studies have shown that the heterotypic composition of condensates can 

synergistically trap proteins towards co-aggregation following their maturation220,250. Notably, 

however, contradictory theories propose that hetero-interactions can also work as a buffer to 

control protein aggregation within condensates251. 
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Sequestration can also disrupt cellular proteostasis. PolyQ expansions from huntingtin or ataxin-7 

sequester the HSJ1 chaperone, leading to proteostasis imbalance and aggregation of ataxin-3252. Tau 

extracts from the brains of PS19 mice impair protein folding and clathrin-mediated endocytosis by 

inactivating HSP70, HSP90 and J-domain chaperones, an effect that can be reversed by exogenous 

addition of a small molecule that replenishes cytosolic chaperone expression223. RNA-induced tau 

and Aβ aggregates co-deposit ribosomal 80S, which reduces translation efficiency in yeast cells253. 

Cryo-electron tomography (cryo-ET) showed that intracellular inclusions formed by different 

aggregation-prone polypeptides recruit and impair the functionality of proteasome subunits (Figure 

5f), along with TRiC/CCT and ribosomes, providing visible intracellular evidence of spatial isolation 

of proteostatic cellular components by protein aggregates254,255. Importantly, however, proteasome 

inactivation has also been proposed to occur in a non-sequestered fashion. Oligomeric species 

derived from αS, Aβ and Htt-53Q sharing significant structural similarities bind with high affinity and 

inhibit the functionality of the 20S proteasome through allosteric impairment256. Cryo-ET also 

revealed that amyloid-like fibril aggregates can cause gain-of-function toxicity resulting in lysosomal 

defects257 and impair vesicular trafficking as shown in cases of Alzheimer’s disease and Parkinson’s 

disease pathology258.  

Sequestration by amyloids can also be polymorph specific. For instance, single particle analysis 

showed that a size-dependent population of patient-derived aggregates exerts its toxicity by 

penetrating cells and binding to proteasome subunits causing their inactivation259. Differential 

proteasome inhibition was also observed for two distinct αS strains prepared under different in vitro 

conditions260.  

 

Membranes and lipids 

Lipid–amyloid interactions have long been recognized as a source of toxicity in proteinopathies. For 

instance, Lewy body formation, involving the incorporation of membranous organelles, has been 

proposed as a major contributor to toxicity in Parkinson’s disease, surpassing that of αS 

fibrillation261. However, the exact impact of lipid interactions on the morphology and toxicity of 

aggregates is still a subject of debate. The functionality of αS in presynaptic vesicle docking is 

affected by the composition of biological membranes262. In line with this observation, pathological 

aggregation of αS has been proposed as an after-effect of its dysregulated binding to its natural 
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substrate PIP3, a process that is initiated by a loss-of-function of synaptojanin 1, a phosphoinositide 

phosphatase and a risk gene for early onset Parkinson’s disease263. Similarly, apolipoproteins 

participate in native-like lipid interactions in a mechanism evolved to protect against the exposure 

of their APRs and their conformational switching from α-helical to cross-β amyloid-compatible 

folds264,265. NMR spectroscopy identified that early APR-driven interactions enable the partial 

insertion of Aβ into membranes, a process that promotes nucleation and shapes the morphology of 

the derived fibrils266. Similar interactions promote the segmental assembly of αS on the surface of 

anionic phospholipids267. Free lipids are proposed to shield the hydrophobicity of exposed APRs in a 

chaperone-like manner, but, above a critical concentration, they can also enable the insertion of 

oligomeric species into bilayers59.  

The molecular composition of membranes also determines their differential binding affinity to 

different amyloid species. For example, lipid bilayers generated by lipid oxidation either promote 

the nucleation of monomeric Aβ, stabilize non-toxic oligomers that are still capable of compromising 

the integrity of bilayers, or reform on-pathway protofibrils that exhibit clear toxicity268. Similarly, 

ApoE4, a genetic risk factor for Alzheimer’s disease, is linked to lipid dysregulation in Alzheimer 

disease brains. It impairs cholesterol transport causing intracellular lipid deposition269 and 

myelination dysfunction270. However, ApoE4 also accelerates Aβ deposition271 and hinders its 

clearance272; therefore its exact role in Alzheimer’s disease remains unclear. 

Lipid–oligomer interactions are in the spotlight for understanding amyloid toxicity. Cryo-EM 

determination of oligomers formed by Aβ when fused to an α-hemolysin toxin revealed that it forms 

a lipid-soluble heptameric pore complex273, reminiscent of the formation of similar pores by other 

amyloid-forming proteins274,275. Lipid–oligomer interactions have also been labeled as highly 

dynamic in several systems. Solution and solid-state NMR have revealed that two different species 

of αS oligomers are largely disordered or require only local folded elements when disrupting 

membrane integrity276. Soluble oligomeric Aβ species formed at different maturation stages induce 

membrane permeabilization or an inflammatory response as a function of size277. Conversion of 

dynamic non-amyloid-like oligomeric IAPP species has been linked to gain-of-function toxicity by 

inducing vesicle perforation278. However, another study showed that IAPP-induced vesicle leakage 

is a biphasic process mainly attributed to secondary nucleation and the gradual elongation of fibrillar 

seeds in the presence of membrane particles of various lipid composition279. 
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Mature amyloid fibrils have been primarily linked to toxicity as inducers of mechanical stress that 

can cause tissue damage, which partially also includes damaged membrane components280. Direct 

structural evidence confirms the binding of lipids to mature amyloid fibril aggregates230. Cryo-EM 

revealed that αS forms distinct fibrils in the presence of lipids, which in turn were found to decorate 

their exposed hydrophobic patches, liaise as cross-contacts for their alternative quaternary 

organization, or channel through internal cavities of the amyloid core281. Correlative light and 

electron microscopy analysis of Lewy body inclusions from Parkinson’s disease post-mortem human 

brain tissue exposed a crowded presence of lipid components282. Similar findings were revealed by 

cryo-ET in deposits formed in a cell culture reporter model of systemic AA amyloidosis229. 

Impressively, this study also identified that the primary site of interaction between amyloids and 

lipid vesicles corresponded to the fibril tips rather than their lateral surfaces, suggesting an amyloid-

driven specificity for lipid interactions (Figure 5c)229. This finding might explain why lipid interaction 

evidence is scarce despite the numerous solved ex-vivo structures. Stringent purification protocols 

for aggregate extraction might promote this selective bias, although analysis of lateral amyloid 

surfaces indicates that fibril cavities are typically narrow and occupy polar residues, thus hindering 

lipid binding84. Indeed, efforts tracing aggregate surface hydrophobicity of αS aggregates revealed 

that oligomeric species expose more hydrophobic patches than their fibril counterparts283. 

Confirming the above, sub-micellar lipids were shown to catalyse apolipoprotein C-II aggregation, 

yet no lipids were recovered as co-factors in contact with mature fibrils. Similarly, cholesterol-

containing lipid surfaces seemed to massively catalyse primary heterotypic nucleation of Aβ284, 

whereas aminosterol derivatives can facilitate the secondary nucleation of Aβ and reduce its toxicity 

in C. elegans either by competing for surfaces (and thus causing the displacement of oligomers) or 

by promoting the formation of less toxic mature species285. 

 

The emerging role of microbiomes 

External factors have also been associated with aggregation disorders although the exact nature of 

this relationship is yet to be defined. Pathogen-associated molecular patterns (PAMPs; short 

conserved microbial motifs that are absent in the host) from bacterial infections activate immune 

responses, triggering microglia activation and oxidative stress which are both downstream 

responses linked to neurodegeneration. Accumulation of endotoxin lipopolysaccharide (LPS)286 
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owing to systemic infection is associated with various aggregation-based pathologies287, inducing 

neuroinflammation288 and morphological changes in amyloid fibrils289. Interestingly, the 

amyloidogenic serum amyloid A protein (SAA) suppresses the effects of LPS and ameliorates toxicity 

in mice290.  

The gut–brain axis has a role in aggregation diseases, but this topic is still in its infancy. Both the 

composition of the gut microbiome and dietary changes affect Alzheimer’s disease and Parkinson’s 

disease291,292 to the level that gut flora and dietary restructuring is considered a therapeutic strategy 

against disease progression293,294. The composition of the gut microbiome has also been linked to 

levels of disease biomarkers such as ApoE295. Microbiome-generated functional amyloids can 

interact with brain amyloids, influencing aggregation and causing behavioral and motor 

impairments296-298. Bacterial amyloid chaperones can inhibit pathological amyloids299, while 

amyloids themselves can exhibit antimicrobial activity300,301. For instance, Aβ can form toxic 

oligomeric pores with bactericidal effects302; sequence similarity between Aβ and bacteriocins might 

have evolved as a strategy to tune an immune response against the latter302.  

The interplay between the intestinal environment and amyloids has also been exposed. For instance, 

intestinal defensins with antimicrobial activity cross-interact and prevent further propagation and 

cell cytotoxicity of Aβ, IAPP and calcitonin303. Microbiota-excreted fatty acids enhance Aβ plaque 

formation in mouse models of Alzheimer’s disease304. In light of the ability of other metabolites to 

template amyloid formation305,306, this concept raises further questions regarding the role of diet 

and food in amyloid pathologies307,308. Indeed, food proteins have been shown to form amyloid fibrils 

in isolation (Box 3), as well as to cross-seed, resulting in inhibition309 or exacerbated pathological 

amyloid formation310. These findings raise concerns in terms of the safety and impact on health of 

common food processing approaches that rely on aggregate formation, such as gelation or 

foaming311-316. 

 

Finally, the relationship of amyloids to viruses is also gaining traction. For example, the HSV-1 viral 

corona promotes aggregation of Aβ both in vitro and in animals317. Similar cross-interactions have 

been validated between SARS-CoV-2 and other viral infectious agents with amyloid proteins318. The 

SARS-Cov-2 nucleocapsid protein utilizes electrostatic interactions to accelerate αS fibrillation and 

induce cell death319. In fact, parallel studies have shown that SARS-Cov-2 proteins can also form 



 24 

amyloids in isolation320,321, with similar results deriving for other viral species, such as the Nipah and 

Hendra viruses322. Viral infectivity has also been indirectly associated with neuroinflammation, 

protein quality control dysfunction and spreading of misfolded products323,324; protein aggregation 

has been proposed as a strategy for the development of novel types of anti-viral agents69. 

 

Conclusions and perspectives 
Progress in treating protein misfolding diseases is evident from FDA and EMA approval of therapies 

such as tafamidis for patients with familial amyloid polyneuropathy325, or migalastat, which rescues 

the folding of α-galactosidase in Fabry Disease. Voxelotor has shown promise as a conformational 

corrector of hemoglobin in sickle cell disease326, similar to several approved correctors of the folding 

of the CFTR conductance channel (ivacaftor, tezacaftor and elexacaftor). Even in the challenging field 

of neurodegenerative diseases, clinical trials with lecanemab in Alzheimer’s disease have shown 

promising progress. Specifically, selected patients with early mild cognitive impairment, even at later 

stages of the disease, experienced a moderate slowdown in the decline of cognition and function327. 

This breakthrough comes after years of uncertainty regarding the role of aggregates in Alzheimer's 

disease, compounded by unsuccessful clinical trials, controversial studies, and a lack of effective 

treatments328,329. Our deepened understanding of the structural characteristics, kinetics and 

interactions of amyloid structures has led to significant advancements in the development of 

engineered therapeutics. Notably, there has been an increase in structure-based approaches 

focused on the creation of highly potent and specific anti-amyloid biomimetics330-332. These designs 

aim to target the attachment to growing fibril ends and thus block axial propagation, effectively 

combating the assembly of various proteins such as tau188,231, aS232, Ab233, IAPP154 and transthyretin 

(TTR)234. Heterotypic recognition has also been employed to raise antibodies333,334 and to engineer 

custom protein designs232 that slow down the formation and toxicity of aggregates. Similarly, our 

improved understanding of the factors dictating amyloid formation and stability is now being 

harnessed to develop synthetic functional biomaterials with diverse applications, including catalysis, 

supporting scaffolds, and bioproducts in the food industry (see Box 4).  

These encouraging results, along with breakthroughs in protein structure prediction from AI-based 

approaches (Box 3) and direct structural determination of amyloids from patient tissues, are 

galvanizing the field and laying the groundwork for future breakthroughs. Despite this progress, our 
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understanding of protein aggregation is still in its infancy. Critical features, such as the 

spatiotemporal dynamics of early amyloid formation, the diversity of oligomers, the involvement of 

on and off pathway species, and the true origins of toxicity in disease, remain subjects of debate. It 

is increasingly evident that multiple overlapping processes and pathways contribute to protein 

aggregation. However, we are now reaching a point at which we can deduce the structure–function 

relationship of these species more accurately. These insights provide hope that the fundamental 

research discussed in this review will ultimately benefit patients worldwide, improving their quality 

of life. 
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Figure Legends  
Figure 1. The role of frustration and aggregation prone regions (APRs) in protein folding and 

aggregation. (a) Folding landscapes are roughened by structural frustration requiring kinetic control. 

Proteins are evolutionarily shaped by opposing requirements: protein folding requires sequences 

that favor native-like interactions while the opposite is often required for functional reasons 

(catalysis, protein dynamics, interaction and protein stability). Natural protein sequences are 

therefore structurally frustrated resulting in suboptimal folding kinetics that also favour alternative 

amyloid-like protein assemblies. The native conformational ensemble, therefore, is one of many 

local minima in a rugged protein conformational landscape requiring extensive kinetic control to be 

achieved. This rugged landscape can include multiple additional minima corresponding to 

aggregated states, with multiple factors working in balance to either steer towards (protein 

supersaturation, polymorphism and more) or away (e.g. molecular chaperones) from this side of the 

funnel (dark side). (b) Essential states of functional proteins in cells. Due to structural and functional 

requirements, ~20% of natural protein sequences are constituted of hydrophobic segments (less in 

intrinsically disordered proteins). Following this principle, APRs are integral factors that facilitate the 

folding of soluble protein domains and frequently occur in transmembrane domains or as binding 

surface in intrinsically disordered proteins. These segments generally adopt a regular secondary 

structure in native structural ensembles. (c) Negative selection and chaperones provide kinetic 

control over APRs. Natural selection favors native-like folding by minimizing the effect of APRs. 

Elements of negative design opposing aggregation include gatekeeper residues or entropic bristles. 

Structural frustration due to APRs is controlled by both negative selection and chaperones.  

 

Figure 2. Structural determinants stabilize and are shared between polymorphic amyloid fibril 

structures. (A) Schematic representations of one cross-sectional layer of polymorphic Aβ fibril cores 

extracted from the brains of patients with different pathologies or post in-vitro amplification 

(seeding). The structure on the left (type I filaments) corresponds to the primary fold isolated from 

the brains of patients with sporadic AD (sAD). The structure comprising two S-shaped packed 

protofilaments, in the middle (type II filaments), was mostly found in the brains of patients with 

familial type (fAD). The latter was extracted also from several other pathologies, including patients 

with aging-related tau astrogliopathy, Parkinson’s disease, dementia with Lewy bodies and 
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frontotemporal dementia. Similarly, both type I and type II filaments were recovered in minor 

population from fAD and sAD cases, respectively144. Fibrils prepared in vitro after seeding Aβ40 with 

extracts from Alzheimer’s disease patients resulted in the formation of filaments with a distinct 

amyloid core, as shown by the structure on the right. Individual residues are shown as circles and 

are colored-coded based on the per residue energetic contribution to overall fibril stability. Values 

were obtained from Stamp-DB, a public repository for the structural and thermodynamic 

classification of amyloid structures19. Despite their evident structural variability, different 

polymorphs share overlapping energetic frameworks composed of similar stabilizing sequence 

segments.  

 

Figure 3. 

Per residue cumulative energetic contributions (shown in the y-axis) of polymorphic cores of amyloid 

fibrils formed by (a) tau, (b) Aβ and (c) αS, clustered and colored-coded based on disease relevance 

(as shown in the figure legends). Circular histograms, with protein residues shown along the 

perimeter and  highlight that polymorphic cores share overlapping energy profiles, with common 

stabilizing regions (color-shaded segments) that correspond primarily to previously experimentally 

determined APRs of each protein47,160,177, interspersed with regions of structural frustration. Circular 

histograms were generated using the ggplot2 library in R. (d) A common framework contributes to 

the stability of tau fibrils derived from different pathologies. Aggregation-prone regions form 

important stacking interactions that typically ‘clamp’ together the termini of fibril cores or 

participate in energetically pivotal packing interactions that have been identified by parallel 

thermodynamic studies19-21. Cores are color-coded based on per residue energetic contribution as 

described previously (chronic traumatic encephalopathy, Pick’s disease and progressive 

supranuclear palsy architectures are shown as overlayed transparent structures to highlight 

common interactions)19,20. Alzheimer’s disease – AD, Cerebral amyloid angiopathy – CAA, Primary 

age-related tauopathy – PART, Gerstmann-Straussler-Scheinker disease - GSS, Chronic traumatic 

encephalopathy -CTE, Corticobasal degeneration - CBD, Argyrophilic grain disease – AGD, Pick’s 

disease – PiD, Globular glial tauopathy – GGT, Progressive supranuclear palsy – PSP, sporadic 

Alzheimer’s disease – sAD, familial Alzheimer’s disease – fAD, Multiple system atrophy – MSA.  
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Figure 4. Overview of protein aggregation kinetics and processes that contribute during amyloid 

fibril formation. (a) Mainstay kinetics of amyloid fibril formation (blue line). Kinetics are 

characterized by a starting lag phase during which initial nuclei and ‘on-pathway’ oligomers are 

formed and reach aggregate concentrations that can be monitored in bulk aggregation assays. This 

lengthy lag phase can be surpassed by seeded experiments (shown as a red line) during which pre-

formed aggregation nuclei are supplied exogenously. This process is followed by a shorter growth 

phase during which the rapid recruitment of monomers is catalyzed by fibril ends or by secondary 

nucleation on lateral surfaces that overtakes the aggregation process. Eventually, the process 

reaches an equilibrium that appears as a plateau phase in typical readouts. (b) Overlapping presence 

of different species during different phases of aggregation growth. During early phases of nucleation, 

it has been suggested that monomers adopt a compact aggregation conformation that can gradually 

lead towards the formation of oligomeric and prefibrillar species. During elongation, these structures 

can promote the growth of protofilaments and mature fibril aggregates that are formed through 

lateral interactions of the former. (c) Key species during the formation of amyloids. (d) Key kinetic 

processes that take place during the formation of amyloid aggregates. Templating that proceeds 

through primary nucleation results in slow and stochastic growth rates179, whereas secondary 

nucleation becomes proportionally faster based on amyloid growth, as it occurs on the surfaces of 

preformed aggregate species. Aggregate growth is then promoted by further incorporation of 

monomers during elongation, whereas fragmentation, which can occur throughout the kinetic 

process, does not change the number of aggregates but can shift the balance between processes 

(for instance, primary and secondary nucleation) as it alters the number of reactive sites by 

modifying the numbers of reactive species.  

 

Figure 5. Amyloid interactions with other biomolecules can have significant implications for 

aggregation-related mechanisms of toxicity. (a) Lateral surfaces of amyloid fibrils have been 

proposed to self-catalyse their growth through secondary nucleation, but also to facilitate cross-

interactions with important co-factors such as polyanionic nucleic acids and polysaccharides. The 

same surface might also promote interaction with lipid bilayers. (b) Heterotypic interactions with 

other molecules (such as lipids) or integral sequence properties (such as post-translational 

modifications) can assist with shaping the morphology of derived aggregates. (c) The growing ends 
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of amyloid fibrils are reactive surfaces that promote heterotypic interactions with other proteins or 

lipid bilayers. (d) Heterotypic interactions with other co-factors can facilitate stabilization and steer 

the morphology of amyloid fibril structures by lowering the energy barriers of specific polymorphs. 

(e) Non-core components of fibrils, such as the fuzzy coat, have also been shown to promote the 

functionality of fibrils by harbouring interactions with other biomolecules53. (f) The heterogeneity of 

amyloid deposits in patients can be explained by several mechanisms of toxicity. The interplay of 

amyloids with the proteostatic machinery, including molecular chaperones, as well as the presence 

of a metastable subproteome that exists beyond its solubility limit and is therefore susceptible to 

widespread proteostatic collapse could explain the heterogeneous composition of in vivo deposits. 

Natural co-factors of fibrils are often co-deposited with amyloids and could lead to both a loss-of-

function phenotype or gain-of-function toxicity events.  

	

Box	1:	Functional	amyloids		

Functional amyloids have interesting properties that can be employed in biological systems335 

(Supplementary Table 1). For example, amyloid filaments are often used as structural support or as 

protective layers336-340. During hormone secretion, amyloid aggregation acts as a temporary storage 

of polypeptide material prior to secretion341,342. Finally, amyloid aggregation is a modification of the 

functional state of a protein, which can be employed to encode molecular memory through faithful 

templating, such as in the case of the yeast prions343, and also in terms of synaptic memory, as shown 

in the drosophila brain344.  

Early structural evidence indicated that functional amyloids form continuous ‘cross-β’-like structures 

such as β-helices or β-solenoids, thus diversifying structurally from their pathological 

counterparts345. The repetitive nature of sequences involved in the formation of functional amyloids 

was proposed to support this conformation, with successive rungs corresponding to individual or 

sets of repeats that are capped at their ends345-349. Early NMR-derived structures of the HET-s prion 

validated this notion141, similar to cryo-EM results and previous modeling work revealing that the 

major curli subunit (which is the primary scaffold for the formation of bacterial biofilms) adopts a 

canonical β-solenoid fold350,351. However, more recent structural findings have shown that functional 

amyloid scaffolds are much more complex than previously considered. This complexity is particularly 
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evident for short sequence segments. For example, the necrosome complex is composed of 

heterotypic amyloid fibrils that are formed by the homologous RIPK1 and RIPK3 proteins and contain 

an unusual ladder of alternating serines and cysteines236. Antimicrobial sequences expressed by 

amphibians form fibrils that can conformationally switch from a typical cross-β fold to an α-helical 

fibril arrangement when found in the presence of membranes301. 

Functional amyloids are also primarily characterized by largely hydrophilic cores in contrast to the 

majority of pathological amyloids352. The hnRNPDL ribonucleoprotein (involved in transcription and 

RNA-processing) forms non-toxic fibrils that bind nucleic acids353; their core consists of a highly 

hydrophilic residues incorporating several water channels. The low complexity domain of hnRNPA2 

also forms fibrils with a hydrophilic core but further introduces backbone kinks that facilitate the 

formation of reversible hydrogels containing hnRNPA2 fibrils354. Orb2, a synaptic translation 

regulator involved in memory, forms amyloid folds with a core consisting of glutamines and 

histidines in a pH-sensitive mechanism, suggesting that these fibrils might also have a dynamic 

nature355. This reversible property extends to β-solenoids, as in the case of β-endorphin fibrils356, 

which are stored in acidic secretory granules and retain a glutamate residue in a critical protonated 

state in their core; on exocytosis, the pH change promotes the release of the peptide hormone in 

the blood in a stepwise manner357. Together, these findings suggest that functional amyloids utilise 

atypical amyloid folds that promote the stacking of polar and charged side chains to promote their 

functionality and reversibility, in contrast to the rigid hydrophobic packing of their pathological 

counterparts352.  

 

Box	2:	The	impact	of	artificial	intelligence			

Significant advances have been made in protein structure prediction with the introduction of state-

of-the-art artificial intelligence (AI)-based methods. One notable milestone was the arrival of 

AlphaFold, which employs established structural knowledge from the Protein Data Bank (PDB) and 

co-evolutionary sequence analysis derived from multiple-sequence alignments358. Through training 

a deep neural network to predict pairwise distances between residues in random sequences, 

AlphaFold successfully unveiled the structural folds of 98.5% of human proteins, including novel folds 

not previously observed358. The efficacy of AlphaFold was independently validated by a following 

collaborative study359 and although its performance is less successful for dynamic regions, other 
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studies demonstrated that when combined with NMR or molecular dynamics-derived parameters, 

it can be utilized to predict protein dynamics and flexibility360,361. Moreover, when integrated with 

experimental data from crystallography or cryoEM, AlphaFold substantially improved protein 

modeling quality and coverage362. Additional methods, such as RoseTTAFold363, ColabFold364, and 

trRosettaX-Single365, have emerged to enhance user accessibility, speed, and accuracy of predictions 

on protein folding and complex formation. There has also been a focus on expanding structure 

predictions to macromolecular protein complexes366,367, although accurate predictions for 

asymmetric complexes remain challenging368. Furthermore, ongoing efforts aim to predict protein-

cofactor interactions369 and nucleic acid conformations370. Lastly, large language models, like 

ProGen371, offer substantial benefits to the field of protein design by generating new sequences with 

predictable functionality, thereby showcasing the potential for further advancements. 

Despite the advances made in predicting protein folding and function, the daunting task of predicting 

protein aggregation remains exceptionally challenging, even for AI-based methods372. Protein 

aggregation defies the influence of evolutionary pressure that shapes sequences, which is the 

foundation of such sequence-based methods. Additionally, the morphological adaptability of 

amyloids surpasses Anfinsen's dogma, which states that a particular structure is encoded by a single 

sequence.  

The example of AlphaFold clearly demonstrates that achieving reliable prediction capabilities 

necessitates a much larger ensemble of structural information. Despite the remarkable progress 

made by cryo-EM and solid state NMR in determining the structure of fibril aggregates, we are still 

some distance away from attaining such levels of prediction accuracy. However, the increased 

availability of amyloid structures has spurred the development of computational approaches that 

focus on analyzing the stability and factors that govern protein aggregation18,20,21. In this light, 

machine learning has made considerable advancements in predicting the propensity for aggregation 

based on protein sequence52,373,374, as well as for the breakdown of aggregation kinetics375. 

Additionally, machine learning has shown promise in the field of medical diagnosis and amyloid 

disease classification376-378. 
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Box	3:	Supersaturation	

Supersaturation refers to a concentration of a solute that exceeds its solubility limit, which is defined 

as its concentration at equilibrium in the same given conditions. This idea extends to parts of the 

proteome expressed at levels beyond their solubility, a condition that sets these proteins at a high 

risk of aggregation and requires strict proteostatic control35. High local concentrations have been 

suggested to shift Anfinsen’s postulate from favouring intramolecular interactions and natural 

folding towards conditions promoting intermolecular contacts and assembly379. Aggregation-prone 

proteins, for which the solubility barrier is lower, are particularly susceptible to this shift379,380. The 

environmental context also influences the levels of protein susceptibility, as conditions reducing the 

solubility barrier of proteins — such as membrane interactions or charge neutralisation — can 

promote their assembly in a salting-out-like process56. Regardless, supersaturation as a general 

mechanism has been suggested to drive massive aggregation and increased cellular vulnerability in 

major neurodegenerative disorders35,381. In fact, specific pathways enriched in supersaturated 

proteins are downregulated in Alzheimer disease brains to mitigate massive subproteomic collapse 

in conditions of compromised proteostasis382. Supporting this finding, single-cell transcriptomics and 

subcellular proteomics uncovered an enrichment of metastable proteins related to synaptic function 

and mitochondrial energy metabolism in protein inclusions related to neurodegeneration, thus 

providing a tracible pattern for selective vulnerability of neurons to aggregates383. Proteome 

analyses of the composition of inclusions derived from myopathy patients revealed a similar 

metastable proteome that might be linked to muscle motor dysfunction384. The importance of the 

protein quality control machinery in keeping such metastable subpopulations in line is undeniable. 

This premise questions, however, whether supersaturation is a driving force of aging or vice versa. 

Are proteins that are expressed beyond their solubility a threat during early life when protein quality 

control is not yet compromised? There are arguments to be made to counter this notion. For 

instance, mass spectrometry data in C. elegans revealed that most proteins express above their 

limits of solubility and that their monitoring is lost as a result of the functional decline of the 

machinery due to aging385. Gene co-expression analysis identified the endosomal–lysosomal and 

ubiquitin–proteasome systems as key pathways promoting clearance and preventing massive 

proteostatic collapse in Alzheimer disease386. On the other hand, it is also possible that 

supersaturation drives cell aging by compromising proteostasis. Impairment of certain molecular 
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chaperones exacerbated the widespread collapse of a metastable proteome induced when targeting 

the activity of ATM and DNA topoisomerases387. In line, loss of chaperone-mediated autophagy in 

mice was shown to alter neuronal function by synergistically promoting collapse of a metastable 

proteome and increasing cellular vulnerability to aggregation toxicity94.  

 

Box	4:	Synthetic	amyloids	

Increasingly, synthetic amyloid fibrils are being explored for various applications, ranging from 

structural scaffolds, improved techno-functional properties in food, innovative catalysts388, to the 

deliberate knock-down of target proteins by targeted aggregation.  

Materials  

The chemical stability, fibrillar nature and tensile strength of amyloid fibrils makes them attractive 

components of novel materials389. Moreover, amyloid fibrils can be generated from short peptides 

whose sequence can be rationally designed. For example, synthetic spider silk was constructed on 

the basis of amyloid architecture and showed tensile strength and toughness that surpassed some 

naturally occurring silks390. 

Catalysis  

Amyloids initially appeared in catalytic applications by tethering existing enzymes to an amyloid 

backbone391,392, but increasingly the surface of the amyloid itself is being employed directly for 

catalysis, either through the immobilization of metal ions85,226,227, prosthetic groups or co-

enzymes393-395, or simply by the positioning of charged side chains on the amyloid surface396. The 

concept of surface-induced catalysis suggests that coordinated interaction interfaces are essential 

for this functional process. However, the cryo-electron microscopy structure of a catalytic amyloid 

revealed that these too are susceptible to polymorphy397; specifically, metal-binding sites were 

observed to form at the interface of protofilament contacts, indicating that polymorphism was 

instead critical in enabling the functionality of these filaments. 

Food  

Proteins have a techno-functional role in food applications, such as gelling, foaming and emulsifying. 

Evidence indicates that the fibrillar state of food-born proteins can improve (some of) these 

properties and that common food processing techniques promote their formation311-316. Given that 

bioavailability is higher in the amyloid form (in which only the amyloid core is protected from 
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proteases) than for the folded protein, increasing the fibrillar protein content of certain foods might 

one day lead to a reduced need for protein, in particular of animal-derived protein138,398-400, although 

the impact on human health requires further investigation401.  

Targeted aggregation  

Our group has shown that short aggregation-prone peptides can be used to induce the aggregation 

of selected target proteins. This approach is based on the observation that most naturally occurring 

polypeptides contain aggregation prone regions that tend to be unique within their proteome, and 

that amyloid assembly displays sequence specificity402. We have shown the potential of this 

approach in combating bacterial strains that are resistant to established antibiotics70,403,404, viral 

infections69, and in an oncological setting68,71. Moreover, derivatives labelled with radionuclides 

have potential as PET tracers405.  
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